WorldWideScience

Sample records for pterostilbene inhibits pancreatic

  1. Potent Inhibition of HIV-1 Replication in Resting CD4 T Cells by Resveratrol and Pterostilbene.

    Science.gov (United States)

    Chan, Chi N; Trinité, Benjamin; Levy, David N

    2017-09-01

    HIV-1 infection of resting CD4 T cells plays a crucial and numerically dominant role during virus transmission at mucosal sites and during subsequent acute replication and T cell depletion. Resveratrol and pterostilbene are plant stilbenoids associated with several health-promoting benefits. Resveratrol has been shown to inhibit the replication of several viruses, including herpes simplex viruses 1 and 2, papillomaviruses, severe acute respiratory syndrome virus, and influenza virus. Alone, resveratrol does not inhibit HIV-1 infection of activated T cells, but it does synergize with nucleoside reverse transcriptase inhibitors in these cells to inhibit reverse transcription. Here, we demonstrate that resveratrol and pterostilbene completely block HIV-1 infection at a low micromolar dose in resting CD4 T cells, primarily at the reverse transcription step. The anti-HIV effect was fully reversed by exogenous deoxynucleosides and Vpx, an HIV-1 and simian immunodeficiency virus protein that increases deoxynucleoside triphosphate (dNTP) levels. These findings are consistent with the reported ability of resveratrol to inhibit ribonucleotide reductase and to lower dNTP levels in cells. This study supports the potential use of resveratrol, pterostilbene, or related compounds as adjuvants in anti-HIV preexposure prophylaxis (PrEP) formulations. Copyright © 2017 American Society for Microbiology.

  2. Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation

    Directory of Open Access Journals (Sweden)

    Min-Hsiung Pan

    2011-01-01

    Full Text Available Invasive breast cancer is the major cause of death among females and its incidence is closely linked to HER2 (human epidermal growth factor receptor 2 overexpression. Pterostilbene, a natural analog of resveratrol, exerts its cancer chemopreventive activity similar to resveratrol by inhibiting cancer cell proliferation and inducing apoptosis. However, the anti-invasive effect of pterostilbene on HER2-bearing breast cancer has not been evaluated. Here, we used heregulin-β1 (HRG-β1, a ligand for HER3, to transactivate HER2 signaling. We found that pterostilbene was able to suppress HRG-β1-mediated cell invasion, motility and cell transformation of MCF-7 human breast carcinoma through down-regulation of matrix metalloproteinase-9 (MMP-9 activity and growth inhibition. In parallel, pterostilbene also inhibited protein and mRNA expression of MMP-9 driven by HRG-β1, suggesting that pterostilbene decreased HRG-β1-mediated MMP-9 induction via transcriptional regulation. Examining the signaling pathways responsible for HRG-β1-associated MMP-9 induction and growth inhibition, we observed that pterostilbene, as well as SB203580 (p38 kinase inhibitor, can abolish the phosphorylation of p38 mitogen-activated protein kinase (p38 kinase, a downstream HRG-β1-responsive kinase responsible for MMP-9 induction. In addition, HRG-β1-driven Akt phosphorylation required for cell proliferation was also suppressed by pterostilbene. Taken together, our present results suggest that pterostilbene may serve as a chemopreventive agent to inhibit HRG-β1/HER2-mediated aggressive and invasive phenotype of breast carcinoma through down-regulation of MMP-9, p38 kinase and Akt activation.

  3. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Bodipati, Naganjaneyulu; Krishna Peddinti, Rama [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Roy, Partha, E-mail: paroyfbs@iitr.ernet.in [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India)

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  4. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    International Nuclear Information System (INIS)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-01

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC 50 =25±0.38) when compared to reference compound PTER (IC 50 =65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene

  5. Pterostilbene Inhibits the Growth of Human Esophageal Cancer Cells by Regulating Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Yingtong Feng

    2016-03-01

    Full Text Available Background/Aims: Pterostilbene (PTE, a natural dimethylated resveratrol analog from blueberries, is known to have diverse pharmacological activities, including anticancer properties. In this study, we investigated the anticancer activity of PTE against human esophageal cancer cells both in vitro and in vivo and explored the role of endoplasmic reticulum (ER stress (ERS signaling in this process. Methods: Cell viability, the apoptotic index, Caspase 3 activity, adhesion, migration, reactive oxygen species (ROS levels, and glutathione (GSH levels were detected to explore the effect of PTE on human EC109 esophageal cancer cells. Furthermore, siRNA transfection and a chemical inhibitor were employed to confirm the role of ERS. Results: PTE treatment dose- and time-dependently decreased the viability of human esophageal cancer EC109 cells. PTE also decreased tumor cell adhesion, migration and intracellular GSH levels while increasing the apoptotic index, Caspase 3 activity and ROS levels, which suggest the strong anticancer activity of PTE. Furthermore, PTE treatment increased the expression of ERS-related molecules (GRP78, ATF6, p-PERK, p-eIF2α and CHOP, upregulated the pro-apoptosis-related protein PUMA and downregulated the anti-apoptosis-related protein Bcl-2 while promoting the translocation of cytochrome c from mitochondria to cytosol and the activation of Caspase 9 and Caspase 12. The downregulation of ERS signaling by CHOP siRNA desensitized esophageal cancer cells to PTE treatment, whereas upregulation of ERS signaling by thapsigargin (THA had the opposite effect. N-Acetylcysteine (NAC, a ROS scavenger, also desensitized esophageal cancer cells to PTE treatment. Conclusions: Overall, the results indicate that PTE is a potent anti-cancer pharmaceutical against human esophageal cancer, and the possible mechanism involves the activation of ERS signaling pathways.

  6. Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kun Li

    Full Text Available The development of natural product agents with targeted strategies holds promise for enhanced anticancer therapy with reduced drug-associated side effects. Resveratrol found in red wine, has anticancer activity in various tumor types. We reported earlier on a new molecular target of resveratrol, the metastasis-associated protein 1 (MTA1, which is a part of nucleosome remodeling and deacetylation (NuRD co-repressor complex that mediates gene silencing. We identified resveratrol as a regulator of MTA1/NuRD complex and re-activator of p53 acetylation in prostate cancer (PCa. In the current study, we addressed whether resveratrol analogues also possess the ability to inhibit MTA1 and to reverse p53 deacetylation. We demonstrated that pterostilbene (PTER, found in blueberries, had greater increase in MTA1-mediated p53 acetylation, confirming superior potency over resveratrol as dietary epigenetic agent. In orthotopic PCa xenografts, resveratrol and PTER significantly inhibited tumor growth, progression, local invasion and spontaneous metastasis. Furthermore, MTA1-knockdown sensitized cells to these agents resulting in additional reduction of tumor progression and metastasis. The reduction was dependent on MTA1 signaling showing increased p53 acetylation, higher apoptotic index and less angiogenesis in vivo in all xenografts treated with the compounds, and particularly with PTER. Altogether, our results indicate MTA1 as a major contributor in prostate tumor malignant progression, and support the use of strategies targeting MTA1. Our strong pre-clinical data indicate PTER as a potent, selective and pharmacologically safe natural product that may be tested in advanced PCa.

  7. Selective COX-2 inhibition by a Pterocarpus marsupium extract characterized by pterostilbene, and its activity in healthy human volunteers.

    NARCIS (Netherlands)

    Hougee, S.; Faber, J.; Sanders, A.; Jong, R.B. de; Berg, W.B. van den; Garssen, J.; Hoijer, M.A.; Smit, H.F.

    2005-01-01

    In this study, an extract of Pterocarpus marsupium Roxb. containing pterostilbene has been evaluated for its PGE2-inhibitory activity in LPS-stimulated PBMC. In addition, the COX-1/2 selective inhibitory activity of P. marsupium (PM) extract was investigated. Biological activity, as well as safety

  8. In vitro evaluation of antiproliferative and cytotoxic properties of pterostilbene against human colon cancer cells.

    Science.gov (United States)

    Wawszczyk, Joanna; Kapral, Małgorzata; Hollek, Andrzej; Węglarz, Ludmiła

    2014-01-01

    Colon cancer has been remaining the second leading cause of cancer mortality in Poland in the last years. Epidemiological, preclinical and clinical studies reveal that dietary phytochemicals may exert chemopreventive and therapeutic effect against colorectal cancer. There is a growing interest in identifying new biologically active agents from dietary sources in this respect. Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a naturally occurring stilbene, that has been found to have antioxidative, anti-inflammatory and antipro- liferative properties. Compared to other stilbenes, pterostilbene has greater bioavailability, and so, a greater potential for clinical applications. Recent studies showed that pterostilbene exhibits the hallmark characteristics of an anticancer agent. The aim of this study was to analyze antiproliferative and cytotoxic effects of pterostilbene on human colon cancer Caco-2 cells. They were cultured using standard techniques and exposed to increasing doses of pterostilbene (5-100 μM) for 48 and 72 h. Cell proliferation was determined by sulforhodamine B assay. The growth of treated cells was expressed as a percentage of that of untreated control cells. Pterostilbene decreased proliferation rate of Caco-2 cells in a dose- and time-dependent manner. Its concentrations = 25 μM did not affect cell growth after 48 h treatment period. Significant growth inhibition was observed in cultures incubated with higher concentrations of pterostilbene (40-100 μM). Pterostilbene at all concentrations used (5-100 μM) caused significant inhibition of cell proliferation when the experimental time period was elongated to 72 h. The maximum growth reduction was observed at 100 mM pterostilbene. The cytotoxicity of pterostilbene was evaluated in 48 h cultures based on lactate dehydrogenase (LDH) leakage into the culture medium and showed dose-related pattern. The findings of this study showed significant dose-dependent antiproliferative and cytotoxic

  9. Pterostilbene Is a Potential Candidate for Control of Blackleg in Canola.

    Directory of Open Access Journals (Sweden)

    Joshua C O Koh

    Full Text Available Two stilbenes, resveratrol and pterostilbene, exhibit antifungal activity against Leptosphaeria maculans, the fungal pathogen responsible for blackleg (stem canker in canola (Brassica napus. In vitro studies on the effect of these stilbenes on L. maculans mycelial growth and conidia germination showed that pterostilbene is a potent fungicide and sporicide, but resveratrol only exerted minor inhibition on L. maculans. Cell viability of hyphae cultures was markedly reduced by pterostilbene and SYTOX green staining showed that cell membrane integrity was compromised. We demonstrate that pterostilbene exerts fungicidal activity across 10 different L. maculans isolates and the compound confers protection to the blackleg-susceptible canola cv. Westar seedlings. The potential of pterostilbene as a control agent against blackleg in canola is discussed.

  10. Pterostilbene-induced tumor cytotoxicity

    DEFF Research Database (Denmark)

    Mena, Salvador; Rodríguez, María L; Ponsoda, Xavier

    2012-01-01

    The phenolic phytoalexin resveratrol is well known for its health-promoting and anticancer properties. Its potential benefits are, however, limited due to its low bioavailability. Pterostilbene, a natural dimethoxylated analog of resveratrol, presents higher anticancer activity than resveratrol. ...

  11. Inhibition of carbachol-induced formation of inositolphosphates in isolated pancreatic islets

    DEFF Research Database (Denmark)

    Kardasz, A.M.J.; Capito, Kirsten; Hansen, Svend Erik

    1991-01-01

    Medicinsk biokemi, feed-back inhibition, phospholipase C, pancreatic islets, Calcium, proteinkinase C......Medicinsk biokemi, feed-back inhibition, phospholipase C, pancreatic islets, Calcium, proteinkinase C...

  12. Proton pump inhibitors inhibit pancreatic secretion

    DEFF Research Database (Denmark)

    Wang, Jing; Barbuskaite, Dagne; Tozzi, Marco

    2015-01-01

    +/K+-ATPases are expressed and functional in human pancreatic ducts and whether proton pump inhibitors (PPIs) have effect on those. Here we show that the gastric HKα1 and HKβ subunits (ATP4A; ATP4B) and non-gastric HKα2 subunits (ATP12A) of H+/K+-ATPases are expressed in human pancreatic cells. Pumps have similar...... of major ions in secretion follow similar excretory curves in control and PPI treated animals. In addition to HCO3-, pancreas also secretes K+. In conclusion, this study calls for a revision of the basic model for HCO3- secretion. We propose that proton transport is driving secretion, and that in addition...

  13. Inhibition of pancreatic tumoral cells by snake venom disintegrins.

    Science.gov (United States)

    Lucena, Sara; Castro, Roberto; Lundin, Courtney; Hofstetter, Amanda; Alaniz, Amber; Suntravat, Montamas; Sánchez, Elda Eliza

    2015-01-01

    Pancreatic cancer often has a poor prognosis, even when diagnosed early. Pancreatic cancer typically spreads rapidly and is rarely detected in its early stages, which is a major reason it is a leading cause of cancer death. Signs and symptoms may not appear until pancreatic cancer is quite advanced, and complete surgical removal is not possible. Furthermore, pancreatic cancer responds poorly to most chemotherapeutic agents. The importance of integrins in several cell types that affect tumor progression has made them an appealing target for cancer therapy. Some of the proteins found in the snake venom present a great potential as anti-tumor agents. In this study, we summarize the activity of two integrins antagonist, recombinant disintegrins mojastin 1 and viridistatin 2, on human pancreatic carcinoma cell line (BXPC-3). Both recombinant disintegrins inhibited some essential aspects of the metastasis process such as proliferation, adhesion, migration, and survival through apoptosis, making these proteins prominent candidates for the development of drugs for the treatment of pancreatic cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Estrogen receptor-α36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer.

    Directory of Open Access Journals (Sweden)

    Chi Pan

    Full Text Available Pterostilbene (trans-3,5-dimethoxy-4'-hudroxystilbene is an antioxidant primarily found in blueberries. It also inhibits breast cancer regardless of conventional estrogen receptor (ER-α66 status by inducing both caspase-dependent and caspase-independent apoptosis. However, the pterostilbene-induced apoptosis rate in ER-α66-negative breast cancer cells is much higher than that in ER-α66-positive breast cancer cells. ER-α36, a variant of ER-α66, is widely expressed in ER-α66-negative breast cancer, and its high expression mediates the resistance of ER-α66-positive breast cancer patients to tamoxifen therapy. The aim of the present study is to determine the relationship between the antiproliferation activity of pterostilbene and ER-α36 expression in breast cancer cells. Methyl-thiazolyl-tetrazolium (MTT assay, apoptosis analysis, and an orthotropic xenograft mouse model were used to examine the effects of pterostilbene on breast cancer cells. The expressions of ER-α36 and caspase 3, the activation of ERK and Akt were also studied through RT-PCR, western blot analysis, and immunohistochemical (IHC staining. ER-α36 knockdown was found to desensitize ER-α66-negative breast cancer cells to pterostilbene treatment both in vitro and in vivo, and high ER-α36 expression promotes pterostilbene-induced apoptosis in breast cancer cells. Western blot analysis data indicate that MAPK/ERK and PI3K/Akt signaling in breast cancer cells with high ER-α36 expression are mediated by ER-α36, and are inhibited by pterostilbene. These results suggest that ER-α36 is a therapeutic target in ER-α36-positive breast cancer, and pterostilbene is an inhibitor that targets ER-α36 in the personalized therapy against ER-α36-positive breast cancer.

  15. Synthesis of pterostilbene by Julie Olefination

    Science.gov (United States)

    A simple, stereoselective route for the synthesis of the biologically active compounds trans-pterostilbene and tetramethoxy stilbene from the readily available starting materials 3,5-dimethoxy benzyl alcohol and 4-hydroxy benzaldehyde was developed using Julia olefination as a key reaction....

  16. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism.

    Science.gov (United States)

    Cullen, Joseph J; Hinkhouse, Marilyn M; Grady, Matthew; Gaut, Andrew W; Liu, Jingru; Zhang, Yu Ping; Weydert, Christine J Darby; Domann, Frederick E; Oberley, Larry W

    2003-09-01

    NADPH:quinone oxidoreductase (NQO(1)), a homodimeric, ubiquitous, flavoprotein, catalyzes the two-electron reduction of quinones to hydroquinones. This reaction prevents the one-electron reduction of quinones by cytochrome P450 reductase and other flavoproteins that would result in oxidative cycling with generation of superoxide (O(2)(.-)). NQO(1) gene regulation may be up-regulated in some tumors to accommodate the needs of rapidly metabolizing cells to regenerate NAD(+). We hypothesized that pancreatic cancer cells would exhibit high levels of this enzyme, and inhibiting it would suppress the malignant phenotype. Reverse transcription-PCR, Western blots, and activity assays demonstrated that NQO(1) was up-regulated in the pancreatic cancer cell lines tested but present in very low amounts in the normal human pancreas. To determine whether inhibition of NQO(1) would alter the malignant phenotype, MIA PaCa-2 pancreatic cancer cells were treated with a selective inhibitor of NQO(1), dicumarol. Dicumarol increased intracellular production of O(2)(.-), as measured by hydroethidine staining, and inhibited cell growth. Both of these effects were blunted with infection of an adenoviral vector containing the cDNA for manganese superoxide dismutase. Dicumarol also inhibited cell growth, plating efficiency, and growth in soft agar. We conclude that inhibition of NQO(1) increases intracellular O(2)(.-) production and inhibits the in vitro malignant phenotype of pancreatic cancer. These mechanisms suggest that altering the intracellular redox environment of pancreatic cancer cells may inhibit growth and delineate a potential strategy directed against pancreatic cancer.

  17. Tacrolimus inhibits the revascularization of isolated pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Ryuichi Nishimura

    Full Text Available AIMS: Immunosuppressive drugs could be crucial factors for a poor outcome after islet allotransplantation. Unlike rapamycin, the effects of tacrolimus, the current standard immunosuppressant used in islet transplantation, on graft revascularization remain unclear. We examined the effects of tacrolimus on islet revascularization using a highly sensitive imaging system, and analyzed the gene expression in transplanted islets by introducing laser microdissection techniques. METHODS: Islets isolated from C57BL/6-Tg (CAG-EGFP mice were transplanted into the nonmetallic dorsal skinfold chamber on the recipients. Balb/c athymic mice were used as recipients and were divided into two groups: including a control group (n = 9 and tacrolimus-treated group (n = 7. The changes in the newly-formed vessels surrounding the islet grafts were imaged and semi-quantified using multi-photon laser-scanning microscopy and a Volocity system. Gene expression in transplanted islets was analyzed by the BioMark dynamic system. RESULTS: The revascularization process was completed within 14 days after pancreatic islet transplantation at subcutaneous sites. The newly-formed vascular volume surrounding the transplanted islets in the tacrolimus-treated group was significantly less than that in the control group (p<0.05. Although the expression of Vegfa (p<0.05 and Ccnd1 (p<0.05 was significantly upregulated in the tacrolimus-treated group compared with that of the control group, no differences were observed between the groups in terms of other types of gene expression. CONCLUSIONS: The present study demonstrates that tacrolimus inhibits the revascularization of isolated pancreatic islets without affecting the characteristics of the transplanted grafts. Further refinements of this immunosuppressive regimen, especially regarding the revascularization of islet grafts, could improve the outcome of islet allotransplantation.

  18. Inhibition of human pancreatic and biliary output but not intestinal motility by physiological intraileal lipid loads

    DEFF Research Database (Denmark)

    Keller, Jutta; Holst, Jens Juul; Layer, Peter

    2005-01-01

    Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated...

  19. Vitamin K3 attenuates cerulein-induced acute pancreatitis through inhibition of the autophagic pathway.

    Science.gov (United States)

    Chinzei, Ryo; Masuda, Atsuhiro; Nishiumi, Shin; Nishida, Masayuki; Onoyama, Mitsuko; Sanuki, Tsuyoshi; Fujita, Tsuyoshi; Moritoh, Satoshi; Itoh, Tomoo; Kutsumi, Hiromu; Mizuno, Shigeto; Azuma, Takeshi; Yoshida, Masaru

    2011-01-01

    The discovery of novel and effective treatment methods would be of great help to patients with acute pancreatitis. The aims of this study were to determine the inhibitory effects of vitamin K3 (VK3) against cerulein-induced acute pancreatitis in mice and to examine the mechanisms behind these effects. Acute pancreatitis in mice was induced by intraperitoneal injection of cerulein 6 times at hourly intervals. Vitamin K3 was administered once before the first injection of cerulein or twice before and after the first injection of cerulein. The degrees of inflammation and autophagy in the pancreatic tissue were estimated by histological examination, measurement of enzyme activity, confocal microscopy, and Western blotting. The inhibitory effects of VK3 against rapamycin-induced autophagy were also examined using HeLa cells stably expressing green fluorescent protein LC3. Cerulein-induced acute pancreatitis was markedly attenuated by the administration of VK3. In addition, VK3 led to the inhibition of cerulein-evoked autophagic changes and colocalization of autophagosomes and lysosomes in the pancreatic tissue. Vitamin K3 also reduced rapamycin-induced autophagy in HeLa/green fluorescent protein LC3 cells. Our data suggest that the administration of VK3 reduces pancreatic inflammation in acute pancreatitis through inhibition of the autophagic pathway. Vitamin K3 may be an effective therapeutic strategy against acute pancreatitis.

  20. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen; Amad, Maan H.; Emwas, Abdul-Hamid M.

    2013-01-01

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed

  1. Inhibition of SIRT1 combined with gemcitabine therapy for pancreatic carcinoma

    Directory of Open Access Journals (Sweden)

    Gong DJ

    2013-07-01

    Full Text Available Dao-Jun Gong,1 Jia-Min Zhang,1 Min Yu,1 Bo Zhuang,1 Qing-Qu Guo21Department of Hepatobiliary-Pancreatic Surgery, Jinhua Hospital of Zhejiang University, Jinhua, People's Republic of China; 2Department of Surgery, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, People's Republic of ChinaBackground: Pancreatic carcinoma possesses one of the highest lethality rates, highest drug-resistance, and highest incidence rates. The objective of this research was to enhance the efficacy and drug-resistance for pancreatic carcinoma by using inhibition of SIRT1 combined with gemcitabine therapy methods.Methods: Three pancreatic carcinoma cells (PANC-1 cells, BxPC-3 cells, and SW1990 cells received treatment with physiological saline, inhibition of SIRT1, gemcitabine, and combination therapy with inhibition of SIRT1 and gemcitabine in vitro; then BxPC-3 pancreatic cancer xenogeneic mice also received treatment with physiological saline, inhibition of SIRT1, gemcitabine, and combination therapy with inhibition of SIRT1 and gemcitabine in vivo.Results: The cleaved poly ADP ribose polymerase (PARP-1 effect of drug in pancreatic carcinoma cells was significantly different (P < 0.05 and the efficacy in descending order was the combination therapy with inhibition of SIRT1 and gemcitabine, inhibition of SIRT1, and gemcitabine. The BxPC-3 pancreatic cancer xenogeneic mice model received treatment with physiological saline, inhibition of SIRT1, gemcitabine, and combination therapy with inhibition of SIRT1 and gemcitabine in vivo and the results showed that the tumor volumes decreased and the survival rate within 45 days increased according to the order of the given drugs and the difference was significant (P < 0.05.Conclusion: Combination therapy with inhibition of SIRT1 and gemcitabine could improve efficacy and survival time in a BxPC-3 pancreatic cancer xenogeneic mice model, compared with single inhibition of SIRT1, or single

  2. Resveratrol, pterostilbene, and piceatannol in vaccinium berries.

    Science.gov (United States)

    Rimando, Agnes M; Kalt, Wilhelmina; Magee, James B; Dewey, Jim; Ballington, James R

    2004-07-28

    A study was conducted to determine the presence of resveratrol, pterostilbene, and piceatannol in Vaccinium berries. Samples representing selections and cultivars of 10 species from Mississippi, North Carolina, Oregon, and Canada were analyzed by gas chromatography/mass spectrometry. Resveratrol was found in Vaccinium angustifolium (lowbush blueberry), Vaccinium arboretum (sparkleberry), Vaccinium ashei (rabbiteye blueberry), Vaccinium corymbosum (highbush blueberry), Vaccinium elliottii (Elliott's blueberry), Vaccinium macrocarpon (cranberry), Vaccinium myrtillus (bilberry), Vaccinium stamineum (deerberry), Vaccinium vitis-ideae var. vitis-ideae (lingonberry), and Vaccinium vitis-ideae var. minor (partridgeberry) at levels between 7 and 5884 ng/g dry sample. Lingonberry was found to have the highest content, 5884 ng/g dry sample, comparable to that found in grapes, 6471 ng/g dry sample. Pterostilbene was found in two cultivars of V. ashei and in V. stamineum at levels of 99-520 ng/g dry sample. Piceatannol was found in V. corymbosum and V. stamineum at levels of 138-422 ng/g dry sample. These naturally occurring stilbenes, known to be strong antioxidants and to have cancer chemopreventive activities, will add to the purported health benefits derived from the consumption of these small fruits. Copyright 2004 American Chemical Society

  3. Genetic inhibition of protein kinase Cε attenuates necrosis in experimental pancreatitis

    Science.gov (United States)

    Liu, Yannan; Tan, Tanya; Jia, Wenzhuo; Lugea, Aurelia; Mareninova, Olga; Waldron, Richard T.; Pandol, Stephen J.

    2014-01-01

    Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis. PMID:25035113

  4. Targeting Insulin-Like Growth Factor 1 Receptor Inhibits Pancreatic Cancer Growth and Metastasis

    Science.gov (United States)

    Subramani, Ramadevi; Lopez-Valdez, Rebecca; Arumugam, Arunkumar; Nandy, Sushmita; Boopalan, Thiyagarajan; Lakshmanaswamy, Rajkumar

    2014-01-01

    Pancreatic cancer is one of the most lethal cancers. Increasing incidence and mortality indicates that there is still much lacking in detection and management of the disease. This is partly due to a lack of specific symptoms during early stages of the disease. Several growth factor receptors have been associated with pancreatic cancer. Here, we have investigated if an RNA interference approach targeted to IGF-IR could be effective and efficient against pancreatic cancer growth and metastasis. For that, we evaluated the effects of IGF-1R inhibition using small interfering RNA (siRNAs) on tumor growth and metastasis in HPAC and PANC-1 pancreatic cancer cell lines. We found that silencing IGF-1R inhibits pancreatic cancer growth and metastasis by blocking key signaling pathways such AKT/PI3K, MAPK, JAK/STAT and EMT. Silencing IGF-1R resulted in an anti-proliferative effect in PANC-1 and HPAC pancreatic cancer cell lines. Matrigel invasion, transwell migration and wound healing assays also revealed a role for IGF-1R in metastatic properties of pancreatic cancer. These results were further confirmed using Western blotting analysis of key intermediates involved in proliferation, epithelial mesenchymal transition, migration, and invasion. In addition, soft agar assays showed that silencing IGF-1R also blocks the colony forming capabilities of pancreatic cancer cells in vitro. Western blots, as well as, flow cytometric analysis revealed the induction of apoptosis in IGF-1R silenced cells. Interestingly, silencing IGF-1R also suppressed the expression of insulin receptor β. All these effects together significantly control pancreatic cancer cell growth and metastasis. To conclude, our results demonstrate the significance of IGF-1R in pancreatic cancer. PMID:24809702

  5. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance.

    Science.gov (United States)

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-30

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resistant pancreatic cancer cells. Three pancreatic cancer-cell lines were used to evaluate the antitumor effect of CG200745 combined with gemcitabine/erlotinib. CG200745 induced the expression of apoptotic proteins (PARP and caspase-3) and increased the levels of acetylated histone H3. CG200745 with gemcitabine/erlotinib showed significant growth inhibition and synergistic antitumor effects in vitro. In vivo, gemcitabine/erlotinib and CG200745 reduced tumor size up to 50%. CG200745 enhanced the sensitivity of gemcitabine-resistant pancreatic cancer cells to gemcitabine, and decreased the level of ATP-binding cassette-transporter genes, especially multidrug resistance protein 3 (MRP3) and MRP4. The novel HDAC inhibitor, CG200745, with gemcitabine/erlotinib had a synergistic anti-tumor effect on pancreatic cancer cells. CG200745 significantly improved pancreatic cancer sensitivity to gemcitabine, with a prominent antitumor effect on gemcitabine-resistant pancreatic cancer cells. Therefore, improved clinical outcome is expected in the future.

  6. L-Cysteine Administration Attenuates Pancreatic Fibrosis Induced by TNBS in Rats by Inhibiting the Activation of Pancreatic Stellate Cell

    Science.gov (United States)

    Hu, GuoYong; Shen, Jie; Wang, Feng; Xu, Ling; Dai, WeiQi; Xiong, Jie; Ni, JianBo; Guo, ChuanYong; Wan, Rong; Wang, XingPeng

    2012-01-01

    Background and Aims Recent studies have shown that activated pancreatic stellate cells (PSCs) play a major role in pancreatic fibrogenesis. We aimed to study the effect of L-cysteine administration on fibrosis in chronic pancreatitis (CP) induced by trinitrobenzene sulfonic acid (TNBS) in rats and on the function of cultured PSCs. Methods CP was induced by TNBS infusion into rat pancreatic ducts. L-cysteine was administrated for the duration of the experiment. Histological analysis and the contents of hydroxyproline were used to evaluate pancreatic damage and fibrosis. Immunohistochemical analysis of α-SMA in the pancreas was performed to detect the activation of PSCs in vivo. The collagen deposition related proteins and cytokines were determined by western blot analysis. DNA synthesis of cultured PSCs was evaluated by BrdU incorporation. We also evaluated the effect of L-cysteine on the cell cycle and cell activation by flow cytometry and immunocytochemistry. The expression of PDGFRβ, TGFβRII, collagen 1α1 and α-SMA of PSCs treated with different concentrations of L-cysteine was determined by western blot. Parameters of oxidant stress were evaluated in vitro and in vivo. Nrf2, NQO1, HO-1, IL-1β expression were evaluated in pancreas tissues by qRT-PCR. Results The inhibition of pancreatic fibrosis by L-cysteine was confirmed by histological observation and hydroxyproline assay. α-SMA, TIMP1, IL-1β and TGF-β1 production decreased compared with the untreated group along with an increase in MMP2 production. L-cysteine suppressed the proliferation and extracellular matrix production of PSCs through down-regulating of PDGFRβ and TGFβRII. Concentrations of MDA+4-HNE were decreased by L-cysteine administration along with an increase in GSH levels both in tissues and cells. In addition, L-cysteine increased the mRNA expression of Nrf2, NQO1 and HO-1 and reduced the expression of IL-1β in L-cysteine treated group when compared with control group. Conclusion L

  7. Pancreatitis

    Science.gov (United States)

    ... the hormones insulin and glucagon into the bloodstream. Pancreatitis is inflammation of the pancreas. It happens when digestive enzymes start digesting the pancreas itself. Pancreatitis can be acute or chronic. Either form is ...

  8. Ginkgo Biloba Extract Kaempferol Inhibits Cell Proliferation and Induces Apoptosis in Pancreatic Cancer Cells

    Science.gov (United States)

    Zhang, Yuqing; Chen, Aaron Y.; Li, Min; Chen, Changyi; Yao, Qizhi

    2010-01-01

    Background Kaempferol is one of the most important constituents in ginkgo flavonoids. Recent studies indicate kaempferol may have anti-tumor activities. The objective in this study was to determine the effect and mechanisms of kaempferol on pancreatic cancer cell proliferation and apoptosis. Materials and Methods Pancreatic cancer cell lines MIA PaCa-2 and Panc-1 were treated with Kampferol, and the inhibitory effects of kaempferol on pancreatic cancer cell proliferation were examined by direct cell counting, 3H-thymidine incorporation and MTS assay. Lactate dehydrogenase (LDH) release from cells was determined as an index of cytotoxicity. Apoptosis was analyzed by TUNEL assay. Results Upon the treatment with 70 μM kaempferol for 4 days, MIA PaCa-2 cell proliferation was significantly inhibited by 79% and 45.7% as determined by direct cell counting and MTS assay, respectively, compared with control cells (Pkaempferol significantly inhibited Panc-1 cell proliferation. Kaempferol treatment also significantly reduced 3H-thymidine incorporation in both MIA PaCa-2 and Panc-1 cells. Combination treatment of low concentrations of kaempferol and 5-fluorouracil (5-FU) showed an additive effect on the inhibition of MIA PaCa-2 cell proliferation. Furthermore, kaempferol had a significantly less cytotoxicity than 5-FU in normal human pancreatic ductal epithelial cells (P=0.029). In both MIA PaCa-2 and Panc-1 cells, apoptotic cell population was increased when treated with kaempferol in a concentration-dependent manner. Conclusions Ginkgo biloba extract kaempferol effectively inhibits pancreatic cancer cell proliferation and induces cancer cell apoptosis, which may sensitize pancreatic tumor cells to chemotherapy. Kaempferol may have clinical applications as adjuvant therapy in the treatment of pancreatic cancer. PMID:18570926

  9. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  10. Bryostatin I inhibits growth and proliferation of pancreatic cancer ...

    African Journals Online (AJOL)

    ). ... µM reduced MIApaCa 2 cell proliferation from 87 to 26 %. ... tumors in the treatment and untreated groups was 123.67 ± 22.56 and ... κB expression, and therefore, needs to be further investigated for therapeutic application in pancreatic.

  11. Bryostatin I inhibits growth and proliferation of pancreatic cancer ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of bryostatin I on proliferation of pancreatic cancer cells as well as tumor growth in mice tumor xenograft model. Methods: Activation of NF-κB was evaluated by preparing nuclear material extract using nuclear extract kit (Carlsbad, CA, USA) followed by enzyme-linked immunosorbent assay ...

  12. Dehydrodimerization of pterostilbene during electrospray ionization mass spectrometry

    KAUST Repository

    Raji, Misjudeen

    2013-04-30

    RATIONALE Pterostilbene is a member of the hydroxystilbene family of compounds commonly found in plants such as blueberry and grapes. During the analysis of this compound by electrospray ionization mass spectrometry (ESI-MS), an ion was observed that corresponds to the dehydrodimer of pterostilbene in mass-to-charge ratio. Since such unexpected dimerization may lead to decreased monomer signal during quantitative analysis, it was of interest to identify the origin and structure of the observed pterostilbene dimer and examine the experimental conditions that influence its formation. METHODS Liquid Chromatography/Mass Spectrometry (LC/MS), Nuclear Magnetic Resonance (NMR), and High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) were used to examine the origin of the dimerization products. The structure of the formed pterostilbene dimer was examined by performing MSn analysis on the dimer ion. Effects of solvent composition, analyte concentration, radical scavenger, and other experimental conditions on the dimerization were also studied. RESULTS LC/MS and NMR analyses clearly showed that the starting solution did not contain the pterostilbene dimer. Solvent type and radical scavenger concentration were found to have pronounced effects on the dimer formation. Particularly, presence of acetonitrile or ammonium acetate had favorable effects on the extent of dimerization during ESI-MS analysis whereas hydroquinone and butylated hydroquinone had negative effects. Dimer formation decreased at high flow rates and when fused-silica capillary was used as the spray needle. CONCLUSIONS The data indicate that this dimerization occurs as a result of solution-phase electrochemical reactions taking place during the electrospray process. A possible structure for this dimer was proposed based on the MSn analysis and was similar to that of the enzymatically derived pterostilbene dehydrodimer already reported in the literature. Copyright © 2013 John Wiley & Sons, Ltd

  13. Qingyihuaji Formula Inhibits Pancreatic Cancer and Prolongs Survival by Downregulating Hes-1 and Hey-1

    Directory of Open Access Journals (Sweden)

    Yanli Xu

    2015-01-01

    Full Text Available The dire prognosis of pancreatic cancer has not markedly improved during past decades. The present study was carried out to explore the effect of Qingyihuaji formula (QYHJ on inhibiting pancreatic cancer and prolonging survival in related Notch signaling pathway. Proliferation of pancreatic cancer cells (SW1990 and PANC-1 was detected by MTT assay at 24, 48, and 72 h with exposure to various concentrations (0.08–50 mg/mL of QYHJ water extract. Pancreatic tumor models of nude mice were divided into three groups randomly (control, QYHJ, and gemcitabine. mRNA and protein expression of Notch target genes (Hes-1, Hey-1, Hey-2, and Hey-L in dissected tumor tissue were detected. Results showed that proliferation of SW1990 cells and PANC-1 cells was inhibited by QYHJ water extract in a dose-dependent and time-dependent manner. QYHJ effectively inhibited tumor growth and prolonged survival time in nude mice. Expression of both Hes-1 and Hey-1 was decreased significantly in QYHJ group, suggesting that Hes-1 and Hey-1 in Notch signaling pathway might be potential targets for QYHJ treatment. This research could help explain the clinical effectiveness of QYHJ and may provide advanced pancreatic cancer patients with a new therapeutic option.

  14. Inhibition of pancreatic lipase and amylase by extracts of different spices and plants.

    Science.gov (United States)

    Sellami, Mohamed; Louati, Hanen; Kamoun, Jannet; Kchaou, Ali; Damak, Mohamed; Gargouri, Youssef

    2017-05-01

    The aim of this study is to search new anti-obesity and anti-diabetic agents from plant and spices crude extracts as alternative to synthetic drugs. The inhibitory effect of 72 extracts was evaluated, in vitro, on lipase and amylase activities. Aqueous extracts of cinnamon and black tea exhibited an appreciable inhibitory effect on pancreatic amylase with IC 50 values of 18 and 87 μg, respectively. Aqueous extracts of cinnamon and mint showed strong inhibitory effects against pancreatic lipase with IC 50 of 45 and 62 μg, respectively. The presence of bile salts and colipase or an excess of interface failed to restore the lipase activity. Therefore, the inhibition of pancreatic lipase, by extracts of spices and plants, belongs to an irreversible inhibition. Crude extract of cinnamon showed the strongest anti-lipase and anti-amylase activities which offer a prospective therapeutic approach for the management of diabetes and obesity.

  15. Ku70 inhibits gemcitabine-induced DNA damage and pancreatic cancer cell apoptosis

    International Nuclear Information System (INIS)

    Ma, Jiali; Hui, Pingping; Meng, Wenying; Wang, Na; Xiang, Shihao

    2017-01-01

    The current study focused on the role of Ku70, a DNA-dependent protein kinase (DNA-PK) complex protein, in pancreatic cancer cell resistance to gemcitabine. In both established cell lines (Mia-PaCa-2 and PANC-1) and primary human pancreatic cancer cells, shRNA/siRNA-mediated knockdown of Ku70 significantly sensitized gemcitabine-induced cell death and proliferation inhibition. Meanwhile, gemcitabine-induced DNA damage and subsequent pancreatic cancer cell apoptosis were also potentiated with Ku70 knockdown. On the other hand, exogenous overexpression of Ku70 in Mia-PaCa-2 cells suppressed gemcitabine-induced DNA damage and subsequent cell apoptosis. In a severe combined immune deficient (SCID) mice Mia-PaCa-2 xenograft model, gemcitabine-induced anti-tumor activity was remarkably pontificated when combined with Ku70 shRNA knockdown in the xenografts. The results of this preclinical study imply that Ku70 might be a primary resistance factor of gemcitabine, and Ku70 silence could significantly chemo-sensitize gemcitabine in pancreatic cancer cells. - Highlights: • Ku70 knockdown sensitizes gemcitabine-induced killing of pancreatic cancer cells. • Ku70 knockdown facilitates gemcitabine-induced DNA damage and cell apoptosis. • Ku70 overexpression deceases gemcitabine's sensitivity in pancreatic cancer cells. • Ku70 knockdown sensitizes gemcitabine-induced anti-tumor activity in vivo.

  16. MEK inhibition potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells.

    Science.gov (United States)

    Zhang, Tao; Li, Yanyan; Zhu, Zhenkun; Gu, Mancang; Newman, Bryan; Sun, Duxin

    2010-10-04

    The Ras/Raf/MEK/ERK signaling has been implicated in uncontrolled cell proliferation and tumor progression in pancreatic cancer. The purpose of this study is to evaluate the antitumor activity of MEK inhibitor U0126 in combination with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) in pancreatic cancer cells. Western blotting showed that 17-AAG caused a 2- to 3-fold transient activation of MEK/ERK signaling in pancreatic cancer cells. The activation sustained for 6 h before phospho-ERK (p-ERK) destabilization. The selective MEK inhibitor U0126 completely abolished 17-AAG induced ERK1/2 activation and resulted in more than 80% of phospho-ERK degradation after only 15 min treatment. Moreover, U0126 had complementary effect on 17-AAG regulated oncogenic and cell cycle related proteins. Although 17-AAG downregulated cyclin D1, cyclin E, CDK4 and CDK6, it led to cyclin A and CDK2 accumulation, which was reversed by the addition of U0126. Antiproliferation assay showed that combination of U0126 and 17-AAG resulted in synergistic cytotoxic effect. More importantly, 17-AAG alone only exhibited moderate inhibition of cell migration in vitro, while addition of U0126 dramatically enhanced the inhibitory effect by 2- to 5-fold. Taken together, these data demonstrate that MEK inhibitor U0126 potentiates the activity of Hsp90 inhibitor 17-AAG against pancreatic cancer cells. The combination of Hsp90 and MEK inhibition could provide a promising avenue for the treatment of pancreatic cancer.

  17. Curcumin Inhibits Tumor Growth and Angiogenesis in an Orthotopic Mouse Model of Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2013-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells. In vitro studies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observed in vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.

  18. Resveratrol, a Red Wine Polyphenol, Suppresses Pancreatic Cancer by Inhibiting Leukotriene A4 Hydrolase

    Science.gov (United States)

    Oi, Naomi; Jeong, Chul-Ho; Nadas, Janos; Cho, Yong-Yeon; Pugliese, Angelo; Bode, Ann M.; Dong, Zigang

    2016-01-01

    The anticancer effects of red wine have attracted considerable attention. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a well-known polyphenolic compound of red wine with cancer chemopreventive activity. However, the basis for this activity is unclear. We studied leukotriene A4 hydrolase (LTA4H) as a relevant target in pancreatic cancer. LTA4H knockdown limited the formation of leukotriene B4 (LTB4), the enzymatic product of LTA4H, and suppressed anchorage-independent growth of pancreatic cancer cells. An in silico shape similarity algorithm predicted that LTA4H might be a potential target of resveratrol. In support of this idea, we found that resveratrol directly bound to LTA4H in vitro and in cells and suppressed proliferation and anchorage-independent growth of pancreatic cancer by inhibiting LTB4 production and expression of the LTB4 receptor 1 (BLT1). Notably, resveratrol exerted relatively stronger inhibitory effects than bestatin, an established inhibitor of LTA4H activity, and the inhibitory effects of resveratrol were reduced in cells where LTA4H was suppressed by shRNA-mediated knockdown. Importantly, resveratrol inhibited tumor formation in a xenograft mouse model of human pancreatic cancer by inhibiting LTA4H activity. Our findings identify LTA4H as a functionally important target for mediating the anticancer properties of resveratrol. PMID:20952510

  19. Delta-like Ligand-4-Notch Signaling Inhibition Regulates Pancreatic Islet Function and Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Fabienne Billiard

    2018-01-01

    Full Text Available Although Notch signaling has been proposed as a therapeutic target for type-2 diabetes, liver steatosis, and atherosclerosis, its direct effect on pancreatic islets remains unknown. Here, we demonstrated a function of Dll4-Notch signaling inhibition on the biology of insulin-producing cells. We confirmed enhanced expression of key Notch signaling genes in purified pancreatic islets from diabetic NOD mice and showed that treatment with anti-Dll4 antibody specifically abolished Notch signaling pathway activation. Furthermore, we showed that Notch inhibition could drive proliferation of β-islet cells and confer protection from the development of STZ-induced diabetes. Importantly, inhibition of the Dll4 pathway in WT mice increased insulin secretion by inducing the differentiation of pancreatic β-islet cell progenitors, as well as the proliferation of insulin-secreting cells. These findings reveal a direct effect of Dll4-blockade on pancreatic islets that, in conjunction with its immunomodulatory effects, could be used for unmet medical needs hallmarked by inefficient insulin action.

  20. Targeting MTA1/HIF-1alpha Signaling by Pterostilbene in Combination with Histone Deacetylase Inhibitor Attenuates Prostate Cancer Progression (Open Access)

    Science.gov (United States)

    2017-08-30

    expression and acts synergistically with an androgen receptor antagonist to inhibit prostate cancer cell proliferation. Mol. Cancer Ther. 6:51–60. 25...2673 Introduction Prostate cancer (PCa) is the second most common cause of cancer - related death in men in the USA because of advanced castrate...signaling by pterostilbene in combination with histone deacetylase inhibitor attenuates prostate cancer progression Nasir A. Butt1,2, Avinash Kumar1,3

  1. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    International Nuclear Information System (INIS)

    Ujiki, Michael B.; Milam, Ben; Ding Xianzhong; Roginsky, Alexandra B.; Salabat, M. Reza; Talamonti, Mark S.; Bell, Richard H.; Gu Wenxin; Silverman, Richard B.; Adrian, Thomas E.

    2006-01-01

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer

  2. Embelin suppresses growth of human pancreatic cancer xenografts, and pancreatic cancer cells isolated from KrasG12D mice by inhibiting Akt and Sonic hedgehog pathways.

    Directory of Open Access Journals (Sweden)

    Minzhao Huang

    Full Text Available Pancreatic cancer is a deadly disease, and therefore effective treatment and/or prevention strategies are urgently needed. The objectives of this study were to examine the molecular mechanisms by which embelin inhibited human pancreatic cancer cell growth in vitro, and xenografts in Balb C nude mice, and pancreatic cancer cell growth isolated from KrasG12D transgenic mice. XTT assays were performed to measure cell viability. AsPC-1 cells were injected subcutaneously into Balb c nude mice and treated with embelin. Cell proliferation and apoptosis were measured by Ki67 and TUNEL staining, respectively. The expression of Akt, and Sonic Hedgehog (Shh and their target gene products were measured by the immunohistochemistry, and Western blot analysis. The effects of embelin on pancreatic cancer cells isolated from 10-months old KrasG12D mice were also examined. Embelin inhibited cell viability in pancreatic cancer AsPC-1, PANC-1, MIA PaCa-2 and Hs 766T cell lines, and these inhibitory effects were blocked either by constitutively active Akt or Shh protein. Embelin-treated mice showed significant inhibition in tumor growth which was associated with reduced expression of markers of cell proliferation (Ki67, PCNA and Bcl-2 and cell cycle (cyclin D1, CDK2, and CDK6, and induction of apoptosis (activation of caspase-3 and cleavage of PARP, and increased expression of Bax. In addition, embelin inhibited the expression of markers of angiogenesis (COX-2, VEGF, VEGFR, and IL-8, and metastasis (MMP-2 and MMP-9 in tumor tissues. Antitumor activity of embelin was associated with inhibition of Akt and Shh pathways in xenografts, and pancreatic cancer cells isolated from KrasG12D mice. Furthermore, embelin also inhibited epithelial-to-mesenchymal transition (EMT by up-regulating E-cadherin and inhibiting the expression of Snail, Slug, and ZEB1. These data suggest that embelin can inhibit pancreatic cancer growth, angiogenesis and metastasis by suppressing Akt and

  3. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1.

    Science.gov (United States)

    He, Hang; Hao, Si-Jie; Yao, Lie; Yang, Feng; Di, Yang; Li, Ji; Jiang, Yong-Jian; Jin, Chen; Fu, De-Liang

    2014-10-01

    miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.

  4. Chloroquine targets pancreatic cancer stem cells via inhibition of CXCR4 and hedgehog signaling

    DEFF Research Database (Denmark)

    Balic, Anamaria; Sørensen, Morten Dræby; Trabulo, Sara Maria

    2014-01-01

    effectively eliminating established tumors and improved overall survival. The inhibitory effect of chloroquine was not related to inhibition of autophagy, but was due to inhibition of CXCL12/CXCR4 signaling, resulting in reduced phosphorylation of ERK and STAT3. Furthermore, chloroquine showed potent...... is an effective adjuvant therapy to chemotherapy, offering more efficient tumor elimination and improved cure rates. Chloroquine should be further explored in the clinical setting as its success may help to more rapidly improve the poor prognosis of patients with pancreatic cancer...

  5. Glycolysis in Panc-1 human pancreatic cancer cells is inhibited by everolimus.

    Science.gov (United States)

    Liu, Ling; Gong, Liansheng; Zhang, Yangde; Li, Nianfeng

    2013-01-01

    The aim of this study was to evaluate the effects and molecular mechanisms of everolimus on Panc-1 human pancreatic cancer cells. Panc-1 human pancreatic cancer cells were treated with everolimus (10 μg/ml) at selected time points (6, 12 and 24 h). Cell proliferation and apoptosis were evaluated by MTT and flow cytometric analyses. The glycolytic activity was determined by measuring the activity of the key enzyme lactate dehydrogenase (LDH) and lactate production. The activity of mammalian target of rapamycin (mTOR) signaling was measured by western blotting. The expression of genes, including hexokinase 2 (HK2) and microRNA-143 (miR-143), was evaluated by real-time polymerase chain reaction (PCR). The administration of everolimus time-dependently inhibited proliferation and glycolysis and induced apoptosis in the Panc-1 human pancreatic cancer cells. As the time of treatment with everolimus increased, the mTOR signaling activity decreased, indicated by lower phosphorylation levels of S6 kinase; however, the phosphorylation levels of mTOR barely changed. Moreover, our data showed an everolimus-induced increase in miR-143 and decrease in HK2 in Panc-1 cells in a time-dependent manner. In conclusion, the current study indicates a novel role of everolimus in its antitumor effect as an inhibitor of glycolysis in Panc-1 human pancreatic cancer cells. Furthermore, our data highlights the significance of exploring the mechanisms of everolimus and miR-143 in malignant tumors.

  6. Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol

    Directory of Open Access Journals (Sweden)

    Duke Stephen O

    2008-03-01

    Full Text Available Abstract Background Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae. Methods S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 μM for one generation (3 h. Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene. Results Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment. Conclusion Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the

  7. Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Yong-Xian, Gui; Xiao-Huan, Li; Fan, Zhang; Guo-Fang, Tian

    2016-10-01

    The aim of the study is to investigate the underlying molecular mechanisms by which gemcitabine (gem) inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells in vitro. After PANC-1 cells had been treated by indicated concentration (0, 5, and 25 mg/L) of gem for 48 h, cell proliferation was evaluated by 3'-(4, 5 dimethyl-thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay; cell morphology was observed by transmission electron microscopy; Expression of c-IAP2 and Bcl-2 proteins was analyzed by Western blot; the activity of caspase-3 and -9 was detected by spectrophotometry. Gem significantly inhibited cell proliferation and could induce apoptosis of human pancreatic cancer PANC-1 cells, with a dose-dependent manner. Western blot analysis showed that gem significantly reduced c-IAP2 and Bcl-2 proteins expression level (P PANC-1 cells. Gem could induce apoptosis of human pancreatic cancer PANC-1 cells, probably through downregulating c-IAP2 and Bcl-2 expression levels, and at the same time activating caspase-3 and -9.

  8. Ebselen inhibits QSOX1 enzymatic activity and suppresses invasion of pancreatic and renal cancer cell lines.

    Science.gov (United States)

    Hanavan, Paul D; Borges, Chad R; Katchman, Benjamin A; Faigel, Douglas O; Ho, Thai H; Ma, Chen-Ting; Sergienko, Eduard A; Meurice, Nathalie; Petit, Joachim L; Lake, Douglas F

    2015-07-30

    Quiescin sulfhydryl oxidase 1 (QSOX1) is a highly conserved disulfide bond-generating enzyme that is overexpressed in diverse tumor types. Its enzymatic activity promotes the growth and invasion of tumor cells and alters extracellular matrix composition. In a nude mouse-human tumor xenograft model, tumors containing shRNA for QSOX1 grew significantly more slowly than controls, suggesting that QSOX1 supports a proliferative phenotype in vivo. High throughput screening experiments identified ebselen as an in vitro inhibitor of QSOX1 enzymatic activity. Ebselen treatment of pancreatic and renal cancer cell lines stalled tumor growth and inhibited invasion through Matrigel in vitro. Daily oral treatment with ebselen resulted in a 58% reduction in tumor growth in mice bearing human pancreatic tumor xenografts compared to controls. Mass spectrometric analysis of ebselen-treated QSOX1 mechanistically revealed that C165 and C237 of QSOX1 covalently bound to ebselen. This report details the anti-neoplastic properties of ebselen in pancreatic and renal cancer cell lines. The results here offer a "proof-of-principle" that enzymatic inhibition of QSOX1 may have clinical relevancy.

  9. Crude Aloe vera Gel Shows Antioxidant Propensities and Inhibits Pancreatic Lipase and Glucose Movement In Vitro

    Science.gov (United States)

    Taukoorah, Urmeela; Mahomoodally, M. Fawzi

    2016-01-01

    Aloe vera gel (AVG) is traditionally used in the management of diabetes, obesity, and infectious diseases. The present study aimed to investigate the inhibitory potential of AVG against α-amylase, α-glucosidase, and pancreatic lipase activity in vitro. Enzyme kinetic studies using Michaelis-Menten (K m) and Lineweaver-Burk equations were used to establish the type of inhibition. The antioxidant capacity of AVG was evaluated for its ferric reducing power, 2-diphenyl-2-picrylhydrazyl hydrate scavenging ability, nitric oxide scavenging power, and xanthine oxidase inhibitory activity. The glucose entrapment ability, antimicrobial activity, and total phenolic, flavonoid, tannin, and anthocyanin content were also determined. AVG showed a significantly higher percentage inhibition (85.56 ± 0.91) of pancreatic lipase compared to Orlistat. AVG was found to increase the Michaelis-Menten constant and decreased the maximal velocity (V max) of lipase, indicating mixed inhibition. AVG considerably inhibits glucose movement across dialysis tubes and was comparable to Arabic gum. AVG was ineffective against the tested microorganisms. Total phenolic and flavonoid contents were 66.06 ± 1.14 (GAE)/mg and 60.95 ± 0.97 (RE)/mg, respectively. AVG also showed interesting antioxidant properties. The biological activity observed in this study tends to validate some of the traditional claims of AVG as a functional food. PMID:26880905

  10. Reduced STMN1 expression induced by RNA interference inhibits the bioactivity of pancreatic cancer cell line Panc-1.

    Science.gov (United States)

    Li, J; Hu, G H; Kong, F J; Wu, K M; He, B; Song, K; Sun, W J

    2014-01-01

    Increased expression of STMN1 has been observed in many tumor forms, but its expression and potential biological role in pancreatic cancer is still unknown. In this study, we demonstrated that STMN1 was expressed to a large extent in pancreatic cancer tissues and cell lines as compared to normal pancreatic tissues. Suppression of STMN1 expression via transfection with STMN1-specific siRNA could not only significantly inhibit the proliferation, migration and invasion ability of Panc-1 cells, but also enhance the apoptosis of Panc-1 cells. In addition, downregulation of STMN1 obviously enhanced the acetylation level of α-tubulin. All these results indicated that STMN1 plays an important role in pancreatic cancer development, and might serve as a potential therapeutic target for pancreatic cancer.

  11. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    International Nuclear Information System (INIS)

    Hu, Duanmin; Su, Cunjin; Jiang, Min; Shen, Yating; Shi, Aiming; Zhao, Fenglun; Chen, Ruidong; Shen, Zhu; Bao, Junjie; Tang, Wen

    2016-01-01

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  12. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Duanmin [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Su, Cunjin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Jiang, Min [Department of Breast Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Yating [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shi, Aiming; Zhao, Fenglun [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Shen, Zhu [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Tang, Wen, E-mail: sztangwen@163.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China)

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3. - Highlights: • We found that fenofibrate suppressed proliferation of pancreatic cancer cells. • We found fenofibrate increased LncRNA-MEG3 expression and p53 level in PANC-1 cells. • Inhibition of MEG3 expression attenuated anti-tumor effects of fenofibrate.

  13. YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine

    Directory of Open Access Journals (Sweden)

    Zhengdong Jiang

    2016-09-01

    Full Text Available Resveratrol, a natural polyphenol present in most plants, inhibits the growth of numerous cancers both in vitro and in vivo. Aberrant expression of YAP has been reported to activate multiple growth-regulatory pathways and confer anti-apoptotic abilities to many cancer cells. However, the role of resveratrol in YES-activated protein (YAP expression and that of YAP in pancreatic cancer cells’ response to gemcitabine resistance remain elusive. In this study, we found that resveratrol suppressed the proliferation and cloning ability and induced the apoptosis of pancreatic cancer cells. These multiple biological effects might result from the activation of AMP-activation protein kinase (AMPK (Thr172 and, thus, the induction of YAP cytoplasmic retention, Ser127 phosphorylation, and the inhibition of YAP transcriptional activity by resveratrol. YAP silencing by siRNA or resveratrol enhanced the sensitivity of gemcitabine in pancreatic cancer cells. Taken together, these findings demonstrate that resveratrol could increase the sensitivity of pancreatic cancer cells to gemcitabine by inhibiting YAP expression. More importantly, our work reveals that resveratrol is a potential anticancer agent for the treatment of pancreatic cancer, and YAP may serve as a promising target for sensitizing pancreatic cancer cells to chemotherapy.

  14. Diclofenac Inhibits Tumor Growth in a Murine Model of Pancreatic Cancer by Modulation of VEGF Levels and Arginase Activity

    OpenAIRE

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-01-01

    BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac tre...

  15. Inhibition of Fatty Acid Synthesis Induces Apoptosis of Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Nishi, Koji; Suzuki, Kenta; Sawamoto, Junpei; Tokizawa, Yuma; Iwase, Yumiko; Yumita, Nagahiko; Ikeda, Toshihiko

    2016-09-01

    Cancer cells tend to have a high requirement for lipids, including fatty acids, cholesterol and triglyceride, because of their rapid proliferative rate compared to normal cells. In this study, we investigated the effects of inhibition of lipid synthesis on the proliferation and viability of human pancreatic cancer cells. Of the inhibitors of lipid synthesis that were tested, 5-(tetradecyloxy)-2-furoic acid (TOFA), which is an inhibitor of acetyl-CoA carboxylase, and the fatty acid synthase (FAS) inhibitors cerulenin and irgasan, significantly suppressed the proliferation of MiaPaCa-2 and AsPC-1 cells. Treatment of MiaPaCa-2 cells with these inhibitors significantly increased the number of apoptotic cells. In addition, TOFA increased caspase-3 activity and induced cleavage of poly (ADP-ribose) polymerase in MiaPaCa-2 cells. Moreover, addition of palmitate to MiaPaCa-2 cells treated with TOFA rescued cells from apoptotic cell death. These results suggest that TOFA induces apoptosis via depletion of fatty acids and that, among the various aspects of lipid metabolism, inhibition of fatty acid synthesis may be a notable target for the treatment of human pancreatic cancer cells. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of β-catenin

    International Nuclear Information System (INIS)

    Cho, Il-Rae; Koh, Sang Seok; Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong; Choi, Young-Whan; Horio, Yoshiyuki; Oh, Sangtaek; Chung, Young-Hwa

    2012-01-01

    Highlights: ► SIRT1 inhibits protein levels of β-catenin and its transcriptional activity. ► Nuclear localization of SIRT1 is not required for the decrease of β-catenin expression. ► SIRT1-mediated degradation of β-catenin is not required for GSK-3β and Siah-1 but for proteosome. ► SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of β-catenin, we postulated that β-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target β-catenin in a colon cancer model, suppresses β-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of β-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced β-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of β-catenin. Treatment with MG132, a proteasomal inhibitor, restored β-catenin protein levels, suggesting that SIRT1-mediated degradation of β-catenin requires proteasomal activity. It was reported that inhibition of GSK-3β or Siah-1 stabilizes β-catenin in colon cancer cells, but suppression of GSK-3β or Siah-1 using siRNA in the presence of resveratrol instead diminished β-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3β and Siah-1 are not involved in SIRT1-mediated degradation of β-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target

  17. SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of {beta}-catenin

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Srisuttee, Ratakorn; Moon, Jeong [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Choi, Young-Whan [Department of Horticultural Bioscience, Pusan National University, Miryang 627-706 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Oh, Sangtaek [Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer SIRT1 inhibits protein levels of {beta}-catenin and its transcriptional activity. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for the decrease of {beta}-catenin expression. Black-Right-Pointing-Pointer SIRT1-mediated degradation of {beta}-catenin is not required for GSK-3{beta} and Siah-1 but for proteosome. Black-Right-Pointing-Pointer SIRT1 activation inhibits proliferation of pancreatic cancer cells expressing PAUF. -- Abstract: Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of {beta}-catenin, we postulated that {beta}-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target {beta}-catenin in a colon cancer model, suppresses {beta}-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of {beta}-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced {beta}-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of {beta}-catenin. Treatment with MG132, a proteasomal inhibitor, restored {beta}-catenin protein levels, suggesting that SIRT1-mediated degradation of {beta}-catenin requires proteasomal activity. It was reported that inhibition of GSK-3{beta} or Siah-1 stabilizes {beta}-catenin in colon cancer cells, but suppression of GSK-3{beta} or Siah-1 using siRNA in the presence of resveratrol instead diminished {beta}-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3{beta} and Siah-1 are not involved in SIRT1

  18. Low concentrations of metformin selectively inhibit CD133⁺ cell proliferation in pancreatic cancer and have anticancer action.

    Directory of Open Access Journals (Sweden)

    Shanmiao Gou

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133⁺ but not CD24⁺CD44⁺ESA⁺ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133⁺ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease.

  19. Low Concentrations of Metformin Selectively Inhibit CD133+ Cell Proliferation in Pancreatic Cancer and Have Anticancer Action

    Science.gov (United States)

    Li, Xiangsheng; Shi, Pengfei; Liu, Tao; Wang, Chunyou

    2013-01-01

    Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States. The prognosis remains dismal with little advance in treatment. Metformin is a drug widely used for the treatment of type II diabetes. Recent epidemiologic data revealed that oral administration of metformin is associated with a reduced risk of pancreatic cancer, suggesting its potential as a novel drug for this disease. Many studies have demonstrated the in vitro anticancer action of metformin, but the typically used concentrations were much higher than the in vivo plasma and tissue concentrations achieved with recommended therapeutic doses of metformin, and low concentrations of metformin had little effect on the proliferation of pancreatic cancer cells. We examined the effect of low concentrations of metformin on different subpopulations of pancreatic cancer cells and found that these selectively inhibited the proliferation of CD133+ but not CD24+CD44+ESA+ cells. We also examined the effect of low concentrations of metformin on cell invasion and in vivo tumor formation, demonstrating in vitro and in vivo anticancer action. Metformin was associated with a reduction of phospho-Erk and phospho-mTOR independent of Akt and AMPK phosphorylation. CD133+ pancreatic cancer cells are considered to be cancer stem cells that contribute to recurrence, metastasis and resistance to adjuvant therapies in pancreatic cancer. Our results provide a basis for combination of metformin with current therapies to improve the prognosis of this disease. PMID:23667692

  20. Net expression inhibits the growth of pancreatic ductal adenocarcinoma cell PL45 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Baiwen Li

    Full Text Available Pancreatic ductal adenocarcinoma has a poor prognosis due to late diagnosis and a lack of effective therapeutic options. Thus, it is important to better understand its molecular mechanisms and to develop more effective treatments for the disease. The ternary complex factor Net, which exerts its strong inhibitory function on transcription of proto-oncogene gene c-fos by forming ternary complexes with a second transcription factor, has been suspected of being involved in pancreatic cancer and other tumors biology. In this study, we found that the majority of pancreatic ductal adenocarcinoma tissues and cell lines had weak or no expression of Net, whereas significantly high level of Net expression occurred in paired adjacent normal tissues we studied. Furthermore, using in vitro and in vivo model systems, we found that overexpression of Net inhibited cell growth and survival and induced cell apoptosis in human pancreatic ductal adenocarcinoma cell PL45; the mechanisms by which Net inhibited the cell cycle progression were mainly through P21-Cyclin D1/CDK4 Pathway. Our data thus suggested that Net might play an important role in pancreatic carcinogenesis, possibly by acting as a tumor suppressor gene.

  1. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    International Nuclear Information System (INIS)

    Wang, Bing; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-01-01

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells

  2. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  3. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  4. Apoptotic and Nonapoptotic Activities of Pterostilbene against Cancer

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    2018-01-01

    Full Text Available Cancer is a major cause of death. The outcomes of current therapeutic strategies against cancer often ironically lead to even increased mortality due to the subsequent drug resistance and to metastatic recurrence. Alternative medicines are thus urgently needed. Cumulative evidence has pointed out that pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene, PS has excellent pharmacological benefits for the prevention and treatment for various types of cancer in their different stages of progression by evoking apoptotic or nonapoptotic anti-cancer activities. In this review article, we first update current knowledge regarding tumor progression toward accomplishment of metastasis. Subsequently, we review current literature regarding the anti-cancer activities of PS. Finally, we provide future perspectives to clinically utilize PS as novel cancer therapeutic remedies. We, therefore, conclude and propose that PS is one ideal alternative medicine to be administered in the diet as a nutritional supplement.

  5. Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21

    Directory of Open Access Journals (Sweden)

    Bin Yan

    2018-01-01

    Full Text Available Activation of pancreatic stellate cells (PSCs initiates pancreatic fibrosis in chronic pancreatitis and furnishes a niche that enhances the malignancy of pancreatic cancer cells (PCCs in pancreatic ductal adenocarcinoma (PDAC. Resveratrol (RSV, a natural polyphenol, exhibits potent antioxidant and anticancer effects. However, whether and how RSV influences the biological properties of activated PSCs and the effects of these changes on tumor remain unknown. In the present study, we found that RSV impeded hydrogen peroxide-driven reactive oxygen species- (ROS- induced activation, invasion, migration, and glycolysis of PSCs. In addition, miR-21 expression in activated PSCs was downregulated after RSV treatment, whereas the PTEN protein level increased. miR-21 silencing attenuated ROS-induced activation, invasion, migration, and glycolysis of PSCs, whereas the overexpression of miR-21 rescued the responses of PSCs treated with RSV. Moreover, RSV or N-acetyl-L-cysteine (NAC administration or miR-21 knockdown in PSCs reduced the invasion and migration of PCCs in coculture, and the effects of RSV were partly reversed by miR-21 upregulation. Collectively, RSV inhibits PCC invasion and migration through suppression of ROS/miR-21-mediated activation and glycolysis in PSCs. Therefore, targeting miR-21-mediated glycolysis by RSV in tumor stroma may serve as a new strategy for clinical PDAC prevention or treatment.

  6. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  7. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Science.gov (United States)

    Vulfius, Catherine A; Kasheverov, Igor E; Kryukova, Elena V; Spirova, Ekaterina N; Shelukhina, Irina V; Starkov, Vladislav G; Andreeva, Tatyana V; Faure, Grazyna; Zouridakis, Marios; Tsetlin, Victor I; Utkin, Yuri N

    2017-01-01

    Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by

  8. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    Directory of Open Access Journals (Sweden)

    Catherine A Vulfius

    Full Text Available Phospholipases A2 (PLA2s are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which

  9. Verapamil inhibits tumor progression of chemotherapy-resistant pancreatic cancer side population cells

    Science.gov (United States)

    ZHAO, LU; ZHAO, YUE; SCHWARZ, BETTINA; MYSLIWIETZ, JOSEF; HARTIG, ROLAND; CAMAJ, PETER; BAO, QI; JAUCH, KARL-WALTER; GUBA, MAKUS; ELLWART, JOACHIM WALTER; NELSON, PETER JON; BRUNS, CHRISTIANE JOSEPHINE

    2016-01-01

    Tumor side population (SP) cells display stem-like properties that can be modulated by treatment with the calcium channel blocker verapamil. Verapamil can enhance the cytotoxic effects of chemotherapeutic drugs and multi-drug resistance by targeting the transport function of the P-glycoprotein (P-gp). This study focused on the therapeutic potential of verapamil on stem-like SP tumor cells, and further investigated its chemosensitizing effects using L3.6pl and AsPC-1 pancreatic carcinoma models. As compared to parental L3.6pl cells (0.9±0.22%), L3.6pl gemcitabine-resistant cells (L3.6plGres) showed a significantly higher percentage of SP cells (5.38±0.99%) as detected by Hoechst 33342/FACS assays. The L3.6plGres SP cells showed stable gemcitabine resistance, enhanced colony formation ability and increased tumorigenicity. Verapamil effectively inhibited L3.6plGres and AsPC-1 SP cell proliferation in vitro. A pro-apoptotic effect of verapamil was observed in L3.6pl cells, but not in L3.6plGres cells, which was linked to their differential expression of P-gp and equilibrative nucleoside transporter-1 (ENT-1). In an orthotopic pancreatic cancer mouse model, both low and high dose verapamil was shown to substantially reduce L3.6plGres-SP cell tumor growth and metastasis, enhance tumor apoptosis, and reduce microvascular density. PMID:27177126

  10. BART Inhibits Pancreatic Cancer Cell Invasion by Rac1 Inactivation through Direct Binding to Active Rac1

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2012-05-01

    Full Text Available We report that Binder of Arl Two (BART plays a role in inhibiting cell invasion by regulating the activity of the Rho small guanosine triphosphatase protein Rac1 in pancreatic cancer cells. BART was originally identified as a binding partner of ADP-ribosylation factor-like 2, a small G protein implicated as a regulator of microtubule dynamics and folding. BART interacts with active forms of Rac1, and the BART-Rac1 complex localizes at the leading edges of migrating cancer cells. Suppression of BART increases active Rac1, thereby increasing cell invasion. Treatment of pancreatic cancer cells in which BART is stably knocked down with a Rac1 inhibitor decreases invasiveness. Thus, BART-dependent inhibition of cell invasion is likely associated with decreased active Rac1. Suppression of BART induces membrane ruffling and lamellipodial protrusion and increases peripheral actin structures in membrane ruffles at the edges of lamellipodia. The Rac1 inhibitor inhibits the lamellipodia formation that is stimulated by suppression of BART. Our results imply that BART regulates actin-cytoskeleton rearrangements at membrane ruffles through modulation of the activity of Rac1, which, in turn, inhibits pancreatic cancer cell invasion.

  11. Docosahexaenoic acid inhibits IL-6 expression via PPARγ-mediated expression of catalase in cerulein-stimulated pancreatic acinar cells.

    Science.gov (United States)

    Song, Eun Ah; Lim, Joo Weon; Kim, Hyeyoung

    2017-07-01

    Cerulein pancreatitis mirrors human acute pancreatitis. In pancreatic acinar cells exposed to cerulein, reactive oxygen species (ROS) mediate inflammatory signaling by Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 3, and cytokine induction. Docosahexaenoic acid (DHA) acts as an agonist of peroxisome proliferator activated receptor γ (PPARγ), which mediates the expression of some antioxidant enzymes. We hypothesized that DHA may induce PPARγ-target catalase expression and reduce ROS levels, leading to the inhibition of JAK2/STAT3 activation and IL-6 expression in cerulein-stimulated acinar cells. Pancreatic acinar AR42J cells were treated with DHA in the presence or absence of the PPARγ antagonist GW9662, or treated with the PPARγ agonist troglitazone, and then stimulated with cerulein. Expression of IL-6 and catalase, ROS levels, JAK2/STAT3 activation, and nuclear translocation of PPARγ were assessed. DHA suppressed the increase in ROS, JAK2/STAT3 activation, and IL-6 expression induced nuclear translocation of PPARγ and catalase expression in cerulein-stimulated AR42J cells. Troglitazone inhibited the cerulein-induced increase in ROS and IL-6 expression, but induced catalase expression similar to DHA in AR42J cells. GW9662 abolished the inhibitory effect of DHA on cerulein-induced increase in ROS and IL-6 expression in AR42J cells. DHA-induced expression of catalase was suppressed by GW9662 in cerulein-stimulated AR42J cells. Thus, DHA induces PPARγ activation and catalase expression, which inhibits ROS-mediated activation of JAK2/STAT3 and IL-6 expression in cerulein-stimulated pancreatic acinar cells. Copyright © 2017. Published by Elsevier Ltd.

  12. mTOR Inhibition Induces EGFR Feedback Activation in Association with Its Resistance to Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Feng Wei

    2015-02-01

    Full Text Available The mammalian target of rapamycin (mTOR is dysregulated in diverse cancers and contributes to tumor progression and drug resistance. The first generation of mTOR inhibitors have failed to show clinical efficiency in treating pancreatic cancers due in part to the feedback relief of the insulin-like growth factor-1 receptor (IGF-1R-AKT signaling pathway. The second generation of mTOR inhibitors, such as AZD8055, could inhibit AKT activation upon mTOR complex 2 (mTORC2 inhibition. However, whether this generation of mTOR inhibitors can obtain satisfactory activities in pancreatic cancer therapy remains unclear. In this study, we found AZD8055 did not show great improvement compared with everolimus, AZD8055 induced a temporal inhibition of AKT kinase activities and AKT was then rephosphorylated. Additionally, we found that AZD8055-induced transient AKT inhibition increased the expression and activation of epidermal growth factor receptor (EGFR by releasing its transcriptional factors Fork-head box O 1/3a (FoxO1/3a, which might contribute to cell resistance to AZD8055. The in vitro and in vivo experiments further indicated the combination of AZD8055 and erlotinib synergistically inhibited the mTORC1/C2 signaling pathway, EGFR/AKT feedback activation, and cell growth, as well as suppressed the progression of pancreatic cancer in a xenograft model. This study provides a rationale and strategy for overcoming AZD8055 resistance by a combined treatment with the EGFR inhibitor erlotinib in pancreatic cancer therapy.

  13. Targeted Inhibition of Pancreatic Acinar Cell Calcineurin Is a Novel Strategy to Prevent Post-ERCP PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Abrahim I. Orabi

    2017-01-01

    Full Text Available Background & Aims: There is a pressing need to develop effective preventative therapies for post–endoscopic retrograde cholangiopancreatography pancreatitis (PEP. We showed that early PEP events are induced through the calcium-activated phosphatase calcineurin and that global calcineurin deletion abolishes PEP in mice. A crucial question is whether acinar cell calcineurin controls the initiation of PEP in vivo. Methods: We used a mouse model of PEP and examined the effects of in vivo acinar cell-specific calcineurin deletion by either generating a conditional knockout line or infusing a novel adeno-associated virus–pancreatic elastase improved Cre (I–iCre into the pancreatic duct of a calcineurin floxed line. Results: We found that PEP is dependent on acinar cell calcineurin in vivo, and this led us to determine that calcineurin inhibitors, infused within the radiocontrast, largely can prevent PEP. Conclusions: These results provide the impetus for launching clinical trials to test the efficacy of intraductal calcineurin inhibitors to prevent PEP. Keywords: Adeno-Associated Virus, Calcineurin B1, FK506, Cyclosporine A, Intraductal Delivery

  14. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Wee Xian Lee

    2017-03-01

    Full Text Available The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index < 0.5 against three susceptible bacteria strains: Staphylococcus aureus ATCC 25923, Escherichia coli O157 and Pseudomonas aeruginosa 15442. However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.

  15. Bactericidal Effect of Pterostilbene Alone and in Combination with Gentamicin against Human Pathogenic Bacteria.

    Science.gov (United States)

    Lee, Wee Xian; Basri, Dayang Fredalina; Ghazali, Ahmad Rohi

    2017-03-17

    The antibacterial activity of pterostilbene in combination with gentamicin against six strains of Gram-positive and Gram-negative bacteria were investigated. The minimum inhibitory concentration and minimum bactericidal concentration of pterostilbene were determined using microdilution technique whereas the synergistic antibacterial activities of pterostilbene in combination with gentamicin were assessed using checkerboard assay and time-kill kinetic study. Results of the present study showed that the combination effects of pterostilbene with gentamicin were synergistic (FIC index bacteria strains: Staphylococcus aureus ATCC 25923 , Escherichia coli O157 and Pseudomonas aeruginosa 15442 . However, the time-kill study showed that the interaction was indifference which did not significantly differ from the gentamicin treatment. Furthermore, time-kill study showed that the growth of the tested bacteria was completely attenuated with 2 to 8 h treatment with 0.5 × MIC of pterostilbene and gentamicin. The identified combinations could be of effective therapeutic value against bacterial infections. These findings have potential implications in delaying the development of bacterial resistance as the antibacterial effect was achieved with the lower concentrations of antibacterial agents.

  16. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    Directory of Open Access Journals (Sweden)

    Moina Hasni Ebou

    Full Text Available Diabetes is a major complication of chronic Glucocorticoids (GCs treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1 and 2 (Tph2, leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  17. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Karnevi, Emelie; Said, Katarzyna; Andersson, Roland; Rosendahl, Ann H

    2013-01-01

    Epidemiological studies have shown direct associations between type 2 diabetes and obesity, both conditions associated with hyperglycaemia and hyperinsulinemia, and the risk of pancreatic cancer. Up to 80% of pancreatic cancer patients present with either new-onset type 2 diabetes or impaired glucose tolerance at the time of diagnosis. Recent population studies indicate that the incidence of pancreatic cancer is reduced among diabetics taking metformin. In this study, the effects of exposure of pancreatic cancer cells to high glucose levels on their growth and response to metformin were investigated. The human pancreatic cancer cell lines AsPC-1, BxPC-3, PANC-1 and MIAPaCa-2 were grown in normal (5 mM) or high (25 mM) glucose conditions, with or without metformin. The influence by metformin on proliferation, apoptosis and the AMPK and IGF-IR signalling pathways were evaluated in vitro. Metformin significantly reduced the proliferation of pancreatic cancer cells under normal glucose conditions. Hyperglycaemia however, protected against the metformin-induced growth inhibition. The anti-proliferative actions of metformin were associated with an activation of AMP-activated protein kinase AMPK Thr172 together with an inhibition of the insulin/insulin-like growth factor-I (IGF-I) receptor activation and downstream signalling mediators IRS-1 and phosphorylated Akt. Furthermore, exposure to metformin during normal glucose conditions led to increased apoptosis as measured by poly(ADP-ribose) polymerase (PARP) cleavage. In contrast, exposure to high glucose levels promoted a more robust IGF-I response and Akt activation which correlated to stimulated AMPK Ser485 phosphorylation and impaired AMPK Thr172 phosphorylation, resulting in reduced anti-proliferative and apoptotic effects by metformin. Our results indicate that metformin has direct anti-tumour activities in pancreatic cancer cells involving AMPK Thr172 activation and suppression of the insulin/IGF signalling pathways

  18. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine

    OpenAIRE

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C.; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank

    2014-01-01

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patien...

  19. Inhibition of Cell Survival by Curcumin Is Associated with Downregulation of Cell Division Cycle 20 (Cdc20) in Pancreatic Cancer Cells.

    Science.gov (United States)

    Zhang, Yu; Xue, Ying-Bo; Li, Hang; Qiu, Dong; Wang, Zhi-Wei; Tan, Shi-Sheng

    2017-02-04

    Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.

  20. δ-Tocotrienol, a natural form of vitamin E, inhibits pancreatic cancer stem-like cells and prevents pancreatic cancer metastasis.

    Science.gov (United States)

    Husain, Kazim; Centeno, Barbara A; Coppola, Domenico; Trevino, Jose; Sebti, Said M; Malafa, Mokenge P

    2017-05-09

    The growth, metastasis, and chemotherapy resistance of pancreatic ductal adenocarcinoma (PDAC) is characterized by the activation and growth of tumor-initiating cells in distant organs that have stem-like properties. Thus, inhibiting growth of these cells may prevent PDAC growth and metastases. We have demonstrated that δ-tocotrienol, a natural form of vitamin E (VEDT), is bioactive against cancer, delays progression, and prevents metastases in transgenic mouse models of PDAC. In this report, we provide the first evidence that VEDT selectively inhibits PDAC stem-like cells. VEDT inhibited the viability, survival, self-renewal, and expression of Oct4 and Sox2 transcription factors in 3 models of PDAC stem-like cells. In addition, VEDT inhibited the migration, invasion, and several biomarkers of epithelial-to-mesenchymal transition and angiogenesis in PDAC cells and tumors. These processes are critical for tumor metastases. Furthermore, in the L3.6pl orthotopic model of PDAC metastases, VEDT significantly inhibited growth and metastases of these cells. Finally, in an orthotopic xenograft model of human PDAC stem-like cells, we showed that VEDT significantly retarded the growth and metastases of gemcitabine-resistant PDAC human stem-like cells. Because VEDT has been shown to be safe and to reach bioactive levels in humans, this work supports investigating VEDT for chemoprevention of PDAC metastases.

  1. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  2. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis.

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie Z M; Baily, James E; Sharp, Matthew G F; Garden, O James; Hughes, Jeremy; Howie, Sarah E M; Holmes, Duncan S; Liddle, John; Iredale, John P

    2016-02-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.

  3. Ellagic acid inhibits the proliferation of human pancreatic carcinoma PANC-1 cells in vitro and in vivo.

    Science.gov (United States)

    Cheng, Hao; Lu, Chenglin; Tang, Ribo; Pan, Yiming; Bao, Shanhua; Qiu, Yudong; Xie, Min

    2017-02-14

    Ellagic aicd (EA), a dietary polyphenolic compound found in plants and fruits, possesses various pharmacological activities. This study investigated the effect of EA on human pancreatic carcinoma PANC-1 cells both in vitro and in vivo; and defined the associated molecular mechanisms. In vitro, the cell growth and repairing ability were assessed by CCK-8 assay and wound healing assay. The cell migration and invasion activity was evaluated by Tanswell assay. In vivo, PANC-1 cell tumor-bearing mice were treated with different concentrations of EA. We found that EA significantly inhibited cell growth, cell repairing activity, and cell migration and invasion in a dose-dependent manner. Treatment of PANC-1 xenografted mice with EA resulted in significant inhibition in tumor growth and prolong mice survival rate. Furthermore, flow cytometric analysis showed that EA increased the percentage of cells in the G1 phase of cell cycle. Western blot analysis revealed that EA inhibited the expression of COX-2 and NF-κB. In addition, EA reversed epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. In summary, the present study demonstrated that EA inhibited cell growth, cell repairing activity, cell migration and invasion in a dose-dependent manner. EA also effectively inhibit human pancreatic cancer growth in mice. The anti-tumor effect of EA might be related to cell cycle arrest, down-regulating the expression of COX-2 and NF-κB, reversing epithelial to mesenchymal transition by up-regulating E-cadherin and down-regulating Vimentin. Our findings suggest that the use of EA would be beneficial for the management of pancreatic cancer.

  4. Biological nanoparticles carrying the Hmda-7 gene are effective in inhibiting pancreatic cancer in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Qingyun Zhu

    Full Text Available Pancreatic cancer is one of the most common malignancies of the digestive system, and remains a clinical challenge. This study aimed to assess the effects of bovine serum albumin (BSA nanoparticles carrying the hMDA-7 gene (BSA-NP-hMDA-7 in the treatment of pancreatic cancer.BSA-NP-hMDA-7 was generated by nanotechnology and gene recombination technology. A total of 5 BXPC-3 or PANC-1 pancreatic cancer cell groups were examined, including Control, BSA-NPs, Empty vector, hMDA-7 plasmid, and hMDA-7 BSA-NPs groups, respectively. Proliferation and apoptosis of cultured cells were assessed by the MTT method and flow-cytometry, respectively. In addition, pancreatic cancer models were established with both cell lines in nude mice, and the expression profiles of hMDA-7 and VEGF in cancer tissues were measured by Western blot and immunohistochemistry.BSA-NP-hMDA-7 nanoparticles were successfully generated, and significantly inhibited the proliferation of BXPC-3 and PANC-1 cells; in addition, apoptosis rates were higher in both cell lines after treatment with BSA-NP-hMDA-7 (P<0.05. Nude mouse xenograft studies indicated that treatment with BSA-NP-hMDA-7 nanoparticles resulted in decreased tumor size. Moreover, the hMDA-7 protein was found in tumor tissues after hMDA-7 gene transfection, while BSA-NP-hMDA-7 significantly suppressed VEGF expression in tumor tissues. Similar results were obtained for both BXPC-3 and PANC-1 xenograft models.BSA nanoparticles carrying the hMDA-7 gene effectively transfected BXPC-3 and PANC-1 pancreatic cancer cells, causing reduced cell proliferation and enhanced apoptosis in vitro. In mouse xenografts, BSA-NP-hMDA-7 treatment decreased tumor size and reduced VEGF expression. These findings indicated that BSA-NP-hMDA-7 might exert anticancer effects via VEGF suppression.

  5. Suppression of the epidermal growth factor receptor inhibits epithelial-mesenchymal transition in human pancreatic cancer PANC-1 cells.

    Science.gov (United States)

    Chang, Zhi-Gang; Wei, Jun-Min; Qin, Chang-Fu; Hao, Kun; Tian, Xiao-Dong; Xie, Kun; Xie, Xue-Hai; Yang, Yin-Mo

    2012-05-01

    Aberrant expression of epidermal growth factor receptor (EGFR) has been detected in pancreatic cancer; however, the mechanisms of EGFR in inducing pancreatic cancer development have not been adequately elucidated. The objective of this study was to determine the role of EGFR in mediating epithelial-mesenchymal transition (EMT) in pancreatic cancer cells. Pancreatic cancer cell line PANC-1 was transfected with small interfering RNA of EGFR by use of a lentiviral expression vector to establish an EGFR-knockdown cell line (si-PANC-1). PANC-1 cells transfected with lentiviral vector expressing negative control sequence were used as negative control (NC-PANC-1). Scratch assay and transwell study were used to analyze cell migration and invasion. Real-time PCR and Western blotting were used to detect the expression of EMT markers E-cadherin, N-cadherin, vimentin, and fibronectin and transcription factors snail, slug, twist1, and sip1 in PANC-1, NC-PANC-1, and si-PANC-1 cells. Immunofluorescent staining with these antibodies and confocal microscopy were used to observe their cellular location and morphologic changes. After RNA interference of EGFR, the migration and invasion ability of si-PANC-1 cells decreased significantly. The expression of epithelial phenotype marker E-cadherin increased and the expression of mesenchymal phenotype markers N-cadherin, vimentin, and fibronectin decreased, indicating reversion of EMT. We also observed intracellular translocation of E-cadherin. Expression of transcription factors snail and slug in si-PANC-1 cells decreased significantly. Suppression of EGFR expression can significantly inhibit EMT of pancreatic cancer PANC-1 cells. The mechanism may be related with the down-regulation of the expression of transcription factors snail and slug.

  6. Naringenin decreases invasiveness and metastasis by inhibiting TGF-β-induced epithelial to mesenchymal transition in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Changjie Lou

    Full Text Available Epithelial to mesenchymal transition (EMT promotes cellular motility, invasiveness and metastasis during embryonic development and tumorigenesis. Transforming growth factor-β (TGF-β signaling pathway is a key regulator of EMT. A lot of evidences suggest that this process is Smad3-dependent. Herein we showed that exposure of aspc-1 and panc-1 pancreatic cancer cells to TGF-β1 resulted in characteristic morphological alterations of EMT, and enhancement of cell motility and gemcitabine (Gem resistance along with an up-regulation of EMT markers genes such as vimentin, N-cadherin, MMP2 and MMP9. Naringenin (Nar down-regulated EMT markers expression in both mRNA and protein levels by inhibiting TGF-β1/Smad3 signal pathway in the pancreatic cancer cells. Consequently, Nar suppressed the cells migration and invasion and reversed their resistance to Gem.

  7. The small-molecule IAP antagonist AT406 inhibits pancreatic cancer cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Jiang, Yongsheng; Meng, Qinghua; Chen, Bo; Shen, Haiyu; Yan, Bing; Sun, Baoyou

    2016-01-01

    In the present study, we tested the anti-pancreatic cancer activity by AT406, a small-molecule antagonist of IAP (inhibitor of apoptosis proteins). In established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells, treatment of AT406 significantly inhibited cell survival and proliferation. Yet, same AT406 treatment was non-cytotoxic to pancreatic epithelial HPDE6c7 cells. AT406 increased caspase-3/-9 activity and provoked apoptosis in the pancreatic cancer cells. Reversely, AT406′ cytotoxicity in these cells was largely attenuated with pre-treatment of caspase inhibitors. AT406 treatment caused degradation of IAP family proteins (cIAP1 and XIAP) and release of cytochrome C, leaving Bcl-2 unaffected in pancreatic cancer cells. Bcl-2 inhibition (by ABT-737) or shRNA knockdown dramatically sensitized Panc-1 cells to AT406. In vivo, oral administration of AT406 at well-tolerated doses downregulated IAPs (cIAP1/XIAP) and inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) nude mice. Together, our preclinical results suggest that AT406 could be further evaluated as a promising anti-pancreatic cancer agent. - Highlights: • AT406 is cytotoxic to established/primary human pancreatic cancer cells. • AT406 provokes caspase-dependent apoptosis in pancreatic cancer cells. • AT406 causes degradation of key IAPs and promotes cytochrome C release. • Bcl-2 inhibition or knockdown dramatically sensitizes Panc-1 cells to AT406. • Oral administration of AT406 inhibits Panc-1 tumor growth in SCID nude mice.

  8. The small-molecule IAP antagonist AT406 inhibits pancreatic cancer cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yongsheng; Meng, Qinghua [Department of General Surgery, Jinan Central Hospital of Shandong University, Jinan (China); Chen, Bo [Department of Biliary and Pancreatic Surgery, East Hospital Affiliated to Tongji University in Shanghai, Shanghai (China); Shen, Haiyu; Yan, Bing [Department of General Surgery, Jinan Central Hospital of Shandong University, Jinan (China); Sun, Baoyou, E-mail: sunbaoyou_sdu@yeah.net [Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, No.9677 Jing-Shi Road, Jinan 250014 (China)

    2016-09-09

    In the present study, we tested the anti-pancreatic cancer activity by AT406, a small-molecule antagonist of IAP (inhibitor of apoptosis proteins). In established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells, treatment of AT406 significantly inhibited cell survival and proliferation. Yet, same AT406 treatment was non-cytotoxic to pancreatic epithelial HPDE6c7 cells. AT406 increased caspase-3/-9 activity and provoked apoptosis in the pancreatic cancer cells. Reversely, AT406′ cytotoxicity in these cells was largely attenuated with pre-treatment of caspase inhibitors. AT406 treatment caused degradation of IAP family proteins (cIAP1 and XIAP) and release of cytochrome C, leaving Bcl-2 unaffected in pancreatic cancer cells. Bcl-2 inhibition (by ABT-737) or shRNA knockdown dramatically sensitized Panc-1 cells to AT406. In vivo, oral administration of AT406 at well-tolerated doses downregulated IAPs (cIAP1/XIAP) and inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) nude mice. Together, our preclinical results suggest that AT406 could be further evaluated as a promising anti-pancreatic cancer agent. - Highlights: • AT406 is cytotoxic to established/primary human pancreatic cancer cells. • AT406 provokes caspase-dependent apoptosis in pancreatic cancer cells. • AT406 causes degradation of key IAPs and promotes cytochrome C release. • Bcl-2 inhibition or knockdown dramatically sensitizes Panc-1 cells to AT406. • Oral administration of AT406 inhibits Panc-1 tumor growth in SCID nude mice.

  9. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shan-Shan [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Jiang, Teng [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Wang, Yi; Gu, Li-Ze [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Wu, Hui-Wen [Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing (China); Tan, Lan [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Guo, Jun, E-mail: Guoj@njmu.edu.cn [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China)

    2014-01-17

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM.

  10. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    International Nuclear Information System (INIS)

    Chen, Shan-Shan; Jiang, Teng; Wang, Yi; Gu, Li-Ze; Wu, Hui-Wen; Tan, Lan; Guo, Jun

    2014-01-01

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM

  11. A novel HDAC inhibitor, CG200745, inhibits pancreatic cancer cell growth and overcomes gemcitabine resistance

    OpenAIRE

    Lee, Hee Seung; Park, Soo Been; Kim, Sun A; Kwon, Sool Ki; Cha, Hyunju; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Song, Si Young

    2017-01-01

    Pancreatic cancer is predominantly lethal, and is primarily treated using gemcitabine, with increasing resistance. Therefore, novel agents that increase tumor sensitivity to gemcitabine are needed. Histone deacetylase (HDAC) inhibitors are emerging therapeutic agents, since HDAC plays an important role in cancer initiation and progression. We evaluated the antitumor effect of a novel HDAC inhibitor, CG200745, combined with gemcitabine/erlotinib on pancreatic cancer cells and gemcitabine-resis...

  12. Acetylshikonin Inhibits Human Pancreatic PANC-1 Cancer Cell Proliferation by Suppressing the NF-κB Activity.

    Science.gov (United States)

    Cho, Seok-Cheol; Choi, Bu Young

    2015-09-01

    Acetylshikonin, a natural naphthoquinone derivative compound, has been used for treatment of inflammation and cancer. In the present study, we have investigated whether acetylshikonin could regulate the NF-κB signaling pathway, thereby leading to suppression of tumorigenesis. We observed that acetylshikonin significantly reduced proliferation of several cancer cell lines, including human pancreatic PANC-1 cancer cells. In addition, acetylshikonin inhibited phorbol 12-myristate 13-acetate (PMA) or tumor necrosis-α (TNF-α)-induced NF-κB reporter activity. Proteome cytokine array and real-time RT-PCR results illustrated that acetylshikonin inhibition of PMA-induced production of cytokines was mediated at the transcriptional level and it was associated with suppression of NF-κB activity and matrix metalloprotenases. Finally, we observed that an exposure of acetylshikonin significantly inhibited the anchorage-independent growth of PANC-1 cells. Together, our results indicate that acetylshikonin could serve as a promising therapeutic agent for future treatment of pancreatic cancer.

  13. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  14. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Mаhmoud Youns

    Full Text Available Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2, colorectal (Caco-2 and pancreatic (Suit-2 cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes.

  15. The Natural Flavonoid Fisetin Inhibits Cellular Proliferation of Hepatic, Colorectal, and Pancreatic Cancer Cells through Modulation of Multiple Signaling Pathways

    Science.gov (United States)

    Youns, Mаhmoud; Abdel Halim Hegazy, Wael

    2017-01-01

    Digestive cancers are major causes of mortality and morbidity worldwide. Fisetin, a naturally occurring flavonoid, has been previously shown anti-proliferative, anti-cancer, neuroprotective, and antioxidant activities. In our study, the anti-tumor activities in addition to regulatory effects of fisetin on some cancer cell lines were investigated. Data presented here showed that fisetin induces growth inhibition, and apoptosis in hepatic (HepG-2), colorectal (Caco-2) and pancreatic (Suit-2) cancer cell lines. Gene expression results showed that 1307 genes were significantly regulated in their expression in hepatic and pancreatic cell lines. 350 genes were commonly up-regulated and 353 genes were commonly down-regulated. Additionally, 604 genes were oppositely expressed in both tumor cells. CDK5 signaling, NRF2-mediated oxidative stress response, glucocorticoid signaling, and ERK/MAPK signaling were among most prominent signaling pathways modulating the growth inhibitory effects of fisetin on hepatic and pancreatic cancer cells. The present analysis showed, for the first time, that the anti-tumor effect of fisetin was mediated mainly through modulation of multiple signaling pathways and via activation of CDKN1A, SEMA3E, GADD45B and GADD45A and down-regulation of TOP2A, KIF20A, CCNB2 and CCNB1 genes. PMID:28052097

  16. Escin Chemosensitizes Human Pancreatic Cancer Cells and Inhibits the Nuclear Factor-kappaB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    A. Rimmon

    2013-01-01

    Full Text Available Background. There is an urgent need to develop new treatment strategies and drugs for pancreatic cancer that is highly resistant to radio-chemotherapy. Aesculus hippocastanum (the horse chestnut known in Chinese medicine as a plant with anti-inflammatory, antiedema, antianalgesic, and antipyretic activities. The main active compound of this plant is Escin (C54H84O23. Objective. To evaluate the effect of Escin alone and combined with chemotherapy on pancreatic cancer cell survival and to unravel mechanism(s of Escin anticancer activity. Methods. Cell survival was measured by XTT colorimetric assay. Synergistic effect of combined therapy was determined by CalcuSyn software. Cell cycle and induction of apoptosis were evaluated by FACS analysis. Expression of NF-κB-related proteins (p65, IκBα, and p-IκBα and cyclin D was evaluated by western blot analysis. Results. Escin decreased the survival of pancreatic cancer cells with IC50 = 10–20 M. Escin combined with gemcitabine showed only additive effect, while its combination with cisplatin resulted in a significant synergistic cytotoxic effect in Panc-1 cells. High concentrations of Escin induced apoptosis and decreased NF-κB-related proteins and cyclin D expression. Conclusions. Escin decreased pancreatic cancer cell survival, induced apoptosis, and downregulated NF-κB signaling pathway. Moreover, Escin sensitized pancreatic cancer cells to chemotherapy. Further translational research is required.

  17. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity.

    Directory of Open Access Journals (Sweden)

    Nina Mayorek

    Full Text Available BACKGROUND: Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX, diclofenac potently inhibits phospholipase A(2 (PLA(2, thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. METHODOLOGY/PRINCIPAL FINDINGS: We found that diclofenac treatment (30 mg/kg/bw for 11 days of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. CONCLUSION/SIGNIFICANCE: In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.

  18. Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity.

    Science.gov (United States)

    Mayorek, Nina; Naftali-Shani, Nili; Grunewald, Myriam

    2010-09-15

    Diclofenac is one of the oldest anti-inflammatory drugs in use. In addition to its inhibition of cyclooxygenases (COX), diclofenac potently inhibits phospholipase A(2) (PLA(2)), thus yielding a broad anti-inflammatory effect. Since inflammation is an important factor in the development of pancreatic tumors we explored the potential of diclofenac to inhibit tumor growth in mice inoculated with PANCO2 cells orthotopically. We found that diclofenac treatment (30 mg/kg/bw for 11 days) of mice inoculated with PANC02 cells, reduced the tumor weight by 60%, correlating with increased apoptosis of tumor cells. Since this effect was not observed in vitro on cultured PANCO2 cells, we theorized that diclofenac beneficial treatment involved other mediators present in vivo. Indeed, diclofenac drastically decreased tumor vascularization by downregulating VEGF in the tumor and in abdominal cavity fluid. Furthermore, diclofenac directly inhibited vascular sprouting ex vivo. Surprisingly, in contrast to other COX-2 inhibitors, diclofenac increased arginase activity/arginase 1 protein content in tumor stroma cells, peritoneal macrophages and white blood cells by 2.4, 4.8 and 2 fold, respectively. We propose that the subsequent arginine depletion and decrease in NO levels, both in serum and peritoneal cavity, adds to tumor growth inhibition by malnourishment and poor vasculature development. In conclusion, diclofenac shows pronounced antitumoral properties in pancreatic cancer model that can contribute to further treatment development. The ability of diclofenac to induce arginase activity in tumor stroma, peritoneal macrophages and white blood cells provides a tool to study a controversial issue of pro-and antitumoral effects of arginine depletion.

  19. Inhibition of Pancreatic Intraepithelial Neoplasia Progression to Carcinoma by Nitric Oxide-Releasing Aspirin in p48Cre/+-LSL-KrasG12D/+ Mice

    Directory of Open Access Journals (Sweden)

    Chinthalapally V. Rao

    2012-09-01

    Full Text Available Nitric oxide-releasing aspirin (NO-aspirin represents a novel class of promising chemopreventive agents. Unlike conventional nonsteroidal anti-inflammatory drugs, NO-aspirin seems to be free of adverse effects while retaining the beneficial activities of its parent compound. The effect of NO-aspirin on pancreatic carcinogenesis was investigated by assessing the development of precursor pancreatic lesions and adenocarcinomas in KrasG12D/+ transgenic mice that recapitulate human pancreatic cancer progression. Six-week-old male p48Cre/+-LSL-KrasG12D/+ transgenic mice (20 per group were fed diets containing 0, 1000, or 2000 ppm NO-aspirin. The development of pancreatic tumors was monitored by positron emission tomography imaging. All mice were killed at the age of 41 weeks and assessed for pancreatic intraepithelial neoplasia (PanIN and pancreatic ductal adenocarcinoma (PDAC and for molecular changes in the tumors. Our results reveal that NO-aspirin at 1000 and 2000 ppm significantly suppressed pancreatic tumor weights, PDAC incidence, and carcinoma in situ (PanIN-3 lesions. The degree of inhibition of PanIN-3 and carcinoma was more pronounced with NO-aspirin at 1000 ppm (58.8% and 48%, respectively than with 2000 ppm (47% and 20%, respectively. NO-aspirin at 1000 ppm significantly inhibited the spread of carcinoma in the pancreas (∼97%; P < .0001. Decreased expression of cyclooxygenase (COX; with ∼42% inhibition of total COX activity, inducible nitric oxide synthase, proliferating cell nuclear antigen, Bcl-2, cyclin D1, and β-catenin was observed, with induction of p21, p38, and p53 in the pancreas of NO-aspirin-treated mice. These results suggest that low-dose NO-aspirin possesses inhibitory activity against pancreatic carcinogenesis by modulating multiple molecular targets.

  20. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zhao, Xianda; Fan, Wei; Xu, Zhigao; Chen, Honglei; He, Yuyu; Yang, Gui; Yang, Gang; Hu, Hanning; Tang, Shihui; Wang, Ping; Zhang, Zheng; Xu, Peipei; Yu, Mingxia

    2016-12-06

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most common cancer death reasons. Anti-tumor necrosis factor-alpha (TNF-α) antibodies have shown promising effects in PDAC pre-clinical models. However, the prognostic values of TNF-α, underlying mechanisms by which anti-TNF-α treatments inhibit PDAC, and potential synergistic effects of anti-TNF-α treatments with chemotherapy are still unclear. To identify the targeting values of TNF-α in PDAC, we measured TNF-α expression in different stages of PDAC initiation and evaluated its prognostic significance in a pancreatic cancer cohort. We found that TNF-α expression elevated in PDAC initiation process, and high expression of TNF-α was an independent prognostic marker of poor survival. We further evaluated anti-tumor effects of anti-TNF-α treatments in PDAC. Anti-TNF-α treatments resulted in decreased cell viability in both PDAC tumor cells and pancreatic satellite cells in similar dose in vitro. In vivo, anti-TNF-α treatments showed effects in reducing desmoplasia and the tumor promoting inflammatory microenvironment in PDAC. Combination of anti-TNF-α treatments with chemotherapy partly overcame chemoresistance of PDAC tumor cells and prolonged the survival of PDAC mouse model. In conclusion, our findings indicated that TNF-α in PDAC can be a prognostic and therapeutic target. Inhibition of TNF-α synergized with chemotherapy in PDAC resulted in better pre-clinical responses via killing tumor cells as well as diminishing desmoplasia and inflammation in PDAC tumor stroma.

  1. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    International Nuclear Information System (INIS)

    Li, Chen-Shuang; Tian, Haijun; Zou, Min; Zhao, Ke-Wei; Li, Yawei; Lao, Lifeng; Brochmann, Elsa J.; Duarte, M. Eugenia L.; Daubs, Michael D.; Zhou, Yan-Heng; Murray, Samuel S.; Wang, Jeffrey C.

    2015-01-01

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.

  2. Molecular Mechanisms by Which a Fucus vesiculosus Extract Mediates Cell Cycle Inhibition and Cell Death in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ulf Geisen

    2015-07-01

    Full Text Available Pancreatic cancer is one of the most aggressive cancer entities, with an extremely poor 5-year survival rate. Therefore, novel therapeutic agents with specific modes of action are urgently needed. Marine organisms represent a promising source to identify new pharmacologically active substances. Secondary metabolites derived from marine algae are of particular interest. The present work describes cellular and molecular mechanisms induced by an HPLC-fractionated, hydrophilic extract derived from the Baltic brown seaweed Fucus vesiculosus (Fv1. Treatment with Fv1 resulted in a strong inhibition of viability in various pancreatic cancer cell lines. This extract inhibited the cell cycle of proliferating cells due to the up-regulation of cell cycle inhibitors, shown on the mRNA (microarray data and protein level. As a result, cells were dying in a caspase-independent manner. Experiments with non-dividing cells showed that proliferation is a prerequisite for the effectiveness of Fv1. Importantly, Fv1 showed low cytotoxic activity against non-malignant resting T cells and terminally differentiated cells like erythrocytes. Interestingly, accelerated killing effects were observed in combination with inhibitors of autophagy. Our in vitro data suggest that Fv1 may represent a promising new agent that deserves further development towards clinical application.

  3. Secreted phosphoprotein 24 kD (Spp24) inhibits growth of human pancreatic cancer cells caused by BMP-2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chen-Shuang [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing (China); Tian, Haijun, E-mail: haijuntianmd@gmail.com [Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai (China); Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA (United States); Department of Surgery, Bethune School of Medics, Shijiazhuang (China); Zou, Min [Department of Orthodontics, School and Hospital of Stomatology, Xi' an Jiaotong University, Xi' an (China); Zhao, Ke-Wei [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Li, Yawei; Lao, Lifeng [Department of Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, CA (United States); Brochmann, Elsa J. [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Department of Medicine, University of California, Los Angeles, Los Angeles, CA (United States); Duarte, M. Eugenia L. [National Institute of Traumatology and Orthopaedics, Rio de Janeiro (Brazil); Daubs, Michael D. [Division of Orthopaedic Surgery, Department of Surgery, University of Nevada School of Medicine, Las Vegas, NV (United States); Zhou, Yan-Heng, E-mail: yanhengzhou@vip.163.com [Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing (China); Murray, Samuel S. [Research Service, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Geriatric Research, Education and Clinical Center, VA Greater Los Angeles Healthcare System, North Hills, CA (United States); Department of Medicine, University of California, Los Angeles, Los Angeles, CA (United States); Wang, Jeffrey C. [Department of Orthopaedic Surgery, University of Southern California, Los Angeles, CA (United States)

    2015-10-16

    The emerging role of bone morphogenetic proteins (BMPs) in the initiation and progression of multiple cancers has drawn great attention in cancer research. In this study, we report that BMP-2 can promote the proliferation of the pancreatic tumor cell line, PANC-1. Secreted phosphoprotein 24 kD (Spp24), a BMP binding protein, did not affect the proliferation of the cells but promoted the apoptosis of the cells in vitro. In a xeneograft tumor model using PANC-1 cells, BMP-2 dramatically promoted tumor growth, while Spp24 not only abolished the effect of BMP-2, but also dramatically induced tumor shrinking when used alone. Activation of Smad1/5/8 participated in this process as demonstrated by immunohistochemical staining of phosphorylated Smad 1/5/8. We conclude that Spp24 can be developed into a therapeutic agent that could be employed in clinical situations where the inhibition of BMPs and related proteins is advantageous. - Highlights: • Spp24 effectively inhibited the in vivo tumor growth of PANC-1. • BMP-2 dramatically promoted tumor growth by promoting PANC-1 proliferation. • Spp24 abolished the tumor growth effect of BMP-2 by promoting PANC-1 apoptosis. • Spp24 may be a candidate as a therapeutic agent of pancreatic cancer.

  4. Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition.

    Science.gov (United States)

    Mukherjee, Pinku; Basu, Gargi D; Tinder, Teresa L; Subramani, Durai B; Bradley, Judy M; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2009-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRAS(G12D) mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E(2) and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer.

  5. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII.

    Science.gov (United States)

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K; Jensen, Mette M; El Ali, Henrik H; Madsen, Jacob; Wiinberg, Bo; Petersen, Lars C; Kjaer, Andreas

    2016-07-01

    Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF. The purpose of this study was to investigate the possibility of using active site-inhibited FVII (FVIIai) labeled with (64)Cu for PET imaging of TF expression. FVIIai was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with (64)Cu ((64)Cu-NOTA-FVIIai). Longitudinal in vivo PET imaging was performed at 1, 4, 15, and 36 h after injection of (64)Cu-NOTA-FVIIai in mice with pancreatic adenocarcinomas (BxPC-3). The specificity of TF imaging with (64)Cu-NOTA-FVIIai was investigated in subcutaneous pancreatic tumor models with different levels of TF expression and in a competition experiment. In addition, imaging of orthotopic pancreatic tumors was performed using (64)Cu-NOTA-FVIIai and PET/MRI. In vivo imaging data were supported by ex vivo biodistribution, flow cytometry, and immunohistochemistry. Longitudinal PET imaging with (64)Cu-NOTA-FVIIai showed a tumor uptake of 2.3 ± 0.2, 3.7 ± 0.3, 3.4 ± 0.3, and 2.4 ± 0.3 percentage injected dose per gram at 1, 4, 15, and 36 h after injection, respectively. An increase in tumor-to-normal-tissue contrast was observed over the imaging time course. Competition with unlabeled FVIIai significantly (P < 0.001) reduced the tumor uptake. The tumor uptake observed in models with different TF expression levels was significantly different from each other (P < 0.001) and was in agreement with

  6. Epidermal growth factor inhibits rat pancreatic cell proliferation, causes acinar cell hypertrophy, and prevents caerulein-induced desensitization of amylase release.

    Science.gov (United States)

    Morisset, J; Larose, L; Korc, M

    1989-06-01

    The in vivo effects of epidermal growth factor (EGF) on pancreatic growth and digestive enzyme concentrations were compared with the actions of the pancreatic secretagogue caerulein in the adult rat. EGF (10 micrograms/kg BW) did not alter pancreatic weight or protein content. However, this concentration of EGF inhibited [3H]thymidine incorporation into DNA by 44%, decreased DNA content by 20%, and increased the concentrations of amylase, chymotrypsinogen, and protein by 106%, 232%, and 42%, respectively. Pancreatic acini prepared from EGF-treated rats exhibited a characteristic secretory response to caerulein that was superimposable to that obtained in acini from saline-treated rats. In both groups of acini half-maximal and maximal stimulation of amylase release occurred at approximately 5 pM and 50 pM caerulein, respectively. In contrast to EGF, caerulein (1 microgram/kg BW) increased pancreatic weight by 29% and protein content by 59%, and enhanced [3H]thymidine incorporation into DNA by 70%. Although caerulein increased the concentrations of pancreatic amylase and chymotrypsinogen by 38% and 297%, respectively, pancreatic acini prepared from caerulein-treated rats were less sensitive to the actions of caerulein in vitro when compared with acini from control rats. Indeed, the EC50 was shift from 4.8 pM to 9.8 pM after 4 days of treatment. EGF potentiated the actions of caerulein on pancreatic weight, protein content, and chymotrypsinogen concentration, and prevented the caerulein-induced alteration in the secretory responsiveness of the acinar cell. Conversely, caerulein reversed the inhibitory effect of EGF on thymidine incorporation. These findings suggest that EGF may modulate the trophic effects of certain gastrointestinal hormones, and may participate in the regulation of pancreatic exocrine function in vivo.

  7. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    Directory of Open Access Journals (Sweden)

    Mamaghani Shadi

    2009-04-01

    Full Text Available Abstract Background Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. Methods GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. Results GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-XL, and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. Conclusion GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard

  8. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy

    International Nuclear Information System (INIS)

    Mamaghani, Shadi; Patel, Satish; Hedley, David W

    2009-01-01

    Aberrant activation NF-kappaB has been proposed as a mechanism of drug resistance in pancreatic cancer. Recently, inhibition of glycogen synthase kinase-3 has been shown to exert anti-tumor effects on pancreatic cancer cells by suppressing NF-kappaB. Consequently, we investigated whether inhibition of GSK-3 sensitizes pancreatic cancer cells to the chemotherapeutic agent gemcitabine. GSK-3 inhibition was achieved using the pharmacological agent AR-A014418 or siRNA against GSK-3 alpha and beta isoforms. Cytotoxicity was measured using a Sulphorhodamine B assay and clonogenic survival following exposure of six different pancreatic cancer cell lines to a range of doses of either gemcitabine, AR-A014418 or both for 24, 48 and 72 h. We measured protein expression levels by immunoblotting. Basal and TNF-alpha induced activity of NF-kappaB was assessed using a luciferase reporter assay in the presence or absence of GSK-3 inhibition. GSK-3 inhibition reduced both basal and TNF-alpha induced NF-kappaB luciferase activity. Knockdown of GSK-3 beta reduced nuclear factor kappa B luciferase activity to a greater extent than GSK-3 alpha, and the greatest effect was seen with dual knockdown of both GSK-3 isoforms. GSK-3 inhibition also resulted in reduction of the NF-kappaB target proteins XIAP, Bcl-X L , and cyclin D1, associated with growth inhibition and decreased clonogenic survival. In all cell lines, treatment with either AR-A014418, or gemcitabine led to growth inhibition in a dose- and time-dependent manner. However, with the exception of PANC-1 where drug synergy occurred with some dose schedules, the inhibitory effect of combined drug treatment was additive, sub-additive, or even antagonistic. GSK-3 inhibition has anticancer effects against pancreatic cancer cells with a range of genetic backgrounds associated with disruption of NF-kappaB, but does not significantly sensitize these cells to the standard chemotherapy agent gemcitabine. This lack of synergy might be

  9. Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells

    Science.gov (United States)

    Li, Yiwei; VandenBoom, Timothy G.; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

    2009-01-01

    Pancreatic cancer (PC) is an aggressive malignancy with high mortality and is believed to be in part due to its highly invasive and metastatic behavior, which is associated with over-expression of EGFR and activation of NF-κB. Emerging evidence also suggest critical roles of microRNAs (miRNAs) in the regulation of various pathobiological processes including metastasis in PC and in other human malignancies. In the present study, we found lower expression of miR-146a in PC cells compared to normal human pancreatic duct epithelial (HPDE) cells. Interestingly, re-expression of miR-146a inhibited the invasive capacity of Colo357 and Panc-1 PC cells with concomitant down-regulation of EGFR and IRAK-1. Mechanistic studies including miR-146a re-expression, anti-miR-146 transfection, and EGFR knock-down experiment showed that there was a crosstalk between EGFR, MTA-2, IRAK-1, IκBα and NF-κB. Most importantly, we found that the treatment of PC cells with “natural agents” [3,3′-diinodolylmethane (DIM) or isoflavone] led to an increase in the expression of miR-146a and consequently down-regulated the expression of EGFR, MTA-2, IRAK-1 and NF-κB, resulting in the inhibition of invasion of Colo357 and Panc-1 cells. These results provide experimental evidence in support of the role of DIM and isoflavone as potential non-toxic agents as regulators of miRNA, which could be useful for the inhibition of cancer cell invasion and metastasis, and further suggesting that these agents could be important for designing novel targeted strategy for the treatment of PC. PMID:25242818

  10. Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin Uptake by Pancreatic Acinar Cells.

    Directory of Open Access Journals (Sweden)

    Padmanabhan Srinivasan

    Full Text Available Thiamin (vitamin B1, a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively. The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase, was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s affecting the SLC19A2 and SLC19A3 genes.

  11. Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway.

    Science.gov (United States)

    Zhao, Ping; Meng, Meng; Xu, Bin; Dong, Aiping; Ni, Guangzhen; Lu, Lianfang

    2017-12-06

    MUC1, a membrane tethered mucin glycoprotein, is overexpressed in > 60% of human pancreatic cancers (PCs), and is associated with poor prognosis and enhanced metastasis. Here, we report the effect of silencing MUC1 expression on the growth, migration and invasive ability of pancreatic cancer cells, and explored its mechanisms. We observed that siRNA mediated suppression of the MUC1 expression significantly reduced invasive and migrative capability and induced apoptosis of the pancreatic cancer PANC-1 cells. We found that Slug was inhibited in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Expression of PUMA and E-cadherin was increased in the MUC1 siRNA/PANC-1 cells. PANC-1 cells overexpressing full long Slug gene (when transfected with Slug cDNA plasmid) significantly inhibited PUMA and E-cadherin expression in the MUC1 siRNA/PANC-1 cells. Silencing PUMA expression inhibited apoptosis in the MUC1 siRNA transfected PANC-1 cells (MUC1 siRNA/PANC-1 cells). Silencing E-cadherin expression restored the invasion and migration ability in the MUC1 siRNA/PANC-1 cells. We therefore concluded that silencing MUC1 expression inhibited migration and invasion, and induced apoptosis of PANC-1 cells via downregulation of Slug and upregulation of Slug dependent PUMA and E-cadherin expression. MUC1 could serve as a potential therapeutic target in pancreatic cancer.

  12. Growth inhibition of human pancreatic cancer cells by lipofection mediated IGF-1R antisense oligodeoxynucletides in combination with ionizing radiation

    International Nuclear Information System (INIS)

    Pan Yaozhen; Sun Chengyi; Wang Yuzhi

    2004-01-01

    Objective: To study the growth inhibition of human pancreatic cancer cells (PC-3) by lipofection-mediated and ionizing radiation improving transfection of IGF-1R antisense oligodeoxynucletides (ASON) in vitro. Methods: Colonigenicity of PC-3 cells in vitro after 60 Co γ-radiation was observed for ascertaining their radiosensitivity and optimal radiation dose was selected according to the radiation sensitivity. PC-3 cells were transfected by two ways: 1) by lipofection-mediated IGF-1R ASON combined with ionizing radiation. 2) by lipo-ASON alone without ionizing radiation. Cell growth was assessed by MTT method. The expression of IGF-1R at mRNA level was examined by RT-PCR. Flow cytometry was used to demonstrate apoptotic changes in lipo-ASON-treated cells. Results: The inhibitory efficiency of lipo-ASON combined with ionizing radiation was higher than that without ionizing radiation (P < 0.05). The apoptotic efficiency and the decreased level of IGF-1R at mRNA were significantly improved (P < 0.05). Conclusion: Lipofection-mediated and ionizing radiation-promoted transfection of IGF-1R antisense oligodeoxynucletides (ASON) significantly decreases IGF-1R at mRNA level and induces apoptosis of human pancreatic cancer cells in vitro

  13. Effect of inhibition of microsomal Ca(2+)-ATPase on cytoplasmic calcium and enzyme secretion in pancreatic acini.

    Science.gov (United States)

    Metz, D C; Pradhan, T K; Mrozinski, J E; Jensen, R T; Turner, R J; Patto, R J; Gardner, J D

    1994-01-13

    We used thapsigargin (TG), 2,5-di-tert-butyl-1,4-benzohydroquinone (BHQ) and cyclopiazonic acid (CPA), each of which inhibits microsomal Ca(2+)-ATPase, to evaluate the effects of this inhibition on cytoplasmic free calcium ([Ca2+]i) and secretagogue-stimulated enzyme secretion in rat pancreatic acini. Using single-cell microspectrofluorimetry of fura-2-loaded acini we found that all three agents caused a sustained increase in [Ca2+]i by mobilizing calcium from inositol-(1,4,5)-trisphosphate-sensitive intracellular calcium stores and by promoting influx of extracellular calcium. Concentrations of all three agents that increased [Ca2+]i potentiated the stimulation of enzyme secretion caused by secretagogues that activate adenylate cyclase but inhibited the stimulation of enzyme secretion caused by secretagogues that activate phospholipase C. With BHQ, potentiation of adenylate cyclase-mediated enzyme secretion occurred immediately whereas inhibition of phospholipase C-mediated enzyme secretion occurred only after several min of incubation. In addition, the effects of BHQ and CPA on both [Ca2+]i and secretagogue-stimulated enzyme secretion were reversed completely by washing whereas the actions of TG could not be reversed by washing. Concentrations of BHQ in excess of those that caused maximal changes in [Ca2+]i inhibited all modes of stimulated enzyme secretion by a mechanism that was apparently unrelated to changes in [Ca2+]i. Finally, in contrast to the findings with TG and BHQ, CPA inhibited bombesin-stimulated enzyme secretion over a range of concentrations that was at least 10-fold lower than the range of concentrations over which CPA potentiated VIP-stimulated enzyme secretion.

  14. In vivo effect of pinosylvin and pterostilben in the animal model of adjuvant arthritis

    Czech Academy of Sciences Publication Activity Database

    Mačičková, T.; Pečivová, J.; Drábiková, K.; Bauerová, K.; Mihalová, D.; Harmatha, Juraj; Nosáľ, R.

    2010-01-01

    Roč. 3, č. 3 (2010), A61-A62 ISSN 1337-6853. [Toxcon 2010, Borderless Toxicology. 15th Interdisciplinary Toxicological Conference & Advanced Toxicological Course. 06.09.-10.09.2010, Stará Lesná - Hotel Academia] R&D Projects: GA ČR(CZ) GA203/07/1227 Institutional research plan: CEZ:AV0Z40550506 Keywords : pinosylvin * oxidative stress * inflammation * pterostilbene * stilbenoid Subject RIV: CC - Organic Chemistry

  15. In vivo effect of pinosylvin and pterostilbene in the animal model of adjuvant arthritis

    Czech Academy of Sciences Publication Activity Database

    Mačičková, T.; Drábiková, K.; Nosál, R.; Bauerová, K.; Mihalová, D.; Harmatha, Juraj; Pečivová, J.

    2010-01-01

    Roč. 31, Suppl. 2 (2010), s. 91-95 ISSN 0172-780X R&D Projects: GA ČR(CZ) GA203/07/1227 Institutional research plan: CEZ:AV0Z40550506 Keywords : adjuvant arthritis * pinosylvin * pterostilbene * generation of reactive oxygen species Subject RIV: CC - Organic Chemistry Impact factor: 1.621, year: 2010 http://node.nel.edu

  16. Chronic pancreatitis

    Science.gov (United States)

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  17. Pterostilbene 4′-β-Glucoside Protects against DSS-Induced Colitis via Induction of Tristetraprolin

    Directory of Open Access Journals (Sweden)

    Yingqing Chen

    2017-01-01

    Full Text Available Pterostilbene, a dimethyl ester analog of resveratrol, has anti-inflammatory and antioxidative effects and alters cell proliferation. Tristetraprolin (TTP promotes the degradation of proinflammatory mediators via binding to adenosine and uridine- (AU- rich elements (ARE located in the 3′-untranslated regions of mRNAs. Here, we utilized pterostilbene 4′-β-glucoside (4-PG, a compound derived from pterostilbene, to investigate whether it has anti-inflammatory effects on dextran sulfate sodium- (DSS- induced colitis via TTP enhancement. TTP expression was increased in 4-PG dose- and time-dependent manners in RAW264.7 cells. The production of proinflammatory cytokine, such as TNF-α, was reduced by 4-PG in vitro. To investigate the role of TTP in the anti-inflammatory effects of 4-PG, we used DSS-induced colitis in TTP WT and KO mice as models. The expression levels of TTP and proinflammatory cytokines were determined in serum and colon tissue. 4-PG increased the expression of TTP while suppressing proinflammatory cytokines both in vitro and in vivo. These findings suggest that treatment with 4-PG mediates the anti-inflammatory effects of 4-PG on DSS-induced colitis via enhancing TTP expression.

  18. Experimental in vivo and in vitro treatment with a new histone deacetylase inhibitor belinostat inhibits the growth of pancreatic cancer

    International Nuclear Information System (INIS)

    Dovzhanskiy, Dmitriy I; Arnold, Stefanie M; Hackert, Thilo; Oehme, Ina; Witt, Olaf; Felix, Klaus; Giese, Nathalia; Werner, Jens

    2012-01-01

    Treatment options for pancreatic ductal adenocarcinoma (PDAC) are limited. Histone deacetylase inhibitors are a new and promising drug family with strong anticancer activity. The aim of this study was to examine the efficacy of in vitro and in vivo treatment with the novel pan-HDAC inhibitor belinostat on the growth of human PDAC cells. The proliferation of tumour cell lines (T3M4, AsPC-1 and Panc-1) was determined using an MTT assay. Apoptosis was analysed using flow cytometry. Furthermore, p21 Cip1/Waf1 and acetylated histone H4 (acH4) expression were confirmed by immunoblot analysis. The in vivo effect of belinostat was studied in a chimeric mouse model. Antitumoural activity was assessed by immunohistochemistry for Ki-67. Treatment with belinostat resulted in significant in vitro and in vivo growth inhibition of PDAC cells. This was associated with a dose-dependent induction of tumour cell apoptosis. The apoptotic effect of gemcitabine was further enhanced by belinostat. Moreover, treatment with belinostat increased expression of the cell cycle regulator p21 Cip1/Waf1 in Panc-1, and of acH4 in all cell lines tested. The reductions in xenograft tumour volumes were associated with inhibition of cell proliferation. Experimental treatment of human PDAC cells with belinostat is effective in vitro and in vivo and may enhance the efficacy of gemcitabine. A consecutive study of belinostat in pancreatic cancer patients alone, and in combination with gemcitabine, could further clarify these effects in the clinical setting

  19. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Saw, Constance Lay Lay; Guo, Yue; Yang, Anne Yuqing; Paredes-Gonzalez, Ximena; Ramirez, Christina; Pung, Douglas; Kong, Ah-Ng Tony

    2014-10-01

    Quercetin, kaempferol, and pterostilbene are abundant in berries. The anti-oxidative properties of these constituents may contribute to cancer chemoprevention. However, their precise mechanisms of action and their combinatorial effects are not completely understood. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates anti-oxidative stress enzymes and Phase II drug metabolizing/detoxifying enzymes by binding to antioxidant response element (ARE). This study aimed to investigate the anti-oxidative stress activities of quercetin, kaempferol, and pterostilbene individually and in combination, as well as the involvement of the Nrf2-ARE signaling pathway. Quercetin, kaempferol, and pterostilbene all exhibited strong free-radical scavenging activity in the DPPH assay. The MTS assay revealed that low concentration combinations we tested were relatively non-toxic to HepG2-C8 cells. The results of the DCFH-DA assay and combination index (CI) indicated that quercetin, kaempferol, and pterostilbene attenuated intracellular reactive oxygen species (ROS) levels when pretreated individually and had synergistic effects when used in combination. In addition, the combination treatment significantly induced ARE and increased the mRNA and protein expression of Nrf2-regulated genes. Collectively, our study demonstrated that the berry constituents quercetin, kaempferol, and pterostilbene activated the Nrf2-ARE signaling pathway and exhibited synergistic anti-oxidative stress activity at appropriate concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression.

    Science.gov (United States)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P<0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P<0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching.

    Science.gov (United States)

    Sun, Lijun; Chen, Weiqi; Meng, Yonghong; Yang, Xingbin; Yuan, Li; Guo, Yurong; Warren, Frederick J; Gidley, Michael J

    2016-10-01

    Young apple polyphenols (YAP) and nine types of phenolic compounds were investigated regarding the inhibitory activity against porcine pancreatic α-amylase (PPA) in vitro. Tannic acid, chlorogenic acid and caffeic acid in YAP showed relatively high inhibition with the IC50 values of 0.30, 1.96 and 3.69mg/mL, respectively. A detailed kinetics of inhibition study revealed that YAP and tannic acid were competitive inhibitors of PPA, whereas chlorogenic acid and caffeic acid were mixed inhibitors, exhibiting both competitive and uncompetitive characteristics. The fluorescence of PPA could be significantly quenched by YAP and the three polyphenols, and their quenching constants were determined. The results showed that for the polyphenols investigated, the order of the apparent static quenching constants (KFQ) was in agreement with that of the reciprocal competitive inhibition constants (1/Kic) (tannic acid>chlorogenic acid>caffeic acid>epicatechin); both of the parameters were contrary to the order of the IC50 values. Thus, combining detailed kinetics and fluorescence quenching studies can be applied to characterise the interactions between polyphenols in young apples and α-amylase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Rac1 activation inhibits E-cadherin-mediated adherens junctions via binding to IQGAP1 in pancreatic carcinoma cells

    Directory of Open Access Journals (Sweden)

    Giehl Klaudia

    2009-09-01

    Full Text Available Abstract Background Monomeric GTPases of the Rho family control a variety of cellular functions including actin cytoskeleton organisation, cell migration and cell adhesion. Defects in these regulatory processes are involved in tumour progression and metastasis. The development of metastatic carcinoma is accompanied by deregulation of adherens junctions, which are composed of E-cadherin/β- and α-catenin complexes. Results Here, we show that the activity of the monomeric GTPase Rac1 contributes to inhibition of E-cadherin-mediated cell-cell adhesion in pancreatic carcinoma cells. Stable expression of constitutively active Rac1(V12 reduced the amount of E-cadherin on protein level in PANC-1 pancreatic carcinoma cells, whereas expression of dominant negative Rac1(N17 resulted in an increased amount of E-cadherin. Extraction of proteins associated with the actin cytoskeleton as well as coimmunoprecipitation analyses demonstrated markedly decreased amounts of E-cadherin/catenin complexes in Rac1(V12-expressing cells, but increased amounts of functional E-cadherin/catenin complexes in cells expressing Rac1(N17. Cell aggregation and migration assays revealed, that cells containing less E-cadherin due to expression of Rac1(V12, exhibited reduced cell-cell adhesion and increased cell motility. The Rac/Cdc42 effector protein IQGAP1 has been implicated in regulating cell-cell adhesion. Coimmunoprecipitation studies showed a decrease in the association between IQGAP1 and β-catenin in Rac1(V12-expressing PANC-1 cells and an association of IQGAP1 with Rac1(V12. Elevated association of IQGAP1 with the E-cadherin adhesion complex via β-catenin correlated with increased intercellular adhesion of PANC-1 cells. Conclusion These results indicate that active Rac1 destabilises E-cadherin-mediated cell-cell adhesion in pancreatic carcinoma cells by interacting with IQGAP1 which is associated with a disassembly of E-cadherin-mediated adherens junctions. Inhibition

  3. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1{alpha} targeted gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Kotaro, E-mail: hif.panc@gmail.com [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Uto, Yoshihiro [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Nagasawa, Hideko [Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu 501-1196 (Japan); Hori, Hitoshi [Department of Biological Science and Technology, Institute of Socio Technosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan); Shimada, Mitsuo [Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8503 (Japan)

    2012-08-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1{alpha} (HIF-1{alpha}), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: Black-Right-Pointing-Pointer We designed and synthesized novel hypoxic cytoxin, TX-2098. Black-Right-Pointing-Pointer TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. Black-Right-Pointing-Pointer TX-2098 reduced VEGF protein level than TPZ. Black-Right-Pointing-Pointer TX-2098

  4. The novel hypoxic cytotoxin, TX-2098 has antitumor effect in pancreatic cancer; possible mechanism through inhibiting VEGF and hypoxia inducible factor-1α targeted gene expression

    International Nuclear Information System (INIS)

    Miyake, Kotaro; Nishioka, Masanori; Imura, Satoru; Batmunkh, Erdenebulgan; Uto, Yoshihiro; Nagasawa, Hideko; Hori, Hitoshi; Shimada, Mitsuo

    2012-01-01

    Tumor hypoxia has been considered to be a potential therapeutic target, because hypoxia is a common feature of solid tumors and is associated with their malignant phenotype. In the present study, we investigated the antitumor effect of a novel hypoxic cytotoxin, 3-[2-hydroxyethyl(methyl)amino]-2-quinoxalinecarbonitrile 1,4-dioxide (TX-2098) in inhibiting the expression of hypoxia inducible factor-1α (HIF-1α), and consequently vascular endothelial cell growth factor (VEGF) expression in pancreatic cancer. The antitumor effects of TX-2098 under hypoxia were tested against various human pancreatic cancer cell lines using WST-8 assay. VEGF protein induced pancreatic cancer was determined on cell-free supernatant by ELISA. Moreover, nude mice bearing subcutaneously (s.c.) or orthotopically implanted human SUIT-2 were treated with TX-2098. Tumor volume, survival and expression of HIF-1 and associated molecules were evaluated in treatment versus control groups. In vitro, TX-2098 inhibited the proliferation of various pancreatic cancer cell lines. In s.c model, tumors from nude mice injected with pancreatic cancer cells and treated with TX-2098 showed significant reductions in volume (P < 0.01 versus control). Quantitative real-time reverse transcription-PCR analysis revealed that TX-2098 significantly inhibited mRNA expression of the HIF-1 associated molecules, VEGF, glucose transporter 1 and Aldolase A (P < 0.01 versus control). These treatments also prolong the survival in orthotopic models. These results suggest that the effect of TX-2098 in pancreatic cancer might be correlated with the expression of VEGF and HIF-1 targeted molecules. -- Highlights: ► We designed and synthesized novel hypoxic cytoxin, TX-2098. ► TX-2098 inhibited the proliferation of human pancreatic cancer cells than TPZ. ► TX-2098 reduced VEGF protein level than TPZ. ► TX-2098 inhibited mRNA expression of VEGF, GLUT1 and Aldolase A, not HIF-1α. ► TX-2098 improved the survival in

  5. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. -g.; Zhou, G.; Yang, P.; Liu, Y.; Sun, B.; Huynh, T.; Meng, H.; Zhao, L.; Xing, G.; Chen, C.; Zhao, Y.; Zhou, R.

    2012-09-18

    Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C82(OH)22 can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C82(OH)22 effectively blocks tumor growth in human pancreatic cancer xenografts in a nude mouse model. Enzyme activity assays also show Gd@C82(OH)22 not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C82(OH)22–MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C82(OH)22 inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C82(OH)22 exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C82(OH)22 a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Finally, our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.

  6. Inhibition of glucose turnover by 3-bromopyruvate counteracts pancreatic cancer stem cell features and sensitizes cells to gemcitabine.

    Science.gov (United States)

    Isayev, Orkhan; Rausch, Vanessa; Bauer, Nathalie; Liu, Li; Fan, Pei; Zhang, Yiyao; Gladkich, Jury; Nwaeburu, Clifford C; Mattern, Jürgen; Mollenhauer, Martin; Rückert, Felix; Zach, Sebastian; Haberkorn, Uwe; Gross, Wolfgang; Schönsiegel, Frank; Bazhin, Alexandr V; Herr, Ingrid

    2014-07-15

    According to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy. Four established and 3 primary PDA cell lines, non-malignant cells, and 3 patient-tumor-derived CSC-enriched spheroidal cultures were analyzed by glucose turnover measurements, MTT and ATP assays, flow cytometry of ALDH1 activity and annexin positivity, colony and spheroid formation, western blotting, electrophoretic mobility shift assay, xenotransplantation, and immunohistochemistry. The effect of siRNA-mediated inhibition of LDH-A and LDH-B was also investigated. The PDA cells exhibited a high glucose metabolism, and glucose withdrawal or LDH inhibition by siRNA prevented growth and colony formation. Treatment with the anti-glycolytic agent 3-bromopyruvate almost completely blocked cell viability, self-renewal potential, NF-κB binding activity, and stem cell-related signaling and reverted gemcitabine resistance. 3-bromopyruvate was less effective in weakly malignant PDA cells and did not affect non-malignant cells, predicting minimal side effects. 3-bromopyruvate inhibited in vivo tumor engraftment and growth on chicken eggs and mice and enhanced the efficacy of gemcitabine by influencing the expression of markers of proliferation, apoptosis, self-renewal, and metastasis. Most importantly, primary CSC-enriched spheroidal cultures were eliminated by 3-bromopyruvate. These findings propose that CSCs may be specifically dependent on a high glucose turnover and suggest 3-bromopyruvate for therapeutic intervention.

  7. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    International Nuclear Information System (INIS)

    Zhu, Yuan-Ting; Ren, Xiao-Yun; Liu, Yi-Ming; Wei, Ying; Qing, Lin-Sen; Liao, Xun

    2014-01-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe 3 O 4 –SiO 2 ) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g −1 . The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K m and the V max values (0.02 mM, 6.40 U·mg −1 enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg −1 enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity, reusability, and thermo-stability than

  8. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: Characterization and application for enzymatic inhibition assays

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuan-Ting [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ren, Xiao-Yun [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liu, Yi-Ming [Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217 (United States); Wei, Ying [Changzhi Medical College, Changzhi 046000 (China); Qing, Lin-Sen [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China); Liao, Xun, E-mail: liaoxun@cib.ac.cn [Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-05-01

    Using carboxyl functionalized silica-coated magnetic nanoparticles (MNPs) as carrier, a novel immobilized porcine pancreatic lipase (PPL) was prepared through the 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. Transmission electron microscopic images showed that the synthesized nanoparticles (Fe{sub 3}O{sub 4}–SiO{sub 2}) possessed three dimensional core–shell structures with an average diameter of ∼ 20 nm. The effective enzyme immobilization onto the nanocomposite was confirmed by atomic force microscopic (AFM) analysis. Results from Fourier-transform infrared spectroscopy (FT-IR), Bradford protein assay, and thermo-gravimetric analysis (TGA) indicated that PPL was covalently attached to the surface of magnetic nanoparticles with a PPL immobilization yield of 50 mg enzyme/g MNPs. Vibrating sample magnetometer (VSM) analysis revealed that the MNPs-PPL nanocomposite had a high saturation magnetization of 42.25 emu·g{sup −1}. The properties of the immobilized PPL were investigated in comparison with the free enzyme counterpart. Enzymatic activity, reusability, thermo-stability, and storage stability of the immobilized PPL were found significantly superior to those of the free one. The K{sub m} and the V{sub max} values (0.02 mM, 6.40 U·mg{sup −1} enzyme) indicated the enhanced activity of the immobilized PPL compared to those of the free enzyme (0.29 mM, 3.16 U·mg{sup −1} enzyme). Furthermore, at an elevated temperature of 70 °C, immobilized PPL retained 60% of its initial activity. The PPL-MNPs nanocomposite was applied in the enzyme inhibition assays using orlistat, and two natural products isolated from oolong tea (i.e., EGCG and EGC) as the test compounds. - Highlights: • Porcine pancreatic lipase was firstly covalently immobilized onto carboxylated MNPs. • Immobilized porcine pancreatic lipase (PPL) was characterized by various techniques. • MNPs-PPL showed higher activity

  9. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3.

    Directory of Open Access Journals (Sweden)

    Srinivas Reddy Boreddy

    Full Text Available Our previous studies have shown that benzyl isothiocyanate (BITC suppresses pancreatic tumor growth by inhibiting STAT-3; however, the exact mechanism of tumor growth suppression was not clear. Here we evaluated the effects and mechanism of BITC on pancreatic tumor angiogenesis. Our results reveal that BITC significantly inhibits neovasularization on rat aorta and Chicken-Chorioallantoic membrane. Furthermore, BITC blocks the migration and invasion of BxPC-3 and PanC-1 pancreatic cancer cells in a dose dependant manner. Moreover, secretion of VEGF and MMP-2 in normoxic and hypoxic BxPC-3 and PanC-1 cells was significantly suppressed by BITC. Both VEGF and MMP-2 play a critical role in angiogenesis and metastasis. Our results reveal that BITC significantly suppresses the phosphorylation of VEGFR-2 (Tyr-1175, and expression of HIF-α. Rho-GTPases, which are regulated by VEGF play a crucial role in pancreatic cancer progression. BITC treatment reduced the expression of RhoC whereas up-regulated the expression of tumor suppressor RhoB. STAT-3 over-expression or IL-6 treatment significantly induced HIF-1α and VEGF expression; however, BITC substantially suppressed STAT-3 as well as STAT-3-induced HIF-1α and VEGF expression. Finally, in vivo tumor growth and matrigel-plug assay show reduced tumor growth and substantial reduction of hemoglobin content in the matrigel plugs and tumors of mice treated orally with 12 µmol BITC, indicating reduced tumor angiogenesis. Immunoblotting of BITC treated tumors show reduced expression of STAT-3 phosphorylation (Tyr-705, HIF-α, VEGFR-2, VEGF, MMP-2, CD31 and RhoC. Taken together, our results suggest that BITC suppresses pancreatic tumor growth by inhibiting tumor angiogenesis through STAT-3-dependant pathway.

  10. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer.

    Science.gov (United States)

    Wang, Qi; Li, Juanjuan; Wu, Wei; Shen, Ruizhe; Jiang, He; Qian, Yuting; Tang, Yanping; Bai, Tingting; Wu, Sheng; Wei, Lumin; Zang, Yi; Zhang, Ji; Wang, Lifu

    2016-03-08

    The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancreatic intraepithelial neoplastic lesions, whereas low in human PDAC tissues. The Pitx2 levels correlated with overall patient survival post-operatively in PDAC. Induction of Pitx2 expression partly inhibited the malignant phenotype of PDAC cells. Interestingly, low Pitx2 expression was correlated with Smad4 mutant inactivation, but not with Pitx2 DNA-methylation. Furthermore, Smad4 protein bound to Pitx2 promoter and stimulated Pitx2 expression in PDAC. In addition, Pitx2 protein bound to the promoter of the protein phosphatase 2A regulatory subunit B55α (PPP2R2A) and upregulated PPP2R2A expression, which may activate dephosphorylation of Akt in PDAC. These findings provide new mechanistic insights into Pitx2 as a tumor suppressor in the downstream of Smad4. And Pitx2 protein promotes PPP2R2A expression which may inhibit Akt pathway. Therefore, we propose that the Smad4-Pitx2-PPP2R2A axis, a new signaling pathway, suppresses the pancreatic carcinogenesis.

  11. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  12. Pancreatic Enzymes

    Science.gov (United States)

    ... Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  13. FTO Inhibits Insulin Secretion and Promotes NF-κB Activation through Positively Regulating ROS Production in Pancreatic β cells.

    Directory of Open Access Journals (Sweden)

    Hong-Qi Fan

    Full Text Available FTO (Fat mass and obesity-associated is associated with increased risk of obesity and type 2 diabetes incurrence. Pancreas islet β cells dysfunction and insulin resistance are major causes of type 2 diabetes. However, whether FTO plays an important functional role in pancreatic β cells as well as the related molecular mechanism is still unclear. In the present study, the tissue expression profile of FTO was firstly determined using quantitative PCR and western blot. FTO is widely expressed in various tissues and presented with relative high expression in pancreas tissue, especially in endocrine pancreas. FTO overexpression in MIN6 cells achieved by lentivirus delivery significantly inhibits insulin secretion in the presence of glucose stimulus as well as KCl. FTO silence has no effect on insulin secretion of MIN6 cells. However, FTO overexpression doesn't affect the transcription of insulin gene. Furthermore, reactive oxygen species (ROS production and NF-κB activation are significantly promoted by FTO overexpression. Inhibition of intracellular ROS production by N-acetyl-L-cysteine (NAC can alleviate NF-κB activation and restore the insulin secretion mediated by FTO overexpression. A whole transcript-microarray is employed to analyze the differential gene expression mediated by FTO overexpression. The genes which are modulated by FTO are involved in many important biological pathways such as G-protein coupled receptor signaling and NF-κB signaling. Therefore, our study indicates that FTO may contribute to pancreas islet β cells dysfunction and the inhibition of FTO activity is a potential target for the treatment of diabetes.

  14. Pterostilbene-O-acetamidoalkylbenzylamines derivatives as novel dual inhibitors of cholinesterase with anti-β-amyloid aggregation and antioxidant properties for the treatment of Alzheimer's disease.

    Science.gov (United States)

    Li, Yuxing; Qiang, Xiaoming; Li, Yan; Yang, Xia; Luo, Li; Xiao, Ganyuan; Cao, Zhongcheng; Tan, Zhenghuai; Deng, Yong

    2016-04-15

    A series of pterostilbene-O-acetamidoalkylbenzylamines were designed, synthesized and evaluated as dual inhibitors of AChE and BuChE. To further explore the multifunctional properties of the new derivatives, their antioxidant activities and inhibitory effects on self-induced Aβ1-42 aggregation and HuAChE-induced Aβ1-40 aggregation were also tested. The results showed that most of these compounds could effectively inhibit AChE and BuChE. Particularly, compound 21d exhibited the best AChE inhibitory activity (IC50=0.06 μM) and good inhibition of BuChE (IC50=28.04 μM). Both the inhibition kinetic analysis and molecular modeling study revealed that these compounds showed mixed-type inhibition, binding simultaneously to the CAS and PAS of AChE. In addition to cholinesterase inhibitory activities, these compounds showed different levels of antioxidant activity. However, the inhibitory activities against self-induced and HuAChE-induced Aβ aggregation of these new derivatives were unsatisfied. Taking into account the results of the biological evaluation, further modifications will be designed in order to increase the potency on the different targets. The results displayed in this Letter can be a new starting point for further development of multifunctional agents for Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. MutY-Homolog (MYH) inhibition reduces pancreatic cancer cell growth and increases chemosensitivity.

    Science.gov (United States)

    Sharbeen, George; Youkhana, Janet; Mawson, Amanda; McCarroll, Joshua; Nunez, Andrea; Biankin, Andrew; Johns, Amber; Goldstein, David; Phillips, Phoebe

    2017-02-07

    Patients with pancreatic ductal adenocarcinoma (PC) have a poor prognosis due to metastases and chemoresistance. PC is characterized by extensive fibrosis, which creates a hypoxic microenvironment, and leads to increased chemoresistance and intracellular oxidative stress. Thus, proteins that protect against oxidative stress are potential therapeutic targets for PC. A key protein that maintains genomic integrity against oxidative damage is MutY-Homolog (MYH). No prior studies have investigated the function of MYH in PC cells. Using siRNA, we showed that knockdown of MYH in PC cells 1) reduced PC cell proliferation and increased apoptosis; 2) further decreased PC cell growth in the presence of oxidative stress and chemotherapy agents (gemcitabine, paclitaxel and vincristine); 3) reduced PC cell metastatic potential; and 4) decreased PC tumor growth in a subcutaneous mouse model in vivo. The results from this study suggest MYH may be a novel therapeutic target for PC that could potentially improve patient outcome by reducing PC cell survival, increasing the efficacy of existing drugs and reducing metastatic spread.

  16. Gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles inhibit Panc-1 pancreatic cancer cell proliferation and migration by inactivating transcription factor ETS1.

    Science.gov (United States)

    Wang, Cailian; Zhang, Haijun; Chen, Yan; Shi, Fangfang; Chen, Baoan

    2012-01-01

    E26 transformation-specific sequence-1 (ETS1) transcription factor plays important roles in both carcinogenesis and the progression of a wide range of malignancies. Aberrant ETS1 expression correlates with aggressive tumor behavior and a poorer prognosis in patients with various malignancies. The aim of the current study was to evaluate the efficacy of a drug delivery system utilizing gambogic acid-loaded magnetic Fe(3)O(4) nanoparticles (GA-MNP-Fe(3)O(4)) on the suppression of ETS1-mediated cell proliferation and migration in Panc-1 pancreatic cancer cells. The effects caused by GA-MNP-Fe(3)O(4) on the proliferation of Panc-1 pancreatic cancer cells were evaluated using a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay while inhibition of tumor cell migration was investigated in a scratch assay. The expressions of ETS1, cyclin D1, urokinase-type plasminogen activator (u-PA), and VEGF (vascular endothelial growth factor) were examined by Western blot to elucidate the possible mechanisms involved. In Panc-1 pancreatic cancer cells, we observed that application of GA-MNP-Fe(3)O(4) was able to suppress cancer cell proliferation and prevent cells from migrating effectively. After treatment, Panc-1 pancreatic cancer cells showed significantly decreased expression of ETS1, as well as its downstream target genes for cyclin D1, u-PA, and VEGF. Our novel finding reaffirmed the significance of ETS1 in the treatment of pancreatic cancer, and application of GA-MNP-Fe(3)O(4) nanoparticles targeting ETS1 should be considered as a promising contribution for better pancreatic cancer care.

  17. Porcine Pancreatic Lipase Inhibitory Agent Isolated from Medicinal Herb and Inhibition Kinetics of Extracts from Eleusine indica (L. Gaertner

    Directory of Open Access Journals (Sweden)

    Siew Ling Ong

    2016-01-01

    Full Text Available Eleusine indica (Linnaeus Gaertner is a traditional herb known to be depurative, febrifuge, and diuretic and has been reported with the highest inhibitory activity against porcine pancreatic lipase (PPL among thirty two plants screened in an earlier study. This study aims to isolate and identify the active components that may possess high potential as an antiobesity agent. Of the screened solvent fractions of E. indica, hexane fraction showed the highest inhibitory activity of 27.01±5.68% at 100 μg/mL. Bioactivity-guided isolation afforded three compounds from the hexane fraction of E. indica, namely, β-sitosterol, stigmasterol, and lutein. The structures of these compounds were elucidated using spectral techniques. Lutein showed an outstanding inhibitory activity against PPL (55.98±1.04%, with activity 60% higher than that of the reference drug Orlistat. The other compounds isolated and identified were β-sitosterol (2.99±0.80% and stigmasterol (2.68±0.38%. The enzyme kinetics of E. indica crude methanolic extract on PPL showed mixed inhibition mechanism.

  18. Porcine Pancreatic Lipase Inhibitory Agent Isolated from Medicinal Herb and Inhibition Kinetics of Extracts from Eleusine indica (L.) Gaertner.

    Science.gov (United States)

    Ong, Siew Ling; Mah, Siau Hui; Lai, How Yee

    2016-01-01

    Eleusine indica (Linnaeus) Gaertner is a traditional herb known to be depurative, febrifuge, and diuretic and has been reported with the highest inhibitory activity against porcine pancreatic lipase (PPL) among thirty two plants screened in an earlier study. This study aims to isolate and identify the active components that may possess high potential as an antiobesity agent. Of the screened solvent fractions of E. indica , hexane fraction showed the highest inhibitory activity of 27.01 ± 5.68% at 100  μ g/mL. Bioactivity-guided isolation afforded three compounds from the hexane fraction of E. indica , namely,  β -sitosterol, stigmasterol, and lutein. The structures of these compounds were elucidated using spectral techniques. Lutein showed an outstanding inhibitory activity against PPL (55.98 ± 1.04%), with activity 60% higher than that of the reference drug Orlistat. The other compounds isolated and identified were  β -sitosterol (2.99 ± 0.80%) and stigmasterol (2.68 ± 0.38%). The enzyme kinetics of E. indica crude methanolic extract on PPL showed mixed inhibition mechanism.

  19. Trans-pterostilbene and its derivative 2,4-dimethoxy-6 -hydroxyphenanthrene in the leaves of Parthenocissus tricuspidata

    Czech Academy of Sciences Publication Activity Database

    Vrchotová, Naděžda; Tříska, Jan

    2017-01-01

    Roč. 7, č. 2 (2017), s. 146-148 ISSN 1805-0174 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : resveratrol dimer * antioxidant * Parthenocissus tricuspidata * trans-pterostilbene * 2,4-dimethoxy-6-hydroxyphenanthrene * trans-resveratrol Subject RIV: EH - Ecology, Behaviour OBOR OECD: Biochemistry and molecular biology

  20. Inhibition of ice recrystallization and cryoprotective activity of wheat proteins in liver and pancreatic cells.

    Science.gov (United States)

    Chow-Shi-Yée, Mélanie; Briard, Jennie G; Grondin, Mélanie; Averill-Bates, Diana A; Ben, Robert N; Ouellet, François

    2016-05-01

    Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post-thaw. We are developing new technology where plant proteins are used to substitute the commonly-used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI-2 (ice recrystallization inhibition), TaBAS1 (2-Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin-secreting INS832/13 cells. This study shows that TaIRI-2 and TaENO are internalized during the freeze-thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The "splat cooling" method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI-2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI-2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin-secreting cells, and possibly other cell types. TaENO does not have typical ice-binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells. © 2016 The Protein Society.

  1. Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Andersson, Jan Legaard; Bacos, Karl

    2018-01-01

    ) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting......Transcriptional changes control β-cell survival in response to inflammatory stress. Posttranslational modifications of histone and non-histone transcriptional regulators activate or repress gene transcription, but the link to cell-fate signaling is unclear. Inhibition of lysine deacetylases (KDACs...

  2. Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent γ-H2AX and telomerase regulation in triple-negative breast cancer

    International Nuclear Information System (INIS)

    Kala, Rishabh; Shah, Harsh N.; Martin, Samantha L.; Tollefsbol, Trygve O.

    2015-01-01

    Nutrition is believed to be a primary contributor in regulating gene expression by affecting epigenetic pathways such as DNA methylation and histone modification. Resveratrol and pterostilbene are phytoalexins produced by plants as part of their defense system. These two bioactive compounds when used alone have been shown to alter genetic and epigenetic profiles of tumor cells, but the concentrations employed in various studies often far exceed physiologically achievable doses. Triple-negative breast cancer (TNBC) is an often fatal condition that may be prevented or treated through novel dietary-based approaches. HCC1806 and MDA-MB-157 breast cancer cells were used as TNBC cell lines in this study. MCF10A cells were used as control breast epithelial cells to determine the safety of this dietary regimen. CompuSyn software was used to determine the combination index (CI) for drug combinations. Combinatorial resveratrol and pterostilbene administered at close to physiologically relevant doses resulted in synergistic (CI <1) growth inhibition of TNBCs. SIRT1, a type III histone deacetylase (HDAC), was down-regulated in response to this combinatorial treatment. We further explored the effects of this novel combinatorial approach on DNA damage response by monitoring γ-H2AX and telomerase expression. With combination of these two compounds there was a significant decrease in these two proteins which might further resulted in significant growth inhibition, apoptosis and cell cycle arrest in HCC1806 and MDA-MB-157 breast cancer cells, while there was no significant effect on cellular viability, colony forming potential, morphology or apoptosis in control MCF10A breast epithelial cells. SIRT1 knockdown reproduced the effects of combinatorial resveratrol and pterostilbene-induced SIRT1 down-regulation through inhibition of both telomerase activity and γ-H2AX expression in HCC1806 breast cancer cells. As a part of the repair mechanisms and role of SIRT1 in recruiting DNMTs

  3. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Liu, Huaize; Wang, Han; Liu, Xiaoxiao; Yu, Tingting

    2016-01-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  4. miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Huaize [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China); Wang, Han [The First Clinical Medical College of Nanjing Medical University, Nanjing 210029 (China); Liu, Xiaoxiao [Department of Biotechnology, Nanjing Medical University, Nanjing 210029 (China); Yu, Tingting, E-mail: tingting@njmu.edu.cn [Department of Developmental Genetics, Nanjing Medical University, Nanjing 210029 (China)

    2016-04-01

    Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer. - Highlights: • miR-1271 is downregulated in pancreatic cancer tissues and cell lines. • miR-1271 regulates cell metastasis ability and EMT marker expression. . • miR-1271 directly targets ZEB1 and TWIST1. • ZEB1 and TWIST1 are functionally related to the effects of miR-1271.

  5. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2

    Science.gov (United States)

    Yue, Wen; Zheng, Xi; Lin, Yong; Yang, Chung S.; Xu, Qing; Carpizo, Darren; Huang, Huarong; DiPaola, Robert S.; Tan, Xiang-Lin

    2015-01-01

    Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer. PMID:26056043

  6. Zurampic Protects Pancreatic β-Cells from High Uric Acid Induced-Damage by Inhibiting URAT1 and Inactivating the ROS/AMPK/ERK Pathways

    Directory of Open Access Journals (Sweden)

    Ying Xin

    2018-05-01

    Full Text Available Background/Aims: Zurampic is a US FDA approved drug for treatment of gout. However, the influence of Zurampic on pancreatic β-cells remains unclear. The study aimed to evaluate the effects of Zurampic on high uric acid-induced damage of pancreatic β-cells and the possible underlying mechanisms. Methods: INS-1 cells and primary rat islets were stimulated with Zurampic and the mRNA expression of urate transporter 1 (URAT1 was assessed by qRT-PCR. Cells were stimulated with uric acid or uric acid plus Zurampic, and cell viability, apoptosis and ROS release were measured by MTT and flow cytometry assays. Western blot analysis was performed to evaluate the expressions of active Caspase-3 and phosphorylation of AMPK and ERK. Finally, cells were stimulated with uric acid or uric acid plus Zurampic at low/high level of glucose (2.8/16.7 mM glucose, and the insulin release was assessed by ELISA. Results: mRNA expression of URAT1 was decreased by Zurampic in a dose-dependent manner. Uric acid decreased cell viability, promoted cell apoptosis and induced ROS release. Uric acid-induced alterations could be reversed by Zurampic. Activation of Caspase-3 and phosphorylation of AMPK and ERK were enhanced by uric acid, and the enhancements were reversed by Zurampic. Decreased phosphorylation of AMPK and ERK, induced by Zurampic, was further reduced by adding inhibitor of AMPK or ERK. Besides, uric acid inhibited high glucose-induced insulin secretion and the inhibition was rescued by Zurampic. Conclusions: Zurampic has a protective effect on pancreatic β-cells against uric acid induced-damage by inhibiting URAT1 and inactivating the ROS/AMPK/ERK pathway.

  7. Chronic Pancreatitis.

    Science.gov (United States)

    Stram, Michelle; Liu, Shu; Singhi, Aatur D

    2016-12-01

    Chronic pancreatitis is a debilitating condition often associated with severe abdominal pain and exocrine and endocrine dysfunction. The underlying cause is multifactorial and involves complex interaction of environmental, genetic, and/or other risk factors. The pathology is dependent on the underlying pathogenesis of the disease. This review describes the clinical, gross, and microscopic findings of the main subtypes of chronic pancreatitis: alcoholic chronic pancreatitis, obstructive chronic pancreatitis, paraduodenal ("groove") pancreatitis, pancreatic divisum, autoimmune pancreatitis, and genetic factors associated with chronic pancreatitis. As pancreatic ductal adenocarcinoma may be confused with chronic pancreatitis, the main distinguishing features between these 2 diseases are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Sulfasalazine inhibits inflammation and fibrogenesis in pancreas via NF-κB signaling pathway in rats with oxidative stress-induced pancreatic injury.

    Science.gov (United States)

    Wang, Ya-Ru; Tian, Fei-Long; Yan, Ming-Xian; Fan, Jin-Hua; Wang, Li-Yun; Kuang, Rong-Guang; Li, Yan-Qing

    2016-01-01

    , and DS3 rats. SF inhibits pancreatic inflammation and fibrogenesis via NF-κB signaling pathway.

  9. PBI-05204, a supercritical CO₂ extract of Nerium oleander, inhibits growth of human pancreatic cancer via targeting the PI3K/mTOR pathway.

    Science.gov (United States)

    Pan, Yong; Rhea, Patrea; Tan, Lin; Cartwright, Carrie; Lee, Ho-Jeong; Ravoori, Murali K; Addington, Crandell; Gagea, Mihai; Kundra, Vikas; Kim, Sun-Jin; Newman, Robert A; Yang, Peiying

    2015-04-01

    Introduction Oleandrin, a cardiac glycoside, exerts strong anti-proliferative activity against various human malignancies in in vitro cells. Here, we report the antitumor efficacy of PBI-05204, a supercritical C0₂ extract of Nerium oleander containing oleandrin, in a human pancreatic cancer Panc-1 orthotopic model. Results While all the control mice exhibited tumors by the end of treatment, only 2 of 8 mice (25%) treated for 6 weeks with PBI-05204 (40 mg/kg) showed dissectible tumor at the end of the treatment period. The average tumor weight (222.9 ± 116.9 mg) in mice treated with PBI-05204 (20 mg/kg) was significantly reduced from that in controls (920.0 ± 430.0 mg) (p PBI-05204 (40 mg/kg) treated group showed that the pancreatic tissues of 5/6 mice were normal while the remaining mouse had a tumor the largest diameter of which was less than 2.3 mm. In contrast, while gemcitabine alone did not significantly reduce tumor growth, PBI-05204 markedly enhanced the antitumor efficacy of gemcitabine in this particular model. Ki-67 staining was reduced in pancreatic tumors from mice treated with PBI-05204 (20 mg/kg) compared to that of control, suggesting that PBI-05204 inhibited the proliferation of the Panc-1 tumor cells. PBI-05204 suppressed expression of pAkt, pS6, and p4EPB1 in a concentration-dependent manner in both Panc-1 tumor tissues and human pancreatic cancer cell lines, implying that this novel botanical drug exerts its potent antitumor activity, at least in part, through down-regulation of PI3k/Akt and mTOR pathways.

  10. pp32 (ANP32A expression inhibits pancreatic cancer cell growth and induces gemcitabine resistance by disrupting HuR binding to mRNAs.

    Directory of Open Access Journals (Sweden)

    Timothy K Williams

    Full Text Available The expression of protein phosphatase 32 (PP32, ANP32A is low in poorly differentiated pancreatic cancers and is linked to the levels of HuR (ELAV1, a predictive marker for gemcitabine response. In pancreatic cancer cells, exogenous overexpression of pp32 inhibited cell growth, supporting its long-recognized role as a tumor suppressor in pancreatic cancer. In chemotherapeutic sensitivity screening assays, cells overexpressing pp32 were selectively resistant to the nucleoside analogs gemcitabine and cytarabine (ARA-C, but were sensitized to 5-fluorouracil; conversely, silencing pp32 in pancreatic cancer cells enhanced gemcitabine sensitivity. The cytoplasmic levels of pp32 increased after cancer cells are treated with certain stressors, including gemcitabine. pp32 overexpression reduced the association of HuR with the mRNA encoding the gemcitabine-metabolizing enzyme deoxycytidine kinase (dCK, causing a significant reduction in dCK protein levels. Similarly, ectopic pp32 expression caused a reduction in HuR binding of mRNAs encoding tumor-promoting proteins (e.g., VEGF and HuR, while silencing pp32 dramatically enhanced the binding of these mRNA targets. Low pp32 nuclear expression correlated with high-grade tumors and the presence of lymph node metastasis, as compared to patients' tumors with high nuclear pp32 expression. Although pp32 expression levels did not enhance the predictive power of cytoplasmic HuR status, nuclear pp32 levels and cytoplasmic HuR levels associated significantly in patient samples. Thus, we provide novel evidence that the tumor suppressor function of pp32 can be attributed to its ability to disrupt HuR binding to target mRNAs encoding key proteins for cancer cell survival and drug efficacy.

  11. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  12. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    International Nuclear Information System (INIS)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert; Rozengurt, Enrique

    2013-01-01

    Highlights: ► Metformin inhibits cancer cell growth but the mechanism(s) are not understood. ► We show that the potency of metformin is sharply dependent on glucose in the medium. ► AMPK activation was enhanced in cancer cells incubated in physiological glucose. ► Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. ► Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser 79 and Raptor at Ser 792 , was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05–0.1 mM) that were 10–100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the α 1 and α 2 catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  13. PANC-1 pancreatic cancer cell growth inhibited by cucurmosin alone and in combination with an epidermal growth factor receptor-targeted drug.

    Science.gov (United States)

    Wang, Congfei; Yang, Aiqin; Zhang, Baoming; Yin, Qiang; Huang, Heguang; Chen, Minghuang; Xie, Jieming

    2014-03-01

    To investigate the inhibition of PANC-1 pancreatic cancer cell growth by cucurmosin (CUS) and its possible mechanism. We observed the inhibition of PANC-1 cell growth by sulforhodamine B and colony-forming experiments in vitro and established nonobese diabetic/severe combined immunodeficiency mouse subcutaneous tumor models in vivo. We used Western blot to analyze protein levels related to apoptosis and epidermal growth factor receptor (EGFR) signaling pathways after drug intervention, whereas the messenger RNA expression of EGFR was analyzed by quantitative real-time polymerase chain reaction. Sulforhodamine B and colony-forming experiments indicated that CUS inhibited PANC-1 cell proliferation in a dose- and time-dependent manner. A stronger inhibitory effect was observed when CUS was combined with gefitinib. The subcutaneous tumor growth was also inhibited. Western blot showed that all the examined proteins decreased, except for 4E-BP1 and the active fragments of caspase 3 and caspase 9 increased. Epidermal growth factor receptor expression did not change significantly in quantitative real-time polymerase chain reaction. Cucurmosin can strongly inhibit the growth of PANC-1 cells in vitro and in vivo. Cucurmosin can down-regulate EGFR protein expression, but not at the messenger RNA level. Cucurmosin can also inhibit the ras/raf and phosphatidylinositol 3-kinase/Akt downstream signaling pathways and enhance the sensitivity of the EGFR-targeted drug gefitinib.

  14. Cdk5 inhibitory peptide (CIP inhibits Cdk5/p25 activity induced by high glucose in pancreatic beta cells and recovers insulin secretion from p25 damage.

    Directory of Open Access Journals (Sweden)

    Ya-Li Zheng

    Full Text Available Cdk5/p25 hyperactivity has been demonstrated to lead to neuron apoptosis and degenerations. Chronic exposure to high glucose (HG results in hyperactivity of Cdk5 and reduced insulin secretion. Here, we set out to determine whether abnormal upregulation of Cdk5/p25 activity may be induced in a pancreatic beta cell line, Min6 cells. We first confirmed that p25 were induced in overexpressed p35 cells treated with HG and increased time course dependence. Next, we showed that no p25 was detected under short time HG stimulation (4-12 hrs, however was detectable in the long exposure in HG cells (24 hrs and 48 hrs. Cdk5 activity in the above cells was much higher than low glucose treated cells and resulted in more than 50% inhibition of insulin secretion. We confirmed these results by overexpression of p25 in Min6 cells. As in cortical neurons, CIP, a small peptide, inhibited Cdk5/p25 activity and restored insulin secretion. The same results were detected in co-infection of dominant negative Cdk5 (DNCdk5 with p25. CIP also reduced beta cells apoptosis induced by Cdk5/p25. These studies indicate that Cdk5/p25 hyperactivation deregulates insulin secretion and induces cell death in pancreatic beta cells and suggests that CIP may serve as a therapeutic agent for type 2 diabetes.

  15. Progression of Pancreatic Adenocarcinoma Is Significantly Impeded with a Combination of Vaccine and COX-2 Inhibition1

    Science.gov (United States)

    Mukherjee, Pinku; Basu, Gargi D.; Tinder, Teresa L.; Subramani, Durai B.; Bradley, Judy M.; Arefayene, Million; Skaar, Todd; De Petris, Giovanni

    2013-01-01

    With a 5-year survival rate of <5%, pancreatic cancer is one of the most rapidly fatal malignancies. Current protocols for the treatment of pancreas cancer are not as effective as we desire. In this study, we show that a novel Mucin-1 (MUC1)-based vaccine in combination with a cyclooxygenase-2 inhibitor (celecoxib), and low-dose chemotherapy (gemcitabine) was effective in preventing the progression of preneoplastic intraepithelial lesions to invasive pancreatic ductal adenocarcinomas. The study was conducted in an appropriate triple transgenic model of spontaneous pancreatic cancer induced by the KRASG12D mutation and that expresses human MUC1 as a self molecule. The combination treatment elicited robust antitumor cellular and humoral immune responses and was associated with increased apoptosis in the tumor. The mechanism for the increased immune response was attributed to the down-regulation of circulating prostaglandin E2 and indoleamine 2, 3,-dioxygenase enzymatic activity, as well as decreased levels of T regulatory and myeloid suppressor cells within the tumor microenvironment. The preclinical data provide the rationale to design clinical trials with a combination of MUC1-based vaccine, celecoxib, and gemcitabine for the treatment of pancreatic cancer. PMID:19109152

  16. Algerian Propolis Potentiates Doxorubicin Mediated Anticancer Effect against Human Pancreatic PANC-1 Cancer Cell Line through Cell Cycle Arrest, Apoptosis Induction and P-Glycoprotein Inhibition.

    Science.gov (United States)

    Rouibah, Hassiba; Mesbah, Lahouel; Kebsa, Wided; Zihlif, Malek; Ahram, Mamoun; Aburmeleih, Bachaer; Mostafa, Ibtihal; El Amir, Hemzeh

    2018-01-10

    Pancreatic cancer is one of the most aggressive and lethal cancer, with poor prognosis and high resistant to current chemotherapeutic agents. Therefore, new therapeutic strategies and targets are underscored. Propolis has been reported to exhibit a broad spectrum of biological activities including anticancer activity. This study was carried out to assess the possible efficacy of Algerian propolis on the antitumor effect of doxorubicin on human pancreatic cancer cell line (PANC-1). Modifications in cell viability, apoptosis and cell cycle progression, Pgp activity and intracellular accumulation of DOX were monitored to study the synergistic effect of Algerian propolis on the antitumor effects of DOX in PANC-1 cell line. Both propolis and its combination with doxorubicin inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In the presence of 100 µg/ml of propolis, the IC50 of DOX against PANC-1 cells decreased by 10.9-fold. Propolis combined with DOX increased after 48h, the number of cells in the G0G1 phase with dramatical increase in sub-G1 phase to reach 47% of total cells, corresponding to an increase of senescence or apoptotic state of the cells. Dead cell assay with annexinV/PI staining demonstrated that propolis and propolis-DOX treatment resulted in a remarkable induction of apoptosis as detected by flow cytometry. It was interesting to note that propolis at its 5IC50 was found as the most potent inducer of apoptosis. Our finding revealed that induced apoptosis in our conditions was caspase-3 and caspase-9 dependent. Flow cytometry showed that propolis increased the accumulation of doxorubicin within PANC-1 cells. Moreover, fluorescent intensity detection revealed that propolis remarkably increased the retention of rhodamine-123, 7-fold compared to 3-fold of verapamil, the most effective P-gp inhibitor. In conclusion, propolis sensitize pancreatic cancer cells to DOX via enhancing the intracellular retention of DOX

  17. Pancreatic Cancer

    Science.gov (United States)

    ... hormones that help control blood sugar levels. Pancreatic cancer usually begins in the cells that produce the juices. Some risk factors for developing pancreatic cancer include Smoking Long-term diabetes Chronic pancreatitis Certain ...

  18. Pancreatic Cysts

    Science.gov (United States)

    ... enzymes become prematurely active and irritate the pancreas (pancreatitis). Pseudocysts can also result from injury to the ... alcohol use and gallstones are risk factors for pancreatitis, and pancreatitis is a risk factor for pseudocysts. ...

  19. Sulfasalazine inhibits inflammation and fibrogenesis in pancreas via NF-κB signaling pathway in rats with oxidative stress-induced pancreatic injury

    Directory of Open Access Journals (Sweden)

    Wang YR

    2016-05-01

    ­scription polymerase chain reaction showed increased levels of NF-κB/p65, ICAM-1, TNF-α, α-SMA, and Con 1 mRNA in DDC and DS1 rats in comparison to normal controls. The mRNA levels of these molecules in DS2 and DS3 rats were significantly lower than those in DS1 and DDC rats. Western blotting demonstrated that the NF-κB/p65, ICAM-1, and α-SMA expressions in pancreatic tissues of the rats of the DDC group were more clear than those of the normal control, DS2, and DS3 rats.Conclusion: SF inhibits pancreatic inflammation and fibrogenesis via NF-κB signaling pathway. Keywords: sulfasalazine, pancreatic injury, inflammation, fibrogenesis, NF-κB

  20. Quercetin inhibits epithelial–mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial–mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Yu D

    2017-09-01

    Full Text Available Dinglai Yu,1 Tingting Ye,1 Yukai Xiang,1 Zhehao Shi,1 Jie Zhang,1 Bin Lou,1 Fan Zhang,1 Bicheng Chen,1,2 Mengtao Zhou1 1Department of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China; 2Zhejiang Provincial Top Key Discipline in Surgery, Wenzhou Key Laboratory of Surgery, Wenzhou, Zhejiang Province, People’s Republic of China Abstract: Quercetin, a flavone, is multifaceted, having anti-oxidative, anti-inflammatory, and anticancer properties. In the present study, we explored the effects of quercetin on the epithelial–mesenchymal transition (EMT and invasion of pancreatic cancer cells and the underlying mechanisms. We noted that quercetin exerted pronounced inhibitory effects in PANC-1 and PATU-8988 cells. Moreover, quercetin inhibited EMT and decreased the secretion of matrix metalloproteinase (MMP. Meanwhile, we determined the activity of STAT3 after quercetin treatment. STAT3 phosphorylation decreased following treatment with quercetin. We also used activating agent of STAT3, IL-6, to induce an increase in cell malignancy and to observe the effects of treatment with quercetin. As expected, the EMT and MMP secretion increased with activation of the STAT3 signaling pathway, and quercetin reversed IL-6-induced EMT, invasion, and migration. Therefore, our results demonstrate that quercetin triggers inhibition of EMT, invasion, and metastasis by blocking the STAT3 signaling pathway, and thus, quercetin merits further investigation. Keywords: quercetin, EMT, MMPs, STAT3, pancreatic cancer

  1. Acute Pancreatitis and Pregnancy

    Science.gov (United States)

    ... Pancreatitis Acute Pancreatitis and Pregnancy Acute Pancreatitis and Pregnancy Timothy Gardner, MD Acute pancreatitis is defined as ... pancreatitis in pregnancy. Reasons for Acute Pancreatitis and Pregnancy While acute pancreatitis is responsible for almost 1 ...

  2. Inhibition of Cell Proliferation and Growth of Pancreatic Cancer by Silencing of Carbohydrate Sulfotransferase 15 In Vitro and in a Xenograft Model.

    Directory of Open Access Journals (Sweden)

    Kazuki Takakura

    Full Text Available Chondroitin sulfate E (CS-E, a highly sulfated glycosaminoglycan, is known to promote tumor invasion and metastasis. Because the presence of CS-E is detected in both tumor and stromal cells in pancreatic ductal adenocarcinoma (PDAC, multistage involvement of CS-E in the development of PDAC has been considered. However, its involvement in the early stage of PDAC progression is still not fully understood. In this study, to clarify the direct role of CS-E in tumor, but not stromal, cells of PDAC, we focused on carbohydrate sulfotransferase 15 (CHST15, a specific enzyme that biosynthesizes CS-E, and investigated the effects of the CHST15 siRNA on tumor cell proliferation in vitro and growth in vivo. CHST15 mRNA is highly expressed in the human pancreatic cancer cell lines PANC-1, MIA PaCa-2, Capan-1 and Capan-2. CHST15 siRNA significantly inhibited the expression of CHST15 mRNA in these four cells in vitro. Silencing of the CHST15 gene in the cells was associated with significant reduction of proliferation and up-regulation of the cell cycle inhibitor-related gene p21CIP1/WAF1. In a subcutaneous xenograft tumor model of PANC-1 in nude mice, a single intratumoral injection of CHST15 siRNA almost completely suppressed tumor growth. Reduced CHST15 protein signals associated with tumor necrosis were observed with the treatment with CHST15 siRNA. These results provide evidence of the direct action of CHST15 on the proliferation of pancreatic tumor cells partly through the p21CIP1/WAF1 pathway. Thus, CHST15-CS-E axis-mediated tumor cell proliferation could be a novel therapeutic target in the early stage of PDAC progression.

  3. Inhibition of c-Myc by 10058-F4 induces growth arrest and chemosensitivity in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Zhang, Meng; Fan, Hai-Yan; Li, Sheng-Chao

    2015-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a formidable medical challenge due to its malignancies and the absence of effective treatment. c-Myc, as an important transcription factor, plays crucial roles in cell cycle progression, apoptosis and cellular transformation. The c-Myc inhibitor, 10058-F4, has been reported act as a tumor suppressor in several different tumors. In current study, the tumor-suppressive roles of 10058-F4 was observed in human pancreatic cancer cells in vitro as demonstrated by decreased cell viability, cell cycle arrest at the G1/S transition and increased caspase3/7 activity. And tumor responses to gemcitabine were also significantly enhanced by 10058-F4 in PANC-1 and SW1990 cells. In a subcutaneous xenograft model, however, 10058-F4 showed no significant influence on pancreatic tumorigenesis. When combined with gemcitabine, tumorigenesis was drastically attenuated compared with gemcitabine group or 10058-F4 group; this synergistic effect was accompanied with decreased PCNA-positive cells and reduced TUNEL-positive cells in the combined treated group. Subsequent studies revealed that decreased glycolysis may be involved in the inhibitory effect of 10058-F4 on PDAC. Taken together, this study demonstrates the roles of 10058-F4 in PDAC and provides evidence that 10058-F4 in combination with gemcitabine showed significant clinical benefit over the usage of gemcitabine alone. Copyright © 2015. Published by Elsevier Masson SAS.

  4. High-theabrownins instant dark tea product by Aspergillus niger via submerged fermentation: α-glucosidase and pancreatic lipase inhibition and antioxidant activity.

    Science.gov (United States)

    Wang, Yuwan; Zhang, Mingyue; Zhang, Zhengzhu; Lu, Hengqian; Gao, Xueling; Yue, Pengxiang

    2017-12-01

    Theabrownins (TB) are bioactive components that are usually extracted from Chinese dark tea, in which they are present at low concentrations. The present study aimed to produce an instant dark tea high in theabrownins via submerged fermentation by the fungus Aspergillus niger. Three fermentation parameters that affect theabrownins content (i.e. inoculum size, liquid-solid ratio and rotation speed) were optimized using response surface methodology. Optimum fermentation conditions were modeled to be an inoculum of 5.40% (v/v), a liquid-solid ratio of 27.45 mL g -1 and a rotation speed of 184 rpm and were predicted to yield 292.99 g kg -1 TB. Under these experimentally conditions, the TB content of the instant dark tea was 291.93 g kg -1 . The antioxidant capacity and α-glucosidase and pancreatic lipase inhibitory activities of the high-TB instant black tea were higher than four other typical instant dark tea products. The results of the present study show that careful management of culture conditions can produce a dark tea high in theabrownins. Furthermore, high-theabrownins instant dark tea could serve as a source of bioactive products and be used in functional foods as an ingredient imparting antioxidant properties and the ability to inhibit pancreatic lipase and α-glucosidase. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  6. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  7. A novel peptide derived from human pancreatitis-associated protein inhibits inflammation in vivo and in vitro and blocks NF-kappa B signaling pathway.

    Directory of Open Access Journals (Sweden)

    Xiaolu Yang

    Full Text Available BACKGROUND: Pancreatitis-associated protein (PAP is a pancreatic secretory protein belongs to the group VII of C-type lectin family. Emerging evidence suggests that PAP plays a protective effect in inflammatory diseases. In the present study, we newly identified a 16-amino-acid peptide (named PAPep derived from C-type lectin-like domain (CTLD of human PAP with potent anti-inflammatory activity using both in vivo and in vitro assays. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the anti-inflammatory effect of PAPep on endotoxin-induced uveitis (EIU in rats and demonstrated that intravitreal pretreatment of PAPep concentration-dependently attenuated clinical manifestation of EIU rats, reduced protein leakage and cell infiltration into the aqueous humor (AqH, suppressed tumor necrosis factor (TNF-α, interleukin (IL-6, intercellular adhesion molecule-1 (ICAM-1 and monocyte chemoattractant protein (MCP-1 production in ocular tissues, and improved histopathologic manifestation of EIU. Furthermore, PAPep suppressed the LPS-induced mRNA expression of TNF-α and IL-6 in RAW 264.7 cells, inhibited protein expression of ICAM-1 in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs as well as U937 cells adhesion to HUVECs. Western blot analysis in ocular tissues and different cell lines revealed that the possible mechanism for this anti-inflammatory effect of PAPep may depend on its ability to inhibit the activation of NF-kB signaling pathway. CONCLUSIONS/SIGNIFICANCE: Our studies provide the first evidence that the sequence of PAPep is within the critically active region for the anti-inflammatory function of PAP and the peptide may be a promising candidate for the management of ocular inflammatory diseases.

  8. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    Science.gov (United States)

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  9. Inhibition of Prenylation Promotes Caspase 3 Activation, Lamin B Degradation and Loss in Metabolic Cell Viability in Pancreatic β-Cells

    Directory of Open Access Journals (Sweden)

    Khadija G. Syeda

    2017-10-01

    Full Text Available Background/Aims: Lamins are intermediate filament proteins that constitute the main components of the lamina underlying the inner-nuclear membrane and serve to organize chromatin. Lamins (e.g., lamin B undergo posttranslational modifications (e.g., isoprenylation at their C-terminal cysteine residues. Such modifications are thought to render optimal association of lamins with the nuclear envelop. Using human islets, rodent islets, and INS-1 832/13 cells, we recently reported significant metabolic defects under glucotoxic and endoplasmic reticulum (ER stress conditions, including caspase 3 activation and lamin B degradation. The current study is aimed at further understanding the regulatory roles of protein prenylation in the induction of the aforestated metabolic defects. Methods: Subcellular phase partitioning assay was done using Triton X-114. Cell morphology and metabolic cell viability assays were carried out using standard methodologies. Results: We report that exposure of pancreatic β-cells to Simvastatin, an inhibitor of mevalonic acid (MVA biosynthesis, and its downstream isoprenoid derivatives, or FTI-277, an inhibitor of farnesyltransferase that mediates farnesylation of lamins, leads to activation of caspase 3 and lamin B degradation. Furthermore, Simvastatin-treatment increased activation of p38MAPK (a stress kinase and inhibited ERK1/2 (regulator of cell proliferation. Inhibition of farnesylation also resulted in the release of degraded lamin B into the cytosolic fraction and promoted loss in metabolic cell viability. Conclusion: Based on these findings we conclude that protein prenylation plays key roles in islet β-cell function. These findings affirm further support to the hypothesis that defects in prenylation pathway induce caspase-3 activation and nuclear lamin degradation in pancreatic β-cells under the duress of metabolic stress (e.g., glucotoxicity.

  10. Persistence of STAT-1 inhibition and induction of cytokine resistance in pancreatic β cells treated with St John's wort and its component hyperforin.

    Science.gov (United States)

    Novelli, Michela; Beffy, Pascale; Gregorelli, Alex; Porozov, Svetlana; Mascia, Fabrizio; Vantaggiato, Chiara; Masiello, Pellegrino; Menegazzi, Marta

    2017-10-09

    St John's wort extract (SJW) and its component hyperforin (HPF) were shown to potently inhibit cytokine-induced STAT-1 and NF-κB activation in pancreatic β cells and protect them against injury. This study aimed at exploring the time course of STAT-1 inhibition afforded by these natural compounds in the β-cell line INS-1E. INS-1E cells were pre-incubated with SJW extract (2-5 μg/ml) or HPF (0.5-2 μm) and then exposed to a cytokine mixture. In some experiments, these compounds were added after or removed before cytokine exposure. STAT-1 activation was assessed by electrophoretic mobility shift assay, apoptosis by caspase-3 activity assay, mRNA gene expression by RT-qPCR. Pre-incubation with SJW/HPF for 1-2 h exerted a remarkable STAT-1 downregulation, which was maintained upon removal of the compounds before early or delayed cytokine addition. When the protective compounds were added after cell exposure to cytokines, between 15 and 90 min, STAT-1 inhibition also occurred at a progressively decreasing extent. Upon 24-h incubation, SJW and HPF counteracted cytokine-induced β-cell dysfunction, apoptosis and target gene expression. SJW and HPF confer to β cells a state of 'cytokine resistance', which can be elicited both before and after cytokine exposure and safeguards these cells from deleterious cytokine effects. © 2017 Royal Pharmaceutical Society.

  11. Surgery for chronic pancreatitis decreases the risk for pancreatic cancer: a multicenter retrospective analysis.

    Science.gov (United States)

    Ueda, Junji; Tanaka, Masao; Ohtsuka, Takao; Tokunaga, Shoji; Shimosegawa, Tooru

    2013-03-01

    Chronic pancreatitis is suggested to be one of the risk factors for the development of pancreatic cancer. The aim of this study was to confirm the high incidence of pancreatic cancer in patients with chronic pancreatitis in Japan and to determine the factors associated with the risk for pancreatic cancer in patients with chronic pancreatitis. The working group of the Research Committee of Intractable Disease supported by the Ministry of Health, Labour and Welfare of Japan carried out a nationwide survey to investigate the relationship between chronic pancreatitis and pancreatic cancer. This retrospective study included patients diagnosed with chronic pancreatitis who had had at least 2 years of follow-up. They were contacted through 22 Japanese referral centers experienced in the management of chronic pancreatitis. The standardized incidence ratio (95 CI) of pancreatic cancer was 11.8 (7.1-18.4). The incidence of pancreatic cancer was significantly lower in patients who had received surgery for chronic pancreatitis than in those who had not undergone surgery (hazard ratio estimated by Cox regression 0.11; 95% CI, 0.0014-0.80; P = .03). Patients who continued to drink alcohol after diagnosis of chronic pancreatitis showed a significantly higher incidence of pancreatic cancer than those who stopped drinking after diagnosis of chronic pancreatitis (hazard ratio, 5.07; 95% CI, 1.13-22.73; P = .03). This study confirmed that chronic pancreatitis is an important risk factor for the development of pancreatic cancer in Japan. Patients who underwent surgery for the treatment of chronic pancreatitis had significantly lower incidences of pancreatic cancer. Surgery for chronic pancreatitis may inhibit the development of pancreatic cancer in patients with chronic pancreatitis. Copyright © 2013 Mosby, Inc. All rights reserved.

  12. PET Imaging of Tissue Factor in Pancreatic Cancer Using 64Cu-Labeled Active Site-Inhibited Factor VII

    DEFF Research Database (Denmark)

    Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Lotte K

    2016-01-01

    with advanced stage, increased microvessel density, metastasis, and poor overall survival. Imaging of TF expression is of clinical relevance as a prognostic biomarker and as a companion diagnostic for TF-directed therapies currently under clinical development. Factor VII (FVII) is the natural ligand to TF......UNLABELLED: Tissue factor (TF) is the main initiator of the extrinsic coagulation cascade. However, TF also plays an important role in cancer. TF expression has been reported in 53%-89% of all pancreatic adenocarcinomas, and the expression level of TF has in clinical studies correlated...

  13. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ming Ming

    Full Text Available Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC cells (PANC-1, MiaPaCa-2 with the isoquinoline alkaloid berberine (0.3-6 µM inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70% the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244 and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways.

  14. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting OncomiRs of the miR-17 family in prostate cancer

    Science.gov (United States)

    In recent years, not only has the role of miRNAs in cancer become increasingly clear but also their utilization as potential biomarkers and therapeutic targets has also gained ground. Although the importance of dietary stilbenes such as resveratrol and pterostilbene as anti-cancer agents is well rec...

  15. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic β cells through AMPK activation.

    Science.gov (United States)

    Wang, Dingkun; Tian, Min; Qi, Yuan; Chen, Guang; Xu, Lijun; Zou, Xin; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2015-02-23

    TOR and the up-regulation of TSC1 and LC3-II proteins expression. However, when AMPK phosphorylation was inhibited by Compound C, JLDG supplementation did not exhibit any effect on the expression of these AMPK downstream molecules in NIT-1 cells. The results suggest that JLDG could reduce intracellular lipid accumulation and enhance the autophagy in NIT-1 pancreatic β cells cultured with PA. The mechanism is possibly mediated by AMPK activation. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  16. Pancreatic Tuberculosis or Autoimmune Pancreatitis

    Directory of Open Access Journals (Sweden)

    Ayesha Salahuddin

    2014-01-01

    Full Text Available Introduction. Isolated pancreatic and peripancreatic tuberculosis is a challenging diagnosis due to its rarity and variable presentation. Pancreatic tuberculosis can mimic pancreatic carcinoma. Similarly, autoimmune pancreatitis can appear as a focal lesion resembling pancreatic malignancy. Endoscopic ultrasound-guided fine needle aspiration provides an effective tool for differentiating between benign and malignant pancreatic lesions. The immune processes involved in immunoglobulin G4 related systemic diseases and tuberculosis appear to have some similarities. Case Report. We report a case of a 59-year-old Southeast Asian male who presented with fever, weight loss, and obstructive jaundice. CT scan revealed pancreatic mass and enlarged peripancreatic lymph nodes. Endoscopic ultrasound-guided fine needle aspiration confirmed the presence of mycobacterium tuberculosis. Patient also had high immunoglobulin G4 levels suggestive of autoimmune pancreatitis. He was started on antituberculosis medications and steroids. Clinically, he responded to treatment. Follow-up imaging showed findings suggestive of chronic pancreatitis. Discussion. Pancreatic tuberculosis and autoimmune pancreatitis can mimic pancreatic malignancy. Accurate diagnosis is imperative as unnecessary surgical intervention can be avoided. Endoscopic ultrasound-guided fine needle aspiration seems to be the diagnostic test of choice for pancreatic masses. Long-term follow-up is warranted in cases of chronic pancreatitis.

  17. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A

    2012-07-01

    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  18. Medicinal Plants Traditionally Used for Treatment of Obesity and Diabetes Mellitus - Screening for Pancreatic Lipase and α-Amylase Inhibition.

    Science.gov (United States)

    Buchholz, Tina; Melzig, Matthias F

    2016-02-01

    In order to find new pancreatic lipase (PL) and α-amylase inhibitors from natural sources for the treatment of obesity and related diseases as diabetes mellitus II, 23 medicinal plants with weight-reducing, serum glucose-reducing or related potential were investigated. Methanolic and water extracts of the plants were evaluated by using two in vitro test systems. Our findings have shown that the methanolic extract of Hibiscus sabdariffa L. (Malvaceae) showed high inhibitory activities to PL (IC50 : 35.8 ± 0.8 µg/mL) and α-amylase (IC50 : 29.3 ± 0.5 µg/mL). Furthermore, the methanolic extract of Tamarindus indica L. (Leguminosae) showed a high anti-lipase (IC50 : 152.0 ± 7.0 µg/mL) and the aqueous extract a high anti-amylase (IC50 : 139.4 ± 9.0 µg/mL) activity. This work provides a priority list of interesting plants for further study with respect to the treatment of obesity and associated diseases. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in pancreatic cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity

    International Nuclear Information System (INIS)

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo; Kim, Sahn-Ho; Pindolia, Kirit R.; Arbab, Ali S.; Gautam, Subhash C.

    2012-01-01

    Highlights: ► CDDO-Me inhibits hTERT gene expression. ► CDDO-Me inhibits hTERT protein expression. ► CDDO-Me inhibits hTERT telomerase activity. ► CDDO-Me inhibits hTERT regulatory proteins. -- Abstract: Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.

  20. Effects and mechanism of integrin-β1 gene expression inhibited by shRNA in invasion of pancreatic carcinoma PANC-1 cells.

    Science.gov (United States)

    Yu, Feng; Li, Hua; Bu, Xuefeng; Zhang, Yongjun

    2012-01-01

    To investigate the effects of integrin-β1 gene expression inhibited by shRNA on invasion of pancreatic carcinoma PANC-1 cells in vitro. The eukaryotic expression plasmid of short hairpin RNA (shRNA) targeting integrin-β1 gene (integrin-β1-shRNA) was constructed and transfected into PANC-1 cells. The expressions of integrin-β1 mRNA and protein were detected by real-time quantitative polymerase chain reaction (PCR) and western blot assay, respectively. The invasive ability of PANC-1 cells was observed with a transwell cell culture chamber and the expressions of MMP-2 and MMP-9 were assayed. Compared to the untransfected group, recombinant expression plasmid integrin-β1-shRNA resulted in reduction of integrin-β1 mRNA and protein by 78.58%±7.24% and 92.88%±3.18%, respectively and the average number of invading PANC-1 cells were decreased from 52±5 to 21±4 (pPANC-1 cells in vitro significantly.

  1. OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo.

    Science.gov (United States)

    Zhi, Xiao; Chen, Wei; Xue, Fei; Liang, Chao; Chen, Bryan Wei; Zhou, Yue; Wen, Liang; Hu, Liqiang; Shen, Jian; Bai, Xueli; Liang, Tingbo

    2015-09-22

    Despite its relative rarity, pancreatic ductal adenocarcinoma (PDAC) accounts for a large percentage of cancer deaths. In this study, we investigated the in vitro efficacy of OSI-027, a selective inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2, to treat PDAC cell lines alone, and in combination with gemcitabine (GEM). Similarly, we tested the efficacy of these two compounds in a xenograft mouse model of PDAC. OSI-027 significantly arrested cell cycle in G0/G1 phase, inhibited the proliferation of Panc-1, BxPC-3, and CFPAC-1 cells, and downregulated mTORC1, mTORC2, phospho-Akt, phospho-p70S6K, phospho-4E-BP1, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in these cells. Moreover, OSI-027 also downregulated multidrug resistance (MDR)-1, which has been implicated in chemotherapy resistance in PDAC cells and enhanced apoptosis induced by GEM in the three PDAC cell lines. When combined, OSI-027 with GEM showed synergistic cytotoxic effects both in vitro and in vivo. This is the first evidence of the efficacy of OSI-027 in PDAC and may provide the groundwork for a new clinical PDAC therapy.

  2. Pancreatic trauma.

    Science.gov (United States)

    Lahiri, R; Bhattacharya, S

    2013-05-01

    Pancreatic trauma occurs in approximately 4% of all patients sustaining abdominal injuries. The pancreas has an intimate relationship with the major upper abdominal vessels, and there is significant morbidity and mortality associated with severe pancreatic injury. Immediate resuscitation and investigations are essential to delineate the nature of the injury, and to plan further management. If main pancreatic duct injuries are identified, specialised input from a tertiary hepatopancreaticobiliary (HPB) team is advised. A comprehensive online literature search was performed using PubMed. Relevant articles from international journals were selected. The search terms used were: 'pancreatic trauma', 'pancreatic duct injury', 'radiology AND pancreas injury', 'diagnosis of pancreatic trauma', and 'management AND surgery'. Articles that were not published in English were excluded. All articles used were selected on relevance to this review and read by both authors. Pancreatic trauma is rare and associated with injury to other upper abdominal viscera. Patients present with non-specific abdominal findings and serum amylase is of little use in diagnosis. Computed tomography is effective in diagnosing pancreatic injury but not duct disruption, which is most easily seen on endoscopic retrograde cholangiopancreaticography or operative pancreatography. If pancreatic injury is suspected, inspection of the entire pancreas and duodenum is required to ensure full evaluation at laparotomy. The operative management of pancreatic injury depends on the grade of injury found at laparotomy. The most important prognostic factor is main duct disruption and, if found, reconstructive options should be determined by an experienced HPB surgeon. The diagnosis of pancreatic trauma requires a high index of suspicion and detailed imaging studies. Grading pancreatic injury is important to guide operative management. The most important prognostic factor is pancreatic duct disruption and in these cases

  3. Autoimmune pancreatitis

    Directory of Open Access Journals (Sweden)

    Davorin Dajčman

    2007-05-01

    Full Text Available Background: Autoimmune pancreatitis is a recently described type of pancreatitis of presumed autoimmune etiology. Autoimmune pancreatitis is often misdiagnosed as pancreatic cancer difficult, since their clinical presentations are often similar. The concept of autoimmune pancreatitis was first published in 1961. Since then, autoimmune pancreatitis has often been treated not as an independent clinical entity but rather as a manifestation of systemic disease. The overall prevalence and incidence of the disease have yet to be determined, but three series have reported the prevalence as between 5 and 6 % of all patients with chronic pancreatitis. Patient vary widely in age, but most are older than 50 years. Patients with autoimmune pancreatitis usually complain of the painless jaundice, mild abdominal pain and weight loss. There is no laboratory hallmark of the disease, even if cholestatic profiles of liver dysfunction with only mild elevation of amylase and lipase levels have been reported.Conclusions: Proposed diagnostic criteria contains: (1 radiologic imaging, diffuse enlargement of the pancreas and diffusely irregular narrowing of the main pancreatic duct, (2 laboratory data, elevated levels of serum ã-globulin and/or IgG, specially IgG4, or the presence of autoantibodies and (3 histopathologic examination, fibrotic change with dense lymphoplasmacytic infiltration in the pancreas. For correct diagnosis of autoimmune pancreatitis, criterion 1 must be present with criterion 2 and/or 3. Autoimmune pancreatitis is frequently associated with rheumatoid arthritis, Sjogren’s syndrome, inflammatory bowel disease, tubulointersticial nephritis, primary sclerosing cholangitis and idiopathic retroperitoneal fibrosis. Pancreatic biopsy using an endoscopic ultrasound-guided fine needle aspiration biopsy is the most important diagnostic method today. Treatment with corticosteroids leads to the and resolution of pancreatic inflamation, obstruction and

  4. GPC1 Regulated by miR-96-5p, Rather than miR-182-5p, in Inhibition of Pancreatic Carcinoma Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Chunlong Li

    2014-04-01

    Full Text Available To determine the relationships between miR-96-5p/-182-5p and GPC1 in pancreatic cancer (PC, we conducted the population and in vitro studies. We followed 38 pancreatic cancer patients, measured and compared the expression of miR-96-5p/-182-5p, GPC1, characteristics and patients’ survival time of different miR-96-5p/-182-5p expression levels in PC tissues. In an in vitro study, we investigated the proliferation, cycle and apotosis in cells transfected with mimics/inhibitors of the two miRNAs, and determine their effects on GPC1 by dual-luciferase assay. In the follow-up study, we found that the expressions of miR-96-5p/-182-5p were lower/higher in PC tissues; patients with lower/higher levels of miR-96-5p/-182-5p suffered poorer characteristics and decreased survival time. In the in vitro study, the expressions of miR-96-5p/-182-5p were different in cells. Proliferation of cells transfected with miR-96-5p mimics/inhibitors was lower/higher in Panc-1/BxPC-3; when transfected with miR-182-5p mimics/inhibitors, proliferation of cells were higher/lower in AsPC-1/Panc-1. In a cell cycle study, panc-1 cells transfected with miR-96-5p mimics was arrested at G0/G1; BxPC-3 cells transfected with miR-96-5p inhibitors showed a significantly decrease at G0/G1; AsPC-1 cells transfected with miR-182-5p mimics was arrested at S; Panc-1 cells transfected with miR-182-5p inhibitors showed a decrease at S. MiR-96-5p mimics increased the apoptosis rate in Panc-1 cells, and its inhibitors decreased the apoptosis rate in BxPC-3. Dual luciferase assay revealed that GPC1 was regulated by miR-96-5p, not -182-5p. We found that miR-96-5p/-182-5p as good markers for PC; miR-96-5p, rather than -182-5p, inhibits GPC1 to suppress proliferation of PC cells.

  5. PED/PEA-15 inhibits hydrogen peroxide-induced apoptosis in Ins-1E pancreatic beta-cells via PLD-1.

    Directory of Open Access Journals (Sweden)

    Francesca Fiory

    Full Text Available The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from Tg(PED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1E(PED/PEA-15. In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1E(PED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1E(PED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism.

  6. TRAUMATIC PANCREATITIS

    Science.gov (United States)

    Berne, Clarence J.; Walters, Robert L.

    1953-01-01

    Traumatic pancreatitis should be considered as a diagnostic possibility when trauma to the epigastrium is followed by phenomena suggestive of intra-abdominal injury. The presence or absence of hyperamylasemia should be established immediately. Even when traumatic pancreatitis is believed to exist, any suggestion of injury to other viscera should indicate laparotomy. Retroperitoneal rupture of the duodenum may simulate traumatic pancreatitis in all respects, including hyperamylasemia. X-ray studies may be of value in differentiation. Non-complicated traumatic pancreatitis is best treated conservatively. Gunshot and knife wounds of the pancreas should be drained. PMID:13094537

  7. Acute pancreatitis.

    Science.gov (United States)

    Talukdar, Rupjyoti; Vege, Santhi S

    2015-09-01

    To summarize recent data on classification systems, cause, risk factors, severity prediction, nutrition, and drug treatment of acute pancreatitis. Comparison of the Revised Atlanta Classification and Determinant Based Classification has shown heterogeneous results. Simvastatin has a protective effect against acute pancreatitis. Young black male, alcohol, smoldering symptoms, and subsequent diagnosis of chronic pancreatitis are risk factors associated with readmissions after acute pancreatitis. A reliable clinical or laboratory marker or a scoring system to predict severity is lacking. The PYTHON trial has shown that oral feeding with on demand nasoenteric tube feeding after 72 h is as good as nasoenteric tube feeding within 24 h in preventing infections in predicted severe acute pancreatitis. Male sex, multiple organ failure, extent of pancreatic necrosis, and heterogeneous collection are factors associated with failure of percutaneous drainage of pancreatic collections. The newly proposed classification systems of acute pancreatitis need to be evaluated more critically. New biomarkers are needed for severity prediction. Further well designed studies are required to assess the type of enteral nutritional formulations for acute pancreatitis. The optimal minimally invasive method or combination to debride the necrotic collections is evolving. There is a great need for a drug to treat the disease early on to prevent morbidity and mortality.

  8. Antibiotics induce mitonuclear protein imbalance but fail to inhibit respiration and nutrient activation in pancreatic β-cells.

    Science.gov (United States)

    Santo-Domingo, Jaime; Chareyron, Isabelle; Broenimann, Charlotte; Lassueur, Steve; Wiederkehr, Andreas

    2017-08-15

    Chloramphenicol and several other antibiotics targeting bacterial ribosomes inhibit mitochondrial protein translation. Inhibition of mitochondrial protein synthesis leads to mitonuclear protein imbalance and reduced respiratory rates as confirmed here in HeLa and PC12 cells. Unexpectedly, respiration in INS-1E insulinoma cells and primary human islets was unaltered in the presence of chloramphenicol. Resting respiratory rates and glucose stimulated acceleration of respiration were also not lowered when a range of antibiotics including, thiamphenicol, streptomycin, gentamycin and doxycycline known to interfere with bacterial protein synthesis were tested. However, chloramphenicol efficiently reduced mitochondrial protein synthesis in INS-1E cells, lowering expression of the mtDNA encoded COX1 subunit of the respiratory chain but not the nuclear encoded ATP-synthase subunit ATP5A. Despite a marked reduction of the essential respiratory chain subunit COX1, normal respiratory rates were maintained in INS-1E cells. ATP-synthase dependent respiration was even elevated in chloramphenicol treated INS-1E cells. Consistent with these findings, glucose-dependent calcium signaling reflecting metabolism-secretion coupling in beta-cells, was augmented. We conclude that antibiotics targeting mitochondria are able to cause mitonuclear protein imbalance in insulin secreting cells. We hypothesize that in contrast to other cell types, compensatory mechanisms are sufficiently strong to maintain normal respiratory rates and surprisingly even result in augmented ATP-synthase dependent respiration and calcium signaling following glucose stimulation. The result suggests that in insulin secreting cells only lowering COX1 below a threshold level may result in a measurable impairment of respiration. When focusing on mitochondrial function, care should be taken when including antibiotics targeting translation for long-term cell culture as depending on the sensitivity of the cell type analyzed

  9. Pharmacological approach to acute pancreatitis

    DEFF Research Database (Denmark)

    Bang, U.C.; Semb, S.; Nøjgaard, Camilla

    2008-01-01

    The aim of the present review is to summarize the current knowledge regarding pharmacological prevention and treatment of acute pancreatitis (AP) based on experimental animal models and clinical trials. Somatostatin (SS) and octreotide inhibit the exocrine production of pancreatic enzymes and may...... be useful as prophylaxis against post endoscopic retrograde cholangiopancreatography pancreatitis (PEP). The protease inhibitor gabexate mesilate (GM) is used routinely as treatment to AP in some countries, but randomized clinical trials and a meta-analysis do not support this practice. Nitroglycerin (NGL...

  10. Pancreatitis in Children.

    Science.gov (United States)

    Sathiyasekaran, Malathi; Biradar, Vishnu; Ramaswamy, Ganesh; Srinivas, S; Ashish, B; Sumathi, B; Nirmala, D; Geetha, M

    2016-11-01

    Pancreatic disease in children has a wide clinical spectrum and may present as Acute pancreatitis (AP), Acute recurrent pancreatitis (ARP), Chronic pancreatitis (CP) and Pancreatic disease without pancreatitis. This article highlights the etiopathogenesis and management of pancreatitis in children along with clinical data from five tertiary care hospitals in south India [Chennai (3), Cochin and Pune].

  11. Duodenal application of Li+ in a submaximal therapeutic dose inhibits exocrine pancreatic secretion and modulates gastro-duodenal myoelectrical activity in a conscious pig model

    DEFF Research Database (Denmark)

    Naughton, Violetta; Hedemann, Mette Skou; Naughton, Patrick Joseph

    2013-01-01

    for electromyography of smooth muscles, and with a pancreatic duct catheter and a duodenal T-cannula for collection and re-entrant flow of pancreatic juice. After the recovery period, on alternative days, each animal was tested once with an intraduodenal infusion of Li+ (100 mmol·L–1 C3H5LiO3, 10 mL·kg−1·h−1) for 1 h...

  12. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer

    OpenAIRE

    Wang, Qi; Li, Juanjuan; Wu, Wei; Shen, Ruizhe; Jiang, He; Qian, Yuting; Tang, Yanping; Bai, Tingting; Wu, Sheng; Wei, Lumin; Zang, Yi; Zhang, Ji; Wang, Lifu

    2016-01-01

    The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancr...

  13. Chronic pancreatitis.

    Science.gov (United States)

    Kleeff, Jorg; Whitcomb, David C; Shimosegawa, Tooru; Esposito, Irene; Lerch, Markus M; Gress, Thomas; Mayerle, Julia; Drewes, Asbjørn Mohr; Rebours, Vinciane; Akisik, Fatih; Muñoz, J Enrique Domínguez; Neoptolemos, John P

    2017-09-07

    Chronic pancreatitis is defined as a pathological fibro-inflammatory syndrome of the pancreas in individuals with genetic, environmental and/or other risk factors who develop persistent pathological responses to parenchymal injury or stress. Potential causes can include toxic factors (such as alcohol or smoking), metabolic abnormalities, idiopathic mechanisms, genetics, autoimmune responses and obstructive mechanisms. The pathophysiology of chronic pancreatitis is fairly complex and includes acinar cell injury, acinar stress responses, duct dysfunction, persistent or altered inflammation, and/or neuro-immune crosstalk, but these mechanisms are not completely understood. Chronic pancreatitis is characterized by ongoing inflammation of the pancreas that results in progressive loss of the endocrine and exocrine compartment owing to atrophy and/or replacement with fibrotic tissue. Functional consequences include recurrent or constant abdominal pain, diabetes mellitus (endocrine insufficiency) and maldigestion (exocrine insufficiency). Diagnosing early-stage chronic pancreatitis is challenging as changes are subtle, ill-defined and overlap those of other disorders. Later stages are characterized by variable fibrosis and calcification of the pancreatic parenchyma; dilatation, distortion and stricturing of the pancreatic ducts; pseudocysts; intrapancreatic bile duct stricturing; narrowing of the duodenum; and superior mesenteric, portal and/or splenic vein thrombosis. Treatment options comprise medical, radiological, endoscopic and surgical interventions, but evidence-based approaches are limited. This Primer highlights the major progress that has been made in understanding the pathophysiology, presentation, prevalence and management of chronic pancreatitis and its complications.

  14. Nutrition Following Pancreatic Surgery

    Science.gov (United States)

    ... BACK Contact Us DONATE NOW GENERAL DONATION PURPLESTRIDE Nutrition Following Pancreatic Surgery Home Facing Pancreatic Cancer Living with Pancreatic Cancer Diet and Nutrition Nutrition Following Pancreatic Surgery Ver esta página en ...

  15. Acute Pancreatitis in Children

    Science.gov (United States)

    ... a feeding tube or an IV to prevent malnutrition and improve healing. Does my child have to ... Acute Pancreatitis in Children Chronic Pancreatitis in Children Childhood Inherited Disorders Pancreatic Cancer Pancreatic Cancer Risks and ...

  16. A Suspicious Pancreatic Mass in Chronic Pancreatitis: Pancreatic Actinomycosis

    Directory of Open Access Journals (Sweden)

    F. de Clerck

    2015-01-01

    Full Text Available Introduction. Pancreatic actinomycosis is a chronic infection of the pancreas caused by the suppurative Gram-positive bacterium Actinomyces. It has mostly been described in patients following repeated main pancreatic duct stenting in the context of chronic pancreatitis or following pancreatic surgery. This type of pancreatitis is often erroneously interpreted as pancreatic malignancy due to the specific invasive characteristics of Actinomyces. Case. A 64-year-old male with a history of chronic pancreatitis and repeated main pancreatic duct stenting presented with weight loss, fever, night sweats, and abdominal pain. CT imaging revealed a mass in the pancreatic tail, invading the surrounding tissue and resulting in splenic vein thrombosis. Resectable pancreatic cancer was suspected, and pancreatic tail resection was performed. Postoperative findings revealed pancreatic actinomycosis instead of neoplasia. Conclusion. Pancreatic actinomycosis is a rare type of infectious pancreatitis that should be included in the differential diagnosis when a pancreatic mass is discovered in a patient with chronic pancreatitis and prior main pancreatic duct stenting. Our case emphasizes the importance of pursuing a histomorphological confirmation.

  17. The effect of pancreatic polypeptide and peptide YY on pancreatic blood flow and pancreatic exocrine secretion in the anesthetized dog

    International Nuclear Information System (INIS)

    DeMar, A.R.; Lake, R.; Fink, A.S.

    1991-01-01

    Pancreatic polypeptide (PP) and peptide YY (PYY) are inhibitors of pancreatic exocrine secretion in vivo but not in vitro, which suggests intermediate mechanisms of action. To examine the role of pancreatic blood flow in these inhibitory effects, xenon-133 gas clearance was used to measure pancreatic blood flow while simultaneously measuring pancreatic exocrine secretion. PP or PYY (400 pmol/kg/h) was administered during the intermediate hour of a 3-h secretin (125 ng/kg/h)/cholecystokinin octapeptide (CCK-8) (50 ng/kg/h) infusion. Exocrine secretion and pancreatic blood flow during the PP or PYY hours were compared with that observed in the first and third hours of the secretin/CCK-8 infusion. PP and PYY significantly inhibited secretin/CCK-8-induced pancreatic exocrine secretion. In addition, PYY (but not PP) significantly reduced pancreatic blood flow during secretin/CCK-8 stimulation. Nevertheless, there was no correlation between pancreatic blood flow and bicarbonate or protein outputs. It is concluded that changes in pancreatic blood flow do not mediate the inhibitory effects of PP or PYY on the exocrine pancreas

  18. [Pancreatic trauma].

    Science.gov (United States)

    Arvieux, C; Guillon, F; Létoublon, Ch; Oughriss, M

    2003-10-01

    Early diagnosis of pancreatic trauma has always been challenging because of the lack of correlation between the initial clinical symptomatology, radiologic and laboratory findings, and the severity of the injury. Thanks to the improved performance of spiral CT scanning and magnetic resonance pancreatography, it is now often possible to make an early diagnosis of pancreatic contusion, to localize the site of the injury, and (most importantly) to identify injury to the main pancreatic duct which has major implications for the management of the case. When the trauma victim is unstable, radiologic work-up may be impossible and urgent laparotomy is required. Control of hemorrhage is the primary concern here and a damage control approach with packing may be appropriate; if the pancreatic head has been destroyed, a pancreaticoduodenectomy with delayed reconstruction may be required. If the trauma victim is stable, the treatment strategy will be governed by a variety of parameters--age, clinical condition, associated local anatomic findings (pancreatitis, injury to the duodenum or biliary tract), involvement of the pancreatic duct, and localization of the injury within the gland (to right or left of the mesenteric vessels).

  19. Sulindac inhibits pancreatic carcinogenesis in LSL-KrasG12D-LSL-Trp53R172H-Pdx-1-Cre mice via suppressing aldo-keto reductase family 1B10 (AKR1B10).

    Science.gov (United States)

    Li, Haonan; Yang, Allison L; Chung, Yeon Tae; Zhang, Wanying; Liao, Jie; Yang, Guang-Yu

    2013-09-01

    Sulindac has been identified as a competitive inhibitor of aldo-keto reductase 1B10 (AKR1B10), an enzyme that plays a key role in carcinogenesis. AKR1B10 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and exhibits lipid substrate specificity, especially for farnesyl and geranylgeranyl. There have been no studies though showing that the inhibition of PDAC by sulindac is via inhibition of AKR1B10, particularly the metabolism of farnesyl/geranylgeranyl and Kras protein prenylation. To determine the chemopreventive effects of sulindac on pancreatic carcinogenesis, 5-week-old LSL-Kras(G12D)-LSL-Trp53(R172H)-Pdx-1-Cre mice (Pan(kras/p53) mice) were fed an AIN93M diet with or without 200 p.p.m. sulindac (n = 20/group). Kaplan-Meier survival analysis showed that average animal survival in Pan(kras/p53) mice was 143.7 ± 8.8 days, and average survival with sulindac was increased to 168.0 ± 8.8 days (P < 0.005). Histopathological analyses revealed that 90% of mice developed PDAC, 10% with metastasis to the liver and lymph nodes. With sulindac, the incidence of PDAC was reduced to 56% (P < 0.01) and only one mouse had lymph node metastasis. Immunochemical analysis showed that sulindac significantly decreased Ki-67-labeled cell proliferation and markedly reduced the expression of phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Raf and mitogen-activated protein kinase kinase 1 and 2. In in vitro experiments with PDAC cells from Pan(kras/p53) mice, sulindac exhibited dose-dependent inhibition of AKR1B10 activity. By silencing AKR1B10 expression through small interfering RNA or by sulindac treatment, these in vitro models showed a reduction in Kras and human DNA-J homolog 2 protein prenylation, and downregulation of phosphorylated C-raf, ERK1/2 and MEK1/2 expression. Our results demonstrate that sulindac inhibits pancreatic carcinogenesis by the inhibition of Kras protein prenylation by targeting AKR1B10.

  20. Pancreatic effects of GLP-1

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Albrechtsen, Nicolai Jacob Wewer; Holst, Jens Juul

    2014-01-01

    -dependent manner. But perhaps equally importantly, GLP-1’s glucose lowering effects are attributable to a strong inhibition of glucagon secretion, and, thereby, a reduction of hepatic glucose output. The effects of GLP-1 on insulin secretion are mediated by binding of the hormone to the receptor (GLP-1r......) on the pancreatic β-cell, which increases intracellular cAMP levels and sets in motion a plethora of events that lead to secretion. In contrast, the inhibitory effect of GLP-1 on the α-cell may be indirect, involving paracrine intra-islet regulation by somatostatin and possibly also insulin, although GLP-1 also...... inhibits glucagon secretion in patients with type 1 diabetes mellitus. Besides these acute effects on the endocrine pancreas, GLP-1 also appears to have a positive effect on β-cell mass. In the following we will review GLP-1’s pancreatic effects with particular focus on its effects on pancreatic islets...

  1. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    Science.gov (United States)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  2. Inhibition of cyclooxygenase-2 in experimental severe acute pancreatitis Inibição da Ciclo-Oxigenase-2 na pancreatite aguda grave experimental

    Directory of Open Access Journals (Sweden)

    José Luiz Jesus de Almeida

    2006-08-01

    Full Text Available BACKGROUND: The standard treatment for acute pancreatitis (AP is still based on supportive care. The search for a new drug that could change the natural history of the disease is a continuing challenge for many researchers. The aim of this study is to evaluate the effect of a cyclooxygenase-2 (COX-2 inhibitor on experimental AP in rats. METHODS: The animals were divided into 2 groups: Group 1 (n = 30-animals with taurocholate-induced AP treated with parecoxib (40 mg/kg. Group 2 (n = 30-animals with taurocholate-induced AP that received saline. The COX-2 inhibitor (parecoxib was injected immediately after AP induction, through the penis dorsal vein. The parameters evaluated were histology, serum levels of amylase, IL-6 and IL-10, and mortality rate. RESULTS: The serum levels of IL-6 and IL-10 in the parecoxib-treated group were lower than the control group. The amylase serum levels and the mortality rate remained unchanged in the treated animals. Histologic morphology also was unaltered, except for fat necrosis, which was higher in parecoxib-treated rats. CONCLUSION: Inhibition of Cox-2 decreases the systemic release of inflammatory cytokines, but has a poor effect on the direct pancreas injury caused by taurocholate.INTRODUÇÃO: O tratamento padrão para a pancreatite aguda permanece baseado em medidas de suporte. A busca por uma droga que altere a história natural da doença ainda é um desafio para muitos pesquisadores. O objetivo deste estudo é avaliar o efeito de um inibidor da COX-2 na pancreatite aguda grave experimental (PA em ratos. MÉTODO: Os animais foram divididos em dois Grupos: Grupo 1 (n=30 - animais com PA induzida por taurocolato e tratados com parecoxib (40mg/Kg. Grupo 2 (n=30 - animais com PA induzida por taurocolato que receberam solução salina. O inibidor de COX-2 (parecoxib foi injetado imediatamente após a indução, através da veia dorsal do pênis. Os parâmetros avaliados foram histologia, níveis séricos de

  3. Epidermal Growth Factor Receptor in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Oliveira-Cunha, Melissa; Newman, William G.; Siriwardena, Ajith K.

    2011-01-01

    Pancreatic cancer is the fourth leading cause of cancer related death. The difficulty in detecting pancreatic cancer at an early stage, aggressiveness and the lack of effective therapy all contribute to the high mortality. Epidermal growth factor receptor (EGFR) is a transmembrane glycoprotein, which is expressed in normal human tissues. It is a member of the tyrosine kinase family of growth factors receptors and is encoded by proto-oncogenes. Several studies have demonstrated that EGFR is over-expressed in pancreatic cancer. Over-expression correlates with more advanced disease, poor survival and the presence of metastases. Therefore, inhibition of the EGFR signaling pathway is an attractive therapeutic target. Although several combinations of EGFR inhibitors with chemotherapy demonstrate inhibition of tumor-induced angiogenesis, tumor cell apoptosis and regression in xenograft models, these benefits remain to be confirmed. Multimodality treatment incorporating EGFR-inhibition is emerging as a novel strategy in the treatment of pancreatic cancer

  4. [Pancreatic ultrasonography].

    Science.gov (United States)

    Fernández-Rodríguez, T; Segura-Grau, A; Rodríguez-Lorenzo, A; Segura-Cabral, J M

    2015-04-01

    Despite the recent technological advances in imaging, abdominal ultrasonography continues to be the first diagnostic test indicated in patients with a suspicion of pancreatic disease, due to its safety, accessibility and low cost. It is an essential technique in the study of inflammatory processes, since it not only assesses changes in pancreatic parenchyma, but also gives an indication of the origin (bile or alcoholic). It is also essential in the detection and tracing of possible complications as well as being used as a guide in diagnostic and therapeutic punctures. It is also the first technique used in the study of pancreatic tumors, detecting them with a sensitivity of around 70% and a specificity of 90%. Copyright © 2014 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  5. Acute Pancreatitis

    DEFF Research Database (Denmark)

    Bertilsson, Sara; Håkansson, Anders; Kalaitzakis, Evangelos

    2017-01-01

    Aims: We aimed to evaluate the potential relation between the incidence of (alcoholic and non-alcoholic) acute pancreatitis (AP) and alcohol consumption in the general population, and whether the occurrence of AP shows any seasonal variation, particularly in relation to periods with expected...... consumption in the general population do not appear to be related to changes in the incidence of AP and there are no significant seasonal differences in the occurrence of AP in Sweden. Short summary: The incidence of acute pancreatitis (AP) is increasing, and alcohol is still recognized as one of the most...

  6. Diabetes, pancreatic cancer, and metformin therapy

    Directory of Open Access Journals (Sweden)

    Jun eGong

    2014-11-01

    Full Text Available Pancreatic cancer carries a poor prognosis as most patients present with advanced disease and preferred chemotherapy regimens offer only modest effects on survival. Risk factors include smoking, obesity, heavy alcohol, and chronic pancreatitis. Pancreatic cancer has a complex relationship with diabetes, as diabetes can be both a risk factor for pancreatic cancer and a result of pancreatic cancer. Insulin, insulin-like growth factor-1 (IGF-1, and certain hormones play an important role in promoting neoplasia in diabetics. Metformin appears to reduce risk for pancreatic cancer and improve survival in diabetics with pancreatic cancer primarily by decreasing insulin/IGF signaling, disrupting mitochondrial respiration, and inhibiting the mammalian target of rapamycin (mTOR pathway. Other potential anti-tumorigenic effects of metformin include the ability to downregulate specificity protein transcription factors and associated genes, alter microRNAs, decrease cancer stem cell proliferation, and reduce DNA damage and inflammation. Here, we review the most recent knowledge on risk factors and treatment of pancreatic cancer and the relationship between diabetes, pancreatic cancer, and metformin as a potential therapy.

  7. Endosonography of groove pancreatitis

    NARCIS (Netherlands)

    Tio, T. L.; Luiken, G. J.; Tytgat, G. N.

    1991-01-01

    Groove pancreatitis is a rare form of chronic pancreatitis. Distinction between pancreatitis and pancreatic carcinoma is often difficult. Two cases of groove pancreatitis diagnosed by endosonography are described. A hypoechoic pattern between the duodenal wall and pancreas was clearly imaged in both

  8. Hedgehog signaling and therapeutics in pancreatic cancer.

    LENUS (Irish Health Repository)

    Kelleher, Fergal C

    2012-02-01

    OBJECTIVE: To conduct a systematic review of the role that the hedgehog signaling pathway has in pancreatic cancer tumorigenesis. METHOD: PubMed search (2000-2010) and literature based references. RESULTS: Firstly, in 2009 a genetic analysis of pancreatic cancers found that a core set of 12 cellular signaling pathways including hedgehog were genetically altered in 67-100% of cases. Secondly, in vitro and in vivo studies of treatment with cyclopamine (a naturally occurring antagonist of the hedgehog signaling pathway component; Smoothened) has shown that inhibition of hedgehog can abrogate pancreatic cancer metastasis. Thirdly, experimental evidence has demonstrated that sonic hedgehog (Shh) is correlated with desmoplasia in pancreatic cancer. This is important because targeting the Shh pathway potentially may facilitate chemotherapeutic drug delivery as pancreatic cancers tend to have a dense fibrotic stroma that extrinsically compresses the tumor vasculature leading to a hypoperfusing intratumoral circulation. It is probable that patients with locally advanced pancreatic cancer will derive the greatest benefit from treatment with Smoothened antagonists. Fourthly, it has been found that ligand dependent activation by hedgehog occurs in the tumor stromal microenvironment in pancreatic cancer, a paracrine effect on tumorigenesis. Finally, in pancreatic cancer, cells with the CD44+CD24+ESA+ immunophenotype select a population enriched for cancer initiating stem cells. Shh is increased 46-fold in CD44+CD24+ESA+ cells compared with normal pancreatic epithelial cells. Medications that destruct pancreatic cancer initiating stem cells are a potentially novel strategy in cancer treatment. CONCLUSIONS: Aberrant hedgehog signaling occurs in pancreatic cancer tumorigenesis and therapeutics that target the transmembrane receptor Smoothened abrogate hedgehog signaling and may improve the outcomes of patients with pancreatic cancer.

  9. Autoimmune Pancreatitis.

    Science.gov (United States)

    Majumder, Shounak; Takahashi, Naoki; Chari, Suresh T

    2017-07-01

    Autoimmune pancreatitis (AIP) is a chronic fibroinflammatory disease of the pancreas that belongs to the spectrum of immunoglobulin G-subclass4-related diseases (IgG4-RD) and typically presents with obstructive jaundice. Idiopathic duct-centric pancreatitis (IDCP) is a closely related but distinct disease that mimics AIP radiologically but manifests clinically most commonly as recurrent acute pancreatitis in young individuals with concurrent inflammatory bowel disease. IgG4 levels are often elevated in AIP and normal in IDCP. Histologically, lymphoplasmacytic acinar inflammation and storiform fibrosis are seen in both. In addition, the histologic hallmark of IDCP is the granulocyte epithelial lesion: intraluminal and intraepithelial neutrophils in medium-sized and small ducts with or without granulocytic acinar inflammation often associated with destruction of ductal architecture. Initial treatment of both AIP and IDCP is with oral corticosteroids for duration of 4 weeks followed by a gradual taper. Relapses are common in AIP and relatively uncommon in IDCP, a relatively rare disease for which the natural history is not well understood. For patients with relapsing AIP, treatment with immunomodulators and more recently rituximab has been recommended. Although rare instances of pancreaticobiliary malignancy has been reported in patients with AIP, overall the lifetime risk of developing pancreatic cancer does not appear to be elevated.

  10. Chronic Pancreatitis

    International Nuclear Information System (INIS)

    Betancur, Jorge

    2002-01-01

    It is presented a case of a man with alcoholic chronic pancreatitis, whose marked dilatation of the ducts reasoned the issue. The severe untreatable pain was the surgery indication, which was practiced without complications either during or after the surgery. By the way, a shallow revision of the literature is made, by mentioning classification, physiopatholoy, clinical square, medical, surgical and endoscopic treatment

  11. Chronic Pancreatitis

    International Nuclear Information System (INIS)

    Vavrecka, A.; Bilicky, J.

    2011-01-01

    Chronic pancreatitis is an ongoing inflammatory process that may over time lead to mal digestion, malabsorption and diabetic syndrome. Identification of risk (etiological) factors based on classifications TIGAR-O or later M-ANNHEIM. These factors (environmental and / or genetic) leads to failure of the stability of the digestive and lysosomal enzymes in the acinar cells, resulting in premature activation of digestive enzymes in the pancreas, and repeated nekroinflamation and fibrosis. The incidence has of the upward trend. Clinically the disease manifests itself in most cases with pain and possibly with nonspecific dyspeptic troubles. Decisive role in the diagnosis playing imaging methods, trans abdominal ultrasonography, computed tomography, magnetic resonance imaging, magnetic cholangiopancretography and foremost endoscopic ultrasonography, which has the highest sensitivity and specificity. Endoscopic retrograde cholangiopancreatography is currently regarded as a method for therapy, not for diagnosis. Less importance is now attached to a functional test. Symptomatic treatment is usually conservative. Abstinence is necessary, easily digestible, but calorie-rich diet with reduced fat. Most patients needed treatment with analgesics. In case of insufficient effect of analgesics is necessary to consider endoscopic therapy or surgery. If the external secretory insufficiency is present are served pancreatic extracts. Diabetic syndrome requires insulin delivery. Generally, chronic pancreatitis is a disease treatable but incurable. Proportion of patients are also dying of pancreatic cancer. (author)

  12. ENDOCRINE PANCREATIC FUNCTION IN ACUTE PANCREATITIS

    Directory of Open Access Journals (Sweden)

    P. V. Novokhatny

    2014-02-01

    Full Text Available Introduction Among the organs of internal secretion pancreas has a special place thanks to active exocrine function and a wide range of physiological actions of produced hormones. Violations of endocrine pancreas arises in 6.5-38 % of patients with acute pancreatitis. However, there is still no clear understanding of the pathogenetic mechanisms of hormonal dysfunction of the pancreas in acute pancreatitis, there is no uniform algorithms for its correction. Aim of the research was to study the endocrine function of pancreas in acute pancreatitis. To define the role of endocrine pancreatic function in the etiology and pathogenesis of the acute pancreatitis. To assess the prospects of the use of pancreatic hormones in the treatment and predicting the outcomes of acute pancreatitis. Materials and methods of the research Survey of publications in specialized periodical medical journals, PubMed sources developed by the National Center for Biotechnology Information. Search in PubMed was carried out in the following databases: MEDLINE, Pre MEDLINE. Results of the research. In a significant proportion of patients who recovered from acute pancreatitis, exocrine and endocrine functional impairments were found. This finding was not detected only in patients after severe acute pancreatitis. Routine evaluation of pancreatic function after acute pancreatitis should be considered. The comparative analysis of the synthetic analogues (somatostatin, calcitonin, leu-enkefalin-dalargin influence on the glucose metabolism of rats in acute pancreatitis of was made. Physiological reaction of beta-cells is preserved in infusion of somatostatin. However, infusion of calcitonin results in the distortion of counterregulatory action of insulin and glucagon. It was detected that pancreatic renin-angiotensin system is markedly activated in the experimental rat models of chronic hypoxia and acute pancreatitis. The activation of the pancreatic renin-angiotensin system by

  13. Ny klassifikation af pancreatitis acuta

    DEFF Research Database (Denmark)

    Hansen, Benny Østerbye; Schmidt, Palle Nordblad

    2011-01-01

    The course of acute pancreatitis is in the initial phase dominated by a systemic inflammatory response, later by local complications. A new classification defines three specific types of pancreatitis: 1) interstitial oedematous pancreatitis and 2) necrotizing pancreatitis with pancreatic...

  14. Chronic Pancreatitis in Children

    Science.gov (United States)

    ... E-News Sign-Up Home Patient Information Children/Pediatric Chronic Pancreatitis in Children Chronic Pancreatitis in Children What symptoms would my child have? Frequent or chronic abdominal pain is the most common symptom of pancreatitis. The ...

  15. BlueBerry Isolate, Pterostilbene, Functions as a Potential Anticancer Stem Cell Agent in Suppressing Irradiation-Mediated Enrichment of Hepatoma Stem Cells

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lee

    2013-01-01

    Full Text Available For many malignancies, radiation therapy remains the second option only to surgery in terms of its curative potential. However, radiation-induced tumor cell death is limited by a number of factors, including the adverse response of the tumor microenvironment to the treatment and either intrinsic or acquired mechanisms of evasive resistance, and the existence of cancer stem cells (CSCs. In this study, we demonstrated that using different doses of irradiation led to the enrichment of CD133+ Mahlavu cells using flow cytometric method. Subsequently, CD133+ Mahlavu cells enriched by irradiation were characterized for their stemness gene expression, self-renewal, migration/invasion abilities, and radiation resistance. Having established irradiation-enriched CD133+ Mahlavu cells with CSC properties, we evaluated a phytochemical, pterostilbene (PT, found abundantly in blueberries, against irradiation-enriched CSCs. It was shown that PT treatment dose-dependently reduced the enrichment of CD133+ Mahlavu cells upon irradiation; PT treatment also prevented tumor sphere formation, reduced stemness gene expression, and suppressed invasion and migration abilities as well as increasing apoptosis of CD133+ Mahlavu CSCs. Based on our experimental data, pterostilbene could be used to prevent the enrichment of CD133+ hepatoma CSCs and should be considered for future clinical testing as a combined agent for HCC patients.

  16. RIP3 attenuates the pancreatic damage induced by deletion of ATG7.

    Science.gov (United States)

    Zhou, Xiaodong; Xie, Li; Xia, Leizhou; Bergmann, Frank; Büchler, Markus W; Kroemer, Guido; Hackert, Thilo; Fortunato, Franco

    2017-07-13

    Invalidation of pancreatic autophagy entails pancreatic atrophy, endocrine and exocrine insufficiency and pancreatitis. The aim of this study was to investigate whether depletion of Rip3, which is involved in necroptotic signaling, may attenuate the pancreatic atrophy and pancreatitis resulting from autophagy inhibition. Autophagy and necroptosis signaling were evaluated in mice lacking expression of Rip3 in all organs and Atg7 in the pancreas. Acinar cell death, inflammation and fibrosis were evaluated by using of a compendium of immunofluorescence methods and immunoblots. Mice deficient for pancreatic Atg7 developed acute pancreatitis, which progressed to chronic pancreatitis. This phenotype reduces autophagy, increase apoptosis and necroptosis, inflammation and fibrosis, as well as premature death of the animals. Knockout of Rip3 exacerbated the apoptotic death of acinar cells, increased tissue damage, reduced macrophage infiltration and further accelerated the death of the mice with Atg7-deficient pancreas. The pancreatic degeneration induced by autophagy inhibition was exacerbated by Rip3 deletion.

  17. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine.

    Directory of Open Access Journals (Sweden)

    Saurabh Bundela

    Full Text Available Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine.

  18. Potential Compounds for Oral Cancer Treatment: Resveratrol, Nimbolide, Lovastatin, Bortezomib, Vorinostat, Berberine, Pterostilbene, Deguelin, Andrographolide, and Colchicine

    Science.gov (United States)

    Bundela, Saurabh; Sharma, Anjana; Bisen, Prakash S.

    2015-01-01

    Oral cancer is one of the main causes of cancer-related deaths in South-Asian countries. There are very limited treatment options available for oral cancer. Research endeavors focused on discovery and development of novel therapies for oral cancer, is necessary to control the ever rising oral cancer related mortalities. We mined the large pool of compounds from the publicly available compound databases, to identify potential therapeutic compounds for oral cancer. Over 84 million compounds were screened for the possible anti-cancer activity by custom build SVM classifier. The molecular targets of the predicted anti-cancer compounds were mined from reliable sources like experimental bioassays studies associated with the compound, and from protein-compound interaction databases. Therapeutic compounds from DrugBank, and a list of natural anti-cancer compounds derived from literature mining of published studies, were used for building partial least squares regression model. The regression model thus built, was used for the estimation of oral cancer specific weights based on the molecular targets. These weights were used to compute scores for screening the predicted anti-cancer compounds for their potential to treat oral cancer. The list of potential compounds was annotated with corresponding physicochemical properties, cancer specific bioactivity evidences, and literature evidences. In all, 288 compounds with the potential to treat oral cancer were identified in the current study. The majority of the compounds in this list are natural products, which are well-tolerated and have minimal side-effects compared to the synthetic counterparts. Some of the potential therapeutic compounds identified in the current study are resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PMID:26536350

  19. PANCREATIC CANCER

    Directory of Open Access Journals (Sweden)

    Alojz Pleskovič

    2003-12-01

    Full Text Available Background. The pancreatic cancer is quite common malignant tumor of gastointestinal tract and its incidence is increasing in well developed part of the world. Despite of all advanced diagnostic methods the disease is in most cases recognised too late when the tumor is not resectable.Conclusions. Only in 20–30% of patients with pancreatic cancer surgical resection is possible, and even in this group 5year survival is very low. In the patients where the tumor is not resectable, sometimes only palliative procedures are indicated and sometimes only simptomatic therapy is possible. The average survival period in this group of patients is 12–20 months. Adjuvant chemo and radiotherapy has not shown much of benefit and the prognosis is still very bad.

  20. Pancreatic Exocrine Insufficiency in Pancreatic Cancer.

    Science.gov (United States)

    Vujasinovic, Miroslav; Valente, Roberto; Del Chiaro, Marco; Permert, Johan; Löhr, J-Matthias

    2017-02-23

    Abstract : Cancer patients experience weight loss for a variety of reasons, commencing with the tumor's metabolism (Warburg effect) and proceeding via cachexia to loss of appetite. In pancreatic cancer, several other factors are involved, including a loss of appetite with a particular aversion to meat and the incapacity of the pancreatic gland to function normally when a tumor is present in the pancreatic head. Pancreatic exocrine insufficiency is characterized by a deficiency of the enzymes secreted from the pancreas due to the obstructive tumor, resulting in maldigestion. This, in turn, contributes to malnutrition, specifically a lack of fat-soluble vitamins, antioxidants, and other micronutrients. Patients with pancreatic cancer and pancreatic exocrine insufficiency have, overall, an extremely poor prognosis with regard to surgical outcome and overall survival. Therefore, it is crucial to be aware of the mechanisms involved in the disease, to be able to diagnose pancreatic exocrine insufficiency early on, and to treat malnutrition appropriately, for example, with pancreatic enzymes.

  1. Autoimmune pancreatitis can develop into chronic pancreatitis

    Science.gov (United States)

    2014-01-01

    Autoimmune pancreatitis (AIP) has been recognized as a distinct type of pancreatitis that is possibly caused by autoimmune mechanisms. AIP is characterized by high serum IgG4 and IgG4-positive plasma cell infiltration in affected pancreatic tissue. Acute phase AIP responds favorably to corticosteroid therapy and results in the amelioration of clinical findings. However, the long-term prognosis and outcome of AIP remain unclear. We have proposed a working hypothesis that AIP can develop into ordinary chronic pancreatitis resembling alcoholic pancreatitis over a long-term course based on several clinical findings, most notably frequent pancreatic stone formation. In this review article, we describe a series of study results to confirm our hypothesis and clarify that: 1) pancreatic calcification in AIP is closely associated with disease recurrence; 2) advanced stage AIP might have earlier been included in ordinary chronic pancreatitis; 3) approximately 40% of AIP patients experience pancreatic stone formation over a long-term course, for which a primary risk factor is narrowing of both Wirsung’s and Santorini’s ducts; and 4) nearly 20% of AIP patients progress to confirmed chronic pancreatitis according to the revised Japanese Clinical Diagnostic Criteria, with independent risk factors being pancreatic head swelling and non-narrowing of the pancreatic body duct. PMID:24884922

  2. Autoimmune pancreatitis can develop into chronic pancreatitis.

    Science.gov (United States)

    Maruyama, Masahiro; Watanabe, Takayuki; Kanai, Keita; Oguchi, Takaya; Asano, Jumpei; Ito, Tetsuya; Ozaki, Yayoi; Muraki, Takashi; Hamano, Hideaki; Arakura, Norikazu; Kawa, Shigeyuki

    2014-05-21

    Autoimmune pancreatitis (AIP) has been recognized as a distinct type of pancreatitis that is possibly caused by autoimmune mechanisms. AIP is characterized by high serum IgG4 and IgG4-positive plasma cell infiltration in affected pancreatic tissue. Acute phase AIP responds favorably to corticosteroid therapy and results in the amelioration of clinical findings. However, the long-term prognosis and outcome of AIP remain unclear. We have proposed a working hypothesis that AIP can develop into ordinary chronic pancreatitis resembling alcoholic pancreatitis over a long-term course based on several clinical findings, most notably frequent pancreatic stone formation. In this review article, we describe a series of study results to confirm our hypothesis and clarify that: 1) pancreatic calcification in AIP is closely associated with disease recurrence; 2) advanced stage AIP might have earlier been included in ordinary chronic pancreatitis; 3) approximately 40% of AIP patients experience pancreatic stone formation over a long-term course, for which a primary risk factor is narrowing of both Wirsung's and Santorini's ducts; and 4) nearly 20% of AIP patients progress to confirmed chronic pancreatitis according to the revised Japanese Clinical Diagnostic Criteria, with independent risk factors being pancreatic head swelling and non-narrowing of the pancreatic body duct.

  3. The epidemiology of pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Yadav, Dhiraj; Lowenfels, Albert B

    2013-06-01

    Acute pancreatitis is one of the most frequent gastrointestinal causes of hospital admission in the United States. Chronic pancreatitis, although lower in incidence, significantly reduces patients' quality of life. Pancreatic cancer is associated with a high mortality rate and is one of the top 5 causes of death from cancer. The burden of pancreatic disorders is expected to increase over time. The risk and etiology of pancreatitis differ with age and sex, and all pancreatic disorders affect the black population more than any other race. Gallstones are the most common cause of acute pancreatitis, and early cholecystectomy eliminates the risk of future attacks. Alcohol continues to be the single most important risk factor for chronic pancreatitis. Smoking is an independent risk factor for acute and chronic pancreatitis, and its effects could synergize with those of alcohol. Significant risk factors for pancreatic cancer include smoking and non-O blood groups. Alcohol abstinence and smoking cessation can alter the progression of pancreatitis and reduce recurrence; smoking cessation is the most effective strategy to reduce the risk of pancreatic cancer. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. The Epidemiology of Pancreatitis and Pancreatic Cancer

    Science.gov (United States)

    Yadav, Dhiraj; Lowenfels, Albert B.

    2013-01-01

    Acute pancreatitis is one of the most frequent gastrointestinal causes for hospital admission in the US. Chronic pancreatitis, although lower in incidence, significantly reduces patients’ quality of life. Pancreatic cancer has high mortality and is 1 of the top 5 causes of death from cancer. The burden of pancreatic disorders is expected to increase over time. The risk and etiology of pancreatitis differ with age and sex, and all pancreatic disorders affect Blacks more than any other race. Gallstones are the most common cause of acute pancreatitis, and early cholecystectomy eliminates the risk of future attacks. Alcohol continues to be the single most important risk factor for chronic pancreatitis. Smoking is an independent risk factor for acute and chronic pancreatitis, and its effects could synergize with those of alcohol. Significant risk factors for pancreatic cancer include smoking and non-O blood groups. Alcohol abstinence and smoking cessation can alter progression of pancreatitis and reduce recurrence; smoking cessation is the most effective strategy to reduce the risk of pancreatic cancer. PMID:23622135

  5. Suppression of the Epidermal Growth Factor-like Domain 7 and Inhibition of Migration and Epithelial-Mesenchymal Transition in Human Pancreatic Cancer PANC-1 Cells.

    Science.gov (United States)

    Wang, Yun-Liang; Dong, Feng-Lin; Yang, Jian; Li, Zhi; Zhi, Qiao-Ming; Zhao, Xin; Yang, Yong; Li, De-Chun; Shen, Xiao-Chun; Zhou, Jin

    2015-01-01

    Epidermal growth factor-like domain multiple 7 (EGFL7), a secreted protein specifically expressed by endothelial cells during embryogenesis, recently was identified as a critical gene in tumor metastasis. Epithelial-mesenchymal transition (EMT) was found to be closely related with tumor progression. Accordingly, it is important to investigate the migration and EMT change after knock-down of EGFL7 gene expression in human pancreatic cancer cells. EGFL7 expression was firstly testified in 4 pancreatic cancer cell lines by real-time polymerase chain reaction (Real-time PCR) and western blot, and the highest expression of EGFL7 was found in PANC-1 cell line. Then, PANC-1 cells transfected with small interference RNA (siRNA) of EGFL7 using plasmid vector were named si-PANC-1, while transfected with negative control plasmid vector were called NC-PANC-1. Transwell assay was used to analyze the migration of PANC-1 cells. Real-time PCR and western blotting were used to detect the expression change of EGFL7 gene, EMT markers like E-Cadherin, N-Cadherin, Vimentin, Fibronectin and transcription factors like snail, slug in PANC-1, NC- PANC-1, and si-PANC-1 cells, respectively. After successful plasmid transfection, EGFL7 gene were dramatically knock-down by RNA interference in si-PANC-1 group. Meanwhile, migration ability decreased significantly, compared with PANC-1 and NC-PANC-1 group. Meanwhile, the expression of epithelial phenotype marker E-Cadherin increased and that of mesenchymal phenotype markers N-Cadherin, Vimentin, Fibronectin dramatically decreased in si-PANC-1 group, indicating a reversion of EMT. Also, transcription factors snail and slug decreased significantly after RNA interference. Current study suggested that highly-expressed EGFL7 promotes migration of PANC-1 cells and acts through transcription factors snail and slug to induce EMT, and further study is needed to confirm this issue.

  6. Upstream and Downstream Co-inhibition of Mitogen-Activated Protein Kinase and PI3K/Akt/mTOR Pathways in Pancreatic Ductal Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Matthew H. Wong

    2016-07-01

    Full Text Available BACKGROUND: Extensive cross talk exists between PI3K/Akt/mTOR and mitogen-activated protein kinase (MAPK pathways, and both are upregulated in pancreatic ductal adenocarcinoma (PDAC. Our previous study suggested that epidermal growth factor receptor inhibitor erlotinib which acts upstream of these pathways acts synergistically with PI3K inhibitors in PDAC. Horizontal combined blockade upstream and downstream of these two pathways is therefore explored. METHODS: Erlotinib paired with PI3K inhibitor (BYL719 was tested against erlotinib plus dual PI3K/mTOR inhibitor BEZ-235, and MEK inhibitor (PD98059 plus BEZ235, on five primary PDAC cell lines and on two pairs of parent and erlotinib-resistant (ER cell lines. A range of in vitro assays including cell proliferation, Western blotting, migration, clonogenic, cell cycle, and apopotic assays was used to test for the efficacy of combined blockade. RESULTS: Dual downstream blockade of the MAPK and PAM pathways was more effective in attenuating downstream molecular signals. Synergy was demonstrated for erlotinib and BEZ235 and for PD-98059 and BEZ-235. This resulted in a trend of increased growth cell cycle arrest, apoptosis, cell proliferation, and colony and migration suppression. This combination showed more efficacy in cell lines with acquired resistance to erlotinib. CONCLUSIONS: The additional mTOR blockade provided by BEZ235 in combined blockade resulted in increased anticancer effect. The hypersensitivity of ER cell lines to additional mTOR blockade suggested PAM pathway oncogenic dependence via mTOR. Dual downstream combined blockade of MAPK and PAM pathways with MEK and PI3K/mTOR inhibitor appeared most effective and represents an attractive therapeutic strategy against pancreatic cancer and its associated drug resistance.

  7. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    International Nuclear Information System (INIS)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan; Sil, Parames C.

    2011-01-01

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20–120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic β-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic β-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: ► Oxidative stress is suggested as a key event in the pathogenesis of diabetes. ► D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. ► DSL normalizes cellular antioxidant machineries disturbed due to alloxan toxicity. ► DSL inhibits pancreatic β-cells apoptosis

  8. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2011-12-15

    disturbed due to alloxan toxicity. Black-Right-Pointing-Pointer DSL inhibits pancreatic {beta}-cells apoptosis via mitochondria-dependent pathway. Black-Right-Pointing-Pointer DSL could be a promising approach for the treatment of diabetes mellitus.

  9. Pancreatic cancer risk in hereditary pancreatitis

    Directory of Open Access Journals (Sweden)

    Frank Ulrich Weiss

    2014-02-01

    Full Text Available Inflammation is part of the body’s immune response in order to remove harmful stimuli – like pathogens, irritants or damaged cells - and start the healing process. Recurrent or chronic inflammation on the other side seems a predisposing factor for carcinogenesis and has been found associated with cancer development. In chronic pancreatitis mutations of the cationic trypsinogen (PRSS1 gene have been identified as risk factors of the disease. Hereditary pancreatitis is a rare cause of chronic pancreatic inflammation with an early onset, mostly during childhood. Hereditary pancreatitis often starts with recurrent episodes of acute pancreatitis and the clinical phenotype is not very much different from other etiologies of the disease. The long-lasting inflammation however generates a tumor promoting environment and represents a major risk factor for tumor development This review will reflect our knowledge concerning the specific risk of hereditary pancreatitis patients to develop pancreatic cancer.

  10. Role of pancreatic polypeptide in the regulation of pancreatic exocrine secretion in dogs

    International Nuclear Information System (INIS)

    Shiratori, Keiko; Lee, K.Y.; Chang, Tamin; Jo, Y.H.; Coy, D.H.; Chey, W.Y.

    1988-01-01

    The effect of intravenous infusion of synthetic human pancreatic polypeptide (HPP) or a rabbit anti-PP serum on pancreatic exocrine secretion was studied in 10 dogs with gastric and Thomas duodenal cannulas. The infusion of HPP, achieved a plasma PP concentration that mimicked the peak plasma concentration of PP in both interdigestive and postprandial states. This dose of HPP significantly inhibited pancreatic secretion in the interdigestive state. By contrast, immunoneutralization of circulating PP by a rabbit anti-PP serum resulted in significant increases in both interdigestive and postprandial pancreatic secretion, including water, bicarbonate, and protein. The increase in the pancreatic secretion paralleled a decrease in circulating PP level, which lasted for as long as 5 days. Furthermore, the anti-PP serum blocked the inhibitory action of exogenous HPP on pancreatic exocrine secretion. The present study indicates that endogenous PP plays a significant role in the regulation of the pancreatic exocrine secretion in both interdigestive and digestive states. Thus the authors conclude that PP is another hormone regulating pancreatic exocrine secretion in dogs

  11. [External pancreatic fistulas management].

    Science.gov (United States)

    Stepan, E V; Ermolov, A S; Rogal', M L; Teterin, Yu S

    The main principles of treatment of external postoperative pancreatic fistulas are viewed in the article. Pancreatic trauma was the reason of pancreatic fistula in 38.7% of the cases, operations because of acute pancreatitis - in 25.8%, and pancreatic pseudocyst drainage - in 35.5%. 93 patients recovered after the treatment. Complex conservative treatment of EPF allowed to close fistulas in 74.2% of the patients with normal patency of the main pancreatic duct (MPD). The usage of octreotide 600-900 mcg daily for at least 5 days to decrease pancreatic secretion was an important part of the conservative treatment. Endoscopic papillotomy was performed in patients with major duodenal papilla obstruction and interruption of transporting of pancreatic secretion to duodenum. Stent of the main pancreatic duct was indicated in patients with extended pancreatic duct stenosis to normalize transport of pancreatic secretion to duodenum. Surgical formation of anastomosis between distal part of the main pancreatic duct and gastro-intestinal tract was carried out when it was impossible to fulfill endoscopic stenting of pancreatic duct either because of its interruption and diastasis between its ends, or in the cases of unsuccessful conservative treatment of external pancreatic fistula caused by drainage of pseudocyst.

  12. Suppressor of cytokine signalling-3 expression inhibits cytokine-mediated destruction of primary mouse and rat pancreatic islets and delays allograft rejection

    DEFF Research Database (Denmark)

    Rønn, S G; Börjesson, A; Bruun, C

    2008-01-01

    The pro-inflammatory cytokines IL-1 and IFNgamma are critical molecules in immune-mediated beta cell destruction leading to type 1 diabetes mellitus. Suppressor of cytokine signalling (SOCS)-3 inhibits the cytokine-mediated destruction of insulinoma-1 cells. Here we investigate the effect of SOCS...

  13. Pancreatic Pseudocyst Pleural Fistula in Gallstone Pancreatitis

    Directory of Open Access Journals (Sweden)

    Sala Abdalla

    2016-01-01

    Full Text Available Extra-abdominal complications of pancreatitis such as pancreaticopleural fistulae are rare. A pancreaticopleural fistula occurs when inflammation of the pancreas and pancreatic ductal disruption lead to leakage of secretions through a fistulous tract into the thorax. The underlying aetiology in the majority of cases is alcohol-induced chronic pancreatitis. The diagnosis is often delayed given that the majority of patients present with pulmonary symptoms and frequently have large, persistent pleural effusions. The diagnosis is confirmed through imaging and the detection of significantly elevated amylase levels in the pleural exudate. Treatment options include somatostatin analogues, thoracocentesis, endoscopic retrograde cholangiopancreatography (ERCP with pancreatic duct stenting, and surgery. The authors present a case of pancreatic pseudocyst pleural fistula in a woman with gallstone pancreatitis presenting with recurrent pneumonias and bilateral pleural effusions.

  14. Dual Inhibition of Topoisomerase II and Tyrosine Kinases by the Novel Bis-Fluoroquinolone Chalcone-Like Derivative HMNE3 in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Yong-Chao Ma

    Full Text Available Both tyrosine kinase and topoisomerase II (TopII are important anticancer targets, and their respective inhibitors are widely used in cancer therapy. However, some combinations of anticancer drugs could exhibit mutually antagonistic actions and drug resistance, which further limit their therapeutic efficacy. Here, we report that HMNE3, a novel bis-fluoroquinolone chalcone-like derivative that targets both tyrosine kinase and TopII, induces tumor cell proliferation and growth inhibition. The viabilities of 6 different cancer cell lines treated with a range of HMNE3 doses were detected using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Cellular apoptosis was determined using Hoechst 33258 fluorescence staining and the terminal deoxynucleotidyl transferase (TdT dUTP nick-end labeling (TUNEL assay. The expression of activated Caspase-3 was examined by immunocytochemistry. The tyrosine kinase activity was measured with a human receptor tyrosine kinase (RTK detection kit using a horseradish peroxidase (HRP-conjugated phosphotyrosine (pY20 antibody as the substrate. The topoisomerase II activity was measured using agarose gel electrophoresis with the DNA plasmid pBR322 as the substrate. The expression levels of the P53, Bax, Bcl-2, Caspase-3, -8, -9, p-cSrc, c-Src and topoisomerase II proteins were detected by western blot analysis. The proliferation of five of the six cancer cell lines was significantly inhibited by HMNE3 at 0.312 to 10 μmol/L in a time- and dose-dependent manner. Treatment of the Capan-1 and Panc-1 cells with 1.6 to 3.2 μM HMNE3 for 48 h significantly increased the percentage of apoptotic cells (P<0.05, and this effect was accompanied by a decrease in tyrosine kinase activity. HMNE3 potentially inhibited tyrosine kinase activity in vitro with an IC50 value of 0.64±0.34 μmol/L in Capan-1 cells and 3.1±0.86 μmol/L in Panc-1 cells. The activity of c-Src was significantly inhibited by HMNE3 in a dose

  15. Pancreatitis-imaging approach

    Science.gov (United States)

    Busireddy, Kiran K; AlObaidy, Mamdoh; Ramalho, Miguel; Kalubowila, Janaka; Baodong, Liu; Santagostino, Ilaria; Semelka, Richard C

    2014-01-01

    Pancreatitis is defined as the inflammation of the pancreas and considered the most common pancreatic disease in children and adults. Imaging plays a significant role in the diagnosis, severity assessment, recognition of complications and guiding therapeutic interventions. In the setting of pancreatitis, wider availability and good image quality make multi-detector contrast-enhanced computed tomography (MD-CECT) the most used imaging technique. However, magnetic resonance imaging (MRI) offers diagnostic capabilities similar to those of CT, with additional intrinsic advantages including lack of ionizing radiation and exquisite soft tissue characterization. This article reviews the proposed definitions of revised Atlanta classification for acute pancreatitis, illustrates a wide range of morphologic pancreatic parenchymal and associated peripancreatic changes for different types of acute pancreatitis. It also describes the spectrum of early and late chronic pancreatitis imaging findings and illustrates some of the less common types of chronic pancreatitis, with special emphasis on the role of CT and MRI. PMID:25133027

  16. Pathogenic mechanisms of pancreatitis

    Science.gov (United States)

    Manohar, Murli; Verma, Alok Kumar; Venkateshaiah, Sathisha Upparahalli; Sanders, Nathan L; Mishra, Anil

    2017-01-01

    Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pancreatitis characterized by marked stroma formation with a high number of infiltrating granulocytes (such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells (PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in promoting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways (i.e., Transforming growth factor-β/SMAD, mitogen-activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin (IL)-1, IL-1β, IL-6, IL-8 IL-10, IL-18, IL-33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for

  17. Pancreatic Exocrine Insufficiency in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Miroslav Vujasinovic

    2017-02-01

    Full Text Available Abstract: Cancer patients experience weight loss for a variety of reasons, commencing with the tumor’s metabolism (Warburg effect and proceeding via cachexia to loss of appetite. In pancreatic cancer, several other factors are involved, including a loss of appetite with a particular aversion to meat and the incapacity of the pancreatic gland to function normally when a tumor is present in the pancreatic head. Pancreatic exocrine insufficiency is characterized by a deficiency of the enzymes secreted from the pancreas due to the obstructive tumor, resulting in maldigestion. This, in turn, contributes to malnutrition, specifically a lack of fat-soluble vitamins, antioxidants, and other micronutrients. Patients with pancreatic cancer and pancreatic exocrine insufficiency have, overall, an extremely poor prognosis with regard to surgical outcome and overall survival. Therefore, it is crucial to be aware of the mechanisms involved in the disease, to be able to diagnose pancreatic exocrine insufficiency early on, and to treat malnutrition appropriately, for example, with pancreatic enzymes.

  18. Inhibition of the Inflammasome NLRP3 by Arglabin Attenuates Inflammation, Protects Pancreatic β-Cells from Apoptosis, and Prevents Type 2 Diabetes Mellitus Development in ApoE2Ki Mice on a Chronic High-Fat Diet.

    Science.gov (United States)

    Abderrazak, Amna; El Hadri, Khadija; Bosc, Elodie; Blondeau, Bertrand; Slimane, Mohamed-Naceur; Büchele, Berthold; Simmet, Thomas; Couchie, Dominique; Rouis, Mustapha

    2016-06-01

    Intraperitoneal injection of arglabin (2.5 ng/g of body weight, twice daily, 13 weeks) into female human apolipoprotein E2 gene knock-in (ApoE2Ki) mice fed a high-fat Western-type diet (HFD) reduced plasma levels of glucose and insulin by ∼20.0% ± 3.5% and by 50.0% ± 2.0%, respectively, in comparison with vehicle-treated mice. Immunohistochemical analysis revealed the absence of active caspase-3 in islet sections from ApoE2Ki mice fed a HFD and treated with arglabin. In addition, arglabin reduced interleukin-1β (IL-1β) production in a concentration-dependent manner in Langerhans islets isolated from ApoE2Ki mice treated with lipopolysaccharide (LPS) and with cholesterol crystals. This inhibitory effect is specific for the inflammasome NOD-like receptor family, pyrin domain-containing 3 (NLRP3) because IL-1β production was abolished in Langerhans islets isolated from Nlrp3(-/-) mice. In the insulin-secreting INS-1 cells, arglabin inhibited, in a concentration-dependent manner, the maturation of pro-IL-1β into biologically active IL-1β probably through the inhibition of the maturation of procaspase-1 into active capsase-1. Moreover, arglabin reduced the susceptibility of INS-1 cells to apoptosis by increasing Bcl-2 levels. Similarly, autophagy activation by rapamycin decreased apoptosis susceptibility while autophagy inhibition by 3-methyladenin treatment promoted apoptosis. Arglabin further increased the expression of the autophagic markers Bcl2-interacting protein (Beclin-1) and microtubule-associated protein 1 light chain 3 II (LC3-II) in a concentration-dependent manner. Thus, arglabin reduces NLRP3-dependent inflammation as well as apoptosis in pancreatic β-cells in vivo and in the INS-1 cell line in vitro, whereas it increases autophagy in cultured INS-1 cells, indicating survival-promoting properties of the compound in these cells. Hence, arglabin may represent a new promising compound to treat inflammation and type 2 diabetes mellitus development

  19. Pancreatic fibrosis correlates with exocrine pancreatic insufficiency after pancreatoduodenectomy

    NARCIS (Netherlands)

    T.C. Tran; G. van 't Hof; G. Kazemier (Geert); W.C.J. Hop (Wim); C.J. Pek (Chulja); A.W. van Toorenenbergen (Albert); H. van Dekken (Herman); C.H.J. van Eijck (Casper)

    2008-01-01

    textabstractBackground: Obstruction of the pancreatic duct can lead to pancreatic fibrosis. We investigated the correlation between the extent of pancreatic fibrosis and the postoperative exocrine and endocrine pancreatic function. Methods: Fifty-five patients who were treated for pancreatic and

  20. Imaging of pancreatic diseases

    International Nuclear Information System (INIS)

    Akisada, Masayoshi; Hiramatsu, Yoshihiro; Ishikawa, Nobuyoshi; Tatezawa, Akira; Matsumoto, Kunihiko

    1982-01-01

    There has been no definite examining technique for the early diagnosis of pancreatic diseases, especially small cancers of the pancreas less than 3 cm. Plain abdominal X-rays do not produce reliable roentgenological signs of acute pancreatitis, but the advent of CT has elucidated the condition to some extent. Upper gastrointestinal series are alleged to demonstrate abnormal findings in 80% of cases of pancreatic cancer or cyst. Pancreatic RI scintigraphy expresses the function and anatomy, and the sensitivity with 75 Se is 88%, similar to 87% by US and 80% by CT. Although endoscopic retrograde cholangiopancreatography visualizes extrapancreatic secretory function, as well as the morphology of pancreas, differentiation is not easy in many cases. The greatest indication for US was cysts. The detection rate of pancreatic cancers is similar between plain and contrast CTs, and pancreatic angiography is not specific for pancreatic cancers. (Chiba, N.)

  1. Endocrine pancreatic function changes after acute pancreatitis.

    Science.gov (United States)

    Wu, Deqing; Xu, Yaping; Zeng, Yue; Wang, Xingpeng

    2011-10-01

    This study aimed to investigate the impairment of pancreatic endocrine function and the associated risk factors after acute pancreatitis (AP). Fifty-nine patients were subjected to tests of pancreatic function after an attack of pancreatitis. The mean time after the event was 3.5 years. Pancreatic endocrine function was evaluated by fasting blood glucose (FBG), glycosylated hemoglobin, fasting blood insulin, and C-peptide. Homeostasis model assessment was used to evaluate insulin resistance and islet β-cell function. Pancreatic exocrine function was evaluated by fecal elastase 1. Factors that could influence endocrine function were also investigated. Nineteen patients (32%) were found to have elevated FBG, whereas 5 (8%) had abnormal glycosylated hemoglobin levels. The levels of FBG, fasting blood insulin, and C-peptide were higher in patients than in controls (P endocrine insufficiency. Pancreatic exocrine functional impairment was found at the same time. Endocrine functional impairment with insulin resistance was found in patients after AP. Obesity, hyperlipidemia, and diabetes-related symptoms increased the likelihood of developing functional impairment after AP.

  2. Dipeptidyl peptidase-4 inhibitor, vildagliptin, inhibits pancreatic beta cell apoptosis in association with its effects suppressing endoplasmic reticulum stress in db/db mice.

    Science.gov (United States)

    Wu, Yan-ju; Guo, Xin; Li, Chun-jun; Li, Dai-qing; Zhang, Jie; Yang, Yiping; Kong, Yan; Guo, Hang; Liu, De-min; Chen, Li-ming

    2015-02-01

    Vildagliptin promotes beta cell survival by inhibiting cell apoptosis. It has been suggested that chronic ER (endoplasmic reticulum) stress triggers beta cell apoptosis. The objective of the study is to explore whether the pro-survival effect of vildagliptin is associated with attenuation of endoplasmic reticulum stress in islets of db/db mice. Vildagliptin was orally administered to db/db mice for 6 weeks, followed by evaluation of beta cell apoptosis by caspase3 activity and TUNEL staining method. Endoplasmic reticulum stress markers were determined with quantitative RT-PCR, immunohistochemistry and immunoblot analysis. After 6 weeks of treatment, vildagliptin treatment increased plasma active GLP-1 levels (22.63±1.19 vs. 11.69±0.44, Pvildagliptin treatment down-regulated several genes related to endoplasmic reticulum stress including TRIB3 (tribbles homolog 3) (15.9±0.4 vs. 33.3±1.7, ×10⁻³, PVildagliptin promoted beta cell survival in db/db mice in association with down-regulating markers of endoplasmic reticulum stress including TRIB3, ATF-4 as well as CHOP. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Laparoscopic pancreatic cystogastrostomy.

    Science.gov (United States)

    Obermeyer, Robert J; Fisher, William E; Salameh, Jihad R; Jeyapalan, Manjula; Sweeney, John F; Brunicardi, F Charles

    2003-08-01

    The purpose of the review was to evaluate the feasibility and outcome of laparoscopic pancreatic cystogastrostomy for operative drainage of symptomatic pancreatic pseudocysts. A retrospective review of all patients who underwent laparoscopic pancreatic cystogastrostomy between June 1997 and July 2001 was performed. Data regarding etiology of pancreatitis, size of pseudocyst, operative time, complications, and pseudocyst recurrence were collected and reported as median values with ranges. Laparoscopic pancreatic cystogastrostomy was attempted in 6 patients. Pseudocyst etiology included gallstone pancreatitis (3), alcohol-induced pancreatitis (2), and post-ERCP pancreatitis (1). The cystogastrostomy was successfully performed laparoscopically in 5 of 6 patients. However, the procedure was converted to open after creation of the cystgastrostomy in 1 of these patients. There were no complications in the cases completed laparoscopically and no deaths in the entire group. No pseudocyst recurrences were observed with a median followup of 44 months (range 4-59 months). Laparoscopic pancreatic cystgastrostomy is a feasible surgical treatment of pancreatic pseudocysts with a resultant low pseudocyst recurrence rate, length of stay, and low morbidity and mortality.

  4. Therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Takeda, Yutaka; Kitagawa, Toru; Nakamori, Shoji

    2009-01-01

    Pancreatic cancer remains one of the most difficult diseases to cure. Japan pancreas society guidelines for management of pancreatic cancer indicate therapeutic algorithm according to the clinical stage. For locally limited pancreatic cancer (cStage I, II, III in Japanese classification system), surgical resection is recommended, however prognosis is still poor. Major randomized controlled trials of resected pancreatic cancer indicates that adjuvant chemotherapy is superior to observation and gemcitabine is superior to 5-fluorouracil (FU). For locally advanced resectable pancreatic cancer (cStage IVa in Japanese classification system (JCS)), we perform neoadjuvant chemoradiotherapy. Phase I study established a recommended dose of 800 mg gemcitabine and radiation dose of 36 Gy. For locally advanced nonresectable pancreatic cancer (cStage IVa in JCS), chemoradiotherapy followed by chemotherapy is recommended. Although pancreatic cancer is chemotherapy resistant tumor, systemic chemotherapy is recommended for metastatic pancreatic cancer (cStage IVb in JCS). Single-agent gemcitabine is the standard first line agent for the treatment of advanced pancreatic cancer. Meta-analysis of chemotherapy showed possibility of survival benefit of gemcitabine combination chemotherapy over gemcitabine alone. We hope gemcitabine combination chemotherapy or molecular targeted therapy will improve prognosis of pancreatic cancer in the future. (author)

  5. Genetics Home Reference: hereditary pancreatitis

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions Hereditary pancreatitis Hereditary pancreatitis Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Hereditary pancreatitis is a genetic condition characterized by recurrent episodes ...

  6. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction.

    Science.gov (United States)

    Javeed, Naureen; Sagar, Gunisha; Dutta, Shamit K; Smyrk, Thomas C; Lau, Julie S; Bhattacharya, Santanu; Truty, Mark; Petersen, Gloria M; Kaufman, Randal J; Chari, Suresh T; Mukhopadhyay, Debabrata

    2015-04-01

    Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into

  7. Pancreatic Stellate Cells : A Starring Role in Normal and Diseased Pancreas

    Directory of Open Access Journals (Sweden)

    Minoti eApte

    2012-08-01

    Full Text Available While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC, had remained undiscovered until as recently as twenty years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas - chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM proteins. Recent studies have also implied other additional functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans.During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumour growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.

  8. Pancreatic cancer risk in hereditary pancreatitis

    OpenAIRE

    Weiss, Frank U.

    2014-01-01

    Inflammation is part of the body’s immune response in order to remove harmful stimuli – like pathogens, irritants or damaged cells - and start the healing process. Recurrent or chronic inflammation on the other side seems a predisposing factor for carcinogenesis and has been found associated with cancer development. In chronic pancreatitis mutations of the cationic trypsinogen (PRSS1) gene have been identified as risk factors of the disease. Hereditary pancreatitis is a rare cause of chronic...

  9. ENDOCRINE PANCREATIC FUNCTION IN ACUTE PANCREATITIS

    OpenAIRE

    P. V. Novokhatny

    2014-01-01

    Introduction Among the organs of internal secretion pancreas has a special place thanks to active exocrine function and a wide range of physiological actions of produced hormones. Violations of endocrine pancreas arises in 6.5-38 % of patients with acute pancreatitis. However, there is still no clear understanding of the pathogenetic mechanisms of hormonal dysfunction of the pancreas in acute pancreatitis, there is no uniform algorithms for its correction. Aim of the research was to study...

  10. Prevention of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Stefan Kuroczycki-Saniutycz

    2017-02-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA accounts for 95% of all pancreatic cancers. About 230,000 PDA cases are diagnosed worldwide each year. PDA has the lowest five-year survival rate as compared to others cancers. PDA in Poland is the fifth leading cause of death after lung, stomach, colon and breast cancer. In our paper we have analysed the newest epidemiological research, some of it controversial, to establish the best practical solution for pancreatic cancer prevention in the healthy population as well as treatment for patients already diagnosed with pancreatic cancer. We found that PDA occurs quite frequently but is usually diagnosed too late, at its advanced stage. Screening for PDA is not very well defined except in subgroups of high-risk individuals with genetic disorders or with chronic pancreatitis. We present convincing, probable, and suggestive risk factors associated with pancreatic cancer, many of which are modifiable and should be introduced and implemented in our society.

  11. Lysosome-Associated Membrane Proteins (LAMP Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Olga A. Mareninova

    2015-11-01

    Full Text Available Background & Aims: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs in pancreatitis. Methods: We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP deglycosylation and degradation. LAMP cleavage by cathepsin B (CatB was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Results: Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger the LAMPs’ bulk deglycosylation but induces their degradation via CatB-mediated cleavage of the LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, and stimulates the basal and inhibits cholecystokinin-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. Conclusions: The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction. Keywords: Amylase Secretion, Autophagy

  12. Pancreatic Exocrine Function Testing

    OpenAIRE

    Berk, J. Edward

    1982-01-01

    It is important to understand which pancreatic function tests are available and how to interpret them when evaluating patients with malabsorption. Available direct tests are the secretin stimulation test, the Lundh test meal, and measurement of serum or fecal enzymes. Indirect tests assess pancreatic exocrine function by measuring the effect of pancreatic secretion on various nutrients. These include triglycerides labeled with carbon 14, cobalamin labeled with cobalt 57 and cobalt 58, and par...

  13. Pathogenesis of chronic pancreatitis: a comprehensive update and a look into the future.

    Science.gov (United States)

    Andersson, Roland; Tingstedt, Bobby; Xia, Jinglin

    2009-01-01

    Chronic pancreatitis is a relatively frequent condition usually caused by alcoholic abuse but also due to recurrent gallstone disease, metabolic endocrine disorders and haemochromatosis, among others. Specific types such as hereditary and autoimmune pancreatitis should be particularly kept in mind and emphasized, as they require specific treatment and attention. The possibility to identify gene mutations has also increased and this is likely to decrease the overall total number of "idiopathic" chronic pancreatitis cases. Pancreatic stellate cells have been identified as potential key players in the progression of chronic pancreatitis and the development of fibrogenesis, which are activated either during repeated attacks of necro-inflammation or directly by toxic factors. The inhibition or modulation of pancreatic stellate cells could represent a way of potential intervention in patients with chronic pancreatitis in the future.

  14. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity.

    Science.gov (United States)

    Ahn, Jong Hoon; Shin, Eunjin; Liu, Qing; Kim, Seon Beom; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-01-01

    Pancreatic lipase digests dietary fats by hydrolysis, which is a key enzyme for lipid absorption. Therefore, reduction of fat absorption by the inhibition of pancreatic lipase is suggested to be a therapeutic strategy for obesity. From the EtOAc-soluble fraction of the stem barks of Fraxinus rhynchophylla (Oleaceae), four secoiridoids such as ligstroside (1), oleuropein (2), 2"-hydroxyoleuropein (3) and hydroxyframoside B (4) were isolated. The inhibitory activity of these compounds on pancreatic lipase was assessed using porcine pancreatic lipase as an in vitro assay system. Compound 4 showed the strongest inhibition on pancreatic lipase, which followed by compounds 1-3. In addition, compound 4 exerted inhibitory effect on pancreatic lipase in a mixed mechanism of competitive and noncompetitive manner. Taken together, F. rhynchophylla and its constituents might be beneficial to obesity.

  15. Hereditary pancreatitis: current perspectives

    Directory of Open Access Journals (Sweden)

    Raphael KL

    2016-07-01

    Full Text Available Kara L Raphael, Field F Willingham Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA Abstract: Hereditary pancreatitis (HP is a rare cause of acute, recurrent acute, and chronic pancreatitis. It may present similarly to other causes of acute and chronic pancreatitis, and often there has been a protracted evaluation prior to the diagnosis of HP. Since it was first described in 1952, multiple genetic defects that affect the action of digestive enzymes in the pancreas have been implicated. The most common mutations involve the PRSS1, CFTR, SPINK1, and CTRC genes. New mutations in these genes and previously unrecognized mutations in other genes are being discovered due to the increasing use of next-generation genomic sequencing. While the inheritance pathways of these genetic mutations may be variable and complex, sometimes involving coinheritance of other mutations, the clinical presentation of patients tends to be similar. Interactions with environmental triggers often play a role. Patients tend to present at an early age (prior to the second decade of life and have a significantly increased risk for the development of pancreatic adenocarcinoma. Patients with HP may develop sequelae of chronic pancreatitis such as strictures and fluid collections as well as exocrine and endocrine insufficiency. Management of patients with HP involves avoidance of environmental triggers, surveillance for pancreatic adenocarcinoma, medical therapy for endocrine and exocrine insufficiency, pain management, and endoscopic or surgical treatment for complications. Care for affected patients should be individualized, with an emphasis on early diagnosis and multidisciplinary involvement to develop a comprehensive treatment strategy. Keywords: pancreatic cancer, chronic pancreatitis, idiopathic pancreatitis, pancreatitis, familial pancreatitis, genetic mutations

  16. Hereditary chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Mössner Joachim

    2007-01-01

    Full Text Available Abstract Hereditary chronic pancreatitis (HCP is a very rare form of early onset chronic pancreatitis. With the exception of the young age at diagnosis and a slower progression, the clinical course, morphological features and laboratory findings of HCP do not differ from those of patients with alcoholic chronic pancreatitis. As well, diagnostic criteria and treatment of HCP resemble that of chronic pancreatitis of other causes. The clinical presentation is highly variable and includes chronic abdominal pain, impairment of endocrine and exocrine pancreatic function, nausea and vomiting, maldigestion, diabetes, pseudocysts, bile duct and duodenal obstruction, and rarely pancreatic cancer. Fortunately, most patients have a mild disease. Mutations in the PRSS1 gene, encoding cationic trypsinogen, play a causative role in chronic pancreatitis. It has been shown that the PRSS1 mutations increase autocatalytic conversion of trypsinogen to active trypsin, and thus probably cause premature, intrapancreatic trypsinogen activation disturbing the intrapancreatic balance of proteases and their inhibitors. Other genes, such as the anionic trypsinogen (PRSS2, the serine protease inhibitor, Kazal type 1 (SPINK1 and the cystic fibrosis transmembrane conductance regulator (CFTR have been found to be associated with chronic pancreatitis (idiopathic and hereditary as well. Genetic testing should only be performed in carefully selected patients by direct DNA sequencing and antenatal diagnosis should not be encouraged. Treatment focuses on enzyme and nutritional supplementation, pain management, pancreatic diabetes, and local organ complications, such as pseudocysts, bile duct or duodenal obstruction. The disease course and prognosis of patients with HCP is unpredictable. Pancreatic cancer risk is elevated. Therefore, HCP patients should strongly avoid environmental risk factors for pancreatic cancer.

  17. Obestatin Accelerates the Recovery in the Course of Ischemia/Reperfusion-Induced Acute Pancreatitis in Rats.

    Directory of Open Access Journals (Sweden)

    Jakub Bukowczan

    Full Text Available Several previous studies have shown that obestatin exhibits protective and regenerative effects in some organs including the stomach, kidney, and the brain. In the pancreas, pretreatment with obestatin inhibits the development of cerulein-induced acute pancreatitis, and promotes survival of pancreatic beta cells and human islets. However, no studies investigated the effect of obestatin administration following the onset of experimental acute pancreatitis.The aim of this study was to evaluate the impact of obestatin therapy in the course of ischemia/reperfusion-induced pancreatitis. Moreover, we tested the influence of ischemia/reperfusion-induced acute pancreatitis and administration of obestatin on daily food intake and pancreatic exocrine secretion.Acute pancreatitis was induced by pancreatic ischemia followed by reperfusion of the pancreas. Obestatin (8 nmol/kg/dose was administered intraperitoneally twice a day, starting 24 hours after the beginning of reperfusion. The effect of obestatin in the course of necrotizing pancreatitis was assessed between 2 and 14 days, and included histological, functional, and biochemical analyses. Secretory studies were performed on the third day after sham-operation or induction of acute pancreatitis in conscious rats equipped with chronic pancreatic fistula.Treatment with obestatin ameliorated morphological signs of pancreatic damage including edema, vacuolization of acinar cells, hemorrhages, acinar necrosis, and leukocyte infiltration of the gland, and led to earlier pancreatic regeneration. Structural changes were accompanied by biochemical and functional improvements manifested by accelerated normalization of interleukin-1β level and activity of myeloperoxidase and lipase, attenuation of the decrease in pancreatic DNA synthesis, and by an improvement of pancreatic blood flow. Induction of acute pancreatitis by pancreatic ischemia followed by reperfusion significantly decreased daily food intake and

  18. Pancreatic fibrosis correlates with exocrine pancreatic insufficiency after pancreatoduodenectomy.

    Science.gov (United States)

    Tran, T C K; van 't Hof, G; Kazemier, G; Hop, W C; Pek, C; van Toorenenbergen, A W; van Dekken, H; van Eijck, C H J

    2008-01-01

    Obstruction of the pancreatic duct can lead to pancreatic fibrosis. We investigated the correlation between the extent of pancreatic fibrosis and the postoperative exocrine and endocrine pancreatic function. Fifty-five patients who were treated for pancreatic and periampullary carcinoma and 19 patients with chronic pancreatitis were evaluated. Exocrine pancreatic function was evaluated by fecal elastase-1 test, while endocrine pancreatic function was assessed by plasma glucose level. The extent of fibrosis, duct dilation and endocrine tissue loss was examined histopathologically. A strong correlation was found between pancreatic fibrosis and elastase-1 level less than 100 microg/g (p pancreatic insufficiency. A strong correlation was found between pancreatic fibrosis and endocrine tissue loss (p pancreatic fibrosis nor endocrine tissue loss were correlated with the development of postoperative diabetes mellitus. Duct dilation alone was neither correlated with exocrine nor with endocrine function loss. The majority of patients develop severe exocrine pancreatic insufficiency after pancreatoduodenectomy. The extent of exocrine pancreatic insufficiency is strongly correlated with preoperative fibrosis. The loss of endocrine tissue does not correlate with postoperative diabetes mellitus. Preoperative dilation of the pancreatic duct per se does not predict exocrine or endocrine pancreatic insufficiency postoperatively. Copyright 2008 S. Karger AG, Basel.

  19. [Chronic pancreatitis diagnosed after the first attack of acute pancreatitis].

    Science.gov (United States)

    Bojková, Martina; Dítě, Petr; Uvírová, Magdalena; Dvořáčková, Nina; Kianička, Bohuslav; Kupka, Tomáš; Svoboda, Pavel; Klvaňa, Pavel; Martínek, Arnošt

    2016-02-01

    One of the diseases involving a potential risk of developing chronic pancreatitis is acute pancreatitis. Of the overall number of 231 individuals followed with a diagnosis of chronic pancreatitis, 56 patients were initially treated for acute pancreatitis (24.2 %). Within an interval of 12- 24 months from the first attack of acute pancreatitis, their condition gradually progressed to reached the picture of chronic pancreatitis. The individuals included in the study abstained (from alcohol) following the first attack of acute pancreatitis and no relapse of acute pancreatitis was proven during the period of their monitoring. The etiology of acute pancreatitis identified alcohol as the predominant cause (55.3 %), biliary etiology was proven in 35.7 %. According to the revised Atlanta classification, severe pancreatitis was established in 69.6 % of the patients, the others met the criterion for intermediate form, those with the light form were not included. Significant risk factors present among the patients were smoking, obesity and 18 %, resp. 25.8 % had pancreatogenous diabetes mellitus identified. 88.1 % of the patients with acute pancreatitis were smokers. The majority of individuals with chronic pancreatitis following an attack of acute pancreatitis were of a productive age from 25 to 50 years. It is not only acute alcoholic pancreatitis which evolves into chronic pancreatitis, we have also identified this transition for pancreatitis of biliary etiology.

  20. Stages of Pancreatic Cancer

    Science.gov (United States)

    ... overweight. Having a personal history of diabetes or chronic pancreatitis . Having a family history of pancreatic cancer or ... have not started treatment. Five types of standard treatment are used: Surgery ... Whipple procedure : A surgical procedure in which the head of the pancreas , ...

  1. Pancreatic Islet Cell Transplantation

    Science.gov (United States)

    Warnock, Garth L.; Rajotte, Ray V.

    1992-01-01

    Transplantation of insulin-producing tissue offers a physiologic approach to restoration of glycemic control. Whereas transplantation of vascularized pancreatic grafts has recently achieved encouraging results, pancreatic islet cell transplantation holds the promise of low morbidity and reduced requirements for agressive immunosuppression for recipients. Islet cell transplantation was recently demonstrated to induce euglycemia with insulin independence. Imagesp1656-a PMID:21221366

  2. Focal pancreatic enlargement: differentiation between pancreatic adenocarcinoma and focal pancreatitis on CT and ERCP

    International Nuclear Information System (INIS)

    Kim, Eun Kyung; Kim, Ki Whang; Lee, Jong Tae; Kim, Hee Soo; Yoo, Hyung Sik; Yu, Jeong Sik; Yoon, Sang Wook

    1995-01-01

    To differentiate the pancreatic adenocarcinoma from focal pancreatitis on CT and ERCP in cases of focal pancreatic enlargement. We analysed CT findings of 66 patients of pancreatic adenocarcinoma (n = 45) or focal pancreatitis (n = 21) with respect to size, density, calcification, pancreatic or biliary duct dilatation, fat plane obliteration around the vessels, direction of retroperitoneal extension, lymphadenopathy, pseudocyst formation and atrophy of pancreas. ERCP available in 48 patients were analysed in respect to morphologic appearance of CBD and pancreatic duct, and distance between the two ducts. The patients in focal pancreatitis were younger with more common history of alcohol drinking. There was no statistical difference in calcifications of the mass (18% in the adenocarcinoma, 33% in the focal pancreatitis), but a tendency of denser, larger number of calcifications was noted in focal pancreatitis. The finding of fat plane obliteration around the vessels were more common in pancreatic adenocarcinoma, and fascial thickenings were more prominent in focal pancreatitis, although not statistically significant. On ERCP, there were no differential points of CBD, pancreatic duct morphology, but distance between the two ducts at the lesion center was more wider in focal pancreatitis. Differentiating focal pancreatitis from pancreatic adenocarcinoma is difficult. However, we should consider the possibility of focal pancreatitis in cases of patients with young age, having alcoholic history in association with CT findings of large numbers of and dense calcifications, and ERCP findings of prominent separation of two duct at the lesion center

  3. Imaging of pancreatitis

    International Nuclear Information System (INIS)

    Prassopoulos, P.

    2012-01-01

    Full text: Acute pancreatitis (AP) is an acute inflammatory process of the pancreas with variable involvement of peripancreatic tissues or remote organ systems. Mild AP accounts for 75-80% of the cases and it is characterized by interstitial oedema, absent or minimal organ dysfunction, lack of complications and, usually, uneventful recovery. Severe AP is characterized by pancreatic necrosis, protracted clinical course, high incidence of complications, and high mortality rate. The diagnosis of acute pancreatitis (AP) is generally based on clinical and laboratory findings. The role of imaging is to confirm diagnosis, to assess disease severity - especially by detecting pancreatic necrosis-, to reveal complications of the disease and to guide interventions). Contrast- enhanced multidetector CT is the current 'gold standard' imaging modality in the evaluation of patients with AP. The spectrum of findings seen on CT ranges from a normal appearance to diffuse pancreatic enlargement with poorly defined pancreatic contour and heterogeneous attenuation. Stranding of the fat surrounding the pancreas and fluid collections in the anterior pararenal space, the peritoneal cavity or elsewhere, acquiring the form of the anatomic space where they are developed, may also be disclosed. Lack of pancreatic parenchyma enhancement is indicative of the presence of pancreatic necrosis. CT may reveal biliary tract calculi, calcifications in patients with AP combined with chronic pancreatitis- and air in an inflamed pancreas. Pancreatic abscess is usually seen on CT as a focal low attenuation area with a thick wall that may exhibit enhancement following i.v. contrast media administration. Haemorrhage, pseudoaneurysms, renal and splenic parenchyma complications can also be demonstrated by CT. Balthazar et.al have developed CT classification and severity scores based on the presence of fluid collections and pancreatic necrosis. These scores correlate with the incidence of morbidity and

  4. UPLC-MS method for quantification of pterostilbene and its application to comparative study of bioavailability and tissue distribution in normal and Lewis lung carcinoma bearing mice.

    Science.gov (United States)

    Deng, Li; Li, Yongzhi; Zhang, Xinshi; Chen, Bo; Deng, Yulin; Li, Yujuan

    2015-10-10

    A UPLC-MS method was developed for determination of pterostilbene (PTS) in plasma and tissues of mice. PTS was separated on Agilent Zorbax XDB-C18 column (50 × 2.1 mm, 1.8 μm) with gradient mobile phase at the flow rate of 0.2 ml/min. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode. The linear calibration curve of PTS in mouse plasma and tissues ranged from 1.0 to 5000 and 0.50 to 500 ng/ml (r(2)>0.9979), respectively, with lowest limits of quantification (LLOQ) were between 0.5 and 2.0 ng/ml, respectively. The accuracy and precision of the assay were satisfactory. The validated method was applied to the study of bioavailability and tissue distribution of PTS in normal and Lewis lung carcinoma (LLC) bearing mice. The bioavailability of PTS (dose 14, 28 and 56 mg/kg) in normal mice were 11.9%, 13.9% and 26.4%, respectively; and the maximum level (82.1 ± 14.2 μg/g) was found in stomach (dose 28 mg/kg). The bioavailability, peak concentration (Cmax), time to peak concentration (Tmax) of PTS in LLC mice was increased compared with normal mice. The results indicated the UPLC-MS method is reliable and bioavailability and tissue distribution of PTS in normal and LLC mice were dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The RON receptor tyrosine kinase in pancreatic cancer pathogenesis and its potential implications for future targeted therapies.

    Science.gov (United States)

    Kang, Chang Moo; Babicky, Michele L; Lowy, Andrew M

    2014-03-01

    Pancreatic cancer remains a devastating disease with a mortality rate that has not changed substantially in decades. Novel therapies are therefore desperately needed. The RON receptor tyrosine kinase has been identified as an important mediator of KRAS oncogene addiction and is overexpressed in the majority of pancreatic cancers. Preclinical studies show that inhibition of RON function decreases pancreatic cancer cell migration, invasion, and survival and can sensitize pancreatic cancer cells to chemotherapy. This article reviews the current state of knowledge regarding RON biology and pancreatic cancer and discusses its potential as a therapeutic target.

  6. PKD signaling and pancreatitis

    Science.gov (United States)

    Yuan, Jingzhen; Pandol, Stephen J.

    2016-01-01

    Background Acute pancreatitis is a serious medical disorder with no current therapies directed to the molecular pathogenesis of the disorder. Inflammation, inappropriate intracellular activation of digestive enzymes, and parenchymal acinar cell death by necrosis are the critical pathophysiologic processes of acute pancreatitis. Thus, it is necessary to elucidate the key molecular signals that mediate these pathobiologic processes and develop new therapeutic strategies to attenuate the appropriate signaling pathways in order to improve outcomes for this disease. A novel serine/threonine protein kinase D (PKD) family has emerged as key participants in signal transduction, and this family is increasingly being implicated in the regulation of multiple cellular functions and diseases. Methods This review summarizes recent findings of our group and others regarding the signaling pathway and the biological roles of the PKD family in pancreatic acinar cells. In particular, we highlight our studies of the functions of PKD in several key pathobiologic processes associated with acute pancreatitis in experimental models. Results Our findings reveal that PKD signaling is required for NF-κB activation/inflammation, intracellular zymogen activation, and acinar cell necrosis in rodent experimental pancreatitis. Novel small-molecule PKD inhibitors attenuate the severity of pancreatitis in both in vitro and in vivo experimental models. Further, this review emphasizes our latest advances in the therapeutic application of PKD inhibitors to experimental pancreatitis after the initiation of pancreatitis. Conclusions These novel findings suggest that PKD signaling is a necessary modulator in key initiating pathobiologic processes of pancreatitis, and that it constitutes a novel therapeutic target for treatments of this disorder. PMID:26879861

  7. Pancreatitis in scrub typhus

    Directory of Open Access Journals (Sweden)

    Alok Bhatt

    2014-01-01

    Full Text Available Scrub typhus is a rickettsial infection prevalent in most parts of India. Acute pancreatitis with pseudocyst formation is a rare complication of this condition. This paper reports acute renal failure, pancreatitis and pseudocyst formation in a 48-year-old female with scrub typhus. Ultrasonography of the abdomen revealed a bulky pancreas with fluid seen along the body of the pancreas in the lesser sac. The infection was successfully treated with doxycycline and supportive treatment. Pancreatitis was managed conservatively. This case report highlights the importance of identifying and managing uncommon complications of a common tropical disease for optimum outcome.

  8. Surgical Approaches to Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Daniel Hartmann

    2015-01-01

    Full Text Available Chronic pancreatitis is a progressive inflammatory disease resulting in permanent structural damage of the pancreas. It is mainly characterized by recurring epigastric pain and pancreatic insufficiency. In addition, progression of the disease might lead to additional complications, such as pseudocyst formation or development of pancreatic cancer. The medical and surgical treatment of chronic pancreatitis has changed significantly in the past decades. With regard to surgical management, pancreatic head resection has been shown to be a mainstay in the treatment of severe chronic pancreatitis because the pancreatic head mass is known to trigger the chronic inflammatory process. Over the years, organ-preserving procedures, such as the duodenum-preserving pancreatic head resection and the pylorus-preserving Whipple, have become the surgical standard and have led to major improvements in pain relief, preservation of pancreatic function, and quality of life of patients.

  9. The anti-oxidative transcription factor Nuclear factor E2 related factor-2 (Nrf2) counteracts TGF-β1 mediated growth inhibition of pancreatic ductal epithelial cells -Nrf2 as determinant of pro-tumorigenic functions of TGF-β1

    International Nuclear Information System (INIS)

    Genrich, Geeske; Kruppa, Marcus; Lenk, Lennart; Helm, Ole; Broich, Anna; Freitag-Wolf, Sandra; Röcken, Christoph; Sipos, Bence; Schäfer, Heiner; Sebens, Susanne

    2016-01-01

    Nuclear factor E2 related factor-2 (Nrf2) is an oxidative stress inducible transcription factor being essential in regulating cell homeostasis. Thus, acute induction of Nrf2 in epithelial cells exposed to inflammation confers protection from oxidative cell damage and mutagenesis supporting an anti-tumorigenic role for Nrf2. However, pancreatic ductal adenocarcinoma (PDAC) is characterized by persistent Nrf2 activity conferring therapy resistance which points to a pro-tumorigenic role of Nrf2. A similar dichotomous role in tumorigenesis is described for the Transforming Growth Factor-beta 1 (TGF-β1). The present study therefore aimed at elucidating whether the switch of Nrf2 function towards a tumor promoting one relates to the modulation of TGF-β1 induced cell responses and whether this might occur early in PDAC development. In situ analysis comprised immunohistochemical stainings of activated (phosphorylated) Nrf2 and Ki67 in pancreatic tissues containing normal ducts and pancreatic intraepithelial neoplasia (PanINs). In vitro, Nrf2 levels in benign (H6c7-pBp), premalignant (H6c7-kras) and malignant (Colo357) pancreatic ductal epithelial cells were modulated by Nrf2 specific siRNA or Nrf2 overexpression. Then, the effect of Nrf2 alone and in combination with TGF-β1 on cell growth and survival was investigated by cell counting, Ki67 staining and apoptosis assays. The underlying cell signaling was investigated by western blotting. Statistical analysis was performed by Shapiro-Wilk test for normal distribution. Parametric data were analyzed by one-way ANOVA, while non-parametric data were analyzed by Kruskal-Wallis one-way ANOVA on ranks. Significantly elevated expression of activated Nrf2 and Ki67 could be detected in PanINs but not in normal pancreatic ductal epithelium. While the effect of Nrf2 on basal cell growth of H6c7-pBp, H6c7-kras and Colo357 cells was minor, it clearly attenuated the growth inhibiting effects of TGF-β1 in all cell lines. This enhanced

  10. Hypermutation In Pancreatic Cancer.

    Science.gov (United States)

    Humphris, Jeremy L; Patch, Ann-Marie; Nones, Katia; Bailey, Peter J; Johns, Amber L; McKay, Skye; Chang, David K; Miller, David K; Pajic, Marina; Kassahn, Karin S; Quinn, Michael C J; Bruxner, Timothy J C; Christ, Angelika N; Harliwong, Ivon; Idrisoglu, Senel; Manning, Suzanne; Nourse, Craig; Nourbakhsh, Ehsan; Stone, Andrew; Wilson, Peter J; Anderson, Matthew; Fink, J Lynn; Holmes, Oliver; Kazakoff, Stephen; Leonard, Conrad; Newell, Felicity; Waddell, Nick; Wood, Scott; Mead, Ronald S; Xu, Qinying; Wu, Jianmin; Pinese, Mark; Cowley, Mark J; Jones, Marc D; Nagrial, Adnan M; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Chou, Angela; Scarlett, Christopher J; Pinho, Andreia V; Rooman, Ilse; Giry-Laterriere, Marc; Samra, Jaswinder S; Kench, James G; Merrett, Neil D; Toon, Christopher W; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Jamieson, Nigel B; McKay, Colin J; Carter, C Ross; Dickson, Euan J; Graham, Janet S; Duthie, Fraser; Oien, Karin; Hair, Jane; Morton, Jennifer P; Sansom, Owen J; Grützmann, Robert; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Rusev, Borislav; Corbo, Vincenzo; Salvia, Roberto; Cataldo, Ivana; Tortora, Giampaolo; Tempero, Margaret A; Hofmann, Oliver; Eshleman, James R; Pilarsky, Christian; Scarpa, Aldo; Musgrove, Elizabeth A; Gill, Anthony J; Pearson, John V; Grimmond, Sean M; Waddell, Nicola; Biankin, Andrew V

    2017-01-01

    Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. Perspectives in Pancreatic Pain

    Directory of Open Access Journals (Sweden)

    A. S. Salim

    1997-01-01

    Full Text Available This review describes some of the mechanisms which are thought to be important in the causation of pain in chronic pancreatitis. Both medical and surgical techniques for treating this pain are described.

  12. Pancreatic exocrine function testing

    International Nuclear Information System (INIS)

    Goff, J.S.

    1981-01-01

    It is important to understand which pancreatic function tests are available and how to interpret them when evaluating patients with malabsorption. Available direct tests are the secretin stimulation test, the Lundh test meal, and measurement of serum or fecal enzymes. Indirect tests assess pancreatic exocrine function by measuring the effect of pancreatic secretion on various nutrients. These include triglycerides labeled with carbon 14, cobalamin labeled with cobalt 57 and cobalt 58, and para-aminobenzoic acid bound to a dipeptide. Of all these tests the secretin stimulation test is the most accurate and reliable if done by experienced personnel. However, the indirect tests are simpler to do and appear to be comparable to the secretin test at detecting pancreatic exocrine insufficiency. These indirect tests are becoming clinically available and clinicians should familiarize themselves with the strengths and weaknesses of each

  13. Familial Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Stephen J. Lanspa

    2010-11-01

    Full Text Available Pancreatic cancer’s high mortality rate equates closely with its incidence, thereby showing the need for development of biomarkers of its increased risk and a better understanding of its genetics, so that high-risk patients can be better targeted for screening and early potential lifesaving diagnosis. Its phenotypic and genotypic heterogeneity is extensive and requires careful scrutiny of its pattern of cancer associations, such as malignant melanoma associated with pancreatic cancer, in the familial atypical multiple mole melanoma syndrome, due to the CDKN2A germline mutation. This review is designed to depict several of the hereditary pancreatic cancer syndromes with particular attention given to the clinical application of this knowledge into improved control of pancreatic cancer.

  14. CT diagnosis of pancreatic carcinoma and chronic pancreatitis

    International Nuclear Information System (INIS)

    Luan Baoqing; Jin Erhu; Zhang Lizhen; Jiang Haibin

    1997-01-01

    To improve the diagnostic accuracy of pancreatic carcinoma and chronic pancreatitis. The CT findings of 154 cases with pancreatic carcinoma, chronic pancreatitis and mis-diagnosed other pancreatic diseases proven clinically and pathologically were analysed. Slice thickness of 8 mm and slice interval of 8 mm were used and thin-section scan and enhancement study were performed in some cases. The main signs in degassing and differential diagnosis between pancreatic carcinoma and chronic pancreatitis included: (1) focal or diffuse enlargement and density abnormality of pancreas; (2) dilated common bile duct was suddenly obstructed, peripancreatic blood vessels were invaded and cancerous thrombus was revealed, enlargement of abdominal lymph nodes and metastasis in the liver were discovered; (3) calcium deposit in the pancreatic duct area and dilated pancreatic duct which passed through the lesion or not; (4) presence and location of pancreatic cyst and its relationship to pancreatic contour. CT is the imaging modality of choice in the diagnosis of pancreatic carcinoma and chronic pancreatitis at present. The diagnostic accuracy of CT was over 90% in this series

  15. Hypermutation in pancreatic cancer

    OpenAIRE

    Humphris, Jeremy L.; Patch, Ann-Marie; Nones, Katia; Bailey, Peter J.; Johns, Amber L.; McKay, Skye; Chang, David K.; Miller, David K.; Pajic, Marina; Kassahn, Karin S.; Quinn, Michael C.J.; Bruxner, Timothy J.C.; Christ, Angelika N.; Harliwong, Ivon; Idrisoglu, Senel

    2017-01-01

    Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechan...

  16. Management of pancreatic trauma.

    Science.gov (United States)

    Girard, E; Abba, J; Arvieux, C; Trilling, B; Sage, P Y; Mougin, N; Perou, S; Lavagne, P; Létoublon, C

    2016-08-01

    Pancreatic trauma (PT) is associated with high morbidity and mortality; the therapeutic options remain debated. Retrospective study of PT treated in the University Hospital of Grenoble over a 22-year span. The decision for initial laparotomy depended on hemodynamic status as well as on associated lesions. Main pancreatic duct lesions were always searched for. PT lesions were graded according to the AAST classification. Of a total of 46 PT, 34 were grades II or I. Hemodynamic instability led to immediate laparotomy in 18 patients, for whom treatment was always drainage of the pancreatic bed; morbidity was 30%. Eight patients had grade III injuries, six of whom underwent immediate operation: three underwent splenopancreatectomy without any major complications while the other three who had simple drainage required re-operation for peritonitis, with one death related to pancreatic complications. Four patients had grades IV or V PT: two pancreatoduodenectomies were performed, with no major complication, while one patient underwent duodenal reconstruction with pancreatic drainage, complicated by pancreatic and duodenal fistula requiring a hospital stay of two months. The post-trauma course was complicated for all patients with main pancreatic duct involvement. Our outcomes were similar to those found in the literature. In patients with distal PT and main pancreatic duct involvement, simple drainage is associated with high morbidity and mortality. For proximal PT, the therapeutic options of drainage versus pancreatoduodenectomy must be weighed; pancreatoduodenectomy may be unavoidable when the duodenum is injured as well. Two-stage (resection first, reconstruction later) could be an effective alternative in the emergency setting when there are other associated traumatic lesions. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Targeting Mcl-1 for Radiosensitization of Pancreatic Cancers

    Directory of Open Access Journals (Sweden)

    Dongping Wei

    2015-02-01

    Full Text Available In order to identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer, we previously conducted an RNAi library screen of 8,800 genes. We identified Mcl-1 (myeloid cell leukemia-1, an anti-apoptotic member of the Bcl-2 family, as a target for sensitizing pancreatic cancer cells to chemoradiation. In the present study we investigated Mcl-1 inhibition by either genetic or pharmacological approaches as a radiosensitizing strategy in pancreatic cancer cells. Mcl-1 depletion by siRNA produced significant radiosensitization in BxPC-3 and Panc-1 cells in association with Caspase-3 activation and PARP cleavage, but only minimal radiosensitization in MiaPaCa-2 cells. We next tested the ability of the recently identified, selective, small molecule inhibitor of Mcl-1, UMI77, to radiosensitize in pancreatic cancer cells. UMI77 caused dissociation of Mcl-1 from the pro-apoptotic protein Bak and produced significant radiosensitization in BxPC-3 and Panc-1 cells, but minimal radiosensitization in MiaPaCa-2 cells. Radiosensitization by UMI77 was associated with Caspase-3 activation and PARP cleavage. Importantly, UMI77 did not radiosensitize normal small intestinal cells. In contrast, ABT-737, an established inhibitor of Bcl-2, Bcl-XL, and Bcl-w, failed to radiosensitize pancreatic cancer cells suggesting the unique importance of Mcl-1 relative to other Bcl-2 family members to radiation survival in pancreatic cancer cells. Taken together, these results validate Mcl-1 as a target for radiosensitization of pancreatic cancer cells and demonstrate the ability of small molecules which bind the canonical BH3 groove of Mcl-1, causing displacement of Mcl-1 from Bak, to selectively radiosensitize pancreatic cancer cells.

  18. Using CRISPR/Cas9 to Knock out Amylase in Acinar Cells Decreases Pancreatitis-Induced Autophagy

    Directory of Open Access Journals (Sweden)

    Kohei Yasunaga

    2018-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm that originates from acinar cells. Acinar cells get reprogrammed to become duct cells, resulting in pancreatic cancer. Pancreatitis is an acinar cell inflammation, leading to “impaired autophagy flux”. Pancreatitis promotes acinar-to-ductal transdifferentiation. Expression of amylase gets eliminated during the progression of pancreatic cancer. Amylase is considered as an acinar cell marker; however, its function in cells is not known. Thus, we investigated whether amylase affects the acinar cell autophagy and whether it plays any role in development of pancreatitis. Here, we knocked out ATG12 in a pancreatic cancer cells and acinar cells using CRISPR/Cas9. Autophagy inhibition led to an increase in the expression of duct cell markers and a simultaneous decrease in that of acinar cell markers. It also caused an increase in cell viability and changes in mitochondrial morphology. Next, we knocked out amylase in acinar cells. Amylase deficiency decreased autophagy induced by pancreatitis. Our results suggest that amylase controls pancreatitis-induced autophagy. We found that eliminating amylase expression contributes to pancreatic cancer etiology by decreasing autophagy. Furthermore, our results indicate that amylase plays a role in selective pancreatitis-induced autophagy of pancreatic enzyme vesicles.

  19. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  20. Type 1 autoimmune pancreatitis.

    Science.gov (United States)

    Zen, Yoh; Bogdanos, Dimitrios P; Kawa, Shigeyuki

    2011-12-07

    Before the concept of autoimmune pancreatitis (AIP) was established, this form of pancreatitis had been recognized as lymphoplasmacytic sclerosing pancreatitis or non-alcoholic duct destructive chronic pancreatitis based on unique histological features. With the discovery in 2001 that serum IgG4 concentrations are specifically elevated in AIP patients, this emerging entity has been more widely accepted. Classical cases of AIP are now called type 1 as another distinct subtype (type 2 AIP) has been identified. Type 1 AIP, which accounts for 2% of chronic pancreatitis cases, predominantly affects adult males. Patients usually present with obstructive jaundice due to enlargement of the pancreatic head or thickening of the lower bile duct wall. Pancreatic cancer is the leading differential diagnosis for which serological, imaging, and histological examinations need to be considered. Serologically, an elevated level of IgG4 is the most sensitive and specific finding. Imaging features include irregular narrowing of the pancreatic duct, diffuse or focal enlargement of the pancreas, a peri-pancreatic capsule-like rim, and enhancement at the late phase of contrast-enhanced images. Biopsy or surgical specimens show diffuse lymphoplasmacytic infiltration containing many IgG4+ plasma cells, storiform fibrosis, and obliterative phlebitis. A dramatic response to steroid therapy is another characteristic, and serological or radiological effects are normally identified within the first 2 or 3 weeks. Type 1 AIP is estimated as a pancreatic manifestation of systemic IgG4-related disease based on the fact that synchronous or metachronous lesions can develop in multiple organs (e.g. bile duct, salivary/lacrimal glands, retroperitoneum, artery, lung, and kidney) and those lesions are histologically identical irrespective of the organ of origin. Several potential autoantigens have been identified so far. A Th2-dominant immune reaction and the activation of regulatory T-cells are assumed

  1. Type 1 autoimmune pancreatitis

    Directory of Open Access Journals (Sweden)

    Zen Yoh

    2011-12-01

    Full Text Available Abstract Before the concept of autoimmune pancreatitis (AIP was established, this form of pancreatitis had been recognized as lymphoplasmacytic sclerosing pancreatitis or non-alcoholic duct destructive chronic pancreatitis based on unique histological features. With the discovery in 2001 that serum IgG4 concentrations are specifically elevated in AIP patients, this emerging entity has been more widely accepted. Classical cases of AIP are now called type 1 as another distinct subtype (type 2 AIP has been identified. Type 1 AIP, which accounts for 2% of chronic pancreatitis cases, predominantly affects adult males. Patients usually present with obstructive jaundice due to enlargement of the pancreatic head or thickening of the lower bile duct wall. Pancreatic cancer is the leading differential diagnosis for which serological, imaging, and histological examinations need to be considered. Serologically, an elevated level of IgG4 is the most sensitive and specific finding. Imaging features include irregular narrowing of the pancreatic duct, diffuse or focal enlargement of the pancreas, a peri-pancreatic capsule-like rim, and enhancement at the late phase of contrast-enhanced images. Biopsy or surgical specimens show diffuse lymphoplasmacytic infiltration containing many IgG4+ plasma cells, storiform fibrosis, and obliterative phlebitis. A dramatic response to steroid therapy is another characteristic, and serological or radiological effects are normally identified within the first 2 or 3 weeks. Type 1 AIP is estimated as a pancreatic manifestation of systemic IgG4-related disease based on the fact that synchronous or metachronous lesions can develop in multiple organs (e.g. bile duct, salivary/lacrimal glands, retroperitoneum, artery, lung, and kidney and those lesions are histologically identical irrespective of the organ of origin. Several potential autoantigens have been identified so far. A Th2-dominant immune reaction and the activation of

  2. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Marina Pasca di Magliano

    2007-11-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is an extremely aggressive malignancy, which carries a dismal prognosis. Activating mutations of the Kras gene are common to the vast majority of human PDA. In addition, recent studies have demonstrated that embryonic signaling pathway such as Hedgehog and Notch are inappropriately upregulated in this disease. The role of another embryonic signaling pathway, namely the canonical Wnt cascade, is still controversial. Here, we use gene array analysis as a platform to demonstrate general activation of the canonical arm of the Wnt pathway in human PDA. Furthermore, we provide evidence for Wnt activation in mouse models of pancreatic cancer. Our results also indicate that Wnt signaling might be activated downstream of Hedgehog signaling, which is an early event in PDA evolution. Wnt inhibition blocked proliferation and induced apoptosis of cultured adenocarcinoma cells, thereby providing evidence to support the development of novel therapeutical strategies for Wnt inhibition in pancreatic adenocarcinoma.

  3. Altered central pain processing after pancreatic surgery for chronic pancreatitis

    NARCIS (Netherlands)

    Bouwense, S. A.; Ahmed Ali, U.; ten Broek, R. P.; Issa, Y.; van Eijck, C. H.; Wilder-Smith, O. H.; van Goor, H.

    2013-01-01

    Chronic abdominal pain is common in chronic pancreatitis (CP) and may involve altered central pain processing. This study evaluated the relationship between pain processing and pain outcome after pancreatic duct decompression and/or pancreatic resection in patients with CP. Patients with CP

  4. Metabolic pancreatitis: Etiopathogenesis and management

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Kota

    2013-01-01

    Full Text Available Acute pancreatitis is a medical emergency. Alcohol and gallstones are the most common etiologies accounting for 60%-75% cases. Other important causes include postendoscopic retrograde cholangiopancreatography procedure, abdominal trauma, drug toxicity, various infections, autoimmune, ischemia, and hereditary causes. In about 15% of cases the cause remains unknown (idiopathic pancreatitis. Metabolic conditions giving rise to pancreatitis are less common, accounting for 5%-10% cases. The causes include hypertriglyceridemia, hypercalcemia, diabetes mellitus, porphyria, and Wilson′s disease. The episodes of pancreatitis tend to be more severe. In cases of metabolic pancreatitis, over and above the standard routine management of pancreatitis, careful management of the underlying metabolic abnormalities is of paramount importance. If not treated properly, it leads to recurrent life-threatening bouts of acute pancreatitis. We hereby review the pathogenesis and management of various causes of metabolic pancreatitis.

  5. CT of pancreatitis

    International Nuclear Information System (INIS)

    Fukuda, Toshio

    1990-01-01

    One hundred and two cases of acute and chronic pancreatitis were studied by computed tomography. Fluid collection was detected by CT in 45 cases, and the common extrapancreatic sites of involvement included the lesser sac (13 cases), anterior pararenal space (9 cases), transverse mesocolon (7 cases) and posterior pararenal space (5 cases). Ten cases of spontaneous resolution of pancreatic pseudocysts were encountered. Cystojejunostomy was done on 6 patients. A 4-to-6-weeks time interval has been currently accepted as necessary for pseudocyst wall maturation. However, the surgery was not possible in two patients in this series since the cyst wall was too thin. It is considered that the time over 3 months is required for surgical anastomosis of the cyst to the gastrointestinal tract. Pancreatic abscess has become the most common cause of death from pancreatitis. In this series pancreatic abscess occurred in 8 patients. Gas collection in the pancreas was observed in only one patient. In the other patients, pseudocysts had become infected and converted to abscesses. The CT number of 4 infected pseudocysts was less than 15 HU. Thus, it was not possible to distinguish infected from noninfected pseudocysts by CT. The author studied 9 patients with focal inflammatory mass of the pancreas with histologically proved severe fibrosis. All masses were small. Angiography showed occlusion or marked stenosis of the splenic vein in 3 cases. The postcontract CT (after intravenous bolus injection) in 7 cases of focal inflammatory mass demonstrated almost equal enhanced effect of the mass as compared with the adjacent normal pancreatic parenchyma. This finding is considered to be useful in distinguishing inflammatory mass from pancreatic carcinoma. (author)

  6. Kallikrein-related peptidase 7 is a potential target for the treatment of pancreatic cancer

    Science.gov (United States)

    Zheng, Jun; Zhang, Ding; Liu, Wei; Zheng, Wei Hong; Li, Xiao Song; Yao, Ru Cheng; Wang, Fangyu; Liu, Sen; Tan, Xiao

    2018-01-01

    Pancreatic cancer is one of the deadliest cancers with very poor prognosis, and the five-year survival rate of the patients is less than 5% after diagnosis. Kallikrein-related peptidases (KLKs) belong to a serine protease family with 15 members that play important roles in cellular physiological behavior and diseases. The high expression level of KLK7 in pancreatic cancer tissues is considered to be a marker for the poor prognosis of this disease. In this work, we set out to investigate whether KLK7 could be a target for the treatment of pancreatic cancer. Short hairpin RNAs (shRNAs) were designed and constructed in lentivirus to knock down KLK7 in pancreatic cancer cell line PANC-1, and the real time cellular analysis (RTCA) was used to evaluate cell proliferation, migration and invasion abilities. Small molecules inhibiting KLK7 were discovered by computer-aided drug screening and used to inhibit PANC-1 cells. Our results confirmed that KLK7 is significantly up-regulated in pancreatic cancer tissue, and knocking down or inhibiting KLK7 efficiently inhibited the proliferation, migration and invasion of pancreatic cancer cells. This study suggested that KLK7 could be a potential chemotherapy target for treatment of pancreatic cancer, which would provide us a novel strategy for the treatment of this disease. PMID:29560118

  7. Acute pancreatitis: staging with CT

    International Nuclear Information System (INIS)

    Gialeli, E.; Petrocheilou, G.; Georgaki, S.; Tzemailas, I.; Adraktas, A.; Charilas, G.; Patsiogiannis, V.

    2012-01-01

    Full text: Introduction: Computed Tomography (CT) is the imaging modality of choice for the diagnosis and staging of acute pancreatitis and its complications. Objectives and tasks: The purpose of this presentation is to demonstrate the findings in CT images which are useful for staging acute pancreatitis according to Balthazar, their significance and restrictions. Materials and methods: CT images from patients who were referred to our Department for an abdominal CT scan for the diagnosis or/and staging of acute pancreatitis were retrospectively studied. Results: In acute pancreatitis, CT helps to stage the severity of inflammatory process, to detect pancreatic necrosis and to depict local complications. CT severity index (CTSI), which was proposed by Balthazar et al, combines the grade of pancreatitis with the extent of pancreatic necrosis assigning points to the patients in order to find the severity index which scales from 0-10. More points are given for a higher grade of pancreatitis and for more extensive necrosis. Types of pancreatitis according to CTSI are: interstitial (Balthazar grade A-C), exudative (Balthazar grade D or E), necrotising (Balthazar grade E, CTSI:10) and central gland necrotising. Patients with pancreatitis but no collections or necrosis have an interstitial (mild) pancreatitis. In exudative pancreatitis there is normal enhancement of the entire pancreas associated with extensive peripancreatic collections. Necrotizing (severe) pancreatitis is characterized by protacted clinical course, high incidence of local complications and high mortality rate. Central gland necrosis is a subtype of necrotizing pancreatitis. Conclusions: The combination of CT imaging and clinical and laboratory evaluation allows the early diagnosis of acute pancreatitis. Acute pancreatitis may vary from a mild uneventful disease to a severe life-threatening illness with multisystemic organ failure. Thus, it is crucial to identify patients who are at high risk of severe

  8. Hereditary pancreatitis for the endoscopist

    OpenAIRE

    Patel, Milan R.; Eppolito, Amanda L.; Willingham, Field F.

    2013-01-01

    Hereditary pancreatitis shares a majority of clinical and morphologic features with chronic alcoholic pancreatitis, but may present at an earlier age. The term hereditary pancreatitis has primarily been associated with mutations in the serine protease 1 gene (PRSS1) which encodes for cationic trypsinogen. PRSS1 mutations account for approximately 68–81% of hereditary pancreatitis. Mutations in other genes, primarily serine protease inhibitor Kazal type 1 (SPINK1) and the cystic fibrosis trans...

  9. Pharmacological challenges in chronic pancreatitis

    OpenAIRE

    Olesen, Anne Estrup; Brokjaer, Anne; Fisher, Iben Wendelboe; Larsen, Isabelle Myriam

    2013-01-01

    Drug absorption in patients with chronic pancreatitis might be affected by the pathophysiology of the disease. The exocrine pancreatic insufficiency is associated with changes in gastrointestinal intraluminal pH, motility disorder, bacterial overgrowth and changed pancreatic gland secretion. Together these factors can result in malabsorption and may also affect the efficacy of pharmacological intervention. The lifestyle of chronic pancreatitis patients may also contribute to gastrointestinal ...

  10. Drug-induced acute pancreatitis

    NARCIS (Netherlands)

    I.A. Eland (Ingo)

    2003-01-01

    textabstractAcute pancreatitis is an inflammatory disease of the pancreas with sudden onset. The severity of acute pancreatitis may vary from mild to life threatening. There are many risk factors for acute pancreatitis, among which gallstones and alcohol abuse are most widely known. Drugs are

  11. Genetic basis of chronic pancreatitis

    NARCIS (Netherlands)

    Jansen, JBMJ; Morsche, RT; van Goor, Harry; Drenth, JPH

    2002-01-01

    Background: Pancreatitis has a proven genetic basis in a minority of patients. Methods: Review of the literature on genetics of pancreatitis. Results: Ever since the discovery that in most patients with hereditary pancreatitis a mutation in the gene encoding for cationic trypsinogen (R122H) was

  12. Multidisciplinaire behandeling van chronische pancreatitis

    NARCIS (Netherlands)

    Kempeneers, M. A.; Besselink, M. G.; Issa, Y.; van Hooft, J. E.; van Goor, H.; Bruno, M. J.; van Santvoort, H. C.; Boermeester, M. A.

    2017-01-01

    - Chronic pancreatitis is a progressive inflammatory disease, which leads to a severe decrease in quality of life and reduced life expectancy.- 85-90% of patients with chronic pancreatitis consult the doctor because of pain.- Pain in chronic pancreatitis has a multifactorial aetiology, with

  13. Pancreatic Cancer—Patient Version

    Science.gov (United States)

    Pancreatic cancer can form in exocrine cells and neuroendocrine cells. The exocrine type is more common and is usually found at an advanced stage. Pancreatic neuroendocrine tumors are less common but have a better prognosis. Start here to find information on pancreatic cancer treatment, research, and statistics.

  14. Robotic transgastric cystgastrostomy and pancreatic debridement in the management of pancreatic fluid collections following acute pancreatitis.

    Science.gov (United States)

    Kirks, Russell C; Sola, Richard; Iannitti, David A; Martinie, John B; Vrochides, Dionisios

    2016-01-01

    Pancreatic and peripancreatic fluid collections may develop after severe acute pancreatitis. Organized fluid collections such as pancreatic pseudocyst and walled-off pancreatic necrosis (WOPN) that mature over time may require intervention to treat obstructive or constitutional symptoms related to the size and location of the collection as well as possible infection. Endoscopic, open surgical and minimally invasive techniques are described to treat post-inflammatory pancreatic fluid collections. Surgical intervention may be required to treat collections containing necrotic pancreatic parenchyma or in locations not immediately apposed to the stomach or duodenum. Comprising a blend of the surgical approach and the clinical benefits of minimally invasive surgery, the robot-assisted technique of pancreatic cystgastrostomy with pancreatic debridement is described.

  15. Autoantibodies in chronic pancreatitis

    DEFF Research Database (Denmark)

    Rumessen, J J; Marner, B; Pedersen, N T

    1985-01-01

    In 60 consecutive patients clinically suspected of having chronic pancreatitis the serum concentration of the immunoglobulins (IgA, IgG, IgM), the IgG- and IgA-type non-organ-specific autoantibodies against nuclear material (ANA), smooth and striated muscle, mitochondria, basal membrane, and reti......In 60 consecutive patients clinically suspected of having chronic pancreatitis the serum concentration of the immunoglobulins (IgA, IgG, IgM), the IgG- and IgA-type non-organ-specific autoantibodies against nuclear material (ANA), smooth and striated muscle, mitochondria, basal membrane......, and reticulin, and the IgG- and IgA-type pancreas-specific antibodies against islet cells, acinus cells, and ductal cells (DA) were estimated blindly. In 23 of the patients chronic pancreatitis was verified, whereas chronic pancreatitis was rejected in 37 patients (control group). IgG and IgA were found...... in significantly higher concentrations in the patients with chronic pancreatitis than in the control group but within the normal range. ANA and DA occurred very frequently in both groups but with no statistical difference. Other autoantibodies only occurred sporadically. The findings of this study do not support...

  16. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    International Nuclear Information System (INIS)

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-01-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 μM, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. 45 Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45 Ca outflux. BPP was also capable of displacing the specific binding of [ 3 H]-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 μM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant

  17. Risk of Recurrent Pancreatitis and Progression to Chronic Pancreatitis After a First Episode of Acute Pancreatitis

    NARCIS (Netherlands)

    Ahmed Ali, Usama; Issa, Yama; Hagenaars, Julia C.; Bakker, Olaf J.; van Goor, Harry; Nieuwenhuijs, Vincent B.; Bollen, Thomas L.; van Ramshorst, Bert; Witteman, Ben J.; Brink, Menno A.; Schaapherder, Alexander F.; Dejong, Cornelis H.; Spanier, B. W. Marcel; Heisterkamp, Joos; van der Harst, Erwin; van Eijck, Casper H.; Besselink, Marc G.; Gooszen, Hein G.; van Santvoort, Hjalmar C.; Boermeester, Marja A.

    2016-01-01

    Patients with a first episode of acute pancreatitis can develop recurrent or chronic pancreatitis (CP). However, little is known about the incidence or risk factors for these events. We performed a cross-sectional study of 669 patients with a first episode of acute pancreatitis admitted to 15 Dutch

  18. an extended pancreatic normal subjects and ~in pancreatItIs In ...

    African Journals Online (AJOL)

    function . . patIents. N. H. GILlNSKY, A. S. MEE, I. N. MARKS. Summary. Exocrine pancreatic response was evaluated in patients with varying degrees of pancreatic damage and in control subjects by ... hormones, the Lundh meal and an oral pancreatic function test .... is any different from that of the cells in me normal gland.

  19. Endoscopic versus surgical drainage of the pancreatic duct in chronic pancreatitis

    NARCIS (Netherlands)

    Cahen, Djuna L.; Gouma, Dirk J.; Nio, Yung; Rauws, Erik A. J.; Boermeester, Marja A.; Busch, Olivier R.; Stoker, Jaap; Lameris, Johan S.; Dijkgraaf, Marcel G. W.; Huibregtse, Kees; Bruno, Marco J.

    2007-01-01

    BACKGROUND: For patients with chronic pancreatitis and a dilated pancreatic duct, ductal decompression is recommended. We conducted a randomized trial to compare endoscopic and surgical drainage of the pancreatic duct. METHODS: All symptomatic patients with chronic pancreatitis and a distal

  20. Drug-induced pancreatitis.

    Science.gov (United States)

    Nitsche, Claudia; Maertin, Sandrina; Scheiber, Jonas; Ritter, Christoph A; Lerch, Markus M; Mayerle, Julia

    2012-04-01

    Drugs are thought to be a rare cause for acute pancreatitis; however 525 different drugs are listed in the World Health Organization (WHO) database suspected to cause acute pancreatitis as a side effect. Many of them are widely used to treat highly prevalent diseases. The true incidence is not entirely clear since only few systematic population based studies exist. The majority of the available data are derived from case reports or case control studies. Furthermore, the causality for many of these drugs remains elusive and for only 31 of these 525 dugs a definite causality was established. Definite proof for causality is defined by the WHO classification if symptoms reoccur upon rechallenge.In the actual algorithm the diagnosis is confirmed if no other cause of acute pancreatitis can be detected, and the patient is taking one of the suspected drugs.

  1. Imaging in pancreatic transplants

    International Nuclear Information System (INIS)

    Heller, Matthew T; Bhargava, Puneet

    2014-01-01

    Pancreatic transplantation, performed alone or in conjunction with kidney transplantation, is an effective treatment for advanced type I diabetes mellitus and select patients with type II diabetes mellitus. Following advancements in surgical technique, postoperative management, and immunosuppression, pancreatic transplantation has significantly improved the length and quality of life for patients suffering from pancreatic dysfunction. While computed tomography (CT) and magnetic resonance imaging (MRI) have more limited utility, ultrasound is the preferred initial imaging modality to evaluate the transplanted pancreas; gray-scale assesses the parenchyma and fluid collections, while Doppler interrogation assesses vascular flow and viability. Ultrasound is also useful to guide percutaneous interventions for the transplanted pancreas. With knowledge of the surgical anatomy and common complications, the abdominal radiologist plays a central role in the perioperative and postoperative evaluation of the transplanted pancreas

  2. Antimuscarinic effects of chloroquine in rat pancreatic acini

    International Nuclear Information System (INIS)

    Habara, Y.; Williams, J.A.; Hootman, S.R.

    1986-01-01

    Chloroquine inhibited carbachol-induced amylase release in a dose-dependent fashion in rat pancreatic acini; cholecystokinin- and bombesin-induced secretory responses were almost unchanged by the antimalarial drug. The inhibition of carbachol-induced amylase release by chloroquine was competitive in nature with a K/sub i/ of 11.7 μM. Chloroquine also inhibited [ 3 H]N-methylscopolamine binding to acinar muscarinic receptors. The IC 50 for chloroquine inhibition of [ 3 H]N-methylscopolamine binding was lower than that for carbachol or the other antimalarial drugs, quinine and quinidine. These results demonstrate that chloroquine is a muscarinic receptor antagonist in the exocrine pancreas

  3. The novel cytokine interleukin-33 activates acinar cell proinflammatory pathways and induces acute pancreatic inflammation in mice.

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    Full Text Available Acute pancreatitis is potentially fatal but treatment options are limited as disease pathogenesis is poorly understood. IL-33, a novel IL-1 cytokine family member, plays a role in various inflammatory conditions but its role in acute pancreatitis is not well understood. Specifically, whether pancreatic acinar cells produce IL-33 when stressed or respond to IL-33 stimulation, and whether IL-33 exacerbates acute pancreatic inflammation is unknown.In duct ligation-induced acute pancreatitis in mice and rats, we found that (a IL-33 concentration was increased in the pancreas; (b mast cells, which secrete and also respond to IL-33, showed degranulation in the pancreas and lung; (c plasma histamine and pancreatic substance P concentrations were increased; and (d pancreatic and pulmonary proinflammatory cytokine concentrations were increased. In isolated mouse pancreatic acinar cells, TNF-α stimulation increased IL-33 release while IL-33 stimulation increased proinflammatory cytokine release, both involving the ERK MAP kinase pathway; the flavonoid luteolin inhibited IL-33-stimulated IL-6 and CCL2/MCP-1 release. In mice without duct ligation, exogenous IL-33 administration induced pancreatic inflammation without mast cell degranulation or jejunal inflammation; pancreatic changes included multifocal edema and perivascular infiltration by neutrophils and some macrophages. ERK MAP kinase (but not p38 or JNK and NF-kB subunit p65 were activated in the pancreas of mice receiving exogenous IL-33, and acinar cells isolated from the pancreas of these mice showed increased spontaneous cytokine release (IL-6, CXCL2/MIP-2α. Also, IL-33 activated ERK in human pancreatic tissue.As exogenous IL-33 does not induce jejunal inflammation in the same mice in which it induces pancreatic inflammation, we have discovered a potential role for an IL-33/acinar cell axis in the recruitment of neutrophils and macrophages and the exacerbation of acute pancreatic inflammation

  4. Pancreatic lipase inhibitory constituents from Morus alba leaves and optimization for extraction conditions.

    Science.gov (United States)

    Jeong, Ji Yeon; Jo, Yang Hee; Kim, Seon Beom; Liu, Qing; Lee, Jin Woo; Mo, Eun Jin; Lee, Ki Yong; Hwang, Bang Yeon; Lee, Mi Kyeong

    2015-06-01

    The leaves of Morus alba (Moraceae) have been traditionally used for the treatment of metabolic diseases including diabetes and hyperlipidemia. Thus, inhibitory effect of M. alba leaves on pancreatic lipase and their active constituents were investigated in this study. Twenty phenolic compounds including ten flavonoids, eight benzofurans, one stilbene and one chalcones were isolated from the leaves of M. alba. Among the isolated compounds, morachalcone A (20) exerted strong pancreatic lipase inhibition with IC50 value of 6.2 μM. Other phenolic compounds containing a prenyl group showed moderate pancreatic lipase inhibition with IC50 value of <50 μM. Next, extraction conditions with maximum pancreatic lipase inhibition and phenolic content were optimized using response surface methodology with three-level-three-factor Box-Behnken design. Our results suggested the optimized extraction condition for maximum pancreatic lipase inhibition and phenolic content as ethanol concentration of 74.9%; temperature 57.4 °C and sample/solvent ratio, 1/10. The pancreatic lipase inhibition and total phenolic content under optimized condition were found to be 58.5% and 26.2 μg GAE (gallic acid equivalent)/mg extract, respectively, which were well matched with the predicted value. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. miR-146a Suppresses Invasion of Pancreatic Cancer Cells

    Science.gov (United States)

    Li, Yiwei; VandenBoom, Timothy G.; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

    2010-01-01

    The aggressive course of pancreatic cancer is believed to reflect its unusually invasive and metastatic nature, which is associated with epidermal growth factor receptor (EGFR) overexpression and NF-κB activation. MicroRNAs (miRNA) have been implicated in the regulation of various pathobiological processes in cancer, including metastasis in pancreatic cancer and in other human malignancies. In this study, we report lower expression of miR-146a in pancreatic cancer cells compared with normal human pancreatic duct epithelial cells. Reexpression of miR-146a inhibited the invasive capacity of pancreatic cancer cells with concomitant downregulation of EGFR and the NF-κB regulatory kinase interleukin 1 receptor–associated kinase 1 (IRAK-1). Cellular mechanism studies revealed crosstalk between EGFR, IRAK-1, IκBα, NF-κB, and MTA-2, a transcription factor that regulates metastasis. Treatment of pancreatic cancer cells with the natural products 3,3′-diinodolylmethane (DIM) or isoflavone, which increased miR-146a expression, caused a downregulation of EGFR, MTA-2, IRAK-1, and NF-κB, resulting in an inhibition of pancreatic cancer cell invasion. Our findings reveal DIM and isoflavone as nontoxic activators of a miRNA that can block pancreatic cancer cell invasion and metastasis, offering starting points to design novel anticancer agents. PMID:20124483

  6. Cystic pancreatic lymphangioma

    Directory of Open Access Journals (Sweden)

    Alihan Gurkan

    2012-04-01

    Full Text Available Lymphangioma of the pancreas is a rare benign tumor of lymphatic origin. Retroperitoneal lymphangiomas account for 1% of all lymphangiomas. Herein, we report a case of cystic pancreatic lymphangioma diagnosed in 34 year-old female patient who was hospitalized for a slight pain in the epigastrium and vomiting. Radiological imaging revealed a large multiloculated cystic abdominal mass with enhancing septations involving the upper retroperitoneum. During the laparoscopic surgery, a well circumscribed polycystic tumor was completely excised preserving the pancreatic duct. The patient made a complete recovery and is disease-free 12 months postoperatively.

  7. Necrotizing pancreatitis: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Bendersky VA

    2016-10-01

    Full Text Available Victoria A Bendersky,1 Mohan K Mallipeddi,2 Alexander Perez,2 Theodore N Pappas,2 1School of Medicine, 2Department of Surgery, Duke University, Durham, NC, USA Abstract: Acute pancreatitis is a common disease that can progress to gland necrosis, which imposes significant risk of morbidity and mortality. In general, the treatment for pancreatitis is a supportive therapy. However, there are several reasons to escalate to surgery or another intervention. This review discusses the pathophysiology as well as medical and interventional management of necrotizing pancreatitis. Current evidence suggests that patients are best served by delaying interventions for at least 4 weeks, draining as a first resort, and debriding recalcitrant tissue using minimally invasive techniques to promote or enhance postoperative recovery while reducing wound-related complications. Keywords: necrotizing pancreatitis, pancreatic necrosectomy, VARD, pancreatic debridement, pancreatic collections

  8. Pancreatic cancer stimulates pancreatic stellate cell proliferation and TIMP-1 production through the MAP kinase pathway

    International Nuclear Information System (INIS)

    Yoshida, Seiya; Yokota, Tokuyasu; Ujiki, Michael; Ding Xianzhong; Pelham, Carolyn; Adrian, Thomas E.; Talamonti, Mark S.; Bell, Richard H.; Denham, Woody

    2004-01-01

    Pancreatic adenocarcinoma is characterized by an intense desmoplastic reaction that surrounds the tumor. Pancreatic stellate cells (PSCs) are thought to be responsible for production of this extracellular matrix. When activated, PSCs have a myofibroblast phenotype and produce not only components of the extracellular matrix including collagen, fibronectin, and laminin, but also matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). Since PSCs are found in the stroma surrounding human pancreatic adenocarcinoma, we postulate that pancreatic cancer could impact PSC proliferation and TIMP-1 production. Rat PSCs were isolated and cultured. Isolated PSCs were exposed to PANC-1 conditioned medium (CM) and proliferation, activation of the mitogen-activated protein (MAP) kinase pathway, and TIMP-1 gene induction were determined. Exposure to PANC-1 CM increased PSC DNA synthesis, cell number, and TIMP-1 mRNA (real-time PCR) as well as activating the extracellular-regulated kinase (ERK) 1/2. Inhibition of ERK 1/2 phosphorylation (U0126) prevented the increases in growth and TIMP-1 expression. PANC-1 CM stimulates PSC proliferation and TIMP-1 through the MAP kinase (ERK 1/2) pathway

  9. [Pancreatic serous cystadenoma associated with pancreatic heterotopia].

    Science.gov (United States)

    Mohamed, Hedfi; Dorra, Belghachem; Hela, Bouhafa; Cherif, Abdelhedi; Azza, Sridi; Karim, Sassi; Khadija, Bellil; Adnen, Chouchene

    2016-01-01

    Pancreatic heterotopias (HP) are rare. They can occur at any age with a slight male predominance. These lesions are usually asymptomatic and they are often found incidentally during upper or lower GI endoscopy or during the anatomo-pathological examination of an organ which was resected for other reasons; they can be isolated or associated with a digestive pathology. We report, through observation, the association of HP with serous cystadenoma of the pancreas discovered during examinations to identify the etiology of isolated abdominal pain. The aim of this study is to analyse clinical and histological features of this rare pathology.

  10. A possible case of saw palmetto-induced pancreatitis.

    Science.gov (United States)

    Wargo, Kurt A; Allman, Elena; Ibrahim, Farrah

    2010-07-01

    A 65-year-old male with a history of diabetes, hypertension, hyperlipidemia, gout, Barrett esophagitis, and chronic gastritis developed acute pancreatitis after taking one week of the herbal medicine, saw palmetto, for symptoms related to benign prostatic hyperplasia (BPH). Ultrasound and computed tomography ruled out cholelithiasis and obstruction, triglycerides were normal, and he had no recent infection or trauma. He had a history of occasional alcohol consumption, though there was no recent increased intake. The most likely cause of pancreatitis in this case was saw palmetto. Saw palmetto (Serenoa repens) is an herbal medication used primarily in the treatment of symptoms related to BPH. It has a high content of fatty acids and phytosterols which are thought to exert their effects by inhibiting the enzyme 5-alpha-reductase, thereby preventing the conversion of testosterone into dihydrotestosterone (DHT). It has been postulated that saw palmetto directly stimulates estrogenic receptors and inhibits progesterone receptors in the prostate tissue. A previous report implicated the estrogen/antiandrogen properties of saw palmetto as inducing hepatotoxicity in a patient. Additionally, it has also been postulated that stimulation of the estrogenic receptors may lead to increased triglyceride levels or induction of a hypercoagulable state that leads to pancreatic necrosis. Finally, inhibition of cyclooxygenase, a property of saw palmetto, may be linked to acute pancreatitis. Acute pancreatitis, a serious and sometimes fatal disorder may occur secondary to medications. Although the mechanism is not fully known, this is the second case of acute pancreatitis that has been documented secondary to the herbal medication saw palmetto. It is important for clinicians to obtain detailed medication histories, including over-the-counter and herbal medications, in order to prevent further complications from occurring.

  11. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models

    Science.gov (United States)

    Wen, Li; Voronina, Svetlana; Javed, Muhammad A.; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V.; Criddle, David N.; Sutton, Robert

    2015-01-01

    Background & Aims Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Methods Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. Results GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Conclusions Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed

  12. Environmental risk factors for chronic pancreatitis and pancreatic cancer.

    Science.gov (United States)

    Nitsche, Claudia; Simon, Peter; Weiss, F Ulrich; Fluhr, Gabriele; Weber, Eckhard; Gärtner, Simone; Behn, Claas O; Kraft, Matthias; Ringel, Jörg; Aghdassi, Ali; Mayerle, Julia; Lerch, Markus M

    2011-01-01

    Chronic pancreatitis has long been thought to be mainly associated with immoderate alcohol consumption. The observation that only ∼10% of heavy drinkers develop chronic pancreatitis not only suggests that other environmental factors, such as tobacco smoke, are potent additional risk factors, but also that the genetic component of pancreatitis is more common than previously presumed. Either disease-causing or protective traits have been indentified for mutations in different trypsinogen genes, the gene for the trypsin inhibitor SPINK1, chymotrypsinogen C, and the cystic fibrosis transmembane conductance regulator (CFTR). Other factors that have been proposed to contribute to pancreatitis are obesity, diets high in animal protein and fat, as well as antioxidant deficiencies. For the development of pancreatic cancer, preexisting chronic pancreatitis, more prominently hereditary pancreatitis, is a risk factor. The data on environmental risk factors for pancreatic cancer are, with the notable exception of tobacco smoke, either sparse, unconfirmed or controversial. Obesity appears to increase the risk of pancreatic cancer in the West but not in Japan. Diets high in processed or red meat, diets low in fruits and vegetables, phytochemicals such as lycopene and flavonols, have been proposed and refuted as risk or protective factors in different trials. The best established and single most important risk factor for cancer as well as pancreatitis and the one to clearly avoid is tobacco smoke. Copyright © 2011 S. Karger AG, Basel.

  13. A Mini-Review on the Effect of Docosahexaenoic Acid (DHA on Cerulein-Induced and Hypertriglyceridemic Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Yoo Kyung Jeong

    2017-10-01

    Full Text Available Acute pancreatitis refers to the sudden inflammation of the pancreas. It is associated with premature activation and release of digestive enzymes into the pancreatic interstitium and systemic circulation, resulting in pancreatic tissue autodigestion and multiple organ dysfunction, as well as with increased cytokine production, ultimately leading to deleterious local and systemic effects. Although mechanisms involved in pathogenesis of acute pancreatitis have not been completely elucidated, oxidative stress is regarded as a major risk factor. In human acute pancreatitis, lipid peroxide levels in pancreatic tissues increase. Docosahexaenoic acid (DHA, an omega-3 polyunsaturated fatty acid (C22:6n-3, exerts anti-inflammatory and antioxidant effects on various cells. Previous studies have shown that DHA activates peroxisome proliferator-activated receptor-γ and induces catalase, which inhibits oxidative stress-mediated inflammatory signaling required for cytokine expression in experimental acute pancreatitis using cerulein. Cerulein, a cholecystokinin analog, induces intra-acinar activation of trypsinogen in the pancreas, which results in human acute pancreatitis-like symptoms. Therefore, DHA supplementation may be beneficial for preventing or inhibiting acute pancreatitis development. Since DHA reduces serum triglyceride levels, addition of DHA to lipid-lowering drugs like statins has been investigated to reduce hypertriglyceridemic acute pancreatitis. However, high DHA concentrations increase cytosolic Ca2+, which activates protein kinase C and may induce hyperlipidemic acute pancreatitis. In this review, effect of DHA on cerulein-induced and hypertriglyceridemic acute pancreatitis has been discussed. The relation of high concentration of DHA to hyperlipidemic acute pancreatitis has been included.

  14. Metronidazole-Induced Pancreatitis

    Directory of Open Access Journals (Sweden)

    E. O'Halloran

    2010-01-01

    Conclusion. This case provides the eighth report of Metronidazole induced pancreatitis. All of the cases were reported in females and ran a benign course.Early diagnosis, discontinuation of the drug and supportive care will lead to a successful recovery in the majority of cases.

  15. Pancreatic Islet Transplantation

    Science.gov (United States)

    ... auto-transplantation is performed following total pancreatectomy—the surgical removal of the whole pancreas—in patients with severe and chronic, or long lasting, pancreatitis that cannot be managed by other treatments. This procedure is not considered experimental. Patients with ...

  16. Radioimmunoassay of pancreatic glucagon

    International Nuclear Information System (INIS)

    Nooijen, W.J.

    1979-01-01

    The author presents some of the problems and concepts related to the development of a radioimmunoassay of pancreatic glucagon. A specific derivatization of glucagon for raising specific anti-glucagon antisera is introduced, and special procedures for diminishing the non-specific effect are outlined. (G.T.H.)

  17. Pancreatitis del surco

    Directory of Open Access Journals (Sweden)

    Susana Araújo-Fernández

    2014-03-01

    It is a rare disease, but we must keep it in mind when we make the differential diagnosis of patients with abdominal pain of unknown origin. It is very important to distinguish this pathology from a pancreatic head carcinoma, as both treatments and prognosis differ greatly, so we believe important communication of a new case.

  18. Surgical Treatment of Acute Pancreatitis.

    Science.gov (United States)

    Werner, Jens; Uhl, Waldemar; Büchler, Markus W.

    2003-10-01

    Patients with predicted severe necrotizing pancreatitis as diagnosed by C-reactive protein (>150 mg/L) and/or contrast-enhanced computed tomography should be managed in the intensive care unit. Prophylactic broad-spectrum antibiotics reduce infection rates and survival in severe necrotizing pancreatitis. Endoscopic retrograde cholangiopancreatography and endoscopic sphincterotomy is a causative therapy for gallstone pancreatitis with impacted stones, biliary sepsis, or obstructive jaundice. Fine needle aspiration for bacteriology should be performed to differentiate between sterile and infected pancreatic necrosis in patients with sepsis syndrome. Infected pancreatic necrosis in patients with clinical signs and symptoms of sepsis is an indication for surgery. Patients with sterile pancreatic necrosis should be managed conservatively. Surgery in patients with sterile necrosis may be indicated in cases of persistent necrotizing pancreatitis and in the rare cases of "fulminant acute pancreatitis." Early surgery, within 14 days after onset of the disease, is not recommended in patients with necrotizing pancreatitis. The surgical approach should be organ-preserving (debridement/necrosectomy) and combined with a postoperative management concept that maximizes postoperative evacuation of retroperitoneal debris and exudate. Minimally invasive surgical procedures have to be regarded as an experimental approach and should be restricted to controlled trials. Cholecystectomy should be performed to avoid recurrence of gallstone-associated acute pancreatitis.

  19. Eosinophilic Pancreatitis: A Rare Cause of Recurrent Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Jennifer Reppucci

    2017-03-01

    Full Text Available Eosinophilic pancreatitis is a rare form of recurrent acute pancreatitis that demonstrates distinct histologic features, including diffuse, periductal, acinar, and septal inflammatory infiltrates comprised of a pure or predominant population of eosinophils, eosinophilic phlebitis and arteritis, and localized eosinophilic infiltrates with pseudocyst formation. It is associated with elevated serum immunoglobulin E levels, an elevated eosinophil count with systemic manifestations, and eosinophilic infiltrates in other organs of the gastrointestinal tract. We present a case of eosinophilic pancreatitis in a 44-year-old man who was diagnosed after pancreatic resection for recurrent bouts of acute pancreatitis. While the gross and histologic evaluations matched other reported cases of eosinophilic pancreatitis, our patient had only minimal peripheral eosinophilia, no reported history of symptoms related to elevated eosinophilia or immunoglobulin E, and only mild eosinophilic infiltrates in his gallbladder.

  20. A Novel Ras Inhibitor (MDC-1016 Reduces Human Pancreatic Tumor Growth in Mice

    Directory of Open Access Journals (Sweden)

    Gerardo G Mackenzie

    2013-10-01

    Full Text Available Pancreatic cancer has one of the poorest prognoses among all cancers partly because of its persistent resistance to chemotherapy. The currently limited treatment options for pancreatic cancer underscore the need for more efficient agents. Because activating Kras mutations initiate and maintain pancreatic cancer, inhibition of this pathway should have a major therapeutic impact. We synthesized phospho-farnesylthiosalicylic acid (PFTS; MDC-1016 and evaluated its efficacy, safety, and metabolism in preclinical models of pancreatic cancer. PFTS inhibited the growth of human pancreatic cancer cells in culture in a concentration- and time-dependent manner. In an MIA PaCa-2 xenograft mouse model, PFTS at a dose of 50 and 100 mg/kg significantly reduced tumor growth by 62% and 65% (P < .05 vs vehicle control. Furthermore, PFTS prevented pancreatitis-accelerated acinar-to-ductal metaplasia in mice with activated Kras. PFTS appeared to be safe, with the animals showing no signs of toxicity during treatment. Following oral administration, PFTS was rapidly absorbed, metabolized to FTS and FTS glucuronide, and distributed through the blood to body organs. Mechanistically, PFTS inhibited Ras-GTP, the active form of Ras, both in vitro and in vivo, leading to the inhibition of downstream effector pathways c-RAF/mitogen-activated protein-extracellular signal-regulated kinase (ERK kinase (MEK/ERK1/2 kinase and phosphatidylinositol 3-kinase/AKT. In addition, PFTS proved to be a strong combination partner with phospho-valproic acid, a novel signal transducer and activator of transcription 3 (STAT3 inhibitor, displaying synergy in the inhibition of pancreatic cancer growth. In conclusion, PFTS, a direct Ras inhibitor, is an efficacious agent for the treatment of pancreatic cancer in preclinical models, deserving further evaluation.

  1. Suppression of IL-6 Gene by shRNA Augments Gemcitabine Chemosensitization in Pancreatic Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hai-Bo Xing

    2018-01-01

    Full Text Available Pancreatic adenocarcinoma has an exceedingly poor prognosis, accounting for five-year survival of less than 5%. Presently, improving the efficacy of pancreatic adenocarcinoma treatment has been the focus of medical researchers worldwide. Recently, it has been suggested that deregulation of interleukin- (IL- 6 is caused by a key gene involved in the beginning and development of pancreatic adenocarcinoma. Herein, we investigated whether suppression of IL-6 could augment gemcitabine sensitivity in the PANC-1 cells. We found considerably higher expression of IL-6 in pancreatic adenocarcinoma tissues than that in the adjacent nontumorous tissues. Suppression of IL-6 by shRNA resulted in apoptosis as well as inhibition of cell proliferation and tumorigenicity. In addition, suppression of IL-6 remarkably promoted antitumor effect of gemcitabine, indicating that the combination of shRNA targeting IL-6 with gemcitabine may provide a potential clinical approach for pancreatic cancer therapy.

  2. Legumain is activated in macrophages during pancreatitis

    NARCIS (Netherlands)

    Edgington-Mitchell, L.E.; Wartmann, T.; Fleming, A.K.; Gocheva, V.; Linden, W.A. van der; Withana, N.P.; Verdoes, M.; Aurelio, L.; Edgington-Mitchell, D.; Lieu, T.; Parker, B.S.; Graham, B.; Reinheckel, T.; Furness, J.B.; Joyce, J.A.; Storz, P.; Halangk, W.; Bogyo, M.; Bunnett, N.W.

    2016-01-01

    Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked

  3. Acute pancreatitis: clinical vs. CT findings

    International Nuclear Information System (INIS)

    Hill, M.C.; Barkin, J.; Isikoff, M.B.; Silver stein, W.; Kalser, M.

    1982-01-01

    In a prospective study of 91 patients with acute pancreatitis, computed tomographic (CT) findings were correlated with the clinical type of acute pancreatitis. In acute edematous pancreatitis (63 patients; 16 with repeat CT), CT was normal (28%) or showed inflammation limited to the pancreas (61%). Phlegmonous changes were present in 11%, including one patient with focal pancreatic hemorrhage, indicating that clinically unsuspected hemorrhagic pancreatitis can occur. In acute necrotizing (hemorrhagic, suppurative) pancreatitis (nine patients; eight with repeat CT), no patient had a normal CT scan and 89% had phlegmonous changes. One patient had hemorrhagic pancreatitis and three had abscesses. In acute exacerbation of chronic pancreatitis (10 patients; three with repeat CT), there were pancreatic calcifications (70%), a focal mass (40%), and pancreatic ductal dilation (30%). On follow-up CT, the findings of acute pancreatitis did not always disappear with resolution of the clinical symptons. This was especialy true of phlegmonous pancreatitis, where the CT findings could persist for months

  4. Dendritic Cells Promote Pancreatic Viability in Mice with Acute Pancreatitis

    Science.gov (United States)

    Bedrosian, Andrea S.; Nguyen, Andrew H.; Hackman, Michael; Connolly, Michael K.; Malhotra, Ashim; Ibrahim, Junaid; Cieza-Rubio, Napoleon E.; Henning, Justin R.; Barilla, Rocky; Rehman, Adeel; Pachter, H. Leon; Medina-Zea, Marco V.; Cohen, Steven M.; Frey, Alan B.; Acehan, Devrim; Miller, George

    2011-01-01

    Background & Aims Acute pancreatitis increases morbidity and mortality from organ necrosis by mechanisms that are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. Methods Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier analysis. Results Numbers of MHC II+CD11c+DC increased 100-fold in pancreas of mice with acute pancreatitis, to account for nearly 15% of intra-pancreatic leukocytes. Intra-pancreatic DC acquired an immune phenotype in mice with acute pancreatitis; they expressed higher levels of MHC II and CD86 and increased production of interleukin-6, membrane cofactor protein (MCP)-1, and tumor necrosis factor (TNF)-α. However, rather than inducing an organ-destructive inflammatory process, DC were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DC and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DC died from acinar cell death within 4 days. Depletion of DC from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DC did not require infiltrating neutrophils, activation of NF-κB, or signaling by mitogen-activated protein kinase or TNF-α. Conclusions DC are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress. PMID:21801698

  5. Pancreatic tissue fluid pressure during drainage operations for chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    Pancreatic tissue fluid pressure was measured in 10 patients undergoing drainage operations for painful chronic pancreatitis. The pressure was measured by the needle technique in the three anatomic regions of the pancreas before and at different stages of the drainage procedure, and the results...... were compared with preoperative endoscopic retrograde cholangiopancreatography (ERCP) morphology. The preoperatively elevated pressure decreased in all patients but one, to normal or slightly elevated values. The median pressure decrease was 50% (range, 0-90%; p = 0.01). The drainage anastomosis (a...... a decrease in pancreatic tissue fluid pressure during drainage operations for pain in chronic pancreatitis. Regional pressure decrease were apparently unrelated to ERCP findings....

  6. Management strategies for autoimmune pancreatitis.

    Science.gov (United States)

    Kamisawa, Terumi; Takuma, Kensuke; Hara, Seiichi; Tabata, Taku; Kuruma, Sawako; Inaba, Yoshihiko; Gopalakrishna, Rajesh; Egawa, Naoto; Itokawa, Fumihide; Itoi, Takao

    2011-10-01

    Autoimmune pancreatitis (AIP) is a newly developed concept for a peculiar type of pancreatitis, and at present is recognized as a pancreatic lesion reflecting IgG4-related systemic disease. It is of utmost importance to differentiate AIP from pancreatic cancer to avoid unnecessary surgery. The current management strategies for AIP, including its clinical features, diagnostic criteria, clinical subtypes, steroid therapy and prognosis are discussed, based on our 66 AIP cases and papers searched in PubMed from 1992 to March 2011, using the term 'autoimmune pancreatitis'. A new clinicopathological entity, an 'IgG4-related sclerosing disease' is also mentioned. AIP should be considered in the differential diagnosis in elderly male patients presented with obstructive jaundice and pancreatic mass. Steroids are a standard therapy for AIP, but their regimen including maintenance therapy should be evaluated in prospective trials.

  7. [Robot-assisted pancreatic resection].

    Science.gov (United States)

    Müssle, B; Distler, M; Weitz, J; Welsch, T

    2017-06-01

    Although robot-assisted pancreatic surgery has been considered critically in the past, it is nowadays an established standard technique in some centers, for distal pancreatectomy and pancreatic head resection. Compared with the laparoscopic approach, the use of robot-assisted surgery seems to be advantageous for acquiring the skills for pancreatic, bile duct and vascular anastomoses during pancreatic head resection and total pancreatectomy. On the other hand, the use of the robot is associated with increased costs and only highly effective and professional robotic programs in centers for pancreatic surgery will achieve top surgical and oncological quality, acceptable operation times and a reduction in duration of hospital stay. Moreover, new technologies, such as intraoperative fluorescence guidance and augmented reality will define additional indications for robot-assisted pancreatic surgery.

  8. Diagnostic Management of Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dabizzi, Emanuele [Division of Gastroenterology and Hepatology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Florida 32224 (United States); Assef, Mauricio Saab [Faculdade de Ciências Médicas da Santa Casa de São Paulo, Rua Dr. Cesário Motta Jr. #61 Cep: 01221-020, São Paulo (Brazil); Raimondo, Massimo, E-mail: raimondo.massimo@mayo.edu [Division of Gastroenterology and Hepatology, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, Florida 32224 (United States)

    2011-01-31

    Pancreatic cancer is one of the most deadly solid tumors, with an overall 5-year survival rate of less than 5%. Due to a non-specific clinical presentation, it is often diagnosed at an advanced stage and is rarely amenable for curative treatment. Therefore early diagnosis and appropriate staging are still essential to define the best care and to improve patient survival. Several imaging modalities are currently available for the evaluation of pancreatic cancer. This review focuses on different techniques and discusses the diagnostic management of patients with pancreatic cancer. This review was conducted utilizing Pubmed and was limited to papers published within the last 5 years. The search key words pancreatic cancer, pancreatic adenocarcinoma, pancreatic tumors, diagnosis, radiology, imaging, nuclear imaging, endoscopy, endoscopic ultrasound and biochemical markers were used.

  9. Diagnostic Management of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Dabizzi, Emanuele; Assef, Mauricio Saab; Raimondo, Massimo

    2011-01-01

    Pancreatic cancer is one of the most deadly solid tumors, with an overall 5-year survival rate of less than 5%. Due to a non-specific clinical presentation, it is often diagnosed at an advanced stage and is rarely amenable for curative treatment. Therefore early diagnosis and appropriate staging are still essential to define the best care and to improve patient survival. Several imaging modalities are currently available for the evaluation of pancreatic cancer. This review focuses on different techniques and discusses the diagnostic management of patients with pancreatic cancer. This review was conducted utilizing Pubmed and was limited to papers published within the last 5 years. The search key words pancreatic cancer, pancreatic adenocarcinoma, pancreatic tumors, diagnosis, radiology, imaging, nuclear imaging, endoscopy, endoscopic ultrasound and biochemical markers were used

  10. Current knowledge on pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Juan eIovanna

    2012-01-01

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3-5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes and the deregulation of many signalling pathways. Therefore, the strategies targeting these molecules as well as their downstream signalling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical and therapeutic aspects of pancreatic cancer.

  11. Current Knowledge on Pancreatic Cancer

    International Nuclear Information System (INIS)

    Iovanna, Juan; Mallmann, Maria Cecilia; Gonçalves, Anthony; Turrini, Olivier; Dagorn, Jean-Charles

    2012-01-01

    Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3–5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer.

  12. Current Knowledge on Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Iovanna, Juan [INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille (France); Mallmann, Maria Cecilia [Centre d’Investigation Clinique de Marseille, Marseille (France); Gonçalves, Anthony [Département d’Oncologie Médicale, Institut Paoli-Calmettes, Marseille (France); Turrini, Olivier [Département de Chirurgie Oncologique, Institut Paoli-Calmettes, Marseille (France); Dagorn, Jean-Charles, E-mail: juan.iovanna@inserm.fr [INSERM U624, Stress Cellulaire, Parc Scientifique et Technologique de Luminy, Marseille (France)

    2012-01-31

    Pancreatic cancer is the fourth leading cause of cancer death with a median survival of 6 months and a dismal 5-year survival rate of 3–5%. The development and progression of pancreatic cancer are caused by the activation of oncogenes, the inactivation of tumor suppressor genes, and the deregulation of many signaling pathways. Therefore, the strategies targeting these molecules as well as their downstream signaling could be promising for the prevention and treatment of pancreatic cancer. However, although targeted therapies for pancreatic cancer have yielded encouraging results in vitro and in animal models, these findings have not been translated into improved outcomes in clinical trials. This failure is due to an incomplete understanding of the biology of pancreatic cancer and to the selection of poorly efficient or imperfectly targeted agents. In this review, we will critically present the current knowledge regarding the molecular, biochemical, clinical, and therapeutic aspects of pancreatic cancer.

  13. Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer.

    Science.gov (United States)

    Koliopanos, Alexander; Kleeff, Jörg; Xiao, Yi; Safe, Stephen; Zimmermann, Arthur; Büchler, Markus W; Friess, Helmut

    2002-09-05

    The arylhydrocarbon receptor (AhR) was initially identified as a member of the adaptive metabolic and toxic response pathway to polycyclic aromatic hydrocarbons and to halogenated dibenzo-p-dioxins and dibenzofurans. In the present study, we sought to determine the functional significance of the AhR pathway in pancreatic carcinogenesis. AhR expression was analysed by Northern blotting. The exact site of AhR expression was analysed by in situ hybridization and immunohistochemistry. The effects of TCDD and four selective AhR agonists on pancreatic cancer cell lines were investigated by growth assays, apoptosis assays, and induction of the cyclin-dependent kinase inhibitor p21. There was strong AhR mRNA expression in 14 out of 15 pancreatic cancer samples, weak expression in chronic pancreatitis tissues, and faint expression in all normal pancreata. In pancreatic cancer tissues, AhR mRNA and protein expression were localized in the cytoplasm of pancreatic cancer cells. TCDD and the four AhR agonists inhibited pancreatic cancer cell growth in a dose-dependent manner, and decreased anchorage-independent cell growth. DAPI staining did not reveal nuclear fragmentation and CYP1A1 and was not induced by TCDD and AhR agonists. In contrast, TCDD and AhR agonists induced the expression of the cyclin-dependent kinase inhibitor p21. In conclusion, the relatively non-toxic AhR agonists caused growth inhibition in pancreatic cancer cells with high AhR expression levels via cell cycle arrest. In addition, almost all human pancreatic cancer tissues expressed this receptor at high levels, suggesting that these or related compounds may play a role in the therapy of pancreatic cancer in the future.

  14. CT findings of pancreatic disease

    International Nuclear Information System (INIS)

    Lee, Mi Sook; Park, In Sook; Jeon, Doo Sung; Kim, Hong Soo; Rhee, Hak Song; Won, Jong Jin

    1988-01-01

    CT was found to be a reliable, often specific, and noninvasive method for detecting pancreatic diseases. In a study of pancreatic lesions, 37 cases having satisfactory operative and histological proofs were analyzed by CT at PMC from Jan. 1986 to Oct. 1987. The results were as following: 1. Male:female is 26:11. 2. The incidence of pancreatic disease were as follows: 1) Pancreatic cancer:21 cases (56%) a.Head:12 cases b.Body:4 cases c.Tail:1 case d.Body and tail:1 case e.Uncinate process:2 cases f.Entire pancreas: 1 case 2) Acute pancreatitis: 6 cases (16%) 3) Chronic pancreatitis:5 cases (14%) 3. The characteristic CT findings: 1) 100% of pancreatic head cancer showed focal mass or alteration of pancreatic head contour and biliary tree dilatation, and 33% (7/12) fat line obliteration. 2) All of other pancreatic cancer except head appeared as focal mass or contour alteration and fat line obliteration. 3) Total 6 cases of acute pancreatitis showed that 5 cases diffuse enlargement of pancreas, 3 fluid collection (2 cases:left anterior pararenal and posterior pararenal space and lesser sac, 1 case:only pancreas body) and 1 case abscess formation. 4) Total 5 cases of chronic pancreatitis revealed diffuse enlargement 2 cases and atrophy 1 case, pancreatic ductal dilatation 3 cases, calcification 2 cases, and biliary tree dilatation with CBD tapering appearance 1 case. 5) All cases of pseudocysts were well marginated cystic lesions that located at head in 3 cases and tail 3 cases, and 4 cases were well defined pure cystic masses but 1 case was well capsulated cyst with multiple internal septation

  15. Pancreatic scintiphotography in diabetes mellitus

    International Nuclear Information System (INIS)

    Nishimoto, Norimasa; Sowa, Etsuji; Fujii, Satoru; Seki, Junichi; Wada, Masahisa

    1975-01-01

    Pancreatic scintiphotography was performed in 108 cases of patients with diabetes mellitus. Scintiphotos were taken at 30 min. after intravenous injection of approximately 200μCi of 75 Se-selenomethionine using a Toshiba gamma camera. The relationship between the degree of pancreatic uptake of 75 Se-selenomethionine and the types and duration of diabetes, vascular complications and the average range of fasting blood sugar levels were studied. In some cases, pancreatic scintiphotos were taken at 10, 30 and 50 min. after injection of 75 Se-selenomethionine, and the degrees of the pancreatic uptake were compared on each time course. Only two out of 24 cases of insulin-dependent diabetics showed normal pancreatic scintiphotos. On the other hand, two out of 47 cases of mild diabetics treated with diet alone showed no uptake in pancreatic scintiphotos. There was a tendency toward abnormal pancreatic scintiphotos in chronic diabetics. Especially, of the 15 cases who had diabetes for more than eleven years, only one case showed a normal pancreatic scintiphoto. Abnormal pancreatic scintiphotos were found more frequently in the group of poorly controlled diabetics than in the group of well controlled diabetics. In cases showing normal pancreatic scintiphotos, diabetic retinopathy was less frequently found. Out of 36 cases which had sequential pancreatic scintiphotos, hypertension and/or arteriosclerosis were found more frequently in the 20 cases which showed a delay in reaching a plateau of the activity. However, the uptake in sequential pancreatic scintiphotos showed no definite correlation between diabetic retinopathy and other diabetic conditions. (auth.)

  16. Pancreatic scintiphotography in diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, N; Sowa, E; Fujii, S; Seki, J; Wada, M [Osaka City Univ. (Japan). Faculty of Medicine

    1975-09-01

    Pancreatic scintiphotography was performed in 108 cases of patients with diabetes mellitus. Scintiphotos were taken at 30 min. after intravenous injection of approximately 200..mu..Ci of /sup 75/Se-selenomethionine using a Toshiba gamma camera. The relationship between the degree of pancreatic uptake of /sup 75/Se-selenomethionine and the types and duration of diabetes, vascular complications and the average range of fasting blood sugar levels were studied. In some cases, pancreatic scintiphotos were taken at 10, 30 and 50 min. after injection of /sup 75/Se-selenomethionine, and the degrees of the pancreatic uptake were compared on each time course. Only two out of 24 cases of insulin-dependent diabetics showed normal pancreatic scintiphotos. On the other hand, two out of 47 cases of mild diabetics treated with diet alone showed no uptake in pancreatic scintiphotos. There was a tendency toward abnormal pancreatic scintiphotos in chronic diabetics. Especially, of the 15 cases who had diabetes for more than eleven years, only one case showed a normal pancreatic scintiphoto. Abnormal pancreatic scintiphotos were found more frequently in the group of poorly controlled diabetics than in the group of well controlled diabetics. In cases showing normal pancreatic scintiphotos, diabetic retinopathy was less frequently found. Out of 36 cases which had sequential pancreatic scintiphotos, hypertension and/or arterioscl-erosis were found more frequently in the 20 cases which showed a delay in reaching a plateau of the activity. However, the uptake in sequential pancreatic scintiphotos showed no definite correlation between diabetic retinopathy and other diabetic conditions.

  17. Protective effect of chlorogenic acid on the inflammatory damage of pancreas and lung in mice with l-arginine-induced pancreatitis.

    Science.gov (United States)

    Ohkawara, Tatsuya; Takeda, Hiroshi; Nishihira, Jun

    2017-12-01

    Pancreatitis is characterized by inflammatory disease with severe tissue injury in pancreas, and the incidence of pancreatitis has been recently increasing. Although several treatments of acute pancreatitis have been developed, some patients have been resistant to current therapy. Chlorogenic acid (CGA) is one of the polyphenols, and is known to have an anti-inflammatory effect. In this study, we investigated the effects of CGA on experimental pancreatitis in mice. Pancreatitis was induced by twice injection of l-arginine (5g/kg body weight). Mice were intraperitoneally injected with CGA (20mg/kg or 40mg/kg) 1h before administration of l-arginine. Administration of 40mg/kg of CGA decreased the histological severity of pancreatitis and pancreatitis-associated lung injury. Moreover, administration of CGA inhibited the levels of pancreatic enzyme activity. Interestingly, CGA reduced the serum and pancreatic levels of macrophage migration inhibitory factor (MIF) in mice with l-arginine-induced pancreatitis. Our results suggest that CGA has an anti-inflammatory effect on l-arginine-induced pancreatitis and pancreatitis-associated lung injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Rapid Evolution from the First Episode of Acute Pancreatitis to Chronic Pancreatitis in Human Subjects

    OpenAIRE

    Elie Aoun; Adam Slivka; Dionysios J Papachristou; David C Whitcomb; Ferga C Gleeson; Georgios I Papachristou

    2007-01-01

    Context Growing evidence suggests that recurrent acute pancreatitis leads to chronic pancreatitis, but this sequence is seldom reported in human subjects. The sentinel acute pancreatitis event hypothesis suggests that an initial episode of acute pancreatitis is the first step in a complicated series of events ultimately leading to chronic pancreatitis. Objective To identify patients who evolved from recurrent acute pancreatitis to chronic pancreatitis. Setting The Severity of Acute Pancreatit...

  19. Food-Induced Acute Pancreatitis.

    Science.gov (United States)

    Manohar, Murli; Verma, Alok K; Upparahalli Venkateshaiah, Sathisha; Goyal, Hemant; Mishra, Anil

    2017-12-01

    Food allergy, a commonly increasing problem worldwide, defined as an adverse immune response to food. A variety of immune-related effector cells such as mast cells, eosinophils, neutrophils, and T cells are involved in food-related allergic responses categorized as IgE mediated, non-IgE mediated, and mixed (IgE and non-IgE) depending upon underlying immunological mechanisms. The dietary antigens mainly target the gastrointestinal tract including pancreas that gets inflamed due to food allergy and leads acute pancreatitis. Reports indicate several food proteins induce pancreatitis; however, detailed underlying mechanism of food-induced pancreatitis is unexplored. The aim of the review is to understand and update the current scenario of food-induced pancreatitis. A comprehensive literature search of relevant research articles has been performed through PubMed, and articles were chosen based on their relevance to food allergen-mediated pancreatitis. Several cases in the literature indicate that acute pancreatitis has been provoked after the consumption of mustard, milk, egg, banana, fish, and kiwi fruits. Food-induced pancreatitis is an ignored and unexplored area of research. The review highlights the significance of food in the development of pancreatitis and draws the attention of physicians and scientists to consider food allergies as a possible cause for initiation of pancreatitis pathogenesis.

  20. Conservative treatment of chronic pancreatitis.

    Science.gov (United States)

    Löhr, J-Matthias; Haas, Stephen L; Lindgren, Fredrik; Enochsson, Lars; Hedström, Aleksandra; Swahn, Fredrik; Segersvärd, Ralf; Arnelo, Urban

    2013-01-01

    Chronic pancreatitis is a progressive inflammatory disease giving rise to several complications that need to be treated accordingly. Because pancreatic surgery has significant morbidity and mortality, less invasive therapy seems to be an attractive option. This paper reviews current state-of-the-art strategies to treat chronic pancreatitis without surgery and the current guidelines for the medical therapy of chronic pancreatitis. Endoscopic therapy of complications of chronic pancreatitis such as pain, main pancreatic duct strictures and stones as well as pseudocysts is technically feasible and safe. The long-term outcome, however, is inferior to definitive surgical procedures such as resection or drainage. On the other hand, the medical therapy of pancreatic endocrine and exocrine insufficiency is well established and evidence based. Endoscopic therapy may be an option to bridge for surgery and in children/young adolescents and those unfit for surgery. Pain in chronic pancreatitis as well as treatment of pancreatic exocrine insufficiency follows established guidelines. Copyright © 2013 S. Karger AG, Basel.

  1. [Acute pancreatitis associated with hypercalcaemia].

    Science.gov (United States)

    Tun-Abraham, Mauro Enrique; Obregón-Guerrero, Gabriela; Romero-Espinoza, Larry; Valencia-Jiménez, Javier

    2015-01-01

    Hypercalcaemia due to primary hyperparathyroidism is a rare cause of acute pancreatitis, with a reported prevalence of 1.5 to 8%. There is no clear pathophysiological basis, but elevated parathyroid hormone and high serum calcium levels could be responsible for calcium deposit in the pancreatic ducts and activation of pancreatic enzymes, which may be the main risk factor for developing acute pancreatitis. The aim of this report is to describe four cases. Four cases are reported of severe pancreatitis associated with hypercalcaemia secondary to primary hyperparathyroidism; three of them with complications (two pseudocysts and one pancreatic necrosis). Cervical ultrasound, computed tomography, and scintigraphy using 99mTc-Sestambi, studies showed the parathyroid adenoma. Surgical resection was the definitive treatment in all four cases. None of the patients had recurrent acute pancreatitis events during follow-up. Acute pancreatitis secondary to hypercalcaemia of primary hyperparathyroidism is rare; however, when it occurs it is associated with severe pancreatitis. It is suspected in patients with elevated serum calcium and high parathyroid hormone levels. Imaging techniques such as cervical ultrasound, computed tomography, and scintigraphy using 99mTc-Sestambi, should be performed, to confirm clinical suspicion. Surgical resection is the definitive treatment with excellent results. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  2. Pancreatic adenocarcinoma and diabetes mellitus

    International Nuclear Information System (INIS)

    Novotna, T.

    2015-01-01

    Impaired glucose tolerance or frank diabetes mellitus is known to occur more frequently in patients with pancreatic cancer than in the general population. At the time of the diagnosis of pancreatic cancer, more than 70% of patients taking the glucose tolerance test show diabetes or impaired glucose tolerance (1). Relationship among diabetes mellitus and pancreatic cancer is vague but sure, although neither the nature nor the sequence of the possible cause – effect relationship has been established. The reason for the high frequency of glucose intolerance in patients with pancreatic cancer remains controversial. (author)

  3. Systemic therapy of pancreatic cancer

    International Nuclear Information System (INIS)

    Andrezalova Vochyanova, I.; Salek, T.

    2012-01-01

    Pancreatic cancer is the fourth comment cause of cancer-related death in men. Most patients with pancreatic cancer are diagnosed at advanced, non-resectable stage. Late detection, early metastases, difficult surgical approached, cancer resistant to systemic chemo and radiotherapy - all contribute to its in faust prognosis. Only about 5 % of patients will live 5 years after diagnosis. Gemcitabine - based combination treatments is the standard for advanced pancreatic cancer. The combination of fluorouracil, folinic acid, irinotecan and oxaliplatin led to median survival of 11 months. No standard second-line treatment exists for pancreatic cancer. (author)

  4. Survivin as a radioresistance factor in pancreatic cancer

    International Nuclear Information System (INIS)

    Asanuma, Koichi; Moriai, Ryosuke; Yajima, Tomomi; Yagihashi, Atsuhito; Yamada, Mikako; Kobayashi, Daisuke; Watanabe, Naoki

    2000-01-01

    We examined whether survivin acts as a constitutive and inducible radioresistance factor in pancreatic cancer cells. Using a quantitative TaqMan reverse transcription-polymerase chain reaction for survivin mRNA in five pancreatic cancer cell lines, we found an inverse relationship between survivin mRNA expression and radiosensitivity. PANC-1 cells, which had the highest survivin mRNA levels, were most resistant to X-irradiation; MIAPaCa-2 cells, which showed the least survivin mRNA expression, were the most sensitive to X-irradiation. Our results suggested that survivin could act as a constitutive radioresistance factor in pancreatic cancer cells. To determine whether radioresistance is enhanced by induction of survivin expression by irradiation, PANC-1 and MIAPaCa-2 cells were subjected to sublethal doses of X-irradiation followed by a lethal dose. Survivin mRNA expression was increased significantly in both PANC-1 and MIAPaCa-2 cell lines by pretreatment with a sublethal dose of X-irradiation, as was cell survival after exposure to the lethal dose. In this system, enzymatic caspase-3 activity was significantly suppressed in cells with acquired resistance. These results suggest that survivin also acts as an inducible radioresistance factor in pancreatic cancer cells. Survivin, then, appears to enhance radioresistance in pancreatic cancer cells; inhibition of survivin mRNA expression may improve the effectiveness of radiotherapy. (author)

  5. Diagnosis of pancreatic disease

    International Nuclear Information System (INIS)

    Bautz, W.; Skalej, M.; Kalender, W.

    1990-01-01

    This paper reports on CT scanners with continuously rotating measurement systems enable volume scanning of a body section when used with continuous patient transport (spiral CT). Because of its relatively small volume, the complete pancreas can be scanned in a single breathhold. For pancreatic examinations, 1 continuous, 1- second scans with a table feed of 10 mm/sec were obtained on a Siemens SOMATOM Plus. Contrast material (50 mL) was power injected immediately before the start of measurements. CT images were reconstructed from the volume data set at 2-mm intervals. Fifty-six patients with pancreatitis, carcinoma or metastases of the pancreas; endocrine-active tumors; or Echinococcus were examined with both conventional and spiral CT

  6. Imaging of pancreatic tumors

    International Nuclear Information System (INIS)

    Brambs, Hans-Juergen; Juchems, Markus

    2010-01-01

    Ductal adenocarcinoma is the most frequent solid tumor of the pancreas. This tumor has distinct features including early obstruction of the pancreatic duct, diminished enhancement after administration of contrast material due to desmoplastic growth, high propensity to infiltrate adjacent structures and to metastasize into the liver and the peritoneum. Hormone active endocrine tumors cause specific clinical symptoms. Imaging is aimed at localization of these hypervascular tumors. Non hormone active tumors are most frequently malignant and demonstrate very varying features. Cystic pancreatic tumors are increasingly detected by means of cross sectional imaging. Exact classification can be achieved with knowledge of the macropathology and considering clinical presentation as well as age and gender of the patients. (orig.)

  7. Danish Pancreatic Cancer Database

    DEFF Research Database (Denmark)

    Fristrup, Claus; Detlefsen, Sönke; Palnæs Hansen, Carsten

    2016-01-01

    : Death is monitored using data from the Danish Civil Registry. This registry monitors the survival status of the Danish population, and the registration is virtually complete. All data in the database are audited by all participating institutions, with respect to baseline characteristics, key indicators......AIM OF DATABASE: The Danish Pancreatic Cancer Database aims to prospectively register the epidemiology, diagnostic workup, diagnosis, treatment, and outcome of patients with pancreatic cancer in Denmark at an institutional and national level. STUDY POPULATION: Since May 1, 2011, all patients...... with microscopically verified ductal adenocarcinoma of the pancreas have been registered in the database. As of June 30, 2014, the total number of patients registered was 2,217. All data are cross-referenced with the Danish Pathology Registry and the Danish Patient Registry to ensure the completeness of registrations...

  8. Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer

    Science.gov (United States)

    Lei, Yifeng; Tang, Lixue; Xie, Yangzhouyun; Xianyu, Yunlei; Zhang, Lingmin; Wang, Peng; Hamada, Yoh; Jiang, Kai; Zheng, Wenfu; Jiang, Xingyu

    2017-01-01

    Pancreatic cancer is one of the deadliest human cancers, whose progression is highly dependent on the nervous microenvironment. The suppression of gene expression of nerve growth factor (NGF) may have great potential in pancreatic cancer treatment. Here we show that gold nanocluster-assisted delivery of siRNA of NGF (GNC–siRNA) allows efficient NGF gene silencing and pancreatic cancer treatment. The GNC–siRNA complex increases the stability of siRNA in serum, prolongs the circulation lifetime of siRNA in blood and enhances the cellular uptake and tumour accumulation of siRNA. The GNC–siRNA complex potently downregulates the NGF expression in Panc-1 cells and in pancreatic tumours, and effectively inhibits the tumour progression in three pancreatic tumour models (subcutaneous model, orthotopic model and patient-derived xenograft model) without adverse effects. Our study constitutes a straightforward but effective approach to inhibit pancreatic cancer via NGF knockdown, suggesting a promising therapeutic direction for pancreatic cancer. PMID:28440296

  9. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer.

    Science.gov (United States)

    Zhou, Hongyu; Qian, Weiping; Uckun, Fatih M; Wang, Liya; Wang, Y Andrew; Chen, Hongyu; Kooby, David; Yu, Qian; Lipowska, Malgorzata; Staley, Charles A; Mao, Hui; Yang, Lily

    2015-08-25

    Overcoming resistance to chemotherapy is a major and unmet medical challenge in the treatment of pancreatic cancer. Poor drug delivery due to stromal barriers in the tumor microenvironment and aggressive tumor biology are additional impediments toward a more successful treatment of pancreatic cancer. In attempts to address these challenges, we developed IGF1 receptor (IGF1R)-directed, multifunctional theranostic nanoparticles for targeted delivery of therapeutic agents into IGF1R-expressing drug-resistant tumor cells and tumor-associated stromal cells. These nanoparticles were prepared by conjugating recombinant human IGF1 to magnetic iron oxide nanoparticles (IONPs) carrying the anthracycline doxorubicin (Dox) as the chemotherapeutic payload. Intravenously administered IGF1-IONPs exhibited excellent tumor targeting and penetration in an orthotopic patient-derived xenograft (PDX) model of pancreatic cancer featuring enriched tumor stroma and heterogeneous cancer cells. IGF1R-targeted therapy using the theranostic IGF1-IONP-Dox significantly inhibited the growth of pancreatic PDX tumors. The effects of the intratumoral nanoparticle delivery and therapeutic responses in the orthotopic pancreatic PDX tumors could be detected by magnetic resonance imaging (MRI) with IONP-induced contrasts. Histological analysis showed that IGF1R-targeted delivery of Dox significantly inhibited cell proliferation and induced apoptotic cell death of pancreatic cancer cells. Therefore, further development of IGF1R-targeted theranostic IONPs and MRI-guided cancer therapy as a precision nanomedicine may provide the basis for more effective treatment of pancreatic cancer.

  10. NMDA receptors are important regulators of pancreatic cancer and are potential targets for treatment

    Directory of Open Access Journals (Sweden)

    North WG

    2017-07-01

    Full Text Available William G North,1,2 Fuli Liu,1 Liz Z Lin,1 Ruiyang Tian,2 Bonnie Akerman1 1Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, 2Woomera Therapeutics Inc, Lebanon, NH, USA Abstract: Pancreatic cancer, particularly adenocarcinoma of the pancreas, is a common disease with a poor prognosis. In this study, the importance of N-methyl-D-aspartate (NMDA receptors for the growth and survival of pancreatic cancer was investigated. Immunohistochemistry performed with antibodies against GluN1 and GluN2B revealed that all invasive adenocarcinoma and neuroendocrine pancreatic tumors likely express these two NMDA receptor proteins. These proteins were found to be membrane components of pancreatic cancer cell lines, and both channel-blocker antagonist and GluN2B antagonist significantly reduced cell viability in vitro. Both types of antagonists caused an internalization of the receptors. Dizocilpine maleate (MK-801 and ifenprodil hemitartrate both significantly inhibited the growth of pancreatic tumor xenografts in nu/nu mice. These findings predict that, as for other solid tumors investigated by us, pancreatic cancer could be successfully treated, alone or in combination, with NMDA receptor antagonists or other receptor-inhibiting blocking agents. Keywords: pancreatic cancer, NMDA receptors, inhibitors, potential therapy

  11. Incidence of and risk factors for developing pancreatic cancer in patients with chronic pancreatitis.

    Science.gov (United States)

    Kudo, Yujin; Kamisawa, Terumi; Anjiki, Hajime; Takuma, Kensuke; Egawa, Naoto

    2011-01-01

    Pancreatic cancer sometimes occurs during the course of chronic pancreatitis. This study aimed to identify risk factors for developing pancreatic cancer associated with chronic pancreatitis. The incidence of pancreatic cancer developing in 218 patients with chronic pancreatitis and clinical features of the chronic pancreatitis patients who developed pancreatic cancer were studied. Nine patients developed pancreatic cancer. Average period from the diagnosis of chronic pancreatitis to the diagnosis of pancreatic cancer was 9.6 years. All pancreatic cancers were diagnosed at an advanced stage. Only 2 patients had been followed-up periodically. There were no significant differences between chronic pancreatitis patients who developed pancreatic cancer and those who did not in male/female ratio (3.5 vs. 8), average age on diagnosis (65.0 vs. 56.5), alcoholic/non-alcoholic chronic pancreatitis (1.6 vs. 2.6), smoking habits (62.5% vs. 70.7%), diabetes mellitus (77.8% vs. 54.4%), and continued alcohol drinking (37.5% vs. 53.1%). Over the period examined, 4% of chronic pancreatitis patients developed pancreatic cancer. Sex ratio, onset age, etiology, smoking habits, diabetes mellitus, and continued alcohol drinking were not significant risk factors for developing pancreatic cancer in chronic pancreatitis patients. Periodic follow-up due to the possibility of pancreatic cancer is necessary in chronic pancreatitis patients.

  12. Pancreatic enzyme replacement therapy.

    Science.gov (United States)

    Layer, P; Keller, J; Lankisch, P G

    2001-04-01

    Malabsorption due to severe pancreatic exocrine insufficiency is one of the most important late features of chronic pancreatitis. Generally, steatorrhea is more severe and occurs several years prior to malabsorption of other nutrients because synthesis and secretion of lipase are impaired more rapidly, its intraluminal survival is shorter, and the lack of pancreatic lipase activity is not compensated for by nonpancreatic mechanisms. Patients suffer not only from nutritional deficiencies but also from increased nutrient delivery to distal intestinal sites, causing symptoms by profound alteration of upper gastrointestinal secretory and motor functions. Adequate nutrient absorption requires delivery of sufficient enzymatic activity into the duodenal lumen simultaneously with meal nutrients. The following recommendations are based on modern therapeutic concepts: 25,000 to 40,000 units of lipase per meal using pH-sensitive pancreatin microspheres, with dosage increases, compliance checks, and differential diagnosis in case of treatment failure. Still, in most patients, lipid digestion cannot be completely normalized by current standard therapy, and future developments are needed to optimize treatment.

  13. Transplantable pancreatic acinar carcinoma

    International Nuclear Information System (INIS)

    Warren, J.R.; Reddy, J.K.

    1981-01-01

    Fragments of the nafenopin-induced pancreatic acinar cell carcinoma of rat have been examined in vitro for patterns of intracellular protein transport and carbamylcholine-induced protein discharge. Continuous incubation of the fragments with [3H]-leucine for 60 minutes resulted in labeling of rough endoplasmic reticulum, Golgi cisternae, and mature zymogen granules, revealed by electron microscope autoradiography. This result indicates transport of newly synthesized protein from the rough endoplasmic reticulum to mature zymogen granules in approximately 60 minutes. The secretagogue carbamylcholine induced the discharge of radioactive protein by carcinoma fragments pulse-chase labeled with [3H]-leucine. A maximal effective carbamylcholine concentration of 10(-5) M was determined. The acinar carcinoma resembles normal exocrine pancreas in the observed rate of intracellular protein transport and effective secretagogue concentration. However, the acinar carcinoma fragments demonstrated an apparent low rate of carbamylcholine-induced radioactive protein discharge as compared with normal pancreatic lobules or acinar cells. It is suggested that the apparent low rate of radioactive protein discharge reflects functional immaturity of the acinar carcinoma. Possible relationships of functional differentiation to the heterogeneous cytodifferentiation of the pancreatic acinar carcinoma are discussed

  14. Sequential changes from minimal pancreatic inflammation to advanced alcoholic pancreatitis.

    Science.gov (United States)

    Noronha, M; Dreiling, D A; Bordalo, O

    1983-11-01

    A correlation of several clinical parameters and pancreatitis morphological alterations observed in chronic alcoholics with and without pancreatic is presented. Three groups of patients were studied: asymptomatic chronic alcoholics (24); non-alcoholic controls (10); and cases with advanced chronic pancreatitis (6). Clinical, biochemical and functional studies were performed. Morphological studies were made on surgical biopsy specimens in light and electron microscopy. The results of this study showed: 1) fat accumulates within pancreatic acinar cells in alcoholics drinking more than 80 g of ethanol per day; 2) ultrastructural changes found in acinar cells of the alcoholics are similar to those described for liver cells; 3) the alterations found in alcoholics without pancreatitis are also observed in those with advanced chronic pancreatitis. An attempt to correlate the sequential changes in the histopathology of alcoholic pancreatic disease with the clinical picture and secretory patterns was made. According to these observations, admitting the ultrastructural similarities between the liver and the pancreas and the recently demonstrated abnormalities of lipid metabolism in pancreatic cells in experimental animal research, the authors postulate a toxic-metabolic mechanism as a likely hypothesis for the pathogenesis of chronic alcoholic inflammation of the pancreas.

  15. Nutritional and Metabolic Derangements in Pancreatic Cancer and Pancreatic Resection.

    Science.gov (United States)

    Gilliland, Taylor M; Villafane-Ferriol, Nicole; Shah, Kevin P; Shah, Rohan M; Tran Cao, Hop S; Massarweh, Nader N; Silberfein, Eric J; Choi, Eugene A; Hsu, Cary; McElhany, Amy L; Barakat, Omar; Fisher, William; Van Buren, George

    2017-03-07

    Pancreatic cancer is an aggressive malignancy with a poor prognosis. The disease and its treatment can cause significant nutritional impairments that often adversely impact patient quality of life (QOL). The pancreas has both exocrine and endocrine functions and, in the setting of cancer, both systems may be affected. Pancreatic exocrine insufficiency (PEI) manifests as weight loss and steatorrhea, while endocrine insufficiency may result in diabetes mellitus. Surgical resection, a central component of pancreatic cancer treatment, may induce or exacerbate these dysfunctions. Nutritional and metabolic dysfunctions in patients with pancreatic cancer lack characterization, and few guidelines exist for nutritional support in patients after surgical resection. We reviewed publications from the past two decades (1995-2016) addressing the nutritional and metabolic status of patients with pancreatic cancer, grouping them into status at the time of diagnosis, status at the time of resection, and status of nutritional support throughout the diagnosis and treatment of pancreatic cancer. Here, we summarize the results of these investigations and evaluate the effectiveness of various types of nutritional support in patients after pancreatectomy for pancreatic adenocarcinoma (PDAC). We outline the following conservative perioperative strategies to optimize patient outcomes and guide the care of these patients: (1) patients with albumin 10% should postpone surgery and begin aggressive nutrition supplementation; (2) patients with albumin endocrine and exocrine pancreatic insufficiency alongside implementation of appropriate treatment to improve the patient's quality of life.

  16. Differential diagnosis of focal pancreatitis and pancreatic cancer

    NARCIS (Netherlands)

    van Gulik, T. M.; Moojen, T. M.; van Geenen, R.; Rauws, E. A.; Obertop, H.; Gouma, D. J.

    1999-01-01

    The differentiation of focal, chronic pancreatitis (CP) and pancreatic cancer (PAC) poses a diagnostic dilemma. Both conditions may present with the same symptoms and signs. The complexity of differential diagnosis is enhanced because PAC is frequently associated with secondary inflammatory changes

  17. The potent activation of Ca(2+)-activated K(+) current by NVP-AUY922 in the human pancreatic duct cell line (PANC-1) possibly independent of heat shock protein 90 inhibition.

    Science.gov (United States)

    Chiang, Nai-Jung; Wu, Sheng-Nan; Chen, Li-Tzong

    2015-04-01

    NVP-AUY922 (AUY) is a potent inhibitor of heat shock protein 90 (HSP90). Whether this compound can exert additional effects on membrane ion channels remains elusive. We investigated the effect of AUY on ion currents in human pancreatic duct epithelial cells (PDECs), including PANC-1 and MIA PaCa-2. AUY increased the amplitude of the K(+) current (IK) in PANC-1 cells shown by whole-cell configuration. Single-channel recordings revealed a large-conductance Ca(2+)-activated K(+) (BKCa) channel in PANC-1, but not in MIA PaCa-2. In cell-attached mode, AUY increased the probability of BKCa channel opening and also potentiated the activity of stretch-induced channels. However, other HSP inhibitors, 17-AAG or BIIB021 only slightly increased the activity of BKCa channels. In inside-out recordings, sodium hydrosulphide or caffeic acid phenethyl ester increased the activity of BKCa channels, but AUY did not. We further evaluated whether conductance of Ca(2+)-activated K(+) channels (IK(Ca)) influenced secretion of HCO3(-) and fluid in PDECs by using a modified Whitcomb-Ermentrout model. Simulation studies showed that an increase in IK(Ca) resulted in additional secretion of HCO3(-) and fluid by mimicking the effect of AUY in PDECs. Collectively, AUY can interact with the BKCa channel to largely increase IK(Ca) in PDECs. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    Science.gov (United States)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  19. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of); Kang, Ho Young [Department of Microbiology, Pusan National University, Busan 609-736 (Korea, Republic of); Kim, Manbok [Department of Medical Science, Dankook University College of Medicine, Cheonan 330-714 (Korea, Republic of); Koh, Sang Seok [Department of Biological Sciences, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [BK21+, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-736 (Korea, Republic of)

    2015-04-03

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells.

  20. Pancreatic adenocarcinoma upregulated factor (PAUF) confers resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNA receptor-mediated signaling

    International Nuclear Information System (INIS)

    Kaowinn, Sirichat; Cho, Il-Rae; Moon, Jeong; Jun, Seung Won; Kim, Chang Seok; Kang, Ho Young; Kim, Manbok; Koh, Sang Seok; Chung, Young-Hwa

    2015-01-01

    Pancreatic adenocarcinoma upregulated factor (PAUF), a novel oncogene, plays a crucial role in the development of pancreatic cancer, including its metastasis and proliferation. Therefore, PAUF-expressing pancreatic cancer cells could be important targets for oncolytic virus-mediated treatment. Panc-1 cells expressing PAUF (Panc-PAUF) showed relative resistance to parvovirus H-1 infection compared with Panc-1 cells expressing an empty vector (Panc-Vec). Of interest, expression of type I IFN-α receptor (IFNAR) was higher in Panc-PAUF cells than in Panc-Vec cells. Increased expression of IFNAR in turn increased the activation of Stat1 and Tyk2 in Panc-PAUF cells compared with that in Panc-Vec cells. Suppression of Tyk2 and Stat1, which are important downstream molecules for IFN-α signaling, sensitized pancreatic cancer cells to parvovirus H-1-mediated apoptosis. Further, constitutive suppression of PAUF sensitized Bxpc3 pancreatic cancer cells to parvovirus H-1 infection. Taken together, these results suggested that PAUF conferred resistance to pancreatic cancer cells against oncolytic parvovirus H-1 infection through IFNAR-mediated signaling. - Highlights: • PAUF confers resistance against oncolytic parvovirus H-1 infection. • PAUF enhances the expression of IFNAR in Panc-1 cells. • Increased activation of Tyk2 or Stat1 by PAUF provides resistance to parvovirus H-1-mediated apoptosis. • Constitutive inhibition of PAUF enhances parvovirus H-1-mediated oncolysis of Bxpc3 pancreatic cancer cells

  1. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    International Nuclear Information System (INIS)

    Laurila, Eeva; Vuorinen, Elisa; Savinainen, Kimmo; Rauhala, Hanna; Kallioniemi, Anne

    2014-01-01

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy

  2. The preclinical evaluation of TIC10/ONC201 as an anti-pancreatic cancer agent.

    Science.gov (United States)

    Zhang, Qiangbo; Wang, Hong; Ran, Lin; Zhang, Zongli; Jiang, Runde

    2016-08-05

    Here we evaluated the potential anti-pancreatic cancer activity by TIC10/ONC201, a first-in-class small-molecule inducer of tumor necrosis (TNF)-related apoptosis-inducing ligand (TRAIL). The in vitro results showed that TIC10 induced potent cytotoxic and cytostatic activities in several human pancreatic cancer cell lines (Panc-1, Mia-PaCa2, AsPC-1 or L3.6). TIC10 activated both extrinsic (TRAIL-caspase-8-dependent) and endogenous/mitochondrial (caspase-9-dependent) apoptosis pathways in the pancreatic cancer cells. Molecularly, we showed that TIC10 inhibited Akt-Erk activation, yet induced TRAIL expression in pancreatic cancer cells. Significantly, TIC10, at a relatively low concentration, sensitized gemcitabine-induced growth inhibition and apoptosis against pancreatic cancer cells. Further, TIC10 and gemcitabine synergistically inhibited Panc-1 xenograft growth in SCID mice. The combination treatment also significantly improved mice survival. In addition, Akt-Erk in-activation and TRAIL/cleaved-caspase-8 induction were observed in TIC10-treated Panc-1 xenografts. Together, the preclinical results of the study demonstrate the potent anti-pancreatic cancer activity by TIC10, or with gemcitabine. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effects of Ghrelin miRNA on Inflammation and Calcium Pathway in Pancreatic Acinar Cells of Acute Pancreatitis.

    Science.gov (United States)

    Tang, Xiping; Tang, Guodu; Liang, Zhihai; Qin, Mengbin; Fang, Chunyun; Zhang, Luyi

    The study investigated the effects of endogenous targeted inhibition of ghrelin gene on inflammation and calcium pathway in an in vitro pancreatic acinar cell model of acute pancreatitis. Lentiviral expression vector against ghrelin gene was constructed and transfected into AR42J cells. The mRNA and protein expression of each gene were detected by reverse transcription polymerase chain reaction, Western blotting, or enzyme-linked immunosorbent assay. The concentration of intracellular calcium ([Ca]i) was determined by calcium fluorescence mark probe combined with laser scanning confocal microscopy. Compared with the control group, cerulein could upregulate mRNA and protein expression of inflammatory factors, calcium pathway, ghrelin, and [Ca]i. mRNA and protein expression of inflammatory factors increased significantly in cells transfected with ghrelin miRNA compared with the other groups. Intracellular calcium and expression of some calcium pathway proteins decreased significantly in cells transfected with ghrelin miRNA compared with the other groups. Targeted inhibition of ghrelin gene in pancreatic acinar cells of acute pancreatitis can upregulate the expression of the intracellular inflammatory factors and alleviate the intracellular calcium overload.

  4. Phorbol-ester-induced down-regulation of protein kinase C in mouse pancreatic islets. Potentiation of phase 1 and inhibition of phase 2 of glucose-induced insulin secretion

    DEFF Research Database (Denmark)

    Thams, P; Capito, K; Hedeskov, C J

    1990-01-01

    and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1...

  5. Diet and Pancreatic Cancer Prevention

    Directory of Open Access Journals (Sweden)

    Ilaria Casari

    2015-11-01

    Full Text Available Pancreatic cancer is without any doubt the malignancy with the poorest prognosis and the lowest survival rate. This highly aggressive disease is rarely diagnosed at an early stage and difficult to treat due to its resistance to radiotherapy and chemotherapy. Therefore, there is an urgent need to clarify the causes responsible for pancreatic cancer and to identify preventive strategies to reduce its incidence in the population. Some circumstances, such as smoking habits, being overweight and diabetes, have been identified as potentially predisposing factors to pancreatic cancer, suggesting that diet might play a role. A diet low in fat and sugars, together with a healthy lifestyle, regular exercise, weight reduction and not smoking, may contribute to prevent pancreatic cancer and many other cancer types. In addition, increasing evidence suggests that some food may have chemo preventive properties. Indeed, a high dietary intake of fresh fruit and vegetables has been shown to reduce the risk of developing pancreatic cancer, and recent epidemiological studies have associated nut consumption with a protective effect against it. Therefore, diet could have an impact on the development of pancreatic cancer and further investigations are needed to assess the potential chemo preventive role of specific foods against this disease. This review summarizes the key evidence for the role of dietary habits and their effect on pancreatic cancer and focuses on possible mechanisms for the association between diet and risk of pancreatic cancer.

  6. General Information about Pancreatic Cancer

    Science.gov (United States)

    ... overweight. Having a personal history of diabetes or chronic pancreatitis . Having a family history of pancreatic cancer or ... have not started treatment. Five types of standard treatment are used: Surgery ... Whipple procedure : A surgical procedure in which the head of the pancreas , ...

  7. [Identifying the severe acute pancreatitis].

    Science.gov (United States)

    Acevedo Tizón, Anais; Targarona Modena, Javier; Málaga Rodríguez, Germán; Barreda Cevasco, Luis

    2011-01-01

    To compare patients with acute necrotizing pancreatitis without any additional complications during their hospital stay (Group A) versus patients with Acute Necrotizing Pancreatitis with additional complications during their hospital stay (Group B). Data obtained from a pre-existing base from hospitalized patients with diagnosis of acute necrotizing pancreatitis in the specialized unit of "Unidad de Pancreatitis Aguda Grave del Hospital Nacional Edgardo Rebagliati Martins" between 2000 and 2010. Data included patients with diagnosis of acute necrotizing pancreatitis, of ages 18 and over. Data from 215 patients with acute necrotizing pancreatitis was included. Patients from Group A represented 32% (68) and from Group B 68% (147). Group A had a average of 39 hospitalized days and Group B had an average of 56 days (p=0.01). From Group A 22% had more than 50% of necrosis while 43% of Group B had this extension of necrosis (p pancreatitis, based on the presence of necrosis, behave likewise. It is an extended necrosis, described as more than 50% of pancreatic necrosis, and not the presence itself which will determine additional complications during the course of disease and a greater mortality.

  8. Surgical Management of Chronic Pancreatitis.

    Science.gov (United States)

    Parekh, Dilip; Natarajan, Sathima

    2015-10-01

    Advances over the past decade have indicated that a complex interplay between environmental factors, genetic predisposition, alcohol abuse, and smoking lead towards the development of chronic pancreatitis. Chronic pancreatitis is a complex disorder that causes significant and chronic incapacity in patients and a substantial burden on the society. Major advances have been made in the etiology and pathogenesis of this disease and the role of genetic predisposition is increasingly coming to the fore. Advances in noninvasive diagnostic modalities now allow for better diagnosis of chronic pancreatitis at an early stage of the disease. The impact of these advances on surgical treatment is beginning to emerge, for example, patients with certain genetic predispositions may be better treated with total pancreatectomy versus lesser procedures. Considerable controversy remains with respect to the surgical management of chronic pancreatitis. Modern understanding of the neurobiology of pain in chronic pancreatitis suggests that a window of opportunity exists for effective treatment of the intractable pain after which central sensitization can lead to an irreversible pain syndrome in patients with chronic pancreatitis. Effective surgical procedures exist for chronic pancreatitis; however, the timing of surgery is unclear. For optimal treatment of patients with chronic pancreatitis, close collaboration between a multidisciplinary team including gastroenterologists, surgeons, and pain management physicians is needed.

  9. Acute necrotizing pancreatitis in rats

    NARCIS (Netherlands)

    B. van Ooijen (Baan)

    1988-01-01

    textabstractThe specific aim of the present study was to investigate whether eicosanoids play a role in acute necrotizing pancreatitis. Because of the limited number of patients with acute pancreatitis admitted to the hospital each year, as well as the practical difficulties encountered in

  10. Splanchnic venous thrombosis and pancreatitis.

    Science.gov (United States)

    Nadkarni, Nikhil A; Khanna, Sahil; Vege, Santhi Swaroop

    2013-08-01

    Pancreatitis is an inflammatory process with local and systemic manifestations. One such local manifestation is thrombosis in splanchnic venous circulation, predominantly of the splenic vein. The literature on this important complication is very sparse. This review offers an overview of mechanism of thrombosis, its pathophysiology, diagnosis, and management in the setting of acute as well as chronic pancreatitis.

  11. Risk of Recurrent Pancreatitis and Progression to Chronic Pancreatitis After a First Episode of Acute Pancreatitis.

    Science.gov (United States)

    Ahmed Ali, Usama; Issa, Yama; Hagenaars, Julia C; Bakker, Olaf J; van Goor, Harry; Nieuwenhuijs, Vincent B; Bollen, Thomas L; van Ramshorst, Bert; Witteman, Ben J; Brink, Menno A; Schaapherder, Alexander F; Dejong, Cornelis H; Spanier, B W Marcel; Heisterkamp, Joos; van der Harst, Erwin; van Eijck, Casper H; Besselink, Marc G; Gooszen, Hein G; van Santvoort, Hjalmar C; Boermeester, Marja A

    2016-05-01

    Patients with a first episode of acute pancreatitis can develop recurrent or chronic pancreatitis (CP). However, little is known about the incidence or risk factors for these events. We performed a cross-sectional study of 669 patients with a first episode of acute pancreatitis admitted to 15 Dutch hospitals from December 2003 through March 2007. We collected information on disease course, outpatient visits, and hospital readmissions, as well as results from imaging, laboratory, and histology studies. Standardized follow-up questionnaires were sent to all available patients to collect information on hospitalizations and interventions for pancreatic disease, abdominal pain, steatorrhea, diabetes mellitus, medications, and alcohol and tobacco use. Patients were followed up for a median time period of 57 months. Primary end points were recurrent pancreatitis and CP. Risk factors were evaluated using regression analysis. The cumulative risk was assessed using Kaplan-Meier analysis. Recurrent pancreatitis developed in 117 patients (17%), and CP occurred in 51 patients (7.6%). Recurrent pancreatitis developed in 12% of patients with biliary disease, 24% of patients with alcoholic etiology, and 25% of patients with disease of idiopathic or other etiologies; CP occurred in 3%, 16%, and 10% of these patients, respectively. Etiology, smoking, and necrotizing pancreatitis were independent risk factors for recurrent pancreatitis and CP. Acute Physiology and Chronic Health Evaluation II scores at admission also were associated independently with recurrent pancreatitis. The cumulative risk for recurrent pancreatitis over 5 years was highest among smokers at 40% (compared with 13% for nonsmokers). For alcohol abusers and current smokers, the cumulative risks for CP were similar-approximately 18%. In contrast, the cumulative risk of CP increased to 30% in patients who smoked and abused alcohol. Based on a retrospective analysis of patients admitted to Dutch hospitals, a first

  12. Pharmacological challenges in chronic pancreatitis

    DEFF Research Database (Denmark)

    Olesen, Anne Estrup; Brokjaer, Anne; Fischer, Iben Wendelboe Deleuran

    2014-01-01

    food intake is more or less substituted with alcohol, tobacco and coffee. Alcohol and drug interaction are known to influence the pharmacokinetics by altering either drug absorption or by affecting liver metabolism. Since patients suffering from chronic pancreatitis experience severe pain, opioids......Drug absorption in patients with chronic pancreatitis might be affected by the pathophysiology of the disease. The exocrine pancreatic insufficiency is associated with changes in gastrointestinal intraluminal pH, motility disorder, bacterial overgrowth and changed pancreatic gland secretion....... Together these factors can result in malabsorption and may also affect the efficacy of pharmacological intervention. The lifestyle of chronic pancreatitis patients may also contribute to gastrointestinal changes. Many patients limit their food intake because of the pain caused by eating and in some cases...

  13. Pharmacological challenges in chronic pancreatitis

    DEFF Research Database (Denmark)

    Olesen, Anne Estrup; Brokjaer, Anne; Fischer, Iben Wendelboe Deleuran

    2014-01-01

    food intake is more or less substituted with alcohol, tobacco and coffee. Alcohol and drug interaction are known to influence the pharmacokinetics by altering either drug absorption or by affecting liver metabolism. Since patients suffering from chronic pancreatitis experience severe pain, opioids....... Together these factors can result in malabsorption and may also affect the efficacy of pharmacological intervention. The lifestyle of chronic pancreatitis patients may also contribute to gastrointestinal changes. Many patients limit their food intake because of the pain caused by eating and in some cases......Drug absorption in patients with chronic pancreatitis might be affected by the pathophysiology of the disease. The exocrine pancreatic insufficiency is associated with changes in gastrointestinal intraluminal pH, motility disorder, bacterial overgrowth and changed pancreatic gland secretion...

  14. Acute Pancreatitis: Etiology, Pathology, Diagnosis, and Treatment.

    Science.gov (United States)

    Majidi, Shirin; Golembioski, Adam; Wilson, Stephen L; Thompson, Errington C

    2017-11-01

    Acute pancreatitis is a fascinating disease. In the United States, the two most common etiologies of acute pancreatitis are gallstones and excessive alcohol consumption. The diagnosis of acute pancreatitis is made with a combination of history, physical examination, computed tomography scan, and laboratory evaluation. Differentiating patients who will have a benign course of their pancreatitis from patients who will have severe pancreatitis is challenging to the clinician. C-reactive protein, pro-calcitonin, and the Bedside Index for Severity of Acute Pancreatitis appeared to be the best tools for the early and accurate diagnosis of severe pancreatitis. Early laparoscopic cholecystectomy is indicated for patients with mild gallstone pancreatitis. For patients who are going to have a prolonged hospitalization, enteral nutrition is preferred. Total parenteral nutrition should be reserved for patients who cannot tolerate enteral nutrition. Prophylactic antibiotics are not indicated for patients with pancreatic necrosis. Surgical intervention for infected pancreatic necrosis should be delayed as long as possible to improve patient outcomes.

  15. Management of acute pancreatitis in children.

    Science.gov (United States)

    Abu-El-Haija, Maisam; Lin, Tom K; Nathan, Jaimie D

    2017-10-01

    Pediatric acute pancreatitis has been on the rise in the last decades, with an incidence close to adult pancreatitis. In the majority of cases acute pancreatitis resolves spontaneously, but in a subset of children the disease progresses to severe acute pancreatitis with attendant morbidity and mortality. Pediatric acute pancreatitis in this era is recognized as a separate entity from adult acute pancreatitis given that the causes and disease outcomes are different. There are slow but important advances made in understanding the best management for acute pancreatitis in children from medical, interventional, and surgical aspects. Supportive care with fluids, pain medications, and nutrition remain the mainstay for acute pancreatitis management. For complicated or severe pancreatitis, specialized interventions may be required with endoscopic or drainage procedures. Surgery has an important but limited role in pediatric acute pancreatitis.

  16. Chronic pancreatitis. Some important historical aspects.

    Science.gov (United States)

    Navarro, Salvador

    2018-06-08

    Since ancient times the increase of size and hardness sometimes presented by the abdominal structure known as the pancreas has attracted attention. Portal was the first to describe the clinical signs of chronic pancreatitis in 1803. In 1815, Fleischman speculated about the potential role of excessive alcohol consumption. Comfort coined the term "chronic relapsing pancreatitis" in 1946 and described hereditary pancreatitis 6 years later. Zuidema defined tropical pancreatitis in 1959 and 2 years later Sarles described another form of pancreatitis to which Yoshida gave the name autoimmune pancreatitis in 1995. Groove pancreatitis was described by Potet in 1970. Obstructive pancreatitis was defined in 1984 and Ammann identified idiopathic pancreatitis 3 years later. This article gives a historical account of the pioneers who developed the knowledge of how to assess the characteristics that allowed the different forms of chronic pancreatitis to be defined. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  17. Risk of Recurrent Pancreatitis and Progression to Chronic Pancreatitis After a First Episode of Acute Pancreatitis

    NARCIS (Netherlands)

    Ahmed Ali, Usama; Issa, Yama; Hagenaars, Julia C.; Bakker, Olaf J.; van Goor, Harry; Nieuwenhuijs, Vincent B.; Bollen, Thomas L.; van Ramshorst, Bert; Witteman, Ben J.; Brink, Menno A.; Schaapherder, Alexander F.; Dejong, Cornelis H.; Spanier, B. W Marcel; Heisterkamp, Joos; van der Harst, Erwin; van Eijck, Casper H.; Besselink, Marc G.; Gooszen, Hein G.; van Santvoort, Hjalmar C.; Boermeester, Marja A.

    2016-01-01

    Background & Aims: Patients with a first episode of acute pancreatitis can develop recurrent or chronic pancreatitis (CP). However, little is known about the incidence or risk factors for these events. Methods: We performed a cross-sectional study of 669 patients with a first episode of acute

  18. Risk of Recurrent Pancreatitis and Progression to Chronic Pancreatitis After a First Episode of Acute Pancreatitis

    NARCIS (Netherlands)

    Ali, U.A.; Issa, Y.; Hagenaars, J.C.; Bakker, O.J.; Goor, H. van; Nieuwenhuijs, V.B.; Bollen, T.L.; Ramshorst, B. van; Witteman, B.J.; Brink, M.A.; Schaapherder, A.F.; Dejong, C.H.; Spanier, B.W.; Heisterkamp, J.; Harst, E. van der; Eijck, C.H. van; Besselink, M.G.; Gooszen, H.G.; Santvoort, H.C. van; Boermeester, M.A.

    2016-01-01

    BACKGROUND & AIMS: Patients with a first episode of acute pancreatitis can develop recurrent or chronic pancreatitis (CP). However, little is known about the incidence or risk factors for these events. METHODS: We performed a cross-sectional study of 669 patients with a first episode of acute

  19. Evaluation of pancreatic scintigram in the diagnosis of pancreatic diseases

    International Nuclear Information System (INIS)

    Takai, Yukihiro; Ueda, Noriyuki; Takasago, Noritsugu; Minemoto, Hiromasa; Namiki, Masayoshi

    1981-01-01

    The classification of accumulative patterns with the pancreatic scintigram findings of chronic pancreatitis and carcinoma of the pancreas were compared with endoscopic retrograde pancreatography (ERP) findings and Pancreozymin-Secretin test (P-S test). I) The frequency of pancreatic cancer was 93%, whilst, the chronic pancreatitis was 88% in the abnormal pancreatic scintigram. II) In the scintigram the type II (localyzed defect shadows) of pancreatic cancer was comparatively high and it is proportional to evidence. derived from ERP. Localized diagnostic certainty is helpful, although the two tests are related. The P-S test is only restricted to the carcinoma of head, whilst, scintigram is more useful to detect the carcinoma of the body and tail of the pancreas. III) As for the chronic pancreatitis, there are various accumulative patterns. This is resemblance to that of ERP findings, but in the P-S normal test, it showed discrepancy in part of the result. Particularly, in the type I (slightly generalized low uptake with density silhouette) and type II. Therefore in order to obtain an accurate diagnosis, it is essential to have both the P-S test and scintigram. (author)

  20. Pancreatic islet transplantation

    Directory of Open Access Journals (Sweden)

    Corrêa-Giannella Maria

    2009-09-01

    Full Text Available Abstract Background No formulation of exogenous insulin available to date has yet been able to mimic the physiological nictemeral rhythms of this hormone, and despite all engineering advancements, the theoretical proposal of developing a mechanical replacement for pancreatic β cell still has not been reached. Thus, the replacement of β cells through pancreas and pancreatic islet transplantation are the only concrete alternatives for re-establishing the endogenous insulin secretion in type 1 diabetic patients. Since only 1 to 1.5% of the pancreatic mass corresponds to endocrine tissue, pancreatic islets transplantation arises as a natural alternative. Data from the International Islet Transplant Registry (ITR from 1983 to December 2000 document a total of 493 transplants performed around the world, with progressively worse rates of post-transplant insulin independence. In 2000, the "Edmonton Protocol" introduced several modifications to the transplantation procedure, such as the use of a steroid-free immunosuppression regimen and transplantation of a mean islet mass of 11,000 islet equivalents per kilogram, which significantly improved 1-year outcomes. Although the results of a 5-year follow-up in 65 patients demonstrated improvement in glycemic instability in a significant portion of them, only 7.5% of the patients have reached insulin independence, indicating the need of further advances in the preservation of the function of transplanted islet. In addition to the scarcity of organs available for transplantation, islets transplantation still faces major challenges, specially those related to cell loss during the process of islet isolation and the losses related to the graft site, apoptosis, allorejection, autoimmunity, and immunosuppression. The main strategies to optimize islet transplantation aim at improving all these aspects. Conclusion Human islet transplantation should be regarded as an intervention that can decrease the frequency of

  1. Metronidazole-induced pancreatitis.

    LENUS (Irish Health Repository)

    O'Halloran, E

    2010-01-01

    A 25-year-old caucasian lady presented to the Accident & Emergency department complaining of acute onset severe epigastric pain radiating through to the back with associated nausea and vomiting. A diagnosis of acute pancreatitis was made. Symptoms commenced after the third dose of Metronidazole therapy prescribed for a recurrent periodontal abscess. The patient described a similar episode 10 months previously. On neither occasion were any other medications being taken, there was no history of alcohol abuse and no other gastro-intestinal aetiology could be identified on imaging. Symptoms resolved quickly upon discontinuation of the antibiotic agent. We conclude therefore that Metronidazole can reasonably be identified as the only potential causative agent.

  2. Phospholipase D mediated transphosphatidylation as a possible new pathway of ethanol metabolism in isolated rat pancreatic acini

    International Nuclear Information System (INIS)

    Rydzewska, G.; Jurkowska, G.; Gabryelewicz, A.

    1996-01-01

    Activation of pancreatic phospholipase D (PLD) has been previously observed in response to caerulein (Cae), phorbol myristate acetate and growth factors. Although PLD involvement has been postulated in pancreatic cell proliferation and differentiation, the physiological role of this enzyme in pancreatic cells still remains unclear. In the presence of ethanol, PLD catalysed transphosphatidylation reaction, forming phosphatidylethanol (PEt). This study was thus undertaken to determine the involvement of PLD in ethanol metabolism in isolated pancreatic acini and to show the potential physiological consequences of transphosphatidylation. Dispersed pancreatic acini prelabelled with 3H myristic acid were incubated with 500 pM Cae in the presence or absence of different concentrations of ethanol, and labelled phosphatidylethanol (3H PEt) production or phosphatidic acid (3H PA) accumulation were measured. The production of PEt after Cae stimulation in pancreatic acini was significant from 0.5% up to 4% of ethanol in the medium and was not dependent on increasing concentration of ethanol. Prolonged up to 2 h stimulation with Cae in the presence of 1% ethanol did not increase PEt production which was almost stable since 5 min of stimulation. In the presence of different concentrations of ethanol (1-4%), the significant inhibition of PA accumulation was obtained after Cae stimulation, similar to inhibition with a specific PLD inhibitor-wortmannin. These data indicate that Cae activated PLD in the presence of ethanol caused PEt production in pancreatic acini. During formation of PEt in pancreatic acinar cells significant and parallel inhibition of PA accumulation was observed. This indicates the relation of PLD activation in isolated pancreatic acini to ethanol metabolism. Ethanol can act as an inhibitor of PLD activity. Since PA, a product of PLD, is known as a second messenger probably involved in cell proliferation and differentiation, this may suggest a potentially new

  3. Cancer Stem Cells in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J., E-mail: christiane.bruns@med.uni-muenchen.de [Department of Surgery, Ludwig Maximilian University of Munich, Klinikum Grosshadern, Marchioninistr. 15, D-81377, Munich (Germany)

    2010-08-19

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  4. Cancer Stem Cells in Pancreatic Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer. PMID:24281178

  5. Cancer Stem Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Karl-Walter Jauch

    2010-08-01

    Full Text Available Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs. Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  6. Segmental pancreatic autotransplantation for chronic pancreatitis. A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, R.L.; Braasch, J.W.; O' Bryan, E.M.; Watkins, E. Jr.

    1983-03-01

    A patient who underwent 95% pancreatectomy with autotransplantation of the body and tail of the gland to the femoral area for chronic pancreatitis is presented. The pain resolved, and the patient's blood glucose level remained within normal limits. High levels of insulin were found in the iliac vein on the transplanted side. Patency of the graft was demonstrated by technetium scan and arteriography and followed by a color-coded Doppler imaging system. Segmental pancreatic autotransplantation offers a method of relieving pain with preservation of endocrine function in selected patients with chronic pancreatitis.

  7. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nandy, Debashis; Mukhopadhyay, Debabrata, E-mail: mukhopadhyay.debabrata@mayo.edu [Department of Biochemistry and Molecular Biology, College of Medicine, Mayo Clinic, 200 First Street SW, Guggenheim 1321C, Rochester, MN 55905 (United States)

    2011-02-24

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed.

  8. Growth Factor Mediated Signaling in Pancreatic Pathogenesis

    International Nuclear Information System (INIS)

    Nandy, Debashis; Mukhopadhyay, Debabrata

    2011-01-01

    Functionally, the pancreas consists of two types of tissues: exocrine and endocrine. Exocrine pancreatic disorders mainly involve acute and chronic pancreatitis. Acute pancreatitis typically is benign, while chronic pancreatitis is considered a risk factor for developing pancreatic cancer. Pancreatic carcinoma is the fourth leading cause of cancer related deaths worldwide. Most pancreatic cancers develop in the exocrine tissues. Endocrine pancreatic tumors are more uncommon, and typically are less aggressive than exocrine tumors. However, the endocrine pancreatic disorder, diabetes, is a dominant cause of morbidity and mortality. Importantly, different growth factors and their receptors play critical roles in pancreatic pathogenesis. Hence, an improved understanding of how various growth factors affect pancreatitis and pancreatic carcinoma is necessary to determine appropriate treatment. This chapter describes the role of different growth factors such as vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and transforming growth factor (TGF) in various pancreatic pathophysiologies. Finally, the crosstalk between different growth factor axes and their respective signaling mechanisms, which are involved in pancreatitis and pancreatic carcinoma, are also discussed

  9. Comparison of regional pancreatic tissue fluid pressure and endoscopic retrograde pancreatographic morphology in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Madsen, P

    1990-01-01

    The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation. The predrain......The relation between pancreatic tissue fluid pressure measured by the needle method and pancreatic duct morphology was studied in 16 patients with chronic pancreatitis. After preoperative endoscopic retrograde pancreatography (ERP) the patients were submitted to a drainage operation...

  10. Redox signaling in acute pancreatitis

    Science.gov (United States)

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  11. Redox signaling in acute pancreatitis

    Directory of Open Access Journals (Sweden)

    Salvador Pérez

    2015-08-01

    Full Text Available Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis.

  12. Molecular biology of pancreatic cancer.

    Science.gov (United States)

    Zavoral, Miroslav; Minarikova, Petra; Zavada, Filip; Salek, Cyril; Minarik, Marek

    2011-06-28

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple mole melanoma, and Peutz-Jeghers and Lynch syndromes. Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  13. Pharmacological challenges in chronic pancreatitis.

    Science.gov (United States)

    Olesen, Anne Estrup; Brokjaer, Anne; Fisher, Iben Wendelboe; Larsen, Isabelle Myriam

    2013-11-14

    Drug absorption in patients with chronic pancreatitis might be affected by the pathophysiology of the disease. The exocrine pancreatic insufficiency is associated with changes in gastrointestinal intraluminal pH, motility disorder, bacterial overgrowth and changed pancreatic gland secretion. Together these factors can result in malabsorption and may also affect the efficacy of pharmacological intervention. The lifestyle of chronic pancreatitis patients may also contribute to gastrointestinal changes. Many patients limit their food intake because of the pain caused by eating and in some cases food intake is more or less substituted with alcohol, tobacco and coffee. Alcohol and drug interaction are known to influence the pharmacokinetics by altering either drug absorption or by affecting liver metabolism. Since patients suffering from chronic pancreatitis experience severe pain, opioids are often prescribed as pain treatment. Opioids have intrinsic effects on gastrointestinal motility and hence can modify the absorption of other drugs taken at the same time. Furthermore, the increased fluid absorption caused by opioids will decrease water available for drug dissolution and may hereby affect absorption of the drug. As stated above many factors can influence drug absorption and metabolism in patients with chronic pancreatitis. The factors may not have clinical relevance, but may explain inter-individual variations in responses to a given drug, in patients with chronic pancreatitis.

  14. Pancreatic cancer vaccine: a unique potential therapy

    Directory of Open Access Journals (Sweden)

    Cappello P

    2015-12-01

    Full Text Available Paola Cappello, Moitza Principe, Francesco Novelli Department of Molecular Biotechnologies and Health Sciences, Center for Experimental Research and Medical Studies, AOU Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy Abstract: Pancreatic ductal adenocarcinoma (PDA is a lethal disease and is one of the cancers that is most resistant to traditional therapies. Historically, neither chemotherapy nor radiotherapy has provided any significant increase in the survival of patients with PDA. Despite intensive efforts, any attempts to improve the survival in the past 15 years have failed. This holds true even after the introduction of molecularly targeted agents, chosen on the basis of their involvement in pathways that are considered to be important in PDA development and progression. Recently, however, FOLFIRINOX (5-fluorouracil, leucovorin, irinotecan, and oxaliplatin treatment has provided a limited survival advantage in patients with advanced PDA. Therefore, effective therapeutic strategies are urgently needed to improve the survival rate of patients with PDA. Results from the last 10 years of research in the field of PDA have helped to identify new immunological targets and develop new vaccines that are capable of stimulating an immune response. In addition, the information obtained about the role of the tumor microenvironment in suppressing the immune response and the possibility of targeting PDA microenvironment to limit immune suppression and enhance the response of effector T-cells has opened new avenues for treating this incurable disease. The time is ripe for developing new therapeutic approaches that are able to effectively counteract the progression and spreading of PDA. This review discusses the potential prospects in the care of patients with pancreatic cancer through vaccination and its combination therapy with surgery, chemotherapy, targeting of the tumor microenvironment, and inhibition of immunological

  15. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Lou, Hai-zhou; Weng, Xiao-chuan; Pan, Hong-ming; Pan, Qin; Sun, Peng; Liu, Li-li; Chen, Bin

    2014-01-01

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment

  16. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Hai-zhou [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Weng, Xiao-chuan [Department of Anesthesiology, Hangzhou Xia-sha Hospital, Hangzhou 310018 (China); Pan, Hong-ming; Pan, Qin [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Sun, Peng [Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060 (China); Liu, Li-li [Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016 (China); Chen, Bin, E-mail: chenbinhangzhou126@126.com [Department of Hepatopancreatobiliary Surgery, First People’s Hospital of Hangzhou, Hangzhou 310006 (China)

    2014-07-25

    Highlights: • INK-128 inhibits the survival and growth of human pancreatic cancer cells. • INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. • INK-128 blocks mTORC1/2 activation simultaneously in pancreatic cancer cells. • INK-128 down-regulates cyclin D1 and causes pancreatic cancer cell cycle arrest. • INK-128 significantly increases sensitivity of pancreatic cancer cells to gemcitabine. - Abstract: Pancreatic cancer has one of worst prognosis among all human malignancies around the world, the development of novel and more efficient anti-cancer agents against this disease is urgent. In the current study, we tested the potential effect of INK-128, a novel mammalian target of rapamycin (mTOR) complex 1 and 2 (mTORC1/2) dual inhibitor, against pancreatic cancer cells in vitro. Our results demonstrated that INK-128 concentration- and time-dependently inhibited the survival and growth of pancreatic cancer cells (both primary cells and transformed cells). INK-128 induced pancreatic cancer cell apoptosis and necrosis simultaneously. Further, INK-128 dramatically inhibited phosphorylation of 4E-binding protein 1 (4E-BP1), ribosomal S6 kinase 1 (S6K1) and Akt at Ser 473 in pancreatic cancer cells. Meanwhile, it downregulated cyclin D1 expression and caused cell cycle arrest. Finally, we found that a low concentration of INK-128 significantly increased the sensitivity of pancreatic cancer cells to gemcitabine. Together, our in vitro results suggest that INK-128 might be further investigated as a novel anti-cancer agent or chemo-adjuvant for pancreatic cancer treatment.

  17. Pathophysiology of chronic pancreatitis.

    Science.gov (United States)

    Brock, Christina; Nielsen, Lecia Møller; Lelic, Dina; Drewes, Asbjørn Mohr

    2013-11-14

    Chronic pancreatitis (CP) is an inflammatory disease of the pancreas characterized by progressive fibrotic destruction of the pancreatic secretory parenchyma. Despite the heterogeneity in pathogenesis and involved risk factors, processes such as necrosis/apoptosis, inflammation or duct obstruction are involved. This fibrosing process ultimately leads to progressive loss of the lobular morphology and structure of the pancreas, deformation of the large ducts and severe changes in the arrangement and composition of the islets. These conditions lead to irreversible morphological and structural changes resulting in impairment of both exocrine and endocrine functions. The prevalence of the disease is largely dependent on culture and geography. The etiological risk-factors associated with CP are multiple and involve both genetic and environmental factors. Throughout this review the M-ANNHEIM classification system will be used, comprising a detailed description of risk factors such as: alcohol-consumption, nicotine-consumption, nutritional factors, hereditary factors, efferent duct factors, immunological factors and miscellaneous and rare metabolic factors. Increased knowledge of the different etiological factors may encourage the use of further advanced diagnostic tools, which potentially will help clinicians to diagnose CP at an earlier stage. However, in view of the multi factorial disease and the complex clinical picture, it is not surprising that treatment of patients with CP is challenging and often unsuccessful.

  18. Pathophysiology of chronic pancreatitis

    Science.gov (United States)

    Brock, Christina; Nielsen, Lecia Møller; Lelic, Dina; Drewes, Asbjørn Mohr

    2013-01-01

    Chronic pancreatitis (CP) is an inflammatory disease of the pancreas characterized by progressive fibrotic destruction of the pancreatic secretory parenchyma. Despite the heterogeneity in pathogenesis and involved risk factors, processes such as necrosis/apoptosis, inflammation or duct obstruction are involved. This fibrosing process ultimately leads to progressive loss of the lobular morphology and structure of the pancreas, deformation of the large ducts and severe changes in the arrangement and composition of the islets. These conditions lead to irreversible morphological and structural changes resulting in impairment of both exocrine and endocrine functions. The prevalence of the disease is largely dependent on culture and geography. The etiological risk-factors associated with CP are multiple and involve both genetic and environmental factors. Throughout this review the M-ANNHEIM classification system will be used, comprising a detailed description of risk factors such as: alcohol-consumption, nicotine-consumption, nutritional factors, hereditary factors, efferent duct factors, immunological factors and miscellaneous and rare metabolic factors. Increased knowledge of the different etiological factors may encourage the use of further advanced diagnostic tools, which potentially will help clinicians to diagnose CP at an earlier stage. However, in view of the multi factorial disease and the complex clinical picture, it is not surprising that treatment of patients with CP is challenging and often unsuccessful. PMID:24259953

  19. Pancreatic panniculitis associated with acute pancreatitis and hemorrhagic pseudocysts: A case report

    International Nuclear Information System (INIS)

    Jang, Yong Suk; Kim, Mi Sung; Park, Chan Sub; Park, Ji Yeon; Park, Noh Hyuck

    2012-01-01

    Pancreatic panniculitis is an inflammation and necrosis of fat at distant foci in patients with pancreatic disorders, most frequently, pancreatitis and pancreatic carcinoma. Clinically, pancreatic panniculitis is manifested by painless or painful subcutaneous nodules on the legs, buttocks, or trunk. The usual sites are the distal parts of the lower extremities. To the best of our knowledge, there have not been many reports for the radiologic findings of pancreatic panniculitis. In this article, we report a case of pancreatic panniculitis, including radiologic findings of CT and ultrasonography. The patient was presented with painful subcutaneous nodules on the trunk, and had underlying acute pancreatitis and hemorrhagic pseudocysts

  20. Pancreatic panniculitis associated with acute pancreatitis and hemorrhagic pseudocysts: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yong Suk; Kim, Mi Sung; Park, Chan Sub; Park, Ji Yeon; Park, Noh Hyuck [Kwandong Univ., Myongji Hospital, Goyang (Korea, Republic of)

    2012-10-15

    Pancreatic panniculitis is an inflammation and necrosis of fat at distant foci in patients with pancreatic disorders, most frequently, pancreatitis and pancreatic carcinoma. Clinically, pancreatic panniculitis is manifested by painless or painful subcutaneous nodules on the legs, buttocks, or trunk. The usual sites are the distal parts of the lower extremities. To the best of our knowledge, there have not been many reports for the radiologic findings of pancreatic panniculitis. In this article, we report a case of pancreatic panniculitis, including radiologic findings of CT and ultrasonography. The patient was presented with painful subcutaneous nodules on the trunk, and had underlying acute pancreatitis and hemorrhagic pseudocysts.

  1. Solitary main pancreatic ductal calculus of possible biliary origin causing acute pancreatitis.

    Science.gov (United States)

    Chaparala, Ramakrishna Prasad Chowdary; Patel, Rafiuddin; Guthrie, James Ahsley; Davies, Mervyn Huw; Guillou, Pierre J; Menon, Krishna V

    2005-09-10

    Pancreatic ductal calculi are most often associated with chronic pancreatitis. Radiological features of chronic pancreatitis are readily evident in the presence of these calculi. However, acute pancreatitis due to a solitary main pancreatic ductal calculus of biliary origin is rare. A 59-year-old man presented with a first episode of acute pancreatitis. Contrast enhanced computerized tomography (CT) scan and endoscopic retrograde cholangiopancreatography (ERCP) revealed a calculus in the main pancreatic duct in the head of the pancreas causing acute pancreatitis. There were no features suggestive of chronic pancreatitis on CT scanning. The episode acute pancreatitis was managed conservatively. ERCP extraction of the calculus failed as the stone was impacted in the main pancreatic duct resulting in severe acute pancreatitis. Once this resolved, a transduodenal exploration and extraction of the pancreatic ductal calculus was performed successfully. Crystallographic analysis revealed the composition of the calculus was different to that seen in chronic pancreatitis, but more in keeping with a calculus of biliary origin. This could be explained by migration of the biliary calculus via the common channel into the main pancreatic duct. Following the operation the patient made an uneventful recovery and was well at two-year follow up. Acute pancreatitis due to a solitary main pancreatic ductal calculus of biliary origin is rare. Failing endoscopic extraction, transduodenal exploration and extraction is a safe option after resolution of acute pancreatitis.

  2. Severe Acute Pancreatitis in Pregnancy

    Directory of Open Access Journals (Sweden)

    Bahiyah Abdullah

    2015-01-01

    Full Text Available This is a case of a pregnant lady at 8 weeks of gestation, who presented with acute abdomen. She was initially diagnosed with ruptured ectopic pregnancy and ruptured corpus luteal cyst as the differential diagnosis. However she then, was finally diagnosed as acute hemorrhagic pancreatitis with spontaneous complete miscarriage. This is followed by review of literature on this topic. Acute pancreatitis in pregnancy is not uncommon. The emphasis on high index of suspicion of acute pancreatitis in women who presented with acute abdomen in pregnancy is highlighted. Early diagnosis and good supportive care by multidisciplinary team are crucial to ensure good maternal and fetal outcomes.

  3. Pancreatic Metastasis from Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Julian Jacob

    2010-01-01

    Full Text Available The pancreas is an unusual location for metastases from other primary cancers. Rarely, pancreatic metastases from kidney or colorectal cancers have been reported. However, a variety of other cancers may also spread to the pancreas. We report an exceptional case of pancreatic metastasis from prostate cancer. Differences in management between primary and secondary pancreatic tumors make recognition of metastases to the pancreas an objective of first importance. Knowledge of unusual locations for metastatic spread will reduce diagnostic delay and lead to a timely delivery of an appropriate treatment.

  4. Necrotizing pancreatitis: challenges and solutions.

    Science.gov (United States)

    Bendersky, Victoria A; Mallipeddi, Mohan K; Perez, Alexander; Pappas, Theodore N

    2016-01-01

    Acute pancreatitis is a common disease that can progress to gland necrosis, which imposes significant risk of morbidity and mortality. In general, the treatment for pancreatitis is a supportive therapy. However, there are several reasons to escalate to surgery or another intervention. This review discusses the pathophysiology as well as medical and interventional management of necrotizing pancreatitis. Current evidence suggests that patients are best served by delaying interventions for at least 4 weeks, draining as a first resort, and debriding recalcitrant tissue using minimally invasive techniques to promote or enhance postoperative recovery while reducing wound-related complications.

  5. Vitamin D and pancreatic cancer

    OpenAIRE

    Stolzenberg-Solomon, Rachael Z.

    2008-01-01

    Sun exposure has been associated with lower death rates for pancreatic cancer in ecological studies. Skin exposure to solar ultra-violet B radiation induces cutaneous production of precursors to 25-hydroxy (OH) vitamin D (D) and is considered the primary contributor to vitamin D status in most populations. Pancreatic islet and duct cells express 25-(OH) D3-1α-hydroxylase that generates the biologically active 1,25-dihydroxy(OH)2 D form. Thus, 25(OH)D concentrations could affect pancreatic fun...

  6. Recent Progress in Pancreatic Cancer

    Science.gov (United States)

    Wolfgang, Christopher L.; Herman, Joseph M.; Laheru, Daniel A.; Klein, Alison P.; Erdek, Michael A.; Fishman, Elliot K.; Hruban, Ralph H.

    2013-01-01

    Pancreatic cancer is currently one of the deadliest of the solid malignancies. However, surgery to resect neoplasms of the pancreas is safer and less invasive than ever, novel drug combinations have been shown to improve survival, advances in radiation therapy have resulted in less toxicity, and enormous strides have been made in our understanding of the fundamental genetics of pancreatic cancer. These advances provide hope but they also increase the complexity of caring for patients. It is clear that multidisciplinary care that provides comprehensive and coordinated evaluation and treatment is the most effective way to manage patients with pancreatic cancer. PMID:23856911

  7. Ablation of phosphoinositide 3-kinase-gamma reduces the severity of acute pancreatitis.

    Science.gov (United States)

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-12-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-gamma (PI3K gamma) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3K gamma, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3K gamma significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3K gamma-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3K gamma, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3K gamma. Our results thus suggest that inhibition of PI3K gamma may be of therapeutic value in acute pancreatitis.

  8. Ablation of Phosphoinositide 3-Kinase-γ Reduces the Severity of Acute Pancreatitis

    Science.gov (United States)

    Lupia, Enrico; Goffi, Alberto; De Giuli, Paolo; Azzolino, Ornella; Bosco, Ornella; Patrucco, Enrico; Vivaldo, Maria Cristina; Ricca, Marco; Wymann, Matthias P.; Hirsch, Emilio; Montrucchio, Giuseppe; Emanuelli, Giorgio

    2004-01-01

    In pancreatic acini, the G-protein-activated phosphoinositide 3-kinase-γ (PI3Kγ) regulates several key pathological responses to cholecystokinin hyperstimulation in vitro. Thus, using mice lacking PI3Kγ, we studied the function of this enzyme in vivo in two different models of acute pancreatitis. The disease was induced by supramaximal concentrations of cerulein and by feeding mice a choline-deficient/ethionine-supplemented diet. Although the secretive function of isolated pancreatic acini was identical in mutant and control samples, in both models, genetic ablation of PI3Kγ significantly reduced the extent of acinar cell injury/necrosis. In agreement with a protective role of apoptosis in pancreatitis, PI3Kγ-deficient pancreata showed an increased number of apoptotic acinar cells, as determined by terminal dUTP nick-end labeling and caspase-3 activity. In addition, neutrophil infiltration within the pancreatic tissue was also reduced, suggesting a dual action of PI3Kγ, both in the triggering events within acinar cells and in the subsequent neutrophil recruitment and activation. Finally, the lethality of the choline-deficient/ethionine-supplemented diet-induced pancreatitis was significantly reduced in mice lacking PI3Kγ. Our results thus suggest that inhibition of PI3Kγ may be of therapeutic value in acute pancreatitis. PMID:15579443

  9. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    International Nuclear Information System (INIS)

    Rizwani, Wasia; Allen, Amanda E.; Trevino, Jose G.

    2015-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer

  10. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Rizwani, Wasia [Department of Biochemistry, Osmania University, Hyderabad, Telangana 500007 (India); Allen, Amanda E.; Trevino, Jose G., E-mail: Jose.Trevino@surgery.ufl.edu [Department of Surgery, University of Florida, 1600 SW Archer Rd, Rm 6175, P.O. Box 100109, Gainesville, FL 32610 (United States)

    2015-09-03

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.

  11. Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge

    Directory of Open Access Journals (Sweden)

    Wasia Rizwani

    2015-09-01

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF, the sole ligand for c-MET (mesenchymal-epithelial transition, an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.

  12. Chinese herb derived-Rocaglamide A is a potent inhibitor of pancreatic cancer cells.

    Science.gov (United States)

    Wang, Baochun; Li, Yixiong; Tan, Fengbo; Xiao, Zhanxiang

    2016-01-01

    Pancreatic cancer ranks No.1 in mortality rate worldwide. This study aims to identify the novel anti-pancreatic cancer drugs. Human pancreatic carcinoma cell lines were purchased from ATCC. CPE-based screening assay was used to examine the cell viability. Patient derived tumor xenografts in SCID mice was established. The Caspase-3 and 7 activities were measured using the Caspase Glo 3/7 Assay kit. Soft agar colony formation assay was used to evaluate the colony formation. Wound healing assay was employed to determine the cell migration. We screened a Chinese herbal product library and found three "hits" that kill cancer cells at nanomolar to micromolar concentrations. One of these compounds, rocaglamide, was found to be potent inhibitors of a wide spectrum of pancreatic cancer cell lines. Furthermore, Rocaglamide reduced the tumor size in a patient-derived pancreatic cancer xenograft mouse model without noticeable toxicity in vivo. Rocaglamide also inhibits pancreatic cancer cell migration and invasion. In conclusion, these data support that Rocaglamide may be a promising anti-pancreatic cancer drug.

  13. Pancreatic tissue fluid pressure and pain in chronic pancreatitis

    DEFF Research Database (Denmark)

    Ebbehøj, N

    1992-01-01

    A casual relation between pancreatic pressure and pain has been searched for decades but lack of appropriate methods for pressure measurements has hindered progress. During the 1980's the needle method has been used for direct intraoperative pancreatic tissue fluid pressure measurements and later...... for percutaneous sonographically-guided pressure measurements. Clinical and experimental evaluation of the method showed comparable results at intraoperative and percutaneous measurements and little week-to-week variation. Furthermore, comparable pressures in duct and adjacent pancreatic tissue were found, i.......e. the needle pressure mirrors the intraductal pressure. Comparisons of pain registrations, morphological and functional parameters with pancreatic tissue fluid pressure measurements have revealed a relation between pressure and pain which probably is causal. In patients with pain the high pressures previously...

  14. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    Science.gov (United States)

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  15. Nutritional and Metabolic Derangements in Pancreatic Cancer and Pancreatic Resection

    Directory of Open Access Journals (Sweden)

    Taylor M. Gilliland

    2017-03-01

    Full Text Available Pancreatic cancer is an aggressive malignancy with a poor prognosis. The disease and its treatment can cause significant nutritional impairments that often adversely impact patient quality of life (QOL. The pancreas has both exocrine and endocrine functions and, in the setting of cancer, both systems may be affected. Pancreatic exocrine insufficiency (PEI manifests as weight loss and steatorrhea, while endocrine insufficiency may result in diabetes mellitus. Surgical resection, a central component of pancreatic cancer treatment, may induce or exacerbate these dysfunctions. Nutritional and metabolic dysfunctions in patients with pancreatic cancer lack characterization, and few guidelines exist for nutritional support in patients after surgical resection. We reviewed publications from the past two decades (1995–2016 addressing the nutritional and metabolic status of patients with pancreatic cancer, grouping them into status at the time of diagnosis, status at the time of resection, and status of nutritional support throughout the diagnosis and treatment of pancreatic cancer. Here, we summarize the results of these investigations and evaluate the effectiveness of various types of nutritional support in patients after pancreatectomy for pancreatic adenocarcinoma (PDAC. We outline the following conservative perioperative strategies to optimize patient outcomes and guide the care of these patients: (1 patients with albumin < 2.5 mg/dL or weight loss > 10% should postpone surgery and begin aggressive nutrition supplementation; (2 patients with albumin < 3 mg/dL or weight loss between 5% and 10% should have nutrition supplementation prior to surgery; (3 enteral nutrition (EN should be preferred as a nutritional intervention over total parenteral nutrition (TPN postoperatively; and, (4 a multidisciplinary approach should be used to allow for early detection of symptoms of endocrine and exocrine pancreatic insufficiency alongside implementation of

  16. Magnetic resonance imaging of pancreatitis: An update

    Science.gov (United States)

    Manikkavasakar, Sriluxayini; AlObaidy, Mamdoh; Busireddy, Kiran K; Ramalho, Miguel; Nilmini, Viragi; Alagiyawanna, Madhavi; Semelka, Richard C

    2014-01-01

    Magnetic resonance (MR) imaging plays an important role in the diagnosis and staging of acute and chronic pancreatitis and may represent the best imaging technique in the setting of pancreatitis due to its unmatched soft tissue contrast resolution as well as non-ionizing nature and higher safety profile of intravascular contrast media, making it particularly valuable in radiosensitive populations such as pregnant patients, and patients with recurrent pancreatitis requiring multiple follow-up examinations. Additional advantages include the ability to detect early forms of chronic pancreatitis and to better differentiate adenocarcinoma from focal chronic pancreatitis. This review addresses new trends in clinical pancreatic MR imaging emphasizing its role in imaging all types of acute and chronic pancreatitis, pancreatitis complications and other important differential diagnoses that mimic pancreatitis. PMID:25356038

  17. Groove Pancreatitis – A Mimic of Pancreatic and Periampullary Tumors

    Directory of Open Access Journals (Sweden)

    Sivakami R Pradheepkumar

    2017-10-01

    Full Text Available Groove Pancreatitis (GP is a rare form of focal chronic pancreatitis involving the pancreatico-duodenal groove (PDG. GP was first described by Becker in 1973. Though, GP has been described so many years ago, it is still unfamiliar among most physicians because of lack of sufficient case studies and clinical similarity of GP to conventional pancreatitis. Imaging based differentiation of GP from other lesions, like pancreatic and periampullary adenocarcinoma is also not possible in all the cases, unless there are typical findings favoring GP. Since, the line of treatment and outcome is totally different in these two conditions, appreciation of the fine differences between these two entities is very significant. Groove pancreatitis is symptomatically treated with medicines and only for patients with continuous and severe symptoms which are not amenable to medical treatment surgical management is considered. Radiological differentiation of GP from pancreatic and periampullary malignancies will help to avoid unnecessary surgery in the initial stages. We report two cases of GP, one of pure and other of segmental form where we found typical imaging features which pointed to the diagnosis of GP with a small discussion about the Computed tomography (CT and Magnetic Resonance Imaging (MRI appearance of this entity as well as its differential diagnosis.

  18. [Pancreatic anastomosis in operative treatment of chronic pancreatitis].

    Science.gov (United States)

    Bellon, E; Izbicki, J R; Bockhorn, M

    2017-01-01

    Chronic pancreatitis (CP) is an irreversible, inflammatory process, which is characterized by progressive fibrosis of the pancreas and leads to abdominal pain, endocrine and exocrine insufficiency. Surgical therapy is indicated by the absence of pain relief and local complications. The target of the surgical approach is to relieve the pancreatic and bile ducts and resection of the fibrotic and calcified parenchyma. Drainage procedures, such as the Partington-Rochelle method, are used in patients with isolated congestion of the pancreatic duct without further organ complications, such as inflammatory processes of the pancreatic head; however, patients with CP often have an inflammatory swelling of the pancreatic head. In this case classical pancreatoduodenectomy (PD) or organ-sparing duodenum-preserving pancreatic head resection (DPPHR) with its various techniques (e.g. Beger, Frey, Bern and V‑shape) can be applied. Due to similar long-term results PD should be carried out in cases of suspicion or detection of malignancies and DPPHR for treatment of CP.

  19. Pancreatic duct stones in patients with chronic pancreatitis: surgical outcomes.

    Science.gov (United States)

    Liu, Bo-Nan; Zhang, Tai-Ping; Zhao, Yu-Pei; Liao, Quan; Dai, Meng-Hua; Zhan, Han-Xiang

    2010-08-01

    Pancreatic duct stone (PDS) is a common complication of chronic pancreatitis. Surgery is a common therapeutic option for PDS. In this study we assessed the surgical procedures for PDS in patients with chronic pancreatitis at our hospital. Between January 2004 and September 2009, medical records from 35 patients diagnosed with PDS associated with chronic pancreatitis were retrospectively reviewed and the patients were followed up for up to 67 months. The 35 patients underwent ultrasonography, computed tomography, or both, with an overall accuracy rate of 85.7%. Of these patients, 31 underwent the modified Puestow procedure, 2 underwent the Whipple procedure, 1 underwent simple stone removal by duct incision, and 1 underwent pancreatic abscess drainage. Of the 35 patients, 28 were followed up for 4-67 months. There was no postoperative death before discharge or during follow-up. After the modified Puestow procedure, abdominal pain was reduced in patients with complete or incomplete stone clearance (P>0.05). Steatorrhea and diabetes mellitus developed in several patients during a long-term follow-up. Surgery, especially the modified Puestow procedure, is effective and safe for patients with PDS associated with chronic pancreatitis. Decompression of intraductal pressure rather than complete clearance of all stones predicts postoperative outcome.

  20. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  1. Autoimmune pancreatitis. An update

    International Nuclear Information System (INIS)

    Helmberger, T.

    2016-01-01

    Autoimmune pancreatitis (AIP) is a rare disease, the pathophysiological understanding of which has been greatly improved over the last years. The most common form, type 1 AIP belongs to the IgG4-related diseases and must be distinguished from type 2 AIP, which is a much rarer entity associated with chronic inflammatory bowel disease. Clinically, there is an overlap with pancreatic cancer. Imaging and further criteria, such as serological and histological parameters are utilized for a differentiation between both entities in order to select the appropriate therapy and to avoid the small but ultimately unnecessary number of pancreatectomies. The diagnostics of AIP are complex, whereby the consensus criteria of the International Association of Pancreatology have become accepted as the parameters for discrimination. These encompass five cardinal criteria and one therapeutic criterion. By applying these criteria AIP can be diagnosed with a sensitivity of 84.9 %, a specificity of 100 % and an accuracy of 93.8 %. The diagnosis of AIP is accomplished by applying several parameters of which two relate to imaging. As for the routine diagnostics of the pancreas these are ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI). Important for the differential diagnosis is the exclusion of signs of local and remote tumor spread for which CT and MRI are established. The essential diagnostic parameter of histology necessitates sufficient sample material, which cannot usually be acquired by a fine needle biopsy. CT or MRI are the reference standard methods for identification of the optimal puncture site and imaging-assisted (TruCut) biopsy. In patients presenting with unspecific upper abdominal pain, painless jaundice combined with the suspicion of a pancreatic malignancy in imaging but a mismatch of secondary signs of malignancy, AIP should also be considered as a differential diagnosis. As the diagnosis of AIP only partially relies on imaging radiologists also

  2. Pancreatic scintigraphy in diabetes mellitus

    International Nuclear Information System (INIS)

    Shio, Hiroshi; Ueki, Jyuichi; Nomura, Kozi; Nakamura, Yoshifumi

    1983-01-01

    Pancreatic scintigraphy was performed on 67 diabetic patients (42 males and 25 females) in order to study exocrine pancreatic functions in primary diabetes. Relationships between visualization and the onset age, sex, morbid period, presence or absence of retinitis, good or poor control of blood glucose control and the therapeutic modality of diabetes were examined. Abnormality was detected in 34 cases (50.7%), being frequent among male patients in their 50s. The more serious the diabetes, i.e., with a longer morbid period, poorer blood glucose control and worse retinitis, the higher was the frequency of abnormality in pancreatic visualization. The frequency of abnormality was high in association with insulin treatment, oral tablets and single dietary treatment in that order. The more severe the hypoinsulinism, the higher was the frequency of abnormality. This technique can be used as a screening means for exocrine pancreatic function tests on diabetics. (Chiba, N.)

  3. Drugs Approved for Pancreatic Cancer

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for pancreatic cancer. The list includes generic names, brand names, and common drug combinations, which are shown in capital letters.

  4. Valsartan-induced acute pancreatitis.

    Science.gov (United States)

    Can, Burak; Sali, Mursel; Batman, Adnan; Yilmaz, Hasan; Korkmaz, Ugur; Celebi, Altay; Senturk, Omer; Hulagu, Sadettin

    2014-01-01

    Gastrointestinal toxicity is uncommon among patients treated with angiotensin II receptor antagonists. A 58-year-old man presented with nausea, vomiting and constant pain in the epigastrium that radiated to the flanks. He received treatment with valsartan (160 mg daily) for hypertension. The clinical, biochemical and radiological findings were compatible with a diagnosis of acute pancreatitis. After the patient achieved a clinical and biochemical recovery, the valsartan therapy was started again. Six weeks later, he returned to the hospital with an attack of pancreatitis. Subsequently, he returned with repeated attacks of pancreatitis twice, and the valsartan was discontinued. Ten months after the treatment, the patient had no complaints. When severe abdominal symptoms occur for no apparent reason during treatment with valsartan, a diagnosis of pancreatitis should be considered.

  5. Pre-ERCP infusion of semapimod, a mitogen-activated protein kinases inhibitor, lowers post-ERCP hyperamylasemia but not pancreatitis incidence

    NARCIS (Netherlands)

    van Westerloo, David J.; Rauws, Erik A.; Hommes, Daan; de Vos, Alex F.; van der Poll, Tom; Powers, Barbara L.; Fockens, Paul; Dijkgraaf, Marcel G. W.; Bruno, Marco J.

    2008-01-01

    BACKGROUND: Acute pancreatitis and hyperamylasemia are frequent complications of an ERCP. Semapimod is a synthetic guanylhydrazone that inhibits the mitogen-activated protein kinase (MAPK) pathway, macrophage activation, and the production of several inflammatory cytokines. OBJECTIVE: This study

  6. A RETROSPECTIVE STUDY OF MANAGEMENT OF ACUTE PANCREATITIS IN A PERIPHERAL TERTIARY HOSPITAL

    Directory of Open Access Journals (Sweden)

    Thomas Karunahara

    2016-06-01

    Full Text Available BACKGROUND & OBJECTIVES Acute pancreatitis (AP is one of the most common diseases in gastroenterology. Two percent of all patients admitted to hospital are diagnosed with AP. During the last decade, an increasing incidence was observed, mostly because of a higher sensitivity of diagnostic tests. Treatment of Acute Pancreatitis is still symptomatic and no specific medication is available today. As a result of popular belief that the pancreas should be put to rest during acute pancreatitis, the parenteral route for nutrition is still predominantly used in Acute Pancreatitis. There has been increasing evidence; however, about gut being main source of microorganisms causing infectious pancreatic complications and multiorgan failure. In patients with severe pancreatitis, oral intake is inhibited by nausea and subileus. Although some reports show that enteral feeding is possible in acute pancreatitis and associated with fewer septic complications. Although the evidence is inconclusive to support enteral nutrition in all patients with severe acute pancreatitis, the enteral route may be used if tolerated. Supportive treatment is the most important line of management in acute pancreatitis. The aim is to study the management of acute pancreatitis in a peripheral tertiary hospital and to assess the outcome of the management. METHODS & MATERIALS Data Collection: Patients with acute abdominal pain are admitted in hospital and diagnosed as acute pancreatitis based on blood investigations and radiological findings. Patients categorised- Revised Atlanta Classification. Different medical management modes followed and outcomes recorded, tabulated and analysed. Research Design: Retrospective study. Research Settings: Mahatma Gandhi Memorial Government Hospital, Trichy, Tamilnadu. Duration: 5 yrs. (2010-2015 Sample Size: 186. Inclusion Criteria: Patients between 12 and 75 yrs. of age, patients admitted to the hospital as a case of acute pancreatitis, both sexes

  7. Short-chain C6 ceramide sensitizes AT406-induced anti-pancreatic cancer cell activity

    International Nuclear Information System (INIS)

    Zhao, Xiaoguang; Sun, Baoyou; Zhang, Jingjing; Zhang, Ruishen; Zhang, Qing

    2016-01-01

    Our previous study has shown that AT406, a first-in-class small molecular antagonist of IAPs (inhibitor of apoptosis proteins), inhibits pancreatic cancer cell proliferation in vitro and in vivo. The aim of this research is to increase AT406's sensitivity by adding short-chain C6 ceramide. We show that co-treatment of C6 ceramide dramatically potentiated AT406-induced caspase/apoptosis activation and cytotoxicity in established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells. Reversely, caspase inhibitors largely attenuated C6 ceramide plus AT406-induced above cancer cell death. Molecularly, C6 ceramide downregulated Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. Intriguingly, C6 ceramide-mediated AT406 sensitization was nullified with Bcl-2 shRNA knockdown or pretreatment of the Bcl-2 inhibitor ABT-737. In vivo, liposomal C6 ceramide plus AT406 co-administration dramatically inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) mice. The combined anti-tumor activity was significantly more potent than either single treatment. Expressions of IAPs (cIAP1/XIAP) and Bcl-2 were downregulated in Panc-1 xenografts with the co-administration. Together, we demonstrate that C6 ceramide sensitizes AT406-mediated anti-pancreatic cancer cell activity possibly via downregulating Bcl-2. - Highlights: • C6 ceramide dramatically potentiates AT406-induced pancreatic cancer cell death. • C6 ceramide facilitates AT406-induced pancreatic cancer cell apoptosis. • C6 ceramide downregulates Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. • Liposomal C6 ceramide enhances AT406-induced anti-pancreatic cancer activity in vivo.

  8. Clinical pancreatic islet transplantation.

    Science.gov (United States)

    Shapiro, A M James; Pokrywczynska, Marta; Ricordi, Camillo

    2017-05-01

    Clinical pancreatic islet transplantation can be considered one of the safest and least invasive transplant procedures. Remarkable progress has occurred in both the technical aspects of islet cell processing and the outcomes of clinical islet transplantation. With >1,500 patients treated since 2000, this therapeutic strategy has moved from a curiosity to a realistic treatment option for selected patients with type 1 diabetes mellitus (that is, those with hypoglycaemia unawareness, severe hypoglycaemic episodes and glycaemic lability). This Review outlines the techniques required for human islet isolation, in vitro culture before the transplant and clinical islet transplantation, and discusses indications, optimization of recipient immunosuppression and management of adjunctive immunomodulatory and anti-inflammatory strategies. The potential risks, long-term outcomes and advances in treatment after the transplant are also discussed to further move this treatment towards becoming a more widely available option for patients with type 1 diabetes mellitus and eventually a potential cure.

  9. Acute Pancreatitis and Ileus Postcolonoscopy

    Directory of Open Access Journals (Sweden)

    Hin Hin Ko

    2009-01-01

    Full Text Available Postpolypectomy bleeding and perforation are the most common complications of colonoscopy. A case of acute pancreatitis and ileus after colonoscopy is described. A 60-year-old woman underwent a gastroscopy and colonoscopy for investigation of iron deficiency anemia. Gastroscopy was normal; however, the colonoscope could not be advanced beyond the splenic flexure due to a tight angulation. Two polypectomies were performed in the descending colon. After the procedure, the patient developed a distended, tender abdomen. Bloodwork was remarkable for an elevated amylase level. An abdominal x-ray and computed tomography scan showed pancreatitis (particularly of the tail, a dilated cecum and a few air-fluid levels. The patient improved within 24 h of a repeat colonoscopy and decompression tube placement. The patient had no risk factors for pancreatitis. The causal mechanism of pancreatitis was uncertain but likely involved trauma to the tail of the pancreas during the procedure. Our patient developed ileus, likely secondary to pancreatitis. The present case is the first report of clinical pancreatitis and ileus associated with colonoscopy.

  10. Pancreatic Stones: Treat or Ignore?

    Directory of Open Access Journals (Sweden)

    DA Howell

    1999-01-01

    Full Text Available Painful, chronic pancreatitis is of complex etiology, but increasing clinical experience suggests that removal of pancreatic duct stones in many cases significantly improves patients’ symptoms. The development and refinement of therapeutic endoscopic retrograde choledochopancreatography have permitted improved access to the pancreatic duct, which makes the development of new techniques of stone fragmentation and fragment removal a much more successful nonsurgical intervention. A major step forward has been the understanding of the safety and efficacy of pancreatic sphincterotomy, which is necessary for the removal of these difficult stones. The recognition that extracorporeal shock wave lithotripsy can be delivered safely with good efficacy has revolutionized the nonsurgical management of pancreatic duct stones. Nevertheless, advanced and sophisticated therapeutic endoscopy is necessary to achieve clearance of the duct, which can generally be accomplished in the majority of selected patients. State-of-the-art treatments are described, and some new approaches using pancreatoscopy and electrohydrolic lithotripsy are discussed. Newly recognized long term complications are reviewed. Finally, it must be recognized that chronic pancreatitis is an ongoing disease that does not have a simple treatment or cure, and frequently represents a process of remissions and relapses requiring interventions and problem solving.

  11. Radiologic evaluation of pancreatic pseudocyst

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, T. H.; Kim, Y. J.; Hong, I. S.; Kim, M. S.; Sung, K. J. [Yeonsei University Wonju College of Medicine, Wonju (Korea, Republic of)

    1986-12-15

    Pancreatic pseudocyst is a collection of necrotic tissue, old blood and secretions that escaped from the pancreas damaged by pancreatitis, trauma and chronic alcoholism. There is no epithelial cell lining the cystic wall. With the advent of ultrasound and CT more accurate diagnosis can be made. Our study was carried out to analyse the radiological and clinical findings of 32 cases of pancreatic pseudocysts confirmed at Wonju College of Medicine Yonsei University from Jan. 1979 to Aug. 1986. The results are as follows: 1. Male to female ratio was 4.3:1 Incidence was the most common in 4th decades. 2. The most frequent symptom was epigastric pain (100%). 3. In a total of 32 cases, 15 cases had a underlying cause of pancreatitis, 9 cases abdominal trauma. 4. In laboratory findings, serum amylase level was elevated in 23 cases, leucocytosis in 10 cases. 5. On chest films, the lungs were mostly normal. Soft tissue mass density in 12 cases was the most common finding on abdomen films. 6. UGI series were helpful in directing attention by pancreatic pseudocysts' location and size. 7. Ultrasonogram using primary procedure for the detection of pseudocyst (23 cases) disclosed anechoic lesion in 8 cases, mixed echo lesion in 15 cases. Mixed echo patterns, in terms of internal echo patters, were echogenic spots (8 cases), septation and echogenic spots (3 cases), fluid-fluid level (3 cases), etc. 8. CT scanning is the best imaging procedure, providing detailed morphologic information about the pancreatic pseudocyst and surrounding tissue.

  12. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vegard Tjomsland

    2016-07-01

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs. PSCs interact with cancer cells through various factors, including transforming growth factor (TGFβ and interleukin (IL-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer–based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration.

  13. Epithelial NEMO/IKKγ limits fibrosis and promotes regeneration during pancreatitis.

    Science.gov (United States)

    Chan, Lap Kwan; Gerstenlauer, Melanie; Konukiewitz, Björn; Steiger, Katja; Weichert, Wilko; Wirth, Thomas; Maier, Harald Jakob

    2017-11-01

    Inhibitory κB kinase (IKK)/nuclear factor κB (NF-κB) signalling has been implicated in the pathogenesis of pancreatitis, but its precise function has remained controversial. Here, we analyse the contribution of IKK/NF-κB signalling in epithelial cells to the pathogenesis of pancreatitis by targeting the IKK subunit NF-κB essential modulator (NEMO) (IKKγ), which is essential for canonical NF-κB activation. Mice with a targeted deletion of NEMO in the pancreas were subjected to caerulein pancreatitis. Pancreata were examined at several time points and analysed for inflammation, fibrosis, cell death, cell proliferation, as well as cellular differentiation. Human samples were used to corroborate findings established in mice. In acute pancreatitis, NEMO deletion in the pancreatic parenchyma resulted in minor changes during the early phase but led to the persistence of inflammatory and fibrotic foci in the recovery phase. In chronic pancreatitis, NEMO deletion aggravated inflammation and fibrosis, inhibited compensatory acinar cell proliferation, and enhanced acinar atrophy and acinar-ductal metaplasia. Gene expression analysis revealed sustained activation of profibrogenic genes and the CXCL12/CXCR4 axis in the absence of epithelial NEMO. In human chronic pancreatitis samples, the CXCL12/CXCR4 axis was activated as well, with CXCR4 expression correlating with the degree of fibrosis. The aggravating effects of NEMO deletion were attenuated by the administration of the CXCR4 antagonist AMD3100. Our results suggest that NEMO in epithelial cells exerts a protective effect during pancreatitis by limiting inflammation and fibrosis and improving acinar cell regeneration. The CXCL12/CXCR4 axis is an important mediator of that effect and may also be of importance in human chronic pancreatitis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Phospholipase D mediated transphosphatidylation as a possible new pathway of ethanol metabolism in isolated rat pancreatic acini

    Energy Technology Data Exchange (ETDEWEB)

    Rydzewska, G.; Jurkowska, G.; Gabryelewicz, A. [Akademia Medyczna, Bialystok (Poland)

    1996-12-31

    Activation of pancreatic phospholipase D (PLD) has been previously observed in response to caerulein (Cae), phorbol myristate acetate and growth factors. The physiological role of PLD in pancreatic cells still remains unclear. In the presence of ethanol, PLD catalysed transphosphatidylation reaction, forming phosphatidylethanol (PEt). This study was thus undertaken to determine the involvement of PLD in ethanol metabolism in isolated pancreatic acini and to show the potential physiological consequences of transphosphatidylation. Dispersed pancreatic acini prelabelled with 3H myristic acid were incubated with 500 pM Cae in the presence or absence of different concentrations of ethanol, and labelled phosphatidylethanol (3H PEt) production or phosphatidic acid (3H PA) accumulation were measured. The production of PEt after Cae stimulation in pancreatic acini was significant from 0.5% up to 4% of ethanol in the medium and was not dependent on increasing concentration of ethanol. Prolonged up to 2 h stimulation with Cae in the presence of 1% ethanol did not increase PEt production which was almost stable since 5 min of stimulation. In the presence of different concentrations of ethanol (1-4%), the significant inhibition of PA accumulation was obtained after Cae stimulation, similar to inhibition with a specific PLD inhibitor-wortmannin. These data indicate that Cae activated PLD in the presence of ethanol caused PEt production in pancreatic acini. During formation of PEt in pancreatic acinar cells significant and parallel inhibition of PA accumulation was observed. This indicates the relation of PLD activation in isolated pancreatic acini to ethanol metabolism. Ethanol can act as an inhibitor of PLD activity. Since PA, a product of PLD, is known as a second messenger probably involved in cell proliferation and differentiation, this may suggest a potentially new mechanism for pancreatic tissue injury after ethanol ingestion. (author). 32 refs, 5 figs.

  15. Simultaneous characterization of pancreatic stellate cells and other pancreatic components within three-dimensional tissue environment during chronic pancreatitis

    Science.gov (United States)

    Hu, Wenyan; Fu, Ling

    2013-05-01

    Pancreatic stellate cells (PSCs) and other pancreatic components that play a critical role in exocrine pancreatic diseases are generally identified separately by conventional studies, which provide indirect links between these components. Here, nonlinear optical microscopy was evaluated for simultaneous characterization of these components within a three-dimensional (3-D) tissue environment, primarily based on multichannel detection of intrinsic optical emissions and cell morphology. Fresh rat pancreatic tissues harvested at 1 day, 7 days, and 28 days after induction of chronic pancreatitis were imaged, respectively. PSCs, inflammatory cells, blood vessels, and collagen fibers were identified simultaneously. The PSCs at day 1 of chronic pancreatitis showed significant enlargement compared with those in normal pancreas (ppancreatic components coincidently within 3-D pancreatic tissues. It is a prospect for intravital observation of dynamic events under natural physiological conditions, and might help uncover the key mechanisms of exocrine pancreatic diseases, leading to more effective treatments.

  16. Diagnosing autoimmune pancreatitis with the Unifying-Autoimmune-Pancreatitis-Criteria.

    Science.gov (United States)

    Schneider, Alexander; Michaely, Henrik; Rückert, Felix; Weiss, Christel; Ströbel, Philipp; Belle, Sebastian; Hirth, Michael; Wilhelm, Torsten J; Haas, Stephan L; Jesenofsky, Ralf; Schönberg, Stefan; Marx, Alexander; Singer, Manfred V; Ebert, Matthias P; Pfützer, Roland H; Löhr, J Matthias

    We had developed the Unifying-Autoimmune-Pancreatitis-Criteria (U-AIP) to diagnose autoimmune pancreatitis (AiP) within the M-ANNHEIM classification of chronic pancreatitis. In 2011, International-Consensus-Diagnostic-Criteria (ICDC) to diagnose AiP have been published. We had applied the U-AIP long before the ICDC were available. The aims of the study were, first, to describe patients with AiP diagnosed by the U-AIP; second, to compare diagnostic accuracies of the U-AIP and other diagnostic systems; third, to evaluate the clinical applicability of the U-AIP. From 1998 until 2008, we identified patients with AiP using U-AIP, Japanese-, Korean-, Asian-, Mayo-HISORt-, Revised-Mayo-HISORt- and Italian-criteria. We retrospectively verified the diagnosis by ICDC and Revised-Japanese-2011-criteria, compared diagnostic accuracies of all systems and evaluated all criteria in consecutive patients with pancreatitis (2009 until 2010, Pancreas-Outpatient-Clinic-Cohort, n = 84). We retrospectively validated our diagnostic approach in consecutive patients with a pancreatic lesion requiring surgery (Surgical-Cohort, n = 98). Overall, we identified 21 patients with AiP. Unifying-Autoimmune-Pancreatitis-Criteria and ICDC presented the highest diagnostic accuracies (each 98.8%), highest Youden indices (each 0.95238), and highest proportions of diagnosed patients (each n = 20/21, U-AIP/ICDC vs. other diagnostic systems, p Pancreatitis-Criteria revealed a satisfactory clinical applicability and offered an additional approach to diagnose AiP. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  17. Pancreatic HIF2α Stabilization Leads to Chronic Pancreatitis and Predisposes to Mucinous Cystic Neoplasm

    Directory of Open Access Journals (Sweden)

    Heather K. Schofield

    2018-01-01

    Conclusions: We show that pancreatic HIF2α stabilization disrupts pancreatic homeostasis, leading to chronic pancreatitis, and, in the context of oncogenic Kras, MCN formation. These findings provide new mouse models of both chronic pancreatitis and MCN, as well as illustrate the importance of hypoxia signaling in the pancreas.

  18. Enteric hyperoxaluria in chronic pancreatitis.

    Science.gov (United States)

    Demoulin, Nathalie; Issa, Zaina; Crott, Ralph; Morelle, Johann; Danse, Etienne; Wallemacq, Pierre; Jadoul, Michel; Deprez, Pierre H

    2017-05-01

    Chronic pancreatitis may lead to steatorrhea, enteric hyperoxaluria, and kidney damage. However, the prevalence and determinants of hyperoxaluria in chronic pancreatitis patients as well as its association with renal function decline have not been investigated.We performed an observational study. Urine oxalate to creatinine ratio was assessed on 2 independent random urine samples in consecutive adult patients with chronic pancreatitis followed at the outpatient clinic from March 1 to October 31, 2012. Baseline characteristics and annual estimated glomerular filtration rate (eGFR) change during follow-up were compared between patients with hyper- and normo-oxaluria.A total of 48 patients with chronic pancreatitis were included. The etiology of the disease was toxic (52%), idiopathic (27%), obstructive (11%), autoimmune (6%), or genetic (4%). Hyperoxaluria (defined as urine oxalate to creatinine ratio >32 mg/g) was found in 23% of patients. Multivariate regression analysis identified clinical steatorrhea, high fecal acid steatocrit, and pancreatic atrophy as independent predictors of hyperoxaluria. Taken together, a combination of clinical steatorrhea, steatocrit level >31%, and pancreatic atrophy was associated with a positive predictive value of 100% for hyperoxaluria. On the contrary, none of the patients with a fecal elastase-1 level >100 μg/g had hyperoxaluria. Longitudinal evolution of eGFR was available in 71% of the patients, with a mean follow-up of 904 days. After adjustment for established determinants of renal function decline (gender, diabetes, bicarbonate level, baseline eGFR, and proteinuria), a urine oxalate to creatinine ratio >32 mg/g was associated with a higher risk of eGFR decline.Hyperoxaluria is highly prevalent in patients with chronic pancreatitis and associated with faster decline in renal function. A high urine oxalate to creatinine ratio in patients with chronic pancreatitis is best predicted by clinical steatorrhea, a high acid

  19. MicroRNA-1291 targets the FOXA2-AGR2 pathway to suppress pancreatic cancer cell proliferation and tumorigenesis

    Science.gov (United States)

    Qiu, Jing-Xin; Kim, Edward J.; Yu, Ai-Ming

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Better understanding of pancreatic cancer biology may help identify new oncotargets towards more effective therapies. This study investigated the mechanistic actions of microRNA-1291 (miR-1291) in the suppression of pancreatic tumorigenesis. Our data showed that miR-1291 was downregulated in a set of clinical pancreatic carcinoma specimens and human pancreatic cancer cell lines. Restoration of miR-1291 expression inhibited pancreatic cancer cell proliferation, which was associated with cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 sharply suppressed the tumorigenicity of PANC-1 cells in mouse models. A proteomic profiling study revealed 32 proteins altered over 2-fold in miR-1291-expressing PANC-1 cells that could be assembled into multiple critical pathways for cancer. Among them anterior gradient 2 (AGR2) was reduced to the greatest degree. Through computational and experimental studies we further identified that forkhead box protein A2 (FOXA2), a transcription factor governing AGR2 expression, was a direct target of miR-1291. These results connect miR-1291 to the FOXA2-AGR2 regulatory pathway in the suppression of pancreatic cancer cell proliferation and tumorigenesis, providing new insight into the development of miRNA-based therapy to combat pancreatic cancer. PMID:27322206

  20. Autoimmune pancreatitis : Diagnostic and immunological aspects

    NARCIS (Netherlands)

    M.J. van Heerde (Marianne)

    2013-01-01

    textabstractAutoimmune pancreatitis (AIP) is the pancreatic manifestation of a systemic fibro- inflammatory disease, characterized by infiltration with lymphoplasmacytic cells and extensive fibrosis, which leads to morphological changes (swelling, mass forming) and organ dysfunction. Often, but

  1. Acute and chronic pancreatitis: surgical management.

    Science.gov (United States)

    Dzakovic, Alexander; Superina, Riccardo

    2012-08-01

    Pancreatitis is becoming increasingly prevalent in children, posing new challenges to pediatric health care providers. Although some general adult treatment paradigms are applicable in the pediatric population, diagnostic workup and surgical management of acute and chronic pancreatitis have to be tailored to anatomic and pathophysiological entities peculiar to children. Nonbiliary causes of acute pancreatitis in children are generally managed nonoperatively with hydration, close biochemical and clinical observation, and early initiation of enteral feeds. Surgical intervention including cholecystectomy or endoscopic retrograde cholangiopancreatography is often required in acute biliary pancreatitis, whereas infected pancreatic necrosis remains a rare absolute indication for pancreatic debridement and drainage via open, laparoscopic, or interventional radiologic procedure. Chronic pancreatitis is characterized by painful irreversible changes of the parenchyma and ducts, which may result in or be caused by inadequate ductal drainage. A variety of surgical procedures providing drainage, denervation, resection, or a combination thereof are well established to relieve pain and preserve pancreatic function. Copyright © 2012. Published by Elsevier Inc.

  2. Asparaginase-associated pancreatitis in children.

    Science.gov (United States)

    Raja, Raheel Altaf; Schmiegelow, Kjeld; Frandsen, Thomas Leth

    2012-10-01

    l-asparaginase has been an element in the treatment for acute lymphoblastic leukaemia (ALL) and non-Hodgkin lymphoma since the late 1960s and remains an essential component of their combination chemotherapy. Among the major toxicities associated with l-asparaginase therapy are pancreatitis, allergic reactions, thrombotic events, hepatotoxicity and hyperlipidaemia. Acute pancreatitis is one of the most common reasons for stopping treatment with l-asparaginase. Short-term complications of asparaginase-associated pancreatitis include development of pseudocysts and pancreatic necrosis. Long-term complications include chronic pancreatitis and diabetes. The pathophysiology of asparaginase-associated pancreatitis remains to be uncovered. Individual clinical and genetic risk factors have been identified, but they are only weak predictors of pancreatitis. This review explores the definition, possible risk factors, treatment and complications of asparaginase-associated pancreatitis. © 2012 Blackwell Publishing Ltd.

  3. Role of pancreatic fat in the outcomes of pancreatitis.

    Science.gov (United States)

    Acharya, Chathur; Navina, Sarah; Singh, Vijay P

    2014-01-01

    The role of obesity in relation to various disease processes is being increasingly studied, with reports over the last several years increasingly mentioning its association with worse outcomes in acute disease. Obesity has also gained recognition as a risk factor for severe acute pancreatitis (SAP).The mortality in SAP may be as high as 30% and is usually attributable to multi system organ failure (MSOF) earlier in the disease, and complications of necrotizing pancreatitis later [9-11]. To date there is no specific treatment for acute pancreatitis (AP) and the management is largely expectant and supportive. Obesity in general has also been associated with poor outcomes in sepsis and other pathological states including trauma and burns. With the role of unsaturated fatty acids (UFA) as propagators in SAP having recently come to light and with the recognition of acute lipotoxicity, there is now an opportunity to explore different strategies to reduce the mortality and morbidity in SAP and potentially other disease states associated with such a pathophysiology. In this review we will discuss the role of fat and implications of the consequent acute lipotoxicity on the outcomes of acute pancreatitis in lean and obese states and during acute on chronic pancreatitis. Copyright © 2014 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  4. Hypothermia-Related Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Kyawzaw Lin

    2018-05-01

    Full Text Available Acute pancreatitis (AP is an inflammatory disease presenting from mild localized inflammation to severe infected necrotic pancreatic tissue. In the literature, there are a few cases of hypothermia-induced AP. However, the association between hypothermia and AP is still a myth. Generally, mortality from acute pancreatitis is nearly 3–6%. Here, we present a 40-year-old chronic alcoholic female who presented with acute pancreatitis induced by transient hypothermia. A 40-year-old chronic alcoholic female was hypothermic at 81°F on arrival which was improved to 91.7°F with warming blanket and then around 97°F in 8 h. Laboratory tests including complete blood count, lipid panel, and comprehensive metabolic panels were within the normal limit. Serum alcohol level was 0.01, amylase 498, lipase 1,200, ammonia 26, serum carboxyhemoglobin level 2.4, and β-HCG was negative. The entire sepsis workup was negative. During rewarming period, she had one episode of witnessed generalized tonic-clonic seizure. It was followed by transient hypotension. Fluid challenge was successful with 2 L of normal saline. Sonogram (abdomen showed fatty liver and trace ascites. CAT scan (abdomen and pelvis showed evidence of acute pancreatitis without necrosis, peripancreatic abscess, pancreatic mass, or radiopaque gallstones. The patient was managed medically and later discharged from the hospital on the 4th day as she tolerated a normal low-fat diet. In our patient, transient hypothermia from chronic alcohol abuse and her social circumstances might predispose to microcirculatory disturbance resulting in acute pancreatitis. Early and aggressive fluid resuscitation prevents complications.

  5. Pathophysiology of alcoholic pancreatitis: An overview

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Priya Gupta

    2006-01-01

    Use of alcohol is a worldwide habit regardless of socioeconomic background. Heavy alcohol consumption is a potential risk factor for induction of pancreatitis. The current review cites the updated literature on the alcohol metabolism, its effects on gastrointestinal and pancreatic function and in causing pancreatic injury, genetic predisposition of alcohol induced pancreatitis. Reports describing prospective mechanisms of action of alcohol activating the signal transduction pathways, induction of oxidative stress parameters through the development of animal models are being presented.

  6. A case of severe acute pancreatitis with near total pancreatic necrosis diagnosed by dynamic CT scanning

    International Nuclear Information System (INIS)

    Takeda, Kazunori; Kakugawa, Yoichiro; Amikura, Katsumi; Miyagawa, Kikuo; Matsuno, Seiki; Sato, Toshio

    1987-01-01

    A 42 year-old woman with severe acute pancreatitis had drainage of the pancreatic bed, cholecystostomy and jejunostomy on admission, but symptoms were not improved. Fourteen days after admission, clinical sepsis and septisemia were recognized. Dynamic CT scanning of the pancreas showed near total pancreatic necrosis. Symptoms were improved after necrosectomy of the pancreas and debridement of the peripancreatic necrotic tissue were performed. Our experience suggests the usefulness of dynamic CT scanning for detection of pancreatic necrosis in severe acute pancreatitis. (author)

  7. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  8. Pancreatitis in a high HIV prevalence environment

    African Journals Online (AJOL)

    In environments with low HIV infection rates, acute pancreatitis is ... The serum amylase level was used to confirm acute pancreatitis in 50 patients, with a ..... Mortier E, Gaba S, Mari I, Vinceneux P, Pouchot J. Acute pancreatitis during primary ...

  9. Genetic Risk for Alcoholic Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Flair José Carrilho

    2011-06-01

    Full Text Available In recent years many studies have examined the genetic predisposition to pancreatic diseases. Pancreatic disease of an alcoholic etiology was determined to be a multi-factorial disease, where environmental factors interact with the genetic profile of the individual. In this review we discuss the main results from studies examining the frequency of genetic mutations in alcoholic chronic pancreatitis.

  10. The management of complex pancreatic injuries

    African Journals Online (AJOL)

    Nicky

    pancreatic injuries. Leakage of pancreatic exocrine secre- ... gland damage and the likelihood of duct injury is usually sufficient to ..... creatic function. The decision to resort to pancreaticoduo- denectomy is based upon the extent of the pancreatic injury, the size and vascular status of any duodenal injury, the integrity of the ...

  11. Risk of Pancreatic Cancer After a Primary Episode of Acute Pancreatitis.

    Science.gov (United States)

    Rijkers, Anton P; Bakker, Olaf J; Ahmed Ali, Usama; Hagenaars, Julia C J P; van Santvoort, Hjalmar C; Besselink, Marc G; Bollen, Thomas L; van Eijck, Casper H

    2017-09-01

    Acute pancreatitis may be the first manifestation of pancreatic cancer. The aim of this study was to assess the risk of pancreatic cancer after a first episode of acute pancreatitis. Between March 2004 and March 2007, all consecutive patients with a first episode of acute pancreatitis were prospectively registered. Follow-up was based on hospital records audit, radiological imaging, and patient questionnaires. Outcome was stratified based on the development of chronic pancreatitis. We included 731 patients. The median follow-up time was 55 months. Progression to chronic pancreatitis was diagnosed in 51 patients (7.0%). In this group, the incidence rate per 1000 person-years for developing pancreatic cancer was 9.0 (95% confidence interval, 2.3-35.7). In the group of 680 patients who did not develop chronic pancreatitis, the incidence rate per 1000 person-years for developing pancreatic cancer in this group was 1.1 (95% confidence interval, 0.3-3.3). Hence, the rate ratio of pancreatic cancer was almost 9 times higher in patients who developed chronic pancreatitis compared with those who did not (P = 0.049). Although a first episode of acute pancreatitis may be related to pancreatic cancer, this risk is mainly present in patients who progress to chronic pancreatitis.

  12. Targeted Alpha Therapy Approach to the Management of Pancreatic Cancer

    International Nuclear Information System (INIS)

    Allen, Barry J.; Abbas Rizvi, Syed M.; Qu, Chang F.; Smith, Ross C.

    2011-01-01

    Evidence for the efficacy of targeted alpha therapy for the control of pancreatic cancer in preclinical models is reviewed. Results are given for in vitro pancreatic cancer cells and clusters and micro-metastatic cancer lesions in vivo. Two complementary targeting vectors are examined. These are the C595 monoclonal antibody that targets the MUC1 antigen and the PAI2 ligand that targets the uPA receptor. The expression of the tumor-associated antigen MUC-1 and the uPA receptor on three pancreatic cancer cell lines is reported for cell clusters, human mouse xenografts and lymph node metastases, as well as for human pancreatic cancer tissues, using immuno-histochemistry, confocal microscopy and flow cytometry. The targeting vectors C595 and PAI2 were labeled with the alpha emitting radioisotope 213 Bi using the chelators cDTPA and CHX-A″ to form the alpha-conjugates (AC). Cell clusters were incubated with the AC and examined at 48 hours. Apoptosis was documented using the TUNEL assay. In vivo, the anti-proliferative effect for tumors was tested at two days post-subcutaneous cell inoculation. Mice were injected with different concentrations of AC by local or systemic administration. Changes in tumor progression were assessed by tumor size. MUC-1 and uPA are strongly expressed on CFPAC-1, PANC-1 and moderate expression was found CAPAN-1 cell clusters and tumor xenografts. The ACs can target pancreatic cells and regress cell clusters (∼100 μm diameter), causing apoptosis in some 70–90 % of cells. At two days post-cell inoculation in mice, a single local injection of 74 MBq/kg of AC causes complete inhibition of tumor growth. Systemic injections of 111, 222 and 333 MBq/kg of alpha-conjugate caused significant tumor growth delay in a dose dependent manner after 16 weeks, compared with the non-specific control at 333 MBq/kg. Cytotoxicity was assessed by the MTS and TUNEL assays. The C595 and PAI2-alpha conjugates are indicated for the treatment of micro

  13. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  14. Pharmacologic therapy for acute pancreatitis

    Science.gov (United States)

    Kambhampati, Swetha; Park, Walter; Habtezion, Aida

    2014-01-01

    While conservative management such as fluid, bowel rest, and antibiotics is the mainstay of current acute pancreatitis management, there is a lot of promise in pharmacologic therapies that target various aspects of the pathogenesis of pancreatitis. Extensive review of preclinical studies, which include assessment of therapies such as anti-secretory agents, protease inhibitors, anti-inflammatory agents, and anti-oxidants are discussed. Many of these studies have shown therapeutic benefit and improved survival in experimental models. Based on available preclinical studies, we discuss potential novel targeted pharmacologic approaches that may offer promise in the treatment of acute pancreatitis. To date a variety of clinical studies have assessed the translational potential of animal model effective experimental therapies and have shown either failure or mixed results in human studies. Despite these discouraging clinical studies, there is a great clinical need and there exist several preclinical effective therapies that await investigation in patients. Better understanding of acute pancreatitis pathophysiology and lessons learned from past clinical studies are likely to offer a great foundation upon which to expand future therapies in acute pancreatitis. PMID:25493000

  15. CT manifestations of pancreatic tuberculosis

    International Nuclear Information System (INIS)

    Yu Risheng; Zheng Ji'ai; Li Rongfen

    2001-01-01

    Objective: To assess the CT manifestations and diagnostic value in the pancreatic tuberculosis(PTB)with review of the literatures. Methods: All cases of PTB proved by surgery or biopsy were examined with plain and enhanced CT scans. Results: The CT findings in one case with multiple-nodular type of PTB were diffuse enlargement of the pancreas with multiple, nodular, and low-density lesions; The nodular lesions had peripheral enhancement. 7 cases of local type of PTB encroached on pancreatic head. 4 cases showed local soft tissue masses with multiple flecked calcifications in 2 cases and mild enhancement in one case; Cystic masses was found in 2 cases, with mural calcification in 1 case and multi-loculated cystic mass in 1 case, respectively; Massive pancreatic head calcification was demonstrated in one case. In these 8 cases of PTB, the lesion extended out of pancreas in 4 cases, including abdominal tuberculous lymph nodes, tuberculous peritonitis, and hepatosplenic tuberculosis. Conclusion: CT findings of PTB were various but had some characteristics. Pancreatic masses with multiple flecked calcification or mild enhancement could suggest the diagnosis. Abdominal tuberculosis accompanied with the pancreatic lesion, especially tuberculous lymph nodes, was highly suggestive of the diagnosis of PTB

  16. Cystic Lesions in Autoimmune Pancreatitis

    Directory of Open Access Journals (Sweden)

    Macarena Gompertz

    2015-11-01

    Full Text Available Autoimmune pancreatitis (AIP can be chronic or recurrent, but frequently completely reversible after steroid treatment. A cystic lesion in AIP is a rare finding, and it can mimic a pancreatic cystic neoplasm. Difficulties in an exact diagnosis interfere with treatment, and surgery cannot be avoided in some cases. We report the history of a 63-year-old male presenting with jaundice and pruritus. AIP was confirmed by imaging and elevated IgG4 blood levels, and the patient completely recovered after corticosteroid therapy. One year later, he presented with a recurrent episode of AIP with elevated IgG4 levels, accompanied by the appearance of multiple intrapancreatic cystic lesions. All but 1 of these cysts disappeared after steroid treatment, but the remaining cyst in the pancreatic head was even somewhat larger 1 year later. Pancreatoduodenectomy was finally performed. Histology showed the wall of the cystic lesion to be fibrotic; the surrounding pancreatic tissue presented fibrosis, atrophy and lymphoplasmacytic infiltration by IgG4-positive cells, without malignant elements. Our case illustrates the rare possibility that cystic lesions can be part of AIP. These pseudocysts appear in the pancreatic segments involved in the autoimmune disease and can be a consequence of the local inflammation or related to ductal strictures. Steroid treatment should be initiated, after which these cysts can completely disappear with recovery from AIP. Surgical intervention may be necessary in some exceptional cases.

  17. Radiological aspect of pancreatic pseudocysts

    International Nuclear Information System (INIS)

    Chung, Tae Sub; Lim, Sue Jin; Yoo, Hyung Sik; Suh, Jung Ho; Park, Chang Yun

    1982-01-01

    Pancreatic pseudocyst occurs as a complication of pancreatitis or trauma, which results in the escape of pancreatitis enzymes from the parenchyma or ductal system of pancreas. At that time, serum amylase may have retuned to normal level, and the patient may be subjectively asymptomatic. In this phase, the radiologic findings are relatively greater significance than laboratory data. In the conventional radiologic study, pancreatic pseudocyst have been frequently confused with other retroperitoneal mass, but recently with clinical application of ultrasound and CT scan, more accurate diagnosis can be obtained. The brief results are as follows: 1. Male to female ratio was 3 : 2 in 15 patients. Incidence was more common in young adult age. Most frequent symptom was epigastric pain, and which was noted in 11 cases of patients. 7 cases of patients had past history of abdominal trauma and past history of pancreatitis was only in 1 case. Most common laboratory findings was leukocytosis in 8 cases of patients and elevated serum amylase was also noted in 7 cases. 2. In each 5 cases of patients, plain chest roentgenologic evidence of left side pleural effusion and hemidiaphragm elevation were observed. 3. On flat abdomen film, soft mass shadow was visualized in 8 cases of patients. On UGI series, evidence of retrogastric space widening was observed in 11 cases of patients. 4. The location of pseudocyst is mainly in body and tail of pancrease in 11 cases of patients. 5. More accureable diagnosis can be obtained through application of ultrasound and CT scan

  18. Management of pancreatic exocrine insufficiency: Australasian Pancreatic Club recommendations.

    Science.gov (United States)

    Toouli, James; Biankin, Andrew V; Oliver, Mark R; Pearce, Callum B; Wilson, Jeremy S; Wray, Nicholas H

    2010-10-18

    Pancreatic exocrine insufficiency (PEI) occurs when the amounts of enzymes secreted into the duodenum in response to a meal are insufficient to maintain normal digestive processes. The main clinical consequence of PEI is fat maldigestion and malabsorption, resulting in steatorrhoea. Pancreatic exocrine function is commonly assessed by conducting a 3-day faecal fat test and by measuring levels of faecal elastase-1 and serum trypsinogen. Pancreatic enzyme replacement therapy is the mainstay of treatment for PEI. In adults, the initial recommended dose of pancreatic enzymes is 25,000 units of lipase per meal, titrating up to a maximum of 80,000 units of lipase per meal. In infants and children, the initial recommended dose of pancreatic enzymes is 500 units of lipase per gram of dietary fat; the maximum daily dose should not exceed 10,000 units of lipase per kilogram of bodyweight. Oral pancreatic enzymes should be taken with meals to ensure adequate mixing with the chyme. Adjunct therapy with acid-suppressing agents may be useful in patients who continue to experience symptoms of PEI despite high-dose enzyme therapy. A dietitian experienced in treating PEI should be involved in patient management. Dietary fat restriction is not recommended for patients with PEI. Patients with PEI should be encouraged to consume small, frequent meals and to abstain from alcohol. Medium-chain triglycerides do not provide any clear nutritional advantage over long-chain triglycerides, but can be trialled in patients who fail to gain or to maintain adequate bodyweight in order to increase energy intake.

  19. Intestinal α-glucosidase and some pancreatic enzymes inhibitory effect of hydroalcholic extract of Moringa stenopetala leaves.

    Science.gov (United States)

    Toma, Alemayehu; Makonnen, Eyasu; Mekonnen, Yelamtsehay; Debella, Asfaw; Addisakwattana, Sirichai

    2014-06-03

    Moringa stenopetala has been used in traditional health systems to treat diabetes mellitus. One of the successful methods to prevent of the onset of diabetes is to control postprandial hyperglycemia by the inhibition of α-glucosidase and pancreatic α-amylase activities, resulting in the aggressive delay of the carbohydrate digestion of absorbable monosaccharides. The aim of the present study is to investigate the effect of the extract of the leaves of Moringa stenopetala on α-glucosidase, pancreatic α-amylase, pancreatic lipase, and pancreatic cholesterol esterase activities, and, therefore find out the relevance of the plant in controlling blood sugar and lipid levels. The dried leaves of Moringa stenopetala were extracted with hydroalcoholic solvent and dried using rotary vapor under reduced pressure. The dried extracts were determined for the total phenolic compounds, flavonoid content and condensed tannins content by using Folin-Ciocateu's reagent, AlCl3 and vanillin assay, respectively. The dried extract of plant-based food was further quantified with respect to intestinal α-glucosidase (maltase and sucrase) inhibition and pancreatic α-amylase inhibition by glucose oxidase method and dinitrosalicylic (DNS) reagent, respectively. The phytochemical analysis indicated that flavonoid, total phenolic, and condensed tannin contents in the extract were 71.73 ± 2.48 mg quercetin equivalent/g of crude extract, 79.81 ± 2.85 mg of gallic acid equivalent/g of crude extract, 8.82 ± 0.77 mg catechin equivalent/g of crude extract, respectively. The extract inhibited intestinal sucrase more than intestinal maltase with IC50 value of 1.47 ± 0.19 mg/ml. It also slightly inhibited pancreatic α-amylase, pancreatic lipase and pancreatic cholesterol esterase. The result demonstrated the beneficial biochemical effects of Moringa stenopetala by inhibiting intestinal α-glucosidase, pancreatic cholesterol esterase and pancreatic lipase activities. A

  20. A diagnostic pitfall: pancreatic tuberculosis, not pancreatic cancer

    International Nuclear Information System (INIS)

    Samuel, D.O.; Mukhtar, A.A.M.; Philip, I.O.

    2013-01-01

    Abdominal tuberculosis (TB) is one of the most common forms of extra-pulmonary tuberculosis and is responsible for considerable morbidity and mortality globally. Tuberculosis can involve any part of the gastrointestinal tract from mouth to anus, the peritoneum, liver, spleen and the pancreatobiliary system. The occurrence of abdominal TB is independent of pulmonary disease in most patients, with a reported incidence of co-existing pulmonary disease varying from 6 to 38% worldwide. We report a case of pancreatic tuberculosis also involving the vertebrae, which was initially treated as a case of pancreatic cancer. (author)

  1. KIF20A-Mediated RNA Granule Transport System Promotes the Invasiveness of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Keisuke Taniuchi

    2014-12-01

    Full Text Available Pancreatic cancers are aggressive because they are highly invasive and highly metastatic; moreover, effective treatments for aggressive pancreatic cancers are lacking. Here, we report that the motor kinesin protein KIF20A promoted the motility and invasiveness of pancreatic cancer cells through transporting the RNA-binding protein IGF2BP3 and IGF2BP3-bound transcripts toward cell protrusions along microtubules. We previously reported that IGF2BP3 and its target transcripts are assembled into cytoplasmic stress granules of pancreatic cancer cells, and that IGF2BP3 promotes the motility and invasiveness of pancreatic cancer cells through regulation of localized translation of IGF2BP3-bound transcripts in cell protrusions. We show that knockdown of KIF20A inhibited accumulation of IGF2BP3-containing stress granules in cell protrusions and suppressed local protein expression from specific IGF2BP3-bound transcripts, ARF6 and ARHGEF4, in the protrusions. Our results provide insight into the link between regulation of KIF20A-mediated trafficking of IGF2BP3-containing stress granules and modulation of the motility and invasiveness in pancreatic cancers.

  2. Cannabinoids reduce markers of inflammation and fibrosis in pancreatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Christoph W Michalski

    2008-02-01

    Full Text Available While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC are unknown.The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP tissues. In vitro, effects of blockade and activation of cannabinoid receptors on pancreatic stellate cells were characterized. In CP, cannabinoid receptors were detected predominantly in areas with inflammatory changes, stellate cells and nerves. Levels of endocannabinoids were decreased compared with normal pancreas. Cannabinoid-receptor-1 antagonism effectuated a small PSC phenotype and a trend toward increased invasiveness. Activation of cannabinoid receptors, however, induced de-activation of PSC and dose-dependently inhibited growth and decreased IL-6 and MCP-1 secretion as well as fibronectin, collagen1 and alphaSMA levels. De-activation of PSC was partially reversible using a combination of cannabinoid-receptor-1 and -2 antagonists. Concomitantly, cannabinoid receptor activation specifically decreased invasiveness of PSC, MMP-2 secretion and led to changes in PSC phenotype accompanied by a reduction of intracellular stress fibres.Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.

  3. Differentiation of autoimmune pancreatitis from suspected pancreatic cancer by fluorine-18 fluorodeoxyglucose positron emission tomography

    International Nuclear Information System (INIS)

    Ozaki, Yayoi; Hamano, Hideaki; Oguchi, Kazuhiro

    2008-01-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been widely used for the diagnosis of pancreatic cancer. Because autoimmune pancreatitis is easily misdiagnosed as pancreatic cancer and can be tested for by FDG-PET analysis based on the presence of suspected pancreatic cancer, we attempted to clarify the differences in FDG-PET findings between the two conditions. We compared FDG-PET findings between 15 patients with autoimmune pancreatitis and 26 patients with pancreatic cancer. The findings were evaluated visually or semiquantitatively using the maximum standardized uptake value and the accumulation pattern of FDG. FDG uptake was found in all 15 patients with autoimmune pancreatitis, whereas it was found in 19 of 26 patients (73.1%) with pancreatic cancer. An accumulation pattern characterized by nodular shapes was significantly more frequent in pancreatic cancer, whereas a longitudinal shape indicated autoimmune pancreatitis. Heterogeneous accumulation was found in almost all cases of autoimmune pancreatitis, whereas homogeneous accumulation was found in pancreatic cancer. Significantly more cases of pancreatic cancer showed solitary localization, whereas multiple localization in the pancreas favored the presence of autoimmune pancreatitis. FDG uptake by the hilar lymph node was significantly more frequent in autoimmune pancreatitis than in pancreatic cancer, and uptake by the lachrymal gland, salivary gland, biliary duct, retroperitoneal space, and prostate were seen only in autoimmune pancreatitis. FDG-PET is a useful tool for differentiating autoimmune pancreatitis from suspected pancreatic cancer, if the accumulation pattern and extrapancreatic involvement are considered. IgG4 measurement and other current image tests can further confirm the diagnosis. (author)

  4. The Key Genes of Chronic Pancreatitis which Bridge Chronic Pancreatitis and Pancreatic Cancer Can be Therapeutic Targets.

    Science.gov (United States)

    Li, Shuang; Li, Rui; Wang, Heping; Li, Lisha; Li, Huiyu; Li, Yulin

    2018-04-01

    An important question in systems biology is what role the underlying molecular mechanisms play in disease progression. The relationship between chronic pancreatitis and pancreatic cancer needs further exploration in a system view. We constructed the disease network based on gene expression data and protein-protein interaction. We proposed an approach to discover the underlying core network and molecular factors in the progression of pancreatic diseases, which contain stages of chronic pancreatitis and pancreatic cancer. The chronic pancreatitis and pancreatic cancer core network and key factors were revealed and then verified by gene set enrichment analysis of pathways and diseases. The key factors provide the microenvironment for tumor initiation and the change of gene expression level of key factors bridge chronic pancreatitis and pancreatic cancer. Some new candidate genes need further verification by experiments. Transcriptome profiling-based network analysis reveals the importance of chronic pancreatitis genes and pathways in pancreatic cancer development on a system level by computational method and they can be therapeutic targets.

  5. Emphysematous pancreatitis predisposed by Olanzapine

    Directory of Open Access Journals (Sweden)

    Sukhen Samanta

    2014-01-01

    Full Text Available A 32-year-old male presented to our intensive care unit with severe abdominal pain and was diagnosed as acute pancreatitis after 2 months of olanzapine therapy for bipolar disorder. His serum lipase was 900 u/L, serum triglyceride 560 mg/dL, and blood sugar, fasting and postprandial were 230 and 478 mg/dL, respectively on admission. Contrast enhanced computed tomography (CECT of abdomen was suggestive of acute pancreatitis. Repeat CECT showed gas inside pancreas and collection in peripancreatic area and patient underwent percutaneous drainage and antibiotics irrigation through the drain into pancreas. We describe the rare case of emphysematous pancreatitis due to development of diabetes, hypertriglyceridemia and immunosuppression predisposed by short duration olanzapine therapy.

  6. Dynamic MRI of pancreatic neoplasms

    International Nuclear Information System (INIS)

    Furukawa, Nobuyoshi; Takayasu, Ken-ichi; Muramatu, Yukio

    1995-01-01

    The usefulness of dynamic MRI study using contrast media is studied on pancreatic tumors. This method was useful in detecting small lesion of panc