WorldWideScience

Sample records for pteropods limacina helicina

  1. Poles apart: the "bipolar" pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic oceans.

    Science.gov (United States)

    Hunt, Brian; Strugnell, Jan; Bednarsek, Nina; Linse, Katrin; Nelson, R John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-03-23

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five "forma". However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (+/-0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems.

  2. Poles Apart: The “Bipolar” Pteropod Species Limacina helicina Is Genetically Distinct Between the Arctic and Antarctic Oceans

    Science.gov (United States)

    Bednarsek, Nina; Linse, Katrin; Nelson, R. John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-01-01

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five “forma”. However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (±0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems. PMID:20360985

  3. Response of the Arctic pteropod Limacina helicina to projected future environmental conditions.

    Directory of Open Access Journals (Sweden)

    Steeve Comeau

    Full Text Available Thecosome pteropods (pelagic mollusks can play a key role in the food web of various marine ecosystems. They are a food source for zooplankton or higher predators such as fishes, whales and birds that is particularly important in high latitude areas. Since they harbor a highly soluble aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO(2 emissions. The effect of changes in the seawater chemistry was investigated on Limacina helicina, a key species of Arctic pelagic ecosystems. Individuals were kept in the laboratory under controlled pCO(2 levels of 280, 380, 550, 760 and 1020 microatm and at control (0 degrees C and elevated (4 degrees C temperatures. The respiration rate was unaffected by pCO(2 at control temperature, but significantly increased as a function of the pCO(2 level at elevated temperature. pCO(2 had no effect on the gut clearance rate at either temperature. Precipitation of CaCO(3, measured as the incorporation of (45Ca, significantly declined as a function of pCO(2 at both temperatures. The decrease in calcium carbonate precipitation was highly correlated to the aragonite saturation state. Even though this study demonstrates that pteropods are able to precipitate calcium carbonate at low aragonite saturation state, the results support the current concern for the future of Arctic pteropods, as the production of their shell appears to be very sensitive to decreased pH. A decline of pteropod populations would likely cause dramatic changes to various pelagic ecosystems.

  4. Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification.

    Science.gov (United States)

    Johnson, Kevin M; Hofmann, Gretchen E

    2017-10-23

    Ocean acidification (OA), a change in ocean chemistry due to the absorption of atmospheric CO 2 into surface oceans, challenges biogenic calcification in many marine organisms. Ocean acidification is expected to rapidly progress in polar seas, with regions of the Southern Ocean expected to experience severe OA within decades. Biologically, the consequences of OA challenge calcification processes and impose an energetic cost. In order to better characterize the response of a polar calcifier to conditions of OA, we assessed differential gene expression in the Antarctic pteropod, Limacina helicina antarctica. Experimental levels of pCO 2 were chosen to create both contemporary pH conditions, and to mimic future pH expected in OA scenarios. Significant changes in the transcriptome were observed when juvenile L. h. antarctica were acclimated for 21 days to low-pH (7.71), mid-pH (7.9) or high-pH (8.13) conditions. Differential gene expression analysis of individuals maintained in the low-pH treatment identified down-regulation of genes involved in cytoskeletal structure, lipid transport, and metabolism. High pH exposure led to increased expression and enrichment for genes involved in shell formation, calcium ion binding, and DNA binding. Significant differential gene expression was observed in four major cellular and physiological processes: shell formation, the cellular stress response, metabolism, and neural function. Across these functional groups, exposure to conditions that mimic ocean acidification led to rapid suppression of gene expression. Results of this study demonstrated that the transcriptome of the juvenile pteropod, L. h. antarctica, was dynamic and changed in response to different levels of pCO 2 . In a global change context, exposure of L. h. antarctica to the low pH, high pCO 2 OA conditions resulted in a suppression of transcripts for genes involved in key physiological processes: calcification, metabolism, and the cellular stress response. The

  5. Pteropods in Southern Ocean ecosystems

    Science.gov (United States)

    Hunt, B. P. V.; Pakhomov, E. A.; Hosie, G. W.; Siegel, V.; Ward, P.; Bernard, K.

    2008-09-01

    To date, little research has been carried out on pelagic gastropod molluscs (pteropods) in Southern Ocean ecosystems. However, recent predictions are that, due to acidification resulting from a business as usual approach to CO 2 emissions (IS92a), Southern Ocean surface waters may begin to become uninhabitable for aragonite shelled thecosome pteropods by 2050. To gain insight into the potential impact that this would have on Southern Ocean ecosystems, we have here synthesized available data on pteropod distributions and densities, assessed current knowledge of pteropod ecology, and highlighted knowledge gaps and directions for future research on this zooplankton group. Six species of pteropod are typical of the Southern Ocean south of the Sub-Tropical Convergence, including the four Thecosomes Limacina helicina antarctica, Limacina retroversa australis, Clio pyramidata, and Clio piatkowskii, and two Gymnosomes Clione limacina antarctica and Spongiobranchaea australis. Limacina retroversa australis dominated pteropod densities north of the Polar Front (PF), averaging 60 ind m -3 (max = 800 ind m -3) and 11% of total zooplankton at the Prince Edward Islands. South of the PF L. helicina antarctica predominated, averaging 165 ind m -3 (max = 2681 ind m -3) and up to >35% of total zooplankton at South Georgia, and up to 1397 ind m -3 and 63% of total zooplankton in the Ross Sea. Combined pteropods contributed 40% of community grazing impact. Further research is required to quantify diet selectivity, the effect of phytoplankton composition on growth and reproductive success, and the role of carnivory in thecosomes. Life histories are a significant knowledge gap for Southern Ocean pteropods, a single study having been completed for L. retroversa australis, making population studies a priority for this group. Pteropods appear to be important in biogeochemical cycling, thecosome shells contributing >50% to carbonate flux in the deep ocean south of the PF. Pteropods may also

  6. Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast.

    Science.gov (United States)

    Bednaršek, N; Feely, R A; Tolimieri, N; Hermann, A J; Siedlecki, S A; Waldbusser, G G; McElhany, P; Alin, S R; Klinger, T; Moore-Maley, B; Pörtner, H O

    2017-07-03

    The pteropod Limacina helicina frequently experiences seasonal exposure to corrosive conditions (Ω ar   US West Coast and is recognized as one of the species most susceptible to ocean acidification (OA). Yet, little is known about their capacity to acclimatize to such conditions. We collected pteropods in the California Current Ecosystem (CCE) that differed in the severity of exposure to Ω ar conditions in the natural environment. Combining field observations, high-CO 2 perturbation experiment results, and retrospective ocean transport simulations, we investigated biological responses based on histories of magnitude and duration of exposure to Ω ar  history of exposure to corrosive conditions. Pteropods from the coastal CCE appear to be at or near the limit of their physiological capacity, and consequently, are already at extinction risk under projected acceleration of OA over the next 30 years. Our results demonstrate that Ω ar exposure history largely determines pteropod response to experimental conditions and is essential to the interpretation of biological observations and experimental results.

  7. Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain

    Directory of Open Access Journals (Sweden)

    Takashi Maoka

    2014-03-01

    Full Text Available Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads. Carotenoids in the gonads of sea angels might protect against oxidative stress and enhance reproduction.

  8. Carotenoids of Sea Angels Clione limacina and Paedoclione doliiformis from the Perspective of the Food Chain

    Science.gov (United States)

    Maoka, Takashi; Kuwahara, Takashi; Narita, Masanao

    2014-01-01

    Sea angels, Clione limacina and Paedoclione doliiformis, are small, floating sea slugs belonging to Gastropoda, and their gonads are a bright orange-red color. Sea angels feed exclusively on a small herbivorous sea snail, Limacina helicina. Carotenoids in C. limacina, P. doliiformis, and L. helicina were investigated for comparative biochemical points of view. β-Carotene, zeaxanthin, and diatoxanthin were found to be major carotenoids in L. helicina. L. helicina accumulated dietary algal carotenoids without modification. On the other hand, keto-carotenoids, such as pectenolone, 7,8-didehydroastaxanthin, and adonixanthin were identified as major carotenoids in the sea angels C. limacina and P. doliiformis. Sea angels oxidatively metabolize dietary carotenoids and accumulate them in their gonads. Carotenoids in the gonads of sea angels might protect against oxidative stress and enhance reproduction. PMID:24633249

  9. Why Pteropods Flap Their Wings, Periodically Pitch Their Shell, and Swim in a Sawtooth-like Trajectory

    Science.gov (United States)

    Adhikari, D.; Webster, D. R.; Yen, J.

    2016-02-01

    Antarctic pteropods (Limacina helicina antarctica), which are currently threatened by ocean acidification, swim in seawater with a pair of gelatinous parapodia (or "wings") via a distinctive propulsion mechanism. By flapping their parapodia in a way that resembles insect flight, they exhibit a unique shell wobble (or periodic shell pitching) motion and sawtooth-like trajectory. We present three-dimensional kinematics and volumetric fluid velocity fields for upward-swimming pteropods. Time-resolved data were collected with a unique infrared tomographic particle image velocimetry (tomo-PIV) system that was transported to Palmer Station, Antarctica. Both power and recovery strokes of the parapodia propel the pteropod (1.5 - 5 mm in size) upward in a sawtooth-like trajectory with average speed of 14 - 30 mm/s and periodically pitch the shell at 1.9 - 3 Hz with up to 110° difference in pitching angle. The pitch motion effectively positions the parapodia such that they stroke downward during both the power and recovery strokes. We use the kinematics measurement to illustrate the relationship between flapping, swimming and pitching, where the corresponding Reynolds numbers (i.e. Ref, ReU, and ReΩ) characterize the motion of the pteropod. For example, when Ref aquatic variations.

  10. Distribution in the abundance and biomass of shelled pteropods in surface waters of the Indian sector of the Antarctic Ocean in mid-summer

    Science.gov (United States)

    Akiha, Fumihiro; Hashida, Gen; Makabe, Ryosuke; Hattori, Hiroshi; Sasaki, Hiroshi

    2017-06-01

    We investigated shelled pteropod abundance and biomass with a 100-μm closing net, and their estimated downward fluxes using a sediment trap installed in a drifter buoy in the Indian sector of the Antarctic Ocean during the austral summer. Over 90% pteropod abundance was distributed in the upper 50 m; 70-100% were immature veligers. Limacina retroversa was dominant in the >0.2 mm individuals north of 60°S, L. helicina dominated south of 62°S, while populations around 60-62°S were mixed. Unidentifiable small Limacina spp. (ssL) were highly abundant in the upper 50 m at 60°S, 63°S, and 64°S on 110°E and 63°S on 115°E, although their estimated particulate organic carbon (POC) biomasses were less than that of Limacina adults. Adult females bearing egg clusters were found in the 0-50 m layer; the veligers likely grew within a short period. The mean downward flux of ssL and veligers at 70 m around 60°S, 110°E was 5.1 ± 1.6 × 103 ind. m-2 d-1 (0.6 ± 0.2 mg C m-2 d-1), which was 3.8% of the integrated ssL and veligers in the upper 70 m, suggesting that at least 4% of the veligers were produced daily in the surface layers. The mid-summer spawned ssL and veligers likely contributed to the subsequent increase in large pteropods in the area.

  11. Dissolution Dominating Calcification Process in Polar Pteropods Close to the Point of Aragonite Undersaturation

    Science.gov (United States)

    Bednaršek, Nina; Tarling, Geraint A.; Bakker, Dorothee C. E.; Fielding, Sophie; Feely, Richard A.

    2014-01-01

    Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Ωar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Ωar∼0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Ωar levels slightly above 1 and lower at Ωar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Ωar derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Ωar levels close to 1, with net shell growth ceasing at an Ωar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean. PMID:25285916

  12. The Miocene "Pteropod event" in the SW part of the Central Paratethys (Medvednica Mt., northern Croatia)

    Science.gov (United States)

    Bošnjak, Marija; Sremac, Jasenka; Vrsaljko, Davor; Aščić, Šimun; Bosak, Luka

    2017-08-01

    Deep marine Miocene deposits exposed sporadically in the Medvednica Mt. (northern Croatia) comprise pelagic organisms such as coccolithophores, planktic foraminifera and pteropods. The pteropod fauna from yellow marls at the Vejalnica locality (central part of Medvednica Mt.) encompasses abundant specimens of Vaginella austriaca Kittl, 1886, accompanied with scarce Clio fallauxi (Kittl, 1886). Calcareous nannoplankton points to the presence of NN5 nannozone at this locality. Highly fossiliferous grey marls at the Marija Bistrica locality (north-eastern area of Medvednica Mt.) comprise limacinid pteropods: Limacina valvatina (Reuss, 1867), L. gramensis (Rasmussen, 1968) and Limacina sp. Late Badenian (NN5 to NN6 nannozone) age of these marls is presumed on the basis of coccolithophores. Most of the determined pteropods on species level, except V. austriaca have been found and described from this region for the first time. New pteropod records from Croatia point to two pteropod horizons coinciding with the Badenian marine transgressions in Central Paratethys. These pteropod assemblages confirm the existence of W-E marine connection ("Transtethyan Trench Corridor") during the Badenian NN5 nannozone. Limacinids point to the possible immigration of the "North Sea fauna" through a northern European marine passage during the Late Badenian (end of NN5-beginning of NN6 zone), as previously presumed by some other authors.

  13. Swimming of a Tiny Subtropical Sea Butterfly with Coiled Shell

    Science.gov (United States)

    Murphy, David; Karakas, Ferhat; Maas, Amy

    2017-11-01

    Sea butterflies, also known as pteropods, include a variety of small, zooplanktonic marine snails. Thecosomatous pteropods possess a shell and swim at low Reynolds numbers by beating their wing-like parapodia in a manner reminiscent of insect flight. In fact, previous studies of the pteropod Limacina helicina have shown that pteropod swimming hydrodynamics and tiny insect flight aerodynamics are dynamically similar. Studies of L. helicina swimming have been performed in polar (0 degrees C) and temperate conditions (12 degrees C). Here we present measurements of the swimming of Heliconoides inflatus, a smaller yet morphologically similar pteropod that lives in warm Bermuda seawater (21 degrees C) with a viscosity almost half that of the polar seawater. The collected H. inflatus have shell sizes less than 1.5 mm in diameter, beat their wings at frequencies up to 11 Hz, and swim upwards in sawtooth trajectories at speeds up to approximately 25 mm/s. Using three-dimensional wing and body kinematics collected with two orthogonal high speed cameras and time-resolved, 2D flow measurements collected with a micro-PIV system, we compare the effects of smaller body size and lower water viscosity on the flow physics underlying flapping-based swimming by pteropods and flight by tiny insects.

  14. Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions.

    Directory of Open Access Journals (Sweden)

    D Shallin Busch

    Full Text Available We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460-500 µatm CO2, Ωa≈1.59, current deep water or surface conditions during upwelling (∼760 and ∼1600-1700 µatm CO2, Ωa≈1.17 and 0.56, and future deep water or surface conditions during upwelling (∼2800-3400 µatm CO2, Ωa≈0.28. We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Ωa, and conducted analyses considering Ωa both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound's main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.

  15. Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions.

    Science.gov (United States)

    Busch, D Shallin; Maher, Michael; Thibodeau, Patricia; McElhany, Paul

    2014-01-01

    We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa) conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460-500 µatm CO2, Ωa≈1.59), current deep water or surface conditions during upwelling (∼760 and ∼1600-1700 µatm CO2, Ωa≈1.17 and 0.56), and future deep water or surface conditions during upwelling (∼2800-3400 µatm CO2, Ωa≈0.28). We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Ωa, and conducted analyses considering Ωa both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound's main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.

  16. Combined Effect of Ocean Acidification and Seawater Freshening: Response of Pteropod Swimming Behavior

    Science.gov (United States)

    Manno, C.; Morata, N.; Primicerio, R.

    2012-12-01

    Increasing anthropogenic carbon dioxide emissions induce ocean acidification. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living Limacina retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient. Survival, shell degradation and swimming behavior were investigated. Mortality was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim where they decreasing the locomotory speed upwards and increasing the wing beats. Results suggest that, the extra energy cost due to maintaining of body fluids and to avoid sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract the dissolution (in high pCO2 scenario), exceeds the available energy budget of this organism and then pteropods change in swimming behavior and begin to collapse. Since Limacina retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.

  17. Limacina retroversa's response to combined effects of ocean acidification and sea water freshening

    Science.gov (United States)

    Manno, C.; Morata, N.; Primicerio, R.

    2012-11-01

    Anthropogenic carbon dioxide emissions induce ocean acidification, thereby reducing carbonate ion concentration, which may affect the ability of calcifying organisms to build shells. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living L. retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient in two factorial, randomized experiments investigating shell degradation, swimming behavior and survival. In addition, to investigate shell degradation without any physiologic influence, one perturbation experiments using only shells of dead pteropods was performed. Lower pH reduced shell mass whereas shell dissolution increased with pCO2. Interestingly, shells of dead organisms had a higher degree of dissolution than shells of living individuals. Mortality of Limacina retroversa was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim upwards. Results suggest that the energy cost of maintaining ion balance and avoiding sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract shell dissolution (in high pCO2 scenario), exceed the available energy budget of this organism causing the pteropods to change swimming behavior and begin to collapse. Since L

  18. Swimming of a Sea Butterfly with an Elongated Shell

    Science.gov (United States)

    Karakas, Ferhat; Maas, Amy E.; Murphy, David W.

    2017-11-01

    Sea butterflies (pteropods) are small, zooplanktonic marine snails which swim by flapping highly flexible parapodia. Previous studies show that the swimming hydrodynamics of Limacina helicina, a polar pteropod with a spiraled shell, is similar to tiny insect flight aerodynamics and that forward-backward pitching is key for lift generation. However, swimming by diverse pteropod species with different shell shapes has not been examined. We present measurements of the swimming of Cuvierina columnella, a warm water species with an elongated non-spiraled shell collected off the coast of Bermuda. With a body length of 9 mm, wing beat frequency of 4-6 Hz and swimming speed of 35 mm/s, these organisms swim at a Reynolds number of approximately 300, larger than that of L. helicina. High speed 3D kinematics acquired via two orthogonal cameras reveals that the elongated shell correlates with reduced body pitching and that the wings bend approximately 180 degrees in each direction, overlapping at the end of each half-stroke. Time resolved 2D flow measurements collected with a micro-PIV system reveal leading edge vortices present in both power and recovery strokes. Interactions between the overlapping wings and the shell also likely play a role in lift generation.

  19. Scaling of hydrodynamics and swimming kinematics of shelled Antarctic sea butterfly

    Science.gov (United States)

    Adhikari, Deepak; Webster, Donald; Yen, Jeannette

    2016-11-01

    A portable tomographic PIV system was used to study fluid dynamics and kinematics of pteropods (aquatic snails nicknamed 'sea butterflies') in Antarctica. These pteropods (Limacina helicina antarctica) swim with a pair of parapodia (or "wings") via a unique flapping propulsion mechanism that incorporates similar techniques as observed in small flying insects. The swimming velocity is typically 14 - 30 mm/s for pteropod size ranging 1.5 - 5 mm, and the pteropod shell pitches forward-and-backward at 1.9 - 3 Hz. It has been shown that pitching motion of the shell effectively positions the parapodia such that they flap downwards during both power and recovery strokes. The non-dimensional variables characterizing the motion of swimming pteropods are flapping, translating, and pitching Reynolds numbers (i.e. Ref, ReU, and ReΩ) . We found that the relationship between these Reynolds numbers show an existence of a critical ReΩ, below which pteropods fail to swim successfully. We explore the importance of this critical ReΩ by changing the viscosity of the seawater using methylcellulose. At higher viscosity, our results indicate that pteropods do not swim with optimal propulsion efficiency. Finally, we examine the wake signature of swimming pteropod, consisting of a pair of vortex rings, in the modified viscosity environment.

  20. Diversity and abundance of pteropods and heteropods along a latitudinal gradient across the Atlantic Ocean

    Science.gov (United States)

    Burridge, Alice K.; Goetze, Erica; Wall-Palmer, Deborah; Le Double, Serena L.; Huisman, Jef; Peijnenburg, Katja T. C. A.

    2017-11-01

    Shelled pteropods and heteropods are two independent groups of holoplanktonic gastropods that are potentially good indicators of the effects of ocean acidification. Although insight into their ecology and biogeography is important for predicting species-specific sensitivities to ocean change, the species abundances and biogeographical distributions of pteropods and heteropods are still poorly known. Here, we examined abundance and distribution patterns of pteropods (euthecosomes, pseudothecosomes, gymnosomes) and heteropods at 31 stations along a transect from 46°N to 46°S across the open waters of the Atlantic Ocean (Atlantic Meridional Transect cruise AMT24). We collected a total of 7312 pteropod specimens belonging to at least 31 species. Pteropod abundances were low north of 40°N with 4000 ind./1000 m3 just south of 40°S. This accounted for an estimated biomass of 3.2 mg m-3 south of 40°S and an average of 0.49 mg m-3 along the entire transect. Species richness of pteropods was highest in the stratified (sub)tropical waters between 30°N and 30°S, with a maximum of 15 species per station. The biogeographical distribution of pteropod assemblages inferred by cluster analysis was largely congruent with the distribution of Longhurst's biogeochemical provinces. Some pteropod species distributions were limited to particular oceanographic provinces, for example, subtropical gyres (e.g. Styliola subula) or warm equatorial waters (e.g. Creseis virgula). Other species showed much broader distributions between ∼35°N and ∼35°S (e.g. Limacina bulimoides and Heliconoides inflatus). We collected 1812 heteropod specimens belonging to 18 species. Highest heteropod abundances and species richness were found between 30°N and 20°S, with up to ∼700 ind./1000 m3 and a maximum of 14 species per station. Heteropods were not restricted to tropical and subtropical waters, however, as some taxa were also relatively abundant in subantarctic waters. Given the variation in

  1. Species diversity of planktonic gastropods (Pteropoda and Heteropoda) from six ocean regions based on DNA barcode analysis

    Science.gov (United States)

    Jennings, Robert M.; Bucklin, Ann; Ossenbrügger, Holger; Hopcroft, Russell R.

    2010-12-01

    Pteropods and heteropods are two distinct groups of holoplanktonic gastropods whose species and genetic diversity remain poorly understood, despite their ubiquity in the world's oceans. Some species apparently attain near cosmopolitan distributions, implying long-distance dispersal or cryptic species assemblages. We present the first multi-regional and species-rich molecular dataset of holoplanktonic gastropods, comprising DNA barcodes from the mitochondrial cytochrome c oxidase I subunit gene (COI) from 115 individuals of 41 species sampled from six ocean regions across the globe. Molecular analysis and assessment of barcoding utility supported the validity of several morphological subspecies and forms (e.g. of Creseis virgula and Limacina helicina), while others were not supported (e.g. Cavolinia uncinata). Significant genetic variation was observed among conspecific specimens collected in different geographic regions for some species, particularly in euthecosomatous pteropods. Several species of euthecosomes showed no evidence of genetic separation among distant ocean regions. Overall, we suggest some taxonomic revision of the holoplanktonic gastropods will be required, pending a more complete molecular inventory of these groups.

  2. Limacina helicina shell dissolution due to ocean acidification in the California Current Ecosystem from 2011-08-11 to 2013-08-29 (NCEI Accession 0155173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Pteropod shell dissolution was determined on shells collected from 16 stations for the 2011 cruise and 20 stations during the 2013 cruise. The samples were stored in...

  3. Summertime grazing impact of the dominant macrozooplankton off the Western Antarctic Peninsula

    Science.gov (United States)

    Bernard, Kim S.; Steinberg, Deborah K.; Schofield, Oscar M. E.

    2012-04-01

    The Western Antarctic Peninsula (WAP) is a region of rapid climate change that is altering plankton community structure. To investigate how these changes may impact carbon and energy transfer in the pelagic food web, grazing rates of the five dominant macrozooplankton species (euphausiids Euphausia superba, Euphausia crystallorophias, and Thysanöessa macrura; the pteropod Limacina helicina, and the salp Salpa thompsoni) in the WAP were measured in January 2009 and 2010 as part of the Palmer Antarctica Long-Term Ecological Research (LTER) study. Measurements were made across the coastal-shelf-offshore and north-south gradients of the LTER survey grid. Highest grazing rates occurred offshore in both years, and in the south during 2009 and north during 2010, all associated with the presence of large localized salp blooms. During both years, E. superba was the major grazer at the coast, while S. thompsoni dominated grazing offshore. L. helicina was an important grazer throughout the study area during both years, but especially so over the shelf during 2009. During 2009, there was little difference in the relative importance of the macrozooplankton grazers along the north-south gradient. The presence of a salp bloom in the north during 2010, though, resulted in a distinct shift in the relative importance of major grazers from the euphausiids and L. helicina in the south to salps in the north. Grazing impact was low in coastal waters (≤0.3% of phytoplankton standing stock and ≤0.6% of primary productivity). In contrast, in the offshore waters, where salp blooms were observed, grazing impacts of up to 30% of standing stock and 169% of primary productivity were recorded. If S. thompsoni and L. helicina continue to expand their ranges and increase in abundance, the associated shift in the food web dynamics of the WAP will alter the regional flow of carbon through the WAP food webs and the export of carbon to depth.

  4. Using Pteropod Shells to Trace Aragonite Dissolution: Toward a Multi-Basin Calibration

    Science.gov (United States)

    Mekik, F. A.

    2013-12-01

    We developed a new proxy for tracing aragonite dissolution in marine sediments. The core tops we used are from the tropical and subtropical latitudes of two ocean basins: Atlantic and Pacific. This allows for a multi-basin calibration for our proxy which is based on the fragmentation trend of pteropod shells. The ratio of fragmented pteropod shells to whole plus fragmented pteropod shells within our core tops has an excellent relationship with the aragonite saturation of bottom waters. Combining our pteropod-based aragonite dissolution proxy with the Globorotalia menradii Fragmentation Index, which is a calcite dissolution proxy, allows tracing carbonate chemistry of bottom waters for the entire ocean depth profile including regions well above the calcite saturation horizon. We also present new data on size normalized weights of pteropod shells which supports the aragonite dissolution trend seen in the pteropod fragmentation data. Unlike previous findings with other proxies, both aragonite and calcite dissolution data from a high resolution core in the western equatorial Pacific reveal no evidence of a degacial carbonate preservation maximum.

  5. Long-term (1993-2013) changes in macrozooplankton off the Western Antarctic Peninsula

    Science.gov (United States)

    Steinberg, Deborah K.; Ruck, Kate E.; Gleiber, Miram R.; Garzio, Lori M.; Cope, Joseph S.; Bernard, Kim S.; Stammerjohn, Sharon E.; Schofield, Oscar M. E.; Quetin, Langdon B.; Ross, Robin M.

    2015-07-01

    The Western Antarctic Peninsula (WAP) is one of the most rapidly warming regions on Earth, and where a high apex predator biomass is supported in large part by macrozooplankton. We examined trends in summer (January-February) abundance of major taxa of macrozooplankton along the WAP over two decades (1993-2013) and their relationship with environmental parameters (sea ice, atmospheric climate indices, sea surface temperature, and phytoplankton biomass and productivity). Macrozooplankton were collected from the top 120 m of the water column in a mid-Peninsula study region divided into latitudinal (North, South, and Far South) and cross-shelf (coastal, shelf, slope) sub-regions. Trends for krill species included a 5-year cycle in abundance peaks (positive anomalies) for Euphausia superba, but no directional long-term trend, and an increase in Thysanoessa macrura in the North; variability in both species was strongly influenced by primary production 2-years prior. E. crystallorophias abundance was best explained by the Southern Annular Mode (SAM) and Multivariate El Niño Southern Oscillation Index (MEI), and was more abundant in higher ice conditions. The salp Salpa thompsoni and thecosome pteropod Limacina helicina cycled between negative and positive anomalies in the North, but showed increasing positive anomalies in the South over time. Variation in salp and pteropod abundance was best explained by SAM and the MEI, respectively, and both species were more abundant in lower ice conditions. There was a long-term increase in some carnivorous gelatinous zooplankton (polychaete worm Tomopteris spp.) and amphipods. Abundance of Pseudosagitta spp. chaetognaths was closely related to SAM, with higher abundance tied to lower ice conditions. Long-term changes and sub-decadal cycles of WAP macrozooplankton community composition may affect energy transfer to higher trophic levels, and alter biogeochemical cycling in this seasonally productive and sensitive polar ecosystem.

  6. Pteropod Ecology and Physiology in Relation to Natural Variability in Carbonate Chemistry

    Science.gov (United States)

    Lawson, G. L.; Maas, A. E.; Wang, A. Z.; Bergan, A. J.; Wiebe, P. H.; Blanco-Bercial, L.; Lavery, A.; Copley, N. J.

    2016-02-01

    The thecosomatous pteropods are a group of aragonite-shelled zooplankton thought to be particularly vulnerable to ocean acidification. We seek to gain insight into both basic questions of pteropod biology and potential responses to ocean acidification by combining field sampling with shipboard experimental manipulations, capitalizing on natural spatial variability in modern-day carbonate chemistry between and within the Atlantic and Pacific Oceans. Two cruises were conducted, in 2011 and 2012, along open-ocean transects running between 35 and 50°N in the NW Atlantic and NE Pacific; strong differences in environmental conditions exist between these regions, as well as along the Pacific transect, notably in aragonite compensation and oxygen minimum depths. The transects overlapped with portions of WOCE/CLIVAR lines A20 and P17N and measurements of carbonate chemistry provided insight into rates of chemical change as well as information on the pteropods' chemical environment. The abundance and diversity of pteropods varied substantially within and between the study regions. Depth-stratified net sampling during day and night indicated that multiple pteropod species undertook the typical diel vertical migration employed by many zooplankton species as an anti-predation strategy; the amplitude of this migration differed among species as well as within sub-populations of certain cosmopolitan species found in both oceans. Shipboard experiments of short-duration (<18 hrs, intended to mimic the duration of diel vertical migrations to depth) exposing eight species of pteropod to high CO2 and low O2 found no effect of CO2 alone on metabolic rate and an effect of low O2 or interactive effect of CO2 and O2 only in two Atlantic species not known to naturally encounter low oxygen in their biogeographic range. The implications of these various findings to our understanding of the response of pteropods to environmental change will be discussed.

  7. Three different agglomerations of blood cells in a Caliroa limacina larva

    NARCIS (Netherlands)

    Barendrecht, G.

    1949-01-01

    Some time ago in our laboratory a number of larvae of Caliroa limacina Retz., the well known slug like sawfly larva of the pear, were fixed in toto and sectioned into complete series, which were coloured with EHRLICH’S or HEIDENHAIN’S haematoxylin and counterstained with eosin. Most of these larvae

  8. Global biogeography and evolution of Cuvierina pteropods

    NARCIS (Netherlands)

    Burridge, A.K.; Goetze, E.; Raes, N.; Huisman, J.; Peijnenburg, K.T.C.A.

    2015-01-01

    Background: helled pteropods are planktonic gastropods that are potentially good indicators of the effects of ocean acidification. They also have high potential for the study of zooplankton evolution because they are metazoan plankton with a good fossil record. We investigated phenotypic and genetic

  9. Seasonal variation of pteropods from the Western Arabian Sea sediment trap

    Digital Repository Service at National Institute of Oceanography (India)

    Mohan, R.; Verma, K.; Mergulhao, L.P.; Sinha, D.K.; Shanvas, S.; Guptha, M.V.S.

    ) and the International Indian Ocean Expedition (Sakthivel 1968, 1973). van der Spoel and colleagues (van der Spoel 1967, 1969, 1976, 1981; van der Spoel and Pafort-Van Iersel 1982) studied various forms and species of pteropods focussing on taxonomy. B? and Gilmer.... All pteropod tests larger than 125 ?m were separated and mounted on slides for examination under a stereo-zoom binocular microscope. Species were identified and classified following van der Spoel (1967), B? and Gilmer (1977) and Almogi-Labin (1982...

  10. New Proxies for Climate change parameters: Foram Culturing and Pteropod Potentials

    Science.gov (United States)

    Keul, N.; Schneider, R. R.; Langer, G.; Bijma, J.; Peijnenburg, K. T.

    2017-12-01

    Global climate change is one of the most pressing challenges our society is currently facing and strong efforts are made to simulate future climate conditions. To better validate models that aim at predicting global temperature rise as a consequence of anthropogenic CO2 emissions, accurate atmospheric paleo-CO2 estimates in combination with temperature reconstructions are necessary. Consequently there is a strong need for reliable proxies, allowing reconstruction of climate change. With respect to foraminifera a combination of laboratory experiments and modeling is presented, to show the isolated impact of the different parameters of the carbonate system on trace element composition of their shells. We focus on U/Ca and Sr/Ca ratios, which have recently been established as new proxies reflecting changes in the carbonate system of seawater. While U/Ca correlates with carbonate ion concentration, Sr/Ca is primarily influenced by DIC. The latter is particularly promising since the impact of additional parameters is relatively well constrained and hence, Sr/Ca ratios may allow higher accuracy in carbonate system parameter reconstructions. Furthermore, our results will be discussed on how to advance our knowledge about foraminiferal biomineralization. Pteropods, among the first responders to ocean acidification and warming, are explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, pteropod shells were collected along a latitudinal transect in the Atlantic Ocean. By comparing shell oxygen isotopic composition to depth changes of the calculated aragonite equilibrium oxygen isotope values, we infer shallow calcification depths for Heliconoides inflatus (75 m), rendering this species a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we demonstrate that indeed, pteropod shells are

  11. Vertical and horizontal distribution of zooplankton and polar cod in southern Baffin Bay (66-71°N) in September 2009

    DEFF Research Database (Denmark)

    Kjellerup, Sanne; Dünweber, Michael; Møller, Eva Friis

    2015-01-01

    Zooplankton are the link connecting primary producers to higher trophic levels, and knowing their distribution and community is important for predicting the distribution of predator species, like fish, seabirds, and marine mammals. However, data from open Arctic oceans are still scarce. In autumn...... fishes in the upper 500 m of southern Baffin Bay in September 2009. The zooplankton community was dominated by copepods (55 % of abundance in the upper 500 m), primarily of the genus Calanus. Other important zooplankton taxa included Limacina helicina, Chaetognatha, and Cirripedia nauplii...

  12. Extending Vulnerability Assessment to Include Life Stages Considerations.

    Science.gov (United States)

    Hodgson, Emma E; Essington, Timothy E; Kaplan, Isaac C

    2016-01-01

    Species are experiencing a suite of novel stressors from anthropogenic activities that have impacts at multiple scales. Vulnerability assessment is one tool to evaluate the likely impacts that these stressors pose to species so that high-vulnerability cases can be identified and prioritized for monitoring, protection, or mitigation. Commonly used semi-quantitative methods lack a framework to explicitly account for differences in exposure to stressors and organism responses across life stages. Here we propose a modification to commonly used spatial vulnerability assessment methods that includes such an approach, using ocean acidification in the California Current as an illustrative case study. Life stage considerations were included by assessing vulnerability of each life stage to ocean acidification and were used to estimate population vulnerability in two ways. We set population vulnerability equal to: (1) the maximum stage vulnerability and (2) a weighted mean across all stages, with weights calculated using Lefkovitch matrix models. Vulnerability was found to vary across life stages for the six species explored in this case study: two krill-Euphausia pacifica and Thysanoessa spinifera, pteropod-Limacina helicina, pink shrimp-Pandalus jordani, Dungeness crab-Metacarcinus magister and Pacific hake-Merluccius productus. The maximum vulnerability estimates ranged from larval to subadult and adult stages with no consistent stage having maximum vulnerability across species. Similarly, integrated vulnerability metrics varied greatly across species. A comparison showed that some species had vulnerabilities that were similar between the two metrics, while other species' vulnerabilities varied substantially between the two metrics. These differences primarily resulted from cases where the most vulnerable stage had a low relative weight. We compare these methods and explore circumstances where each method may be appropriate.

  13. Global biogeography and evolution of Cuvierina pteropods.

    Science.gov (United States)

    Burridge, Alice K; Goetze, Erica; Raes, Niels; Huisman, Jef; Peijnenburg, Katja T C A

    2015-03-12

    Shelled pteropods are planktonic gastropods that are potentially good indicators of the effects of ocean acidification. They also have high potential for the study of zooplankton evolution because they are metazoan plankton with a good fossil record. We investigated phenotypic and genetic variation in pteropods belonging to the genus Cuvierina in relation to their biogeographic distribution across the world's oceans. We aimed to assess species boundaries and to reconstruct their evolutionary history. We distinguished six morphotypes based on geometric morphometric analyses of shells from 926 museum and 113 fresh specimens. These morphotypes have distinct geographic distributions across the Atlantic, Pacific and Indian oceans, and belong to three major genetic clades based on COI and 28S DNA sequence data. Using a fossil-calibrated phylogeny, we estimated that these clades separated in the Late Oligocene and Early to Middle Miocene. We found evidence for ecological differentiation among all morphotypes based on ecological niche modelling with sea surface temperature, salinity and phytoplankton biomass as primary determinants. Across all analyses, we found highly congruent patterns of differentiation suggesting species level divergences between morphotypes. However, we also found distinct morphotypes (e.g. in the Atlantic Ocean) that were ecologically, but not genetically differentiated. Given the distinct ecological and phenotypic specializations found among both described and undescribed Cuvierina taxa, they may not respond equally to future ocean changes and may not be equally sensitive to ocean acidification. Our findings support the view that ecological differentiation may be an important driving force in the speciation of zooplankton.

  14. Reexamination of the species assignment of Diacavolinia pteropods using DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Amy E Maas

    Full Text Available Thecosome pteropods (Mollusca, Gastropoda are an ecologically important, diverse, and ubiquitous group of holoplanktonic animals that are the focus of intense research interest due to their external aragonite shell and vulnerability to ocean acidification. Characterizing the response of these animals to low pH and other environmental stressors has been hampered by continued uncertainty in their taxonomic identification. An example of this confusion in species assignment is found in the genus Diacavolinia. All members of this genus were originally indentified as a single species, Cavolinia longirostris, but over the past fifty years the taxonomy has been revisited multiple times; currently the genus comprises 22 different species. This study examines five species of Diacavolinia, including four sampled in the Northeast Atlantic (78 individuals and one from the Eastern tropical North Pacific (15 individuals. Diacavolina were identified to species based on morphological characteristics according to the current taxonomy, photographed, and then used to determine the sequence of the "DNA barcoding" region of the cytochrome c oxidase subunit I (COI. Specimens from the Atlantic, despite distinct differences in shell morphology, showed polyphyly and a genetic divergence of <3% (K2P distance whereas the Pacific and Atlantic samples were more distant (≈ 19%. Comparisons of Diacavolinia spp. with other Cavolinia spp. reveal larger distances (≈ 24%. These results indicate that specimens from the Atlantic comprise a single monophyletic species and suggest possible species-level divergence between Atlantic and Pacific populations. The findings support the maintenance of Diacavolinia as a separate genus, yet emphasize the inadequacy of our current taxonomic understanding of pteropods. They highlight the need for accurate species identifications to support estimates of biodiversity, range extent and natural exposure of these planktonic calcifiers to

  15. The smallest Gliders in the Ocean- Temperature Recordings from Pteropods using SIMS

    Science.gov (United States)

    Keul, N.; Orland, I. J.; Valley, J. W.; Kozdon, R.; deMenocal, P. B.

    2016-02-01

    During the last few decades, the development, refinement and application of geochemical methods have lead to the establishment of new proxies to estimate global change. The oxygen isotope composition of carbonate shells formed by marine organisms is a widely used proxy for past ocean temperatures. Secondary ion mass spectrometry (SIMS) is a high spatial-resolution in situ technique, allowing oxygen isotope measurements on very small samples (down to 3 μm spot size). Pteropods are pelagic mollusks, producing shells made out of aragonite, which is more soluble than calcite in seawater, making them one of the first responders to climate change. They calcify closely at the aragonite- seawater equilibrium and are therefor ideal candidates to reconstruct temperatures based on their d18O. The oxygen isotopic composition of pteropod shells from sediment traps, net tows and a culture study from the Fram Strait will be presented. Specimens travelled in the Westspitsbergen Current prior to sinking into the sediment. During this transport specimens continue to grow, sequentially adding aragonite to the shell. We show that when using traditional (whole shell) δ18O measurements, the isotopic signatures of whole shells reflect the latitudinal gradient. Combining this with SIMS-derived δ18O measurements on individual shell parts, however, reveals that this is only half the story: Comparing δ18O of earlier (produced further South) and later shell parts (produced further North) shows that pteropods calcify in sequentially shallower water depths, overriding the latitudinal South to North temperature gradient. Combining traditional and novel δ18O measurements can potentially not only allow the reconstruction of temperature/ global warming, but also to assess ecological key parameters, such as habitat depth, at the same time.

  16. Diversity and abundance of pteropods and heteropods along a latitudinal gradient across the Atlantic Ocean

    NARCIS (Netherlands)

    Burridge, A.K.; Goetze, E.; Wall-Palmer, D.; Le Double, S.L.; Huisman, J.; Peijnenburg, K.T.C.A.

    2017-01-01

    Shelled pteropods and heteropods are two independent groups of holoplanktonic gastropods that are potentially good indicators of the effects of ocean acidification. Although insight into their ecology and biogeography is important for predicting species-specific sensitivities to ocean change, the

  17. Micrallecto uncinata n. gen., n.sp., a parasitic copepod from a remarkable host, the pteropod Pneumoderma

    NARCIS (Netherlands)

    Stock, Jan H.

    1971-01-01

    A new genus and species of copepod crustacean parasite, Micrallecto uncinata, is described from Pneumoderma pygmaeum (Tesch, 1903), a gymnosome pteropod (Mollusca) collected West of Bermuda. The parasite probably belongs to the family Splanchnotrophidae and is the first copepod associate reported

  18. Aquatic wing flapping at low Reynolds numbers: swimming kinematics of the Antarctic pteropod, Clione antarctica.

    Science.gov (United States)

    Borrell, Brendan J; Goldbogen, Jeremy A; Dudley, Robert

    2005-08-01

    We studied swimming kinematics of the Antarctic pteropod, Clione antarctica, to investigate how propulsive forces are generated by flexible oscillating appendages operating at low Reynolds numbers (10stroke of flapping consisted of distinct power and recovery phases, which were of approximately equal duration in both the upstroke and the downstroke. As pteropods ascended, the body traced a sawtooth path when viewed laterally. The magnitude of these oscillations decreased with body mass, and larger animals (operating at Re>25) exhibited gliding during the recovery phase of each half-stroke. Maximum translational and rotational accelerations of the body occurred at the initiation of each power phase, suggesting that rotational circulation, the acceleration reaction, and wake recapture may all potentially contribute to vertical force production. Individual contributions of these mechanisms cannot, however, be assessed from these kinematic data alone. During recovery phases of each half-stroke, C. antarctica minimized adverse drag forces by orienting the wings parallel to flow and by moving them along the body surface, possibly taking advantage of boundary layer effects. Vertical force production was altered through changes in the hydrodynamic angle of attack of the wing that augmented drag during the power phase of each half-stroke. At higher translational velocities of the body, the inclination of the power phase also became more nearly vertical. These results indicate that, in addition to serotonin-mediated modulation of wingbeat frequency reported previously in Clione, geometric alteration of wingbeat kinematics offers a precise means of controlling swimming forces.

  19. Palmer LTER: Patterns of distribution of five dominant zooplankton species in the epipelagic zone west of the Antarctic Peninsula, 1993 2004

    Science.gov (United States)

    Ross, Robin M.; Quetin, Langdon B.; Martinson, Douglas G.; Iannuzzi, Rich A.; Stammerjohn, Sharon E.; Smith, Raymond C.

    2008-09-01

    Variability in the temporal-spatial distribution and abundance of zooplankton was documented each summer on the Palmer Long-Term Ecological Research (LTER) grid west of the Antarctic Peninsula between Anvers and Adelaide Islands during a 12-yr time series. Oblique tows to 120 m with a 2×2 m fixed-frame net were made at about 50 stations each January/February between 1993 and 2004. The numerically dominant macro- and mesozooplanktonic species >2 mm included three species of euphausiids ( Euphausia superba, Antarctic krill; Thysanoëssa macrura; Euphausia crystallorophias, ice krill), a shelled pteropod ( Limacina helicina), and a salp ( Salpa thompsoni). Life cycles, life spans, and habitat varied among these species. Abundance data from each year were allocated to 100 km by 20 km (alongshore by on/offshore) grid cells centered on cardinal transect lines and stations within the Palmer LTER grid. The long-term mean or climatology and means for each year were used to calculate annual anomalies across the grid. Principal components analysis (PCA) was used to analyze for patterns and trends in the temporal-spatial variability of the five species. Questions included whether there are groups of species with similar patterns, and whether population cycles, species interactions or seasonal sea-ice parameters were correlated with detected patterns. Patterns in the climatology were distinct, and matched those of physical parameters. Common features included higher abundance in the north than in the south, independent of the cross-shelf gradients, and cross-shelf gradients with higher abundance either inshore ( E. crystallorophias) or offshore ( S. thompsoni). Anomalies revealed either cycles in the population, as episodic recruitment in Antarctic krill, or changes in anomaly pattern between the first and second half of the sampling period. The 1998 year, which coincided with a rapid change from a negative to a positive phase in the SOI, emerged as a year with either

  20. Pteropoda, Cladocera, and Chaetognatha associations as hydrological indicators in the southern Brazilian Shelf Asociaciones de Pteropoda, Cladocera y Chaetognatha como indicadores hidrológicos de la plataforma del extremo sur de Brasil

    Directory of Open Access Journals (Sweden)

    Charrid Resgalla Jr

    2008-01-01

    Full Text Available Associations of pteropod, cladoceran, and chaetognath species were analyzed for the southern coast of Brazil in order to present a biological diagnosis of the oceanographic conditions in winter and summer. The density data from the different species were analyzed using nodal and ordination cluster techniques, linking the species associations with salinity and temperature and, consequently, with the water masses occurring in each period. Sagitta tennis and Pleopsis polyphemoides were found to characterize the coastal water and, when associated with Evadne nordmanni and Pleopsis schmackeri, differentiated between the thermal characteristics of winter and summer, respectively. The Sub-Antarctic Shelf Water was characterized by the association of Sagitta tasmanica and Limacina retroversa in winter. The Tropical Water of the Brazil current presented several different associations, with Penilia avirostris, Sagitta enflata, and Creseis virgula dominating the shelf Tropical Water and Sagitta serratodentata, Limacina trochiformis, and Evadne spinifera characterizing the oceanic Tropical Water. The Sub-tropical Water, typical of upwelling processes, was characterized by the association of the chaetognaths Sagitta decipiens and Krohnitta subtilis, both in winter and summer. The species associations defined in this study agree with others carried out in neighboring areas and in previous sampling periods, characterizing the región as the southern transition zone.Se analizó las asociaciones de especies de Pteropoda, Cladocera y Chaetognatha en la costa sur de Brasil, para presentar un diagnóstico biológico de las condiciones oceanógraficas de invierno y verano. Los datos de densidad de las diferentes especies fueron analizados por técnicas de agrupamiento nodal y de ordenación, relacionando las asociaciones con la salinidad, temperatura y, consecuentemente, con las masas de agua presentes en cada período. Se observó que Sagitta tennis, Pleopsis

  1. Comparison of Mediterranean Pteropod Shell Biometrics and Ultrastructure from Historical (1910 and 1921 and Present Day (2012 Samples Provides Baseline for Monitoring Effects of Global Change.

    Directory of Open Access Journals (Sweden)

    Ella L Howes

    Full Text Available Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910 and Dana (1921 cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of

  2. Comparison of Mediterranean Pteropod Shell Biometrics and Ultrastructure from Historical (1910 and 1921) and Present Day (2012) Samples Provides Baseline for Monitoring Effects of Global Change.

    Science.gov (United States)

    Howes, Ella L; Eagle, Robert A; Gattuso, Jean-Pierre; Bijma, Jelle

    2017-01-01

    Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT

  3. Comparison of Mediterranean Pteropod Shell Biometrics and Ultrastructure from Historical (1910 and 1921) and Present Day (2012) Samples Provides Baseline for Monitoring Effects of Global Change

    Science.gov (United States)

    Gattuso, Jean-Pierre; Bijma, Jelle

    2017-01-01

    Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT

  4. Fluid-Dynamics of Underwater Flight in Sea Butterflies: Analysis using Tomographic PIV

    Science.gov (United States)

    Adhikari, D.; Murphy, D. W.; Webster, D. R.; Yen, J.

    2014-11-01

    Sea butterflies, Limacina helicina, swim in sea water with a pair of gelatinous ``wings'' (or parapodia). Their unique propulsion mechanism has been hypothesized to consist of a combination of drag-based propulsion (rowing) and lift-based propulsion (flapping). Drag-based propulsion utilizes maximum drag on the wings during power stroke, followed by minimum drag during recovery stroke. Lift-based propulsion, in contrast, utilizes a pressure difference between the top and bottom of the wings. We present the 3D kinematics of a free-swimming sea butterfly and its induced volumetric velocity field using tomographic PIV. Both upstroke and downstroke motions propel the animal (1 - 3 mm) upward in a sawtooth-like trajectory with average speed of 5 - 15 mm/s (Re = 5 - 45) and roll the calcareous shell forwards-and-backwards at 4 - 5 Hz. The rolling motion effectively positions the wings such that they stroke downward during both the power and recovery strokes, hence inducing upward motion during both phases. A clap-and-fling mechanism is observed at the beginning of the flapping cycle. As the wings come into contact, the velocity of the organism is 2 mm/s. During fling motion, high (unsteady) lift causes the organism velocity to reach 35 mm/s. Separation vortices are observed during the fling motion, and vortices with an opposite sense of rotation form closer to the base of the wing due to the upward translation of the organism. The separation vortices shed into the wake, as the organism translates upward, in the form of separate vortex pairs.

  5. [Composition, distribution and abundance of gastropod larvae in the South of Quintana Roo,Mexico and north of Belice].

    Science.gov (United States)

    Oliva Rivera, J; de Jesús Navarrete, A

    2000-12-01

    To know the composition, abundance and distribution of gastropod larvae, monthly samplings were carried out in the south of Quintana Roo, Mexico and north of Belize, from April to December, 1996. Collections were made in six sites at Chinchorro Bank, four in the South Coast and six at Hol-Chan, Belize, between the 10 and 20 hrs. At each station 2.5 m3 of seawater were pumped through a 202 microns mesh; 27 species were identified. The most abundant species were: South Coast, Rissoina sp. 1., Limacina sp. 1 and Natica sp. 1, Chinchorro Bank, Limacina sp. 1, Creseis acicula, Cerithiopsis hero and Rissoina sp. 1 and Hol-Chan, Limacina sp. 2, Alaba incerta and Rissoina sp. 1. The highest abundance was in rainy season. Apparently the presence of winds, coastal currents and food availability, control the distribution and abundance of larvae.

  6. Composición, distribución y abundancia de larvas de moluscos gastrópodos en el sur de Quintana Roo, México y norte de Belice

    Directory of Open Access Journals (Sweden)

    J Oliva Rivera

    2000-12-01

    Full Text Available Para conocer la composición, abundancia y distribución de larvas de gastrópodos, se realizaron muestreos mensuales de abril a diciembre de 1996 en el sur de Quintana Roo, México y norte de Belice. Las recolectas se hicieron en seis sitios de Banco Chinchorro, cuatro de la costa sur y seis en Hol-Chan, Belice. Las recolectas fueron hechas entre las 10 y 20 hrs, se bombearon 2.5 m³ de agua de mar por recolecta en un tiempo de diez minutos, filtrando a los organismos en una malla de 202 µm. Se identificaron un total de 27 especies de moluscos, las especies de mayor abundancia y de más amplia distribución en cada zona fueron: en la costa sur Rissoina sp. 1, Limacina sp. 1 y Natica sp., en Banco Chinchorro, Limacina sp. 1, Creseis acicula, Cerithiopsis hero y Rissoina sp. 1 y en Hol-Chan, Limacina sp. 2, Alaba incerta y Rissoina sp. 1. En general la mayor abundancia de moluscos se presentó en la época de lluvias. Aparentemente la presencia de corrientes y vientos fuertes y otros factores biológicos como el alimento, controlan la distribución y abundancia de las larvas.ha.To know the composition, abundance and distribution of gastropod larvae, monthly samplings were carried out in the south of Quintana Roo, Mexico and north of Belize, from April to December, 1996. Collections were made in six sites at Chinchorro Bank, four in the South Coast and six at Hol-Chan, Belize, between the 10 and 20 hrs. At each station 2.5 m_ of seawater were pumped through a 202 µm mesh; 27 species were identified. The most abundant species were: South Coast, Rissoina sp. 1., Limacina sp. 1 and Natica sp. 1, Chinchorro Bank, Limacina sp. 1, Creseis acicula, Cerithiopsis hero and Rissoina sp.1 and Hol-Chan, Limacina sp.2, Alaba incerta and Rissoina sp.1. The highest abundance was in rainy season. Apparently the presence of winds, coastal currents and food availability, control the distribution and abundance of larvae.

  7. Flapping, wobbling, and zig-zagging: Tomographic PIV measurements of Antarctic sea butterfly ``flying'' underwater

    Science.gov (United States)

    Adhikari, D.; Webster, D. R.; Yen, J.

    2015-11-01

    A portable tomographic PIV technique was used to study the fluid dynamics and kinematics of sea butterflies in Antarctica. Antarctic pteropods (or sea butterflies), which are currently threatened by ocean acidification, swim in seawater with a pair of gelatinous parapodia (or ``wings'') via a unique propulsion mechanism. Both power and recovery strokes propel the organism (1.5 - 5 mm in size) upward in a sawtooth-like trajectory with average speed of 14 - 30 mm/s and pitch the shell forwards-and-backwards at 1.9 - 3 Hz. The pitching motion effectively positions the parapodia such that they stroke downward during both the power and recovery strokes. Reynolds numbers defined for flapping, translating, and pitching (i.e. Ref, ReU, and ReΩ) characterize the motion of the pteropod. For Ref <50, the shell does not pitch and the pteropod swims abnormally. We present a detailed comparison of the volumetric fluid velocity fields induced by pteropods swimming upwards with Ref = 80 and 180. The pteropod at the lower Ref creates an attached shear flow along the parapodia and pushes fluid in a method analogous to a paddle. In contrast, at higher Ref, the flow along the parapodia separates and generates complex vortex structures.

  8. Fluid Dynamics of Clap-and-Fling with Highly Flexible Wings inspired by the Locomotion of Sea Butterflies

    Science.gov (United States)

    Zhou, Zhuoyu; Shoele, Kourosh; Adhikari, Deepak; Yen, Jeannette; Webster, Donald; Mittal, Rajat; Johns Hopkins University Team; Georgia Institute of Technology Team

    2015-11-01

    This study is motivated by the locomotion of sea butterflies (L. Helicina) which propel themselves in the water column using highly flexible wing-like parapodia. These animals execute a complex clap-and-fling with their highly flexible wings that is different from that of insects, and the fluid dynamics of which is not well understood. We use two models to study the fluid dyamics of these wings. In the first, we use prescribed wing kinematics that serve as a model of those observed for these animals. The second model is a fluid-structure interaction model where wing-like parapodia are modeled as flexible but inextensible membranes. The membrane properties, such as bending and stretching stiffness are modified such that the corresponding motion qualitatively matches the kinematics of L. helicina. Both models are used to examine the fluid dynamics of the clap-and-fling and its effectiveness in generating lift for these animals. Acknowledgement - research is supported by a grant from NSF.

  9. Zooplankton body composition

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2013-01-01

    groups body composition is size independent. Exceptions are protozoans, chaetognaths, and pteropods, where larger individuals become increasingly watery. I speculate about the dichotomy in body composition and argue that differences in feeding mechanisms and predator avoidance strategies favor either......I compiled literature on zooplankton body composition, from protozoans to gelatinous plankton, and report allometric relations and average body composition. Zooplankton segregate into gelatinous and non-gelatinous forms, with few intermediate taxa (chaetognaths, polychaetes, and pteropods). In most...... a watery or a condensed body form, and that in the intermediate taxa the moderately elevated water content is related to buoyancy control and ambush feeding...

  10. Seasonal variation of zooplankton abundance and community structure in Prince William Sound, Alaska, 2009-2016

    Science.gov (United States)

    McKinstry, Caitlin A. E.; Campbell, Robert W.

    2018-01-01

    Large calanoid copepods and other zooplankters comprise the prey field for ecologically and economically important predators such as juvenile pink salmon, herring, and seabirds in Prince William Sound (PWS).​ From 2009-2016, the Gulf Watch Alaska program collected zooplankton 5-10 times each year at 12 stations in PWS to establish annual patterns. Surveys collected 188 species of zooplankton with Oithona similis, Limacina helicina, Pseudocalanus spp., and Acartia longiremis as the most common species present in 519 samples. Generalized additive models assessed seasonal abundance and showed peak abundance in July (mean: 9826 no. m-3 [95% CI: 7990-12,084]) and lowest abundance in January (503 no. m-3 [373 to 678]). Significantly higher zooplankton abundance occurred in 2010 (542 no. m-3 ± 55 SE) and lowest in 2013 (149 no. m-3 ± 13). The species composition of communities, determined via hierarchical cluster analysis and indicator species analysis, produced six distinct communities based on season and location. The winter community, characterized by warm-water indicator species including Mesocalanus tenuicornis, Calanus pacificus, and Corycaeus anglicus, diverged into four communities throughout the spring and summer. The first spring community, characterized by copepods with affinities for lower salinities, occurred sound-wide. The second spring community, comprised of planktonic larvae, appeared sporadically in PWS bays in 2011-2013. Spring and summer open water stations were defined by the presence of large calanoid copepods. A summer community including the most abundant taxa was common in 2010 and 2011, absent in 2013, then sporadically appeared in 2014 and 2015 suggesting interannual variability of zooplankton assemblages. The zooplankton community shifted to a uniform assemblage characterized by cnidarians in the early autumn. Community assemblages showed significant correlations to a set of environmental variables including SST, mixed layer depth

  11. Abrupt climate-induced changes in carbonate burial in the Arabian Sea: Causes and consequences.

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Singh, A.D.; Ganeshram, R.S.; Bharti, S.K.

    glacial and particularly during stadials (Heinrich Events). Using aragonite content, pteropods abundance, organic carbon percentage, and abundance of fertile (eutrophic) species of planktonic foraminifer, we demonstrate that aragonite contents...

  12. Zooplankton production, composition and diversity in the coastal waters of Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.; Padmavati, G.

    , siphonophores, chaetognaths and fish eggs were the other common taxa. Zooplankton population was never dominated by a single group. Swarms of copepods (Temora turbinata), cladocerans (Evadne tergestina), and pteropods (Creseis acicula) occurred in the nutrient...

  13. Two New Species of the Genus Stenamoeba Smirnov, Nassonova, Chao et Cavalier-Smith, 2007

    Czech Academy of Sciences Publication Activity Database

    Dyková, Iva; Kostka, Martin; Pecková, Hana

    2010-01-01

    Roč. 49, č. 3 (2010), s. 245-251 ISSN 0065-1583 R&D Projects: GA ČR GA524/09/0137; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : Stenamoeba amazonica * Stenamoeba limacina * new species * taxonomy * phylogeny Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 0.881, year: 2010

  14. Comprehensive Marine Particle Analysis System

    Science.gov (United States)

    2001-09-30

    Calanoid copepod, B- Poecilostomatoid copepod, C- Centric diatom chain, D- Polychaete, E- Salp , F- Larvacean, G -Hydromedusae, H- Pteropod, I...5 No difference Protoctista 15 321 +2140 Salp and doliolids 31 102 +329 Siphonophores 17 24 +141 Trichodesmium present in low numbers 1958

  15. Radiocarbon dating of planktonic foraminifer shells: A cautionary tale

    Science.gov (United States)

    Mekik, Figen

    2014-01-01

    rate, bioturbation, winnowing, and calcite dissolution produce significant radiocarbon age offsets among multiple species of coexisting planktonic foraminifers and pteropod fragments. We compare the radiocarbon age of foraminifer species and pteropod fragments with estimates of percent calcite dissolved made with a sedimentary proxy (Globorotalia menardii fragmentation index—MFI) to delineate the effect of dissolution on radiocarbon age of foraminifers. Data from two core top transects on the Rio Grande Rise (RIO) and Ontong Java Plateau (OJP) and from down core sediments of varying sedimentation rates in the tropical Pacific (ME-27, MD98 2177, and MW91-9 56GGC) reveal that sediments with the greatest accumulation rates produce the least age offsets among coexisting species. Age offsets among coexisting foraminifers are about 3500 years on RIO, and 1000 years on OJP. Two core tops from RIO yield an age of the Last Glacial Maximum possibly due to mass displacement of younger sediments downslope. Foraminifer age increases with increasing dissolution and there is a consistent pattern of older foraminifer fragments coexisting with younger whole shells of the same species. The only exception is sediments which have experienced high dissolution where fragments are younger than whole shells. The age offset between fragments of G. menardii and its coexisting whole shells does not exceed the age offset among other coexisting foraminifer species in the same core tops.

  16. Office of Naval Research Aggregate Dynamics in the Sea Workshop Held at Pacific Grove, California on September 22-24, 1986

    Science.gov (United States)

    1986-09-01

    direct microscopic observation can define the nucleus of the particle, i.e., dinoflagellate cyst , diatom spore, fecal pellet. If the snow is degraded...rather than depth. Seal- ing off the top of the trap prior to recovery allows retention of the material which settled into the trap and which was...particles often appeared in the 90-150 m interval. Sheet-like feeding webs (25 cm 2-2.3 m2 of mucous , produced by the pteropods Gleba cordata and Cavolina

  17. Fluxes of amino acids and hexosamines to the deep Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Haake, B.; Ittekkot, V.; Ramaswamy, V.; Nair, R.R.; Honjo, S.

    (Karl and Knauer, 1984; Lee et al., 1988; Michaels et al., 1990). The samples were, therefore carefully sieved into less than 1 mm and greater than 1 mm fractions. Swimmers (mainly pteropods, and some copepods) were primarily found in the greater... in the western and eastern Arabian Sea, where a strong horizontal gradient of primary productivity prevails (Krey, 1973; Brock et al., 1991). Current-metre studies carried out during the first year of deployment have revealed that current speeds are highest...

  18. A review of the studies on pteropods from the northern Indian Ocean A review of the studies on pteropods of the northern Indian Ocean region with a report on the pteropods of Irrawaddy continental shelf off Myanmar (Burma)

    Digital Repository Service at National Institute of Oceanography (India)

    Panchang, R.; Nigam, R.; Riedel, F.; Janssen, A.W.; Hla, U Ko Yi

    budget. Recent evidence, however, has suggested that the majority of the open ocean carbonate exported from the surface layer is remineralized in the upper 500�1000 m, well above the calcite lysocline 13 . Sabine et al. 14 , suggest that significant... was later dated to 13,000 y. BP. Bhattacharjee et al. 65 observed a similar event around Car Nicobar Islands and attributed both these features to reduced dissolution due to increased alkalinity, marking the beginning of deglaciation. In core sections...

  19. Late Quaternary record of pteropod preservation from the Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sijinkumar, A.V.; Nath, B.N.; Guptha, M.V.S.

    , temperature and one atmosphere total pressure. American Journal of Science 283, 780-799. Naqvi, W.A., Charles, C.D., Fairbanks, R.G., 1994. Carbon and oxygen isotopic records of benthic foraminifera from the Northeast Indian Ocean: implications on glacial...

  20. Pelagic origin and fate of sedimenting particles in the Norwegian Sea

    Science.gov (United States)

    Bathmann, Ulrich V.; Peinert, Rolf; Noji, Thomas T.; Bodungen, Bodo V.

    A 17 month record of vertical particle flux of dry weight, carbonate and organic carbon were 25.8, 9.4 and 2.4g.m -2y -1, respectively. Parallel to trap deployments, pelagic system structure was recorded with high vertical and temporal resolution. Within a distinct seasonal cycle of vertical particle flux, zooplankton faecal pellets of various sizes, shapes and contents were collected by the traps in different proportions and quantities throughout the year (range: 0-4,500 10 3m -2d -1). The remains of different groups of organisms showed distinct seasonal variations in abundance. In early summer there was a small maximum in the diatom flux and this was followed by pulses of tinntinids, radiolarians, foraminiferans and pteropods between July and November. Food web interactions in the water column were important in controlling the quality and quantity of sinking materials. For example, changes in the population structure of dominant herbivores, the break-down of regenerating summer populations of microflagellates and protozooplankton and the collapse of a pteropod dominated community, each resulted in marked sedimentation pulses. These data from the Norwegian Sea indicate those mechanisms which either accelerate or counteract loss of material via sedimentation. These involve variations in the structure of the pelagic system and they operatè on long (e.g. annual plankton succession) and short (e.g. the end of new production, sporadic grazing of swarm feeders) time scales. Connecting investigation of the water column with a high resolution in time in parallel with drifting sediment trap deployments and shipboard experiments with the dominant zooplankters is a promising approach for giving a better understanding of both the origin and the fate of material sinking to the sea floor.

  1. Chemical and biological impacts of ocean acidification along the west coast of North America

    Science.gov (United States)

    Feely, Richard A.; Alin, Simone R.; Carter, Brendan; Bednaršek, Nina; Hales, Burke; Chan, Francis; Hill, Tessa M.; Gaylord, Brian; Sanford, Eric; Byrne, Robert H.; Sabine, Christopher L.; Greeley, Dana; Juranek, Lauren

    2016-12-01

    The continental shelf region off the west coast of North America is seasonally exposed to water with a low aragonite saturation state by coastal upwelling of CO2-rich waters. To date, the spatial and temporal distribution of anthropogenic CO2 (Canth) within the CO2-rich waters is largely unknown. Here we adapt the multiple linear regression approach to utilize the GO-SHIP Repeat Hydrography data from the northeast Pacific to establish an annually updated relationship between Canth and potential density. This relationship was then used with the NOAA Ocean Acidification Program West Coast Ocean Acidification (WCOA) cruise data sets from 2007, 2011, 2012, and 2013 to determine the spatial variations of Canth in the upwelled water. Our results show large spatial differences in Canth in surface waters along the coast, with the lowest values (37-55 μmol kg-1) in strong upwelling regions off southern Oregon and northern California and higher values (51-63 μmol kg-1) to the north and south of this region. Coastal dissolved inorganic carbon concentrations are also elevated due to a natural remineralized component (Cbio), which represents carbon accumulated through net respiration in the seawater that has not yet degassed to the atmosphere. Average surface Canth is almost twice the surface remineralized component. In contrast, Canth is only about one third and one fifth of the remineralized component at 50 m and 100 m depth, respectively. Uptake of Canth has caused the aragonite saturation horizon to shoal by approximately 30-50 m since the preindustrial period so that undersaturated waters are well within the regions of the continental shelf that affect the shell dissolution of living pteropods. Our data show that the most severe biological impacts occur in the nearshore waters, where corrosive waters are closest to the surface. Since the pre-industrial times, pteropod shell dissolution has, on average, increased approximately 19-26% in both nearshore and offshore waters.

  2. Sedimentation of phytoplankton during a diatom bloom : Rates and mechanisms

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Hansen, J.L.S.; Alldredge, A.L.

    1996-01-01

    Phytoplankton blooms are uncoupled from grazing and are normally terminated by sedimentation. There are several potential mechanisms by which phytoplankton cells may settle out of the photic zone: sinking of individual cells or chains, coagulation of cells into aggregates with high settling...... velocities, settling of cells attached to marine snow aggregates formed from discarded larvacean houses or pteropod feeding webs, and packaging of cells into rapidly falling zooplankton fecal pellets. We quantified the relative significance of these different mechanisms during a diatom bloom in a temperate...... to marine snow aggregates formed from discarded larvacean houses, whereas settling of unaggregated cells was insignificant. Formation rates of phytoplankton aggregates by physical coagulation was very low, and losses by this mechanism were much less than 0.07 d(-1); phytoplankton aggregates were neither...

  3. Timing and preservation mechanism of deglacial pteropod spike from the Andaman Sea, northeastern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sijinkumar, A.V.; Nath, B.N.; Gupta, M.V.S.; Rao, B.R.

    system in the Arabian Sea. Deep-Sea Research II 45, 2225-2252. Milliman, J. S. & Meade, R. H. 1983: World-wide delivery of river sediment to the oceans. Journal of Geology 91, 1-21. Naqvi, W. A., Charles, C. D. & Fairbanks, R. G. 1994: Carbon...

  4. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms.

    Science.gov (United States)

    Orr, James C; Fabry, Victoria J; Aumont, Olivier; Bopp, Laurent; Doney, Scott C; Feely, Richard A; Gnanadesikan, Anand; Gruber, Nicolas; Ishida, Akio; Joos, Fortunat; Key, Robert M; Lindsay, Keith; Maier-Reimer, Ernst; Matear, Richard; Monfray, Patrick; Mouchet, Anne; Najjar, Raymond G; Plattner, Gian-Kasper; Rodgers, Keith B; Sabine, Christopher L; Sarmiento, Jorge L; Schlitzer, Reiner; Slater, Richard D; Totterdell, Ian J; Weirig, Marie-France; Yamanaka, Yasuhiro; Yool, Andrew

    2005-09-29

    Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

  5. Revision of the genus Cuvierina Boas, 1886 based on integrative taxonomic data, including the description of a new species from the Pacific Ocean (Gastropoda, Thecosomata).

    Science.gov (United States)

    Burridge, Alice K; Janssen, Arie W; Peijnenburg, Katja T C A

    2016-01-01

    Shelled pteropods (Gastropoda, Thecosomata, Euthecosomata) are a group of holoplanktonic gastropods that occur predominantly in the surface layers of the world's oceans. Accurate species identifications are essential for tracking changes in species assemblages of planktonic gastropods, because different species are expected to have different sensitivities to ocean changes. The genus Cuvierina has a worldwide warm water distribution pattern between ~36°N and ~39°S. Based on an integrative taxonomic approach combining morphometric, genetic, and biogeographic information, the two subgenera of Cuvierina , Cuvierina s. str. and Urceolarica , are rejected. A new species is introduced: Cuvierina tsudai sp. n. , which has to date been considered the same species as Cuvierina pacifica . Cuvierina tsudai sp. n. is endemic to the Pacific Ocean and is characterised by a shell height of 7.2-8.0 mm, a moderately cylindrical shell shape, the absence of micro-ornamentation and a triangular aperture. Cuvierina pacifica is restricted to the centre of the oligotrophic southern Pacific gyre, has a shell height of 6.6-8.5 mm, a more cylindrical shell shape, no micro-ornamentation and a less triangular aperture than Cuvierina tsudai sp. n.

  6. Indicadores ecológicos de hábitat y biodiversidad en un paisaje neotropical: perspectiva multitaxonómica

    Directory of Open Access Journals (Sweden)

    Noel González-Valdivia

    2011-09-01

    Full Text Available El uso de especies indicadoras para caracterizar unidades ecológicas específicas es de gran importancia en la biología de la conservación/restauración. El objetivo del estudio fue identificar desde una perspectiva multitaxonómica, las especies que caracterizan distintas unidades de un paisaje. Así, se diferenciaron dos ecomosaicos: bosque tropical lluvioso y matriz agropecuaria con cuatro unidades de paisaje cada uno. Se incluyeron cuatro grupos biológicos: aves (muy móviles, mariposas frugívoras diurnas (moderadamente móviles, gasterópodos terrestres (poco móviles y árboles (sésiles. La eficiencia de muestreo en los ecomosaicos fue ≥86%. Se registraron 50 especies de moluscos, 74 de mariposas, 218 de aves y 172 de árboles, totalizando 514 especies. Mediante ordenamiento y agrupamiento, se diferenciaron tres tipos de hábitats: bosque tropical lluvioso, vegetación secundaria y potreros con árboles. Aplicando el método InVal (≥50%, se identificaron 107 especies indicadoras, de las cuales 45 fueron árboles, 38 aves, 14 mariposas y diez gasterópodos. De éstas, 35 especies de árboles, diez de aves, cuatro de mariposas y ocho de gasterópodos son indicadoras del bosque. Diez, veintiocho, diez y dos especies (de cada grupo respectivamente caracterizaron a la matriz agropecuaria. En el bosque, los gasterópodos Carychium exiguum, Coelocentrum turris, Glyphyalinia aff. indentata y Helicina oweniana se correlacionaron significativamente (pEcological indicators of habitat and biodiversity in a Neotropical landscape: multitaxonomic perspective. The use of indicator species to characterize specific ecological areas is of high importance in conservation/ restoration biology. The objective of this study was to identify indicator species of diverse taxa that characterize different landscape units, and to better understand how management alters species composition. We identified two ecomosaics, tropical rain forest and the

  7. An unaccounted fraction of marine biogenic CaCO3 particles.

    Directory of Open Access Journals (Sweden)

    Mikal Heldal

    Full Text Available Biogenic production and sedimentation of calcium carbonate in the ocean, referred to as the carbonate pump, has profound implications for the ocean carbon cycle, and relate both to global climate, ocean acidification and the geological past. In marine pelagic environments coccolithophores, foraminifera and pteropods have been considered the main calcifying organisms. Here, we document the presence of an abundant, previously unaccounted fraction of marine calcium carbonate particles in seawater, presumably formed by bacteria or in relation to extracellular polymeric substances. The particles occur in a variety of different morphologies, in a size range from 100 µm, and in a typical concentration of 10(4-10(5 particles L(-1 (size range counted 1-100 µm. Quantitative estimates of annual averages suggests that the pure calcium particles we counted in the 1-100 µm size range account for 2-4 times more CaCO(3 than the dominating coccolithophoride Emiliania huxleyi and for 21% of the total concentration of particulate calcium. Due to their high density, we hypothesize that the particles sediment rapidly, and therefore contribute significantly to the export of carbon and alkalinity from surface waters. The biological and environmental factors affecting the formation of these particles and possible impact of this process on global atmospheric CO(2 remains to be investigated.

  8. Vibrational dynamics of thiocyanate and selenocyanate bound to horse heart myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Maj, Michał; Oh, Younjun; Park, Kwanghee; Lee, Jooyong; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kwak, Kyung-Won [Department of Chemistry, Chung-Ang University, Seoul 156-756, SouthKorea (Korea, Republic of)

    2014-06-21

    The structure and vibrational dynamics of SCN- and SeCN-bound myoglobin have been investigated using polarization-controlled IR pump-probe measurements and quantum chemistry calculations. The complexes are found to be in low and high spin states, with the dominant contribution from the latter. In addition, the Mb:SCN high spin complex exhibits a doublet feature in the thiocyanate stretch IR absorption spectra, indicating two distinct molecular conformations around the heme pocket. The binding mode of the high spin complexes was assigned to occur through the nitrogen atom, contrary to the binding through the sulfur atom that was observed in myoglobin derived from Aplysia Limacina. The vibrational energy relaxation process has been found to occur substantially faster than those of free SCN{sup −} and SeCN{sup −} ions and neutral SCN- and SeCN-derivatized molecules reported previously. This supports the N-bound configurations of MbNCS and MbNCSe, because S- and Se-bound configurations are expected to have significantly long lifetimes due to the insulation effect by heavy bridge atom like S and Se in such IR probes. Nonetheless, even though their lifetimes are much shorter than those of corresponding free ions in water, the vibrational lifetimes determined for MbNCS and MbNCSe are still fairly long compared to those of azide and cyanide myoglobin systems studied before. Thus, thiocyanate and selenocyanate can be good local probes of local electrostatic environment in the heme pocket. The globin dependence on binding mode and vibrational dynamics is also discussed.

  9. A preliminary report on the distribution and relative abundance of Euthecosomata with a note on the seasonal variation of Limacina species in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sakthivel, M.

    Euthecosomata (holoplanktonic opisthobranch molluscs) sorted out from the collections of the International Indian Ocean Expedition are now being studied and the present communication is a first report based on an examination of material from 395...

  10. Late Quaternary high resolution micropaleontological and sedimentological records in the Gulf of Cadiz.

    Science.gov (United States)

    Balestra, B.; Ducassou, E.; Zarikian, C.; Bout-Roumazeilles, V.; Flores, J. A.; Paytan, A.

    2017-12-01

    We present preliminary micropaleontological and sedimentological data from IODP Site U1390 (Expedition 339), located in the central middle slope of the Gulf of Cadiz, since the last glaciation. This site has been targeted for reconstruction of regional paleo-circulation as it shows particularly high sedimentation rates, throughout the Holocene and the Last Glacial Maximum (LGM). We use micropaleontological and sedimentological proxies to understand the bottom current variations through time and the ecological conditions at the sea surface (planktonic foraminifer, pteropod and nannofossil assemblages), and the sea bottom (ostracod assemblages). Eleven samples, chosen at transitions of planktonic foraminifer assemblages, have been dated by AMS radiocarbon analyses. Preliminary results from benthic ostracod assemblages show variations in bottom water ventilation and food supply. Planktonic foraminifer assemblages clearly show the well-known cold events of this period such as the Younger Dryas and Heinrich stadial associated to coarser sediment, and warmer phases such as the Bölling-Allerød associated to muddy sediment. Other bio-events within the Holocene period are also recorded. The preservation of the coccolithophore assemblages is good to moderate. Coccolith abundances (expressed in coccoliths/gr of sediment) show higher values during the Holocene and generally are like assemblages previously reported for the same area. Implications for characterization of the Holocene, the last termination and LGM ecological conditions at high resolution and their potential fluctuations (i.e. amplitude and magnitude) under the influence of the lower core of the Mediterranean Outflow Water (MOW), with this multi proxy approach based on sedimentological, and paleontological data will be discussed.

  11. Indicadores ecológicos de hábitat y biodiversidad en un paisaje neotropical: perspectiva multitaxonómica

    Directory of Open Access Journals (Sweden)

    Noel González-Valdivia

    2011-09-01

    Full Text Available El uso de especies indicadoras para caracterizar unidades ecológicas específicas es de gran importancia en la biología de la conservación/restauración. El objetivo del estudio fue identificar desde una perspectiva multitaxonómica, las especies que caracterizan distintas unidades de un paisaje. Así, se diferenciaron dos ecomosaicos: bosque tropical lluvioso y matriz agropecuaria con cuatro unidades de paisaje cada uno. Se incluyeron cuatro grupos biológicos: aves (muy móviles, mariposas frugívoras diurnas (moderadamente móviles, gasterópodos terrestres (poco móviles y árboles (sésiles. La eficiencia de muestreo en los ecomosaicos fue ≥86%. Se registraron 50 especies de moluscos, 74 de mariposas, 218 de aves y 172 de árboles, totalizando 514 especies. Mediante ordenamiento y agrupamiento, se diferenciaron tres tipos de hábitats: bosque tropical lluvioso, vegetación secundaria y potreros con árboles. Aplicando el método InVal (≥50%, se identificaron 107 especies indicadoras, de las cuales 45 fueron árboles, 38 aves, 14 mariposas y diez gasterópodos. De éstas, 35 especies de árboles, diez de aves, cuatro de mariposas y ocho de gasterópodos son indicadoras del bosque. Diez, veintiocho, diez y dos especies (de cada grupo respectivamente caracterizaron a la matriz agropecuaria. En el bosque, los gasterópodos Carychium exiguum, Coelocentrum turris, Glyphyalinia aff. indentata y Helicina oweniana se correlacionaron significativamente (p<0.05 con 90% de las especies indicadoras. Estos gasterópodos pueden, además de diferenciar la calidad del hábitat, ser indicadoras de la biodiversidad del bosque. La vegetación secundaria representó una fase intermedia de perturbación que propicia alta riqueza en la matriz agropecuaria. De manera que se aporta una perspectiva multitaxonómica que incluye el papel de la mesofauna en el monitoreo ecológico de agropaisajes.

  12. Activities of the training vessel Umitaka-maru (KARE-15; UM-11-07 of the Tokyo University of Marine Science and Technology during the 53rd Japanese Antarctic Research Expedition in 2011/2012

    Directory of Open Access Journals (Sweden)

    Masato Moteki

    2015-11-01

    Full Text Available The training vessel Umitaka-maru of the Tokyo University of Marine Science and Technology (TUMSAT undertook a marine science cruise in the Indian sector of the Southern Ocean during the 2011/2012 austral summer. During the cruise, TUMSAT conducted five different collaborative research projects. These included two phase-VIII Japanese Antarctic Research Expedition (JARE-52 to -57 projects: "Responses of Antarctic Marine Ecosystems to Global Environmental Changes with Carbonate Systems", which is the sub-theme of the prioritized research project "Exploring Global Warming from Antarctica"; and the ordinary research project "Studies on Plankton Community Structure and Environment Parameters in the Southern Ocean". The other three collaborative research projects were those undertaken in conjunction with (1 the National Institute of Polar Research, entitled "Environment and Ecosystem Changes in the Southern Ocean"; (2 the Japan Agency for Marine-Earth Science and Technology (JAMSTEC, entitled "Deployment of the Southern Ocean Buoy" ; and (3 with Hokkaido University, entitled "Studies on Dynamics of Antarctic Bottom Water". The Umitaka-maru departed from Fremantle, Australia, on 27 December 2011, sailed to the study area around the marginal sea ice zone (mainly along 110°E and 140°E, and returned to Hobart, Australia, on 1 February 2012. The participants performed various net castings to qualitatively evaluate the vertical distribution of plankton communities, made physical observations, and measured chemical parameters. They also retrieved a year-round mooring that had been deployed the previous year, retrieved two surface drifting buoys that had been released by the ice breaker Shirase, and deployed a JAMSTEC buoy (m-TRITON. In addition, several acidified culture experiments using pteropods were conducted on board.

  13. A new species of Bathymedon Sars, 1892 (Amphipoda: Oedicerotidae from the western Mediterranean bathyal floor

    Directory of Open Access Journals (Sweden)

    Damiá Jaume

    1998-12-01

    Full Text Available Bathymedon longirostris sp. nov. (Amphipoda: Oedicerotidae from the western Mediterranean bathyal suprabenthos is described. It is characterised by the well-developed rostrum; the discrete lateral lobe of head; the elongation of the peduncle segment 3 of the first antenna; the very slender propodus of the second gnathopod, which attains maximum width not at the palm angle, but at about midway along the palm margin; and by the relative length of the carpus of the foregoing limb, sub-equal to propodus. The discovery of a tiny remnant of the 2nd peduncle segment of the first antenna in the new species is commented with regard to the homologation of the peduncle segments in other members of the Family. The new taxon was captured below 593 m over muddy bottoms with pteropod shells and remains of planktonic foraminiferans. It was one of the most common amphipods in the lower slope (below ~ 1000 m, whereas in the depth range comprised between 1250 and 1859 m it was the second dominant species, representing 11.4 % of the total gammarideans captured. The area studied harbours three additional congeneric species, although their populations are mainly concentrated in the upper and middle slope. Over the bottom, adult males of the new species apparently tend to occupy higher levels beyond the water-sediment interface than the rest of demographic categories. The gut content of three individuals revealed a bulk of calcified foraminiferans, a diet in consonance with their massive mandibles. Juvenile individuals were more abundant in winter, whereas adult individuals were clearly dominant in summer, thus suggesting the biological cycle of the species follows some type of periodicity.

  14. Marine Invertebrates: Communities at Risk

    Directory of Open Access Journals (Sweden)

    Jennifer Mather

    2013-06-01

    Full Text Available Our definition of the word ‘animal’ centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  15. Patterns of Macrozooplankton and Fish Occurrence Beneath McMurdo Sound Fast Ice during Spring/Summer 2014/2015

    Science.gov (United States)

    Saenz, B. T.; Daly, K. L.; Kim, S.; Ainley, D. G.; Ballard, G.

    2016-02-01

    McMurdo Sound, Antarctica, represents a unique environment for study of trophic interactions, where a full complement of marine predators thrive. As part of a greater study of McMurdo Sound food web interactions, including ocean and ice physics, algal characterization, and predator behavior, macrozooplankton and fish were surveyed using bioacoustics and video using a specially-designed under-ice ROV. Acoustic returns from 82 under-ice surveys were divided into classes consisting of krill, silverfish, and weak scatters. Krill were scarce during surveys in late November, but increased in abundance in association with increasing chlorophyll a in December and early January when surveys ended. The greatest concentrations of krill were found near Ross Island in the eastern Sound, where southerly currents move high-productivity waters beneath the fast ice. Conversely, silverfish, especially schools of juveniles, were found in greater abundance toward the west where currents flow northward and platelet ice typically blocked light from surface waters. Silverfish were rare toward the end of the survey in late December/early January, but possibly had moved deeper than the acoustic instrument could detect. Overall, krill were less abundant and occurred deeper in the water column within 2 km of the fast ice edge, which was accessible by air-breathing predators, suggesting that predation pressure helped structure krill abundance or distribution. Acoustic returns from weak scatters, which included observed jellies, pteropods, detached ice algae and potentially other mesoplankton in high abundance such as copepods, also increased during the study period and co-occurred with chlorophyll a. The patterns of macrozooplankton and fish observed in McMurdo Sound raise important questions about source-sink dynamics, overwinter strategies of mid-trophic organisms, prey-predator dynamics, and sea-ice structuring of ecosystems.

  16. Marine invertebrates: communities at risk.

    Science.gov (United States)

    Mather, Jennifer

    2013-06-10

    Our definition of the word 'animal' centers on vertebrates, yet 99% of the animals on the planet are invertebrates, about which we know little. In addition, although the Census of Marine Life (COML.org) has recently conducted an extensive audit of marine ecosystems, we still do not understand much about the animals of the seas. Surveys of the best-known ecosystems, in which invertebrate populations often play a key role, show that the invertebrate populations are affected by human impact. Coral animals are the foundation of coral reef systems, which are estimated to contain 30% of the species in the ocean. Physical impact and chemical changes on the water severely damage these reefs, and may lead to the removal of these important habitats. Tiny pteropod molluscs live in huge numbers in the polar seas, and their fragile shells are particularly vulnerable to ocean acidification. Their removal would mean that fishes on which we depend would have a hugely diminished food supply. In the North Sea, warming is leading to replacement of colder water copepods by warmer water species which contain less fat. This is having an effect on the birds which eat them, who enrich the otherwise poor land on which they nest. Conversely, the warming of the water and the loss of top predators such as whales and sharks has led to an explosion of the jumbo squid of the Pacific coast of North America. This is positive in the development of a squid fishery, yet negative because the squid eat fish that have been the mainstay of the fishery along that coast. These examples show how invertebrates are key in the oceans, and what might happen when global changes impact them.

  17. Risks of ocean acidification in the California Current food web and fisheries: ecosystem model projections.

    Science.gov (United States)

    Marshall, Kristin N; Kaplan, Isaac C; Hodgson, Emma E; Hermann, Albert; Busch, D Shallin; McElhany, Paul; Essington, Timothy E; Harvey, Chris J; Fulton, Elizabeth A

    2017-04-01

    The benefits and ecosystem services that humans derive from the oceans are threatened by numerous global change stressors, one of which is ocean acidification. Here, we describe the effects of ocean acidification on an upwelling system that already experiences inherently low pH conditions, the California Current. We used an end-to-end ecosystem model (Atlantis), forced by downscaled global climate models and informed by a meta-analysis of the pH sensitivities of local taxa, to investigate the direct and indirect effects of future pH on biomass and fisheries revenues. Our model projects a 0.2-unit drop in pH during the summer upwelling season from 2013 to 2063, which results in wide-ranging magnitudes of effects across guilds and functional groups. The most dramatic direct effects of future pH may be expected on epibenthic invertebrates (crabs, shrimps, benthic grazers, benthic detritivores, bivalves), and strong indirect effects expected on some demersal fish, sharks, and epibenthic invertebrates (Dungeness crab) because they consume species known to be sensitive to changing pH. The model's pelagic community, including marine mammals and seabirds, was much less influenced by future pH. Some functional groups were less affected to changing pH in the model than might be expected from experimental studies in the empirical literature due to high population productivity (e.g., copepods, pteropods). Model results suggest strong effects of reduced pH on nearshore state-managed invertebrate fisheries, but modest effects on the groundfish fishery because individual groundfish species exhibited diverse responses to changing pH. Our results provide a set of projections that generally support and build upon previous findings and set the stage for hypotheses to guide future modeling and experimental analysis on the effects of OA on marine ecosystems and fisheries. © 2017 John Wiley & Sons Ltd.

  18. Distribution of total alkalinity and pH in the Ross Sea (Antarctica waters during austral summer 2008

    Directory of Open Access Journals (Sweden)

    Paola Rivaro

    2014-10-01

    Full Text Available Measurements of total alkalinity (AT and pH were made in the Ross Sea in January–February 2008 in order to characterize the carbonate system in the Ross Sea and to evaluate the variability associated with different water masses. The main water masses of the Ross Sea, Antarctic Surface Water, High Salinity Shelf Water (HSSW, Deep Ice Shelf Water, Circumpolar Deep Water (CDW and Antarctic Bottom Water, were identified on the basis of the physical and chemical data. In particular, the AT ranged between 2275 and 2374 µmol kg−1 with the lowest values in the surface waters (2275–2346 µmol kg−1, where the influence of the sea-ice melting and of the variability of the physical properties was significant. In the deep layers of the water column, the AT maxima were measured in correspondence to the preferential pathways of the spreading HSSW. The pH had variable values in the surface layer (7.890–8.033 with the highest values in Terra Nova Bay and Ross Sea polynyas. A low pH (7.969±0.025 traced the intrusion of the CDW in the Ross Sea shelf area. All samples revealed waters that were oversaturated with respect to both calcite and aragonite, but near corrosive levels of aragonite saturation state (Ω ca. 1.1–1.2 were associated with the entrainment of CDW over the slope. Aragonite undersaturation is of particular concern for the zooplankton species comprising to calcifying organisms such as pteropods. The partial pressure of CO2 at the sea surface was undersaturated with respect to the atmospheric value, particularly in Terra Nova Bay and the Ross Sea polynyas, but a large variability in the sea–air CO2 fluxes was observed associated with different responses in the strength of the biological and physical processes.

  19. Habitat suitability and ecological niches of different plankton functional types in the global ocean

    Science.gov (United States)

    Vogt, Meike; Brun, Philipp; Payne, Mark R.; O'Brien, Colleen J.; Bednaršek, Nina; Buitenhuis, Erik T.; Doney, Scott C.; Leblanc, Karine; Le Quéré, Corinne; Luo, Yawei; Moriarty, Róisín; O'Brien, Todd D.; Schiebel, Ralf; Swan, Chantal

    2013-04-01

    Marine plankton play a central role in the biogeochemical cycling of important elements such as carbon, nitrogen, and sulphur. While our knowledge about marine ecosystem structure and functioning is still scarce and episodic, several recent observational studies confirm that marine ecosystems have been changing due to recent climate change, overfishing, and coastal eutrophication. In order to better understand marine ecosystem dynamics, the MAREDAT initiative has recently collected abundance and biomass data for 5 autotrophic (diatoms, Phaeocystis, coccolithophores, nitrogen fixers, picophytoplankton), and 6 heterotrophic plankton functional types (PFTs; bacteria, micro-, meso- and macrozooplankton, foraminifera and pteropods). Species distribution models (SDMs) are statistical tools that can be used to derive information about species habitats in space and time. They have been used extensively for a wide range of ecological applications in terrestrial ecosystems, but here we present the first global application in the marine realm, which was made possible by the MAREDAT data synthesis effort. We use a maximum entropy SDM to simulate global habitat suitability, habitat extent and ecological niches for different PFTs in the modern ocean. Present habitat suitability is derived from presence-only MAREDAT data and the observed annual and monthly mean levels of physiologically relevant variables such as SST, nutrient concentration or photosynthetic active radiation received in the mixed layer. This information can then be used to derive ecological niches for different species or taxa within each PFT, and to compare the ecological niches of different PFTs. While these results still need verification because data was not available for all ocean regions for all PFTs, they can give a first indication what present and future plankton habitats may look like, and what consequences we may have to expect for future marine ecosystem functioning and service provision in a warmer

  20. Effects of ocean acidification on shell condition and survival of Puget Sound pteropods from laboratory experiment studies from 2012-05-10 to 2012-07-12 (NODC Accession 0125008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains laboratory experiment data that were collected to examine the effects of ocean acidification on shell condition and survival of Puget...

  1. Carbon, nitrogen, and phosphorus stoichiometry of plankton and the nutrient regime in Cabo Frio Bay, SE Brazil.

    Science.gov (United States)

    Kütter, Vinicius T; Wallner-Kersanach, Monica; Sella, Silvia M; Albuquerque, Ana Luiza S; Knoppers, Bastiaan A; Silva-Filho, Emmanoel V

    2014-01-01

    This long-term study, performed during the years 2003-2005 and 2008-2009, investigated the carbon (C), nitrogen (N), and phosphorus (P) contents of the phyto- and zooplankton communities and the nutrient regime of Cabo Frio Bay, SE Brazil. The information intends to serve as baseline of the plankton C, N, and P stoichiometry for the calibration of biogeochemical and ecological models in support to future findings related to the local and regional phenomena of climatic change. Cabo Frio Bay is a small semienclosed system set adjacent to a region subject to sporadic coastal upwelling. Zooplankton exhibited average annual C, N, and P contents of 11.6 ± 6.9 %, 2.8 ± 1.8 %, and 0.18 ± 0.08 %, and phytoplankton (>20 μm) 6.8 ± 6.0 %, 1.6 ± 1.5 %, and 0.09 ± 0.08 %, respectively. The C/N/P ratios correspond to the lowest already found to date for a marine environment. The low C contents must have been brought about by a predominance of gelatinous zooplankton, like Doliolids/ Salps and also Pteropods. Average annual nutrient concentrations in the water were 0.21 ± 0.1 μM for phosphate, 0.08 ± 0.1 μM for nitrite, 0.74 ± 1.6 μM for nitrate, and 1.27 ± 1.1 μM for ammonium. N/P ratios were around 8:1 during the first study period and 12:1 during the second. The plankton C/N/P and N/P nutrient ratios and elemental concentrations suggest that the system was oligotrophic and nitrogen limited. The sporadic intrusions of upwelling waters during the first study period had no marked effect upon the systems metabolism, likely due to dilution effects and the short residence times of water of the bay.

  2. Trophic structure of mesopelagic fishes in the Gulf of Mexico revealed by gut content and stable isotope analyses

    Science.gov (United States)

    McClain-Counts, Jennifer P.; Demopoulos, Amanda W.J.; Ross, Steve W.

    2017-01-01

    Mesopelagic fishes represent an important component of the marine food web due to their global distributions, high abundances and ability to transport organic material throughout a large part of the water column. This study combined stable isotope (SIAs) and gut content analyses (GCAs) to characterize the trophic structure of mesopelagic fishes in the North-Central Gulf of Mexico. Additionally, this study examined whether mesopelagic fishes utilized chemosynthetic energy from cold seeps. Specimens were collected (9–25 August 2007) over three deep (>1,000 m) cold seeps at discrete depths (surface to 1,503 m) over the diurnal cycle. GCA classified 31 species (five families) of mesopelagic fishes into five feeding guilds: piscivores, large crustacean consumers, copepod consumers, generalists and mixed zooplanktivores. However, these guilds were less clearly defined based on stable isotope mixing model (MixSIAR) results, suggesting diets may be more mixed over longer time periods (weeks–months) and across co-occurring species. Copepods were likely important for the majority of mesopelagic fishes, consistent with GCA (this study) and previous literature. MixSIAR results also identified non-crustacean prey items, including salps and pteropods, as potentially important prey items for mesopelagic fishes, including those fishes not analysed in GCA (Sternoptyx spp. and Melamphaidae). Salps and other soft-bodied species are often missed in GCAs. Mesopelagic fishes had δ13C results consistent with particulate organic matter serving as the baseline organic carbon source, fueling up to three trophic levels. Fishes that undergo diel vertical migration were depleted in 15N relative to weak migrators, consistent with depth-specific isotope trends in sources and consumers, and assimilation of 15N-depleted organic matter in surface waters. Linear correlations between fish size and δ15N values suggested ontogenetic changes in fish diets for several species. While there was

  3. In hot water: the future of Australia's coastal and marine ecosystems

    International Nuclear Information System (INIS)

    Richardson, Anthony J; Poloczanska, Elvira

    2007-01-01

    Full text: Full text: Marine ecosystems are extremely important economically and ecologically to Australia in terms of tourism, coastal defence, resources, and ecosystem services such as nutrient cycling and waste disposal. Australia is also a globally important repository of biodiversity. Here we describe the observed and potential future impacts of climate change on Australia's marine diversity. Climate simulations project oceanic warming, an increase in stratification, a strengthening of the Eastern Australian Current, increased ocean acidification, a rise in sea level, and altered storm and rainfall regimes, which taken collectively will fundamentally change marine ecosystems. There has already been widespread bleaching of tropical corals, poleward shifts of temperate fish and plankton populations, and a decline in cold-water giant kelp off Tasmania. Future changes are likely to be even more dramatic and have considerable economic and ecological consequences, especially in 'hot spots' of climate change such as theTasman Sea and the Great Barrier Reef area. Corals are likely to bleach more frequently and decline in abundance in response to both warming and ocean acidification. Planktonic animals with calcium carbonate shells, such as winged pteropod snails and coccolithophorid phytoplankton, are likely to decline as increased ocean acidification impairs their ability to maintain carbonate body structures. The projected high warming off south-east Australia is of particular concern. Marine ecosystems in this region are already stressed by high metal concentrations, sewage pollution, and overfishing, and climate models project that this region will warm more than anywhere else in the Southern Hemisphere this century because of enhanced southerly penetration of the East Australian Current. Venomous jellyfish and harmful algal blooms, which are major threats to human health, will potentially extend further south and occur more frequently. Temperate species

  4. "Recent" macrofossil remains from the Lomonosov Ridge, central Arctic Ocean

    Science.gov (United States)

    Le Duc, Cynthia; de Vernal, Anne; Archambault, Philippe; Brice, Camille; Roberge, Philippe

    2016-04-01

    The examination of surface sediment samples collected from 17 sites along the Lomonosov Ridge at water depths ranging from 737 to 3339 meters during Polarstern Expedition PS87 in 2014 (Stein, 2015), indicates a rich biogenic content almost exclusively dominated by calcareous remains. Amongst biogenic remains, microfossils (planktic and benthic foraminifers, pteropods, ostracods, etc.) dominate but millimetric to centrimetric macrofossils occurred frequently at the surface of the sediment. The macrofossil remains consist of a large variety of taxa, including gastropods, bivalvia, polychaete tubes, scaphopods, echinoderm plates and spines, and fish otoliths. Among the Bivalvia, the most abundant taxa are Portlandia arctica, Hyalopecten frigidus, Cuspidaria glacilis, Policordia densicostata, Bathyarca spp., and Yoldiella spp. Whereas a few specimens are well preserved and apparently pristine, most mollusk shells displayed extensive alteration features. Moreover, most shells were covered by millimeter scale tubes of the serpulid polychaete Spirorbis sp. suggesting transport from low intertidal or subtidal zone. Both the ecological affinity and known geographic distribution of identified bivalvia as named above support the hypothesis of transportation rather than local development. In addition to mollusk shells, more than a hundred fish otoliths were recovered in surface sediments. The otoliths mostly belong to the Gadidae family. Most of them are well preserved and without serpulid tubes attached to their surface, suggesting a local/regional origin, unlike the shell remains. Although recovered at the surface, the macrofaunal assemblages of the Lomonosov Ridge do not necessarily represent the "modern" environments as they may result from reworking and because their occurrence at the surface of the sediment may also be due to winnowing of finer particles. Although the shells were not dated, we suspect that their actual ages may range from modern to several thousands of

  5. Bathypelagic particle flux signatures from a suboxic eddy in the oligotrophic tropical North Atlantic: production, sedimentation and preservation

    Science.gov (United States)

    Fischer, G.; Karstensen, J.; Romero, O.; Baumann, K.-H.; Donner, B.; Hefter, J.; Mollenhauer, G.; Iversen, M.; Fiedler, B.; Monteiro, I.; Körtzinger, A.

    2015-11-01

    alteration of the eddy since its formation. This confirms the assumption that suboxia developed within the eddy en-route. Screening of the biomarker fractions for the occurrence of ladderane fatty acids that could indicate the presence of anammox (anaeobic ammonia oxidation) bacteria, and isorenieratene derivatives, indicative for the presence of green sulfur bacteria and, thus for photic zone suboxia/anoxia was negative. This could indicate that suboxic conditions in the eddy had recently developed and the respective bacterial stocks had not yet reached detection thresholds. Another explanation is that the fast sinking organic-rich particles produced in the surface layer did not interact with bacteria from the suboxic zone below. Carbonate fluxes dropped considerably in February 2010, mainly due to reduced contribution of shallow dwelling planktonic foraminifera and pteropods. The deep-dwelling foraminifera Globorotalia menardii, however, showed a major flux peak in February 2010, most probably due to the suboxia/hypoxia. The low oxygen conditions forced at least some zooplankton to stop diel vertical migration. Reduced "flux feeding" by zooplankton in the epipelagic could have contributed to the enhanced fluxes of organic materials to the bathypelagic traps during the eddy passage.

  6. Biological oceanography of the red oceanic system

    Science.gov (United States)

    Theil, Hjalmar; Weikert, Horst

    1. In 1977, 1979 and 1980-81, investigations were carried out which aimed at evaluating the potential risks from mining metalliferous muds precipating in the Atlantis II Deep of the central Red Sea. This environmental research was initiated by the Saudi Sudanese Red Sea Joint Commission in order to avoid any danger for the Red Sea ecosystem. The broad environmental research programme coherent studies in physical, chemical, biological, and geological oceanography as well as toxicological investigations in the oceanic and in reef zones. We summarise the results from our biological fiels studies in the open sea. 2. The biological investigations were concentrated on the area of the Atlantis II Deep. Benthos was sampled between 700-2000m. For comparison a few samples were also taken further north in the central Red Sea, and to east and west along the flanking deep terraces (500-1000m). Plankton studies covered the total water column above the Deep, and were extended along the axial through to north and south. 3. Benthos sampling was carried out using a heavy closing trawl, a large box grab (box size 50 × 50 cm), Van Veen grabs and traps; photographic surveys were made a phototrap and a photosled. Community respiration was measured with a ship-board method using grab subsamples. Nutrient concentrations, seston and phytoplankton standing stocks as well as in situ primary production were determined from hydrocast samples. Data on zooplankton and micronekton composition and standing stock were obtained from samples collected using different multiple opening-and-closing nets equipped with 100 μm, 300 μm, and 1000 μm mesh sizes. Daily and ontogenetical vertical migration patterns were studied by comparisons of data from midday and midnight tows. 4. Throughout the whole area the sediment is a pteropod ooze containing low contentrations of organic matter; measured organic carbon and nitrogen contents were 0.5 and 0.05% respectively, and chloroplastic pigment equivalents