PT-Symmetric Waveguides and the Lack of Variational Techniques
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David
2012-01-01
Roč. 73, č. 1 (2012), s. 1-2 ISSN 0378-620X Institutional support: RVO:61389005 Keywords : Robin Laplacian * non-self-adjoint boundary conditions * complex symmetric operator * PT-symmetry * waveguides * discrete and essential spectra Subject RIV: BA - General Mathematics Impact factor: 0.713, year: 2012
Wu, Jiaye; Yang, Xiangbo
2017-10-30
In this paper, we construct a 1D PT-symmetric Thue-Morse aperiodic optical waveguide network (PTSTMAOWN) and mainly investigate the ultrastrong extraordinary transmission and reflection. We propose an approach to study the photonic modes and solve the problem of calculating photonic modes distributions in aperiodic networks due to the lack of dispersion functions and find that in a PTSTMAOWN there exist more photonic modes and more spontaneous PT-symmetric breaking points, which are quite different from other reported PT-symmetric optical systems. Additionally, we develop a method to sort spontaneous PT-symmetric breaking point zones to seek the strongest extraordinary point and obtain that at this point the strongest extraordinary transmission and reflection arrive at 2.96316 × 10 5 and 1.32761 × 10 5 , respectively, due to the PT-symmetric coupling resonance and the special symmetry pattern of TM networks. These enormous gains are several orders of magnitude larger than the previous results. This optical system may possess potential in designing optical amplifier, optical logic elements in photon computers and ultrasensitive optical switches with ultrahigh monochromatity.
Revisiting the Optical PT-Symmetric Dimer
Directory of Open Access Journals (Sweden)
José Delfino Huerta Morales
2016-08-01
Full Text Available Optics has proved a fertile ground for the experimental simulation of quantum mechanics. Most recently, optical realizations of PT -symmetric quantum mechanics have been shown, both theoretically and experimentally, opening the door to international efforts aiming at the design of practical optical devices exploiting this symmetry. Here, we focus on the optical PT -symmetric dimer, a two-waveguide coupler where the materials show symmetric effective gain and loss, and provide a review of the linear and nonlinear optical realizations from a symmetry-based point of view. We go beyond a simple review of the literature and show that the dimer is just the smallest of a class of planar N-waveguide couplers that are the optical realization of the Lorentz group in 2 + 1 dimensions. Furthermore, we provide a formulation to describe light propagation through waveguide couplers described by non-Hermitian mode coupling matrices based on a non-Hermitian generalization of the Ehrenfest theorem.
PT symmetric Aubry–Andre model
International Nuclear Information System (INIS)
Yuce, C.
2014-01-01
PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists
PT symmetric Aubry–Andre model
Energy Technology Data Exchange (ETDEWEB)
Yuce, C., E-mail: cyuce@anadolu.edu.tr
2014-06-13
PT symmetric Aubry–Andre model describes an array of N coupled optical waveguides with position-dependent gain and loss. We show that the reality of the spectrum depends sensitively on the degree of quasi-periodicity for small number of lattice sites. We obtain the Hofstadter butterfly spectrum and discuss the existence of the phase transition from extended to localized states. We show that rapidly changing periodical gain/loss materials almost conserve the total intensity. - Highlights: • We show that PT symmetric Aubry–Andre model may have real spectrum. • We show that the reality of the spectrum depends sensitively on the degree of disorder. • We obtain the Hofstadter butterfly spectrum for PT symmetric Aubry–Andre model. • We discuss that phase transition from extended to localized states exists.
Nonlinear PT-symmetric plaquettes
International Nuclear Information System (INIS)
Li Kai; Kevrekidis, P G; Malomed, Boris A; Günther, Uwe
2012-01-01
We introduce four basic two-dimensional (2D) plaquette configurations with onsite cubic nonlinearities, which may be used as building blocks for 2D PT-symmetric lattices. For each configuration, we develop a dynamical model and examine its PTsymmetry. The corresponding nonlinear modes are analyzed starting from the Hamiltonian limit, with zero value of the gain–loss coefficient, γ. Once the relevant waveforms have been identified (chiefly, in an analytical form), their stability is examined by means of linearization in the vicinity of stationary points. This reveals diverse and, occasionally, fairly complex bifurcations. The evolution of unstable modes is explored by means of direct simulations. In particular, stable localized modes are found in these systems, although the majority of identified solutions are unstable. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Asymptotic properties of solvable PT-symmetric potentials
International Nuclear Information System (INIS)
Levai, G.
2010-01-01
Compete text of publication follows. The introduction of PT-symmetric quantum mechanics generated renewed interest in non-hermitian quantum mechanical systems in the past decade. PT symmetry means the invariance of a Hamiltonian under the simultaneous P space and T time reflection, the latter understood as complex conjugation. Considering the Schroedinger equation in one dimension, this corresponds to a potential with even real and odd imaginary components. This implies a delicate balance of emissive and absorptive regions that eventually manifests itself in properties that typically characterize real potentials, i.e. hermitian systems. These include partly or fully real energy spectrum and conserved (pseudo-)norm. A particularly notable feature of these systems is the spontaneous breakdown of PT symmetry, which typically occurs when the magnitude of the imaginary potential component exceeds a certain limit. At this point the real energy eigenvalues begin to merge pairwise and re-emerge as complex conjugate pairs. Another unusual property of PT-symmetric potentials is that they can, or sometimes have to be defined off the real x axis on trajectories that are symmetric with respect to the imaginary x axis. After more than a decade of theoretical investigations a remarkable recent development was the experimental verification of the existence of PT-symmetric systems in nature and the occurrence of spontaneous PT symmetry breaking in them. The experimental setup was a waveguide containing regions where loss and gain of flux occurred in a set out prescribed by PT symmetry. These experimental developments require the study of PT -symmetric potentials with various asymptotics, in which, furthermore, the complex potential component is finite in its range and/or its magnitude. Having in mind that PT symmetry allows for a wider variety of asymptotic properties than hermeticity, we studied three exactly solvable PT-symmetric potentials and compared their scattering and bound
Remarks on the PT-pseudo-norm in PT-symmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Duc Tai Trinh [Department of Mathematics, Teacher Training College of Dalat, 29 Yersin, Dalat (Viet Nam)]|[Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34014 (Italy)
2005-04-22
This paper presents an underlying analytical relationship between the PT-pseudo-norm associated with the PT-symmetric Hamiltonian H = p{sup 2} + V(q) and the Stokes multiplier of the differential equation corresponding to this Hamiltonian. We show that the sign alternation of the PT-pseudo-norm, which has been observed as a generic feature of the PT-inner product, is essentially controlled by the derivative of a Stokes multiplier with respect to the eigenparameter.
Solitons in PT-symmetric potential with competing nonlinearity
International Nuclear Information System (INIS)
Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine
2012-01-01
We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.
Time-invariant PT product and phase locking in PT -symmetric lattice models
Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.
2018-01-01
Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.
Spectra of PT -symmetric Hamiltonians on tobogganic contours
Indian Academy of Sciences (India)
The term PT -symmetric quantum mechanics, although defined to be of a much broader use, was coined in tight connection with C. Bender's analysis of one- ... on the other hand, the other members of the family were strange Hamiltonians with imaginary potentials which do not appear physical at all. The aim of the.
Is PT -symmetric quantum theory false as a fundamental theory?
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2016-01-01
Roč. 56, č. 3 (2016), s. 254-257 ISSN 1210-2709 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum mechanics * PT-symmetric representations of observables * masurement outcomes Subject RIV: BE - Theoretical Physics
Random matrix ensembles for PT-symmetric systems
International Nuclear Information System (INIS)
Graefe, Eva-Maria; Mudute-Ndumbe, Steve; Taylor, Matthew
2015-01-01
Recently much effort has been made towards the introduction of non-Hermitian random matrix models respecting PT-symmetry. Here we show that there is a one-to-one correspondence between complex PT-symmetric matrices and split-complex and split-quaternionic versions of Hermitian matrices. We introduce two new random matrix ensembles of (a) Gaussian split-complex Hermitian; and (b) Gaussian split-quaternionic Hermitian matrices, of arbitrary sizes. We conjecture that these ensembles represent universality classes for PT-symmetric matrices. For the case of 2 × 2 matrices we derive analytic expressions for the joint probability distributions of the eigenvalues, the one-level densities and the level spacings in the case of real eigenvalues. (fast track communication)
EXCEPTIONAL POINTS IN OPEN AND PT-SYMMETRIC SYSTEMS
Directory of Open Access Journals (Sweden)
Hichem Eleuch
2014-04-01
Full Text Available Exceptional points (EPs determine the dynamics of open quantum systems and cause also PT symmetry breaking in PT symmetric systems. From a mathematical point of view, this is caused by the fact that the phases of the wavefunctions (eigenfunctions of a non-Hermitian Hamiltonian relative to one another are not rigid when an EP is approached. The system is therefore able to align with the environment to which it is coupled and, consequently, rigorous changes of the system properties may occur. We compare analytically as well as numerically the eigenvalues and eigenfunctions of a 2 × 2 matrix that is characteristic either of open quantum systems at high level density or of PT symmetric optical lattices. In both cases, the results show clearly the influence of the environment on the system in the neighborhood of EPs. Although the systems are very different from one another, the eigenvalues and eigenfunctions indicate the same characteristic features.
PT-symmetric planar devices for field transformation and imaging
International Nuclear Information System (INIS)
Valagiannopoulos, C A; Monticone, F; Alù, A
2016-01-01
The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging. (paper)
Admissible perturbations and false instabilities in PT -symmetric quantum systems
Znojil, Miloslav
2018-03-01
One of the most characteristic mathematical features of the PT -symmetric quantum mechanics is the explicit Hamiltonian dependence of its physical Hilbert space of states H =H (H ) . Some of the most important physical consequences are discussed, with emphasis on the dynamical regime in which the system is close to phase transition. Consistent perturbation treatment of such a regime is proposed. An illustrative application of the innovated perturbation theory to a non-Hermitian but PT -symmetric user-friendly family of J -parametric "discrete anharmonic" quantum Hamiltonians H =H (λ ⃗) is provided. The models are shown to admit the standard probabilistic interpretation if and only if the parameters remain compatible with the reality of the spectrum, λ ⃗∈D(physical ) . In contradiction to conventional wisdom, the systems are then shown to be stable with respect to admissible perturbations, inside the domain D(physical ), even in the immediate vicinity of the phase-transition boundaries ∂ D(physical ) .
PT-symmetric ladders with a scattering core
Energy Technology Data Exchange (ETDEWEB)
D' Ambroise, J. [Department of Mathematics, Amherst College, Amherst, MA 01002-5000 (United States); Lepri, S. [CNR – Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305 (United States)
2014-08-01
We consider a PT-symmetric chain (ladder-shaped) system governed by the discrete nonlinear Schrödinger equation where the cubic nonlinearity is carried solely by two central “rungs” of the ladder. Two branches of scattering solutions for incident plane waves are found. We systematically construct these solutions, analyze their stability, and discuss non-reciprocity of the transmission associated with them. To relate the results to finite-size wavepacket dynamics, we also perform direct simulations of the evolution of the wavepackets, which confirm that the transmission is indeed asymmetric in this nonlinear system with the mutually balanced gain and loss. - Highlights: • We model a PT-symmetric ladder system with cubic nonlinearity on two central rungs. • We examine non-reciprocity and stability of incident plane waves. • Simulations of wavepackets confirm our results.
Two-parametric PT-symmetric quartic family
International Nuclear Information System (INIS)
Eremenko, Alexandre; Gabrielov, Andrei
2012-01-01
We describe a parametrization of the real spectral locus of the two-parametric family of PT-symmetric quartic oscillators. For this family, we find a parameter region where all eigenvalues are real, extending the results of Dorey et al (2007 J. Phys. A: Math Theor. 40 R205–83) and Shin (2005 J. Phys. A: Math. Gen. 38 6147–66; 2002 Commun. Math. Phys. 229 543–64). (paper)
WKB analysis of PT-symmetric Sturm–Liouville problems
International Nuclear Information System (INIS)
Bender, Carl M; Jones, Hugh F
2012-01-01
Most studies of PT-symmetric quantum-mechanical Hamiltonians have considered the Schrödinger eigenvalue problem on an infinite domain. This paper examines the consequences of imposing the boundary conditions on a finite domain. As is the case with regular Hermitian Sturm–Liouville problems, the eigenvalues of the PT-symmetric Sturm–Liouville problem grow like n 2 for large n. However, the novelty is that a PT eigenvalue problem on a finite domain typically exhibits a sequence of critical points at which pairs of eigenvalues cease to be real and become complex conjugates of one another. For the potentials considered here this sequence of critical points is associated with a turning point on the imaginary axis in the complex plane. WKB analysis is used to calculate the asymptotic behaviours of the real eigenvalues and the locations of the critical points. The method turns out to be surprisingly accurate even at low energies. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Calculating the C operator in PT-symmetric quantum mechanics
International Nuclear Information System (INIS)
Bender, C.M.
2004-01-01
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT-symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition it is cumbersome to calculate C in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This new method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method can be used to calculate the C operator in quantum field theory. The C operator is a new time-independent observable in PT-symmetric quantum field theory. (author)
Krein signature for instability of PT-symmetric states
Chernyavsky, Alexander; Pelinovsky, Dmitry E.
2018-05-01
Krein quantity is introduced for isolated neutrally stable eigenvalues associated with the stationary states in the PT-symmetric nonlinear Schrödinger equation. Krein quantity is real and nonzero for simple eigenvalues but it vanishes if two simple eigenvalues coalesce into a defective eigenvalue. A necessary condition for bifurcation of unstable eigenvalues from the defective eigenvalue is proved. This condition requires the two simple eigenvalues before the coalescence point to have opposite Krein signatures. The theory is illustrated with several numerical examples motivated by recent publications in physics literature.
Bright Solitons in a PT-Symmetric Chain of Dimers
Directory of Open Access Journals (Sweden)
Omar B. Kirikchi
2016-01-01
Full Text Available We study the existence and stability of fundamental bright discrete solitons in a parity-time- (PT- symmetric coupler composed by a chain of dimers that is modelled by linearly coupled discrete nonlinear Schrödinger equations with gain and loss terms. We use a perturbation theory for small coupling between the lattices to perform the analysis, which is then confirmed by numerical calculations. Such analysis is based on the concept of the so-called anticontinuum limit approach. We consider the fundamental onsite and intersite bright solitons. Each solution has symmetric and antisymmetric configurations between the arms. The stability of the solutions is then determined by solving the corresponding eigenvalue problem. We obtain that both symmetric and antisymmetric onsite mode can be stable for small coupling, in contrast to the reported continuum limit where the antisymmetric solutions are always unstable. The instability is either due to the internal modes crossing the origin or the appearance of a quartet of complex eigenvalues. In general, the gain-loss term can be considered parasitic as it reduces the stability region of the onsite solitons. Additionally, we analyse the dynamic behaviour of the onsite and intersite solitons when unstable, where typically it is either in the form of travelling solitons or soliton blow-ups.
Symmetrical waveguide devices fabricated by direct UV writing
DEFF Research Database (Denmark)
Færch, Kjartan Ullitz; Svalgaard, Mikael
2002-01-01
Power splitters and directional couplers fabricated by direct UV writing in index matched silica-on-silicon samples can suffer from an asymmetrical device performance, even though the UV writing is carried out in a symmetrical fashion. This effect originates from a reduced photosensitivity...
Tailoring Spectral Properties of Binary PT-Symmetric Gratings by Duty-Cycle Methods
DEFF Research Database (Denmark)
Lupu, Anatole T.; Benisty, Henri; Lavrinenko, Andrei
2016-01-01
We explore the frequency selective functionalities of a nonuniform PT-symmetric Bragg grating with modulated complex index profile. We start by assessing the possibility to achieve an efficient apodization of the PT-symmetric Bragg grating spectral response by using direct adaptations of the conv...
Particle in a box in PT-symmetric quantum mechanics and an electromagnetic analog
Dasarathy, Anirudh; Isaacson, Joshua P.; Jones-Smith, Katherine; Tabachnik, Jason; Mathur, Harsh
2013-06-01
In PT-symmetric quantum mechanics a fundamental principle of quantum mechanics, that the Hamiltonian must be Hermitian, is replaced by another set of requirements, including notably symmetry under PT, where P denotes parity and T denotes time reversal. Here we study the role of boundary conditions in PT-symmetric quantum mechanics by constructing a simple model that is the PT-symmetric analog of a particle in a box. The model has the usual particle-in-a-box Hamiltonian but boundary conditions that respect PT symmetry rather than Hermiticity. We find that for a broad class of PT-symmetric boundary conditions the model respects the condition of unbroken PT symmetry, namely, that the Hamiltonian and the symmetry operator PT have simultaneous eigenfunctions, implying that the energy eigenvalues are real. We also find that the Hamiltonian is self-adjoint under the PT-symmetric inner product. Thus we obtain a simple soluble model that fulfills all the requirements of PT-symmetric quantum mechanics. In the second part of this paper we formulate a variational principle for PT-symmetric quantum mechanics that is the analog of the textbook Rayleigh-Ritz principle. Finally we consider electromagnetic analogs of the PT-symmetric particle in a box. We show that the isolated particle in a box may be realized as a Fabry-Perot cavity between an absorbing medium and its conjugate gain medium. Coupling the cavity to an external continuum of incoming and outgoing states turns the energy levels of the box into sharp resonances. Remarkably we find that the resonances have a Breit-Wigner line shape in transmission and a Fano line shape in reflection; by contrast, in the corresponding Hermitian case the line shapes always have a Breit-Wigner form in both transmission and reflection.
Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model
Yan, Zhenya
2012-11-01
The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.
Stationary states of a PT symmetric two-mode Bose–Einstein condensate
International Nuclear Information System (INIS)
Graefe, Eva-Maria
2012-01-01
The understanding of nonlinear PT symmetric quantum systems, arising for example in the theory of Bose–Einstein condensates in PT symmetric potentials, is widely based on numerical investigations, and little is known about generic features induced by the interplay of PT symmetry and nonlinearity. To gain deeper insights it is important to have analytically solvable toy models at hand. In the present paper the stationary states of a simple toy model of a PT symmetric system previously introduced in [1, 2] are investigated. The model can be interpreted as a simple description of a Bose–Einstein condensate in a PT symmetric double well trap in a two-mode approximation. The eigenvalues and eigenstates of the system can be explicitly calculated in a straightforward manner; the resulting structures resemble those that have recently been found numerically for a more realistic PT symmetric double delta potential. In addition, a continuation of the system is introduced that allows an interpretation in terms of a simple linear matrix model. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Zhang, Yi-long; Liu, Le; Guo, Jun; Zhang, Peng-fei; Guo, Ji-hua; Ma, Hui; He, Yong-hong
2015-02-01
Surface plasmon resonance (SPR) sensors with spectral interrogation can adopt fiber to transmit light signals, thus leaving the sensing part separated, which is very convenient for miniaturization, remote-sensing and on-site analysis. Symmetrical optical waveguide (SOW) SPR has the same refractive index of the-two buffer media layers adjacent to the metal film, resulting in longer propagation distance, deeper penetration depth and better performance compared to conventional SPR In the present paper, we developed a symmetrical optical, waveguide (SOW) SPR sensor with wavelength interrogation. In the system, MgF2-Au-MgF2 film was used as SOW module for glucose sensing, and a fiber based light source and detection was used in the spectral interrogation. In the experiment, a refractive index resolution of 2.8 x 10(-7) RIU in fluid protocol was acquired. This technique provides advantages of high resolution and could have potential use in compact design, on-site analysis and remote sensing.
Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour
International Nuclear Information System (INIS)
Mostafazadeh, Ali
2005-01-01
We describe a method that allows for a practical application of the theory of pseudo-Hermitian operators to PT-symmetric systems defined on a complex contour. We apply this method to study the Hamiltonians H = p 2 + x 2 (ix) ν with ν ε (-2, ∞) that are defined along the corresponding anti-Stokes lines. In particular, we reveal the intrinsic non-Hermiticity of H for the cases that ν is an even integer, so that H p 2 ± x 2+ν , and give a proof of the discreteness of the spectrum of H for all ν ε (-2, ∞). Furthermore, we study the consequences of defining a square-well Hamiltonian on a wedge-shaped complex contour. This yields a PT-symmetric system with a finite number of real eigenvalues. We present a comprehensive analysis of this system within the framework of pseudo-Hermitian quantum mechanics. We also outline a direct pseudo-Hermitian treatment of PT-symmetric systems defined on a complex contour which clarifies the underlying mathematical structure of the formulation of PT-symmetric quantum mechanics based on the charge-conjugation operator. Our results provide conclusive evidence that pseudo-Hermitian quantum mechanics provides a complete description of general PT-symmetric systems regardless of whether they are defined along the real line or a complex contour
Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems
Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain
2018-01-01
Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.
Compactons in PT-symmetric generalized Korteweg–de Vries ...
Indian Academy of Sciences (India)
... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Pramana – Journal of Physics; Volume 73; Issue 2. Compactons in P T -symmetric generalized Korteweg–de Vries equations. Carl M Bender Fred Cooper Avinash Khare Bogdan Mihaila Avadh Saxena. Volume 73 Issue 2 August 2009 ...
Analytical Study on Propagation Dynamics of Optical Beam in Parity-Time Symmetric Optical Couplers
International Nuclear Information System (INIS)
Zhou Zheng; Zhang Li-Juan; Zhu Bo
2015-01-01
We present exact analytical solutions to parity-time (PT) symmetric optical system describing light transport in PT-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken PT-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken PT-symmetric phase. These analytical results agree with the recent experimental observation reported by Rüter et al. [Nat. Phys. 6 (2010) 192]. Besides, we present a scheme for manipulating PT symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated PT-symmetric system by tuning the modulation amplitude and frequency. (paper)
PT -symmetric gain and loss in a rotating Bose-Einstein condensate
Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter
2018-03-01
PT -symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT -symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or enter the condensate through its borders creating the required net current.
Optical force rectifiers based on PT-symmetric metasurfaces
Alaee, Rasoul; Gurlek, Burak; Christensen, Johan; Kadic, Muamer
2018-05-01
We introduce here the concept of optical force rectifier based on parity-time symmetric metasurfaces. Directly linked to the properties of non-Hermitian systems engineered by balanced loss and gain constituents, we show that light can exert asymmetric pulling or pushing forces on metasurfaces depending on the direction of the impinging light. This generates a complete force rectification in the vicinity of the exceptional point. Our findings have the potential to spark the design of applications in optical manipulation where the forces, strictly speaking, act unidirectionally.
Overcritical PT-symmetric square well potential in the Dirac equation
Cannata, Francesco; Ventura, Alberto
2007-01-01
We study scattering properties of a PT-symmetric square well potential with real depth larger than the threshold of particle-antiparticle pair production as the time component of a vector potential in the (1+1)-dimensional Dirac equation.
2 × 2 random matrix ensembles with reduced symmetry: from Hermitian to PT -symmetric matrices
International Nuclear Information System (INIS)
Gong Jiangbin; Wang Qinghai
2012-01-01
A possibly fruitful extension of conventional random matrix ensembles is proposed by imposing symmetry constraints on conventional Hermitian matrices or parity–time (PT)-symmetric matrices. To illustrate the main idea, we first study 2 × 2 complex Hermitian matrix ensembles with O(2)-invariant constraints, yielding novel level-spacing statistics such as singular distributions, the half-Gaussian distribution, distributions interpolating between the GOE (Gaussian orthogonal ensemble) distribution and half-Gaussian distributions, as well as the gapped-GOE distribution. Such a symmetry-reduction strategy is then used to explore 2 × 2 PT-symmetric matrix ensembles with real eigenvalues. In particular, PT-symmetric random matrix ensembles with U(2) invariance can be constructed, with the conventional complex Hermitian random matrix ensemble being a special case. In two examples of PT-symmetric random matrix ensembles, the level-spacing distributions are found to be the standard GUE (Gaussian unitary ensemble) statistics or the ‘truncated-GUE’ statistics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)
Astrophysical evidence for the non-Hermitian but PT-symmetric Hamiltonian of conformal gravity
International Nuclear Information System (INIS)
Mannheim, P.D.
2013-01-01
In this review we discuss the connection between two seemingly disparate topics, macroscopic gravity on astrophysical scales and Hamiltonians that are not Hermitian but PT symmetric on microscopic ones. In particular we show that the quantum-mechanical unitarity problem of the fourth-order derivative conformal gravity theory is resolved by recognizing that the scalar product appropriate to the theory is not the Dirac norm associated with a Hermitian Hamiltonian but is instead the norm associated with a non-Hermitian but PT-symmetric Hamiltonian. Moreover, the fourth-order theory Hamiltonian is not only not Hermitian, it is not even diagonalizable, being of Jordan-block form. With PT symmetry we establish that conformal gravity is consistent at the quantum-mechanical level. In consequence, we can apply the theory to data, to find that the theory is capable of naturally accounting for the systematics of the rotation curves of a large and varied sample of 138 spiral galaxies without any need for dark matter. The success of the fits provides evidence for the relevance of non-diagonalizable but PT-symmetric Hamiltonians to physics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
From particle in a box to PT -symmetric systems via isospectral deformation
Cherian, Philip; Abhinav, Kumar; Panigrahi, P. K.
2011-01-01
A family of PT -symmetric complex potentials is obtained, which is isospectral to free particle in an infinite complex box in one dimension (1-D). These are generalizations to the cosec2 (x) potential, isospectral to particle in a real infinite box. In the complex plane, the infinite box is extended parallel to the real axis having a real width, which is found to be an integral multiple of a constant quantum factor, arising due to boundary conditions necessary for maintaining the PT -symmetry...
On the pseudo-norm in some PT-symmetric potentials
International Nuclear Information System (INIS)
Levai, G.
2005-01-01
Complete text of publication follows. PT-symmetric quantum mechanical systems possess non-hermitian Hamiltonian, still they have some characteristics similar to hermitian problems. The most notable of these is their discrete energy spectrum, which can be partly or completely real. These systems are invariant under the simultaneous action of the P space and T time inversion operations. Perhaps the simplest PT-symmetric Hamiltonian contains a one-dimensional Schroedinger operator with a complex potential satisfying the V*(-x) = V (x) relation. Another typical feature PT-symmetric systems have in common with hermitian problems is that their basis states form an orthogonal set provided that the inner product is redefined as (ψ φ)PT ≡ (ψ Pφ). However, the norm defined by this inner product, the pseudo-norm turned out to possess indefinite sign, and this raised the question of the probabilistic interpretation of PT-symmetric systems. This problem was later put into a more general context when it was found that PT symmetry is a special case of pseudo-hermiticity, and this explains most of the peculiar features of PT-symmetric systems. There have been several attempts to link PT-symmetric, and in general, pseudo- hermitian systems with equivalent hermitian ones, and the sign of the pseudo-norm was found to play an important role in this respect. It is thus essential to evaluate the pseudo- norm for various potentials, especially considering the fact that there are some inconsistencies in the available results. Numerical studies indicated that the sign of the pseudo-norm typically alternates according to the n principal quantum number as (-1) n , and this was later proven for a class of potentials that are written in a polynomial form of ix. However, some potentials of other type did not fit into this line: this was the case for the Scarf II potential, the most well-known exactly solvable PT-symmetric potential. In contrast with the other examples, this potential is
Confluent Crum-Darboux transformations in Dirac Hamiltonians with PT-symmetric Bragg gratings
Czech Academy of Sciences Publication Activity Database
Correa, F.; Jakubský, Vít
2017-01-01
Roč. 95, č. 3 (2017), č. článku 033807. ISSN 2469-9926 R&D Projects: GA ČR(CZ) GJ15-07674Y Institutional support: RVO:61389005 Keywords : PT-symmetric * quantum mechanics * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2017-01-01
Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
Various scattering properties of a new PT-symmetric non-Hermitian potential
Energy Technology Data Exchange (ETDEWEB)
Ghatak, Ananya, E-mail: gananya04@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India); Mandal, Raka Dona Ray, E-mail: rakad.ray@gmail.com [Department of Physics, Rajghat Besant School, Varanasi-221001 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi-221005 (India)
2013-09-15
We complexify a 1-d potential V(x)=V{sub 0}cosh{sup 2}μ(tanh[(x−μd)/d]+tanh(μ)){sup 2} which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system.
Various scattering properties of a new PT-symmetric non-Hermitian potential
International Nuclear Information System (INIS)
Ghatak, Ananya; Mandal, Raka Dona Ray; Mandal, Bhabani Prasad
2013-01-01
We complexify a 1-d potential V(x)=V 0 cosh 2 μ(tanh[(x−μd)/d]+tanh(μ)) 2 which exhibits bound, reflecting and free states to study various properties of a non-Hermitian system. This potential turns out a PT-symmetric non-Hermitian potential when one of the parameters (μ,d) becomes imaginary. For the case of μ→iμ, we have an entire real bound state spectrum. Explicit scattering states are constructed to show reciprocity at certain discrete values of energy even though the potential is not parity symmetric. Coexistence of deep energy minima of transmissivity with the multiple spectral singularities (MSS) is observed. We further show that this potential becomes invisible from the left (or right) at certain discrete energies. The penetrating states in the other case (d→id) are always reciprocal even though it is PT-invariant and no spectral singularity (SS) is present in this case. The presence of MSS and reflectionlessness is also discussed for the free states in the later case. -- Highlights: •Existence of multiple spectral singularities (MSS) in PT-symmetric non-Hermitian system is shown. •Reciprocity is restored at discrete positive energies even for parity non-invariant complex system. •Co-existence of MSS with deep energy minima of transitivity is obtained. •Possibilities of both unidirectional and bidirectional invisibility are explored for a non-Hermitian system. •Penetrating states are shown to be reciprocal for all energies for PT-symmetric system
Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics
International Nuclear Information System (INIS)
Mostafazadeh, Ali; Batal, Ahmet
2004-01-01
For a non-Hermitian Hamiltonian H possessing a real spectrum, we introduce a canonical orthonormal basis in which a previously introduced unitary mapping of H to a Hermitian Hamiltonian h takes a simple form. We use this basis to construct the observables O α of the quantum mechanics based on H. In particular, we introduce pseudo-Hermitian position and momentum operators and a pseudo-Hermitian quantization scheme that relates the latter to the ordinary classical position and momentum observables. These allow us to address the problem of determining the conserved probability density and the underlying classical system for pseudo-Hermitian and in particular PT-symmetric quantum systems. As a concrete example we construct the Hermitian Hamiltonian h, the physical observables O α , the localized states and the conserved probability density for the non-Hermitian PT-symmetric square well. We achieve this by employing an appropriate perturbation scheme. For this system, we conduct a comprehensive study of both the kinematical and dynamical effects of the non-Hermiticity of the Hamiltonian on various physical quantities. In particular, we show that these effects are quantum mechanical in nature and diminish in the classical limit. Our results provide an objective assessment of the physical aspects of PT-symmetric quantum mechanics and clarify its relationship with both conventional quantum mechanics and classical mechanics
Symmetrical metallic and magnetic edge states of nanoribbon from semiconductive monolayer PtS2
Liu, Shan; Zhu, Heyu; Liu, Ziran; Zhou, Guanghui
2018-03-01
Transition metal dichalcogenides (TMD) MoS2 or graphene could be designed to metallic nanoribbons, which always have only one edge show metallic properties due to symmetric protection. In present work, a nanoribbon with two parallel metallic and magnetic edges was designed from a noble TMD PtS2 by employing first-principles calculations based on density functional theory (DFT). Edge energy, bonding charge density, band structure, density of states (DOS) and simulated scanning tunneling microscopy (STM) of four possible edge states of monolayer semiconductive PtS2 were systematically studied. Detailed calculations show that only Pt-terminated edge state among four edge states was relatively stable, metallic and magnetic. Those metallic and magnetic properties mainly contributed from 5d orbits of Pt atoms located at edges. What's more, two of those central symmetric edges coexist in one zigzag nanoribbon, which providing two atomic metallic wires thus may have promising application for the realization of quantum effects, such as Aharanov-Bohm effect and atomic power transmission lines in single nanoribbon.
Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction
International Nuclear Information System (INIS)
Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.
2004-01-01
It has recently been shown that a non-Hermitian Hamiltonian H possessing an unbroken PT symmetry (i) has a real spectrum that is bounded below, and (ii) defines a unitary theory of quantum mechanics with positive norm. The proof of unitarity requires a linear operator C, which was originally defined as a sum over the eigenfunctions of H. However, using this definition to calculate C is cumbersome in quantum mechanics and impossible in quantum field theory. An alternative method is devised here for calculating C directly in terms of the operator dynamical variables of the quantum theory. This method is general and applies to a variety of quantum mechanical systems having several degrees of freedom. More importantly, this method is used to calculate the C operator in quantum field theory. The C operator is a time-independent observable in PT-symmetric quantum field theory
A possible method for non-Hermitian and Non-PT-symmetric Hamiltonian systems.
Directory of Open Access Journals (Sweden)
Jun-Qing Li
Full Text Available A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+ and defining the annihilation and creation operators to be η+ -pseudo-Hermitian adjoint to each other. The operator η+ represents the η+ -pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution are found not to be altered by the noncommutativity.
Guilarte, Juan Mateos; Plyushchay, Mikhail S.
2017-12-01
We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.
SIMPLE MODELS OF THREE COUPLED PT -SYMMETRIC WAVE GUIDES ALLOWING FOR THIRD-ORDER EXCEPTIONAL POINTS
Directory of Open Access Journals (Sweden)
Jan Schnabel
2017-12-01
Full Text Available We study theoretical models of three coupled wave guides with a PT-symmetric distribution of gain and loss. A realistic matrix model is developed in terms of a three-mode expansion. By comparing with a previously postulated matrix model it is shown how parameter ranges with good prospects of finding a third-order exceptional point (EP3 in an experimentally feasible arrangement of semiconductors can be determined. In addition it is demonstrated that continuous distributions of exceptional points, which render the discovery of the EP3 difficult, are not only a feature of extended wave guides but appear also in an idealised model of infinitely thin guides shaped by delta functions.
Observation of Bloch oscillations in complex PT-symmetric photonic lattices
Wimmer, Martin; Miri, Mohammed-Ali; Christodoulides, Demetrios; Peschel, Ulf
2015-01-01
Light propagation in periodic environments is often associated with a number of interesting and potentially useful processes. If a crystalline optical potential is also linearly ramped, light can undergo periodic Bloch oscillations, a direct outcome of localized Wannier-Stark states and their equidistant eigenvalue spectrum. Even though these effects have been extensively explored in conservative settings, this is by no means the case in non-Hermitian photonic lattices encompassing both amplification and attenuation. Quite recently, Bloch oscillations have been predicted in parity-time-symmetric structures involving gain and loss in a balanced fashion. While in a complex bulk medium, one intuitively expects that light will typically follow the path of highest amplification, in a periodic system this behavior can be substantially altered by the underlying band structure. Here, we report the first experimental observation of Bloch oscillations in parity-time-symmetric mesh lattices. We show that these revivals exhibit unusual properties like secondary emissions and resonant restoration of PT symmetry. In addition, we present a versatile method for reconstructing the real and imaginary components of the band structure by directly monitoring the light evolution during a cycle of these oscillations. PMID:26639941
Agnarsson, Björn; Mapar, Mokhtar; Sjöberg, Mattias; Alizadehheidari, Mohammadreza; Höök, Fredrik
2018-06-01
Organic and inorganic solid materials form the building blocks for most of today’s high-technological instruments and devices. However, challenges related to dissimilar material properties have hampered the synthesis of thin-film devices comprised of both organic and inorganic films. We here give a detailed description of a carefully optimized processing protocol used for the construction of a three-layered hybrid organic–inorganic waveguide-chip intended for combined scattering and fluorescence evanescent-wave microscopy in aqueous environments using conventional upright microscopes. An inorganic core layer (SiO2 or Si3N4), embedded symmetrically in an organic cladding layer (CYTOP), aids simple, yet efficient in-coupling of light, and since the organic cladding layer is refractive index matched to water, low stray-light (background) scattering of the propagating light is ensured. Another major advantage is that the inorganic core layer makes the chip compatible with multiple well-established surface functionalization schemes that allows for a broad range of applications, including detection of single lipid vesicles, metallic nanoparticles or cells in complex environments, either label-free—by direct detection of scattered light—or by use of fluorescence excitation and emission. Herein, focus is put on a detailed description of the fabrication of the waveguide-chip, together with a fundamental characterization of its optical properties and performance, particularly in comparison with conventional epi illumination. Quantitative analysis of images obtained from both fluorescence and scattering intensities from surface-immobilized polystyrene nanoparticles in suspensions of different concentrations, revealed enhanced signal-to-noise and signal-to-background ratios for the waveguide illumination compared to the epi-illumination.
Gauthier, Robert C.; Alzahrani, Mohammed A.; Jafari, Seyed Hamed
2014-10-01
It has recently been experimentally demonstrated that slot channel waveguides, configured in cylindrical space, can support high azimuthal order modes similar to whispering-gallery modes. This paper presents a mode solver based on Maxwell's vector wave equation for the electric field cast into an eigenvalue problem using a Fourier-Bessel basis function space. The modal frequencies and field profiles of the high azimuthal order slot-channel-whispering-gallery (SCWG) modes are computed for a set of nanometer spaced silicon rings supported by oxide. The computations show, that in addition to the traditionally observed, lowest order mode, the structure may support higher order SCWG modes. We complete the analysis by computing structures response as an ambient medium index of refraction sensor which achieves over 400 nm per RIU sensitivity.
Directory of Open Access Journals (Sweden)
Shubin Yan
2017-12-01
Full Text Available In this study, a new refractive index sensor based on a metal–insulator–metal waveguide coupled with a notched ring resonator and stub is designed. The finite element method is used to study the propagation characteristics of the sensor. According to the calculation results, the transmission spectrum exhibits a typical Fano resonance shape. The phenomenon of Fano resonance is caused by the coupling between the broadband spectrum and narrowband spectrum. In the design, the broadband spectrum signal is generated by the stub, while the narrowband spectrum signal is generated by the notched ring resonator. In addition, the structural parameters of the resonators and the structure filled with media of different refractive indices are varied to study the sensing properties. The maximum achieved sensitivity of the sensor reached 1071.4 nm/RIU. The results reveal potential applications of the coupled system in the field of sensors.
International Nuclear Information System (INIS)
Mehdioui, M.; Fahmi, A.; Lassri, H.; Fahoume, M.; Qachaou, A.
2014-01-01
We have studied the elementary magnetic excitations and their dynamics in multilayer Co(t Co)/Pt(t Pt) and Pt(t Pt)/Co(t Co)/Pt(t Pt) under an applied magnetic field. The Heisenberg hamiltonian used takes into account the magneto-crystalline and surface anisotropies, the exchange and dipolar interactions. The calculated excitation spectrum ε N (k) presents a structure with two sub-bands corresponding to the magnons of surface and volume respectively. The existence of a gap of creating these magnons is also highlighted. The lifetimes deduced from these gaps are in good agreement with the results of previous studies. The thermal evolution of the magnetization m z indicates that the system undergoes a dimensional crossover 3D–2D when the temperature increases. The calculated and measured magnetizations are compared and they are in good agreement. The exchange integral and critical temperature values deduced from these adjustments are in very good agreement with the results of previous works. - Highlights: • The magnons of surface and volume exist in Co/Pt and Pt/Co/Pt. • Samples undergo dimensional crossover (3D–2D) when T increases. • A good agreement is obtained between M(T) measured and calculated. • Deduced exchange integrals and critical temperature values are correct. • The magnetism of the sample is reduced by increasing t Pt or capping Co by two Pt layers
Haldar, Raktim; Mishra, V.; Dutt, Avik; Varshney, Shailendra K.
2016-10-01
In this work, we propose novel schemes to design on-chip ultra-compact optical directional couplers (DC) and broadband polarization beam splitters (PBS) based on off-centered and asymmetric dielectric slot waveguides, respectively. Slot dimensions and positions are optimized to achieve maximum coupling coefficients between two symmetric and non-symmetric slotted Si wire waveguides through overlap integral method. We observe >88% of enhancement in the coupling coefficients when the size-optimized slots are placed in optimal positions, with respect to the same waveguides with no slot. When the waveguides are parallel, in that case, a coupling length as short as 1.73 μm is accomplished for TM mode with the off-centered and optimized slots. This scheme enables us to design optical DC with very small footprint, L c ∼ 0.9 μm in the presence of S-bends. We also report a compact (L c ∼ 1.1 μm) on-chip broadband PBS with hybrid slots. Extinction ratios of 13 dB and 22.3 dB are realized with very low insertion loss (0.055 dB and 0.008 dB) for TM and TE modes at 1.55 μm, respectively. The designed PBS exhibits a bandwidth of 78 nm for the TM mode (C-and partial L-bands) and >100 nm for the TE mode (S + C + L wavelength bands). Such on-chip devices can be used to design compact photonic interconnects and quantum information processing units efficiently. We have also investigated the fabrication tolerances of the proposed devices and described the fabrication steps to realize such hybrid devices. Our results are in good agreement with 3D FDTD simulations.
International Nuclear Information System (INIS)
Bagchi, B; Quesne, C
2010-01-01
The PT-symmetric complexified Scarf II potential V(x) = -V 1 sech 2 x + iV 2 sechxtanh x, V 1 > 0, V 2 ≠ 0, is revisited to study the interplay among its coupling parameters. The existence of an isolated real and positive energy level that has recently been identified as a spectral singularity or zero-width resonance is here demonstrated through the behaviour of the corresponding wavefunctions and some property of the associated pseudo-norms is pointed out. We also construct four different rationally extended supersymmetric partners to V(x), which are PT-symmetric or complex non-PT-symmetric according to the coupling parameters range. A detailed study of one of these partners reveals that SUSY preserves the V(x) spectral singularity existence.
PT-symmetric supersymmetry in a solvable short-range model
Czech Academy of Sciences Publication Activity Database
Bagchi, B.; Mallik, S.; Bíla, Hynek; Jakubský, Vít; Znojil, Miloslav; Quesne, C.
2006-01-01
Roč. 21, č. 10 (2006), s. 2173-2190 ISSN 0217-751X R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : PT-symmetry * supersymmetry * deep square Subject RIV: BE - Theoretical Physics Impact factor: 0.914, year: 2006
Spectra of definite type in waveguide models
Czech Academy of Sciences Publication Activity Database
Lotoreichik, Vladimir; Siegl, Petr
2017-01-01
Roč. 145, č. 3 (2017), s. 1231-1246 ISSN 0002-9939 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : spectral points of definite and of type pi * weakly coupled bound states * pertrubations of essential spectrum * PT-symmetric waveguide Subject RIV: BE - Theoretical Physics OBOR OECD: Applied mathematics Impact factor: 0.679, year: 2016
On eigenvalues of a PT-symmetric operator in a thin layer
Czech Academy of Sciences Publication Activity Database
Borisov, D. I.; Znojil, Miloslav
2017-01-01
Roč. 208, č. 2 (2017), s. 173-199 ISSN 1064-5616 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : thin domain * pT-symmetric operator * edge of a gap * asymptotics * periodic operator Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.721, year: 2016
Crossing rule for a PT-symmetric two-level time-periodic system
International Nuclear Information System (INIS)
Moiseyev, Nimrod
2011-01-01
For a two-level system in a time-periodic field we show that in the non-Hermitian PT case the level crossing is of two quasistationary states that have the same dynamical symmetry property. At the field's parameters where the two levels which have the same dynamical symmetry cross, the corresponding quasienergy states coalesce and a self-orthogonal state is obtained. This situation is very different from the Hermitian case where a crossing of two quasienergy levels happens only when the corresponding two quasistationary states have different dynamical symmetry properties and, unlike the situation in the non-Hermitian case, the spectrum remains complete also when the two levels cross.
International Nuclear Information System (INIS)
Ikhdair, S.M.; Sever, R.
2007-01-01
The exact solution of the one-dimensional Klein-Gordon equation of the PT-symmetric generalized Woods-Saxon potential is obtained. The exact energy eigenvalues and wavefunctions are derived analytically by using the Nikiforov and Uvarov method. In addition, the positive and negative exact bound states of the s-states are also investigated for different types of complex generalized Woods-Saxon potentials. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Progress in planar optical waveguides
Wang, Xianping; Cao, Zhuangqi
2016-01-01
This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.
Chen, Yong; Yan, Zhenya; Li, Xin
2018-02-01
The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.
Launching transverse-electric Localized Waves from a circular waveguide
Salem, Mohamed; Niver, Edip
2011-01-01
Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes
PT-symmetric quantum toboggans
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2005-01-01
Roč. 342, 1/2 (2005), s. 36-47 ISSN 0375-9601 R&D Projects: GA AV ČR(CZ) IAA1048302 Keywords : anharmonic-oscillators * real spectra * mechanics Subject RIV: BE - Theoretical Physics Impact factor: 1.550, year: 2005
Position dependent spin wave spectrum in nanostrip magnonic waveguides
International Nuclear Information System (INIS)
Wang, Qi; Zhang, Huaiwu; Ma, Guokun; Liao, Yulong; Zhong, Zhiyong; Zheng, Yun
2014-01-01
The dispersion curves of propagating spin wave along different positions in nanostrip magnonic waveguides were studied by micromagnetic simulation. The results show that the modes of spin wave in the nanostrip magnonic waveguide are dependent on the position and the weak even modes of spin wave are excited even by symmetric excitation fields in a nanostrip magnonic waveguide. The reasons of the position dependent dispersion curve are explained by associating with geometrical confinement in the nanostrip magnonic waveguide
Chen, Yong; Yan, Zhenya
2016-03-22
Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.
International Nuclear Information System (INIS)
Kazantzis, P.G.
1979-01-01
New families of three-dimensional double-symmetric periodic orbits are determined numerically in the Sun-Jupiter case of the restricted three-body problem. These families bifurcate from the 'vertical-critical' orbits (αsub(ν) = -1, csub(ν) = 0) of the 'basic' plane families i. g 1 g 2 h, a, m and I. Further the numerical procedure employed in the determination of these families has been described and interesting results have been pointed out. Also, computer plots of the orbits of these families have been shown in conical projections. (orig.)
Parity-Time Symmetric Photonics
Zhao, Han
2018-01-17
The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy to the complex quantum potentials, photonics provides an ideal platform for visualization of many conceptually striking predictions from the non-Hermitian quantum theory. A rapidly developing field has emerged, namely, PT symmetric photonics, demonstrating intriguing optical phenomena including eigenstate coalescence and spontaneous PT symmetry breaking. The advance of quantum physics, as the feedback, provides photonics with brand-new paradigms to explore the entire complex permittivity plane for novel optical functionalities. Here, we review recent exciting breakthroughs in PT symmetric photonics while systematically presenting their underlying principles guided by non-Hermitian symmetries. The potential device applications for optical communication and computing, bio-chemical sensing, and healthcare are also discussed.
Huang, Yin; Shen, Yuecheng; Min, Changjun; Veronis, Georgios
2017-10-30
We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge 2 Sb 2 Te 5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices.
Aktas, M.
2018-01-01
In this study, we focus on investigating the exact relativistic bound-state spectra for supersymmetric, PT-supersymmetric and non-Hermitian versions of the q-deformed parameter Hulthén potential. The Hamiltonian hierarchy mechanism, namely the factorization method, is adopted within the framework of SUSYQM. This algebraic approach is used in solving the Klein-Gordon equation with the potential cases. The results obtained analytically by executing the straightforward calculations are in consistent forms for certain values of q. Achieving the results may have a particular interest for such applications. That is, they can be involved in determining the quantum structural properties of molecules for ro-vibrational states, and optical spectra characteristics of semiconductor devices with regard to the lattice dynamics. They are also employed to construct the broken or unbroken case of the supersymmetric particle model concerning the interaction between the elementary particles.
Wave-guided optical waveguides
DEFF Research Database (Denmark)
Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, George
2012-01-01
This work primarily aims to fabricate and use two photon polymerization (2PP) microstructures capable of being optically manipulated into any arbitrary orientation. We have integrated optical waveguides into the structures and therefore have freestanding waveguides, which can be positioned anywhe...... bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the subwavelength domain....
International Nuclear Information System (INIS)
Ramond, P.
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures
Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide
Energy Technology Data Exchange (ETDEWEB)
Perera, Chamanei S., E-mail: cp.hettiarachchige@qut.edu.au; Vernon, Kristy C.; Mcleod, Angus [Plasmonic Device Group, Queensland University of Technology, GPO box 2434, Brisbane, Queensland (Australia)
2014-02-07
In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm × 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.
Simulations of the spontaneous emission of a quantum dot near a gap plasmon waveguide
International Nuclear Information System (INIS)
Perera, Chamanei S.; Vernon, Kristy C.; Mcleod, Angus
2014-01-01
In this paper, we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm × 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode
Nonlinear optical localization in embedded chalcogenide waveguide arrays
International Nuclear Information System (INIS)
Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje
2014-01-01
We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass
PT-symmetric Quantum Chain Models
Directory of Open Access Journals (Sweden)
M. Znojil
2007-01-01
Full Text Available A review is given of certain tridiagonal N-dimensional non-Hermitian J-parametric real-matrix quantum Hamiltonians H(N. The domains Ɗ(N of reality of their spectra of energies are studied, with particular attention paid to their exceptional-point boundaries ∂Ɗ(N. The strongest admissible couplings are specified in closed form for all N.
Experiments in PT-symmetric quantum mechanics
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2004-01-01
Roč. 54, č. 1 (2004), s. 151-156 ISSN 0011-4626 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : quantum mechanics * relativistic kinematics * non-Hermitian observables Subject RIV: BE - Theoretical Physics Impact factor: 0.292, year: 2004
PT-symmetric models in curved manifolds
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David; Siegl, Petr
2010-01-01
Roč. 43, č. 48 (2010), 485204/1-485204/30 ISSN 1751-8113 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * SCHRODINGER -TYPE OPERATORS * PSEUDO-HERMITICITY Subject RIV: BA - General Mathematics Impact factor: 1.641, year: 2010
PT -symmetric dimer of coupled nonlinear oscillators
Indian Academy of Sciences (India)
We provide a systematic analysis of a prototypical nonlinear oscillator ... recently, a number of nonlinear variants have been explored, like split-ring resonator chain .... Note that these solutions are valid for any value of ǫ (and hence δ) including ǫ ..... [16] M Abramowitz and I A Stegun, Handbook of mathematical functions ...
Directory of Open Access Journals (Sweden)
Ayryan E.A.
2016-01-01
Full Text Available A local variation in the thickness of the waveguide layer of integrated optics waveguide causes a local decrease of phase velocity, and hence bending of rays and of the wave front. The relationship of the waveguide layer thickness profile h (y, z with the distribution of the effective refractive index of the waveguide β (y, z is described in terms of a particular model of waveguide solutions of the Maxwell equations. In the model of comparison waveguides the support of the thickness irregularity of the waveguide layer Δh coincides with the support of inhomogeneity of the effective refractive index Δβ. A more adequate but more cumbersome model of the adiabatic waveguide modes allows them to mismatch supp Δh ⊃ supp Δβ. In this paper, we solve the problem of the Δh reconstruction on the base of given Δβ of the thin film generalized waveguide Luneburg lens in a model of adiabatic waveguide modes. The solution is found in the form of a linear combination of Gaussian exponential functions and in the form of a cubic spline for the cylindrically symmetric Δh (r and in the form of a cubic spline for Δβ (r.
Exner, Pavel
2015-01-01
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
Long-range hybrid ridge and trench plasmonic waveguides
Energy Technology Data Exchange (ETDEWEB)
Bian, Yusheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)
2014-06-23
We report a class of long-range hybrid plasmon polariton waveguides capable of simultaneously achieving low propagation loss and tight field localization at telecommunication wavelength. The symmetric (quasi-symmetric) hybrid configurations featuring high-refractive-index-contrast near the non-uniform metallic nanostructures enable significantly improved optical performance over conventional hybrid waveguides, exhibiting considerably longer propagation distances and dramatically enhanced figure of merits for similar degrees of confinement. Compared to their traditional long-range plasmonic counterparts, the proposed hybrid waveguides put much less stringent requirements on index-matching conditions, demonstrating nice performance under a wide range of physical dimensions and robust characteristics against certain fabrication imperfections. Studies concerning crosstalk between adjacent identical waveguides further reveal their potential for photonic integrations. In addition, alternative configurations with comparable guiding properties to the structures in our case studies are also proposed, which can potentially serve as attractive prototypes for numerous high-performance nanophotonic components.
Topologically protected bound states in photonic parity-time-symmetric crystals.
Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A
2017-04-01
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
General coupled mode theory in non-Hermitian waveguides.
Xu, Jing; Chen, Yuntian
2015-08-24
In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.
Photonic Choke-Joints for Dual-Polarization Waveguides
Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.
2010-01-01
Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.
Microfabricated Waveguide Atom Traps.
Energy Technology Data Exchange (ETDEWEB)
Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-09-01
A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.
Quantum work relations and response theory in parity-time-symmetric quantum systems
Wei, Bo-Bo
2018-01-01
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extends to a parity-time- (PT -) symmetric quantum system with unbroken PT symmetry, which is a consequence of microscopic reversibility. The quantum Jarzynski equality, linear response theory, and Onsager reciprocal relations for the PT -symmetric quantum system are recovered as special cases of the universal quantum work relation in a PT -symmetric quantum system. In the regime of broken PT symmetry, the universal quantum work relation does not hold because the norm is not preserved during the dynamics.
Cavity-photon-switched coherent transient transport in a double quantum waveguide
Energy Technology Data Exchange (ETDEWEB)
Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)
2014-12-21
We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.
International Nuclear Information System (INIS)
Belov, V.E.; Rodygin, L.V.; Fil'chenko, S.E.; Yunakovskii, A.D.
1988-01-01
A method is described for calculating the electrodynamic characteristics of periodically corrugated waveguide systems. This method is based on representing the field as the solution of the Helmholtz vector equation in the form of a simple layer potential, transformed with the use of the Floquet conditions. Systems of compound integral equations based on a weighted vector function of the simple layer potential are derived for waveguides with azimuthally symmetric and helical corrugations. A numerical realization of the Fourier method is cited for seeking the dispersion relation of azimuthally symmetric waves of a circular corrugated waveguide
Information Retrieval and Criticality in Parity-Time-Symmetric Systems.
Kawabata, Kohei; Ashida, Yuto; Ueda, Masahito
2017-11-10
By investigating information flow between a general parity-time (PT-)symmetric non-Hermitian system and an environment, we find that the complete information retrieval from the environment can be achieved in the PT-unbroken phase, whereas no information can be retrieved in the PT-broken phase. The PT-transition point thus marks the reversible-irreversible criticality of information flow, around which many physical quantities such as the recurrence time and the distinguishability between quantum states exhibit power-law behavior. Moreover, by embedding a PT-symmetric system into a larger Hilbert space so that the entire system obeys unitary dynamics, we reveal that behind the information retrieval lies a hidden entangled partner protected by PT symmetry. Possible experimental situations are also discussed.
Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)
2016-01-01
A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.
Directory of Open Access Journals (Sweden)
M. Talafi Noghani
2014-02-01
Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.
Graphene antidot lattice waveguides
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Optical waveguide demultiplexer
International Nuclear Information System (INIS)
Gajdaj, Yu.O.; Maslyukyivs'kij, R.M.; Sirota, A.V.
2009-01-01
For channels division in fibre-optical networks with wavelength multiplexing, the planar waveguide together with a prism coupler is offered for using. The planar waveguide fulfils a role of a dispersing unit, and prism coupler is the selector of optical channels. The parameters of the planar waveguide which provide maximal space division of adjacent information channels in networks with coarse wavelength multiplexing are calculated
Experiences with rectangular waveguide
International Nuclear Information System (INIS)
Beltran, J.; Sepulveda, J. J.; Navarro, E. A.
2000-01-01
A simple and didactic experimental arrangement is presented to show wave propagation along a structure with translational symmetry, particularly the rectangular waveguide. Parameters of this waveguide as cutoff frequency, guide wavelength and field distribution of fundamental mode can be measured. For this purpose a large paralelepipedical waveguide structure is designed and built, its dimensions can be varied in order to change its parameters. (Author) 9 refs
Launching transverse-electric Localized Waves from a circular waveguide
Salem, Mohamed
2011-07-01
Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes are obtained by the method of matching, taking advantage of the modal power orthogonality relations. The necessary excitation of modes provided by a number of coaxial loop antennas inserted inside the waveguide section. The antennas currents are computed from the solution of the waveguide excitation inverse problem. The accuracy of the synthesized wave field (compared to the mathematical model) and the power efficiency of the generation technique are evaluated in order to practically realize a launcher for LWs in the microwave regime. © 2011 IEEE.
Compact beam splitters in coupled waveguides using shortcuts to adiabaticity
Chen, Xi; Wen, Rui-Dan; Shi, Jie-Long; Tseng, Shuo-Yen
2018-04-01
There are various works on adiabatic (three) waveguide coupler devices but most are focused on the quantum optical analogies and the physics itself. We successfully apply shortcuts to adiabaticity techniques to the coupled waveguide system with a suitable length for integrated optics devices. Especially, the counter-diabatic driving protocol followed by unitary transformation overcomes the previously unrealistic implemention, and is used to design feasible and robust 1 × 2 and 1 × 3 beam splitters for symmetric and asymmetric three waveguide couplers. Numerical simulations with the beam propagation method demonstrate that these shortcut designs for beam splitters are shorter than the adiabatic ones, and also have a better tolerance than parallel waveguides resonant beam splitters with respect to spacing errors and wavelength variation.
Optomechanically induced absorption in parity-time-symmetric optomechanical systems
Zhang, X. Y.; Guo, Y. Q.; Pei, P.; Yi, X. X.
2017-06-01
We explore the optomechanically induced absorption (OMIA) in a parity-time- (PT -) symmetric optomechanical system (OMS). By numerically calculating the Lyapunov exponents, we find out the stability border of the PT -symmetric OMS. The results show that in the PT -symmetric phase the system can be either stable or unstable depending on the coupling constant and the decay rate. In the PT -symmetric broken phase the system can have a stable state only for small gain rates. By calculating the transmission rate of the probe field, we find that there is an inverted optomechanically induced transparency (OMIT) at δ =-ωM and an OMIA at δ =ωM for the PT -symmetric optomechanical system. At each side of δ =-ωM there is an absorption window due to the resonance absorption of the two generated supermodes. Comparing with the case of optomechanics coupled to a passive cavity, we find that the active cavity can enhance the resonance absorption. The absorption rate at δ =ωM increases as the coupling strength between the two cavities increases. Our work provides us with a promising platform for controlling light propagation and light manipulation in terms of PT symmetry, which might have potential applications in quantum information processing and quantum optical devices.
Olafsson, Gestur; Helgason, Sigurdur
1996-01-01
This book is intended to introduce researchers and graduate students to the concepts of causal symmetric spaces. To date, results of recent studies considered standard by specialists have not been widely published. This book seeks to bring this information to students and researchers in geometry and analysis on causal symmetric spaces.Includes the newest results in harmonic analysis including Spherical functions on ordered symmetric space and the holmorphic discrete series and Hardy spaces on compactly casual symmetric spacesDeals with the infinitesimal situation, coverings of symmetric spaces, classification of causal symmetric pairs and invariant cone fieldsPresents basic geometric properties of semi-simple symmetric spacesIncludes appendices on Lie algebras and Lie groups, Bounded symmetric domains (Cayley transforms), Antiholomorphic Involutions on Bounded Domains and Para-Hermitian Symmetric Spaces
The Theory for the Dielectric Slab Waveguide with Complex Refractive Index Applied to GaAs Lasers
DEFF Research Database (Denmark)
Buus, Jens
1977-01-01
In this paper we investigate the homogeneous dielectric slab waveguide in the case of complex dielectric constants. A method for calculating the field distribution in a dielectric waveguide with an arbitrary symmetrical variation in the refractive index is developed, and some of the results are p...
Jiang, Haiyong
2016-04-11
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong; Yan, Dong-Ming; Dong, Weiming; Wu, Fuzhang; Nan, Liangliang; Zhang, Xiaopeng
2016-01-01
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Jiang, Haiyong; Dong, Weiming; Yan, Dongming; Zhang, Xiaopeng
2016-01-01
We present an automatic algorithm for symmetrizing facade layouts. Our method symmetrizes a given facade layout while minimally modifying the original layout. Based on the principles of symmetry in urban design, we formulate the problem of facade layout symmetrization as an optimization problem. Our system further enhances the regularity of the final layout by redistributing and aligning boxes in the layout. We demonstrate that the proposed solution can generate symmetric facade layouts efficiently. © 2015 IEEE.
Symmetrization of Facade Layouts
Jiang, Haiyong
2016-02-26
We present an automatic approach for symmetrizing urban facade layouts. Our method can generate a symmetric layout through minimally modifying the original input layout. Based on the principles of symmetry in urban design, we formulate facade layout symmetrization as an optimization problem. Our method further enhances the regularity of the final layout by redistributing and aligning elements in the layout. We demonstrate that the proposed solution can effectively generate symmetric facade layouts.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sang-Il [Department of Materials Science and Engineering, Korea University, Seoul, 136-713 (Korea, Republic of); Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Seo, Min-Su [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Choi, Yeon Suk, E-mail: ychoi@kbsi.re.kr [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of)
2017-01-01
Magnetic field (H) sweeping direction dependences of the mixed voltage V{sub mix} induced by the inverse-spin Hall effect(ISHE) and spin-rectified effect (SRE) in a CoFeB (5 nm)/Pt (10 nm) bilayer structure are investigated using the ferromagnetic resonance in the TE mode cavities and coplanar waveguide methods. Conventionally, the magnitude of ISHE voltage V{sub ISH} (symmetric) excluding the SRE (antisymmetric component) was unavoidably separated from the fitting curve of V{sub mix} (a sum of a symmetric and an antisymmetric part) for one direction of H-source. By studying the ratio of the two voltage parts with the bi-directional H sweeping, the optimized V{sub ISH} (no SRE condition) value which also include a well-defined spin Hall angle can be obtained via the linear response relation of ISHE and SRE components. - Highlights: • Hysteretic behavior of ferromagnetic resonance spectra in the CoFeB/Pt sample. • Hysteretic behavior of inverse-spin Hall effect voltage in the CoFeB/Pt sample. • Proportion of inverse spin-Hall effect voltage can be determined by the cavity mode. • The hysteretic behavior arise from the unsaturated magnetization limit. • The well-defined spin Hall angle which consider a hysteresis can be obtained.
Exact equivalent straight waveguide model for bent and twisted waveguides
DEFF Research Database (Denmark)
Shyroki, Dzmitry
2008-01-01
Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling...... of in-plane curved or helically wound waveguides with use of available simulators for straight waveguides without the restrictions of the known approximate equivalent-index formulas....
Compound semiconductor optical waveguide switch
Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.
2003-06-10
An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.
Phase radiation characteristics of an open-ended circular waveguide
DEFF Research Database (Denmark)
Shishkova, Anna; Pivnenko, Sergey; Kim, Oleksiy S.
2007-01-01
General analytical expressions are derived for the far-field amplitude and phase radiation patterns of an open-ended circular waveguide (OE-CWG) regardless of its radius or the operation frequency for the dominant and symmetric higher-order excitation modes. The derivation is based on the rigorous...... solution to the problem of diffraction at an open end of a waveguide proposed by Weinstein. The near-field amplitude and phase patterns of an OE-CWG are then calculated using the spherical wave expansion technique. The measurement of the radiation pattern of an OE-CWG was carried out to verify the validity...
Active Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Ek, Sara
This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...
Arrayed waveguide Sagnac interferometer.
Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso
2003-02-01
We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.
Omnidirectional optical waveguide
Bora, Mihail; Bond, Tiziana C.
2016-08-02
In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.
Golden, Ryan; Cho, Ilwoo
2015-01-01
In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...
Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides
Babicheva, Viktoriia E.
2017-12-01
We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.
Radiation pattern of open ended waveguide in air core surrounded by annular plasma column
International Nuclear Information System (INIS)
Sharma, D.R.; Verma, J.S.
1977-01-01
Radiation pattern of open ended waveguide excited in circular symmetric mode (TM 01 ) in an air core having central conductor and surrounded by an annular plasma column is studied. The field distribution at the open end of the waveguide is considered to be equivalent to the vector sum of magnetic current rings of various radii, ranging from the outer radius of the inner conductor to the inner radius of the outer conductor of the waveguide at the open end. The radiation field is obtained as a vector sum of field components due to individual rings of current. Such a configuration gives rise to multiple narrow radiation beams away from the critical angle. (author)
International Nuclear Information System (INIS)
Lobanov, Valery E.; Vysloukh, Victor A.; Kartashov, Yaroslav V.
2010-01-01
We consider the evolution of multichannel excitations in longitudinally modulated waveguide arrays where the refractive index either oscillates out-of-phase in all neighboring waveguides or when it is modulated in phase in several central waveguides surrounded by out-of-phase oscillating neighbors. Both types of modulations allow resonant inhibition of light tunneling, but only the modulation of the latter type conserves the internal structure of multichannel excitations. We show that parameter regions where light tunneling inhibition is possible depend on the symmetry and structure of multichannel excitations. Antisymmetric multichannel excitations are more robust than their symmetric counterparts and experience nonlinearity-induced delocalization at higher amplitudes.
Symmetric cryptographic protocols
Ramkumar, Mahalingam
2014-01-01
This book focuses on protocols and constructions that make good use of symmetric pseudo random functions (PRF) like block ciphers and hash functions - the building blocks for symmetric cryptography. Readers will benefit from detailed discussion of several strategies for utilizing symmetric PRFs. Coverage includes various key distribution strategies for unicast, broadcast and multicast security, and strategies for constructing efficient digests of dynamic databases using binary hash trees. • Provides detailed coverage of symmetric key protocols • Describes various applications of symmetric building blocks • Includes strategies for constructing compact and efficient digests of dynamic databases
Gap Surface Plasmon Waveguide Analysis
DEFF Research Database (Denmark)
Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.
2014-01-01
Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously...
Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus
2006-11-15
For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.
Silicon microphotonic waveguides
International Nuclear Information System (INIS)
Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.
2004-01-01
Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides
Nanoporous polymer liquid core waveguides
DEFF Research Database (Denmark)
Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol
2010-01-01
We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....
International Nuclear Information System (INIS)
Kaufman, R.N.
1988-01-01
Waveguide propagation of electromagnetic waves in axial symmetric ducts with increased plasma density aligned along the constant external magnetic field is considered for frequencies, being higher than low-hybrid, in the WKB approximation. In this case tunnel effects leading to captured wave damping are taken into account. Conditions for waveguide propagation and the logarithmic decrement of damping are found. Field construction is performed using the systems of axially symmetric WKB solutions of the Maxwell equations
Apodized coupled resonator waveguides.
Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A
2007-08-06
In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.
A green-color portable waveguide eyewear display system
Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan
2013-08-01
Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.
Centrioles in Symmetric Spaces
Quast, Peter
2011-01-01
We describe all centrioles in irreducible simply connected pointed symmetric spaces of compact type in terms of the root system of the ambient space, and we study some geometric properties of centrioles.
A symmetrical rail accelerator
International Nuclear Information System (INIS)
Igenbergs, E.
1991-01-01
This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator
International Nuclear Information System (INIS)
Matsuki, Takayuki
1976-01-01
Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)
A summary view of the symmetric cosmological model
International Nuclear Information System (INIS)
Aldrovandi, R.
1975-01-01
A brief analysis of cosmological models is done, beginning with the standard model and following with the symmetric model of Omnes. Some attempts have been made for the phase transition in thermal radiation at high temperatures, to the annihilation period and to coalescence. One model with equal amounts of matter and antimatter seems to be reasonable [pt
Spectroelectrochemical sensing: planar waveguides
Energy Technology Data Exchange (ETDEWEB)
Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R
2003-09-30
The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 {mu}m thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO{sub 2}, where PDMDAAC=poly(dimethyl diallylammonium chloride)
Directory of Open Access Journals (Sweden)
Wang Chia-Jean
2007-01-01
Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.
Spectroelectrochemical sensing: planar waveguides
International Nuclear Information System (INIS)
Ross, Susan E.; Shi Yining; Seliskar, Carl J.; Heineman, William R.
2003-01-01
The spectroelectrochemical sensor combines in a single device electrochemistry, spectroscopy, and selective partitioning into a film, giving improved selectivity for applications that involve complex samples. Sensing is based on the change in optical signal that accompanies electrochemical modulation of analyte that has partitioned into the film. Two classes of optical quality chemically-selective films based on two different host materials, namely, sol-gel processed silica and cross-linked poly(vinyl alcohol) have been developed. Films are typically 400-700 nm thick. Three types of sensor platforms are discussed: a multiple internal reflection (MIR) optic consisting of a bilayer of an indium tin oxide (ITO) optically transparent electrode deposited on a 1-mm thick glass substrate, a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide (5-9 μm thick) was over-coated with a thin film of ITO, and a planar waveguide in which a potassium ion-exchanged BK7 glass waveguide channel was formed and a pair of electrodes deposited along side the channel. These sensors were evaluated with ferrocyanide and a selective film of PDMDAAC-SiO 2 , where PDMDAAC=poly(dimethyl diallylammonium chloride)
Inkjet printed ferrite-filled rectangular waveguide X-band isolator
Farooqui, Muhammad Fahad; Nafe, Ahmed A.; Shamim, Atif
2014-01-01
by applying an anti-symmetrical DC magnetic bias to the ferrite-filled waveguide which then exhibits a unidirectional mode of operation. The isolator is fed by a microstrip to RWG transition and demonstrates an isolation figure-of-merit (IFM) of more than 51 d
The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology
Schipper, E.F.; Schipper, E.F.; Brugman, A.M.; Lechuga, L.M.; Lechuga, L.M.; Kooyman, R.P.H.; Greve, Jan; Dominguez, C.
1997-01-01
We describe the realization of a symmetric integrated channel waveguide Mach-Zehnder sensor which uses the evanescent field to detect small refractive-index changes (¿nmin ¿ 1 × 10¿4) near the guiding-layer surface. This guiding layer consists of ridge structures with a height of 3 nm and a width of
Multiparty symmetric sum types
DEFF Research Database (Denmark)
Nielsen, Lasse; Yoshida, Nobuko; Honda, Kohei
2010-01-01
This paper introduces a new theory of multiparty session types based on symmetric sum types, by which we can type non-deterministic orchestration choice behaviours. While the original branching type in session types can represent a choice made by a single participant and accepted by others...... determining how the session proceeds, the symmetric sum type represents a choice made by agreement among all the participants of a session. Such behaviour can be found in many practical systems, including collaborative workflow in healthcare systems for clinical practice guidelines (CPGs). Processes...... with the symmetric sums can be embedded into the original branching types using conductor processes. We show that this type-driven embedding preserves typability, satisfies semantic soundness and completeness, and meets the encodability criteria adapted to the typed setting. The theory leads to an efficient...
Counting with symmetric functions
Mendes, Anthony
2015-01-01
This monograph provides a self-contained introduction to symmetric functions and their use in enumerative combinatorics. It is the first book to explore many of the methods and results that the authors present. Numerous exercises are included throughout, along with full solutions, to illustrate concepts and also highlight many interesting mathematical ideas. The text begins by introducing fundamental combinatorial objects such as permutations and integer partitions, as well as generating functions. Symmetric functions are considered in the next chapter, with a unique emphasis on the combinatorics of the transition matrices between bases of symmetric functions. Chapter 3 uses this introductory material to describe how to find an assortment of generating functions for permutation statistics, and then these techniques are extended to find generating functions for a variety of objects in Chapter 4. The next two chapters present the Robinson-Schensted-Knuth algorithm and a method for proving Pólya’s enu...
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....
DEFF Research Database (Denmark)
Karnutsch, Christian; Tomljenovic-Hanic, Snjezana; Monat, Christelle
2010-01-01
blocks in many applications, from microlasers and biomedical sensor systems to optical switches and integrated circuits. In this paper, we show that PhC microcavities can be formed by infusing a liquid into a selected section of a uniform PhC waveguide and that the optical properties of these cavities...... and highlight the benefits of an optofluidic approach, focusing on optofluidic cavities created in silicon photonic crystal (PhC) waveguide platforms. These cavities can be spatially and spectrally reconfigured, thus allowing a dynamic control of their optical characteristics. PhC cavities are major building...... can be tuned and adapted. By taking advantage of the negative thermo-optic coefficient of liquids, we describe a method which renders PhC cavities insensitive to temperature changes in the environment. This is only one example where the fluid-control of optical elements results in a functionality...
Miniaturized dielectric waveguide filters
Sandhu, MY; Hunter, IC
2016-01-01
Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
International Nuclear Information System (INIS)
Zhang, Haibin; Eaton, Shane M; Li, Jianzhao; Herman, Peter R
2007-01-01
During high repetition rate (>200 kHz) ultrafast laser waveguide writing, visible heat modified zones surrounding the formed waveguide occur as a result of heat accumulation. The radii of the heat-modified zones increase with the laser net fluence, and were found to correlate with the formation of low-loss and cylindrically symmetric optical waveguides. A numerical thermal model based on the finite difference method is applied here to account for cumulative heating and diffusion effects. The model successfully shows that heat propagation and accumulation accurately predict the radius of the 'heat modified' zones observed in borosilicate glass waveguides formed across a wide range of laser exposure conditions. Such modelling promises better control of thermal effects for optimizing the fabrication and performance of three-dimensional optical devices in transparent materials
Optical Intensity Modulation in an LiNbO3 Slab-Coupled Waveguide
Directory of Open Access Journals (Sweden)
Yalin Lu
2008-01-01
Full Text Available Optical intensity modulation has been demonstrated through switching the optical beam between the main core waveguide and a closely attached leaky slab waveguide by applying a low-voltage electrical field. Theory for simulating such an LiNbO3 slab-coupled waveguide structure was suggested, and the result indicates the possibility of making the spatial guiding mode large, circular and symmetric, which further allows the potential to significantly reduce the coupling losses with adjacent lasers and optical networks. Optical intensity modulation using electro-optic effect was experimentally demonstrated in a 5 cm long waveguide fabricated by using a procedure of soft proton exchange and then an overgrowth of thin LN film on top of a c-cut LiNbO3 wafer.
Distributed Searchable Symmetric Encryption
Bösch, C.T.; Peter, Andreas; Leenders, Bram; Lim, Hoon Wei; Tang, Qiang; Wang, Huaxiong; Hartel, Pieter H.; Jonker, Willem
Searchable Symmetric Encryption (SSE) allows a client to store encrypted data on a storage provider in such a way, that the client is able to search and retrieve the data selectively without the storage provider learning the contents of the data or the words being searched for. Practical SSE schemes
Scattering in the PT-symmetric Coulomb potential
Czech Academy of Sciences Publication Activity Database
Levai, G.; Siegl, P.; Znojil, Miloslav
2009-01-01
Roč. 42, č. 29 (2009), 295201/1-295201/9 ISSN 1751-8113 R&D Projects: GA ČR GA202/07/1307; GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * QUANTUM-MECHANICS * EQUATIONS Subject RIV: BE - Theoretical Physics Impact factor: 1.577, year: 2009
From PT-symmetric quantum mechanics to conformal field theory
Indian Academy of Sciences (India)
Author Affiliations. Patrick Dorey1 Clare Dunning2 Roberto Tateo3. Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK; IMSAS, University of Kent, Canterbury CT2 7NF, UK; Dip. di Fisica Teorica and INFN, Università di Torino, Via P. Giuria 1, 10125 Torino,Italy ...
A Generalized Family of Discrete PT-symmetric Square Wells
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav; Wu, J. D.
2013-01-01
Roč. 52, č. 6 (2013), s. 2152-2162 ISSN 0020-7748 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : quantum mechanics * discrete lattices * non-Hermitian Hamiltonians * Hilbert-space metrics * solvable models Subject RIV: BE - Theoretical Physics Impact factor: 1.188, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs10773-013-1525-3.pdf
Rectifiable PT -symmetric Quantum Toboggans with Two Branch Points
Directory of Open Access Journals (Sweden)
M. Znojil
2010-01-01
Full Text Available Certain complex-contour (a.k.a. quantum-toboggan generalizations of Schroedinger’s bound-state problem are reviewed and studied in detail. Our key message is that the practical numerical solution of these atypical eigenvalue problems may perceivably be facilitated via an appropriate complex change of variables which maps their multi-sheeted complex domain of definition to a suitable single-sheeted complex plane.
Fundamental length in quantum theories with PT-symmetric Hamiltonians
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2009-01-01
Roč. 80, č. 4 (2009), 045022/1-045022/20 ISSN 1550-7998 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-Hermitian Hamiltonians * anharmonic-oscillators * noncommutative space Subject RIV: BE - Theoretical Physics Impact factor: 4.922, year: 2009
Eigenvalues of PT-symmetric oscillators with polynomial potentials
International Nuclear Information System (INIS)
Shin, Kwang C
2005-01-01
We study the eigenvalue problem -u''(z) - [(iz) m + P m-1 (iz)]u(z) λu(z) with the boundary condition that u(z) decays to zero as z tends to infinity along the rays arg z = -π/2 ± 2π/(m+2) in the complex plane, where P m-1 (z) = a 1 z m-1 + a 2 z m-2 + . . . + a m-1 z is a polynomial and integers m ≥ 3. We provide an asymptotic expansion of the eigenvalues λ n as n → +∞, and prove that for each real polynomial P m-1 , the eigenvalues are all real and positive, with only finitely many exceptions
Particles versus fields in PT-symmetrically deformed integrable ...
Indian Academy of Sciences (India)
reversal and parity transformation, can be used to construct new integrable models. Some complex valued multi-particle systems, such as deformations of the Calogero–Moser– Sutherland models, are shown to arise naturally from real valued ...
Low crosstalk Arrayed Waveguide Grating with Cascaded Waveguide Grating Filter
International Nuclear Information System (INIS)
Deng Yang; Liu Yuan; Gao Dingshan
2011-01-01
We propose a highly compact and low crosstalk arrayed waveguide grating (AWG) with cascaded waveguide grating (CWGF). The side lobes of the silicon nanowire AWG, which are normally introduced by fabrication errors, can be effectively suppressed by the CWGF. And the crosstalk can be improved about 15dB.
Proton beam writing of passive waveguides in PMMA
International Nuclear Information System (INIS)
Sum, T.C.; Bettiol, A.A.; Seng, H.L.; Rajta, I.; Kan, J.A. van; Watt, F.
2003-01-01
Symmetric y-branch buried channel waveguides in poly-methylmethacrylate (PMMA) were fabricated by proton beam writing using a focused sub-micron beam of 1.5 and 2.0 MeV protons with a dose ranging from 25 to 160 nC/mm 2 (i.e. ∼1.6 x 10 13 to 1.0 x 10 14 particles/cm 2 ) and beam currents of approximately 5-10 pA. The proton beam modifies the PMMA (i.e. changes the refractive index), forming buried channel waveguides near the end of range. The buried channel waveguides were end-coupled with monochromatic light (633 nm) and the transmitted intensity profiles were measured, indicating an intensity distribution of 0.45/0.55 from each branch. The surface compaction of the PMMA as a result of the irradiation for doses up to 160 nC/mm 2 was also investigated. From these investigations, the optimal fabrication conditions for proton beam writing of PMMA were established. Waveguides of arbitrary design can be easily fabricated using proton beam writing, making the technique ideal for the rapid prototyping of optical circuits
Plasmonic reflectors and high-Q nano-cavities based on coupled metal-insulator-metal waveguides
Directory of Open Access Journals (Sweden)
Jing Chen
2012-03-01
Full Text Available Based on the contra-directional coupling, a composite structure consisting of two coupled metal-insulator-metal (MIM waveguides is proposed to act as an attractive plasmonic reflector. By introducing a defect into one of the MIM waveguides, we show that such a composite structure can be operated as a plasmonic nanocavity with a high quality factor. Both symmetric and anti-symmetric cavity modes are supported in the plasmonic cavity, and their resonance frequencies can be tuned by controlling the defect width. The present structures could have a significant impact for potential applications such as surface plasmon mirrors, filters and solid-state cavity quantum electrodynamics.
Hollow waveguide cavity ringdown spectroscopy
Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)
2012-01-01
Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.
Chen, Yan; Feng, Huijuan; Ma, Jiayao; Peng, Rui; You, Zhong
2016-06-01
The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Integrability and symmetric spaces. II- The coset spaces
International Nuclear Information System (INIS)
Ferreira, L.A.
1987-01-01
It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt
Symmetric reconfigurable capacity assignment in a bidirectional DWDM access network.
Ortega, Beatriz; Mora, José; Puerto, Gustavo; Capmany, José
2007-12-10
This paper presents a novel architecture for DWDM bidirectional access networks providing symmetric dynamic capacity allocation for both downlink and uplink signals. A foldback arrayed waveguide grating incorporating an optical switch enables the experimental demonstration of flexible assignment of multiservice capacity. Different analog and digital services, such as CATV, 10 GHz-tone, 155Mb/s PRBS and UMTS signals have been transmitted in order to successfully test the system performance under different scenarios of total capacity distribution from the Central Station to different Base Stations with two reconfigurable extra channels for each down and upstream direction.
Symmetric vectors and algebraic classification
International Nuclear Information System (INIS)
Leibowitz, E.
1980-01-01
The concept of symmetric vector field in Riemannian manifolds, which arises in the study of relativistic cosmological models, is analyzed. Symmetric vectors are tied up with the algebraic properties of the manifold curvature. A procedure for generating a congruence of symmetric fields out of a given pair is outlined. The case of a three-dimensional manifold of constant curvature (''isotropic universe'') is studied in detail, with all its symmetric vector fields being explicitly constructed
Representations of locally symmetric spaces
International Nuclear Information System (INIS)
Rahman, M.S.
1995-09-01
Locally symmetric spaces in reference to globally and Hermitian symmetric Riemannian spaces are studied. Some relations between locally and globally symmetric spaces are exhibited. A lucid account of results on relevant spaces, motivated by fundamental problems, are formulated as theorems and propositions. (author). 10 refs
Directory of Open Access Journals (Sweden)
Georgios Gkantzounis
2017-11-01
Full Text Available We employ a recently introduced class of artificial structurally-disordered phononic structures that exhibit large and robust elastic frequency band gaps for efficient phonon guiding. Phononic crystals are periodic structures that prohibit the propagation of elastic waves through destructive interference and exhibit large band gaps and ballistic propagation of elastic waves in the permitted frequency ranges. In contrast, random-structured materials do not exhibit band gaps and favour localization or diffusive propagation. Here, we use structures with correlated disorder constructed from the so-called stealthy hyperuniform disordered point patterns, which can smoothly vary from completely random to periodic (full order by adjusting a single parameter. Such amorphous-like structures exhibit large band gaps (comparable to the periodic ones, both ballistic-like and diffusive propagation of elastic waves, and a large number of localized modes near the band edges. The presence of large elastic band gaps allows the creation of waveguides in hyperuniform materials, and we analyse various waveguide architectures displaying nearly 100% transmission in the GHz regime. Such phononic-circuit architectures are expected to have a direct impact on integrated micro-electro-mechanical filters and modulators for wireless communications and acousto-optical sensing applications.
Evanescent fields of laser written waveguides
Jukić, Dario; Pohl, Thomas; Götte, Jörg B.
2015-03-01
We investigate the evanescent field at the surface of laser written waveguides. The waveguides are written by a direct femtosecond laser writing process into fused silica, which is then sanded down to expose the guiding layer. These waveguides support eigenmodes which have an evanescent field reaching into the vacuum above the waveguide. We study the governing wave equations and present solution for the fundamental eigenmodes of the modified waveguides.
Grating-Coupled Waveguide Cloaking
International Nuclear Information System (INIS)
Wang Jia-Fu; Qu Shao-Bo; Ma Hua; Wang Cong-Min; Wang Xin-Hua; Zhou Hang; Xu Zhuo; Xia Song
2012-01-01
Based on the concept of a grating-coupled waveguide (GCW), a new strategy for realizing EM cloaking is presented. Using metallic grating, incident waves are firstly coupled into the effective waveguide and then decoupled into free space behind, enabling EM waves to pass around the obstacle. Phase compensation in the waveguide keeps the wave-front shape behind the obstacle unchanged. Circular, rectangular and triangular cloaks are presented to verify the robustness of the GCW cloaking. Electric field animations and radar cross section (RCS) comparisons convincingly demonstrate the cloaking effect
Holographic Spherically Symmetric Metrics
Petri, Michael
The holographic principle (HP) conjectures, that the maximum number of degrees of freedom of any realistic physical system is proportional to the system's boundary area. The HP has its roots in the study of black holes. It has recently been applied to cosmological solutions. In this article we apply the HP to spherically symmetric static space-times. We find that any regular spherically symmetric object saturating the HP is subject to tight constraints on the (interior) metric, energy-density, temperature and entropy-density. Whenever gravity can be described by a metric theory, gravity is macroscopically scale invariant and the laws of thermodynamics hold locally and globally, the (interior) metric of a regular holographic object is uniquely determined up to a constant factor and the interior matter-state must follow well defined scaling relations. When the metric theory of gravity is general relativity, the interior matter has an overall string equation of state (EOS) and a unique total energy-density. Thus the holographic metric derived in this article can serve as simple interior 4D realization of Mathur's string fuzzball proposal. Some properties of the holographic metric and its possible experimental verification are discussed. The geodesics of the holographic metric describe an isotropically expanding (or contracting) universe with a nearly homogeneous matter-distribution within the local Hubble volume. Due to the overall string EOS the active gravitational mass-density is zero, resulting in a coasting expansion with Ht = 1, which is compatible with the recent GRB-data.
Snyder, Allan W
1983-01-01
This text is intended to provide an in-depth, self-contained, treatment of optical waveguide theory. We have attempted to emphasize the underlying physical processes, stressing conceptual aspects, and have developed the mathematical analysis to parallel the physical intuition. We also provide comprehensive supplementary sections both to augment any deficiencies in mathematical background and to provide a self-consistent and rigorous mathematical approach. To assist in. understanding, each chapter con centrates principally on a single idea and is therefore comparatively short. Furthermore, over 150 problems with complete solutions are given to demonstrate applications of the theory. Accordingly, through simplicity of approach and numerous examples, this book is accessible to undergraduates. Many fundamental topics are presented here for the first time, but, more importantly, the material is brought together to give a unified treatment of basic ideas using the simplest approach possible. To achieve such a goa...
Polymer Waveguide Fabrication Techniques
Ramey, Delvan A.
1985-01-01
The ability of integrated optic systems to compete in signal processing aplications with more traditional analog and digital electronic systems is discussed. The Acousto-Optic Spectrum Analyzer is an example which motivated the particular work discussed herein. Provided real time processing is more critical than absolute accuracy, such integrated optic systems fulfill a design need. Fan-out waveguide arrays allow crosstalk in system detector arrays to be controlled without directly limiting system resolution. A polyurethane pattern definition process was developed in order to demonstrate fan-out arrays. This novel process is discussed, along with further research needs. Integrated optic system market penetration would be enhanced by development of commercial processes of this type.
International Nuclear Information System (INIS)
Kosevich, Y A; Manevitch, L I; Savin, A V
2007-01-01
We consider, both analytically and numerically, the dynamics of stationary and slowly-moving breathers (localized short-wavelength excitations) in two weakly coupled nonlinear oscillator chains (nonlinear phononic waveguides). We show that there are two qualitatively different dynamical regimes of the coupled breathers: the oscillatory exchange of the low-amplitude breather between the phononic waveguides (wandering breather), and one-waveguide-localization (nonlinear self-trapping) of the high-amplitude breather. We also show that phase-coherent dynamics of the coupled breathers in two weakly linked nonlinear phononic waveguides has a profound analogy, and is described by a similar pair of equations, to the tunnelling quantum dynamics of two weakly linked Bose-Einstein condensates in a symmetric double-well potential (single bosonic Josephson junction). The exchange of phonon energy and excitations between the coupled phononic waveguides takes on the role which the exchange of atoms via quantum tunnelling plays in the case of the coupled condensates. On the basis of this analogy, we predict a new tunnelling mode of the coupled Bose-Einstein condensates in a single bosonic Josephson junction in which their relative phase oscillates around π/2. The dynamics of relative phase of two weakly linked Bose-Einstein condensates can be studied by means of interference, while the dynamics of the exchange of lattice excitations in coupled nonlinear phononic waveguides can be observed by means of light scattering
A pressure study of CePt{sub 3}B
Energy Technology Data Exchange (ETDEWEB)
Rauch, Daniela; Suellow, Stefan [Institute of Condensed Matter Physics, University of Technology Braunschweig, Braunschweig (Germany); Hartwig, Steffen [Institute of Condensed Matter Physics, University of Technology Braunschweig, Braunschweig (Germany); BENSC, Helmholtz Zentrum Berlin, Berlin (Germany); Hidaka, Hiroyuki; Yamazaki, Seigo; Amitsuka, Hiroshi [Department of Physics, Hokkaido University, Sapporo (Japan); Bauer, Ernst [Institute of Solid State Physics, Vienna University of Technology, Vienna (Austria)
2013-07-01
CePt{sub 3}B is isostructural to the non-centro symmetric heavy-fermion superconductor CePt{sub 3}Si. In contrast to the latter system, CePt{sub 3}B exhibits a complex magnetically ordered state at low temperatures, with an antiferromagnetic phase below T{sub N}=7.8 K and a weakly ferromagnetic transition below T{sub C}∼5 K. CePt{sub 3}B can be understand as a low pressure variant of CePt{sub 3}Si. Here we report a study of CePt{sub 3}B by means of high pressure magnetization measurements, this way in particular accessing the pressure evolution of the ferromagnetic transition temperature T{sub C}. From our investigation up to about 40 kbar we observe an almost constant transition temperature T{sub C} with pressure. This behavior we discuss in the context of alloying studies on this material.
PT Symmetry and QCD: Finite Temperature and Density
Directory of Open Access Journals (Sweden)
Michael C. Ogilvie
2009-04-01
Full Text Available The relevance of PT symmetry to quantum chromodynamics (QCD, the gauge theory of the strong interactions, is explored in the context of finite temperature and density. Two significant problems in QCD are studied: the sign problem of finite-density QCD, and the problem of confinement. It is proven that the effective action for heavy quarks at finite density is PT-symmetric. For the case of 1+1 dimensions, the PT-symmetric Hamiltonian, although not Hermitian, has real eigenvalues for a range of values of the chemical potential μ, solving the sign problem for this model. The effective action for heavy quarks is part of a potentially large class of generalized sine-Gordon models which are non-Hermitian but are PT-symmetric. Generalized sine-Gordon models also occur naturally in gauge theories in which magnetic monopoles lead to confinement. We explore gauge theories where monopoles cause confinement at arbitrarily high temperatures. Several different classes of monopole gases exist, with each class leading to different string tension scaling laws. For one class of monopole gas models, the PT-symmetric affine Toda field theory emerges naturally as the effective theory. This in turn leads to sine-law scaling for string tensions, a behavior consistent with lattice simulations.
Attenuation in Superconducting Circular Waveguides
Directory of Open Access Journals (Sweden)
K. H. Yeap
2016-09-01
Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.
MHD waveguides in space plasma
International Nuclear Information System (INIS)
Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.
2010-01-01
The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.
Symmetric extendibility of quantum states
Nowakowski, Marcin L.
2015-01-01
Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...
International Nuclear Information System (INIS)
Burtraw, Dallas; Palmer, Karen; Kahn, Danny
2010-01-01
How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.
Zhang, Fan; Yun, Han; Wang, Yun; Lu, Zeqin; Chrostowski, Lukas; Jaeger, Nicolas A F
2017-01-15
We design and demonstrate a compact broadband polarization beam splitter (PBS) using a symmetric directional coupler with sinusoidal bends on a silicon-on-insulator platform. The sinusoidal bends in our PBS suppress the power exchange between two parallel symmetric strip waveguides for the transverse-electric (TE) mode, while allowing for the maximum power transfer to the adjacent waveguide for the transverse-magnetic (TM) mode. Our PBS has a nominal coupler length of 8.55 μm, and it has an average extinction ratio (ER) of 12.0 dB for the TE mode, an average ER of 20.1 dB for the TM mode, an average polarization isolation (PI) of 20.6 dB for the through port, and an average PI of 11.5 dB for the cross port, all over a bandwidth of 100 nm.
Directory of Open Access Journals (Sweden)
Giuseppe Dattoli
1996-05-01
Full Text Available q analog of bessel functions, symmetric under the interchange of q and q^ −1 are introduced. The definition is based on the generating function realized as product of symmetric q-exponential functions with appropriate arguments. Symmetric q-Bessel function are shown to satisfy various identities as well as second-order q-differential equations, which in the limit q → 1 reproduce those obeyed by the usual cylindrical Bessel functions. A brief discussion on the possible algebraic setting for symmetric q-Bessel functions is also provided.
Bistable states of TM polarized non-linear waves guided by symmetric layered structures
International Nuclear Information System (INIS)
Mihalache, D.
1985-04-01
Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)
Waveguide harmonic damper for klystron amplifier
International Nuclear Information System (INIS)
Kang, Y.
1998-01-01
A waveguide harmonic damper was designed for removing the harmonic frequency power from the klystron amplifiers of the APS linac. Straight coaxial probe antennas are used in a rectangular waveguide to form a damper. A linear array of the probe antennas is used on a narrow wall of the rectangular waveguide for damping klystron harmonics while decoupling the fundamental frequency in dominent TE 01 mode. The klystron harmonics can exist in the waveguide as waveguide higher-order modes above cutoff. Computer simulations are made to investigate the waveguide harmonic damping characteristics of the damper
Reciprocity principle for scattered fields from discontinuities in waveguides.
Pau, Annamaria; Capecchi, Danilo; Vestroni, Fabrizio
2015-01-01
This study investigates the scattering of guided waves from a discontinuity exploiting the principle of reciprocity in elastodynamics, written in a form that applies to waveguides. The coefficients of reflection and transmission for an arbitrary mode can be derived as long as the principle of reciprocity is satisfied at the discontinuity. Two elastodynamic states are related by the reciprocity. One is the response of the waveguide in the presence of the discontinuity, with the scattered fields expressed as a superposition of wave modes. The other state is the response of the waveguide in the absence of the discontinuity oscillating according to an arbitrary mode. The semi-analytical finite element method is applied to derive the needed dispersion relation and wave mode shapes. An application to a solid cylinder with a symmetric double change of cross-section is presented. This model is assumed to be representative of a damaged rod. The coefficients of reflection and transmission of longitudinal waves are investigated for selected values of notch length and varying depth. Copyright © 2014 Elsevier B.V. All rights reserved.
Mode converters for generating the HE11 (gaussian-like) mode from TE01 in circular waveguide
International Nuclear Information System (INIS)
Doane, J.L.
1982-09-01
The HE11 mode in corrugated waveguide has a field distribution very close to that of an ideal gaussian mode. Its radiation pattern is symmetric about the waveguide axis and exhibits virtually no cross polarization. This work reports measurements on mode converters to transform the TE01 mode into HE11 for electron cyclotron heating (ECH) experiments. The first mode converter is a 28 degree bend in 1.094-inch I.D. circular waveguide which generates TM11 from TE01 with a measured efficiency of over 95% at 60 GHz. A second converter consists of a straight corrugated waveguide section of the same I.D. in which the corrugation depth increases gradually from zero to nominally a quarter wavelength. This section converts TM11 to HE11 with an efficiency of about 97%. The overall efficiency of conversion from TE01 to HE11 exceeds 91% over a measured range of 59.2 to 60.1 GHz
PT-symmetry management in oligomer systems
International Nuclear Information System (INIS)
Horne, R L; Cuevas, J; Kevrekidis, P G; Whitaker, N; Abdullaev, F Kh; Frantzeskakis, D J
2013-01-01
We study the effects of management of the PT-symmetric part of the potential within the setting of Schrödinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analysed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two. (paper)
RT-Symmetric Laplace Operators on Star Graphs: Real Spectrum and Self-Adjointness
Directory of Open Access Journals (Sweden)
Maria Astudillo
2015-01-01
Full Text Available How ideas of PT-symmetric quantum mechanics can be applied to quantum graphs is analyzed, in particular to the star graph. The class of rotationally symmetric vertex conditions is analyzed. It is shown that all such conditions can effectively be described by circulant matrices: real in the case of odd number of edges and complex having particular block structure in the even case. Spectral properties of the corresponding operators are discussed.
Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials
Hou, Zhilin; Assouar, Badreddine
2018-02-01
We theoretically and numerically report on the tunable elastic Parity-Time (PT) symmetric structure based on shunted piezoelectric units. We show that the elastic loss and gain can be archived in piezoelectric materials when they are shunted by external circuits containing positive and negative resistances. We present and discuss, as an example, the strongly dependent relationship between the exceptional points of a three-layered system and the impedance of their external shunted circuit. The achieved results evidence that the PT symmetric structures based on this proposed concept can actively be tuned without any change of their geometric configurations.
Defect solitons in saturable nonlinearity media with parity-time symmetric optical lattices
Energy Technology Data Exchange (ETDEWEB)
Hu, Sumei [Department of Physics, Guangdong University of Petrochemical Technology, Maoming 525000 (China); Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631 (China); Hu, Wei, E-mail: huwei@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631 (China)
2013-11-15
We reported the existence and stability of defect solitons in saturable nonlinearity media with parity-time (PT) symmetric optical lattices. Families of fundamental and dipole solitons are found in the semi-infinite gap and the first gap. The power of solitons increases with the increasing of the propagation constant and saturation parameter. The existence areas of fundamental and dipole solitons shrink with the growth of saturation parameter. The instability of dipole solitons for positive and no defect induced by the imaginary part of PT symmetric potentials can be suppressed by the saturation nonlinearity, but for negative defect it cannot be suppressed by the saturation nonlinearity.
Development of Traveling Wave Actuators Using Waveguides of Different Geometrical Forms
Directory of Open Access Journals (Sweden)
Ramutis Bansevicius
2016-01-01
Full Text Available The paper covers the research and development of piezoelectric traveling wave actuators using different types of the waveguides. The introduced piezoelectric actuators can be characterized by specific areas of application, different resolution, and torque. All presented actuators are ultrasonic resonant devices and they were developed to increase amplitudes of the traveling wave oscillations of the contact surface. Three different waveguides are introduced, that is, symmetrical, asymmetrical, and cone type waveguide. A piezoelectric ring with the sectioned electrodes is used to excite traveling wave oscillations for all actuators. Operating principle, electrode pattern, and excitation regimes of piezoelectric actuators are described. A numerical modelling of the actuators was performed to validate the operating principle and to calculate trajectories of the contact points motion. Prototype actuators were made and experimental study was performed. The results of numerical and experimental analysis are discussed.
Cascaded-focus laser writing of low-loss waveguides in polymers.
Pätzold, Welm M; Reinhardt, Carsten; Demircan, Ayhan; Morgner, Uwe
2016-03-15
Waveguide writing in poly (methyl methacrylate) (PMMA) with femtosecond laser radiation is presented. An adequate refractive index change is induced in the border area below the irradiated focal volume. It supports an almost symmetric fundamental mode with propagation losses down to 0.5 dB/cm, the lowest losses observed so far in this class of materials. The writing process with a cascaded focus is demonstrated to be highly reliable over a large parameter range.
Conformally symmetric traversable wormholes
International Nuclear Information System (INIS)
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-01-01
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced
Photonic crystal waveguides in artificial opals
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei
2008-01-01
3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...... is heavily dependent on the lattice position of the waveguide and its direction. Our experiments of defect inscription by 2-photon polymerization for the production of straight and bent waveguides in opal templates are reported....
Coupled mode theory of periodic waveguides arrays
DEFF Research Database (Denmark)
Lavrinenko, Andrei; Chigrin, Dmitry N.
We apply the scalar coupled mode theory to the case of waveguides array consisting om two periodic waveguides. One of the waveguides is arbitrary shifted along another. A longitudinal shift acts as a parameter in the coupled mode theory. The proposed theory explains peculiarities of modes dispers...... dispersion and transmission in coupled periodic waveguides systems. Analytical results are compared with the numerical ones obtained by the plane wave expansion and FDTD methods....
Controllable scattering of photons in a one-dimensional resonator waveguide
Sun, C. P.; Zhou, L.; Gong, Z. R.; Liu, Y. X.; Nori, F.
2009-03-01
We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. [4pt] L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons in a 1D resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). URL: http://link.aps.org/abstract/PRL/v101/e100501
Light-emitting waveguide-plasmon polaritions
Rodriguez, S.R.K.; Murai, S.; Verschuuren, M.A.; Gómez Rivas, J.
2012-01-01
We demonstrate the generation of light in an optical waveguide strongly coupled to a periodic array of metallic nanoantennas. This coupling gives rise to hybrid waveguide-plasmon polaritons (WPPs), which undergo a transmutation from plasmon to waveguide mode and vice versa as the eigenfrequency
Theoretical study of the folded waveguide
International Nuclear Information System (INIS)
Chen, G.L.; Owens, T.L.; Whealton, J.H.
1988-01-01
We have applied a three-dimensional (3-D) algorithm for solving Maxwell's equations to the analysis of foleded waveguides used for fusion plasma heating at the ion cyclotron resonance frequency. A rigorous analysis of the magnetic field structure in the folded waveguide is presented. The results are compared to experimenntal measurements. Optimum conditions for the folded waveguide are discussed. 6 refs., 10 figs
Fabrication of plasmonic waveguides for device applications
DEFF Research Database (Denmark)
Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu
2007-01-01
and thickness-modulated gold strips different waveguide components including reflecting gratings can be realized. For applications where polarization is random or changing, metal nanowire waveguides are shown to be suitable candidates for efficient guiding of arbitrary polarized light. Plasmonic waveguides...
Waveguide Phased Array Antenna Analysis and Synthesis
Visser, H.J.; Keizer, W.P.M.N.
1996-01-01
Results of two software packages for analysis and synthesis of waveguide phased array antennas are shown. The antennas consist of arrays of open-ended waveguides where irises can be placed in the waveguide apertures and multiple dielectric sheets in front of the apertures in order to accomplish a
Longitudinal Modes along Thin Piezoelectric Waveguides for Liquid Sensing Applications
Directory of Open Access Journals (Sweden)
Cinzia Caliendo
2015-06-01
Full Text Available The propagation of longitudinally polarized acoustic modes along thin piezoelectric plates (BN, ZnO, InN, AlN and GaN is theoretically studied, aiming at the design of high frequency electroacoustic devices suitable for work in liquid environments. The investigation of the acoustic field profile across the plate revealed the presence of longitudinally polarized Lamb modes, travelling at velocities close to that of the longitudinal bulk acoustic wave propagating in the same direction. Such waves are suitable for the implementation of high-frequency, low-loss electroacoustic devices operating in liquid environments. The time-averaged power flow density, the phase velocity and the electroacoustic coupling coefficient K2 dispersion curves were studied, for the first (S0 and four higher order (S1, S2, S3, S4 symmetrical modes for different electrical boundary conditions. Two electroacoustic coupling configurations were investigated, based on interdigitated transducers, with or without a metal floating electrode at the opposite plate surface. Enhanced performances, such as a K2 as high as 8.5% and a phase velocity as high as 16,700 m/s, were demostrated for the ZnO- and BN-based waveguides, as an example. The relative velocity changes, and the inertial and viscous sensitivities of the first symmetric and anti-symmetric mode, S0 and A0, propagating along thin plates bordered by a viscous liquid were derived using the perturbation approach. The present study highlights the feasibility of the piezoelectric waveguides to the development of high-frequency, integrated-circuits compatible electroacoustic devices suitable for working in liquid environment.
Coupled-resonator optical waveguides
DEFF Research Database (Denmark)
Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor
2010-01-01
Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...
Waveguiding with surface plasmon polaritons
DEFF Research Database (Denmark)
Han, Zhanghua; Bozhevolnyi, Sergey I.
2014-01-01
the diffraction limit, i.e., on the nanoscale, while enhancing local field strengths by several orders of magnitude. This unique feature of SPP modes along with ever increasing demands for miniaturization of photonic components and circuits generates an exponentially growing interest to SPP-mediated radiation...... guiding and SPP-based waveguide components. Here we review the current status of this rapidly developing field, starting with a brief presentation of main planar SPP modes, and then describing in detail various SPP-based waveguide configurations that ensure two-dimensional mode confinement. Excitation...
PT; Pro-time; Anticoagulant-prothrombin time; Clotting time: protime; INR; International normalized ratio ... PT is measured in seconds. Most of the time, results are given as what is called INR ( ...
Fundamental mode rf power dissipated in a waveguide attached to an accelerating cavity
International Nuclear Information System (INIS)
Kang, Y.W.
1993-01-01
An accelerating RF cavity usually requires accessory devices such as a tuner, a coupler, and a damper to perform properly. Since a device is attached to the wall of the cavity to have certain electrical coupling of the cavity field through the opening. RF power dissipation is involved. In a high power accelerating cavity, the RF power coupled and dissipated in the opening and in the device must be estimated to design a proper cooling system for the device. The single cell cavities of the APS storage ring will use the same accessories. These cavities are rotationally symmetric and the fields around the equator can be approximated with the fields of the cylindrical pillbox cavity. In the following, the coupled and dissipated fundamental mode RF power in a waveguide attached to a pillbox cavity is discussed. The waveguide configurations are (1) aperture-coupled cylindrical waveguide with matched load termination; (2) short-circuited cylindrical waveguide; and (3) E-probe or H-loop coupled coaxial waveguide. A short-circuited, one-wavelength coaxial structure is considered for the fundamental frequency rejection circuit of an H-loop damper
Distributed temperature sensors development using an stepped-helical ultrasonic waveguide
Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2018-04-01
This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.
Coupled nanopillar waveguides: optical properties and applications
DEFF Research Database (Denmark)
Chigrin, Dmitry N.; Zhukovsky, Sergei V.; Lavrinenko, Andrei
2007-01-01
, while guided modes dispersion is strongly affected by the waveguide structure. We present a systematic analysis of the optical properties of coupled nanopillar waveguides and discuss their possible applications for integrated optics. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim......In this paper we review basic properties of coupled periodic and aperiodic nanopillar waveguides. A coupled nanopillar waveguide consists of several rows of periodically or aperiodically placed dielectric rods (pillars). In such a waveguide, light confinement is due to the total internal reflection...
Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime
Shui, Tao; Yang, Wen-Xing; Liu, Shaopeng; Li, Ling; Zhu, Zhonghu
2018-03-01
We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional (1 D ) and two-dimensional (2 D ) atomic gratings with periodic parity-time (PT )-symmetric refractive index. The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the conditions under which PT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating. The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition, we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated optics.
Mesotherapy for benign symmetric lipomatosis.
Hasegawa, Toshio; Matsukura, Tomoyuki; Ikeda, Shigaku
2010-04-01
Benign symmetric lipomatosis, also known as Madelung disease, is a rare disorder characterized by fat distribution around the shoulders, arms, and neck in the context of chronic alcoholism. Complete excision of nonencapsulated lipomas is difficult. However, reports describing conservative therapeutic measures for lipomatosis are rare. The authors present the case of a 42-year-old man with a diagnosis of benign symmetric lipomatosis who had multiple, large, symmetrical masses in his neck. Multiple phosphatidylcholine injections in the neck were administered 4 weeks apart, a total of seven times to achieve lipolysis. The patient's lipomatosis improved in response to the injections, and he achieved good cosmetic results. Intralesional injection, termed mesotherapy, using phosphatidylcholine is a potentially effective therapy for benign symmetric lipomatosis that should be reconsidered as a therapeutic option for this disease.
Optical Slot-Waveguide Based Biochemical Sensors
Directory of Open Access Journals (Sweden)
Carlos Angulo Barrios
2009-06-01
Full Text Available Slot-waveguides allow light to be guided and strongly confined inside a nanometer-scale region of low refractive index. Thus stronger light-analyte interaction can be obtained as compared to that achievable by a conventional waveguide, in which the propagating beam is confined to the high-refractive-index core of the waveguide. In addition, slot-waveguides can be fabricated by employing CMOS compatible materials and technology, enabling miniaturization, integration with electronic, photonic and fluidic components in a chip, and mass production. These advantages have made the use of slot-waveguides for highly sensitive biochemical optical integrated sensors an emerging field. In this paper, recent achievements in slot-waveguide based biochemical sensing will be reviewed. These include slot-waveguide ring resonator based refractometric label-free biosensors, label-based optical sensing, and nano-opto-mechanical sensors.
Looking for symmetric Bell inequalities
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-01-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell e...
Dielectric waveguide amplifiers and lasers
Pollnau, Markus
The performance of semiconductor amplifiers and lasers has made them the preferred choice for optical gain on a micro-chip. In the past few years, we have demonstrated that also rare-earth-ion-doped dielectric waveguides show remarkable performance, ranging from a small-signal gain per unit length
Glass Waveguides for Periodic Poling
DEFF Research Database (Denmark)
Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin
2005-01-01
Planar silica-based waveguide devices have been developed for second-harmonic generation by poling with periodic electrodes. We show that detrimental charge transport can occur along interfaces, but with proper choice of fabrication, high-quality devices are obtained....
Waveguides with asymptotically diverging twisting
Czech Academy of Sciences Publication Activity Database
Krejčiřík, David
2015-01-01
Roč. 46, AUG (2015), s. 7-10 ISSN 0893-9659 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguide * exploding twisting * Quasi-bounded * Quasi-cylindrical * discrete spectrum Subject RIV: BE - Theoretical Physics Impact factor: 1.659, year: 2015
Photonic-crystal waveguide biosensor
DEFF Research Database (Denmark)
Skivesen, Nina; Têtu, Amélie; Kristensen, Martin
2007-01-01
A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...
Monolithic Integrated Ceramic Waveguide Filters
Hunter, IC; Sandhu, MY
2014-01-01
Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.
Poling of Planar Silica Waveguides
DEFF Research Database (Denmark)
Arentoft, Jesper; Kristensen, Martin; Jensen, Jesper Bo
1999-01-01
UV-written planar silica waveguides are poled using two different poling techniques, thermal poling and UV-poling. Thermal poling induces an electro-optic coefficient of 0.067 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. The induced electro-optic effect shows a linear dependence...
Analytical results for non-Hermitian parity–time-symmetric and ...
Indian Academy of Sciences (India)
Abstract. We investigate both the non-Hermitian parity–time-(PT-)symmetric and Hermitian asymmetric volcano potentials, and present the analytical solution in terms of the confluent Heun function. Under certain special conditions, the confluent Heun function can be terminated as a polynomial, thereby leading to certain ...
Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.
2018-06-01
The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.
Parity-Time Symmetric Photonics
Zhao, Han; Feng, Liang
2018-01-01
The establishment of non-Hermitian quantum mechanics (such as parity-time (PT) symmetry) stimulates a paradigmatic shift for studying symmetries of complex potentials. Owing to the convenient manipulation of optical gain and loss in analogy
Harmonic analysis on symmetric spaces
Terras, Audrey
This text explores the geometry and analysis of higher rank analogues of the symmetric spaces introduced in volume one. To illuminate both the parallels and differences of the higher rank theory, the space of positive matrices is treated in a manner mirroring that of the upper-half space in volume one. This concrete example furnishes motivation for the general theory of noncompact symmetric spaces, which is outlined in the final chapter. The book emphasizes motivation and comprehensibility, concrete examples and explicit computations (by pen and paper, and by computer), history, and, above all, applications in mathematics, statistics, physics, and engineering. The second edition includes new sections on Donald St. P. Richards’s central limit theorem for O(n)-invariant random variables on the symmetric space of GL(n, R), on random matrix theory, and on advances in the theory of automorphic forms on arithmetic groups.
Reverse-symmetry waveguides: Theory and fabrication
DEFF Research Database (Denmark)
Horvath, R.; Lindvold, Lars René; Larsen, N.B.
2002-01-01
We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...... index of the waveguide substrate less than the refractive index of the medium covering the waveguiding film (n(water) = 1.33). This is opposed to the conventional waveguide geometry, where the substrate is usually glass or polymers with refractive indices of approximate to1.5. The reverse configuration...... are combined with air-grooved polymer supports to form freestanding single-material polymer waveguides of reverse symmetry capable of guiding light....
DEFF Research Database (Denmark)
Skivesen, Nina
This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...... for various biosensing applications, however a thorough study of the sensor configurations has not been presented, but is the main subject of this thesis. Optical sensors are generally well suited for bio-sensing asthey show high sensitivity and give an immediate response for minute changes in the refractive...... index of a sample, due to the high sensitivity of optical bio-sensors detection of non-labeled biological objects can be performed. The majority of opticalsensors presented in the literature and commercially available optical sensors are based on evanescent wave sensing, however most of these sensors...
Excitation of waves in elastic waveguides by piezoelectric patch actuators
CSIR Research Space (South Africa)
Loveday, PW
2006-01-01
Full Text Available for waveguides excited by piezoelectric patch actuators. The waveguide is modelled using specially developed waveguide finite elements. These elements are formulated using a complex exponential to describe the wave propagation along the structure and finite...
Multilayer cladding with hyperbolic dispersion for plasmonic waveguides
DEFF Research Database (Denmark)
Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi
2015-01-01
We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....
Looking for symmetric Bell inequalities
International Nuclear Information System (INIS)
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-01-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Symmetric normalisation for intuitionistic logic
DEFF Research Database (Denmark)
Guenot, Nicolas; Straßburger, Lutz
2014-01-01
We present two proof systems for implication-only intuitionistic logic in the calculus of structures. The first is a direct adaptation of the standard sequent calculus to the deep inference setting, and we describe a procedure for cut elimination, similar to the one from the sequent calculus......, but using a non-local rewriting. The second system is the symmetric completion of the first, as normally given in deep inference for logics with a DeMorgan duality: all inference rules have duals, as cut is dual to the identity axiom. We prove a generalisation of cut elimination, that we call symmetric...
Diagrams for symmetric product orbifolds
International Nuclear Information System (INIS)
Pakman, Ari; Rastelli, Leonardo; Razamat, Shlomo S.
2009-01-01
We develop a diagrammatic language for symmetric product orbifolds of two-dimensional conformal field theories. Correlation functions of twist operators are written as sums of diagrams: each diagram corresponds to a branched covering map from a surface where the fields are single-valued to the base sphere where twist operators are inserted. This diagrammatic language facilitates the study of the large N limit and makes more transparent the analogy between symmetric product orbifolds and free non-abelian gauge theories. We give a general algorithm to calculate the leading large N contribution to four-point correlators of twist fields.
Looking for symmetric Bell inequalities
Energy Technology Data Exchange (ETDEWEB)
Bancal, Jean-Daniel; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 20 rue de l' Ecole-de Medecine, CH-1211 Geneva 4 (Switzerland); Pironio, Stefano, E-mail: jean-daniel.bancal@unige.c [Laboratoire d' Information Quantique, Universite Libre de Bruxelles (Belgium)
2010-09-24
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
Symmetric autocompensating quantum key distribution
Walton, Zachary D.; Sergienko, Alexander V.; Levitin, Lev B.; Saleh, Bahaa E. A.; Teich, Malvin C.
2004-08-01
We present quantum key distribution schemes which are autocompensating (require no alignment) and symmetric (Alice and Bob receive photons from a central source) for both polarization and time-bin qubits. The primary benefit of the symmetric configuration is that both Alice and Bob may have passive setups (neither Alice nor Bob is required to make active changes for each run of the protocol). We show that both the polarization and the time-bin schemes may be implemented with existing technology. The new schemes are related to previously described schemes by the concept of advanced waves.
Pulsed Laser Deposition: passive and active waveguides
Czech Academy of Sciences Publication Activity Database
Jelínek, Miroslav; Flory, F.; Escoubas, L.
2009-01-01
Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009
All silicon waveguide spherical microcavity coupler device.
Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F
2011-02-14
A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
Talbot Effect in Three Waveguide Arrays
International Nuclear Information System (INIS)
Zhi, Li; Hai-Feng, Zhou; Jian-Yi, Yang; Xiao-Qing, Jiang
2008-01-01
By taking the coupling between the non-neighbourhood waveguides into account, the coupling characteristic of three waveguide arrays is analysed. The strong coupling equation of three waveguides is dealt with Laplace transform and LU decomposition. The general field evolution equation is obtained by inversion of the Laplace transform. The results show that the self-imaging conditions (Talbot effect) do not satisfy in general. The theoretical predictions are in good agreement with the BPM simulations. (fundamental areas of phenomenology (including applications))
Guided modes in silicene-based waveguides
Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang
2018-02-01
Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.
Near-field characterization of plasmonic waveguides
DEFF Research Database (Denmark)
Zenin, Volodymyr
2014-01-01
simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...
Symmetric relations of finite negativity
Kaltenbaeck, M.; Winkler, H.; Woracek, H.; Forster, KH; Jonas, P; Langer, H
2006-01-01
We construct and investigate a space which is related to a symmetric linear relation S of finite negativity on an almost Pontryagin space. This space is the indefinite generalization of the completion of dom S with respect to (S.,.) for a strictly positive S on a Hilbert space.
Tilting-connected symmetric algebras
Aihara, Takuma
2010-01-01
The notion of silting mutation was introduced by Iyama and the author. In this paper we mainly study silting mutation for self-injective algebras and prove that any representation-finite symmetric algebra is tilting-connected. Moreover we give some sufficient conditions for a Bongartz-type Lemma to hold for silting objects.
Symmetric group representations and Z
Adve, Anshul; Yong, Alexander
2017-01-01
We discuss implications of the following statement about the representation theory of symmetric groups: every integer appears infinitely often as an irreducible character evaluation, and every nonnegative integer appears infinitely often as a Littlewood-Richardson coefficient and as a Kronecker coefficient.
Symmetric Key Authentication Services Revisited
Crispo, B.; Popescu, B.C.; Tanenbaum, A.S.
2004-01-01
Most of the symmetric key authentication schemes deployed today are based on principles introduced by Needham and Schroeder [15] more than twenty years ago. However, since then, the computing environment has evolved from a LAN-based client-server world to include new paradigms, including wide area
Quantum systems and symmetric spaces
International Nuclear Information System (INIS)
Olshanetsky, M.A.; Perelomov, A.M.
1978-01-01
Certain class of quantum systems with Hamiltonians related to invariant operators on symmetric spaces has been investigated. A number of physical facts have been derived as a consequence. In the classical limit completely integrable systems related to root systems are obtained
The symmetric longest queue system
van Houtum, Geert-Jan; Adan, Ivo; van der Wal, Jan
1997-01-01
We derive the performance of the exponential symmetric longest queue system from two variants: a longest queue system with Threshold Rejection of jobs and one with Threshold Addition of jobs. It is shown that these two systems provide lower and upper bounds for the performance of the longest queue
Symmetric imaging findings in neuroradiology
International Nuclear Information System (INIS)
Zlatareva, D.
2015-01-01
Full text: Learning objectives: to make a list of diseases and syndromes which manifest as bilateral symmetric findings on computed tomography and magnetic resonance imaging; to discuss the clinical and radiological differential diagnosis for these diseases; to explain which of these conditions necessitates urgent therapy and when additional studies and laboratory can precise diagnosis. There is symmetry in human body and quite often we compare the affected side to the normal one but in neuroradiology we might have bilateral findings which affected pair structures or corresponding anatomic areas. It is very rare when clinical data prompt diagnosis. Usually clinicians suspect such an involvement but Ct and MRI can reveal symmetric changes and are one of the leading diagnostic tool. The most common location of bilateral findings is basal ganglia and thalamus. There are a number of diseases affecting these structures symmetrically: metabolic and systemic diseases, intoxication, neurodegeneration and vascular conditions, toxoplasmosis, tumors and some infections. Malformations of cortical development and especially bilateral perisylvian polymicrogyria requires not only exact report on the most affected parts but in some cases genetic tests or combination with other clinical symptoms. In the case of herpes simplex encephalitis bilateral temporal involvement is common and this finding very often prompt therapy even before laboratory results. Posterior reversible encephalopathy syndrome (PReS) and some forms of hypoxic ischemic encephalopathy can lead to symmetric changes. In these acute conditions MR plays a crucial role not only in diagnosis but also in monitoring of the therapeutic effect. Patients with neurofibromatosis type 1 or type 2 can demonstrate bilateral optic glioma combined with spinal neurofibroma and bilateral acoustic schwanoma respectively. Mirror-image aneurysm affecting both internal carotid or middle cerebral arteries is an example of symmetry in
Design and Modeling of Symmetric Three Branch Polymer Planar Optical Power Dividers
Directory of Open Access Journals (Sweden)
V. Prajzler
2013-04-01
Full Text Available Two types of polymer-based three-branch symmetric planar optical power dividers (splitters were designed, multimode interference (MMI splitter and triangular shape-spacing splitter. By means of modeling the real structures were simulated as made of Epoxy Novolak Resin on silicon substrate, with silica buffer layer and polymethylmethacrylate as protection cover layer. The design of polymer waveguide structure was done by Beam Propagation Method. After comparing properties of both types of the splitters we have demonstrated that our new polymer based triangular shaped splitter can work simultaneously in broader spectrum, the only condition would be that the waveguides are single-mode guiding. It practically means that, what concerns communication wavelengths, it can on principle simultaneously operate at two mainly used wavelengths, 1310 and 1550 nm.
Calculation of the coherent transport properties of a symmetric spin nanocontact
International Nuclear Information System (INIS)
Bourahla, B.; Khater, A.; Tigrine, R.
2009-01-01
A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.
Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode
Yuan, Sheng-Nan; Fang, Yun-Tuan
2017-10-01
In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.
International Nuclear Information System (INIS)
Zou, Qiushun; Yu, Tianbao; Liu, Jiangtao; Wang, Tongbiao; Liao, Qinghua; Liu, Nianhua
2015-01-01
We report an acoustic multimode interference effect and self-imaging phenomena in an acoustic multimode waveguide system which consists of M parallel phononic crystal waveguides (M-PnCWs). Results show that the self-imaging principle remains applicable for acoustic waveguides just as it does for optical multimode waveguides. To achieve the dispersions and replicas of the input acoustic waves produced along the propagation direction, we performed the finite element method on M-PnCWs, which support M guided modes within the target frequency range. The simulation results show that single images (including direct and mirrored images) and N-fold images (N is an integer) are identified along the propagation direction with asymmetric and symmetric incidence discussed separately. The simulated positions of the replicas agree well with the calculated values that are theoretically decided by self-imaging conditions based on the guided mode propagation analysis. Moreover, the potential applications based on this self-imaging effect for acoustic wavelength de-multiplexing and beam splitting in the acoustic field are also presented. (paper)
Inkjet printed ferrite-filled rectangular waveguide X-band isolator
Farooqui, Muhammad Fahad
2014-06-01
For the first time, a rectangular waveguide (RWG) isolator realized through inkjet printing on a ferrite substrate is presented. Yttrium iron garnet (YIG) substrate is used for the realization of the ferrite-filled isolator. Contrary to the substrate integrated waveguide (SIW) approach, all four walls of the waveguide have been inkjet printed on the YIG substrate demonstrating the utility of inkjet printing process for realizing non-planar microwave components. The isolation is achieved by applying an anti-symmetrical DC magnetic bias to the ferrite-filled waveguide which then exhibits a unidirectional mode of operation. The isolator is fed by a microstrip to RWG transition and demonstrates an isolation figure-of-merit (IFM) of more than 51 dB in the operating band from 9.95 GHz to 11.73 GHz with a very high peak IFM of 69 dB. The minimum insertion loss in the operating band is 2.73 dB (including losses from the transitions). The isolator measures 33 mm × 8 mm × 0.4 mm. This work introduces an inkjet printed non-planar microwave device which is easy to fabricate showing the ability of inkjet printing for fabricating complex microwave systems. © 2014 IEEE.
Energy Technology Data Exchange (ETDEWEB)
Benayas, A.; Jaque, D. [Universidad Autonoma de Madrid, Departamento de Fisica de Materiales, Madrid (Spain); Silva, W.F.; Jacinto, C. [Universidade Federal de Alagoas, Grupo de Fotonica e Fluidos Complexos, Instituto de Fisica, Maceio, Alagoas (Brazil); Rodenas, A.; Thomsom, R.R.; Psaila, N.D.; Reid, D.T.; Kar, A.K. [Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh (United Kingdom); Vazquez de Aldana, J. [Universidad de Salamanca, Grupo de Optica, Departamento de Fisica Aplicada, Facultad de Ciencias Fisicas, Salamanca (Spain); Chen, F.; Tan, Y. [Shandong University, School of Physics, Jinan (China); Torchia, G.A. [CONICET-CIC, Centro de Investigaciones Opticas, La Plata (Argentina)
2011-07-15
We report the improvement of ultrafast laser written optical waveguides in Yb:YAG ceramics by tailoring the presence of heat accumulation effects. From a combination of ytterbium micro-luminescence and micro-Raman structural analysis, maps of lattice defects and stress fields have been obtained. We show how laser annealing can strongly reduce the concentration of defects and also reduce compressive stress, leading to an effective 50% reduction in the propagation losses and to more extended and symmetric propagation modes. (orig.)
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Hyperentangled photon sources in semiconductor waveguides
DEFF Research Database (Denmark)
Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei
2014-01-01
We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...
Systematic Design of Slow Light Waveguides
DEFF Research Database (Denmark)
Wang, Fengwen
it is vulnerable to manufacturing disorders. This thesis aims to design novel waveguides to alleviate signal distortions and propagation loss using optimization methodologies, and to explore the design robustness with respect to manufacturing imperfections. To alleviate the signal distortions in waveguides...
Discontinuities during UV writing of waveguides
DEFF Research Database (Denmark)
Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc
2005-01-01
UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....
Testing Born-Infeld Electrodynamics in Waveguides
International Nuclear Information System (INIS)
Ferraro, Rafael
2007-01-01
Waveguides can be employed to test nonlinear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the nonlinear behavior
Fundamental losses in planar Bragg waveguides
Vinogradov, A. V.; Mitrofanov, A. N.; Popov, A. V.; Fedin, M. A.
2007-01-01
This paper considers a planar Bragg waveguide. The guided modes and their dissipation due to the fundamental absorption are described. In the interacting-wave approximation, an analytical relation between the characteristics of the modes and parameters of the Bragg-waveguide geometry was
Bends and splitters in graphene nanoribbon waveguides
DEFF Research Database (Denmark)
Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger
2013-01-01
We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...
Silicon waveguides produced by wafer bonding
DEFF Research Database (Denmark)
Poulsen, Mette; Jensen, Flemming; Bunk, Oliver
2005-01-01
X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides...
Directory of Open Access Journals (Sweden)
CHAN DU
2014-01-01
Full Text Available We developed a biosensor that is capable for simultaneous surface plasmon resonance (SPR sensing and hyperspectral fluorescence analysis in this paper. A symmetrical metal-dielectric slab scheme is employed for the excitation of coupled plasmon waveguide resonance (CPWR in the present work. Resonance between surface plasmon mode and the guided waveguide mode generates narrower full width half-maximum of the reflective curves which leads to increased precision for the determination of refractive index over conventional SPR sensors. In addition, CPWR also offers longer surface propagation depths and higher surface electric field strengths that enable the excitation of fluorescence with hyperspectral technique to maintain an appreciable signal-to-noise ratio. The refractive index information obtained from SPR sensing and the chemical properties obtained through hyperspectral fluorescence analysis confirm each other to exclude false-positive or false-negative cases. The sensor provides a comprehensive understanding of the biological events on the sensor chips.
Quantum Electrodynamics in Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Nielsen, Henri Thyrrestrup
In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...... is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β...
Perturbation measurement of waveguides for acoustic thermometry
Lin, H.; Feng, X. J.; Zhang, J. T.
2013-09-01
Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.
Photonic waveguides theory and applications
Boudrioua, Azzedine
2009-01-01
This book presents the principles of non-linear integrated optics. The first objective is to provide the reader with a thorough understanding of integrated optics so that they may be able to develop the theoretical and experimental tools to study and control the linear and non-linear optical properties of waveguides.The potential use of these structures can then be determined in order to realize integrated optical components for light modulation and generation. The theoretical models are accompanied by experimental tools and their setting in order to characterize the studied phenomenon. Th
Slot-waveguide biochemical sensor.
Barrios, Carlos A; Gylfason, Kristinn B; Sánchez, Benito; Griol, Amadeu; Sohlström, H; Holgado, M; Casquel, R
2007-11-01
We report an experimental demonstration of an integrated biochemical sensor based on a slot-waveguide microring resonator. The microresonator is fabricated on a Si3N4-SiO2 platform and operates at a wavelength of 1.3 microm. The transmission spectrum of the sensor is measured with different ambient refractive indices ranging from n=1.33 to 1.42. A linear shift of the resonant wavelength with increasing ambient refractive index of 212 nm/refractive index units (RIU) is observed. The sensor detects a minimal refractive index variation of 2x10(-4) RIU.
Homotheties of cylindrically symmetric static spacetimes
International Nuclear Information System (INIS)
Qadir, A.; Ziad, M.; Sharif, M.
1998-08-01
In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)
The Point Zoro Symmetric Single-Step Procedure for Simultaneous Estimation of Polynomial Zeros
Directory of Open Access Journals (Sweden)
Mansor Monsi
2012-01-01
Full Text Available The point symmetric single step procedure PSS1 has R-order of convergence at least 3. This procedure is modified by adding another single-step, which is the third step in PSS1. This modified procedure is called the point zoro symmetric single-step PZSS1. It is proven that the R-order of convergence of PZSS1 is at least 4 which is higher than the R-order of convergence of PT1, PS1, and PSS1. Hence, computational time is reduced since this procedure is more efficient for bounding simple zeros simultaneously.
International Nuclear Information System (INIS)
Nelson, E.M.
1993-12-01
Some two-dimensional finite element electromagnetic field solvers are described and tested. For TE and TM modes in homogeneous cylindrical waveguides and monopole modes in homogeneous axisymmetric structures, the solvers find approximate solutions to a weak formulation of the wave equation. Second-order isoparametric lagrangian triangular elements represent the field. For multipole modes in axisymmetric structures, the solver finds approximate solutions to a weak form of the curl-curl formulation of Maxwell's equations. Second-order triangular edge elements represent the radial (ρ) and axial (z) components of the field, while a second-order lagrangian basis represents the azimuthal (φ) component of the field weighted by the radius ρ. A reduced set of basis functions is employed for elements touching the axis. With this basis the spurious modes of the curl-curl formulation have zero frequency, so spurious modes are easily distinguished from non-static physical modes. Tests on an annular ring, a pillbox and a sphere indicate the solutions converge rapidly as the mesh is refined. Computed eigenvalues with relative errors of less than a few parts per million are obtained. Boundary conditions for symmetric, periodic and symmetric-periodic structures are discussed and included in the field solver. Boundary conditions for structures with inversion symmetry are also discussed. Special corner elements are described and employed to improve the accuracy of cylindrical waveguide and monopole modes with singular fields at sharp corners. The field solver is applied to three problems: (1) cross-field amplifier slow-wave circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) a 90 degrees overmoded waveguide bend. The detuned accelerator structure is a critical application of this high accuracy field solver. To maintain low long-range wakefields, tight design and manufacturing tolerances are required
Maximally Symmetric Composite Higgs Models.
Csáki, Csaba; Ma, Teng; Shu, Jing
2017-09-29
Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.
On symmetric structures of order two
Directory of Open Access Journals (Sweden)
Michel Bousquet
2008-04-01
Full Text Available Let (ω n 0 < n be the sequence known as Integer Sequence A047749 http://www.research.att.com/ njas/sequences/A047749 In this paper, we show that the integer ω n enumerates various kinds of symmetric structures of order two. We first consider ternary trees having a reflexive symmetry and we relate all symmetric combinatorial objects by means of bijection. We then generalize the symmetric structures and correspondences to an infinite family of symmetric objects.
Zhang, Qian; Zhang, Hao Chi; Wu, Han; Cui, Tie Jun
2015-11-10
We propose a hybrid circuit for spoof surface plasmon polaritons (SPPs) and spatial waveguide modes to develop new microwave devices. The hybrid circuit includes a spoof SPP waveguide made of two anti-symmetric corrugated metallic strips and a traditional substrate integrated waveguide (SIW). From dispersion relations, we show that the electromagnetic waves only can propagate through the hybrid circuit when the operating frequency is less than the cut-off frequency of the SPP waveguide and greater than the cut-off frequency of SIW, generating efficient band-pass filters. We demonstrate that the pass band is controllable in a large range by designing the geometrical parameters of SPP waveguide and SIW. Full-wave simulations are provided to show the large adjustability of filters, including ultra wideband and narrowband filters. We fabricate a sample of the new hybrid device in the microwave frequencies, and measurement results have excellent agreements to numerical simulations, demonstrating excellent filtering characteristics such as low loss, high efficiency, and good square ratio. The proposed hybrid circuit gives important potential to accelerate the development of plasmonic integrated functional devices and circuits in both microwave and terahertz frequencies.
Sveshnikov, B. V.; Bagdasaryan, A. S.
2016-07-01
We develop a self-consistent model allowing one to analyze the properties of the interdigital transducer of the surface acoustic waves as a symmetric five-layered waveguide on a piezoelectric substrate with three possible values of the phase velocity of the acoustic-wave propagation along the longitudinal axis of the system. The transcendental dispersion relation for describing the waves in such a system is derived and the method for its instructive graphic analysis is proposed. The condition under which only the fundamental transverse mode is excited in the waveguide is formulated. The method for calculating the normalized power and the transverse distribution of the field of the continuous-spectrum waves radiated from the considered waveguide is described. It is shown that the characteristic spatial scale of the longitudinal damping of the amplitude of this field at the waveguide center can be a qualitative estimate of the transverse-mode formation length. The efficiency of a new method for suppressing the higher-order transverse waveguide modes is demonstrated.
Silicon Photonic Waveguides for Near- and Mid-Infrared Regions
Stankovic, S.; Milosevic, M.; Timotijevic, B.; Yang, P. Y.; Teo, E. J.; Crnjanski, J.; Matavulj, P.; Mashanovich, G. Z.
2007-11-01
The basic building block of every photonic circuit is a waveguide. In this paper we investigate the most popular silicon waveguide structures in the form of a silicon-on-insulator rib waveguide. We also analyse two structures that can find applications in mid- and long-wave infrared regions: free-standing and hollow core omnidirectional waveguides.
Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass
Directory of Open Access Journals (Sweden)
McMillen Ben
2013-11-01
Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.
Undulator radiation in a waveguide
Energy Technology Data Exchange (ETDEWEB)
Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.
2007-03-15
We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)
Undulator radiation in a waveguide
International Nuclear Information System (INIS)
Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.
2007-03-01
We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)
... Plasma Free Metanephrines Platelet Count Platelet Function Tests Pleural Fluid Analysis PML-RARA Porphyrin Tests Potassium Prealbumin ... and vitamin K (either in a multivitamin or liquid nutrition supplement) may decrease PT. Certain foods, such ...
Unified approach for calculating the number of confined modes in multilayered waveguiding structures
Ruschin, S.; Griffel, G.; Hardy, A.; Croitoru, N.
1986-01-01
A general formalism is developed in order to find the number of modes and mode cutoff conditions in multilayer waveguiding structures. An explicit expression is presented for the number of confined modes that allows the modes to be counted without having to analyze the specific eigenvalue equation of the structure. The method is illustrated by its application to several structures: the buried layer, the directional coupler, and the three-guide symmetrical arrangement. By a suitable extension of the formalism, the number of well-confined modes is found for a four-layer structure.
Waveguide-Based Biosensors for Pathogen Detection
Directory of Open Access Journals (Sweden)
Nile Hartman
2009-07-01
Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.
Kong, Deqing; Tsubokawa, Makoto
2015-07-27
We numerically analyzed the power-coupling characteristics between a high-index-contrast dielectric slot waveguide and a metal-insulator-metal (MIM) plasmonic slot waveguide as functions of structural parameters. Couplings due mainly to the transfer of evanescent components in two waveguides generated high transmission efficiencies of 62% when the slot widths of the two waveguides were the same and 73% when the waveguides were optimized by slightly different widths. The maximum transmission efficiency in the slot-to-slot coupling was about 10% higher than that in the coupling between a normal slab waveguide and an MIM waveguide. Large alignment tolerance of the slot-to-slot coupling was also proved. Moreover, a small gap inserted into the interface between two waveguides effectively enhances the transmission efficiency, as in the case of couplings between a normal slab waveguide and an MIM waveguide. In addition, couplings with very wideband transmissions over a wavelength region of a few hundred nanometers were validated.
High-power planar dielectric waveguide lasers
International Nuclear Information System (INIS)
Shepherd, D.P.; Hettrick, S.J.; Li, C.; Mackenzie, J.I.; Beach, R.J.; Mitchell, S.C.; Meissner, H.E.
2001-01-01
The advantages and potential hazards of using a planar waveguide as the host in a high-power diode-pumped laser system are described. The techniques discussed include the use of proximity-coupled diodes, double-clad waveguides, unstable resonators, tapers, and integrated passive Q switches. Laser devices are described based on Yb 3+ -, Nd 3+ -, and Tm 3+ -doped YAG, and monolithic and highly compact waveguide lasers with outputs greater than 10 W are demonstrated. The prospects for scaling to the 100 W level and for further integration of devices for added functionality in a monolithic laser system are discussed. (author)
Guided modes of elliptical metamaterial waveguides
International Nuclear Information System (INIS)
Halterman, Klaus; Feng, Simin; Overfelt, P. L.
2007-01-01
The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide
A self-repairing polymer waveguide sensor
International Nuclear Information System (INIS)
Song, Young J; Peters, Kara J
2011-01-01
This paper presents experimental demonstrations of a self-repairing strain sensor waveguide created by self-writing in a photopolymerizable resin system. The sensor is fabricated between two multi-mode optical fibers via lightwaves in the ultraviolet (UV) wavelength range and operates as a sensor through interrogation of the power transmitted through the waveguide in the infrared (IR) wavelength range. After failure of the sensor occurs due to loading, the waveguide re-bridges the gap between the two optical fibers through the UV resin. The response of the original sensor and the self-repaired sensor to strain are measured and show similar behaviors
The waveguide Free-Electron Laser. 14
International Nuclear Information System (INIS)
Walsh, J.E.
1990-01-01
The general characteristics of free-electron lasers (FELs) which employ a waveguiding structure to confine electromagnetic fields and to couple them to the electron beam is discussed. The mode structure of the basic parallel plate waveguide and its adaptation via quasi-optical techniques to FEL resonator design are considered in detail. A summary of the theory of FEL systems which depend intrinsically on a guide structure (micro-undulator, Cerenkov and metal-grating FELs) and a review of progress on waveguide FEL experiments are also presented. (author). 44 refs.; 16 figs
Nanofocusing in a tapered graphene plasmonic waveguide
DEFF Research Database (Denmark)
Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger
2015-01-01
Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....
Nonlinear optical model for strip plasmonic waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei
2016-01-01
This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016...... approaches. (C) 2016 Optical Society of America...
Sm 3+-doped polymer optical waveguide amplifiers
Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing
2010-04-01
Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.
Baryon symmetric big bang cosmology
International Nuclear Information System (INIS)
Stecker, F.W.
1978-01-01
It is stated that the framework of baryon symmetric big bang (BSBB) cosmology offers our greatest potential for deducting the evolution of the Universe because its physical laws and processes have the minimum number of arbitrary assumptions about initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the Universe and how galaxies and galaxy clusters are formed. BSBB cosmology also provides the only acceptable explanation at present for the origin of the cosmic γ-ray background radiation. (author)
Symmetric functions and orthogonal polynomials
Macdonald, I G
1997-01-01
One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.
Immanant Conversion on Symmetric Matrices
Directory of Open Access Journals (Sweden)
Purificação Coelho M.
2014-01-01
Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.
Waveguide silicon nitride grating coupler
Litvik, Jan; Dolnak, Ivan; Dado, Milan
2016-12-01
Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.
A Broadband Waveguide Transfer Standard for Dissemination of UK National Microwave Power Standards,
1982-01-01
la )PT " RT a where RT is the resistance of the thermistor when the bridge is balanced. Although the thermistor mount is temperature controlled, some...voltage difference V1 - V and Vb - V2 - V then equation la 4 ... . .. mmm mmm mmmmmmmm m m mm mm mmmm m mm A becomes 2V(V - Vb) + V 2 - 2 P a b a b (lb...Weidman, "An international intercomparison of power standards in WR-28 waveguide". Metrologia , 17, June 1981. 4 G F Engen. "A refined X-band microwave
Ghatak, Ananya; Das, Tanmoy
2018-01-01
Recently developed parity (P ) and time-reversal (T ) symmetric non-Hermitian systems govern a rich variety of new and characteristically distinct physical properties, which may or may not have a direct analog in their Hermitian counterparts. We study here a non-Hermitian, PT -symmetric superconducting Hamiltonian that possesses a real quasiparticle spectrum in the PT -unbroken region of the Brillouin zone. Within a single-band mean-field theory, we find that real quasiparticle energies are possible when the superconducting order parameter itself is either Hermitian or anti-Hermitian. Within the corresponding Bardeen-Cooper-Schrieffer (BCS) theory, we find that several properties are characteristically distinct and novel in the non-Hermitian pairing case than its Hermitian counterpart. One of our significant findings is that while a Hermitian superconductor gives a second-order phase transition, the non-Hermitian one produces a robust first-order phase transition. The corresponding thermodynamic properties and the Meissner effect are also modified accordingly. Finally, we discuss how such a PT -symmetric pairing can emerge from an antisymmetric potential, such as the Dzyloshinskii-Moriya interaction, but with an external bath, or complex potential, among others.
Ultralow-loss CMOS copper plasmonic waveguides
DEFF Research Database (Denmark)
Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.
2016-01-01
with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...
Silica suspended waveguide splitter-based biosensor
Harrison, M. C.; Hawk, R. M.; Armani, A. M.
2012-03-01
Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.
Progress on erbium-doped waveguide components
DEFF Research Database (Denmark)
Bjarklev, Anders Overgaard; Berendt, Martin Ole; Broeng, Jes
1997-01-01
The recent development in erbium-doped fiber amplifiers, and fiber lasers is reviewed. Also the latest results on planar erbium-doped waveguide amplifiers and high erbium concentration characterisation methods are presented...
Waveguide based external cavity semiconductor lasers
Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.
2012-01-01
We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.
Low-index discontinuity terahertz waveguides
Nagel, Michael; Marchewka, Astrid; Kurz, Heinrich
2006-10-01
A new type of dielectric THz waveguide based on recent approaches in the field of integrated optics is presented with theoretical and experimental results. Although the guiding mechanism of the low-index discontinuity (LID) THz waveguide is total internal reflection, the THz wave is predominantly confined in the virtually lossless low-index air gap within a high-index dielectric waveguide due to the continuity of electric flux density at the dielectric interface. Attenuation, dispersion and single-mode confinement properties of two LID structures are discussed and compared with other THz waveguide solutions. The new approach provides an outstanding combination of high mode confinement and low transmission losses currently not realizable with any other metal-based or photonic crystal approach. These exceptional properties might enable the breakthrough of novel integrated THz systems or endoscopy applications with sub-wavelength resolution.
Minimum wakefield achievable by waveguide damped cavity
International Nuclear Information System (INIS)
Lin, X.E.; Kroll, N.M.
1995-01-01
The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system
Noble, J. H.; Lubasch, M.; Stevens, J.; Jentschura, U. D.
2017-12-01
We describe a matrix diagonalization algorithm for complex symmetric (not Hermitian) matrices, A ̲ =A̲T, which is based on a two-step algorithm involving generalized Householder reflections based on the indefinite inner product 〈 u ̲ , v ̲ 〉 ∗ =∑iuivi. This inner product is linear in both arguments and avoids complex conjugation. The complex symmetric input matrix is transformed to tridiagonal form using generalized Householder transformations (first step). An iterative, generalized QL decomposition of the tridiagonal matrix employing an implicit shift converges toward diagonal form (second step). The QL algorithm employs iterative deflation techniques when a machine-precision zero is encountered "prematurely" on the super-/sub-diagonal. The algorithm allows for a reliable and computationally efficient computation of resonance and antiresonance energies which emerge from complex-scaled Hamiltonians, and for the numerical determination of the real energy eigenvalues of pseudo-Hermitian and PT-symmetric Hamilton matrices. Numerical reference values are provided.
Hybrid numerical calculation method for bend waveguides
Garnier , Lucas; Saavedra , C.; Castro-Beltran , Rigoberto; Lucio , José Luis; Bêche , Bruno
2017-01-01
National audience; The knowledge of how the light will behave in a waveguide with a radius of curvature becomes more and more important because of the development of integrated photonics, which include ring micro-resonators, phasars, and other devices with a radius of curvature. This work presents a numerical calculation method to determine the eigenvalues and eigenvectors of curved waveguides. This method is a hybrid method which uses at first conform transformation of the complex plane gene...
Accurate modeling of UV written waveguide components
DEFF Research Database (Denmark)
Svalgaard, Mikael
BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....
Accurate modelling of UV written waveguide components
DEFF Research Database (Denmark)
Svalgaard, Mikael
BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....
Optimization of metal-clad waveguide sensors
DEFF Research Database (Denmark)
Skivesen, N.; Horvath, R.; Pedersen, H.C.
2005-01-01
The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....
Transmission of infrared radiation through cylindrical waveguides
International Nuclear Information System (INIS)
Nucara, A.; Dore, P.; Calvani, P.; Cannavo', D.; Marcelli, A.
1998-01-01
Measurement of the transmittance of infrared radiation (v -1 ) through cylindrical waveguides are presented and discussed. The experimental results are compared with numerical simulations, obtained through conventional ray tracing programs. Finally, it' estimated the transmittance of a waveguide in the case of an infrared synchrotron radiation source. Are applied the results to the case of the DAΦNE collider, where a synchrotron radiation beamline for the far infrared is under construction
Schroedinger covariance states in anisotropic waveguides
International Nuclear Information System (INIS)
Angelow, A.; Trifonov, D.
1995-03-01
In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs
Concept of ceramics-free coaxial waveguide
International Nuclear Information System (INIS)
Arai, Hiroyuki
1994-01-01
A critical key point of the ITER IC antenna is ceramics support of an internal conductor of a coaxial antenna feeder close to the plasma, because dielectric loss tangent of ceramics enhanced due to neutron irradiation limits significantly the antenna injection power. This paper presents a ceramics-free waveguide to overcome this problem by a T-shaped ridged waveguide with arms for the mechanical support. This ridged waveguide has a low cutoff frequency for its small cross section, which has been proposed for the conceptual design study of Fusion Experimental Reactor (FER) IC system and the high frequency supplementary IC system for ITER. This paper presents the concept of ceramics-free coaxial waveguide consisting of the coaxial-line and the ridged waveguide. This paper also presents the cutoff frequency and the electric field distribution of the ridged waveguide calculated by a finite element method and an approximate method. The power handling capability more than 3 MW is evaluated by using the transmission-line theory and the optimized antenna impedance considering the ITER plasma parameters. We verify this transmission-line model by one-tenth scale models experimentally. (author)
Linear and nonlinear properties of segmented waveguides
International Nuclear Information System (INIS)
Katz, M.
1998-07-01
This dissertation deals with Periodically Segmented Waveguides (PSW), which are applied on KTiOP0 4 (KTP) crystals, by chemical ion-exchange process. In these waveguides, the crystal polarity and refractive index are periodically modulated to obtain Quasi Phase Matching (QPM) between the fundamental and second-harmonic waves. PSW is a relatively new optical device which exhibits unique optical properties in comparison with a continuous waveguide. The possibility of utilizing the KTP-PSW as a compact, cw, blue-violet, source by doubling infra-red light, is the main motivation for studying the optical properties of KTP segmented waveguides. Nevertheless, much attention in this work is also given to the study of linear optical properties of KTP-PSW, most of which, to my best knowledge, has not been studied yet. Controlling and understanding the linear optical properties of KTP-PSW, are required, for applying the PSW as an optical device by its own, and for control and characterization of the non-linear optical properties of the waveguide. In this work the dependence of the linear optical properties of KTP-PSW on geometrical parameters (period size, duty cycle and waveguide width) were studied. The experimental measured parameters include the PSW near field and the Bragg reflections, which appear due lo the grating structure of the waveguide. The possibility of controlling the wavelength and intensity, of the segmented waveguide Bragg reflections of regular period and super-period, is shown theoretically and experimentally. An unexpected dependence was found, by the experimental measurement, between the index profile and the ion-exchanged segment area,. The segmented waveguide dispersion curve, n eff (λ) in the infra-red region was found, A main part of the research work is dedicated to the study of nonlinear characteristics of PSW. The different factors, which effect the Second Harmonic Generation (SHG), are measured experimentally and analyzed. The experimental
Probabilistic cloning of three symmetric states
International Nuclear Information System (INIS)
Jimenez, O.; Bergou, J.; Delgado, A.
2010-01-01
We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.
Classification of symmetric toroidal orbifolds
Energy Technology Data Exchange (ETDEWEB)
Fischer, Maximilian; Ratz, Michael; Torrado, Jesus [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
We provide a complete classification of six-dimensional symmetric toroidal orbifolds which yield N{>=}1 supersymmetry in 4D for the heterotic string. Our strategy is based on a classification of crystallographic space groups in six dimensions. We find in total 520 inequivalent toroidal orbifolds, 162 of them with Abelian point groups such as Z{sub 3}, Z{sub 4}, Z{sub 6}-I etc. and 358 with non-Abelian point groups such as S{sub 3}, D{sub 4}, A{sub 4} etc. We also briefly explore the properties of some orbifolds with Abelian point groups and N=1, i.e. specify the Hodge numbers and comment on the possible mechanisms (local or non-local) of gauge symmetry breaking.
Relativistic fluids in spherically symmetric space
International Nuclear Information System (INIS)
Dipankar, R.
1977-12-01
Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat
Ye, J.; Shi, J.; De Hoop, M. V.
2017-12-01
We develop a robust algorithm to compute seismic normal modes in a spherically symmetric, non-rotating Earth. A well-known problem is the cross-contamination of modes near "intersections" of dispersion curves for separate waveguides. Our novel computational approach completely avoids artificial degeneracies by guaranteeing orthonormality among the eigenfunctions. We extend Wiggins' and Buland's work, and reformulate the Sturm-Liouville problem as a generalized eigenvalue problem with the Rayleigh-Ritz Galerkin method. A special projection operator incorporating the gravity terms proposed by de Hoop and a displacement/pressure formulation are utilized in the fluid outer core to project out the essential spectrum. Moreover, the weak variational form enables us to achieve high accuracy across the solid-fluid boundary, especially for Stoneley modes, which have exponentially decaying behavior. We also employ the mixed finite element technique to avoid spurious pressure modes arising from discretization schemes and a numerical inf-sup test is performed following Bathe's work. In addition, the self-gravitation terms are reformulated to avoid computations outside the Earth, thanks to the domain decomposition technique. Our package enables us to study the physical properties of intersection points of waveguides. According to Okal's classification theory, the group velocities should be continuous within a branch of the same mode family. However, we have found that there will be a small "bump" near intersection points, which is consistent with Miropol'sky's observation. In fact, we can loosely regard Earth's surface and the CMB as independent waveguides. For those modes that are far from the intersection points, their eigenfunctions are localized in the corresponding waveguides. However, those that are close to intersection points will have physical features of both waveguides, which means they cannot be classified in either family. Our results improve on Okal
Comprehensive asynchronous symmetric rendezvous algorithm in ...
Indian Academy of Sciences (India)
Meenu Chawla
2017-11-10
Nov 10, 2017 ... Simulation results affirm that CASR algorithm performs better in terms of average time-to-rendezvous as compared ... process; neighbour discovery; symmetric rendezvous algorithm. 1. .... dezvous in finite time under the symmetric model. The CH ..... CASR algorithm in Matlab 7.11 and performed several.
Evanescent Waveguide Apparatus and Method for Measurement of Dielectric Constant
National Research Council Canada - National Science Library
Tonn, David A
2005-01-01
.... In one embodiment, a metal septum is inserted between two samples of the unknown material to thereby reduce the cross-sectional area of the waveguide aperture by splitting width a of the rectangular waveguide in half...
Fiber-Drawn Metamaterial for THz Waveguiding and Imaging
DEFF Research Database (Denmark)
Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu
2017-01-01
and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased...
Spatial mode discriminator based on leaky waveguides
Xu, Jing; Liu, Jialing; Shi, Hongkang; Chen, Yuntian
2018-06-01
We propose a conceptually simple and experimentally compatible configuration to discriminate the spatial mode based on leaky waveguides, which are inserted in-between the transmission link. The essence of such a spatial mode discriminator is to introduce the leakage of the power flux on purpose for detection. Importantly, the leaky angle of each individual spatial mode with respect to the propagation direction are different for non-degenerated modes, while the radiation patterns of the degenerated spatial modes in the plane perpendicular to the propagation direction are also distinguishable. Based on these two facts, we illustrate the operation principle of the spatial mode discriminators via two concrete examples; a w-type slab leaky waveguide without degeneracy, and a cylindrical leaky waveguide with degeneracy. The correlation between the leakage angle and the spatial mode distribution for a slab leaky waveguide, as well as differences between the in-plane radiation patterns of degenerated modes in a cylindrical leaky waveguide, are verified numerically and analytically. Such findings can be readily useful in discriminating the spatial modes for optical communication or optical sensing.
Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids
International Nuclear Information System (INIS)
Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M
2016-01-01
Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)
Symmetric splitting of very light systems
International Nuclear Information System (INIS)
Grotowski, K.; Majka, Z.; Planeta, R.
1985-01-01
Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood. It would be interesting to verify the existence of the symmetric splitting of compound nuclei with A 12 C + 40 Ca, 141 MeV 9 Be + 40 Ca and 153 MeV 6 Li + 40 Ca. The out-of-plane correlation of symmetric products was also measured for the reaction 186 MeV 12 C + 40 Ca. The coincidence measurements of the 12 C + 40 Ca system demonstrated that essentially all of the inclusive yield of symmetric products around 40 0 results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the 12 C + 40 C system, inclusive measurements were made at bombarding energies of 74, 132, 162, and 185 MeV
Finite-width plasmonic waveguides with hyperbolic multilayer cladding
DEFF Research Database (Denmark)
Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi
2015-01-01
Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz......Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any...
Spherically symmetric charged compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)
2015-08-15
In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)
Exact axially symmetric galactic dynamos
Henriksen, R. N.; Woodfinden, A.; Irwin, J. A.
2018-05-01
We give a selection of exact dynamos in axial symmetry on a galactic scale. These include some steady examples, at least one of which is wholly analytic in terms of simple functions and has been discussed elsewhere. Most solutions are found in terms of special functions, such as associated Lagrange or hypergeometric functions. They may be considered exact in the sense that they are known to any desired accuracy in principle. The new aspect developed here is to present scale-invariant solutions with zero resistivity that are self-similar in time. The time dependence is either a power law or an exponential factor, but since the geometry of the solution is self-similar in time we do not need to fix a time to study it. Several examples are discussed. Our results demonstrate (without the need to invoke any other mechanisms) X-shaped magnetic fields and (axially symmetric) magnetic spiral arms (both of which are well observed and documented) and predict reversing rotation measures in galaxy haloes (now observed in the CHANG-ES sample) as well as the fact that planar magnetic spirals are lifted into the galactic halo.
Baryon symmetric big bang cosmology
Stecker, F. W.
1978-01-01
Both the quantum theory and Einsteins theory of special relativity lead to the supposition that matter and antimatter were produced in equal quantities during the big bang. It is noted that local matter/antimatter asymmetries may be reconciled with universal symmetry by assuming (1) a slight imbalance of matter over antimatter in the early universe, annihilation, and a subsequent remainder of matter; (2) localized regions of excess for one or the other type of matter as an initial condition; and (3) an extremely dense, high temperature state with zero net baryon number; i.e., matter/antimatter symmetry. Attention is given to the third assumption, which is the simplest and the most in keeping with current knowledge of the cosmos, especially as pertains the universality of 3 K background radiation. Mechanisms of galaxy formation are discussed, whereby matter and antimatter might have collided and annihilated each other, or have coexisted (and continue to coexist) at vast distances. It is pointed out that baryon symmetric big bang cosmology could probably be proved if an antinucleus could be detected in cosmic radiation.
Substring-Searchable Symmetric Encryption
Directory of Open Access Journals (Sweden)
Chase Melissa
2015-06-01
Full Text Available In this paper, we consider a setting where a client wants to outsource storage of a large amount of private data and then perform substring search queries on the data – given a data string s and a search string p, find all occurrences of p as a substring of s. First, we formalize an encryption paradigm that we call queryable encryption, which generalizes searchable symmetric encryption (SSE and structured encryption. Then, we construct a queryable encryption scheme for substring queries. Our construction uses suffix trees and achieves asymptotic efficiency comparable to that of unencrypted suffix trees. Encryption of a string of length n takes O(λn time and produces a ciphertext of size O(λn, and querying for a substring of length m that occurs k times takes O(λm+k time and three rounds of communication. Our security definition guarantees correctness of query results and privacy of data and queries against a malicious adversary. Following the line of work started by Curtmola et al. (ACM CCS 2006, in order to construct more efficient schemes we allow the query protocol to leak some limited information that is captured precisely in the definition. We prove security of our substring-searchable encryption scheme against malicious adversaries, where the query protocol leaks limited information about memory access patterns through the suffix tree of the encrypted string.
Beig, Robert; Siddiqui, Azad A.
2007-11-01
It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.
Numerical characterization of nanopillar photonic crystal waveguides and directional couplers
DEFF Research Database (Denmark)
Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.
2005-01-01
We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...
Utilization of optical waveguides in dosimetry
International Nuclear Information System (INIS)
Darikova, A.; Vanickova, M.; Matejec, V.; Pospisilova, M.
1994-01-01
Some optical waveguides used for communication purposes are very sensitive to ionizing radiation.Ionizing radiation radiation affects the optical waveguides by creating color centers that are responsible for the transmission loss.This transmission loss is the function of wavelength of the passing light. The dose of ionizing radiation will manifest itself not only in the magnitude of the transmission loss value but even in changing the position of maximum of the transmission loss curve with respect to the wavelength. The position of the maximum is stable in time and temperature and independent of dose rate. The study of effects of ionizing radiation on the optical waveguides leads to the possibility of utilizing them not only as sensors of ionizing radiation but even as a dosimeters. 4 figs., 2 refs. (author)
Quantum Dots in Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Sollner, Immo Nathanael
This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...
Ultra-compact plasmonic waveguide modulators
DEFF Research Database (Denmark)
Babicheva, Viktoriia
of developing new material platforms for integrated plasmonic devices. Furthermore, novel plasmonic materials such as transparent conductive oxides and transition metal nitrides can offer a variety of new opportunities. In particular, they offer adjustable/tailorable and nonlinear optical properties, dynamic...... modulators based on ultra-compact waveguides with different active cores. Plasmonic modulators with the active core such as indium phosphides or ferroelectrics sandwiched between metal plates have promising characteristics. Apart from the speed and dimensions advantages, the metal plates can serve...... as electrodes for electrical pumping of the active material making it easier to integrate. Including an additional layer in the plasmonic waveguide, in particular an ultrathin transparent conductive oxide film, allows the control of the dispersive properties of the waveguide and thus the higher efficiency...
Large-bandwidth planar photonic crystal waveguides
DEFF Research Database (Denmark)
Søndergaard, Thomas; Lavrinenko, Andrei
2002-01-01
A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....
Improving plasmonic waveguides coupling efficiency using nanoantennas
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien
2012-01-01
. The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....
Nanoparticle sorting in silicon waveguide arrays
Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.
2017-08-01
This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.
Bidirectional waveguide coupling with plasmonic Fano nanoantennas
Energy Technology Data Exchange (ETDEWEB)
Guo, Rui; Decker, Manuel, E-mail: manuel.decker@anu.edu.au; Staude, Isabelle; Neshev, Dragomir N.; Kivshar, Yuri S. [Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)
2014-08-04
We introduce the concept of a bidirectional, compact single-element Fano nanoantenna that allows for directional coupling of light in opposite directions of a high-index dielectric waveguide for two different operation wavelengths. We utilize a Fano resonance to tailor the radiation phases of a gold nanodisk and a nanoslit that is inscribed into the nanodisk to realize bidirectional scattering. We show that this Fano nanoantenna operates as a bidirectional waveguide coupler at telecommunication wavelengths and, thus, is ideally suitable for integrated wavelength-selective light demultiplexing.
Poling of UV-written Waveguides
DEFF Research Database (Denmark)
Arentoft, Jesper; Kristensen, Martin; Hübner, Jörg
1999-01-01
We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months......We report poling of UV-written silica waveguides. Thermal poling induces an electro-optic coefficient of 0.05 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. No measurable decay in the induced electro-optic effect was detected after nine months...
Chaotic behavior of a quantum waveguide
Energy Technology Data Exchange (ETDEWEB)
Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)
2013-02-15
In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.
Chaotic behavior of a quantum waveguide
International Nuclear Information System (INIS)
Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.
2013-01-01
In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system
Experimental investigations on channelized coplanar waveguide
Simons, Rainee N.; Ponchak, George E.; Martzaklis, Konstantinas S.; Romanofsky, Robert R.
1990-01-01
A new variant of coplanar waveguide (CPW) which was termed channelized coplanar waveguide (CCPW) is presented. Measured propagation characteristics for CCPW such as epsilon(eff) and unloaded Q as a function of geometrical parameters and frequency are presented. The measured and modeled epsilon(eff) are also compared. Equivalent circuit model element values are presented for a CCPW open circuit and a CCPW right angle bend. A CCPW matched T-junction, matched 1:3 junction, and a novel coax-to-CCPW in-phase, N-way, radial power divider are also demonstrated.
Cascaded Quadratic Soliton Compression in Waveguide Structures
DEFF Research Database (Denmark)
Guo, Hairun
between the Kerr nonlinear effects and the dispersive effects in the medium. A Kerr-like nonlinearity is produced through the cascaded phase mismatched quadratic process, e.g. the second harmonic generation process, which can be flexibly tuned in both the sign and the amplitude, making possible a strong......-phase-matching technology is not necessarily needed. In large-RI-changed waveguides, CQSC is extended to the mid-infrared range to generate single-cycle pulses with purely nonlinear interactions, since an all-normal dispersion profile could be achieved within the guidance band. We believe that CQSC in quadratic waveguides...
Ultrafast Nonlinear Signal Processing in Silicon Waveguides
DEFF Research Database (Denmark)
Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao
2012-01-01
We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....
Localization of nonlinear excitations in curved waveguides
DEFF Research Database (Denmark)
Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.
2005-01-01
numerical simulations of the nonlinear problem and in this case localized excitations are found to persist. We found also interesting relaxational dynamics. Analogies of the present problem in context related to atomic physics and particularly to Bose–Einstein condensation are discussed.......Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact...
The symmetric extendibility of quantum states
International Nuclear Information System (INIS)
Nowakowski, Marcin L
2016-01-01
Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)
Averaging in spherically symmetric cosmology
International Nuclear Information System (INIS)
Coley, A. A.; Pelavas, N.
2007-01-01
The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis
DEFF Research Database (Denmark)
Horvath, R.; Voros, J.; Graf, R.
2001-01-01
It has been found that patterns acid inhomogeneities on the surface of the waveguide used fur optical waveguide lightmode spectroscopy applications can produce broadening and fine structure in the incoupled light peak spectra. During cell spreading on the waveguide, a broadening of the incoupling...
Linac design algorithm with symmetric segments
International Nuclear Information System (INIS)
Takeda, Harunori; Young, L.M.; Nath, S.; Billen, J.H.; Stovall, J.E.
1996-01-01
The cell lengths in linacs of traditional design are typically graded as a function of particle velocity. By making groups of cells and individual cells symmetric in both the CCDTL AND CCL, the cavity design as well as mechanical design and fabrication is simplified without compromising the performance. We have implemented a design algorithm in the PARMILA code in which cells and multi-cavity segments are made symmetric, significantly reducing the number of unique components. Using the symmetric algorithm, a sample linac design was generated and its performance compared with a similar one of conventional design
International Nuclear Information System (INIS)
Li Zhiyuan; Ho Kaiming
2003-01-01
The plane-wave-based transfer-matrix method (TMM) exhibits a peculiar advantage of being capable of solving eigenmodes involved in an infinite photonic crystal and electromagnetic (EM) wave propagation in finite photonic crystal slabs or even semi-infinite photonic crystal structures within the same theoretical framework. In addition, this theoretical approach can achieve much improved numerical convergency in solution of photonic band structures than the conventional plane-wave expansion method. In this paper we employ this TMM in combination with a supercell technique to handle two important kinds of three-dimensional (3D) photonic crystal waveguide structures. The first one is waveguides created in a 3D layer-by-layer photonic crystal that possesses a complete band gap, the other more popular one is waveguides built in a two-dimensional photonic crystal slab. These waveguides usually have mirror-reflection symmetries in one or two directions perpendicular to their axis. We have taken advantage of these structural symmetries to reduce the numerical burden of the TMM solution of the guided modes. The solution to the EM problems under these mirror-reflection symmetries in both the real space and the plane-wave space is discussed in a systematic way and in great detail. Both the periodic boundary condition and the absorbing boundary condition are employed to investigate structures with or without complete 3D optical confinement. The fact that the EM field components investigated in the TMM are collinear with the symmetric axes of the waveguide brings great convenience and clarity in exploring the eigenmode symmetry in both the real space and the plane-wave space. The classification of symmetry involved in the guided modes can help people to better understand the coupling of the photonic crystal waveguides with external channels such as dielectric slab or wire waveguides
Coaxial waveguide mode reconstruction and analysis with THz digital holography.
Wang, Xinke; Xiong, Wei; Sun, Wenfeng; Zhang, Yan
2012-03-26
Terahertz (THz) digital holography is employed to investigate the properties of waveguides. By using a THz digital holographic imaging system, the propagation modes of a metallic coaxial waveguide are measured and the mode patterns are restored with the inverse Fresnel diffraction algorithm. The experimental results show that the THz propagation mode inside the waveguide is a combination of four modes TE₁₁, TE₁₂, TM₁₁, and TM₁₂, which are in good agreement with the simulation results. In this work, THz digital holography presents its strong potential as a platform for waveguide mode charactering. The experimental findings provide a valuable reference for the design of THz waveguides.
Symmetric nuclear matter with Skyrme interaction
International Nuclear Information System (INIS)
Manisa, K.; Bicer, A.; Atav, U.
2010-01-01
The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.
Performance limitations of translationally symmetric nonimaging devices
Bortz, John C.; Shatz, Narkis E.; Winston, Roland
2001-11-01
The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quality, referred to herein as the translational skew invariant, is analogous to the conventional skew invariant, which is conserved in rotationally symmetric optical systems. The invariance of both of these quantities is a consequence of Noether's theorem. We show how performance limits for translationally symmetric nonimaging optical devices can be derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. Examples of computed performance limits are provided. In addition, we show that a numerically optimized non-tracking solar concentrator utilizing symmetry-breaking surface microstructure can overcome the performance limits associated with translational symmetry. The optimized design provides a 47.4% increase in efficiency and concentration relative to an ideal translationally symmetric concentrator.
Symmetrical parahiliar infiltrated, cough and dyspnoea
International Nuclear Information System (INIS)
Giraldo Estrada, Horacio; Escalante, Hector
2004-01-01
It is the case a patient to who is diagnosed symmetrical parahiliar infiltrated; initially she is diagnosed lymphoma Hodgkin, treaty with radiotherapy and chemotherapy, but the X rays of the thorax demonstrated parahiliars and paramediastinals infiltrated
Introduction to left-right symmetric models
International Nuclear Information System (INIS)
Grimus, W.
1993-01-01
We motivate left-right symmetric models by the possibility of spontaneous parity breaking. Then we describe the multiplets and the Lagrangian of such models. Finally we discuss lower bounds on the right-handed scale. (author)
A cosmological problem for maximally symmetric supergravity
International Nuclear Information System (INIS)
German, G.; Ross, G.G.
1986-01-01
Under very general considerations it is shown that inflationary models of the universe based on maximally symmetric supergravity with flat potentials are unable to resolve the cosmological energy density (Polonyi) problem. (orig.)
Theorem on axially symmetric gravitational vacuum configurations
Energy Technology Data Exchange (ETDEWEB)
Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare
1977-01-24
A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.
Zav'yalov, A. S.
2018-04-01
A variant of the method of partial waveguide filling is considered in which a sample is put into a waveguide through holes in wide waveguide walls at the distance equal to a quarter of the wavelength in the waveguide from a short-circuiter, and the total input impedance of the sample in the waveguide is directly measured. The equivalent circuit of the sample is found both without and with account of the hole. It is demonstrated that consideration of the edge effect makes it possible to obtain more exact values of the dielectric permittivity.
Chalcogenide Glass Optical Waveguides for Infrared Biosensing
Directory of Open Access Journals (Sweden)
Bruno Bureau
2009-09-01
Full Text Available Due to the remarkable properties of chalcogenide (Chg glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (biosensors.
Optical touch screen based on waveguide sensing
DEFF Research Database (Denmark)
Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner
2011-01-01
We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching...
Finite mode analysis through harmonic waveguides
Alieva, T.; Wolf, K.B.
2000-01-01
The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to sample the wave field at a number of sensors along its axis and the electronic part
Planar optical waveguide sensor of ammonia
Sarkisov, Sergey S.; Curley, Michael J.; Boykin, Courtney; Diggs, Darnell E.; Grote, James G.; Hopkins, Frank K.
2004-12-01
We describe a novel sensor of ammonia based on a planar optical waveguide made of a thin film of polymer polyimide doped with indicator dye bromocresol purple. The film of dye-doped polyimide demonstrated reversible increase of absorption with a peak near 600 nm in response to presence of ammonia in ambient air. Coupling of input and output optic fibers with the waveguide was done by means of coupling prisms or coupling grooves. The latter configuration has the advantage of low cost, less sensitivity to temperature variation, and the possibility of coupling from both sides of the waveguide. Special experimental setup was built to test the sensor. It included test gas chamber with sealed optic fiber feed-throughs, gas filling line, laser source, photodetector, and signal processing hardware and software. The sensor was capable of detecting 100 ppm of ammonia in air within 8 seconds. Further increase of sensitivity can be achieved by adding more dye dopant to the polymer, increase of the length of the waveguide, and suppression of noise. Overexposure of the sensor to more than 5000 ppm of ammonia led to the saturation of the polymer film and, as a result, significant decrease of sensitivity and increase of the response time. The sensor can be used as low cost component of a distributed optical network of chemical sensors for monitoring presence of hazardous industrial pollutants in air.
Chaotic waveguide-based resonators for microlasers
Czech Academy of Sciences Publication Activity Database
Méndez-Bermúdez, J. A.; Luna-Acosta, G. A.; Šeba, Petr; Pichugin, K. N.
2003-01-01
Roč. 67, č. 16 (2003), 161104/1-161104/4 ISSN 0163-1829 Institutional research plan: CEZ:AV0Z1010914 Keywords : waveguide * laser * resonators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003
UV Defined Nanoporous Liquid Core Waveguides
DEFF Research Database (Denmark)
Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol
2011-01-01
Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...
Planned waveguide electric field breakdown studies
International Nuclear Information System (INIS)
Wang Faya; Li Zenghai
2012-01-01
This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.
Novel concepts for terahertz waveguide spectroscopy
DEFF Research Database (Denmark)
Jepsen, Peter Uhd
2009-01-01
. With such waveguides we demonstrate that it is possible to perform quantitative spectroscopy on very small volumes of sample material inside the PPWG. Using continuous-wave as well as femtosecond excitation we inject carriers into semiconductor material in the transparent PPWG, and perform static as well as transient...
Ka-band waveguide rotary joint
Yevdokymov, Anatoliy; Sirenko, Kostyantyn; Kryzhanovskiy, Volodymyr; Pazynin, Vadim
2013-01-01
The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three
Multilayer Graphene for Waveguide Terahertz Modulator
DEFF Research Database (Denmark)
Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei
2014-01-01
We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....
Femtosecond laser written waveguides deep inside silicon.
Pavlov, I; Tokel, O; Pavlova, S; Kadan, V; Makey, G; Turnali, A; Yavuz, Ö; Ilday, F Ö
2017-08-01
Photonic devices that can guide, transfer, or modulate light are highly desired in electronics and integrated silicon (Si) photonics. Here, we demonstrate for the first time, to the best of our knowledge, the creation of optical waveguides deep inside Si using femtosecond pulses at a central wavelength of 1.5 μm. To this end, we use 350 fs long, 2 μJ pulses with a repetition rate of 250 kHz from an Er-doped fiber laser, which we focused inside Si to create permanent modifications of the crystal. The position of the beam is accurately controlled with pump-probe imaging during fabrication. Waveguides that were 5.5 mm in length and 20 μm in diameter were created by scanning the focal position along the beam propagation axis. The fabricated waveguides were characterized with a continuous-wave laser operating at 1.5 μm. The refractive index change inside the waveguide was measured with optical shadowgraphy, yielding a value of 6×10 -4 , and by direct light coupling and far-field imaging, yielding a value of 3.5×10 -4 . The formation mechanism of the modification is discussed.
Hardy Inequalities in Globally Twisted Waveguides
Czech Academy of Sciences Publication Activity Database
Briet, Ph.; Hammedi, H.; Krejčiřík, David
2015-01-01
Roč. 105, č. 7 (2015), s. 939-958 ISSN 0377-9017 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguides * twisted tubes * Dirichlet Laplacian * Hardy inequality Subject RIV: BE - Theoretical Physics Impact factor: 1.517, year: 2015
Symmetric Imidazolium-Based Paramagnetic Ionic Liquids
2017-11-29
Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, and symmetric transform given as the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generatin...... large sets of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....
The Symmetric Rudin-Shapiro Transform
DEFF Research Database (Denmark)
Harbo, Anders La-Cour
2003-01-01
A method for constructing spread spectrum sequences is presented. The method is based on a linear, orthogonal, symmetric transform, the Rudin-Shapiro transform (RST), which is in many respects quite similar to the Haar wavelet packet transform. The RST provides the means for generating large sets...... of spread spectrum signals. This presentation provides a simple definition of the symmetric RST that leads to a fast N log(N) and numerically stable implementation of the transform....
Pion condensation in symmetric nuclear matter
International Nuclear Information System (INIS)
Kabir, K.; Saha, S.; Nath, L.M.
1987-09-01
Using a model which is based essentially on the chiral SU(2)xSU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenon is expected to be seen in the pion-nucleus interaction. (author). 20 refs
Pion condensation in symmetric nuclear matter
Kabir, K.; Saha, S.; Nath, L. M.
1988-01-01
Using a model which is based essentially on the chiral SU(2)×SU(2) symmetry of the pion-nucleon interaction, we examine the possibility of pion condensation in symmetric nucleon matter. We find that the pion condensation is not likely to occur in symmetric nuclear matter for any finite value of the nuclear density. Consequently, no critical opalescence phenomenom is expected to be seen in the pion-nucleus interaction.
Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes
Energy Technology Data Exchange (ETDEWEB)
Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)
2012-06-15
The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.
Efficient waveguide coupler based on metal materials
Wu, Wenjun; Yang, Junbo; Chang, Shengli; Zhang, Jingjing; Lu, Huanyu
2015-10-01
Because of the diffraction limit of light, the scale of optical element stays in the order of wavelength, which makes the interface optics and nano-electronic components cannot be directly matched, thus the development of photonics technology encounters a bottleneck. In order to solve the problem that coupling of light into the subwavelength waveguide, this paper proposes a model of coupler based on metal materials. By using Surface Plasmon Polaritons (SPPs) wave, incident light can be efficiently coupled into waveguide of diameter less than 100 nm. This paper mainly aims at near infrared wave band, and tests a variety of the combination of metal materials, and by changing the structural parameters to get the maximum coupling efficiency. This structure splits the plane incident light with wavelength of 864 nm, the width of 600 nm into two uniform beams, and separately coupled into the waveguide layer whose width is only about 80 nm, and the highest coupling efficiency can reach above 95%. Using SPPs structure will be an effective method to break through the diffraction limit and implement photonics device high-performance miniaturization. We can further compress the light into small scale fiber or waveguide by using the metal coupler, and to save the space to hold more fiber or waveguide layer, so that we can greatly improve the capacity of optical communication. In addition, high-performance miniaturization of the optical transmission medium can improve the integration of optical devices, also provide a feasible solution for the photon computer research and development in the future.
Nanoscale devices based on plasmonic coaxial waveguide resonators
Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.
2015-02-01
Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.
FDTD simulation of amorphous silicon waveguides for microphotonics applications
Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,
2017-05-01
In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.
Coulomb excitation of the 4+1 states of 194Pt, 196Pt and 198Pt
International Nuclear Information System (INIS)
Fewell, M.P.; Gyapong, G.J.; Spear, R.H.
1987-09-01
Probabilities for the Coulomb excitation of the 4 1 + states of 194 Pt, 196 Pt, 198 Pt by the backscattering of 4 He, 12 C and 16 O ions are reported. Model-independent values of the matrix elements 1 + ; M(E4), 4 1 + > and 1 + , M(E2), 4 1 + > are extracted. Agreement with previous measurements of these matrix elements is good. Values of β 2 and β 4 are determined for 194 Pt and compared with calculations of these quantities
PT-symmetric invisible defects and confluent Darboux-Crum transformations
Czech Academy of Sciences Publication Activity Database
Correa, F.; Jakubský, Vít; Plyushchay, M. S.
2015-01-01
Roč. 92, č. 2 (2015), 023839 ISSN 1050-2947 R&D Projects: GA ČR(CZ) GJ15-07674Y Institutional support: RVO:61389005 Keywords : supersymmetric quantum mechanics * bound states * optics Subject RIV: BE - Theoretical Physics Impact factor: 2.808, year: 2014
Quantum star-graph analogues of PT-symmetric square wells
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2012-01-01
Roč. 90, č. 12 (2012), s. 1287-1293 ISSN 0008-4204 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : non-Hermitian interactions * exactly solvable models * quantum graphs * equilateral q-pointed star * Robin boundary condition Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012
Quantum star-graph analogues of PT-symmetric square wells: Part II, spectra
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2015-01-01
Roč. 93, č. 7 (2015), s. 765-768 ISSN 0008-4204 Institutional support: RVO:61389005 Keywords : mechanics * operators * adjoint * space Subject RIV: BE - Theoretical Physics Impact factor: 0.724, year: 2015
Maximal couplings in PT-symmetric chain models with the real spectrum of energies
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2007-01-01
Roč. 40, č. 18 (2007), s. 4863-4875 ISSN 1751-8113 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-hermitian hamiltonians * quantum -mechanics * expectional points Subject RIV: BE - Theoretical Physics Impact factor: 1.680, year: 2007
A return to observability near exceptional points in a schematic PT-symmetric model
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2007-01-01
Roč. 647, 2-3 (2007), s. 225-230 ISSN 0370-2693 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : quantum -fieled theory * real * energy spectra Subject RIV: BE - Theoretical Physics Impact factor: 4.189, year: 2007
Decays of degeneracies in PT-symmetric ring-shaped lattices
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2011-01-01
Roč. 375, č. 39 (2011), s. 3435-3441 ISSN 0375-9601 R&D Projects: GA ČR GAP203/11/1433 Institutional research plan: CEZ:AV0Z10480505 Keywords : NON-HERMITIAN HAMILTONIANS * quantum -mechanics * OBSERVABILITY Subject RIV: BE - Theoretical Physics Impact factor: 1.632, year: 2011
Admissible perturbations and false instabilities in PT-symmetric quantum systems
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2018-01-01
Roč. 97, č. 3 (2018), č. článku 032114. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum theory * states * Hilbert spaces Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
PT-symmetric model with an interplay between kinematical and dynamical non-localities
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2015-01-01
Roč. 48, č. 19 (2015), s. 195303 ISSN 1751-8113 Institutional support: RVO:61389005 Keywords : non-Hermitian long-range interactions * closed-form constructions of bound states * physical inner products Subject RIV: BE - Theoretical Physics Impact factor: 1.933, year: 2015
Solvable PT-symmetric model with a tunable interspersion of nonmerging levels
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2005-01-01
Roč. 46, č. 6 (2005), 062109 ISSN 0022-2488 R&D Projects: GA AV ČR(CZ) IAA1048302 Institutional research plan: CEZ:AV0Z10480505 Keywords : non-Hermitian Hamiltonians * quantum-mechanics * square-well Subject RIV: BE - Theoretical Physics Impact factor: 1.192, year: 2005
Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2009-01-01
Roč. 50, č. 12 (2009), 122105/1-122105/19 ISSN 0022-2488 R&D Projects: GA MŠk LC06002; GA ČR GA202/07/1307 Institutional research plan: CEZ:AV0Z10480505 Keywords : bound states * Hermitian matrices * Hilbert spaces Subject RIV: BE - Theoretical Physics Impact factor: 1.318, year: 2009
Problem of the coexistence of several non-Hermitian observables in PT -symmetric quantum mechanics
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav; Semorádová, Iveta; Růžička, František; Moulla, H.; Leghrib, I.
2017-01-01
Roč. 95, č. 4 (2017), č. článku 042122. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : operators * Hilbert space * non-Hermitian Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation
Meza, L. E. Arroyo; Dutra, A. de Souza; Hott, M. B.; Roy, P.
2015-01-01
By using canonical transformations we obtain localized (in space) exact solutions of the nonlinear Schrödinger equation (NLSE) with cubic and quintic space and time modulated nonlinearities and in the presence of time-dependent and inhomogeneous external potentials and amplification or absorption (source or drain) coefficients. We obtain a class of wide localized exact solutions of NLSE in the presence of a number of non-Hermitian parity-time (PT )-symmetric external potentials, which are constituted by a mixing of external potentials and source or drain terms. The exact solutions found here can be applied to theoretical studies of ultrashort pulse propagation in optical fibers with focusing and defocusing nonlinearities. We show that, even in the presence of gain or loss terms, stable solutions can be found and that the PT symmetry is an important feature to guarantee the conservation of the average energy of the system.
ChPT calculations for the analysis of lattice QCD data
International Nuclear Information System (INIS)
Greil, Ludwig
2014-01-01
We present calculations within the framework of three-flavor chiral perturbation theory (ChPT) for several observables (first moments of parton distributions, baryon octet masses and vector meson masses including phi-omega-mixing). We use lattice QCD data to determine the local couplings appearing in this chosen effective theory and we use these extrapolations to study the convergence of the chiral expansion around the symmetric point where all light quark masses have the same value. We also comment on the various benefits that stem from an expansion around the symmetric point.
Energy Technology Data Exchange (ETDEWEB)
Martínez de Mendívil, J., E-mail: jon.martinez@uam.es; Lifante, G. [Departamento de Física de Materiales, C-04, Facultad de Ciencias, Universidad Autónoma de Madrid, 28.049 Madrid (Spain); Sola, D.; Peña, J. I. [Departamento de Ciencia y Tecnología de Materiales y Fluidos, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50.018 Zaragoza (Spain); Vázquez de Aldana, J. R. [Grupo de Investigación en Microprocesado de Materiales con Láser, Departamento de Física Aplicada, Universidad de Salamanca, 37.008 Salamanca (Spain); Aza, A. H. de; Pena, P. [Instituto de Cerámica y Vidrio-CSIC, 28.049 Madrid (Spain)
2015-01-28
We report on tubular cladding optical waveguides fabricated in Neodymium doped Wollastonite-Tricalcium Phosphate glass in the eutectic composition. The glass samples were prepared by melting the eutectic powder mixture in a Pt-Rh crucible at 1600 °C and pouring it in a preheated brass mould. Afterwards, the glass was annealed to relieve the inner stresses. Cladding waveguides were fabricated by focusing beneath the sample surface using a pulsed Ti:sapphire laser with a pulsewidth of 120 fs working at 1 kHz. The optical properties of these waveguides have been assessed in terms of near-field intensity distribution and transmitted power, and these results have been compared to previously reported waveguides with double-line configuration. Optical properties have also been studied as function of the temperature. Heat treatments up to 700 °C were carried out to diminish colour centre losses where waveguide's modes and transmitted power were compared in order to establish the annealing temperature at which the optimal optical properties were reached. Laser experiments are in progress to evaluate the ability of the waveguides for 1064 nm laser light generation under 800 nm optical pumping.
Cavity mode control in side-coupled periodic waveguides: theory and experiment
DEFF Research Database (Denmark)
Ha, Sangwoo; Sukhorukov, A.; Lavrinenko, Andrei
2010-01-01
We demonstrate that the modes of coupled cavities created in periodic waveguides can depend critically on the longitudinal shift between the cavities. In the absence of such shift, the modes feature symmetric or antisymmetric profiles, and their frequency splitting generally increases...... as the cavities are brought closer. We show that the longitudinal shift enables flexible control over the fundamental modes, whose frequency detuning can be reduced down to zero. Our coupled-mode theory analysis reveals an intrinsic link between the mode tuning and the transformation of slow-light dispersion...... at the photonic band-edge.We illustrate our approach through numerical modeling of cavities created in arrays of dielectric rods, and confirm our predictions with experimental observations....
International Nuclear Information System (INIS)
Yasumoto, Kiyotoshi; Abe, Hiroshi
1983-01-01
The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)
Three-dimensional patterning in polymer optical waveguides using focused ion beam milling
Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher
2016-07-01
Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.
X-ray and gamma ray waveguide, cavity and method
International Nuclear Information System (INIS)
Vali, V.; Krogstad, R.S.; Willard, H.R.
1978-01-01
An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site
A Broadband Terahertz Waveguide T-Junction Variable Power Splitter
Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.
2016-06-01
In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.
The LHC Beam Pipe Waveguide Mode Reflectometer
Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R
2007-01-01
The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The âﾜAssemblyâ version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar âﾜIn Situâ version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.
Surface enhanced Raman scattering spectroscopic waveguide
Lascola, Robert J; McWhorter, Christopher S; Murph, Simona H
2015-04-14
A waveguide for use with surface-enhanced Raman spectroscopy is provided that includes a base structure with an inner surface that defines a cavity and that has an axis. Multiple molecules of an analyte are capable of being located within the cavity at the same time. A base layer is located on the inner surface of the base structure. The base layer extends in an axial direction along an axial length of an excitation section. Nanoparticles are carried by the base layer and may be uniformly distributed along the entire axial length of the excitation section. A flow cell for introducing analyte and excitation light into the waveguide and a method of applying nanoparticles may also be provided.
Energy flow in photonic crystal waveguides
DEFF Research Database (Denmark)
Søndergaard, Thomas; Dridi, Kim
2000-01-01
Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....
Planar Silicon Optical Waveguide Light Modulators
DEFF Research Database (Denmark)
Leistiko, Otto; Bak, H.
1994-01-01
that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1Ã— 10Â¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 Â¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...
Two-Dimentional Photonic Crystal Waveguides
DEFF Research Database (Denmark)
Søndergaard, Thomas; Dridi, Kim
1999-01-01
possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... dielectric function. This is analogous to semiconductors, where electronic bandgaps exist due to the periodic arrangement of atoms. As is also the case for semiconductor structures, photonic bandgap structures may become of even greater value when defects are introduced. In particular, point defects make...
"Unmanned” optical micromanipulation using waveguide microstructures
DEFF Research Database (Denmark)
Bañas, Andrew Rafael; Palima, Darwin; Villangca, Mark Jayson
2013-01-01
be shaped more arbitrarily, engineered light deflection could lead to more control in the resulting motion. We demonstrated this principle with the autonomous translation of bent waveguides though pre-defined light tracks. In our experiment, incoming light makes a near 90 degree turn, hence the resulting......As researchers meet the demands of real world problems, there is a trend for experiments to get multidisciplinary. For example, health monitoring, cell sorting or lab on a chip devices would require optical tools for vision or characterization and engineered fluidic chambers for loading...... that could be microfabricated, the study of how optical forces behave in such structures become useful in the emerging field of optofludics. Recently, we have shown how optically maneuverable tapered waveguide microstructures can augment beam shaping experiments by delivering strongly focused light...
Efficient shortcut techniques in evanescently coupled waveguides
Paul, Koushik; Sarma, Amarendra K.
2016-10-01
Shortcut to Adiabatic Passage (SHAPE) technique, in the context of coherent control of atomic systems has gained considerable attention in last few years. It is primarily because of its ability to manipulate population among the quantum states infinitely fast compared to the adiabatic processes. Two methods in this regard have been explored rigorously, namely the transitionless quantum driving and the Lewis-Riesenfeld invariant approach. We have applied these two methods to realize SHAPE in adiabatic waveguide coupler. Waveguide couplers are integral components of photonic circuits, primarily used as switching devices. Our study shows that with appropriate engineering of the coupling coefficient and propagation constants of the coupler it is possible to achieve efficient and complete power switching. We also observed that the coupler length could be reduced significantly without affecting the coupling efficiency of the system.
Figures of merit for surface plasmon waveguides
Berini, Pierre
2006-12-01
Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of hree popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.
Blood typing using microstructured waveguide smart cuvette.
Zanishevskaya, Anastasiya A; Shuvalov, Andrey A; Skibina, Yulia S; Tuchin, Valery V
2015-04-01
We introduce a sensitive method that allows one to distinguish positive and negative agglutination reactions used for blood typing and determination of Rh affinity with a high precision. The method is based on the unique properties of photonic crystal waveguides, i.e., microstructured waveguides (MSWs). The transmission spectrum of an MSW smart cuvette filled by a specific or nonspecific agglutinating serum depends on the scattering, refractive, and absorptive properties of the blood probe. This concept was proven in the course of a laboratory clinical study. The obtained ratio of the spectral-based discrimination parameter for positive and negative reactions (I+/I-) was found to be 16 for standard analysis and around 2 for used sera with a weak activity.
Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces
DEFF Research Database (Denmark)
Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham
2017-01-01
A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...
Crossing-symmetric solutions to low equations
International Nuclear Information System (INIS)
McLeod, R.J.; Ernst, D.J.
1985-01-01
Crossing symmetric models of the pion-nucleon interaction in which crossing symmetry is kept to lowest order in msub(π)/msub(N) are investigated. Two iterative techniques are developed to solve the crossing-symmetric Low equation. The techniques are used to solve the original Chew-Low equations and their generalizations to include the coupling to the pion-production channels. Small changes are found in comparison with earlier results which used an iterative technique proposed by Chew and Low and which did not produce crossing-symmetric results. The iterative technique of Chew and Low is shown to fail because of its inability to produce zeroes in the amplitude at complex energies while physical solutions to the model require such zeroes. We also prove that, within the class of solutions such that phase shifts approach zero for infinite energy, the solution to the Low equation is unique. (orig.)
General conditions for the PT symmetry of supersymmetric partner potentials
International Nuclear Information System (INIS)
Levai, G.
2004-01-01
Complete text of publication follows. A common feature of symmetries of quantum systems is that they restrict the form of the Hamiltonian, and consequently they also influence the structure of the energy spectrum. This is also the case with two symmetry concepts that are typically applied in non-relativistic quantum mechanics: supersymmetric quantum mechanics (SUSYQM) and PT symmetry. SUSYQM connects one-dimensional potentials pairwise via the relation V (±) (x) W 2 (x) ± dW/dx + ε, where ε is the factorization energy, V (-) (x) and V (+) (x) are the SUSY partner potentials, while W(x) is the superpotential. In the simplest case, when supersymmetry is unbroken, W(x) is defined in terms of the ground-state wavefunction of V (-) (x) as W(x) = - d/dx lnψ 0 (-) (x), and the factorization energy is chosen as ε E 0 (-) . Under these conditions the SUSY partner potentials possess the same energy levels, except that E 0 (-) is missing from the spectrum of V (+) (x), and the degenerate levels are connected by the SUSY ladder operators A = d/dx + W(x) and A † = - d/dx + W(x). The PT symmetry of a Hamiltonian prescribes its invariance under simultaneous space and time inversion, which boils down to the condition V (x) = V*(-x) in the case of one-dimensional potentials. The unusual feature of this new symmetry concept is that PT-symmetric potentials are complex in general, nevertheless, they possess real energy eigen-values, unless PT symmetry is spontaneously broken, in which case the energy spectrum consists of complex conjugate energy pairs. The interplay of these two symmetry concepts has been analyzed in a number of works, and it has been found that when V (-) (x) has unbroken PT symmetry, then the same applies to V (+) (x), while the spontaneous breakdown of the PT symmetry of V (-) (x) implies the manifest breakdown of the PT symmetry of V (+) (x). The factorization energy ε was found to be real in the former case, and imaginary in the latter one. The examples
A four waveguide grill experiment in Petula
International Nuclear Information System (INIS)
Parlange, F.
1980-09-01
A four waveguide grill has been used to launch lower hybrid waves with power up to 300 kW. Reflected power was found to be unexpectedly low after grill conditionning. Effects on a 80 kA, 2.7 Tesla discharge are presented with special emphasis on ion heating. Temperature increase is a linear function of RF power up to 200 kW where saturation occurs
A holographic waveguide based eye tracker
Liu, Changgeng; Pazzucconi, Beatrice; Liu, Juan; Liu, Lei; Yao, Xincheng
2018-02-01
We demonstrated the feasibility of using holographic waveguide for eye tracking. A custom-built holographic waveguide, a 20 mm x 60 mm x 3 mm flat glass substrate with integrated in- and out-couplers, was used for the prototype development. The in- and out-couplers, photopolymer films with holographic fringes, induced total internal reflection in the glass substrate. Diffractive optical elements were integrated into the in-coupler to serve as an optical collimator. The waveguide captured images of the anterior segment of the eye right in front of it and guided the images to a processing unit distant from the eye. The vector connecting the pupil center (PC) and the corneal reflex (CR) of the eye was used to compute eye position in the socket. An eye model, made of a high quality prosthetic eye, was used prototype validation. The benchtop prototype demonstrated a linear relationship between the angular eye position and the PC/CR vector over a range of 60 horizontal degrees and 30 vertical degrees at a resolution of 0.64-0.69 degrees/pixel by simple pixel count. The uncertainties of the measurements at different angular positions were within 1.2 pixels, which indicated that the prototype exhibited a high level of repeatability. These results confirmed that the holographic waveguide technology could be a feasible platform for developing a wearable eye tracker. Further development can lead to a compact, see-through eye tracker, which allows continuous monitoring of eye movement during real life tasks, and thus benefits diagnosis of oculomotor disorders.
Nonlinear optical interactions in silicon waveguides
Directory of Open Access Journals (Sweden)
Kuyken B.
2017-03-01
Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
Design Issues for Therapeutic Ultrasound Angioplasty Waveguides
Noone, Declan; Gavin, Graham; McGuinness, Garrett
2008-01-01
Therapeutic ultrasound angioplasty is a new minimally invasive cardiovascular procedure for disrupting atherosclerotic lesions. Mechanical energy is transmitted in the form of ultrasound waves via long, flexible wire waveguides navigated to the lesion site through the vascular system. The underpinning principle of this technology is that plaque may be disrupted through a combination of direct contact ablation, pressure waves, cavitation and acoustic streaming, which all depend on the amplitud...
The cross waveguide grating: proposal, theory and applications.
Muñoz, Pascual; Pastor, Daniel; Capmany, José
2005-04-18
In this paper a novel grating-like integrated optics device is proposed, the Cross Waveguide Grating (XWG). The device is based upon a modified configuration of a traditional Arrayed Waveguide Grating (AWG). The Arrayed Waveguides part is changed, as detailed along this document, giving the device both the ability of multi/demultiplexing and power splitting/coupling. Design examples and transfer function simulations show good agreement with the presented theory. Finally, some of the envisaged applications are outlined.
Fully relativistic free-electron laser in a completely filled waveguide
International Nuclear Information System (INIS)
Farokhi, B.; Abdykian, A.
2005-01-01
An analysis of the azimuthally symmetrical, high frequency eigenmodes of a cylindrical metallic waveguide completely filled with a relativistic magnetized plasma is presented. A relativistic nonlinear wave equation is derived in a form which includes the coupling of EH and HE modes due to the finite axial magnetic field. Relativistic equations that permit calculation of the dispersion curves for four families of electromagnetic and electrostatic modes are derived. Numerical analysis is conducted to study the relativistic dispersion curves of various modes as a function of axial magnetic field B 0 . This treatment is shown that the dispersion curves dependent to γ in low frequency which is ignored in previous work. It is found that in drawn figures shown difference between relativistic and non-relativistic cases. The former each figure is treated for two orbit groups. This study is benefiting to facilities the development of devices for generation of high-power electromagnetic radiation, charged particle acceleration, and other applications of plasma waveguide. (author)
Directory of Open Access Journals (Sweden)
Hongyan Yang
2014-12-01
Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.
P-polarized surface waves in a slab waveguide with left-handed material for sensing applications
International Nuclear Information System (INIS)
Taya, Sofyan A.
2015-01-01
In this paper, surface waves excited at the interface between left-handed and right-handed materials are employed for sensing applications. The propagation of p-polarized (TM) surface waves in a three-layer slab waveguide structure with air core layer as an analyte and anisotropic left-handed materials as claddings is investigated for detection of any changes in the refractive index of the analyte. The dispersion equations and the sensitivity of the effective refractive index to any change in the air layer index are derived, plotted, and discussed in details. The field profile is also explored. It is found that the sensitivity of the proposed surface wave sensor is almost independent of the wavelength of the propagating wave. A considerable sensitivity improvement can be obtained with the increase of transverse components of the left-handed material permittivity. - Highlights: • P-polarized surface waves in a three-layer slab waveguide are employed for sensing applications. • The structure contains air core layer as an analyte and anisotropic left-handed material in the claddings. • The sensitivity is found to be almost independent of the wavelength of the propagating wave. • Unusual sensitivity enhancement is observed as the transverse components of the LHM permittivity increase. • The asymmetric waveguide structure exhibits much higher sensitivity compared to the symmetric one
Waveguiding properties of individual electrospun polymer nanofibers
Ishii, Yuya; Kaminose, Ryohei; Fukuda, Mitsuo
2013-09-01
Optical circuits are needed to achieve high-speed, high-capacity information processing. An optical waveguide is an essential element in optical circuits. Electrospun polymer fibers have diameters in the nanometer range and high aspect ratios, so they are prime candidates for small waveguides. In this work, we fabricate uniform electrospun polymer nanofibers and characterize their optical waveguiding properties. Poly(methyl methacrylate) (PMMA) solutions of different concentration that contain a small amount of Nile Blue A perchlorate (NBA) are electrospun. Uniform PMMA/NBA nanofibers are obtained from the 10 wt% solution. The fibers are covered with transparent cladding and their ends cut vertically. A laser beam with a wavelength of 533 nm is irradiated onto the fiber from the direction vertical to the fiber axis so that it scans along the fiber. Photoluminescence (PL) at the end face of individual fibers is then measured. The PL intensity decreases with increasing distance (d) between the end face of a fiber and irradiating point of the laser beam as ~exp(-αd) with a loss coefficient (α). Measurements of five individual fibers reveal α is in the range of 17-75 cm-1.
An ultrasonic waveguide for nuclear power plants
International Nuclear Information System (INIS)
Watkins, R.D.; Gillespie, A.B.; Deighton, M.O.; Pike, R.B.
1983-01-01
The value of ultrasonic techniques in nuclear plants is well established. However, in most cases nuclear power plants present an extremely hostile environment for an ultrasonic transducer. The paper presents a novel technique for introducing an ultrasound into hostile liquid environments using a new form of ultrasonic waveguide. Using this approach, a standard transducer arrangement is sited in a hospitable area and conveys the ultrasound along the guide to the required beam-emission collection position. The design of a single-mode ultrasonic waveguide is described. The ultrasound is conveyed along a stainless steel strip of rectangular cross-section. The transference of energy between the strip and the liquid is achieved through a highly efficient mode-conversion process. This process overcomes the usual problems of mis-match of acoustic impedances of stainless steel and liquids, and also produces a highly collimated beam of ultrasound. Tests of a 10-m-long waveguide using these techniques are described, achieving signal-to-noise ratios in the region of 40 dB. (author)
Multimode waveguide speckle patterns for compressive sensing.
Valley, George C; Sefler, George A; Justin Shaw, T
2016-06-01
Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.
All-optical symmetric ternary logic gate
Chattopadhyay, Tanay
2010-09-01
Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.
Symmetry theorems via the continuous steiner symmetrization
Directory of Open Access Journals (Sweden)
L. Ragoub
2000-06-01
Full Text Available Using a new approach due to F. Brock called the Steiner symmetrization, we show first that if $u$ is a solution of an overdetermined problem in the divergence form satisfying the Neumann and non-constant Dirichlet boundary conditions, then $Omega$ is an N-ball. In addition, we show that we can relax the condition on the value of the Dirichlet boundary condition in the case of superharmonicity. Finally, we give an application to positive solutions of some semilinear elliptic problems in symmetric domains for the divergence case.
The Axially Symmetric One-Monopole
International Nuclear Information System (INIS)
Wong, K.-M.; Teh, Rosy
2009-01-01
We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this solution with θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solutions of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a non-BPS solution.
Symmetric splitting of very light systems
International Nuclear Information System (INIS)
Grotowski, K.; Majka, Z.; Planeta, R.
1984-01-01
Inclusive and coincidence measurements have been performed to study symmetric products from the reactions 74--186 MeV 12 C+ 40 Ca, 141 MeV 9 Be+ 40 Ca, and 153 MeV 6 Li+ 40 Ca. The binary decay of the composite system has been verified. Energy spectra, angular distributions, and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics
Analysis of Waveguides on Lithium Niobate Thin Films
Directory of Open Access Journals (Sweden)
Yiwen Wang
2018-04-01
Full Text Available Waveguides formed by etching, proton-exchange (PE, and strip-loaded on single-crystal lithium niobate (LN thin film were designed and simulated by a full-vectorial finite difference method. The single-mode condition, optical power distribution, and bending loss of these kinds of waveguides were studied and compared systematically. For the PE waveguide, the optical power distributed in LN layer had negligible change with the increase of PE thickness. For the strip-loaded waveguide, the relationships between optical power distribution in LN layer and waveguide thickness were different for quasi-TE (q-TE and quasi-TM (q-TM modes. The bending loss would decrease with the increase of bending radius. There was a bending loss caused by the electromagnetic field leakage when the neff of q-TM waveguide was smaller than that of nearby TE planar waveguide. LN ridge waveguides possessed a low bending loss even at a relatively small bending radius. This study is helpful for the understanding of waveguide structures as well as for the optimization and the fabrication of high-density integrated optical components.
ICRF waveguide coupler research. Progress report, July 1983-July 1984
International Nuclear Information System (INIS)
Scharer, J.E.
1984-01-01
This report highlights results we have obtained on our ICRF (Ion Cyclotron Range of Frequencies) waveguide launcher research during the past year. We have completed an analysis of waveguide aperture launching of waves into a hot plasma with any prescribed edge density and temperature profile. The model Fourier analyzes the waveguide aperture fields and calculates the incident and reflected fast magnetosonic wave fields in the plasma edge region utilizing a stratified slab model. The requirement that the total wave fields at the waveguide-plasma interface match provides the boundary conditions which allow the solution for the plasma input impedance and reflection coefficient
Rectangular-cladding silicon slot waveguide with improved nonlinear performance
Huang, Zengzhi; Huang, Qingzhong; Wang, Yi; Xia, Jinsong
2018-04-01
Silicon slot waveguides have great potential in hybrid silicon integration to realize nonlinear optical applications. We propose a rectangular-cladding hybrid silicon slot waveguide. Simulation result shows that, with a rectangular-cladding, the slot waveguide can be formed by narrower silicon strips, so the two-photon absorption (TPA) loss in silicon is decreased. When the cladding material is a nonlinear polymer, the calculated TPA figure of merit (FOMTPA) is 4.4, close to the value of bulk nonlinear polymer of 5.0. This value confirms the good nonlinear performance of rectangular-cladding silicon slot waveguides.
Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides
Directory of Open Access Journals (Sweden)
Sabarinathan J
2010-01-01
Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.
The robustness of truncated Airy beam in PT Gaussian potentials media
Wang, Xianni; Fu, Xiquan; Huang, Xianwei; Yang, Yijun; Bai, Yanfeng
2018-03-01
The robustness of truncated Airy beam in parity-time (PT) symmetric Gaussian potentials media is numerically investigated. A high-peak power beam sheds from the Airy beam due to the media modulation while the Airy wavefront still retain its self-bending and non-diffraction characteristics under the influence of modulation parameters. Increasing the modulation factor results in the smaller value of maximum power of the center beam, and the opposite trend occurs with the increment of the modulation depth. However, the parabolic trajectory of the Airy wavefront does not be influenced. By utilizing the unique features, the Airy beam can be used as a long distance transmission source under the PT symmetric Gaussian potentials medium.
Diffractive beam shaping, tracking and coupling for wave-guided optical waveguides (WOWs)
DEFF Research Database (Denmark)
Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas
2014-01-01
techniques to create multiple focal spots that can be coupled into light manipulated WOWs. This is done by using a spatial light modulator to project the necessary phase to generate the multiple coupling light spots. We incorporate a diffractive setup in our Biophotonics Workstation (BWS) and demonstrate......We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). The full strength of this structure-mediated paradigm can be harnessed by addressing multiple WOWs and manipulating them to work in tandem. We propose the use of diffractive...
DEFF Research Database (Denmark)
Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy
2016-01-01
This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide-to-CPW trans......This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E......-plane probe with aluminum package has been fabricated and measured to validate the proposed transitions. To the authors' best knowledge, this is the first time that a wire bonding is used as a probe for rectangular waveguide-to-CPW transition at U-band....
Small diameter symmetric networks from linear groups
Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.
1992-01-01
In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.
Sobolev spaces on bounded symmetric domains
Czech Academy of Sciences Publication Activity Database
Engliš, Miroslav
Roč. 60, č. 12 ( 2015 ), s. 1712-1726 ISSN 1747-6933 Institutional support: RVO:67985840 Keywords : bounded symmetric domain * Sobolev space * Bergman space Subject RIV: BA - General Mathematics Impact factor: 0.466, year: 2015 http://www.tandfonline.com/doi/abs/10.1080/17476933. 2015 .1043910
Cuspidal discrete series for semisimple symmetric spaces
DEFF Research Database (Denmark)
Andersen, Nils Byrial; Flensted-Jensen, Mogens; Schlichtkrull, Henrik
2012-01-01
We propose a notion of cusp forms on semisimple symmetric spaces. We then study the real hyperbolic spaces in detail, and show that there exists both cuspidal and non-cuspidal discrete series. In particular, we show that all the spherical discrete series are non-cuspidal. (C) 2012 Elsevier Inc. All...
Exact solutions of the spherically symmetric multidimensional ...
African Journals Online (AJOL)
The complete orthonormalised energy eigenfunctions and the energy eigenvalues of the spherically symmetric isotropic harmonic oscillator in N dimensions, are obtained through the methods of separation of variables. Also, the degeneracy of the energy levels are examined. KEY WORDS: - Schrödinger Equation, Isotropic ...
Super-symmetric informationally complete measurements
Energy Technology Data Exchange (ETDEWEB)
Zhu, Huangjun, E-mail: hzhu@pitp.ca
2015-11-15
Symmetric informationally complete measurements (SICs in short) are highly symmetric structures in the Hilbert space. They possess many nice properties which render them an ideal candidate for fiducial measurements. The symmetry of SICs is intimately connected with the geometry of the quantum state space and also has profound implications for foundational studies. Here we explore those SICs that are most symmetric according to a natural criterion and show that all of them are covariant with respect to the Heisenberg–Weyl groups, which are characterized by the discrete analog of the canonical commutation relation. Moreover, their symmetry groups are subgroups of the Clifford groups. In particular, we prove that the SIC in dimension 2, the Hesse SIC in dimension 3, and the set of Hoggar lines in dimension 8 are the only three SICs up to unitary equivalence whose symmetry groups act transitively on pairs of SIC projectors. Our work not only provides valuable insight about SICs, Heisenberg–Weyl groups, and Clifford groups, but also offers a new approach and perspective for studying many other discrete symmetric structures behind finite state quantum mechanics, such as mutually unbiased bases and discrete Wigner functions.
Harmonic maps of the bounded symmetric domains
International Nuclear Information System (INIS)
Xin, Y.L.
1994-06-01
A shrinking property of harmonic maps into R IV (2) is proved which is used to classify complete spacelike surfaces of the parallel mean curvature in R 4 2 with a reasonable condition on the Gauss image. Liouville-type theorems of harmonic maps from the higher dimensional bounded symmetric domains are also established. (author). 25 refs
On isotropic cylindrically symmetric stellar models
International Nuclear Information System (INIS)
Nolan, Brien C; Nolan, Louise V
2004-01-01
We attempt to match the most general cylindrically symmetric vacuum spacetime with a Robertson-Walker interior. The matching conditions show that the interior must be dust filled and that the boundary must be comoving. Further, we show that the vacuum region must be polarized. Imposing the condition that there are no trapped cylinders on an initial time slice, we can apply a result of Thorne's and show that trapped cylinders never evolve. This results in a simplified line element which we prove to be incompatible with the dust interior. This result demonstrates the impossibility of the existence of an isotropic cylindrically symmetric star (or even a star which has a cylindrically symmetric portion). We investigate the problem from a different perspective by looking at the expansion scalars of invariant null geodesic congruences and, applying to the cylindrical case, the result that the product of the signs of the expansion scalars must be continuous across the boundary. The result may also be understood in relation to recent results about the impossibility of the static axially symmetric analogue of the Einstein-Straus model
The Mathematics of Symmetrical Factorial Designs
Indian Academy of Sciences (India)
The Mathematics of Symmetrical Factorial Designs. Mausumi Bose (nee Sen) obtained her MSc degree in. Statistics from the Calcutta. University and PhD degree from the Indian Statistical. Institute. She is on the faculty of the Indian. Statistical Institute. Her main field of research interest is design and analysis of experiments.
Symmetric intersections of Rauzy fractals | Sellami | Quaestiones ...
African Journals Online (AJOL)
In this article we study symmetric subsets of Rauzy fractals of unimodular irreducible Pisot substitutions. The symmetry considered is re ection through the origin. Given an unimodular irreducible Pisot substitution, we consider the intersection of its Rauzy fractal with the Rauzy fractal of the reverse substitution. This set is ...
Fourier inversion on a reductive symmetric space
Ban, E.P. van den
1999-01-01
Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have dened an explicit Fourier transform for X and shown that this transform is injective on the space C 1 c (X) ofcompactly supported smooth functions on X. In the present paper, which is a continuation of these papers, we
A viewpoint on nearly conformally symmetric manifold
International Nuclear Information System (INIS)
Rahman, M.S.
1990-06-01
Some observations, with definition, on Nearly Conformally Symmetric (NCS) manifold are made. A number of theorems concerning conformal change of metric and parallel tensors on NCS manifolds are presented. It is illustrated that a manifold M = R n-1 x R + 1 , endowed with a special metric, is NCS but not of harmonic curvature. (author). 8 refs
Harmonic analysis on reductive symmetric spaces
Ban, E.P. van den; Schlichtkrull, H.
2000-01-01
We give a relatively non-technical survey of some recent advances in the Fourier theory for semisimple symmetric spaces. There are three major results: An inversion formula for the Fourier transform, a Palley-Wiener theorem, which describes the Fourier image of the space of completely supported
Fourier transforms on a semisimple symmetric space
Ban, E.P. van den; Schlichtkrull, H.
1994-01-01
Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation
Fourier transforms on a semisimple symmetric space
Ban, E.P. van den; Carmona, J.; Delorme, P.
1997-01-01
Let G=H be a semisimple symmetric space, that is, G is a connected semisimple real Lie group with an involution ?, and H is an open subgroup of the group of xed points for ? in G. The main purpose of this paper is to study an explicit Fourier transform on G=H. In terms of general representation
DEFF Research Database (Denmark)
Rigal, F.; Joanesarson, Kristoffer Bitsch; Lyasota, A.
2017-01-01
Propagation losses in GaAs-based photonic crystal (PhC) waveguides are evaluated near the semiconductor band-edge by measuring the finesse of corresponding Ln cavities. This approach yields simultaneously the propagation losses and the mode reflectivity at the terminations of the cavities. We dem...
Weakly Interacting Symmetric and Anti-Symmetric States in the Bilayer Systems
Marchewka, M.; Sheregii, E. M.; Tralle, I.; Tomaka, G.; Ploch, D.
We have studied the parallel magneto-transport in DQW-structures of two different potential shapes: quasi-rectangular and quasi-triangular. The quantum beats effect was observed in Shubnikov-de Haas (SdH) oscillations for both types of the DQW structures in perpendicular magnetic filed arrangement. We developed a special scheme for the Landau levels energies calculation by means of which we carried out the necessary simulations of beating effect. In order to obtain the agreement between our experimental data and the results of simulations, we introduced two different quasi-Fermi levels which characterize symmetric and anti-symmetric states in DQWs. The existence of two different quasi Fermi-Levels simply means, that one can treat two sub-systems (charge carriers characterized by symmetric and anti-symmetric wave functions) as weakly interacting and having their own rate of establishing the equilibrium state.
Pt/C Fuel Cell Catalyst Degradation
DEFF Research Database (Denmark)
Zana, Alessandro
This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (H...
On a broken - symmetric theory of gravity
International Nuclear Information System (INIS)
Fleming, H.
1979-09-01
A theory of gravity recently proposed by Zee is examined. The propagation of the special scalar field introduced by this theory is studied in cosmological models, and some problems are pointed out, connected with the possibility of a time-dependent vacuum expectation value for this scalar field. (Author) [pt
Near-coast tsunami waveguiding: phenomenon and simulations
van Groesen, Embrecht W.C.; Adytia, D.; Adytia, D.; Andonowati, A.
2008-01-01
In this paper we show that shallow, elongated parts in a sloping bottom toward the coast will act as a waveguide and lead to large enhanced wave amplification for tsunami waves. Since this is even the case for narrow shallow regions, near-coast tsunami waveguiding may contribute to an explanation
A Waveguide Transverse Broad Wall Slot Radiating Between Baffles
DEFF Research Database (Denmark)
Dich, Mikael; Rengarajan, S.R.
1997-01-01
An analysis of the self impedance of waveguide-fed transverse slots radiating between baffles is presented. The region exterior to the slot is treated as a parallel plate (PP) waveguide which radiates into half space through an aperture in an infinite ground plane. The slot problem is analyzed...
Waveguide superconducting single-photon autocorrelators for quantum photonic applications
Sahin, D.; Gaggero, A.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J.P.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Fiore, A.; Hasan, Z.U.; Hemmer, P.R.; Lee, H.; Santori, C.M.
2013-01-01
We report a novel component for integrated quantum photonic applications, a waveguide single-photon autocorrelator. It is based on two superconducting nanowire detectors patterned onto the same GaAs ridge waveguide. Combining the electrical output of the two detectors in a correlation card enables
Tailoring Dispersion properties of photonic crystal waveguides by topology optimization
DEFF Research Database (Denmark)
Stainko, Roman; Sigmund, Ole
2007-01-01
based design updates. The goal of the optimization process is to come up with slow light, zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion properties for dispersion compensation purposes. Two examples concerning reproduction of a specific dispersion...
Direct Wafer Bonding and Its Application to Waveguide Optical Isolators.
Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei
2012-05-24
This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO₃. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.
Direct Wafer Bonding and Its Application to Waveguide Optical Isolators
Directory of Open Access Journals (Sweden)
Ryohei Takei
2012-05-01
Full Text Available This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO_{3}. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.
Dispersion characteristics of plasmonic waveguides for THz waves
Markides, Christos; Viphavakit, Charusluk; Themistos, Christos; Komodromos, Michael; Kalli, Kyriacos; Quadir, Anita; Rahman, Azizur
2013-05-01
Today there is an increasing surge in Surface Plasmon based research and recent studies have shown that a wide range of plasmon-based optical elements and techniques have led to the development of a variety of active switches, passive waveguides, biosensors, lithography masks, to name just a few. The Terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, the metal-clad waveguides supporting surface plasmon modes waves and specifically hollow core structures, coated with insulating material are showing the greatest promise as low-loss waveguides for their use in active components and as well as passive waveguides. The H-field finite element method (FEM) based full-vector formulation is used to study the vectorial modal field properties and the complex propagation characteristics of Surface Plasmon modes of a hollow-core dielectric coated rectangular waveguide structure. Additionally, the finite difference time domain (FDTD) method is used to estimate the dispersion parameters and the propagation loss of the rectangular waveguide.
Magnetosonic Waveguide Model of Solar Wind Flow Tubes A. K. ...
Indian Academy of Sciences (India)
of plasma velocity or due to sudden variation of Alfvén or sound speed. Surface mag- netosonic wave is evanescent both inside and outside of waveguide, while the body magnetosonic wave is oscillatory inside the waveguide and evanescent outside. Both the wave modes are localized and non-leaky. Nakariakov et al.
Direct mapping of light propagation in photonic crystal waveguides
DEFF Research Database (Denmark)
Bozhevolnyi, S.I.; Volkov, V.S.; Arentoft, J.
2002-01-01
Using near-field optical microscopy, we directly map the propagation of light in the wavelength range of 1510-1560 nm along bent photonic crystal waveguides formed by removing a single row of holes in the triangular 400-nm-period lattice and connected to access ridge waveguides, the structure being...
Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide
International Nuclear Information System (INIS)
Rybachek, S.T.
1985-01-01
This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented
Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding
International Nuclear Information System (INIS)
Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan
2013-01-01
We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.
UV patterned nanoporous solid-liquid core waveguides
DEFF Research Database (Denmark)
Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner
2010-01-01
Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...
Design and Measurement of Metallic Post-Wall Waveguide Components
Coenen, T.J.; Bekers, D.J.; Tauritz, J.L.; Vliet, F.E. van
2009-01-01
Abstract—In this paper we discuss the design and measurement of a set of metallic post-wall waveguide components for antenna feed structures. The components are manufactured on a single layer printed circuit board and excited by a grounded coplanar waveguide. For a straight transmission line, a 90°
Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide
DEFF Research Database (Denmark)
Öhman, Filip; Yvind, Kresten; Mørk, Jesper
2006-01-01
We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....
Slow light in quantum dot photonic crystal waveguides
DEFF Research Database (Denmark)
Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper
2009-01-01
A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...
Polarization effects in silicon-clad optical waveguides
Carson, R. F.; Batchman, T. E.
1984-01-01
By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.
Matrix method for two-dimensional waveguide mode solution
Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee
2018-05-01
In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.
Fabrication of raised and inverted SU8 polymer waveguides
Holland, Anthony S.; Mitchell, Arnan; Balkunje, Vishal S.; Austin, Mike W.; Raghunathan, Mukund K.
2005-01-01
Polymer films with high optical transmission have been investigated for making optical devices for several years. SU8 photoresist and optical adhesives have been investigated for use as thin films for optical devices, not what they were originally designed for. Optical adhesives are typically a one component thermoset polymer and are convenient to use for making thin film optical devices such as waveguides. They are prepared in minutes as thin films unlike SU8, which has to be carefully thermally cured over several hours for optimum results. However SU8 can be accurately patterned to form the geometry of structures required for single mode optical waveguides. SU8 in combination with the lower refractive index optical adhesive films such as UV15 from Master Bond are used to form single and multi mode waveguides. SU8 is photopatternable but we have also used dry etching of the SU8 layer or the other polymer layers e.g. UV15 to form the ribs, ridges or trenches required to guide single modes of light. Optical waveguides were also fabricated using only optical adhesives of different refractive indices. The resolution obtainable is poorer than with SU8 and hence multi mode waveguides are obtained. Loss measurements have been obtained for waveguides of different geometries and material combinations. The process for making polymer waveguides is demonstrated for making large multi mode waveguides and microfluidic channels by scaling the process up in size.
Optical vortex propagation in few-mode rectangular polymer waveguides
DEFF Research Database (Denmark)
Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs
2017-01-01
We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states...
COMPACT ATHERMAL OPTICAL WAVEGUIDE USING THERMAL EXPANSION AMPLIFICATION
DEFF Research Database (Denmark)
2001-01-01
A method of temperature stabilising optical waveguides having positive thermal optical path length expansion, in particular fiber Bragg gratings or optical fiber DFB lasers or optical fiber DBR lasers, comprising affixing the optical waveguide to at least two points of a negative expanding fixture...
ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers
DEFF Research Database (Denmark)
Dyndgaard, Morten Glarborg
2001-01-01
The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...
Vector pulsing soliton of self-induced transparency in waveguide
International Nuclear Information System (INIS)
Adamashvili, G.T.
2015-01-01
A theory of an optical resonance vector pulsing soliton in waveguide is developed. A thin transition layer containing semiconductor quantum dots forms the boundary between the waveguide and one of the connected media. Analytical and numerical solutions for the optical vector pulsing soliton in waveguide are obtained. The vector pulsing soliton in the presence of excitonic and bi-excitonic excitations is compared with the soliton for waveguide TM-modes with parameters that can be used in modern optical experiments. It is shown that these nonlinear waves have significantly different parameters and shapes. - Highlights: • An optical vector pulsing soliton in a planar waveguide is presented. • Explicit form of the optical vector pulsing soliton are obtained. • The vector pulsing soliton and the soliton have different parameters and profiles
Reconfigurable optical manipulation by phase change material waveguides.
Zhang, Tianhang; Mei, Shengtao; Wang, Qian; Liu, Hong; Lim, Chwee Teck; Teng, Jinghua
2017-05-25
Optical manipulation by dielectric waveguides enables the transportation of particles and biomolecules beyond diffraction limits. However, traditional dielectric waveguides could only transport objects in the forward direction which does not fulfill the requirements of the next generation lab-on-chip system where the integrated manipulation system should be much more flexible and multifunctional. In this work, bidirectional transportation of objects on the nanoscale is demonstrated on a rectangular waveguide made of the phase change material Ge 2 Sb 2 Te 5 (GST) by numerical simulations. Either continuous pushing forces or pulling forces are generated on the trapped particles when the GST is in the amorphous or crystalline phase. With the technique of a femtosecond laser induced phase transition on the GST, we further proposed a reconfigurable optical trap array on the same waveguide. This work demonstrates GST waveguide's potential of achieving multifunctional manipulation of multiple objects on the nanoscale with plausible optical setups.
Terahertz spoof surface-plasmon-polariton subwavelength waveguide
Zhang, Ying; Xu, Yuehong; Tian, Chunxiu; Xu, Quan; Zhang, Xueqian; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili
2017-01-01
Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press
Terahertz spoof surface-plasmon-polariton subwavelength waveguide
Zhang, Ying
2017-12-11
Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press
Dry-film polymer waveguide for silicon photonics chip packaging.
Hsu, Hsiang-Han; Nakagawa, Shigeru
2014-09-22
Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.
Modeling of Slot Waveguide Sensors Based on Polymeric Materials
Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo
2011-01-01
Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020
Systematic design of loss-engineered slow-light waveguides
DEFF Research Database (Denmark)
Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper
2012-01-01
This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....
Modeling of Slot Waveguide Sensors Based on Polymeric Materials
Directory of Open Access Journals (Sweden)
Lorenzo Pavesi
2011-07-01
Full Text Available Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies.
Competition and transformation of modes of unidirectional air waveguide
Sun, Yu-xin; Kong, Xiang-kun; Fang, Yun-tuan
2016-10-01
In order to study the mode excitation of the unidirectional air waveguide, we place a line source at different positions in the waveguide. The source position plays an important role in determining the result of the competition of the even mode and the odd mode. For the source at the edge of the waveguide, the odd mode gets advantage over the even mode. As a result, the odd mode is excited, but the even mode is suppressed. For the source at the center of the waveguide, the even mode is excited, but the odd mode is suppressed. With two sources at two edges of the waveguide, the even mode is released because the two odd modes are canceled.
Nonlinear optical properties of silicon waveguides
International Nuclear Information System (INIS)
Tsang, H K; Liu, Y
2008-01-01
Recent work on two-photon absorption (TPA), stimulated Raman scattering (SRS) and optical Kerr effect in silicon-on-insulator (SOI) waveguides is reviewed and some potential applications of these optical nonlinearities, including silicon-based autocorrelation detectors, optical amplifiers, high speed optical switches, optical wavelength converters and self-phase modulation (SPM), are highlighted. The importance of free carriers generated by TPA in nonlinear devices is discussed, and a generalized definition of the nonlinear effective length to cater for nonlinear losses is proposed. How carrier lifetime engineering, and in particular the use of helium ion implantation, can enhance the nonlinear effective length for nonlinear devices is also discussed
Quantum waveguide theory of a fractal structure
International Nuclear Information System (INIS)
Lin Zhiping; Hou Zhilin; Liu Youyan
2007-01-01
The electronic transport properties of fractal quantum waveguide networks in the presence of a magnetic field are studied. A Generalized Eigen-function Method (GEM) is used to calculate the transmission and reflection coefficients of the studied systems unto the fourth generation Sierpinski fractal network with node number N=123. The relationship among the transmission coefficient T, magnetic flux Φ and wave vector k is investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux Φ are observed and discussed, and compared with the results of the tight-binding model
Strategies for waveguide coupling for SRF cavities
International Nuclear Information System (INIS)
Doolittle, L.R.
1998-01-01
Despite widespread use of coaxial couplers in SRF cavities, a single, simple waveguide coupling can be used both to transmit generator power to a cavity, and to remove a large class of Higher Order Modes (HOMs, produced by the beam). There are balances and tradeoffs to be made, such as the coupling strength of the various frequencies, the transverse component of the coupler fields on the beam axis, and the magnitude of the surface fields and currents. This paper describes those design constraints, categories of solutions, and examples from the CEBAF Energy Upgrade studies
Development of planar waveguides in zinc telluride
International Nuclear Information System (INIS)
Valette, Serge
1977-02-01
Zinc telluride (ZnTe) is one of the most attractive semi-conductors for monolithic integrated optics. In this study, the general characteristics of the planar optical waveguides achieved by implantation of light ions in ZnTe are investigated. Different aspects of prism-coupling and coherent light guiding have been taken up theoretically and experimentally. Some assumptions about the physical origin of these structures are discussed in order to explain all these results and the weak losses which have been measured. [fr
Nanoscale constrictions in superconducting coplanar waveguide resonators
Energy Technology Data Exchange (ETDEWEB)
Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando, E-mail: fluis@unizar.es [Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Sesé, Javier [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Atkinson, James; Barco, Enrique del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Sánchez-Azqueta, Carlos [Dpto. de Ingeniería Electrónica y Telecomunicaciones, Universidad de Zaragoza, 50009 Zaragoza (Spain); Majer, Johannes [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna (Austria)
2014-10-20
We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.
Ka-band waveguide rotary joint
Yevdokymov, Anatoliy
2013-04-11
The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three circular choke grooves. Utilisation of three choke grooves allows larger operating clearance. Two prototypes of the rotary joint have been manufactured and experimentally studied. The observed loss is from 0.4 to 0.8 dB in 1.5 GHz band.
Laser generated soliton waveguides in photorefractive crystals
International Nuclear Information System (INIS)
Vlad, V.I.; Fazio, E.; Bertolotti, M.; Bosco, A.; Petris, A.
2005-01-01
Non-linear photo-excited processes using the photorefractive effect are revisited with emphasis on spatial soliton generation in special laser beam propagation conditions. The soliton beams can create reversible or irreversible single-mode waveguides in the propagating materials. The important features are the 3D orientation and graded index profile matched to the laser fundamental mode. Bright spatial solitons are theoretically demonstrated and experimentally observed for the propagation of c.w. and pulsed femtosecond laser beams in photorefractive materials such as Bi 12 SiO 20 (BSO) and lithium niobate crystals. Applications in high coupling efficiency, adaptive optical interconnections and photonic crystal production are possible
Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate
Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg
2011-01-01
This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing
Directory of Open Access Journals (Sweden)
Carsten Strohmann
2012-03-01
Full Text Available The title compound, [FePt(C9H9NO2S(C18H15P(C25H22P2(CO3], represents a rare example of an isonitrile-bridged heterobimetallic complex (here Pt and Fe and is an interesting precursor for the preparation of heterodinuclear μ-aminocarbyne complexes, since the basic imine-type N atom of the μ2-C=N–R ligand readily undergoes addition with various electrophiles to afford iminium-like salts. In the crystal, the almost symmetrically bridging μ2-C=N-R ligand (neglecting the different atomic radii of Fe and Pt is strongly bent towards the Fe(CO3 fragment, with a C=N-R angle of only 121.1 (4°.
Representations of the infinite symmetric group
Borodin, Alexei
2016-01-01
Representation theory of big groups is an important and quickly developing part of modern mathematics, giving rise to a variety of important applications in probability and mathematical physics. This book provides the first concise and self-contained introduction to the theory on the simplest yet very nontrivial example of the infinite symmetric group, focusing on its deep connections to probability, mathematical physics, and algebraic combinatorics. Following a discussion of the classical Thoma's theorem which describes the characters of the infinite symmetric group, the authors describe explicit constructions of an important class of representations, including both the irreducible and generalized ones. Complete with detailed proofs, as well as numerous examples and exercises which help to summarize recent developments in the field, this book will enable graduates to enhance their understanding of the topic, while also aiding lecturers and researchers in related areas.
Symmetric, discrete fractional splines and Gabor systems
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2006-01-01
In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing the continu......In this paper we consider fractional splines as windows for Gabor frames. We introduce two new types of symmetric, fractional splines in addition to one found by Unser and Blu. For the finite, discrete case we present two families of splines: One is created by sampling and periodizing...... the continuous splines, and one is a truly finite, discrete construction. We discuss the properties of these splines and their usefulness as windows for Gabor frames and Wilson bases....
Symmetric configurations highlighted by collective quantum coherence
Energy Technology Data Exchange (ETDEWEB)
Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)
2017-11-15
Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)
Overlap-free symmetric D 0 Lwords
Directory of Open Access Journals (Sweden)
Anna Frid
2001-12-01
Full Text Available A D0L word on an alphabet Σ={0,1,…,q-1} is called symmetric if it is a fixed point w=φ(w of a morphism φ:Σ * → Σ * defined by φ(i= t 1 + i t 2 + i … t m + i for some word t 1 t 2 … t m (equal to φ(0 and every i ∈ Σ; here a means a mod q. We prove a result conjectured by J. Shallit: if all the symbols in φ(0 are distinct (i.e., if t i ≠ t j for i ≠ j, then the symmetric D0L word w is overlap-free, i.e., contains no factor of the form axaxa for any x ∈ Σ * and a ∈ Σ.
Young—Capelli symmetrizers in superalgebras†
Brini, Andrea; Teolis, Antonio G. B.
1989-01-01
Let Supern[U [unk] V] be the nth homogeneous subspace of the supersymmetric algebra of U [unk] V, where U and V are Z2-graded vector spaces over a field K of characteristic zero. The actions of the general linear Lie superalgebras pl(U) and pl(V) span two finite-dimensional K-subalgebras B and [unk] of EndK(Supern[U [unk] V]) that are the centralizers of each other. Young—Capelli symmetrizers and Young—Capelli *-symmetrizers give rise to K-linear bases of B and [unk] containing orthogonal systems of idempotents; thus they yield complete decompositions of B and [unk] into minimal left and right ideals, respectively. PMID:16594014
Factored Facade Acquisition using Symmetric Line Arrangements
Ceylan, Duygu
2012-05-01
We introduce a novel framework for image-based 3D reconstruction of urban buildings based on symmetry priors. Starting from image-level edges, we generate a sparse and approximate set of consistent 3D lines. These lines are then used to simultaneously detect symmetric line arrangements while refining the estimated 3D model. Operating both on 2D image data and intermediate 3D feature representations, we perform iterative feature consolidation and effective outlier pruning, thus eliminating reconstruction artifacts arising from ambiguous or wrong stereo matches. We exploit non-local coherence of symmetric elements to generate precise model reconstructions, even in the presence of a significant amount of outlier image-edges arising from reflections, shadows, outlier objects, etc. We evaluate our algorithm on several challenging test scenarios, both synthetic and real. Beyond reconstruction, the extracted symmetry patterns are useful towards interactive and intuitive model manipulations.
Commutative curvature operators over four-dimensional generalized symmetric
Directory of Open Access Journals (Sweden)
Ali Haji-Badali
2014-12-01
Full Text Available Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
Irreducible complexity of iterated symmetric bimodal maps
Directory of Open Access Journals (Sweden)
J. P. Lampreia
2005-01-01
Full Text Available We introduce a tree structure for the iterates of symmetric bimodal maps and identify a subset which we prove to be isomorphic to the family of unimodal maps. This subset is used as a second factor for a ∗-product that we define in the space of bimodal kneading sequences. Finally, we give some properties for this product and study the ∗-product induced on the associated Markov shifts.
A symmetric Roos bound for linear codes
Duursma, I.M.; Pellikaan, G.R.
2006-01-01
The van Lint–Wilson AB-method yields a short proof of the Roos bound for the minimum distance of a cyclic code. We use the AB-method to obtain a different bound for the weights of a linear code. In contrast to the Roos bound, the role of the codes A and B in our bound is symmetric. We use the bound
Symmetric voltage-controlled variable resistance
Vanelli, J. C.
1978-01-01
Feedback network makes resistance of field-effect transistor (FET) same for current flowing in either direction. It combines control voltage with source and load voltages to give symmetric current/voltage characteristics. Since circuit produces same magnitude output voltage for current flowing in either direction, it introduces no offset in presense of altering polarity signals. It is therefore ideal for sensor and effector circuits in servocontrol systems.
Resistor Networks based on Symmetrical Polytopes
Directory of Open Access Journals (Sweden)
Jeremy Moody
2015-03-01
Full Text Available This paper shows how a method developed by Van Steenwijk can be generalized to calculate the resistance between any two vertices of a symmetrical polytope all of whose edges are identical resistors. The method is applied to a number of cases that have not been studied earlier such as the Archimedean polyhedra and their duals in three dimensions, the regular polytopes in four dimensions and the hypercube in any number of dimensions.
Symmetric vs. asymmetric punishment regimes for bribery
Engel, Christoph; Goerg, Sebastian J.; Yu, Gaoneng
2012-01-01
In major legal orders such as UK, the U.S., Germany, and France, bribers and recipients face equally severe criminal sanctions. In contrast, countries like China, Russia, and Japan treat the briber more mildly. Given these differences between symmetric and asymmetric punishment regimes for bribery, one may wonder which punishment strategy is more effective in curbing corruption. For this purpose, we designed and ran a lab experiment in Bonn (Germany) and Shanghai (China) with exactly the same...
Symmetric scrolled packings of multilayered carbon nanoribbons
Savin, A. V.; Korznikova, E. A.; Lobzenko, I. P.; Baimova, Yu. A.; Dmitriev, S. V.
2016-06-01
Scrolled packings of single-layer and multilayer graphene can be used for the creation of supercapacitors, nanopumps, nanofilters, and other nanodevices. The full atomistic simulation of graphene scrolls is restricted to consideration of relatively small systems in small time intervals. To overcome this difficulty, a two-dimensional chain model making possible an efficient calculation of static and dynamic characteristics of nanoribbon scrolls with allowance for the longitudinal and bending stiffness of nanoribbons is proposed. The model is extended to the case of scrolls of multilayer graphene. Possible equilibrium states of symmetric scrolls of multilayer carbon nanotribbons rolled up so that all nanoribbons in the scroll are equivalent are found. Dependences of the number of coils, the inner and outer radii, lowest vibrational eigenfrequencies of rolled packages on the length L of nanoribbons are obtained. It is shown that the lowest vibrational eigenfrequency of a symmetric scroll decreases with a nanoribbon length proportionally to L -1. It is energetically unfavorable for too short nanoribbons to roll up, and their ground state is a stack of plane nanoribbons. With an increasing number k of layers, the nanoribbon length L necessary for creation of symmetric scrolls increases. For a sufficiently small number of layers k and a sufficiently large nanoribbon length L, the scrolled packing has the lowest energy as compared to that of stack of plane nanoribbons and folded structures. The results can be used for development of nanomaterials and nanodevices on the basis of graphene scrolled packings.
Is the Universe matter-antimatter symmetric
International Nuclear Information System (INIS)
Alfven, H.
1976-09-01
According to the symmetric cosmology there should be antimatter regions in space which are equally as large as the matter regions. The regions of different kind are separated by Leidenfrost layers, which may be very thin and not observable from a distance. This view has met resistance which in part is based on the old view that the dilute interstellar and intergalactic medium is more or less homogeneous. However, through space research in the magnetosphere and interplanetary space we know that thin layers, dividing space into regions of different magnetisation, exist and based on this it is concluded that space in general has a cellular structure. This result may break down the psychological resistance to the symmetric theory. The possibility that every second star in our galaxy consists of antimatter is discussed, and it is shown that this view is not in conflict with any observations. As most stars are likely to be surrounded by solar systems of a structure like our own, it is concluded that collisions between comets and antistars (or anticomets and stars) would be rather frequent. Such collisions would result in phenomena of the same type as the observed cosmic γ-ray bursts. Another support for the symmetric cosmology is the continuous X-ray background radiation. Also many of the observed large energy releases in cosmos are likely to be due to annihilation
Waveguide quantum electrodynamics in squeezed vacuum
You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail
2018-02-01
We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.
Effect of Pt coverage in Pt-deposited Pd nanostructure electrodes on electrochemical properties
Energy Technology Data Exchange (ETDEWEB)
Park, Ah-Reum; Lee, Young-Woo; Kwak, Da-Hee; Park, Kyung-Won [Soongsil University, Seoul (Korea, Republic of)
2015-06-15
We have fabricated Pt-deposited Pd electrodes via a two-gun sputtering deposition system by separately operating Pd and Pt target as a function of sputtering time of Pt target. For Pt-deposited Pd electrodes (Pd/Pt-X), Pd were first deposited on the substrates at 20 W for 5min, followed by depositing Pt on the Pd-only electrodes as a function of sputtering time (X=1, 3, 5, 7, and 10min) at 20W on the Pt target. As the sputtering time of Pt target increased, the portion of Pt on the Pd electrodes increased, representing an increased coverage of Pt on the Pd electrodes. The Pd/Pt-7 electrode having an optimized Pt coverage exhibits an excellent electrocatalytic activity for methanol oxidation reaction.
On the harmonic starlike functions with respect to symmetric ...
African Journals Online (AJOL)
In the present paper, we introduce the notions of functions harmonic starlike with respect to symmetric, conjugate and symmetric conjugate points. Such results as coefficient inequalities and structural formulae for these function classes are proved. Keywords: Harmonic functions, harmonic starlike functions, symmetric points, ...
Zero-Dispersion Slow Light with Wide Bandwidth in Photonic Crystal Coupled Waveguides
International Nuclear Information System (INIS)
Xiao-Yu, Mao; Geng-Yan, Zhang; Yi-Dong, Huang; Wei, Zhang; Jiang-De, Peng
2008-01-01
By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W 2 ) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity ν g in incident waveguide can be achieved. In particular, proper W 2 and r' can lead to the lowest ν g of 0.0085c at 1550 nm with wide bandwidth of 202 GHz for zero dispersion
PT symmetry breaking in non-central potentials
International Nuclear Information System (INIS)
Levai, G.
2007-01-01
Complete text of publication follows. PT-symmetric systems represent a special example for non-hermitian problems in quantum mechanics. The Hamiltonian of these systems is invariant under the simultaneous action of the P space and T time inversion operations. They resemble hermitian problems in that they typically possess real energy spectrum. However, increasing non-hermiticity, e.g. the imaginary potential component the real energy eigenvalues merge pairwise and turn into complex conjugate pairs and at the same time, the energy eigenstates cease to be eigenstates of the PT operator. The mechanism of this spontaneous breakdown of PT symmetry has been investigated in one spatial dimension, and our aim was to extend these studies to higher dimensions. Assuming that the solutions of the Schroedinger equation -Δψ(r) + V (r)ψ(r) = Eψ(r) can be obtained by the separation of the radial and angular variables, we substitute ψ(r,θ,φ) = r -1 φ(r) sin -1/2 ω(θ)τ(ψ) in (4), where r [0,∞), θ [0,π] and ψ [0,2π]. Further, we assume that the angular components of the wave function satisfy ω' = (P(θ) - p)ω, τ' = (K(ψ) - k)τ, where τ(ψ) has to be defined with periodic boundary conditions. Then the complete three-dimensional problem becomes solvable if the non-central potential takes the form V(r,θ,ψ) = V 0 (r)+ K(ψ)/r 2 sin 2 θ + P(θ)/r 2 - k-1/4/r 2 sin 2 θ. Here V 0 (r) is a central potential appearing in -φ'+[V 0 (r) + 1/r 2 (p - 1/4] φ - Eφ = 0. Note that is formally identical with a conventional radial Schroedinger equation complete with a centrifugal term. In order to solve properly, the state dependence of has to be eliminated, i.e. its dependence on k has to be cancelled by combining the last two terms. This effectively means that has to be solved with a potential P(θ) that contains a sin -2 θ type term. Next we investigate under which conditions the non-central potential exhibits PT symmetry. It is seen that space reflection P : r → -r
Dual formulation of covariant nonlinear duality-symmetric action of kappa-symmetric D3-brane
Vanichchapongjaroen, Pichet
2018-02-01
We study the construction of covariant nonlinear duality-symmetric actions in dual formulation. Essentially, the construction is the PST-covariantisation and nonlinearisation of Zwanziger action. The covariantisation made use of three auxiliary scalar fields. Apart from these, the construction proceed in a similar way to that of the standard formulation. For example, the theories can be extended to include interactions with external fields, and that the theories possess two local PST symmetries. We then explicitly demonstrate the construction of covariant nonlinear duality-symmetric actions in dual formulation of DBI theory, and D3-brane. For each of these theories, the twisted selfduality condition obtained from duality-symmetric actions are explicitly shown to match with the duality relation between field strength and its dual from the one-potential actions. Their on-shell actions between the duality-symmetric and the one-potential versions are also shown to match. We also explicitly prove kappa-symmetry of the covariant nonlinear duality-symmetric D3-brane action in dual formulation.
Ultrasonic Waveguide Sensor with a Layer-Structured Plate
International Nuclear Information System (INIS)
Joo, Young Sang; Bae, Jin Ho; Kim, Jong Bum
2010-01-01
In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors had developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In the previous studies, the Ultrasonic waveguide sensor module had been designed and manufactured. And the feasibility study of the ultrasonic waveguide sensor has been performed. To Improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A 0 -mode Lamb wave should be minimized and the longitudinal leaky wave in a liquid sodium should be generated within the range of the effective radiation angle. In this study, a new concept of ultrasonic waveguide sensor with a layered-structured plate is suggested for the non-dispersive propagation of A 0 -mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of leaky wave in a liquid sodium
Analysis and synthesis of (SAR) waveguide phased array antennas
Visser, H. J.
1994-02-01
This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.
Zhang, Xiaoshi; Lytle, Amy L.; Cohen, Oren; Kapteyn, Henry C.; Murnane, Margaret M.
2010-11-09
All-optical quasi-phase matching (QPM) uses a train of counterpropagating pulses to enhance high-order harmonic generation (HHG) in a hollow waveguide. A pump pulse enters one end of the waveguide, and causes HHG in the waveguide. The counterpropagation pulses enter the other end of the waveguide and interact with the pump pulses to cause QPM within the waveguide, enhancing the HHG.
Quantitative study of rectangular waveguide behavior in the THz.
Energy Technology Data Exchange (ETDEWEB)
Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement
2009-10-01
This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.
16 channel 200 GHz arrayed waveguide grating based on Si nanowire waveguides
International Nuclear Information System (INIS)
Zhao Lei; An Junming; Zhang Jiashun; Song Shijiao; Wu Yuanda; Hu Xiongwei
2011-01-01
A 16 channel arrayed waveguide grating demultiplexer with 200 GHz channel spacing based on Si nanowire waveguides is designed. The transmission spectra response simulated by transmission function method shows that the device has channel spacing of 1.6 nm and crosstalk of 31 dB. The device is fabricated by 193 nm deep UV lithography in silicon-on-substrate. The demultiplexing characteristics are observed with crosstalk of 5-8 dB, central channel's insertion loss of 2.2 dB, free spectral range of 24.7 nm and average channel spacing of 1.475 nm. The cause of the spectral distortion is analyzed specifically. (semiconductor devices)
Cherenkov interaction of hollow electron beam with a dielectric waveguide
International Nuclear Information System (INIS)
Karbushev, N.I.; Shlapakovskij, A.S.
1989-01-01
The waveguide excitation methods are used to study magnetized hollow electron beam interaction with electromagnetic waves of a waveguide with a dielectric bush. Characteristic equation with explicit presentation of depression coefficients and the beam coupling with the synchronous wave is derived. Dependences of depression and coupling coefficients on the beam and waveguide parameters are studied. the current limiting values of small and large space charge regimes are determined. Coefficients of synchronous wave amplification by a beam and oscillation set up conditions in the considered finite length system are determined
Deep-probe metal-clad waveguide biosensors
DEFF Research Database (Denmark)
Skivesen, Nina; Horvath, Robert; Thinggaard, S.
2007-01-01
Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....