WorldWideScience

Sample records for pt nanoparticles approximately

  1. The anisotropy field of FePt L10 nanoparticles controlled by very thin Pt layer

    International Nuclear Information System (INIS)

    Okamoto, Satoshi; Kitakami, Osamu; Kikuchi, Nobuaki; Miyazaki, Takamichi; Shimada, Yutaka; Chiang, Te-Hsuan

    2004-01-01

    We have prepared epitaxial FePt L1 0 (001) nanoparticles covered with Pt [d Pt nm]/Ag[(4-d Pt ) nm] overlayers. The particles are oblate spheroids approximately 10 nm in diameter and 2 nm in height. The anisotropy field H k at 0 K, which is evaluated from the temperature dependences of coercivity H c , decreases from 90 to 60 kOe on increasing the Pt thickness from d Pt 0 to 1.5 nm, while the energy barrier at zero field remains unchanged. The significant reduction of H k due to the presence of the adjacent Pt layer can be attributed to an enhanced magnetic moment caused by the ferromagnetic polarization of Pt atoms at the interface. This finding suggests an effective method of controlling the switching field of FePt L1 0 nanoparticles

  2. Study of carbon-supported bimetallic PtCu nanoparticles by ASAXS

    International Nuclear Information System (INIS)

    Bulat, N.V.; Avakyan, L.A; Pryadchenko, V.V.; Srabionyan, V.V.; Belenov, S.V.; Bugaev, L.A.

    2017-01-01

    Bimetallic platinum-copper nanoparticles on carbon support are studied as a perspective electrochemical catalyst by anomalous small-angle X-ray scattering near the Pt absorption L 3 -edge. The simultaneous fitting of several diffraction patterns measured at different photon energies lead to a satisfactory agreement between experimental and model curves in the assumption of core-shell structure of the particles with Pt-rich shell and Cu-rich core. It is shown that the average size of as prepared nanoparticles is about 6 nm with distribution spread of about ±2 nm and with thickness of Pt-rich shell approximately 1.6 nm. After annealing at 350o C the average size of the particles increased by two times with additional enlargement of the Pt-rich shell thickness. (paper)

  3. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    Science.gov (United States)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  4. Optical properties of monodispersive FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [Center for Sustainable Environmental Technologies, Iowa State University, Ames, IA 50011 (United States)

    2004-10-01

    The optical properties of monodispersive FePt nanoparticle films were investigated using spectroscopic ellipsometry in the energy range of 1.5 to 5.5 eV. The monodispersive FePt nanoparticle film was stabilized on a Si substrate by means of an organosilane coupling film, resulting in the formation of a (Si/SiO{sub 2}/APTS/FePt nanoparticles monolayer) structure. Multilayer optical models were employed to study the contribution of the FePt nanoparticles to the measured optical properties of the monodispersive FePt nanoparticle film, and to estimate the optical properties of the FePt nanoparticle layer. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  6. Synthesis of PtNi Alloy Nanoparticles on Graphene-Based Polymer Nanohybrids for Electrocatalytic Oxidation of Methanol

    Directory of Open Access Journals (Sweden)

    Tung-Yuan Yung

    2016-12-01

    Full Text Available We have successfully produced bimetallic PtNi alloy nanoparticles on poly(diallyldimethylammonium chloride (PDDA-modified graphene nanosheets (PtNi/PDDA-G by the “one-pot” hydrothermal method. The size of PtNi alloy nanoparticles is approximately 2–5 nm. The PDDA-modified graphene nanosheets (PDDA-G provides an anchored site for metal precursors; hence, the PtNi nanoparticles could be easily bond on the PDDA-G substrate. PtNi alloy nanoparticles (2–5 nm display a homogenous alloy phase embedded on the PDDA-G substrate, evaluated by Raman, X-ray diffractometer (XRD, thermal gravity analysis (TGA, electron surface chemical analysis (ESCA, and electron energy loss spectroscopy (EELS. The Pt/Ni ratio of PtNi alloy nanoparticles is ~1.7, examined by the energy dispersive spectroscopy (EDS spectra of transmitting electron microscopy (EDS/TEM spectra and mapping technique. The methanol electro-oxidation of PtNi/PDDA-G was evaluated by cyclic voltammetry (CV in 0.5 M of H2SO4 and 0.5 M of CH3OH. Compared to Pt on carbon nanoparticles (Pt/C and Pt on Graphene (Pt/G, the PtNi/PDDA-G exhibits the optimal electrochemical surface area (ECSA, methanol oxidation reaction (MOR activity, and durability by chrono amperometry (CA test, which can be a candidate for MOR in the electro-catalysis of direct methanol fuel cells (DMFC.

  7. Spectroscopic ellipsometry study of FePt nanoparticle films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.J.; Lo, C.C.H. [Ames Laboratory, Iowa State University, Ames, IA 50011 (United States); Yu, A.C.C. [Sony Corporation, Sendai Technology Center, 3-4-1 Sakuragi, Miyagi 985-0842 (Japan); Fan, M. [School of Materials Science and Technology, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2006-12-15

    The optical properties of a FePt nanoparticle film were investigated using spectroscopic ellipsometry. The FePt nanoparticle film of thickness about 15 nm was prepared by deposition of FePt nanoparticles directly on a Si substrate. The nanoparticle film was annealed at 600 C in vacuum for two hours before the measurements. The optical properties of the FePt nanoparticle film showed distinctively different spectra from those obtained from the bulk and thin film FePt samples, in particular in the low photon energy range (below 3.5 eV) where the nanoparticle film exhibited a relatively flat refractive index and a substantially lower extinction coefficient than the bulk and epitaxial thin film samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Stabilization of Pt nanoparticles by single stranded DNA and the binary assembly of Au and Pt nanoparticles without hybridization

    International Nuclear Information System (INIS)

    Yang, J.; Lee, Jim Yang; Too, Heng-Phon; Chow, Gan-Moog; Gan, Leong M.

    2006-01-01

    The non-specific interaction between single stranded DNA (ssDNA) and 12 nm Pt nanoparticles is investigated in this work. The data show a strong and non-specific interaction between the two which can be exploited for the stabilization of Pt nanoparticles in aqueous solutions. Based on the experimental findings, a non-hybridization based protocol to assemble 17 nm Au and Pt nanoparticles (12 nm cubic and 3.6 nm spherical) by single-stranded DNA was developed. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed that Au and Pt nanoparticles could be assembled by the non-specific interaction in an orderly manner. The experimental results also caution against the potential pitfalls in using DNA melting point analysis to infer metal nanoparticle assembly by DNA hybridization

  9. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong; Anjum, Dalaver H.; Zhou, Lu; Laveille, Paco; Basset, Jean-Marie

    2015-01-01

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles

  10. Synthesis of Supported NiPt Bimetallic Nanoparticles, Methods for Controlling the Surface Coverage of Ni Nanoparticles With Pt, Methods Of Making NiPt Multilayer Core-Shell Structures and Application of the Supported Catalysts for CO2 Reforming

    KAUST Repository

    Li, Lidong

    2015-06-25

    Embodiments of the present disclosure provide for supported Ni/Pt bimetallic nanoparticles, compositions including supported NiPt nanoparticles, methods of making supported NiPt nanoparticles, methods of using supported NiPt nanoparticles, and the like.

  11. Simultaneous synthesis of polyaniline nanofibers and metal (Ag and Pt) nanoparticles

    International Nuclear Information System (INIS)

    Huang, Li-Ming; Liao, Wei-Hao; Ling, Han-Chern; Wen, Ten-Chin

    2009-01-01

    An approach for the synthesis of Ag/Pt nanoparticle-incorporated polyaniline (PANI) nanofibers and Ag/Pt nanoparticles was developed that considers both thermodynamic and kinetic aspects. Ag/Pt nanoparticles and PANI nanofibers are generated simultaneously by the reduction of Ag + /Pt 4+ ions to Ag/Pt nanoparticles and by the polymerization of aniline (ANI) to PANI nanofibers. The PANI nanofibers serve as anchor seeds for the formation of Ag/Pt nanoparticles. The simple and inexpensive route for the preparation of PANI-Ag/Pt nanocomposites can be extended to the polymerization of ANI derivatives and the formation of metal/metal oxides for applications such as sensors, direct methanol fuel cells, and capacitors.

  12. Fabrication and surface transformation of FePt nanoparticle monolayer

    International Nuclear Information System (INIS)

    Wang Ying; Ding Baojun; Li Hua; Zhang Xiaoyan; Cai Bingchu; Zhang Yafei

    2007-01-01

    The monolayer of FePt nanoparticles with the mean size of ∼4 nm was fabricated on a glass substrate by the Langmuir--Blodgett (LB) technology. The monolayer of FePt nanoparticles has a smooth surface and a high density structure as shown by the AFM image. The array structure of FePt nanoparticles on the surface of the film is clearly with a cubic symmetry in appropriate condition. Small-angle X-ray diffraction (SXRD) measurement of multilayer structure for the FePt nanoparticles has indicated that the superlattices consist of well-defined smooth layers. The transfer of nanoparticle layers onto a solid substrate surface was quite efficient for the first few layers, exhibiting a proportional increase of optical absorption in the UV-vis range. This results potentially opens up a new approach to the long-range ordered array of FePt nanoparticles capped by organic molecules on substrate and provide a promising thin film, which may exhibit the excellent ultra-high density magnetic recording properties

  13. Toward the direct deposition of L10 FePt nanoparticles

    International Nuclear Information System (INIS)

    Qiu Jiaoming; Judy, Jack H.; Weller, Dieter; Wang Jianping

    2005-01-01

    In this paper we report a technique that can directly fabricate L1 0 phase FePt nanoparticles. FePt nanoparticles were generated through gas-phase aggregation using a magnetron-sputtering-based nanocluster source. Following the source chamber, an online halogen-lamp heater was used for the L1 0 phase formation during the particles' flight in vacuum. Transmission electron microscopy and vibrating-sample magnetometer data verified the successful fabrication of the L1 0 phase FePt nanoparticles. The coercivity value at 300 K is 1100 Oe for the nanoparticles with online heating. Neon carrier gas was applied to manipulate FePt nanoparticle size and to enhance particle size uniformity. The size dependence of nanoparticle ordering was investigated

  14. Synthesis of Ag or Pt Nanoparticles by Hydrolysis of Either Ag2Na or PtNa

    Directory of Open Access Journals (Sweden)

    Huabin Wang

    2008-01-01

    Full Text Available Ag and Pt nanoparticles have successfully been synthesized by hydrolysis of either Ag2Na or PtNa at room temperature. The oxidation of sodium in the Pt-Na pellets was much faster than that in the Ag-Na pellets since Pt is a catalyst for H2O formation reaction from hydrogen and oxygen at room temperature. The hydrolysis byproduct, NaOH, has a high solubility and easily is removed. This method offers a simple method of preparing transition metal nanoparticles. The Ag and Pt nanoparticles prepared by this method were crystalline in nature, and spherical in shape with a mean size of around 10 nm.

  15. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO2 reforming of methane

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.

  16. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-09-24

    Embodiments of the present disclosure provide for NiPt nanoparticles, compositions and supports including NiPt nanoparticles, methods of making NiPt nanoparticles, methods of supporting NiPt nanoparticles, methods of using NiPt nanoparticles, and the like.

  17. Synthesis, characterization and magnetic properties of highly monodispersed PtNi nanoparticles

    International Nuclear Information System (INIS)

    Du, Juan-Juan; Yang, Yi; Zhang, Rong-Hua; Zhou, Xin-Wen

    2015-01-01

    In this paper, we report the controlled-synthesis of PtNi nanoparticles through galvanic displacement reaction and chemical reduction. The size, composition and morphology of the products are characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), energy dispersed X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses. The structure and composition of the PtNi nanoparticles can be controlled by adjusting the synthetic conditions. The possible formation mechanism is obtained from the academic analysis and experimental studies. The results of the magnetic measurement illustrate that the PtNi nanoparticles show a superparamagnetic behavior with a blocking temperature (T B ) about 8.0 K. - Highlights: • Highly monodispersed PtNi nanoparticles were synthesized by galvanic displacement reaction. • The formation of Pt nanocrystals was the foremost step because of its self-catalysis effect. • The PtNi nanoparticles show a superparamagnetic behavior with a T B about 8.0 K

  18. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles

    Science.gov (United States)

    Valizade-Shahmirzadi, N.; Pakizeh, T.

    2018-04-01

    In this paper, optical properties of nanoparticles (nanodisks and nanospheres) composed of photofunctional metals like palladium (Pd) and platinum (Pt) over a large dimension range are investigated using the electromagnetic simulation and quasi-static theory. These characteristics are compared with their counterparts in plasmonic gold (Au) nanoparticles. Pd/Pt-nanodisks with larger dimension have higher absorption and lower scattering efficiencies than Au-nanodisks that accompany with lower extinction efficiencies and broader resonances. Although an increment in the dimension (diameter and height) of Au/Pd/Pt-nanoparticles decreases the absorption-to-scattering ratios, these ratios are less sensitive to the height size in Au-nanodisks, which causes their LSPR spectra become much broader. It is noteworthy that the LSPR quality factor of Pd nanoparticles is improved by considering the radiative damping and depolarization in quasi-static method unlike the Au nanoparticles. The importance of the highly absorptive Pd/Pt nanoparticles can be traced in the photo-functionalized and energy applications.

  19. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun, E-mail: 1044208419@qq.com; Mao, Hui, E-mail: rejoice222@163.com [Sichuan Normal University, College of Chemistry and Materials Science (China)

    2016-10-15

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al{sub 2}O{sub 3} catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  20. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    International Nuclear Information System (INIS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-01-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al 2 O 3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  1. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  2. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    International Nuclear Information System (INIS)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-01

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl 3 as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells

  3. Study the Polyol Process of Preparing the ru Doped FePt Nanoparticles

    Science.gov (United States)

    Lee, Chih-Hao; Hsu, Jen-Ho; Su, Hui-Chia; Huang, Tzu Wen

    The structure of Ru doped FePt nanoparticles using polyol process was studied. The particle size grown is around 5 nm, and a shell structure might be formed. By selecting the time and temperature of adding the Ru precursors into solution, three different processes to synthesize the FePtRu particles were studied resulting in different growing mechanics. The possible models during the reaction process are also discussed. The phase transition temperature for the as-grown FCC FePt nanoparticle to transform into L10 FePt nanoparticle is about 823 K which is about the same as the one without doping Ru atoms. From the XAS study of each element, the possible scenario is that: although Ru atoms with the size close to the Pt, they do not totally replace the Pt sites in the FePt alloy. Instead, most of Ru formed a shell outside the FePt nanoparticles and Fe atoms are replaced.

  4. PtPb nanoparticle electrocatalysts: control of activity through synthetic methods

    International Nuclear Information System (INIS)

    Ghosh, Tanushree; Matsumoto, Futoshi; McInnis, Jennifer; Weiss, Marilyn; Abruna, Hector D.; DiSalvo, Francis J.

    2009-01-01

    Solution phase synthesis of intermetallic nanoparticles without using surfactants (for catalytic applications) and subsequent control of size distribution remains a challenge: of growing interest, but not widely explored yet. To understand the questions in the syntheses of Pt containing intermetallic nanoparticles (as electrocatalysts for direct fuel cells) by using sodium naphthalide as the reducing agent, the effects of the Pt precursors' organic ligands were investigated. PtPb syntheses were studied as the model case. In particular, methods that lead to nanoparticles that are independent single crystals are desirable. Platinum acetylacetonate, which is soluble in many organic solvents, has ligands that may interfere less with nanoparticle growth and ordering. Interesting trends, contrary to expectations, were observed when precursors were injected into a reducing agent solution at high temperatures. The presence of acetylacetonate, from the precursor, on the nanoparticles was confirmed by ATR, while SEM imaging showed evidence of morphological changes in the nanoparticles with increasing reaction temperature. A definite relationship between domain size and extent of observed residue (organic material and sodium) present on the particles could be established. By varying post-reaction solvent removal techniques, room temperature crystallization of PtPb nanoparticles was also achieved. Electrochemical activity of the nanoparticles was also much higher than that of nanoparticles synthesized by previous reaction schemes using sodium naphthalide as the reducing agent. Along with the above mentioned techniques, BET, TEM, CBED, SAED, and XRD were used as characterization tools for the prepared nanoparticles.

  5. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tun-Dong; Fan, Tian-E [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Shao, Gui-Fang, E-mail: gfshao@xmu.edu.cn [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Zheng, Ji-Wen [Center for Cloud Computing and Big Data, Department of Automation, Xiamen University, Xiamen 361005 (China); Wen, Yu-Hua [Institute of Theoretical Physics and Astrophysics, Department of Physics, Xiamen University, Xiamen 361005 (China)

    2014-08-14

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs.

  6. Particle swarm optimization of the stable structure of tetrahexahedral Pt-based bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Liu, Tun-Dong; Fan, Tian-E; Shao, Gui-Fang; Zheng, Ji-Wen; Wen, Yu-Hua

    2014-01-01

    Bimetallic nanoparticles, enclosed by high-index facets, have great catalytic activity and selectivity owing to the synergy effects of high-index facets and the electronic structures of alloy. In this paper, a discrete particle swarm optimization algorithm was employed to systematically investigate the structural stability and features of tetrahexahedral Pt-based bimetallic nanoparticles with high-index facets. Different Pt/Ag, Pt/Cu, Pt/Pd atom ratios and particle sizes were considered in this work. The simulation results reveal that these alloy nanoparticles exhibit considerably different structural characteristics. Pt–Ag nanoparticles tend to form Pt–Ag core–shell structure. Pt–Cu nanoparticles are preferred to take multi-shell structure with Cu on the outer surface while Pt–Pd nanoparticles present a mixing structure in the interior and Pd-dominated surface. Atomic distribution and bonding characteristics were applied to further characterize the structural features of Pt-based nanoparticles. This study provides an important insight into the structural stability and features of Pt-based nanoparticles with different alloys. - Highlights: • We explore the structural stability of Pt-based alloy NPs by a discrete PSO. • Our study discovers the different structural characteristics for Pt-based NPs. • Alloy composition and size have important effects on the surface segregation. • Our work shows strong phase separation for Pt–Ag NPs while weak for Pt–Pd NPs

  7. Co-Pt nanoparticles encapsulated in carbon cages prepared by sonoelectrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Luong, Nguyen Hoang; Hai, Nguyen Hoang; Phu, Nguyen Dang [Center for Materials Science, Faculty of Physics, Hanoi University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi (Viet Nam); MacLaren, D A, E-mail: luongnh@vnu.edu.vn [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2011-07-15

    Co-Pt nanoparticles encapsulated in carbon cages have been prepared by sonoelectrodeposition followed by annealing in a CO atmosphere. Sonoelectrodeposition is a useful technique to make metallic nanoparticles, using ultrasound during electrodeposition to remove nanoparticles as they grow on the cathode surface. We used an electrolyte containing chloroplatinic acid and cobalt chloride and found that the atomic ratio of Co:Pt in the as-formed materials varied from 0.2 to 0.8 as the deposition current density was changed from 15 to 35 mA cm{sup -2}. However, the as-deposited materials were inhomogeneous, comprising a mixture of Pt-rich and Co-rich nanoparticles. X-ray diffraction indicated that subsequent heat treatment (700 deg. C for 1 h) under CO gas created an ordered CoPt alloy phase that exhibited hard magnetic properties. Transmission electron microscopy showed many of the resulting nanoparticles to be encapsulated in carbon cages, which we ascribe to Co-catalyzed decomposition of CO during annealing. The thickness of the carbon cages was about ten layers, which may have helped reduce sintering during annealing. The size of the resultant nanoparticles was about 100 nm diameter, larger than the typical 5-10 nm diameter of as-deposited nanoparticles.

  8. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  9. Visible light photoactivity of TiO{sub 2} loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gołąbiewska, Anna, E-mail: annagolabiewska@o2.pl [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland); Lisowski, Wojciech [Mazovia Center for Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw (Poland); Jarek, Marcin; Nowaczyk, Grzegorz [NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Zielińska-Jurek, Anna; Zaleska, Adriana [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland)

    2014-10-30

    Graphical abstract: - Highlights: • Au/Pt nanoparticles enhanced TiO{sub 2} photocatalytic activity under visible irradiation. • Higher photoactivity of Au/Pt-TiO{sub 2} resulted from smaller Au/Pt particles. • Intermetallic state of AuPt favors charge transfer between the metals. • TiO{sub 2} obtained by TIP hydrolysis seems to be best matrix for Au/Pt-TiO{sub 2}. - Abstract: TiO{sub 2} modified with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles have been prepared using a water-in-oil microemulsion system (water/AOT/cyclohexane) followed by calcination step. The effect of metal ratio, reducing agent type (NaBH{sub 4} or N{sub 2}H{sub 4}), TiO{sub 2} matrix type (P-25, ST-01, TiO-5, TiO{sub 2} nanotubes or TiO{sub 2} obtained by TIP hydrolysis) as well as calcination temperature (from 350 to 650 °C) were systematically investigated. Obtained photocatalysts were characterized by UV–vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning transmission microscopy (STEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light (λ > 420 nm) has been estimated in phenol degradation reaction in aqueous phase. The results showed that phenol degradation rate under visible light in the presence of TiO{sub 2} loaded with Au/Pt nanoparticles differed from 0.7 to 2.2 μmol dm{sup −3} min{sup −1} for samples prepared using different reducing agent. Sodium borohydride (NaBH{sub 4}) favors formation of smaller Au/Pt nanoparticles and higher amount gold in Au/Pt is in the form of electronegative species (Au{sup δ−}) resulted in higher photoactivity. TiO{sub 2} obtained by TIP hydrolysis in microemulsion system seems to be the best support for Au/Pt nanoparticles from all among investigated matrix. It was also observed that enhancement of calcination temperature from 450 to 650 °C resulted in rapid drop of Au/Pt-TiO{sub 2} photoactivity under visible light

  10. Mechanistic studies of formic acid oxidation at polycarbazole supported Pt nanoparticles

    International Nuclear Information System (INIS)

    Moghaddam, Reza B.; Pickup, Peter G.

    2013-01-01

    Highlights: •A polycarbazole support decreases the accumulation of adsorbed intermediates on Pt during formic acid oxidation. •Polycarbazole causes a bilayer of Cu to form on Pt nanoparticles during Cu underpotential deposition. •XPS suggests that both of these effects are due to electron donation from the metal (Pt or Cu) into the polymer π-system. -- Abstract: Mechanistic aspects of the promotion of formic acid oxidation at Pt nanoparticles supported on a thin layer of polycarbazole (PCZ) have been investigated by voltammetry and X-ray photoelectron spectroscopy (XPS). The Pt nanoparticles were drop coated onto a glassy carbon (GC) electrode coated with a ca. 9 nm layer of electrochemically deposited polycarbazole. After 500 s of formic acid oxidation at 0 V vs. SCE, the current at a GC/PCZ/Pt electrode was 25 times higher than at a GC/Pt electrode. Voltammetry in formic acid free H 2 SO 4 following potentiostatic oxidation of formic acid revealed that there was less accumulation of adsorbed intermediates for the polycarbazole supported Pt nanoparticles than for those deposited directly onto the glassy carbon with, 50% more Pt sites remaining available for the GC/PCZ/Pt electrode relative to the GC/Pt electrode. Independent CO stripping experiments revealed only slight differences, while Cu underpotential deposition surprisingly resulted in the deposition of a ca. two-fold excess of Cu on the polycarbazole supported particles. This observation was supported by XPS which also revealed a second Cu signal at a higher binding energy, suggesting electron donation into the conjugated π system of the polymer. Such an interaction of Pt with the polycarbazole may be responsible for its higher activity for formic acid oxidation

  11. Synthesis of Pt-Sn core-shell nanoparticles deposited on SBA-15 modified

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Contreras, L.; Alonso-Lemus, I. [Centro de Investigacion en Materiales Avanzados S.C., Laboratorio Nacional de Nanotecnologia (Mexico); Botte, G. G. [Ohio University, Center for Electrochemical Engineering Research, Department of Chemical and Biomolecular Engineering (United States); Verde-Gomez, Y., E-mail: ysmaelverde@yahoo.com [Instituto Tecnologico de Cancun (Mexico)

    2013-07-15

    A novel one-step synthesis method to prepare Pt-Sn bimetallic nanoparticles supported on mesoporous silica with high surface area (SBA-15, 700 m{sup 2}/g) and narrow pore size distribution (around 9.5 nm) was developed. Tin incorporation plays an important dual role, to create active sites into the silica walls that serve as particles anchors center, and to grow Pt-Sn core-shell nanoparticles. High-resolution transmission and scanning electron microscopy, and X-ray diffraction pattern confirm the formation of the Pt-Sn core-shell type nanoparticles ( Almost-Equal-To 1-10 nm). The metal loading was 2.2 and 2.3 wt% for Pt and Sn, respectively. Electron microscopy results show that the metal nanoparticles were deposited not only on the matrix, but also inside of it. Structural, textural, and morphological features of the SBA-15 were slightly affected after the nanoparticles deposition, maintaining its high surface area. The results obtained suggest that Pt-Sn on SBA-15 could be attractive material for several catalytic applications, due to the narrow particle size distribution achieved (from 1 to 10 nm) the high dispersion on the support, as well as the Pt-Sn alloy developed.Graphical Abstract.

  12. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  13. FePt and CoPt nanoparticles prepared by micellar method. Effects of A1{yields}L1{sub 0} transition on oxidation resistance and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Han, Luyang

    2011-02-15

    In this thesis FePt and CoPt alloy nanoparticles are prepared with reverse micelles. The metallic nanoparticles with diameters of 2-12 nm and interparticle distances of 20-140 nm are obtained on Si substrates. The magnetic properties of FePt and CoPt nanoparticles as well as oxidation behavior of FePt nanoparticles are investigated. X-ray magnetic circular dichroism (XMCD) measurements on 5.8 nm FePt nanoparticles after hydrogen plasma reduction at 300 C reveals that the magnetic moment per Fe atom and magnetic anisotropy energy match chemically disordered FePt in A1 phase. Annealing at 650 C transform portion of FePt particles to chemically ordered L1{sub 0} phase. The presense of nanoparticles in L1{sub 0} phase is identified by high-resolution transmission electronmicroscopy (HRTEM) investigation, where it is also observed that large fraction of the particles contain defects such as twin boundaries and stacking faults. By increasing the annealing temperature or prolonging annealing time, ratio of transformed particles increases. The average magnetic anisotropy energy of the transformed particles is below 30% of the value of bulk FePt in L1{sub 0} phase. Annealing at above 750 C, however, decreases the average magnetic anisotropy in the sample. Similar A1 {yields} L1{sub 0} transition is observed in FePt nanoparticles with different diameters as well as in CoPt nanoparticles. The spin moment of Fe in FePt nanoparticles decreases with smaller particle diameter, while the orbital moment stays almost constant. Magnetic moments at room temperature are significantly reduced compared to those at low temperature, suggesting the Curie temperatures in FePt and CoPt nanoparticles are significantly lower than in the bulk. The annealing also induces Pt segregation towards the surface in FePt nanoparticles, which is identified by the decreased apparent Fe content measured by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The segregation of Pt

  14. Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2015-02-01

    Full Text Available A simple and effective method for the preparation of platinum nanoparticles (Pt NPs grown on amino-func‐ tionalized halloysite nanotubes (HNTs was developed. The nanostructures were synthesized through the func‐ tionalization of the HNTs, followed by an in situ approach to generate Pt NPs with diameter of approximately 1.5 nm within the entire HNTs. The synthesis process, composition and morphology of the nanostructures were characterized. The results suggest PtNPs/NH2-HNTs nanostructures with ultrafine PtNPs were successfully synthesized by green chemically-reducing H2PtCl6 without the use of surfactant. The nanostructures exhibit promising catalytic properties for reducing potassium hexacyanoferrate(III to potassium hexacyanoferrate(II. The presented experiment for novel PtNPs/NH2-HNTs nanostructures is quite simple and environmentally benign, permitting it as a potential application in the future field of catalysts.

  15. Size effect on L10 ordering and magnetic properties of chemically synthesized FePt and FePtAu nanoparticles

    Science.gov (United States)

    Jia, Zhiyong; Kang, Shishou; Shi, Shifan; Nikles, David E.; Harrell, J. W.

    2005-05-01

    There is growing evidence that FePt nanoparticles become increasingly difficult to chemically order as the size approaches a few nanometers. We have studied the chemical ordering of FePt and FePtAu nanoparticle arrays as a function of particle size. Monodisperse Fe49Pt51 and Fe48Pt44Au8 nanoparticles with a size about 6nm were synthesized by the simultaneous decomposition of iron pentacarbonyl and reduction of platinum acetylacetonate and gold (III) acetate in a mixture of phenyl ether and hexadecylamine (HDA), with 1-adamantanecarboxylic acid and HDA as stabilizers. The nanoparticles were dispersed in toluene, films of the particles were cast onto silicon wafers from the dispersion, and the films were annealed in a tube furnace with flowing Ar +5%H2. The magnetic anisotropy and switching volumes were determined from time- and temperature-dependent coercivity measurements. By comparing with 3-nm FePt and FePtAu nanoparticles of comparable composition, the phase transformation is easier for the larger particles. Under the same annealing conditions, the larger particles have higher anisotropy and order parameter. Additive Au is very effective in enhancing the chemical ordering in both small and large particles, with x-ray diffraction superlattice peaks appearing after annealing at 350°C. Dynamic remnant coercivity measurements and magnetic switching volumes suggest particle aggregation at the higher annealing temperatures in both small and large particles.

  16. The effect of reducing agents on the electronic, magnetic and electrocatalytic properties of thiol-capped Pt/Co and Pt/Ni nanoparticles

    CSIR Research Space (South Africa)

    Mathe, NR

    2015-05-01

    Full Text Available The electronic, magnetic and electrocatalytic properties of bimetallic thiol-capped Pt/Co and Pt/Ni nanoparticles were synthesised using two reducing agents, NaBH(sub4) and N(sub2)H(sub4). X-ray diffraction analysis of the nanoparticles showed Pt...

  17. Direct synthesis of L1 type Fe-Pt nanoparticles using microwave-polyol method

    International Nuclear Information System (INIS)

    Minami, Rumiko; Kitamoto, Yoshitaka; Chikata, Tsukasa; Kato, Shunsaku

    2005-01-01

    We report the synthesis of Fe-Pt nanoparticles with microwave irradiation during polyol-reduction reaction. Chemically ordered Fe-Pt nanoparticles with L1 structure are fabricated at 250 deg. C using a microwave-polyol method without any post-synthesis treatments. Moessbauer analyses reveal the nanoparticles have partially ordered L1 structure. The partially ordered Fe-Pt nanoparticles exhibit coercivity of 3.4 kOe, saturation magnetization of 49 emu/g, and anisotropy field of 83 kOe at room temperature

  18. Magnetic properties of thermally reduced graphene oxide decorated with PtNi nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huízar-Félix, A.M. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); BC Materials, Basque Centre for Materials, Applications and Nanostructures, 48160 Derio (Spain); Cruz-Silva, R. [Research Center for Exotic NanoCarbon, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan); Barandiarán, J.M. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); BC Materials, Basque Centre for Materials, Applications and Nanostructures, 48160 Derio (Spain); García-Gutiérrez, D.I. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ingeniería Mecánica y Eléctrica, FIME, Ave. Pedro de Alba s/n, Ciudad Universitaria, C.P.66455 San Nicolás de los Garza, N.L. (Mexico); Orue, I. [SGIKER Medidas Magnéticas, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa (Spain); and others

    2016-09-05

    Nanocomposites of reduced graphene oxide (RGO) with PtNi nanoparticles were obtained by in situ thermal reduction of a physical mixture of GO and metallic precursors. RGO and PtNiRGO nanocomposites were studied by differential thermal analysis and thermogravimetry, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), as well as scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The method presented here is a one-step thermal reduction procedure that allows the deposition of bimetallic PtNi nanoparticles with tetragonal crystalline structure and particle size ranging from 3 nm to 30 nm on RGO. The magnetic properties of the RGO and PtNiRGO nanocomposites were measured by vibrating sample magnetometry, which revealed that the RGO exhibited diamagnetism at room temperature and paramagnetism at temperatures below 10 K. PtNiRGO nanocomposites show hysteresis and ferromagnetic ordering at room temperature with a Curie temperature of 658 K. In addition, its magnetic properties at low temperature were strongly influenced by the paramagnetic contribution of RGO and the morphology of the bimetallic nanoparticles. - Highlights: • Simultaneous synthesis method for growth of PtNi nanoparticles on RGO. • Microstructural features of PtNiRGO nanocomposite were studied with extensive characterization. • Diamagnetic behavior of RGO and ferromagnetic ordering for PtNiRGO nanocomposite.

  19. Shape-controlled synthesis of Pt-Pd core-shell nanoparticles exhibiting polyhedral morphologies by modified polyol method

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Asaka, Toru; Matsubara, Takashi; Nogami, Masayuki

    2011-01-01

    Pt-Pd core-shell nanoparticles were synthesized by a simple synthetic method. First, Pt nanoparticles were synthesized in a controlled manner via the reduction of chloroplantinic acid hexahydrate in ethylene glycol (EG) at 160 deg. C in the presence of silver nitrate and the stabilization of polyvinylpyrrolidon. AgNO 3 used acts as a structure-modifying agent to the morphology of the Pt nanoparticles. These Pt nanoparticles function as the seeds for the successive reduction of sodium tetrachloropalladate (II) hydrate in EG under stirring for 15 min at 160 deg. C in order to synthesize Pt-Pd core-shell nanoparticles. To characterize the as-prepared Pt-Pd nanoparticles, transmission electron microscopy (TEM) and high-resolution TEM are used. The high-resolution elemental mappings were carried out using the combination of scanning TEM and X-ray energy-dispersive spectroscopy. The results also demonstrate the homogeneous nucleation and growth of the Pd metal shell on the definite Pt core. The synthesized Pt-Pd core-shell nanoparticles exhibit a sharp and polyhedral morphology. The epitaxial growth of the controlled Pd shells on the Pt cores via a polyol method was observed. It is suggested that Frank-van der Merwe and Stranski-Krastanov growth modes coexisted in the nucleation and growth of Pt-Pd core-shell nanoparticles.

  20. Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation

    International Nuclear Information System (INIS)

    Sun, Chia-Liang; Tang, Jui-Shiang; Brazeau, Nicolas; Wu, Jhing-Jhou; Ntais, Spyridon; Yin, Chung-Wei; Chou, Hung-Lung; Baranova, Elena A.

    2015-01-01

    Highlights: • Pt colloidal nanoparticles with five mean diameters are synthesized. • Size-selected Pt nanoparticles are loaded on sulfonated graphene (sG). • Sulfonic acid functional groups atop graphene donate charge to Pt. • Pt-sG catalysts are used for ethanol oxidation reaction (EOR). • Pt-sG(2.5 nm) has the highest peak current density in EOR. - Abstract: Fuel cells are promising alternative in automobile and stationary power generation. Direct ethanol fuel cells (DEFCs) offer significant advantages due to the non-toxicity and renewability of ethanol as well as its high power density. Development of the efficient catalysts for ethanol oxidation reaction (EOR) has attracted great attention and represents one of the major challenges in electrocatalysis. Graphene, one-atom thick nanocarbon materials, has attracted much attention recently in a variety of applications. The sulfonation of graphene is able to make it hydrophilic, which enhances its dispersibility in aqueous solvents. Furthermore, sulfonation increases the adsorption and uniform distribution of the Pt nanoparticles, which increases both the electrocatalytic activity and the durability. In this study, theoretical calculations demonstrated that the sulfonate functional group can donate charge to Pt, enhanced the adsorption energy of Pt, and then reduce the adsorption energy of CO on Pt. Then experimentally five kinds of Pt/sulfonated-graphene (Pt/sG) catalysts were synthesized via the control of pH values during the preparation of five-selected colloidal nanoparticles. Among all catalysts, Pt-sG(2.5 nm) has the highest peak current density in EOR

  1. Atomistic computer simulations of FePt nanoparticles. Thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.

    2007-12-20

    In the present dissertation, a hierarchical multiscale approach for modeling FePt nanoparticles by atomistic computer simulations is developed. By describing the interatomic interactions on different levels of sophistication, various time and length scales can be accessed. Methods range from static quantum-mechanic total-energy calculations of small periodic systems to simulations of whole particles over an extended time by using simple lattice Hamiltonians. By employing these methods, the energetic and thermodynamic stability of non-crystalline multiply twinned FePt nanoparticles is investigated. Subsequently, the thermodynamics of the order-disorder transition in FePt nanoparticles is analyzed, including the influence of particle size, composition and modified surface energies by different chemical surroundings. In order to identify processes that reduce or enhance the rate of transformation from the disordered to the ordered state, the kinetics of the ordering transition in FePt nanoparticles is finally investigated by assessing the contributions of surface and volume diffusion. (orig.)

  2. Factors influencing the charge distribution on Pd x Pt y bimetallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Carlos M. Celis-Cornejo

    2013-12-01

    Full Text Available We performed quantum mechanics calculations to elucidate the electronic behavior of Pd-Pt bimetallic nanoparticles, using density functional theory, in response to particle size and stoichiometric composition. Using neutrally charged nanoparticles and the Bader charge analysis, we found that external Pd atoms were positively charged, which agrees with previous XPS observations of supported Pd-Pt nanoparticles. From the calculations, unsupported nanoparticles exhibit an electron transfer from Pd to Pt. This result supports the idea that Pd electron-deficient species are possibly responsible of the hydrogenating function of these catalysts, in the hydrodesulfurization of dibenzothiophene. Additionally, it was found that the particle size does not affect the electronic charge distribution and the stoichiometric composition is the factor that greatly influences this property in nanoparticles.

  3. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    Science.gov (United States)

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was

  4. Facile synthesis of hollow dendritic Ag/Pt alloy nanoparticles for enhanced methanol oxidation efficiency.

    Science.gov (United States)

    Sui, Ning; Wang, Ke; Shan, Xinyao; Bai, Qiang; Wang, Lina; Xiao, Hailian; Liu, Manhong; Colvin, Vicki L; Yu, William W

    2017-11-14

    Hollow dendritic Ag/Pt alloy nanoparticles were synthesized by a double template method: Ag nanoparticles as the hard template to obtain hollow spheres by a galvanic replacement reaction between PtCl 6 2- and metallic Ag and surfactant micelles (Brij58) as the soft template to generate porous dendrites. The formation of a Ag/Pt alloy phase was confirmed by XRD and HRTEM. Elemental mapping and line scanning revealed the formation of the hollow architecture. We studied the effects of the Ag/Pt ratio, surfactant and reaction temperature on the morphology. In addition, we explored the formation process of hollow dendritic Ag/Pt nanoparticles by tracking the morphologies of the nanostructures formed at different stages. In order to improve the electrocatalytic property, we controlled the size of the nanoparticles and the thickness of the shell by adjusting the amount of the precursor. We found that these Ag/Pt alloy nanoparticles exhibited high activity (440 mA mg -1 ) and stability as an electrocatalyst for catalyzing methanol oxidation.

  5. Plasma-induced synthesis of Pt nanoparticles supported on TiO{sub 2} nanotubes for enhanced methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); The Synergetic Innovation Center for Advanced Materials, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Hu, Xiulan, E-mail: whoxiulan@163.com [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); The Synergetic Innovation Center for Advanced Materials, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China); Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao [College of Materials Science and Engineering, Nanjing Tech University, Xin-Mo-Fan Road No. 5, 210009, Nanjing, Jiangsu (China)

    2017-03-31

    Highlights: • Pt nanoparticles are synthesized by plasma sputtering in water. • Pt/C/TiO{sub 2} nanotubes shows better mass activity and CO-poisoning tolerance than Pt/C. • TiO{sub 2} nanotubes are more suitable for support materials than TiO{sub 2} small particles. • The metal-support interactions between Pt and TiO{sub 2} nanotubes are detected by XPS. - Abstract: A Pt/C/TiO{sub 2} nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO{sub 2} nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO{sub 2} synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO{sub 2} catalysts for methanol oxidation showed that TiO{sub 2} nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO{sub 2} short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO{sub 2} nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO{sub 2} nanotubes, which could mitigate the poisoning of the Pt catalyst by CO{sub ads}, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO{sub 2} nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  6. CoPt nanoparticles deposited by electron beam evaporation

    International Nuclear Information System (INIS)

    Castaldi, L.; Giannakopoulos, K.; Travlos, A.; Niarchos, D.; Boukari, S.; Beaurepaire, E.

    2005-01-01

    Co 50 Pt 50 nanoparticles were co-deposited on thermally oxidized Si substrates by electron beam evaporation at 750 deg C. The mean particle sizes are between ∼5 and ∼20 nm and depend on the nominal thickness of the layer. Different processing conditions resulted in different structural and morphological properties of the samples which led to superparamagnetic and ferromagnetic behaviors. The post-annealing treatment of the CoPt nanograins resulted in the crystallization of the L1 0 ordered phase and in the magnetic hardening of nanoparticles with a maximum coercivity of ∼7.4 kOe

  7. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Mu, Yongyan; Liang, Hanpu; Hu, Jinsong; Jiang, Li; Wan, Lijun

    2005-12-01

    We report a novel process to prepare well-dispersed Pt nanoparticles on CNTs. Pt nanoparticles, which were modified by the organic molecule triphenylphosphine, were deposited on multiwalled carbon nanotubes by the organic molecule, which acts as a cross linker. By manipulating the relative ratio of Pt nanoparticles and multiwalled carbon nanotubes in solution, Pt/CNT composites with different Pt content were achieved. The so-prepared Pt/CNT composite materials show higher electrocatalytic activity and better tolerance to poisoning species in methanol oxidation than the commercial E-TEK catalyst, which can be ascribed to the high dispersion of Pt nanoparticles on the multiwalled carbon nanotube surface.

  8. Effect of Ni doping on the structural and magnetic properties of FePt nanoparticles

    International Nuclear Information System (INIS)

    Yang, H.-W.; Chung, C.-M.; Ding, Jack Y.

    2007-01-01

    A serial of FePtNi nanoparticles were investigated on their crystal structure and magnetic properties. The FePtNi nanoparticles were synthesized simultaneously by the reduction of iron (III) acetylacetonate, platinum (II) acetylacetonate and nickel (II) acetylacetonate with 1,2-hexadecanediol as the reducing agent. The X-ray diffraction patterns indicate that the addition of 8, 12, 17 at% Ni in FePt nanoparticles suppressed the transformation of the particles from disorder face-centered cubic to order face-centered tetragonal L1 0 -phase under annealing treatment. However, further increasing Ni contents to 21 at%, the nanoparticle transformed to L1 2 phase. Doping of Ni into the FePt compound system may decrease coercivity and crystal anisotropy energy. A maximum coercivity of 7 KOe at room temperature was obtained for (Fe 52 Pt 48 ) 92 Ni 8 nanoparticles after annealing at 600 deg. C for 30 min

  9. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    Science.gov (United States)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  10. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    Directory of Open Access Journals (Sweden)

    Khalid Madiha

    2009-01-01

    Full Text Available Abstract Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI silane functionalized silicon and indium tin oxide (ITO coated glass surfaces. Atomic force microscopy (AFM, UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs.

  11. Radiolytic synthesis of carbon-supported PtRu nanoparticles using high-energy electron beam: effect of pH control on the PtRu mixing state and the methanol oxidation activity

    International Nuclear Information System (INIS)

    Ohkubo, Yuji; Kageyama, Satoru; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Nitani, Hiroaki; Ueno, Koji; Yamamoto, Takao A.

    2013-01-01

    Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.

  12. Radiolytic synthesis of carbon-supported PtRu nanoparticles using high-energy electron beam: effect of pH control on the PtRu mixing state and the methanol oxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@mit.eng.osaka-u.ac.jp; Kageyama, Satoru; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Osaka University, Graduate School of Engineering (Japan); Nitani, Hiroaki [High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd (Japan); Yamamoto, Takao A. [Osaka University, Graduate School of Engineering (Japan)

    2013-05-15

    Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.

  13. Synthesis and characterization of FePt/Au core-shell nanoparticles

    International Nuclear Information System (INIS)

    Presa, P. de la; Multigner, M.; Morales, M.P.; Rueda, T.; Fernandez-Pinel, E.; Hernando, A.

    2007-01-01

    In this work, the structural and magnetic properties of the gold-coated FePt nanoparticles synthesized from high-temperature solution phase are presented. The amount of gold was optimized to obtain most of the FePt particles coated. The particle diameter increases from 4 to 10 nm as observed by TEM. The magnetic properties are largely affected by the coating. At low temperature, the coercive field Hc of the coated nanoparticles decreases about three times respect to the uncoated and the blocking temperature reduces to the half. The changes of the magnetic behavior are discussed in terms of the effect of the gold atoms at the FePt core surface

  14. Local Chemical Ordering and Negative Thermal Expansion in PtNi Alloy Nanoparticles.

    Science.gov (United States)

    Li, Qiang; Zhu, He; Zheng, Lirong; Fan, Longlong; Wang, Na; Rong, Yangchun; Ren, Yang; Chen, Jun; Deng, Jinxia; Xing, Xianran

    2017-12-13

    An atomic insight into the local chemical ordering and lattice strain is particular interesting to recent emerging bimetallic nanocatalysts such as PtNi alloys. Here, we reported the atomic distribution, chemical environment, and lattice thermal evolution in full-scale structural description of PtNi alloy nanoparticles (NPs). The different segregation of elements in the well-faceted PtNi nanoparticles is convinced by extended X-ray absorption fine structure (EXAFS). Atomic pair distribution function (PDF) study evidences the coexistence of the face-centered cubic and tetragonal ordering parts in the local environment of PtNi nanoparticles. Further reverse Monte Carlo (RMC) simulation with PDF data obviously exposed the segregation as Ni and Pt in the centers of {111} and {001} facets, respectively. Layer-by-layer statistical analysis up to 6 nm for the local atomic pairs revealed the distribution of local tetragonal ordering on the surface. This local coordination environment facilitates the distribution of heteroatomic Pt-Ni pairs, which plays an important role in the negative thermal expansion of Pt 41 Ni 59 NPs. The present study on PtNi alloy NPs from local short-range coordination to long-range average lattice provides a new perspective on tailoring physical properties in nanomaterials.

  15. Facile synthesis of octahedral Pt-Pd nanoparticles stabilized by silsesquioxane for the electrooxidation of formic acid

    International Nuclear Information System (INIS)

    Li, Yusong; Hao, Furui; Wang, Yihong; Zhang, Yihong; Ge, Cunwang; Lu, Tianhong

    2014-01-01

    Graphical abstract: The octahedral Pt-Pd alloy nanoparticles (octahedral Pt-Pd NPs) with dominant {111} facets were successfully synthesized through a facile route in the presence of octa(3-aminopropyl) silsesquioxane as the capping agent and complexing agent, methanol as the reductant and solvent. The octahedral Pt-Pd NPs display the significantly enhanced electrocatalytic activity, increased CO tolerance and favourable stability for the electrooxidation of formic acid. - Highlights: • Octa Pt-Pd nanoparticles were synthesized with silsesquioxane as capping agent. • Octa Pt-Pd nanoparticles display uniform morphology and favorable dispersibility. • Octa Pt-Pd nanoparticles have high catalytic activity for formic acid by direct process. - Abstract: The octahedral Pt-Pd alloy nanoparticles (octahedral Pt-Pd NPs) with dominant {111} facets were successfully synthesized through a facile route in the presence of octa(3-aminopropyl) silsesquioxane as the capping agent and complexing agent, methanol as the reductant and solvent. Their morphology, composition and structure were charactered by transmission electron microscopy (TEM), energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The electrocatalytic activity, CO tolerance and stability of the octahedral Pt-Pd NPs for the electrooxidation of formic acid were investigated by cyclic voltammetry, CO stripping voltammetry and chronoamperometry, respectively. Compared with the Pt nanoparticles and commercial Pt black, the octahedral Pt-Pd NPs display a significantly enhanced electrocatalytic activity, increased CO tolerance and favourable stability for the electrooxidation of formic acid. Therefore, the octahedral Pt-Pd NPs might be an alternative candidate for the anode catalyst for the electrooxidation of formic acid in future

  16. Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation

    International Nuclear Information System (INIS)

    Mackus, Adriaan J M; Weber, Matthieu J; Thissen, Nick F W; Garcia-Alonso, Diana; Vervuurt, René H J; Assali, Simone; Bol, Ageeth A; Verheijen, Marcel A; Kessels, Wilhelmus M M

    2016-01-01

    The deposition of Pd and Pt nanoparticles by atomic layer deposition (ALD) has been studied extensively in recent years for the synthesis of nanoparticles for catalysis. For these applications, it is essential to synthesize nanoparticles with well-defined sizes and a high density on large-surface-area supports. Although the potential of ALD for synthesizing active nanocatalysts for various chemical reactions has been demonstrated, insight into how to control the nanoparticle properties (i.e. size, composition) by choosing suitable processing conditions is lacking. Furthermore, there is little understanding of the reaction mechanisms during the nucleation stage of metal ALD. In this work, nanoparticles synthesized with four different ALD processes (two for Pd and two for Pt) were extensively studied by transmission electron spectroscopy. Using these datasets as a starting point, the growth characteristics and reaction mechanisms of Pd and Pt ALD relevant for the synthesis of nanoparticles are discussed. The results reveal that ALD allows for the preparation of particles with control of the particle size, although it is also shown that the particle size distribution is strongly dependent on the processing conditions. Moreover, this paper discusses the opportunities and limitations of the use of ALD in the synthesis of nanocatalysts. (paper)

  17. Effect of boron addition on the structure and magnetic properties of CoPt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khemjeen, Yutthaya [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Pinitsoontorn, Supree, E-mail: psupree@kku.ac.th; Chompoosor, Apiwat [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-05-07

    The effect of B addition on CoPt nanoparticles was investigated. The CoPt-B nanoparticles were synthesized by means of the polyol process. Transmission electron microscopy has shown that the as-synthesized particles have a spherical morphology with average size about 2–3 nm. The X-ray absorption spectroscopy and the X-ray diffraction technique showed the effect of B concentration on phase transformation. The addition of B at up to 60% promoted the formation of the L1{sub 0} phase when the nanoparticles were subjected to annealing at 600 °C. If the B content is higher than 60%, the phase transition is suppressed. The evidence of B addition on the structure of CoPt nanoparticles was further supported by the magnetic measurements. The results show that the coercivity of the annealed CoPt-B nanoparticles was enhanced by the B additions from 20% to 60%, with the maximum coercivity of 12 000 Oe for the CoPt-40%B sample.

  18. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  19. Highly active Pt nanoparticles on nickel phthalocyanine functionalized graphene nanosheets for methanol electrooxidation

    International Nuclear Information System (INIS)

    Zhong, Jing-Ping; Fan, You-Jun; Wang, Hui; Wang, Rui-Xiang; Fan, Li-Li; Shen, Xing-Can; Shi, Zu-Jin

    2013-01-01

    Highlights: • A new Pt-based catalyst using TSNiPc functionalized graphene as support is reported. • Pt nanoparticles are uniformly dispersed on the functionalized graphene surface. • The Pt/TSNiPc–graphene shows excellent catalytic performance for methanol oxidation. -- Abstract: A novel electrocatalyst using nickel (II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TSNiPc) functionalized graphene (TSNiPc–graphene) composite as catalyst support for Pt nanoparticles is reported. The surface morphology, composition and structure of the prepared nanocomposites as well as their electrocatalytic properties toward methanol oxidation are characterized by UV–vis absorption spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical tests. Pt nanoparticles are found uniformly dispersed on the surface of TSNiPc–graphene composite, with the small particle size of about 3.1 nm. Studies of cyclic voltammetry and chronoamperometry demonstrate that the Pt/TSNiPc–graphene exhibits much higher electrocatalytic activity and stability than the Pt/graphene catalyst for methanol oxidation

  20. Pt and PtRu nanoparticles supported on N-doped carbons as electrocatalysts for methanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Viviane Santos; Silva, Julio Cesar Martins; Oliveira Neto, Almir; Spinace, Estevam Vitorio, E-mail: viviane_sp_saopaulo@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Methanol is a liquid transportation fuel that can be produced from fossil or renewable resources. Fuel cells employing methanol directly as fuel (Direct Methanol Fuel Cell - DMFC) are very attractive as power source for portable, mobile and stationary applications [1]. PtRu/C electrocatalyst has been considered the best electrocatalyst for methanol electro-oxidation, however, its performance is strongly dependent on the method of preparation and on the characteristics of the carbon support. N-doped carbons with different N contents (1, 2 and 5 wt%) were prepared by thermal treatment of carbon with urea at 800 deg C. Pt and PtRu nanoparticles were supported on N-doped carbons by coreduction of Pt(IV) and Ru(III) ions using an alcohol-reduction process [2]. The obtained materials were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction, Transmission electron microscopy and Cyclic Voltammetry. Pt and PtRu nanoparticles supported on N-doped carbons showed superior performance for methanol electro-oxidation when compared to the materials supported on non-modified carbon and to Pt/C and PtRu/C commercial electrocatalysts. Pt/C and PtRu/C prepared with the carbon modified with 2.5 wt% of N content showed the best activities. (author) [1] Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao and R. O'Hayre, Energy Environ. Sci. 3, 1437 (2010); [2] E.V. Spinace, A.Oliveira Neto, T.R.R. Vasconcellos, M. Linardi, J. Power Sources 137, 17 (2004)

  1. Synthesis and characterization of chemically ordered FePt magnetic nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Rao, K. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Balaji, T., E-mail: theerthambalaji@yahoo.co [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India); Lingappa, Y. [Department of Chemistry, Sri Venkateswara University, Tirupati 517 502 (India); Reddy, M.R.P.; Kumar, Arbind; Prakash, T.L. [Centre for Materials for Electronics Technology (C-MET), IDA phase-III, Cherlapally, Hyderabad 500 051 (India)

    2010-08-15

    Monodispersed FePt alloy magnetic nano-particles are prepared by reduction of platinum acetyl acetonate and iron acetyl acetonate salts together in the presence of oleic acid and oleyl amine stabilizers by polyol process. The particle size of FePt is in the range of 2-3 nm confirmed by transmission electron microscopy (TEM). As-synthesized FePt nano-particles are chemically disordered with face centre cubic (fcc) structure where as after vacuum annealing these particles changed to face centre tetragonal (fct) ordered structure confirmed by the X-ray diffraction technique. Magnetic coercivity of 5.247 KOe was observed for fct structure.

  2. Dispersion of Pt Nanoparticle-Doped Reduced Graphene Oxide Using Aniline as a Stabilizer

    Directory of Open Access Journals (Sweden)

    Hyoung-Joon Jin

    2012-12-01

    Full Text Available In this study, a simple one-step method was developed to load small-sized Pt nanoparticles (3.1 ± 0.3 nm in large quantities (50 wt % on aniline-functionalized and reduced graphene oxide (r-fGO. In the process, an ethylene glycol solution and aniline-functionalized moiety play the roles of reducing agent and stabilizer for the Pt nanoparticles, respectively, without damaging the graphite structures of the r-fGO. The Pt nanoparticles loading on the surface of r-fGO with uniform dispersion have a great effect on the electrical conductivity.

  3. How Pt nanoparticles affect TiO2-induced gas-phase photocatalytic oxidation reactions

    NARCIS (Netherlands)

    Fraters, B.D.; Amrollahi Buky, Rezvaneh; Mul, Guido

    2015-01-01

    The effect of Pt nanoparticles on the gas-phase photocatalytic oxidation activity of TiO2 is shown to be largely dependent on the molecular functionality of the substrate. We demonstrate that Pt nanoparticles decrease rates in photocatalytic oxidation of propane, whereas a strong beneficial effect

  4. One-step Synthesis of Pt Nanoparticles Highly Loaded on Graphene Aerogel as Durable Oxygen Reduction Electrocatalyst

    International Nuclear Information System (INIS)

    Huang, Qinghong; Tao, Feifei; Zou, Liangliang; Yuan, Ting; Zou, Zhiqing; Zhang, Haifeng; Zhang, Xiaogang; Yang, Hui

    2015-01-01

    Synthesis of highly active and durable Pt based catalysts with a high metal loading for fuel cells’ applications still remains a big challenge. The three-dimensional (3D) graphene aerogel (GA) not only possess the intrinsic property of graphene, but also have abundant pore architecture for anchoring metal nanoparticles, thus would be suitable as metal catalysts’ support. This work reports a simple and mild one-step co-reduction synthesis of Pt nanoparticles highly loaded on 3D GA and the use as durable oxygen reduction catalyst. Both X-ray diffraction and TEM measurements confirm that Pt nanoparticles (ca. 60 wt.% Pt loading) with an average diameter of ca. 3.2 nm are uniformly decorated on the homogeneously interconnected pores of 3D GA even after a heat treatment at 300 °C. Such a Pt/GA catalyst exhibits significantly enhanced electrocatalytic activity and improved durability for the oxygen reduction reaction. The enhancement in both catalytic activity and durability may result from the unique 3-D architecture structure of GA, the uniform dispersion of Pt nanoparticles, and the interaction between the Pt nanoparticles and GA. The GA-supported Pt can serve as a highly active catalyst for fuel cell applications

  5. Pt nanoparticle-reduced graphene oxide nanohybrid for proton exchange membrane fuel cells.

    Science.gov (United States)

    Park, Dae-Hwan; Jeon, Yukwon; Ok, Jinhee; Park, Jooil; Yoon, Seong-Ho; Choy, Jin-Ho; Shul, Yong-Gun

    2012-07-01

    A platinum nanoparticle-reduced graphene oxide (Pt-RGO) nanohybrid for proton exchange membrane fuel cell (PEMFC) application was successfully prepared. The Pt nanoparticles (Pt NPs) were deposited onto chemically converted graphene nanosheets via ethylene glycol (EG) reduction. According to the powder X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) analysis, the face-centered cubic Pt NPs (3-5 nm in diameter) were homogeneously dispersed on the RGO nanosheets. The electrochemically active surface area and PEMFC power density of the Pt-RGO nanohybrid were determined to be 33.26 m2/g and 480 mW/cm2 (maximum values), respectively, at 75 degrees C and at a relative humidity (RH) of 100% in a single-cell test experiment.

  6. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika; Baudouin, David; Basset, Jean-Marie; Bayard, Franç ois; Candy, Jean Pierre; Jumas, Jean Claude; Veyre, Laurent; Thieuleux, Chloé

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained

  7. Magnetic and structural characterizations on nanoparticles of FePt, FeRh and their composites

    International Nuclear Information System (INIS)

    Ko, Hnin Yu Yu; Suzuki, Takao; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Hirotsu, Yoshihiko

    2008-01-01

    The various compositions of FePt and FeRh nanoparticles, and their composite particles have been fabricated by the solution-phase chemical method and their magnetic properties characterized. High-resolution transmission electron microscopic observations indicate that mono-dispersed FeRh and FePt/FeRh nanoparticles are fabricated with the average size of 3-5 nm. However, larger size particles are distributed in the annealed state. From X-ray diffraction results, the as-deposited FeRh nanoparticles reveal a chemically disordered fcc structure which can be transformed into CsCl-type structure through thermal annealing. Similarly, the annealed FePt nanoparticles show the L1 0 -phase fct structure although the fcc structure is apparent in the as-deposited state. It is also found that the first time in the exchange bias effect in the composite of ferromagnetic (FePt) and anti-ferromagnetic (FeRh) nanoparticles; result in a shift of the hysteresis loop after field cooling process

  8. Simple and convenient preparation of Au-Pt core-shell nanoparticles on surface via a seed growth method

    International Nuclear Information System (INIS)

    Qian Lei; Sha Yufang; Yang Xiurong

    2006-01-01

    Au-Pt core-shell nanoparticles were prepared on glass surface by a seed growth method. Gold nanoparticles were used as seeds and ascorbic acid-H 2 PtCl 6 solutions as growth solutions to deposit Pt shell on the surface of gold nanoparticles. These core-shell nanoparticles and their growth process were examined by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and field-emission environmental scanning electron microscopy and the results indicated that the deposition speed was fast and nanoparticles with obvious core-shell structure could be obtained after 2 min. Moreover, this seed growth method for preparation of the core-shell nanoparticles is simple and convenient compared with other seed growth methods with NH 4 OH as a mild reductant. In addition, electrochemical experiments indicated that these Au-Pt core-shell nanoparticles had similar electrochemical properties to those of the bulk Pt electrode

  9. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  10. Sintering prevention and phase transformation of FePt nanoparticles

    International Nuclear Information System (INIS)

    Ding, Y.; Majetich, S.A.; Kim, J.; Barmak, K.; Rollins, H.; Sides, P.

    2004-01-01

    Two approaches attempted to overcome FePt nanoparticle sintering during the transformation to the high coercivity L1 0 phase, which currently limits the use of these nanoparticles in data storage media. High-pressure treatment of dilute nanoparticle solutions failed to prevent sintering due to surfactant decomposition above 360 deg. C. By pre-annealing nanoparticle monolayers to decompose the surfactant, and then coating with an immiscible SiO 2 matrix, sintering was prevented with annealing temperatures up to 700 deg. C

  11. Reducing the ordering temperature of CoPt nanoparticles by B additive

    Energy Technology Data Exchange (ETDEWEB)

    Khemjeen, Yutthaya [Materials Science and Nanotechnology Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Pinitsoontorn, Supree, E-mail: psupree@kku.ac.th; Chompoosor, Apiwat [Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Integrated Nanotechnology Research Center, Khon Kaen University, Khon Kaen 40002 (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen University, Khon Kaen 40002 (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand)

    2014-08-07

    We reported the effect of boron addition on magnetic properties and structure of CoPt nanoparticles prepared by a polyol method. The magnetic property measurement showed that the CoPt-B sample exhibited a much larger coercivity compared to the sample without B additive at the same annealing temperature. Transmission electron microscopy and energy dispersive X-ray spectroscopy revealed that the average particle size was about 2 nm for the as-synthesized sample with the ratio of Co and Pt close to 1:1. After annealing, the particle sizes increased but the composition was maintained. The phase transformation of the nanoparticles versus temperature was investigated using a combination of X-ray diffraction and in-situ X-ray absorption analysis. It was shown that the phase transition temperature at which the nanoparticles change from the disordered A1 phase to the ordered L1{sub 0} phase occurs at temperature of 600 °C. We concluded that boron additives could reduce the ordering temperature of CoPt of about 100 °C.

  12. Electrocatalytic activity of Pt nanoparticles on bamboo shaped carbon nanotubes for ethanol oxidation

    International Nuclear Information System (INIS)

    Zhu Zanzan; Wang Jianlong; Munir, Ahsan; Zhou, H. Susan

    2010-01-01

    Recently, bamboo shaped carbon nanotubes (BCNTs) have received increased attention for its bamboo shaped structure associated properties and its application in direct methanol/ethanol fuel cell. In this work, the potential to use BCNTs as the support material of high loaded Pt nanoparticles for improving the efficiency of ethanol/methanol fuel cell is explored. The structure and nature of the resulting Pt-BCNTS composite were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) spectrum, it was found that Pt nanoparticles were homogeneously dispersed on the BCNTs surfaces with 23.5% by weight. Cyclic voltammogram (CV) indicated that the Pt-BCNTs catalyst displayed excellent electrocatalytic activity and long-term stability toward ethanol oxidation. The excellent performance may be attributed to the high dispersion of nanoscale Pt catalysts and the unique nature of BCNTs. The results imply that doping N atom introduces some defective sites and active sites onto the surface of CNTs. In general, this paper demonstrates that BCNTs are promising support material for Pt-nanoparticles catalyst and can be used to enhance the efficiency of fuel cell.

  13. CoPt nanoparticles by chemical reduction

    International Nuclear Information System (INIS)

    Wang, H.L.; Zhang, Y.; Huang, Y.; Zeng, Q.; Hadjipanayis, G.C.

    2004-01-01

    CoPt nanoparticles with a size of 1-2 nm were synthesized by chemical reduction using the solvents of water and alcohol. A phase transformation from the originally disordered face centered cubic (FCC) structure to an ordered face centered tetragonal L1 0 structure occurred after annealing, which results in the coercivity up to 9 kOe because of the high anisotropy of the tetragonal phase (K∼2-4x10 7 erg/cm 3 ) (Philos. Mag. 13 (1966) 567; IEEE Trans. Magn. 20 (1984) 1625). HREM images of as-grow Co 48 Pt 52 shows the single-crystalline FCC structure with the shape of columnar and spherical

  14. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  15. Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

    KAUST Repository

    Biausque, Gregory

    2015-04-28

    Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO.sub.2 reforming of methane

  16. PtRu colloid nanoparticles for CO oxidation in microfabricated reactors

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Saadi, Souheil; Toftegaard, Maja Bøg

    2006-01-01

    The catalytic activity of PtRu colloid nanoparticles for CO oxidation is investigated in microfabricated reactors. The measured catalytic performance describes a volcano curve as a function of the Pt/Ru ratio. The apparent activation energies for the different alloy catalysts are between 21 and 1...

  17. Carbon supported nanoparticles Pt Ru (Pt Ru/C electrocatalysts) prepared using electron beam irradiation; Preparacao de nanoparticulas de PtRu suportadas em carbono (eletrocatalisadores PtRu/C) utilizando feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F. da; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Celulas a Combustivel], e-mail: espinace@ipen.br, e-mail: dfsilva@ipen.br

    2006-07-01

    Carbon-supported Pt Ru (electrocatalysts PtRu/C nanoparticles) were prepared submitting a water/ethylene glycol mixture containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The PtRu/C electrocatalysts were characterized by EDX, XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C ETEK electrocatalyst at ambient temperature. (author)

  18. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    Energy Technology Data Exchange (ETDEWEB)

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.; Shi, Yujun J., E-mail: shiy@ucalgary.ca [Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); El-Sayed, Hany A. [Institute for Technical Electrochemistry, Technische Universität München, D-85748 Garching (Germany)

    2015-05-18

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation times (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.

  19. Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity

    Science.gov (United States)

    Ding, Jieting; Ji, Shan; Wang, Hui; Key, Julian; Brett, Dan J. L.; Wang, Rongfang

    2018-01-01

    Network-like metallic alloys of solid nanoparticles have been frequently reported as promising electrocatalysts for fuel cells. The three-dimensional structure of such networks is rich in pores in the form of voids between nanoparticles, which collectively expose a large surface area for catalytic activity. Herein, we present a novel solution to this problem using a precursor comprising a flocculent core-shell PtNi@Ni to produce PtNi network catalysts with nanoparticle intraporosity after carefully controlled electrochemical dealloying. Physical characterization shows a hierarchical level of nanoporosity (intrapores within nanoparticles and pores between them) evolves during the controlled electrochemical dealloying, and that a Pt-rich surface also forms after 22 cycles of Ni leaching. In ORR cycling, the PtNi networks gain 4-fold activity in both jECSA and jmass over a state of the art Pt/C electrocatalyst, and also significantly exceed previously reported PtNi networks. In ORR degradation tests, the PtNi networks also proved stable, dropping by 30.4% and 62.6% in jECSA and jmass respectively. The enhanced performance of the catalyst is evident, and we also propose that the presented synthesis procedure can be generally applied to developing other metallic networks.

  20. Fuel cell electrocatalsis : oxygen reduction on Pt-based nanoparticle catalysts

    NARCIS (Netherlands)

    Vliet, Dennis Franciscus van der

    2010-01-01

    The thesis contains a discussion on the subject of the Oxygen Reduction Reaction (ORR) on Pt-alloy nanoparticle catalysts in the Rotating Disk Electrode (RDE) method. An insight in some of the difficulties of this method is given with proper solutions and compensations for these problems. Pt3Co,

  1. Investigation on the structural and nonlinear optical properties of Pt doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Rahulan, K. Mani; Padmanathan, N.; Vinitha, G.; Kanakam, Charles Christopher

    2013-01-01

    Graphical abstract: The open aperture Z-scan traces of Pt doped TiO 2 nanoparticles at different Pt concentrations were carried out at an irradiation wavelength of 532 nm. It was numerically found that, two photon absorption (TPA) type process gives the best fit to the obtained open aperture Z-scan data. The nonlinear transmission was found to be of third order as it fits to a two-photon absorption. The optical limiting performances of nanoparticles were greatly enhanced with increased volume ratio of Pt. Increasing particle size reduced the limiting threshold and enhanced the optical limiting performance. - Highlights: • Pt doped TiO 2 nanoparticles with different concentrations of Pt have been synthesized by sol–gel method. • The average fluorescence lifetime decreases as the volume fraction of Pt dopant increases. • The effects of Pt content on the optical limiting property were investigated by open aperture Z-scan measurements done at 532 nm using 5 ns laser pulses. • The values of the third-order nonlinearities of nanoparticles are interesting from the application point of view which could be used as a potential candidate for the application of nonlinear optical device. - Abstract: Pt doped TiO 2 nanoparticles with different concentrations of Pt were prepared by sol–gel method. X-ray diffraction (XRD) study reveals that the samples have a homogeneous anatase phase tetragonal system and the lattice parameter analysis indicates that Pt ions substitute into the lattice of TiO 2 . The addition of dopant increases the growth of TiO 2 grains, agglomerates them and shifts the absorption band of TiO 2 from ultraviolet to visible region. The incorporation of Pt in TiO 2 is also confirmed by fluorescence quenching and the fluorescence lifetime decreases as the volume fraction of Pt dopant increases. Open aperture Z-scan measurements done at 532 nm using 7 ns laser pulses show nonlinear absorption which arises from an effective two photon absorption process

  2. CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Jian-Hua; He, Jian-Ping; Ji, Ya-Jun; Dang, Wang-Juan; Liu, Xiao-Lei; Zhao, Gui-Wang; Zhang, Chuan-Xiang; Zhao, Ji-Shuang; Fu, Qing-Bin; Hu, Huo-Ping

    2007-01-01

    Mesoporous carbon with ordered hexagonal structure derived from the co-assembly of triblock copolymer F127 and resol was employed as the carbon support of Pt catalysts for hydrogen electro-oxidation. Structural characterizations revealed that the mesoporous carbon exhibited large surface area and uniform mesopores. The Pt nanoparticles supported on the novel mesoporous carbon were fabricated by a facile CTAB assisted microwave synthesis process, wherein CTAB was expected to improve the wettability of carbon support as well as the dispersion of Pt nanoparticles. X-ray diffraction and transmission electron microscopy were applied to characterize the Pt catalysts. It was found that the Pt nanoparticles were uniform in size and highly dispersed on the mesoporous carbon supports. The cyclic voltammograms in sulfuric acid demonstrated that the electrochemical active surface area of Pt catalysts prepared with CTAB was two times than that without CTAB

  3. Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells.

    Science.gov (United States)

    La-Torre-Riveros, Lyda; Guzman-Blas, Rolando; Méndez-Torres, Adrián E; Prelas, Mark; Tryk, Donald A; Cabrera, Carlos R

    2012-02-01

    Diamond in nanoparticle form is a promising material that can be used as a robust and chemically stable catalyst support in fuel cells. It has been studied and characterized physically and electrochemically, in its thin film and powder forms, as reported in the literature. In the present work, the electrochemical properties of undoped and boron-doped diamond nanoparticle electrodes, fabricated using the ink-paste method, were investigated. Methanol oxidation experiments were carried out in both half-cell and full fuel cell modes. Platinum and ruthenium nanoparticles were chemically deposited on undoped and boron doped diamond nanoparticles through the use of NaBH(4) as reducing agent and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. Before and after the reduction process, samples were characterized by electron microscopy and spectroscopic techniques. The ink-paste method was also used to prepare the membrane electrode assembly with Pt and Pt-Ru modified undoped and boron-doped diamond nanoparticle catalytic systems, to perform the electrochemical experiments in a direct methanol fuel cell system. The results obtained demonstrate that diamond supported catalyst nanomaterials are promising for methanol fuel cells.

  4. Magnetic properties of CoxPt100−x nanoparticles

    Directory of Open Access Journals (Sweden)

    Truong Thanh Trung

    2016-03-01

    Full Text Available CoxPt100−x nanoparticles (x = 50, 59, and 73 were prepared by the chemical reduction of Cobalt (II chloride and Chloroplatinic acid, then ultrasonicated for 2 h. After annealing at various temperatures from 450 °C to 700 °C for 1 h, structure change was observed and samples show hard magnetic properties which depend strongly on chemical composition and annealing temperature. The highest coercivity value of 1.15 kOe was obtained at room temperature for sample with x = 50 annealed at 500 °C. Chemical reduction combined with ultrasound is a useful method to prepare CoPt nanoparticles.

  5. Synthesis of magnetic CoPt/SiO{sub 2} core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Koga, Kenji [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Takano, Fumiyoshi [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Akinaga, Hiroyuki [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Orii, Takaaki [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Hirasawa, Makoto [Research Consortium for Synthetic Nano-Function Materials Project (SYNAF), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Murayama, Mitsuhiro [National Institute for Material Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2007-04-15

    Core-shell nanoparticles composed of ferromagnetic cobalt platinum cores covered by non-magnetic silica shells were synthesized by laser ablating a composite target in a helium background gas. The average diameter of the CoPt core was controlled by adjusting the CoPt/SiO{sub 2} ratio of the ablation target. The particles were also classified in the gas phase using an electrical mobility classifier. The present method successfully synthesized nearly monodispersed nanoparticles with an average core diameter of 2.5nm. This article describes the synthesis of the core-shell nanoparticles and investigates their magnetic properties.

  6. Synthesis and magnetic properties of size-selected CoPt nanoparticles

    International Nuclear Information System (INIS)

    Tournus, F.; Blanc, N.; Tamion, A.; Hillenkamp, M.; Dupuis, V.

    2011-01-01

    CoPt nanoparticles are widely studied, in particular for their potentially very high magnetic anisotropy. However, their magnetic properties can differ from the bulk ones and they are expected to vary with the particle size. In this paper, we report the synthesis and characterization of well-defined CoPt nanoparticle samples produced in ultrahigh vacuum conditions following a physical route: the mass-selected low energy cluster beam deposition technique. This approach relies on an electrostatic deviation of ionized clusters which allows us to easily adjust the particle size, independently from the deposited equivalent thickness (i.e. the surface or volume particle density in a sample). Diluted samples made of CoPt particles, with different diameters, embedded in amorphous carbon are studied by transmission electron microscopy and superconducting interference device magnetometry, which gives access to the magnetic anisotropy energy distribution. We then compare the magnetic properties of two different particle sizes. The results are found to be consistent with an anisotropy constant (including its distribution) which does not evolve with the particle size in the range considered. - Highlights: → Samples of mass-selected CoPt nanoparticles are synthesized by an original physical method. → The magnetic properties of two different particle sizes are compared. → The anisotropy constant (including its dispersion) does not evolve in the range considered. → These results illustrate some invariance properties of ZFC curves.

  7. In situ TEM study of the coarsening of carbon black supported Pt nanoparticles in hydrogen

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Wang, Yan; Jensen, Jens Oluf

    2017-01-01

    The control of sizes and shapes of nanostructures is of tremendous importance for the catalytic activity in electrochemistry and in catalysis more generally. However, due to relatively large surface free energies, nanostructures often sinter to form coarser and more stable structures that may...... not have the intended physicochemical properties. Pt is known to be a very active catalyst in several chemical reactions and for example as carbon supported nanoparticles in fuel cells. The presentation focusses on coarsening mechanisms of Pt nanoparticles supported on carbon black during exposure...... to hydrogen. By means of in situ transmission electron microscopy (TEM), Pt nanoparticle coarsening was monitored in 6 mbar 20 % H2/Ar while ramping up the temperature to ca. 900 °C. Time-resolved TEM images directly reveal that separated ca. 3 nm sized Pt nanoparticles in the pure hydrogen environment...

  8. Reducing the ordering temperature of FePt nanoparticles by Cu additive and alternate reduction method

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-12-01

    Full Text Available (FePt85Cu15 nanoparticles were successfully prepared by alternate reduction of metal salts in aqueous medium. Detailed investigations on the correlation between the magnetic and structural properties of these nanoparticles are presented as a function of annealing temperature. Both the X-ray diffraction patterns and the magnetic hysteresis loop measurements show the existence of L10-FePt phase at a relative low annealing temperature. It is proved that the Cu additive and alternate reduction are very effective methods in reducing the ordering temperature of FePt nanoparticles.

  9. Magnetic properties of the alloy system Fe-Pt. Bulk materials and nanoparticles; Magnetische Eigenschaften des Legierungssystems Fe-Pt. Volumenmaterialien und Nanopartikel

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, C.

    2007-12-14

    Besides the determination of magnetic properties of epitaxial grown Fe{sub x}Pt{sub 1-x} films like e.g. the magnetic anisotropy, effective magnetisation, exchange length and damping as reference data, wet-chemically synthesised spherical Fe{sub x}Pt{sub 1-x} nanoparticles with different sizes, compositions and crystal structures were examined systematically after the reduction of Fe oxides by a hydrogen plasma treatment. Organic ligands surrounding the particles after the synthesis, were removed as well during this procedure. These ligands prevent the agglomeration of the nanoparticles when deposited onto a substrate, but do not have any measurable effect on the oxide formation under air exposure and do not change the magnetic properties of oxidised nanoparticles within experimental error bars. Static and dynamic magnetic properties were determined using the ferromagnetic resonance technique and themeasurement of the x-ray absorption, especially the analysis of the X-ray circular dichroism. The analysis of the element-specific magnetic moments shows that the effective magnetic spin moment ({mu}{sup eff}{sub s}) of the Fe{sub x}Pt{sub 1-x} nanoparticles is reduced by 20.30% with respect to the one of the corresponding Fe{sub x}Pt{sub 1-x} film due to the inhomogeneous composition within the nanoparticles which was found by the analysis of the extended X-ray absorption fine structure. With decreasing particle size, {mu}{sup eff}{sub s} is further decreasing while the ratio of orbital-to-effective-spin magnetic moment ({mu}{sub l}/{mu}{sup eff}{sub s}) increases. Annealing at 600 C of a sample consisting of Fe{sub 0.50}Pt{sub 0.50} nanoparticles with a mean diameter around 6 nm yields a strong increase of the {mu}{sub l}/{mu}{sup eff}{sub s} ratio at the Fe sites: it reaches a value of about 9% and is as large as the value at the Pt sites. This is accompanied by an enhancement of the coercive field from (36{+-}5) mT to (292{+-}8) mT after annealing that can be

  10. In-situ observation of Cu-Pt core-shell nanoparticles in the atomic scale by XAFS

    International Nuclear Information System (INIS)

    Zheng, Xusheng; Liu, Shoujie; Chen, Xing; Cheng, Jie; Ye, Qing; Pan, Zhiyun; Chu, Wangsheng; Wu, Ziyu; Marcelli, Augosto

    2013-01-01

    Bimetallic nanoparticles play an important role in potential industrial applications, such as catalysis, optoelectronics, information storage and biological labeling. Herein, homogeneous Cu-Pt core-shell nanoparticles with the averaged size of 8 nm have been synthesized by chemical methods. Cu atoms diffusion process, which motivated by heating, was observed in-situ by using temperature-dependent x-ray absorption fine-structure (XAFS) spectroscopy. Results show that Cu diffuse gradually from Cu core to Pt shell in these nanoparticles with increasing temperature. We also found the surface ligand (O) bonded Pt at the room temperature and were removed gradually by heating the sample. The analysis of the diffusion process in bimetallic nanoparticles will provide important guideline for their designing and tuning.

  11. Effect of Particle Morphology on the Ripening of Supported Pt Nanoparticles

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chorkendorff, Ib; Dahl, Søren

    2012-01-01

    To improve the understanding of sintering in diesel and lean-burn engine exhaust after-treatment catalysts, we examined oxygen-induced sintering in a model catalyst consisting of Pt nanoparticles supported on a planar, amorphous Al2O3 substrate. After aging at increasing temperatures, a transmiss......To improve the understanding of sintering in diesel and lean-burn engine exhaust after-treatment catalysts, we examined oxygen-induced sintering in a model catalyst consisting of Pt nanoparticles supported on a planar, amorphous Al2O3 substrate. After aging at increasing temperatures...

  12. Segregation and stability at Pt3Ni(1 1 1) surfaces and Pt75Ni25 nanoparticles

    International Nuclear Information System (INIS)

    Fowler, Ben; Lucas, Christopher A.; Omer, Ahmed; Wang, Guofeng; Stamenkovic, Vojislav R.; Markovic, Nenad M.

    2008-01-01

    Using in situ surface X-ray diffraction we have determined the atomic structure and stability of a Pt 3 Ni(1 1 1) surface in the electrochemical environment. Surface segregation leads to a pure Pt(1 1 1) skin with enrichment of Ni in the sub-surface atomic layer that determines the surface electronic structure. The Pt-skin surface exhibits inward relaxation upon the adsorption of oxygenated species and this explains the surface stability compared to pure Pt(1 1 1). Using Monte Carlo calculations it is shown that nanoparticles with the same surface composition and stochiometry are energetically stable

  13. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Politecnica Univ. de Chiapas, Tuxtla Gutierrez, Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J. [Politecnica Univ. de Chiapas, Chiapas (Mexico). Energia y Sustentabilidad; Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Gamboa, S.A. [Centro de Investigacion en Energia, UNAM, Morelos (Mexico); Pal, U. [Inst. de Fisica, Universidad Autonoma de Puebla Univ., Puebla (Mexico). Inst. de Fisica; Gonzalez, I. [Autonoma Metropolitana Univ. (Mexico). Dept. de Quimica

    2008-07-01

    This paper reported on a study in which membrane electrode assemblies (MEAs) were fabricated by depositing Au, Pt and AuPt nanoparticles on Nafion 115 membrane for use in a proton exchange membrane fuel cell (PEMFC). A Rotating Disc Electrode (RDE) was used to measure the nanoparticle catalyst activity. After deposition of the nanoparticles on the membrane, the surface was studied by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The membrane proton conduction process was studied by Electrochemical Impedance Spectroscopy (EIS) with the 4 probe technique. The MEAs fabricated with Nafion/Metal membranes were evaluated in a PEMFC under standard conditions. Colloidal solutions were used to prepare self-assembled electrodes with nanoparticles deposited on Nafion membrane. The particles deposited on Nafion showed good stability and had homogeneous distribution along the membrane surface. The impedance results revealed an increase in the membrane proton resistance of the self-assembled electrodes compared to unmodified Nafion. The Au-Pt nanoparticles were obtained by chemical reduction. The nanoparticle size in the three systems was about 2 nm. The self-assembled electrodes performed well in standard conditions. The optimum colloidal concentration and immersion time must be determined in order to obtain good catalytic activity and high membrane conductance. The self-assembled Nafion/AuPt had the best open circuit potential (887 mV). The Au and Pt self-assemblies showed a similar performance in terms of maximum power and maximum current density. The performance of the Nafion/Au self-assembly was influenced more by ohmic losses, particularly in the membrane. The maximum power generation was obtained at 0.35 V. The mass transport losses increased after this value, thereby affecting the efficiency of the PEMFC. 2 figs.

  14. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    International Nuclear Information System (INIS)

    Zhou Weiping; Li Meng; Koenigsmann, Christopher; Ma Chao; Wong, Stanislaus S.; Adzic, Radoslav R.

    2011-01-01

    Highlights: → We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. → Pt nanowires and nanoparticles were used as catalysts. → Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. → The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO 2 -to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  15. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weiping, E-mail: wpzhou@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Li Meng [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Koenigsmann, Christopher [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Ma Chao [Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Wong, Stanislaus S. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Adzic, Radoslav R. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-11-30

    Highlights: > We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. > Pt nanowires and nanoparticles were used as catalysts. > Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. > The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO{sub 2}-to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  16. Unexpected, spontaneous and selective formation of colloidal Pt 3Sn nanoparticles using organometallic Pt and Sn complexes

    KAUST Repository

    Boualleg, Malika

    2010-01-01

    The facile and selective synthesis of small crystalline Pt3Sn alloy nanoparticles was performed at room temperature under H2, using a colloidal approach without the use of extra-stabilizing ligands. The Pt 3Sn alloy was found to be obtained spontaneously as the unique phase regardless of the number of tin equivalents introduced. © 2010 The Royal Society of Chemistry.

  17. Multi-photon excited luminescence of magnetic FePt core-shell nanoparticles.

    Science.gov (United States)

    Seemann, K M; Kuhn, B

    2014-07-01

    We present magnetic FePt nanoparticles with a hydrophilic, inert, and biocompatible silico-tungsten oxide shell. The particles can be functionalized, optically detected, and optically manipulated. To show the functionalization the fluorescent dye NOPS was bound to the FePt core-shell nanoparticles with propyl-triethoxy-silane linkers and fluorescence of the labeled particles were observed in ethanol (EtOH). In aqueous dispersion the NOPS fluorescence is quenched making them invisible using 1-photon excitation. However, we observe bright luminescence of labeled and even unlabeled magnetic core-shell nanoparticles with multi-photon excitation. Luminescence can be detected in the near ultraviolet and the full visible spectral range by near infrared multi-photon excitation. For optical manipulation, we were able to drag clusters of particles, and maybe also single particles, by a focused laser beam that acts as optical tweezers by inducing an electric dipole in the insulated metal nanoparticles. In a first application, we show that the luminescence of the core-shell nanoparticles is bright enough for in vivo multi-photon imaging in the mouse neocortex down to cortical layer 5.

  18. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  19. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuzhen; Gu Yonge; Lin Shaoxiong; Wei Jinping; Wang Zaihua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Du Yongling; Ye Weichun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-10-01

    Highlights: > PtPdAu nanoparticles were synthesized on graphene sheets via chemical reduction method. > The prepared PtPdAu nanoparticles were ternary alloy with fcc structure. > The catalyst exhibited superior catalytic activity and stability for MOR in alkaline. - Abstract: Well-dispersed PtPdAu ternary alloy nanoparticles were synthesized on graphene sheets via a simple one-step chemical reduction method in ethylene glycol (EG) and water system, in which EG served as both reductive and dispersing agent. The electrocatalytic activity of PtPdAu/G was tested by methanol oxidation reaction (MOR). The catalyst was further characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which indicated that the as-synthesized PtPdAu nanoparticles with alloy structures were successfully dispersed on the graphene sheets. Electrocatalytic properties of the catalyst for MOR in alkaline have been investigated by cyclic voltammetry (CV), chronoamperometry and Tafel curves. The electrocatalytic activity and stability of PtPdAu/G were superior to PtPd/G, PtAu/G and Pt/G. In addition, the anodic peak current on PtPdAu/G catalyst was proportional to the concentration of methanol in the range of 0.05-1.00 M. This study implies that the prepared catalyst have great potential applications in fuel cells.

  20. Recording-media-related morphology and magnetic properties of crystalline CoPt{sub 3} and CoPt{sub 3}-Au core-shell nanoparticles synthesized via reverse microemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bahmanrokh, Ghazaleh, E-mail: ghazalehbahmanrokh@yahoo.com; Hashim, Mansor; Matori, Khamirul Amin; Kanagesan, Samikannu; Sabbaghizadeh, Rahim; Ezzad Shafie, Mohd Shamsul [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Navasery, Manizheh; Soltani, Nayereh [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Vaziri, Parisa [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-09-07

    A comparative experimental study of the magnetic properties of CoPt{sub 3} and CoPt{sub 3}/Au nanoparticles as well as a detailed study of the structural properties of the samples by X-ray diffraction, Transmission electron microscopy, and vibrating sample magnetometer is presented in this work. In addition, the effect of particle size on the structure and magnetic properties of nanoparticles prepared by microemulsion is studied. The correlation between particle size, crystallinity, and magnetization was studied as well. CoPt nanoparticles have been studied intensively over the last decade because of their increased magnetic anisotropy in the ordered phase that can be interesting for high density magnetic recording. A significant high coercivity for as-prepared CoPt{sub 3} and CoPt{sub 3}-Au nanoparticles was obtained at room temperature and enhanced after annealing. The focused aim of our study is to obtain high coercivity at room temperature that follows the Curie-Weiss law. This indicates an interacting system in which the nanoparticles behave like single domain ferromagnetic materials in the particle size range of 8 to 35 nm. In addition, the interaction increases by cooling the samples to low temperature around 15 K. Temperature dependence 1/M graph was obtained to investigate the behavior of nanoparticles at low temperature and shows the best fit with Curie-Weis mode.

  1. Templated assembly of Co-Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films.

    Science.gov (United States)

    Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A

    2013-01-07

    Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.

  2. Sintering of oxide-supported Pt and Pd nanoparticles in air studied by in situ TEM

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose

    This thesis presents a fundamental study of the sintering of supported nanoparticles in relation to diesel oxidation catalysts. The sintering of supported nanoparticles is an important challenge in relation to this catalyst, as well as many other catalyst systems, and a fundamental understanding...... of Pt, Pd and bimetallic Pt-Pd nanoparticles supported on a flat and homogeneous Al2O3 or SiO2 surface. By using in situ TEM on the planar model catalysts it was possible to directly monitor the detailed dynamical changes of the individual nanoparticles during exposure to oxidizing conditions...

  3. Controllable fabrication of Pt nanocatalyst supported on N-doped carbon containing nickel nanoparticles for ethanol oxidation.

    Science.gov (United States)

    Yu, Jianguo; Dai, Tangming; Cao, Yuechao; Qu, Yuning; Li, Yao; Li, Juan; Zhao, Yongnan; Gao, Haiyan

    2018-08-15

    In this paper, platinum nanoparticles were deposited on a carbon carrier with the partly graphitized carbon and the highly dispersive carbon-coated nickel particles. An efficient electron transfer structure can be fabricated by controlling the contents of the deposited platinum. The high resolution transmission electron microscopy images of Pt 2 /Ni@C N-doped sample prove the electron transfer channel from Pt (1 1 1) crystal planes to graphite (1 0 0) or Ni (1 1 1) crystal planes due to these linked together crystal planes. The Pt 3 /Ni@C N-doped with low Pt contents cannot form the electron transfer structure and the Pt 1 /Ni@C N-doped with high Pt contents show an obvious aggregation of Pt nanoparticles. The electrochemical tests of all the catalysts show that the Pt 2 /Ni@C N-doped sample presents the highest catalytic activity, the strongest CO tolerance and the best catalytic stability. The high performance is attributed to the efficient electronic transport structure of the Pt 2 /Ni@C N-doped sample and the synergistic effect between Pt and Ni nanoparticles. This paper provides a promising method for enhancing the conductivity of electrode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Nanocomposite for methanol oxidation: synthesis and characterization of cubic Pt nanoparticles on graphene sheets

    Directory of Open Access Journals (Sweden)

    Tung-Yuan Yung, Jer-Yeu Lee and Ling-Kang Liu

    2013-01-01

    Full Text Available We present our recent results on Pt nanoparticles on graphene sheets (Pt-NPs/G, a nanocomposite prepared with microwave assistance in ionic liquid 2-hydroxyethanaminiumformate. Preparation of Pt-NPs/G was achieved without the addition of extra reductant such as hydrazine or ethylene glycol. The Pt nanoparticles on graphene have a cubic-like shape (about 60 wt% Pt loading, Pt-NPs/G and the particle size is 6 ± 3 nm from transmission electron microscopy results. Electrochemical cyclic voltammetry studies in 0.5 M aqueous H2SO4 were performed using Pt-NPs/G and separately, for comparison, using a commercially available electrocatalyst (60 wt% Pt loading, Pt/C. The electrochemical surface ratio of Pt-NPs/G to Pt/C is 0.745. The results of a methanol oxidation reaction (MOR in 0.5 M aqueous H2SO4 + 1.0 M methanol for the two samples are presented. The MOR results show that the ratios of the current density of oxidation (If to the current density of reduction (Ib are 3.49 (Pt-NPs/G and 1.37 (Pt/C, respectively, with a preference by 2.55 times favoring Pt-NPs/G. That is, the tolerance CO poisoning of Pt-NPs/G is better than that of commercial Pt/C.

  5. Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nitani, Hiroaki; Nakagawa, Takashi; Ono, Takahiro; Honda, Yusuke; Koizumi, Akiko; Seino, Satoshi; Yamamoto, Takao A. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Daimon, Hideo; Kurobe, Yukiko [Development and Technology Division, Hitachi Maxell Ltd., 6-20-1 Kinunodai, Tsukubamirai, Ibaraki 300-2496 (Japan)

    2007-07-15

    Catalytic material of PtRu nanoparticles supported on carbon (PtRu/C) for direct methanol fuel cells was synthesized by a polyol reduction method. Addition of phosphorus was effective for downsizing PtRu particles and improving their catalytic activity. The activity obtained was six times of that of a commercial catalysis. The samples were analyzed by techniques of X-ray absorption fine structure (XAFS) at Pt L{sub III}-edge and Ru K-edge, transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). These results indicated a core-shell structure consisting of a Pt-rich core and Ru-rich shell. By examining coordination numbers determined by XAFS analysis, we found a clear correlation between the catalytic activity and the Pt-Ru atomic pair frequency occurring on the particle surface, which supports the 'bi-functional mechanism'. (author)

  6. A facile route to synthesis of CoPt magnetic nanoparticles

    International Nuclear Information System (INIS)

    Liu, Yang; Yang, Yanting; Zhang, Yongjun; Wang, Yaxin; Zhang, Xiaolong; Jiang, Yuhong; Wei, Maobin; Liu, Yanqing; Liu, Xiaoyan; Yang, Jinghai

    2013-01-01

    Graphical abstract: CoPt NPs are successfully synthesized by sol–gel method. Different distinct particle sizes with narrow particle size distribution of CoPt nanoparticles are obtained. The maximum coercivity of 254,720.3 A/m is obtained for 800 °C heat-treated sample. Display Omitted Highlights: ► L1 0 -CoPt NPs with FCT structure are successfully synthesized by sol–gel method. ► The maximum value of 254,720.3 A/m is obtained for the samples heated at 800 °C. ► The synthetic route proposed in this study is less toxic and easy-to-handle. -- Abstract: The face-centered tetragonal (FCT) ordered L1 0 CoPt nanoparticles (NPs) are prepared by the sol–gel method. Their structure and magnetic properties are characterized by the X-ray diffraction (XRD), the transmission electron microscope (TEM) and the vibrating sample magnetometer (VSM). The results indicate that the CoPt NPs heated at 400 °C are the disordered face-centered cubic (FCC) structure, whereas the samples annealed at the temperature above 600 °C exhibit an ordered FCT structure. TEM images show the increase of the particle size as the annealing temperature increases. SAED images show the appearance of the L1 0 phase at 800 °C, and the maximum coercivity is 254,720.3 A/m.

  7. Roughening of Pt nanoparticles induced by surface-oxide formation

    NARCIS (Netherlands)

    Zhu, T.; Hensen, E.J.M.; Santen, van R.A.; Tian, N.; Sun, S.-G.; Kaghazchi, P.; Jacob, T.

    2013-01-01

    Using density functional theory (DFT) and thermodynamic considerations we studied the equilibrium shape of Pt nanoparticles (NPs) under electrochemical conditions. We found that at very high oxygen coverage, obtained at high electrode potentials, the experimentally-observed tetrahexahedral (THH) NPs

  8. Atomistic nucleation sites of Pt nanoparticles on N-doped carbon nanotubes.

    Science.gov (United States)

    Sun, Chia-Liang; Pao, Chih-Wen; Tsai, Huang-Ming; Chiou, Jau-Wern; Ray, Sekhar C; Wang, Houng-Wei; Hayashi, Michitoshi; Chen, Li-Chyong; Lin, Hong-Ji; Lee, Jyh-Fu; Chang, Li; Tsai, Min-Hsiung; Chen, Kuei-Hsien; Pong, Way-Faung

    2013-08-07

    The atomistic nucleation sites of Pt nanoparticles (Pt NPs) on N-doped carbon nanotubes (N-CNTs) were investigated using C and N K-edge and Pt L3-edge X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) spectroscopy. Transmission electron microscopy and XANES/EXAFS results revealed that the self-organized Pt NPs on N-CNTs are uniformly distributed because of the relatively high binding energies of the adsorbed Pt atoms at the imperfect sites. During the atomistic nucleation process of Pt NPs on N-CNTs, stable Pt-C and Pt-N bonds are presumably formed, and charge transfer occurs at the surface/interface of the N-CNTs. The findings in this study were consistent with density functional theory calculations performed using cluster models for the undoped, substitutional-N-doped and pyridine-like-N-doped CNTs.

  9. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    International Nuclear Information System (INIS)

    You, Jung-Min; Kim, Daekun; Jeon, Seungwon

    2012-01-01

    Highlights: ► Novel thiolated carbon nanostructures – platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. ► The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H 2 O 2 for the first time. ► The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H 2 O 2 . ► The proposed H 2 O 2 biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures – multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H 2 O 2 . The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors’ performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H 2 O 2 analysis.

  10. Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media

    Science.gov (United States)

    Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.

    2015-03-01

    In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).

  11. Synchrotron radiation based multi-scale structural characterization of CoPt{sub 3} colloidal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zargham, Ardalan

    2010-08-05

    Bimetallic CoPt{sub 3} nanoparticles represent a category of colloidal nanoparticles with high application potentials in, e.g., heterogeneous catalysis, sensor technology, and magnetic storage media. Deposition of this system on functionalized supports delivers opportunities for controlled immobilization of the nanoparticles. In this work, self-assembled monolayers (SAMs) of n-alkanethiol molecules served as functionalizing material for the Au covered Si substrates. Deposition of the ligand-terminated nanoparticles took place by means of spin and dip coating and has been optimized for each of the mentioned methods so that monolayers of nanoparticles on supports were fabricated with a well-controlled coverage The morphology of the nanoparticle film arranged is addressed by grazing-incidence small angle x-ray scattering (GISAXS). This together with x-ray standing waves in total external reflection (TER-XSW) enables a 3D structural characterization of such nanoparticle films, so that the mean particle size, mean distance of the arranged nanoparticle films to the substrate, as well as the mean particle-particle distance in lateral direction have been determined. TER-XSW, being an element-specific position-sensitive method, also reveals the elemental distribution of the particles which complementary provides a fundamental understanding of their internal structure. The CoPt{sub 3} nanoparticles investigated here exhibit a core-shell-like structure with cores of CoPt{sub 3} and shells mainly comprise Co. The results regarding the internal structure of the nanoparticles were then verified by extended X-ray absorption fine structure (EXAFS) measurements. (orig.)

  12. “Single-” and “multi-core” FePt nanoparticles: from controlled synthesis via zwitterionic and silica bio-functionalization to MRI applications

    Energy Technology Data Exchange (ETDEWEB)

    Kostevšek, Nina, E-mail: nina.kostevsek@ijs.si; Šturm, Sašo [Jožef Stefan Institute, Department for Nanostructured Materials (Slovenia); Serša, Igor; Sepe, Ana [Jožef Stefan Institute, Department for Condensed Matter Physics (Slovenia); Bloemen, Maarten; Verbiest, Thierry [KU Leuven, Department of Chemistry (Belgium); Kobe, Spomenka; Žužek Rožman, Kristina [Jožef Stefan Institute, Department for Nanostructured Materials (Slovenia)

    2015-12-15

    The value of the magnetization has a strong influence on the performance of nanoparticles that act as the contrast agent material for MRI. In this article, we describe processing routes for the synthesis of FePt nanoparticles of different sizes, which, as a result, exhibit different magnetization values. “Single-core” FePt nanoparticles of different sizes (3–15 nm) were prepared via one-step or two-step synthesis, with the latter exhibiting twice the magnetization (m{sub (1.5T)} = 14.5 emu/g) of the nanoparticles formed via the one-step synthesis (m{sub (1.5T)} < 8 emu/g). Furthermore, we propose the synthesis of “multi-core” FePt nanoparticles by changing the ratio between the two surfactants (oleylamine and oleic acid). The step from smaller “single-core” FePt nanoparticles towards the larger, “multi-core” FePt nanoparticles (>20 nm) leads to an increase in the magnetization m{sub (1.5T)} from 8 to 19.5 emu/g, without exceeding the superparamagnetic limit. Stable water suspensions were prepared using two different approaches: (a) functionalization with a biocompatible, zwitterionic, catechol ligand, which was used on the FePt nanoparticles for the first time, and (b) coating with SiO{sub 2} shells of various thicknesses. These FePt-based nanostructures, the catechol- and SiO{sub 2}-coated “single-core” and “multi-core” FePt nanoparticles, were investigated in terms of the relaxation rates. The higher r{sub 2} values obtained for the “multi-core” FePt nanoparticles compared to that for the “single-core” ones indicate the superiority of the “multi-core” FePt nanoparticles as T{sub 2} contrast agents. Furthermore, it was shown that the SiO{sub 2} coating reduces the r{sub 1} and r{sub 2} relaxation values for both the “single-core” and “multi-core” FePt nanoparticles. The high r{sub 2}/r{sub 1} ratios obtained in our study put FePt nanoparticles near the top of the list of candidate materials for use in MRI

  13. Polymer-mediated synthesis of a nitrogen-doped carbon aerogel with highly dispersed Pt nanoparticles for enhanced electrocatalytic activity

    International Nuclear Information System (INIS)

    2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Kim, Gil-Pyo; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Lee, Minzae; Lee, Yoon Jae; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Bae, Seongjun; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Song, Hyeon Dong; Song, In Kyu; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Yi, Jongheop

    2016-01-01

    Highlights: • Highly dispersed Pt nanoparticles on N-doped carbon aerogel were synthesized for ORR. • Poly(ethyleneimine) was used as nitrogen source and as nucleation sites for Pt. • Precise discussion were conducted to clarify the effect of poly(ethyleneimine). • High Pt dispersion and N-doping results in superior electrocatalytic activity. - Abstract: A simple chemical process for the direct synthesis of a nitrogen (N)-doped carbon aerogel (NCA) with highly dispersed Pt nanoparticles via a poly(ethyleneimine) (PEI)-assisted strategy is described. A resorcinol-formaldehyde (RF) gel was treated with water soluble cationic PEI, which mainly functions as an anchoring site for metal ions. The functionalized PEI chains on the surface of the RF gel resulted in the unique formation of chemical complexes, with PtCl 6 2− anchored to the RF gel, and subsequent homogeneous metal nanoparticle growth. The abundant amino groups containing PEI grafted to the RF gel also allowed the nitrogen atoms to be incorporated into the carbon framework, which can directly be converted into a NCA. The spherical Pt nanoparticles in the resulting material (Pt/NCA) were highly dispersed on the surface of the NCA without any evidenced of agglomeration, even after a thermal annealing at 900 °C. Compared with a Pt/CA synthesized by a conventional reduction method, the Pt/NCA showed enhanced electrochemical performance with a high electrochemically active surface area (191.1 cm 2 g −1 ) and electrocatalytic activity (V onset = 0.95 V vs. RHE) with respect to oxygen reduction. The superior electrocatalytic activities of the Pt/NCA can be attributed to the synergistic effect of the highly dispersed Pt nanoparticles and the N-doped carbon supports that were prepared using the PEI-assisted strategy. The findings reported herein suggest that the use of PEI can be effectively extended to broad applications that require the homogeneous deposition of metal nanoparticles.

  14. Novel Pt-Ru nanoparticles formed by vapour deposition as efficient electrocatalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Sivakumar, Pasupathi; Ishak, Randa; Tricoli, Vincenzo

    2005-01-01

    Bimetallic Pt-Ru nanoparticles supported on carbon substrates have been prepared reproducibly by a simple method that utilizes commercially available metal-organic precursors at low temperature in vacuum. Particles morphology, composition and structure have been investigated using HRTEM, EDX, selected area electron diffraction (SAED) and powder XRD analysis. TEM shows that the obtained nanoparticles are homogeneously dispersed on the substrate surface and exhibit narrow size distribution, the average diameter being ca. 2 nm. Point resolved EDX analysis demonstrates co-presence of both Pt and Ru in each particle, thereby indicating that truly bimetallic nanoparticles have been obtained. Moreover, EDX performed on several areas of the sample evidences uniform particles composition. The latter can be controlled very easily and effectively by regulating the operation temperature during particles preparation. HRTEM imaging shows that the particles possess crystalline structure. Both SAED and XRD analyses indicate presence of nanoparticles exhibiting structure consistent with that of an f.c.c. Pt-Ru alloy. Besides the f.c.c. alloy, an additional crystalline phase might also be present as noticed by SAED. These nanoparticles display electrocatalytic activity with regard to methanol oxidation as evidenced by cyclic voltammetry (CV)

  15. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    International Nuclear Information System (INIS)

    Daud, M.; Khan, Z.; Ashgar, A.; Danish, M. I.; Qazi, I. A.

    2015-01-01

    This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, ph, temperature, and contact time were determined for removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudo first-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at ph 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at ph 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater removal efficiency due to the small particle size, extremely large surface area (627 m 2 /g), and high adsorption capacity.

  16. Tunable thermodynamic stability of Au-CuPt core-shell trimetallic nanoparticles by controlling the alloy composition: insights from atomistic simulations.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Wen, Yu-Hua; Sun, Shi-Gang

    2014-11-07

    A microscopic understanding of the thermal stability of metallic core-shell nanoparticles is of importance for their synthesis and ultimately application in catalysis. In this article, molecular dynamics simulations have been employed to investigate the thermodynamic evolution of Au-CuPt core-shell trimetallic nanoparticles with various Cu/Pt ratios during heating processes. Our results show that the thermodynamic stability of these nanoparticles is remarkably enhanced upon rising Pt compositions in the CuPt shell. The melting of all the nanoparticles initiates at surface and gradually spreads into the core. Due to the lattice mismatch among Au, Cu and Pt, stacking faults have been observed in the shell and their numbers are associated with the Cu/Pt ratios. With the increasing temperature, they have reduced continuously for the Cu-dominated shell while more stacking faults have been produced for the Pt-dominated shell because of the significantly different thermal expansion coefficients of the three metals. Beyond the overall melting, all nanoparticles transform into a trimetallic mixing alloy coated by an Au-dominated surface. This work provides a fundamental perspective on the thermodynamic behaviors of trimetallic, even multimetallic, nanoparticles at the atomistic level, indicating that controlling the alloy composition is an effective strategy to realize tunable thermal stability of metallic nanocatalysts.

  17. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    Science.gov (United States)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  18. Microwave heated polyol synthesis of carbon supported PtAuSn/C nanoparticles for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hong; Han, Kefei [School of Science, State key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Liu, Yingli; Chang, Zhaorong [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan (China); Shen, Liangbo [Beijing No.4 High School, Beijing (China); Wei, Yongsheng; Guo, Zhijun (School of Science Beijing Jiaotong University Beijing P. R. China); Wang, Haijiang [Institute for Fuel Cell Innovation, National Research Council of (Canada)

    2010-04-15

    Carbon-supported PtAuSn/C nanoparticle catalyst was synthesized by a microwave-assisted polyol process. The process is a quick process that only requires a few minutes to complete. The catalyst thus obtained was characterized by transmission electron microscopy and X-ray diffraction analysis. The electrochemical performance of the catalyst, for the ethanol oxidation reaction, was also investigated. The results indicated that the PtAuSn/C catalyst was uniformly dispersed on carbon and was in the nano-size range. The electrochemical measurements indicated that PtAuSn/C nanoparticle catalyst synthesized by the microwave-assisted polyol method demonstrated a significantly higher electrochemically active area and higher catalytic activity than Pt/C for the ethanol oxidation reaction. (author)

  19. Synthesis of Pt nanoparticles on electrochemically reduced graphene oxide by potentiostatic and alternate current methods

    International Nuclear Information System (INIS)

    Molina, J.; Fernández, J.; Río, A.I. del; Bonastre, J.; Cases, F.

    2014-01-01

    Reduced graphene oxide (RGO) has been synthesized on Pt wires by means of a potentiodynamic method between + 0.6 V and − 1.4 V for 20 scans. Cyclic voltammetry characterization of the coatings showed the typical capacitative behavior of graphene. Pt nanoparticles were synthesized on Pt–RGO electrodes by means of potentiostatic methods and a comparison between different synthesis potentials (− 0.16, 0, + 0.2 and + 0.4 V) for the same synthesis charge (mC·cm −2 ) was established. The electrodes obtained were characterized in 0.5 M H 2 SO 4 solution to observe the characteristic oxidation and reduction processes of the Pt surface. A 0.5 M H 2 SO 4 /0.5 M CH 3 OH solution was used to measure the catalytic properties of the deposits against methanol oxidation. The most appropriate potential to perform the synthesis was 0 V followed by − 0.16 V and + 0.2 V. The morphology of the coatings varied depending on the potential applied as observed by scanning electron microscopy. Alternate current methods were also used to synthesize Pt nanoparticles and compare the results with the traditional potentiostatic method. Different frequencies were used: 0.1, 1, 10, 100, 1000 and 10 000 Hz. Alternate current synthesis is more efficient than traditional potentiostatic methods, obtaining more electroactive coatings with less effective synthesis time. - Highlights: • Reduced graphene oxide has been obtained by electrochemical reduction on Pt wires. • Pt nanoparticles have been obtained potentiostatically at different potentials. • Pt nanoparticles have been obtained by ac methods with different frequencies. • ac synthesis is a better synthesis method than potentiostatic synthesis

  20. Morphology and Activity Tuning of Cu 3 Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deli; Yu, Yingchao; Zhu, Jing; Liu, Sufen; Muller, David A.; Abruña, Héctor D.

    2015-02-11

    Improving the catalytic activity of Pt-based bimetallic nanoparticles is a key challenge in the application of proton-exchange membrane fuel cells. Electrochemical dealloying represents a powerful approach for tuning the surface structure and morphology of these catalyst nanoparticles. We present a comprehensive study of using electrochemical dealloying methods to control the morphology of ordered Cu3Pt/C intermetallic nanoparticles, which could dramatically affect their electrocatalytic activity for the oxygen reduction reaction (ORR). Depending on the electrochemical dealloying conditions, the nanoparticles with Pt-rich core–shell or porous structures were formed. We further demonstrate that the core–shell and porous morphologies can be combined to achieve the highest ORR activity. This strategy provides new guidelines for optimizing nanoparticles synthesis and improving electrocatalytic activity.

  1. Synthesis and characterization of PtRuMo/C nanoparticle electrocatalyst for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen-Bo; Yin, Ge-Ping [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Lin, Yong-Ge [Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931 (United States)

    2007-07-10

    This research aims at enhancement of the performance of anodic catalysts for the direct ethanol fuel cell (DEFC). Two distinct DEFC nanoparticle electrocatalysts, PtRuMo/C and PtRu/C, were prepared and characterized, and one glassy carbon working electrode for each was employed to evaluate the catalytic performance. The cyclic-voltammetric, chronoamperometric, and amperometric current-time measurements were done in the solution 0.5 mol L{sup -1} CH{sub 3}CH{sub 2}OH and 0.5 mol L{sup -1} H{sub 2}SO{sub 4}. The composition, particle sizes, lattice parameters, morphology, and the oxidation states of the metals on nanoparticle catalyst surfaces were determined by energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), transmission electron micrographs (TEM) and X-ray photoelectron spectrometer (XPS), respectively. The results of XRD analysis showed that both PtRuMo/C and PtRu/C had a face-centered cubic (fcc) structure with smaller lattice parameters than that of pure platinum. The typical particle sizes were only about 2.5 nm. Both electrodes showed essentially the same onset potential as shown in the CV for ethanol electrooxidation. Despite their comparable active specific areas, PtRuMo/C was superior to PtRu/C in respect of the catalytic activity, durability and CO-tolerance. The effect of Mo in the PtRuMo/C nanoparticle catalyst was illustrated with a bifunctional mechanism, hydrogen-spillover effect and the modification on the Pt electronic states. (author)

  2. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Chongmin; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Wang, Xiqing; Dai, Sheng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-04-02

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H{sub 2}PtCl{sub 6}) in ethylene glycol. Pt nanoparticles of {proportional_to}3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of {proportional_to}2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials. (author)

  3. Combined TEM and NC-AFM study of Al2O3-supported Pt nanoparticles

    DEFF Research Database (Denmark)

    Jensen, Thomas Nørregaard; Simonsen, Søren Bredmose; Chorkendorff, Ib

    Sintering, the growth of large particles at the expense of smaller ones, is one of the main causes of catalysts deactivation, since the physicochemical properties of a nanoparticle may depend strongly on its size, shape and composition. For application as heterogeneous catalysts, the nanoparticle...... kinks and edges often play an important role for the catalytic activity. In order to preserve these sites, it is important to stabilize the supported nanoparticles with sizes of a few nanometers during operational conditions at often high temperatures and in the relevant gas environments. A prototypical...... nanocatalyst system for studying coarsening consists of Pt nanoparticles supported on an Al2O3 material which is relevant as an oxidation catalyst in diesel and lean-burn engine exhaust after-treatment technologies. In this study we address the effect on sintering of the shape of Pt nanoparticles supported...

  4. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4

    International Nuclear Information System (INIS)

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH 4 , and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory

  5. Preparation and characterization of Fe{sub 3}O{sub 4}-Pt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Ângela Leão, E-mail: angelala01@hotmail.com [Federal University of Ouro Preto (UFOP), Department of Chemistry, ICEB (Brazil); Cavalcante, Luis Carlos Duarte [Federal University of Piauí (UFPI), Center of Natural Sciences (Brazil); Fabris, José Domingos [Federal University of Minas Gerais (UFMG), Department of Chemistry, ICEx (Brazil); Pereira, Márcio César [Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Institute of Science, Engineering and Technology (Brazil); Ardisson, José Domingos [Center for the Development of the Nuclear Technology (CDTN), Laboratory of Applied Physics (Brazil); Domingues, Rosana Zacarias [Federal University of Minas Gerais (UFMG), Department of Chemistry, ICEx (Brazil)

    2017-11-15

    Pt and Pt-based nanomaterials are active anticancer drugs for their ability to inhibit the division of living cells. Nanoparticles of magnetite containing variable proportions of platinum were prepared in the laboratory. The magnetite nanoparticles with platinum (Pt-Fe{sub 3}O{sub 4}) were obtained by reducing the Fe{sup 3+} of the maghemite (γ Fe{sub 2}O{sub 3}) mixed with platinum (II) acetylacetonate and sucrose in two inversely coupled ceramic crucibles and heated in a furnace at 400 °C for 20 min. The formed carbon during this preparation acts to chemically reduce the ferric iron in maghemite. Moreover, its residual layer on the particle surface prevents the forming magnetite from oxidizing in air and helps retain the platinum in the solid mixture. The produced Pt-magnetite samples were characterized by {sup 57}Fe-Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, and magnetization measurements. Measurements of AC magnetic-field-induced heating properties of the obtained nanocomposites, in aqueous solution, showed that they are suitable as a hyperthermia agent for biological applications.

  6. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    Science.gov (United States)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  7. Nitrogen Doped Ordered Mesoporous Carbon as Support of PtRu Nanoparticles for Methanol Electro-Oxidation

    Directory of Open Access Journals (Sweden)

    David Sebastián

    2018-04-01

    Full Text Available The low oxidation kinetics of alcohols and the need for expensive platinum group metals are still some of the main drawbacks for the commercialization of energy efficient direct alcohol fuel cells. In this work, we investigate the influence of nitrogen doping of ordered mesoporous carbon (CMK as support on the electrochemical activity of PtRu nanoparticles. Nitrogen doping procedures involve the utilization of pyrrole as both nitrogen and carbon precursor by means of a templating method using mesoporous silica. This method allows obtaining carbon supports with up to 14 wt. % nitrogen, with an effective introduction of pyridinic, pyrrolic and quaternary nitrogen. PtRu nanoparticles were deposited by sodium formate reduction method. The presence of nitrogen mainly influences the Pt:Ru atomic ratio at the near surface, passing from 50:50 on the bare (un-doped CMK to 70:30 for the N-doped CMK catalyst. The electroactivity towards the methanol oxidation reaction (MOR was evaluated in acid and alkaline electrolytes. The presence of nitrogen in the support favors a faster oxidation of methanol due to the enrichment of Pt at the near surface together with an increase of the intrinsic activity of PtRu nanoparticles.

  8. Interparticle interactions of FePt core and Fe{sub 3}O{sub 4} shell in FePt/Fe{sub 3}O{sub 4} magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hossein, E-mail: Akbari.ph@iauardabil.ac.ir [Department of Physics, Ardabil Branch, Islamic Azad University, Ardabil (Iran, Islamic Republic of); Zeynali, Hossein [Department of Physics, Kashan Branch, Islamic Azad University, Kashan (Iran, Islamic Republic of); Bakhshayeshi, Ali [Department of Physics, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of)

    2016-02-22

    Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. Fe{sub 3}O{sub 4} was used as a magnetic shell around each FePt nanoparticles. In FePt/Fe{sub 3}O{sub 4} core/shell system, core thickness is 2 nm and shell thickness varies from zero to 2.5 nm. A theoretical model presented to calculate the shell thickness dependence of Coercivity. Presented model is compared with the results from Stoner–Wohlfarth model to interpret the shell thickness dependence of Coercivity in FePt/Fe{sub 3}O{sub 4} core/shell nanoparticles. There is a difference between the results from Stoner–Wohlfarth model and experimental data when the shell thickness increases. In the presented model, the effects of interparticle exchange and random magneto crystalline anisotropy are added to the previous models of magnetization reversal for core/shell nanostructures in order to achieve a better agreement with experimental data. For magnetic shells in FePt/Fe{sub 3}O{sub 4} core/shell, effective coupling between particles increases with increasing shell thickness which leads to Coercivity destruction for stronger couplings. According to the boundary conditions, in the harder regions with higher exchange stiffness, there is small variation in magnetization and so the magnetization modes become more localized. We discussed both localized and non-localized magnetization modes. For non-zero shell thickness, non-localized modes propagate in the soft phase which effects the quality of particle exchange interactions. - Highlights: • Monodisperse FePt nanoparticles were successfully synthesized using simple wet chemical method. • Fe{sub 3}O{sub 4} was used as a magnetic shell around each FePt nanoparticles. • A theoretical model presented to calculate the shell thickness dependence of Coercivity. • Magnetic shells increase effective coupling between particles with increasing shell thickness. • Magnetization modes are more localized in the regions with

  9. Comparing and Optimizing Nitrate Adsorption from Aqueous Solution Using Fe/Pt Bimetallic Nanoparticles and Anion Exchange Resins

    Directory of Open Access Journals (Sweden)

    Muhammad Daud

    2015-01-01

    Full Text Available This research work was carried out for the removal of nitrate from raw water for a drinking water supply. Nitrate is a widespread ground water contaminant. Methodology employed in this study included adsorption on metal based nanoparticles and ion exchange using anionic resins. Fe/Pt bimetallic nanoparticles were prepared in the laboratory, by the reduction of their respective salts using sodium borohydride. Scanning electron microscope, X-ray diffraction, energy dispersive spectrometry, and X-ray florescence techniques were utilized for characterization of bimetallic Fe/Pt nanoparticles. Optimum dose, pH, temperature, and contact time were determined for NO3- removal through batch tests, both for metal based nanoparticles and anionic exchange resin. Adsorption data fitted well the Langmuir isotherm and conformed to the pseudofirst-order kinetic model. Results indicated 97% reduction in nitrate by 0.25 mg/L of Fe/Pt nanoparticles at pH 7 and 83% reduction in nitrate was observed using 0.50 mg/L anionic exchange resins at pH 4 and contact time of one hour. Overall, Fe/Pt bimetallic nanoparticles demonstrated greater NO3- removal efficiency due to the small particle size, extremely large surface area (627 m2/g, and high adsorption capacity.

  10. Synthesis of Pt nanoparticles on electrochemically reduced graphene oxide by potentiostatic and alternate current methods

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernández, J.; Río, A.I. del; Bonastre, J.; Cases, F., E-mail: fjcases@txp.upv.es

    2014-03-01

    Reduced graphene oxide (RGO) has been synthesized on Pt wires by means of a potentiodynamic method between + 0.6 V and − 1.4 V for 20 scans. Cyclic voltammetry characterization of the coatings showed the typical capacitative behavior of graphene. Pt nanoparticles were synthesized on Pt–RGO electrodes by means of potentiostatic methods and a comparison between different synthesis potentials (− 0.16, 0, + 0.2 and + 0.4 V) for the same synthesis charge (mC·cm{sup −2}) was established. The electrodes obtained were characterized in 0.5 M H{sub 2}SO{sub 4} solution to observe the characteristic oxidation and reduction processes of the Pt surface. A 0.5 M H{sub 2}SO{sub 4}/0.5 M CH{sub 3}OH solution was used to measure the catalytic properties of the deposits against methanol oxidation. The most appropriate potential to perform the synthesis was 0 V followed by − 0.16 V and + 0.2 V. The morphology of the coatings varied depending on the potential applied as observed by scanning electron microscopy. Alternate current methods were also used to synthesize Pt nanoparticles and compare the results with the traditional potentiostatic method. Different frequencies were used: 0.1, 1, 10, 100, 1000 and 10 000 Hz. Alternate current synthesis is more efficient than traditional potentiostatic methods, obtaining more electroactive coatings with less effective synthesis time. - Highlights: • Reduced graphene oxide has been obtained by electrochemical reduction on Pt wires. • Pt nanoparticles have been obtained potentiostatically at different potentials. • Pt nanoparticles have been obtained by ac methods with different frequencies. • ac synthesis is a better synthesis method than potentiostatic synthesis.

  11. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  12. Functional multi-walled carbon nanotube/polysiloxane composite films as supports of PtNi alloy nanoparticles for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang Zhicai; Ma Zhengming; Li Hulin

    2008-01-01

    We demonstrate the use of molecular monolayers to enhance the nucleation of electrocatalytically active PtNi alloy nanoparticles onto the multi-walled carbon nanotubes (MWCNTs). After the siloxane was polymerized on the nanotube surfaces, the carbon nanotubes were embedded within the polysiloxane shell with a hydrophilic amino group situated outside. Subsequent deposition of PtNi nanoparticles led to high density of 3-10 nm diameter PtNi alloy nanoparticles uniformly deposited along the length of the carbon nanotubes. The presence of MWCNTs and PtNi in the composite films was confirmed by transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersion X-ray spectra analysis (EDS). The electrocatalytic activity of the PtNi-modified MWCNT/polysiloxane (PtNi/Si-MWCNT) composite electrode for electro-oxidation of methanol was investigated by cyclic voltammetry (CV), and excellent electrocatalytic activity can be observed

  13. An Effective Approach towards the Immobilization of PtSn Nanoparticles on Noncovalent Modified Multi-Walled Carbon Nanotubes for Ethanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2016-03-01

    Full Text Available In this article, we describe an effective method to tether Pt and PtSn nanoparticles (NPs on polyelectrolyte modified multi-walled carbon nanotubes (MWCNTs for ethanol electrooxidation. By using a polymer wrapping technique, positively charged polyethyleneimine (PEI was attached onto carbon nanotubes (CNTs to provide preferential linking sites for metal precursors. Well-dispersed Pt and PtSn nanocrystals (2–5 nm were subsequently decorated on PEI-functionalized MWCNTs through the polyol reduction method. The successful non-covalent modification of MWCNTs was confirmed by Fourier transform infrared spectroscopy (FTIR and Zeta potential measurements. Energy dispersive X-ray (EDX spectrum indicates approximately 20 wt % Pt loading and a desirable Pt:Sn atomic ratio of 1:1. Electrochemical analysis demonstrated that the as-synthesized PtSn/PEI-MWCNTs nanocomposite exhibited improved catalytic activity and higher poison tolerance for ethanol oxidation as compared to Pt/PEI-MWCNTs and commercial Pt/XC-72 catalysts. The enhanced electrochemical performance may be attributed to the uniform dispersion of NPs as well as the mitigating of CO self-poisoning effect by the alloying of Sn element. This modification and synthetic strategy will be studied further to develop a diversity of carbon supported Pt-based hybrid nanomaterials for electrocatalysis.

  14. Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth

    International Nuclear Information System (INIS)

    Koebel, Matthias M.; Jones, Louis C.; Somorjai, Gabor A.

    2008-01-01

    We demonstrate a preparative method which produces highly monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 o C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrrolidone (PVP). Slow addition of the Pt-salt will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8 nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7 nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

  15. Effects of different additives on bimetallic Au-Pt nanoparticles electrodeposited onto indium tin oxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara, E-mail: ballarin@ms.fci.unibo.i [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy); Gazzano, Massimo [ISOF-CNR, V. Selmi, 40126-Bologna (Italy); Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento, 4, 40136-Bologna (Italy)] [INSTM, UdR Bologna (Italy)

    2010-09-01

    Bimetallic Au-Pt nanoparticles (Au-Pt{sub NPs}) have been synthesized using an electrochemical reduction approach. The effects of the addition of different additives in the electrodeposition bath namely KI, 1-nonanesulfonic acid sodium salt and Triton X-100 have been investigated. The structural characterization of the bimetallic nanoparticles has been carried out using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy, X-ray diffraction (XRD) and cyclic voltammetry (CV). The Au-Pt{sub NPs} prepared in the presence of KI and Triton X-100 characterized by a relatively narrow size distribution as well as a higher particle density and surface coverage whereas no changes in the morphology were observed. These results suggest a dependence of the size and distribution of the bimetallic nanoparticles from the type and concentration of the additives employed.

  16. Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles

    International Nuclear Information System (INIS)

    Xu, Guangqing; Liu, Haipeng; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    TiO 2 nanotube arrays (NTAs) modified with Ag (Ag/TiO 2 ) and Pt (Pt/TiO 2 ) nanoparticles were fabricated by anodic oxidation combined with photoreduction and hydrothermal methods, respectively. Structures, element components and morphologies of TiO 2 , Ag/TiO 2 and Pt/TiO 2 NTAs were measured by X-ray diffraction diffractometer, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The photoeletrochemical performances of TiO 2 , Pt/TiO 2 and Ag/TiO 2 NTAs were characterized by cyclic voltammetry and amperometry in phosphate buffer solution in absence and presence of glucose. Modifications of Ag and Pt nanoparticles play different roles in the photoelectrochemical process and have different potential applications. Ag nanoparticles decrease the photocurrent in buffer solution but increase the photocurrent response to organic compounds, which is fit for electrochemical detection of organic compounds due to the low background photocurrent and high photocurrent response. Ag/TiO 2 NTAs achieve the best detection performance with sensitivity of 0.152 μA/μM and detection limit of 0.53 μM. On the contrary, Pt nanoparticles can enhance the photocurrent of TiO 2 NTAs in buffer solution but decrease the photocurrent response to organic compounds, which are benefit for photocatalytic water splitting but not for photoelectrochemical detection

  17. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  18. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    International Nuclear Information System (INIS)

    Clark, Andrea J; Coury, Emma L; Meilhac, Alexandra M; Petty, Howard R

    2016-01-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO 3 /Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO 3 /Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO 3 /Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer. (paper)

  19. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    Science.gov (United States)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  20. Further insights into the durability of Pt3Co/C electrocatalysts: Formation of “hollow” Pt nanoparticles induced by the Kirkendall effect

    International Nuclear Information System (INIS)

    Dubau, L.; Durst, J.; Maillard, F.; Guétaz, L.; Chatenet, M.; André, J.; Rossinot, E.

    2011-01-01

    Highlights: ► Pt 3 Co/C electrocatalysts for the oxygen reduction reaction. ► During operation in a PEMFC, Co atoms are depleted from the mother electrocatalyst. ► The structure of the Pt–Co/C electrocatalysts in the long-term is determined by a balance between Co surface segregation and formation of oxygenated species from water. ► The presence of Co atoms in the subsurface region severely depreciates the oxygen reduction reaction activity. ► “Hollow” Pt nanoparticles have been detected for the first time in a PEMFC. - Abstract: This paper provides further insights into the degradation mechanisms of nanometer-sized Pt 3 Co/C particles under various proton-exchange membrane fuel cell (PEMFC) operating conditions. We confirm that Co atoms are continuously depleted from the mother Pt 3 Co/C electrocatalyst because they can diffuse from the bulk to the surface of the material. The structure of the Pt–Co/C nanoparticles in the long-term is determined by a balance between Co surface segregation and formation of oxygenated species from water splitting. When the PEMFC is operated at high current density (low cathode potential, below the onset of surface oxide formation from water), a steady-state is reached between the rate of Co dissolution at the surface and Co surface segregation. Consequently, Co and Pt atoms remain homogeneously distributed within the Pt–Co/C particles and the thickness of the Pt-shell is maintained to a small value not detectable by atomic-resolution high-angle annular dark-field scanning transmission electron microscopy. When the PEMFC is operated at low current density (high cathode potential), the formation of surface oxides from water and the resulting “place-exchange” mechanism enhance the rate of diffusion of Co atoms to the surface. Consequently, the fresh Pt 3 Co/C particles form core/shell particles with thick Pt-shells and Co content < 5 at% and, ultimately, “hollow” Pt nanoparticles (Kirkendall effect). To the

  1. Room temperature FePt nanoparticles formation kinetics by laser solution photolysis

    CSIR Research Space (South Africa)

    Nkosi, S

    2012-04-01

    Full Text Available An experiment has been designed to measure the radiation emission during photolysis, as well as the production of either positive or negative metallic ions in liquid from of FePt nanoparticles....

  2. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Lu, Lilin [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Cao, Yingnan; Du, Shuang [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Cheng, Zhong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang, Shaowei [State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  3. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  4. Atomistic simulations of the structures of Pd-Pt bimetallic nanoparticles and nanowires

    OpenAIRE

    Yun, Kayoung; Cha, Pil-Ryung; Lee, Jaegab; Kim, Jiyoung; Nam, Ho-Seok

    2015-01-01

    Bimetallic nanoalloys such as nanoparticles and nanowires are attracting significant attention due to their vast potential applications such as in catalysis and nanoelectronics. Notably, Pd-Pt nanoparticles/nanowires are being widely recognized as catalysts and hydrogen sensors. Compared to unary systems, alloys present more structural complexity with various compositional configurations. Therefore, it is important to understand energetically preferred atomic structures of bimetallic nanoallo...

  5. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells.

    Science.gov (United States)

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng

    2010-06-01

    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  6. Synthesis of Pd@Pt Core-shell Nanoparticles based on Photochemical Seed Growth Method and Co-reduction Method and the Electrocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Li Shanshan

    2016-01-01

    Full Text Available A series of Pd@Pt nanoparticles were synthesized based on electrochemical seed growth method and co-reduction method in polyethylene-glycol and acetone solution system. The TEM/HR-TEM and XPS characterization proved that the prepared composite nanoparticles present core-shell structure and analyzed the chemical state of the particles. The electrocatalytic performance of Pd@Pt particles was studied by using the electrochemical workstation. The results showed that the Pd@Pt/C catalyst of different molar ratios of Pd to Pt exhibited preferable catalytic activity and stability for the methanol catalytic oxidation reaction. Among which, the Pd@Pt nanoparticles (Pd:Pt=1:1 prepared by co-reduction method, presented highest catalytic activity, which is 2 times higher than that of Pt/C catalyst. The high catalytic activity produced by the core-shell structure was briefly discussed.

  7. Electrocatalytic reduction of H{sub 2}O{sub 2} by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    You, Jung-Min; Kim, Daekun [Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeon, Seungwon [Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Novel thiolated carbon nanostructures - platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. Black-Right-Pointing-Pointer The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H{sub 2}O{sub 2} for the first time. Black-Right-Pointing-Pointer The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The proposed H{sub 2}O{sub 2} biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures - multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H{sub 2}O{sub 2}. The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors' performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H{sub 2}O{sub 2} analysis.

  8. Decoration of carbon nanotube with size-controlled L10-FePt nanoparticles for storage media

    Science.gov (United States)

    Moradi, Reza; Sebt, Seyed Ali; Arabi, Hadi; Larijani, Majid Mojtahedzadeh

    2013-10-01

    In this work, first multi-wall carbon nanotubes (MWCNTs) with outer diameter about 20-30 nm are synthesized by a CVD method; they have been purified and functionalized with a two-step process. The approach consists of thermal oxidation and subsequent chemical oxidation. Then, monosize FePt nanoparticles along carbon nanotubes surface are synthesized by a Polyol process. The synthesized FePt nanoparticles are about 2.5 nm in size and they have superparamagnetic behavior with fcc structure. The CNTs surfaces as a substrate prevent the coalescence of particles during thermal annealing. Annealing at the temperature higher than 600 ∘C for 2 h under a reducing atmosphere (90 % Ar + 10 % H2) leads to phase transition from fcc to fct-L10 structure. So, the magnetic behavior changes from the superparamagnetic to the ferromagnetic. Furthermore, after the phase transition, the FePt nanoparticles have finite size with an average of about 3.5 nm and the coercivity of particles reaches 5.1 kOe.

  9. Detection of Single Pt Nanoparticle Collisions by Open-Circuit Potential Changes at Ag Ultramicroelectrode

    International Nuclear Information System (INIS)

    Mun, Seon Kyu; Shin, Changhwan; Kwon, Seong Jung

    2016-01-01

    Single platinum (Pt) nanoparticle (NP) collisions were investigated with open-circuit potential (OCP) using a silver (Ag) ultramicroelectrode (UME). The Ag UME showed higher sensitivity to single Pt NP detection by the OCP method than gold (Au) UME. The detection of ⁓2 nm radius Pt NP collisions was carried out successfully using Ag UME. The magnitude of the potential step and collision frequency for the single Pt NP collision on Ag UME was investigated and compared with those of the previous work done on Au UME.

  10. Electrocatalytic Activity for CO, MeOH, and EtOH Oxidation on the Surface of Pt-Ru Nanoparticles Supported by Metal Oxide

    Directory of Open Access Journals (Sweden)

    Kwang-Sik Sim

    2011-01-01

    Full Text Available This paper describes the electrocatalytic activity for CO, MeOH, and EtOH oxidation on the surface of Pt-Ru nanoparticles supported by metal oxide (Nb-TiO2-H prepared for use in a fuel cell. To prepare Nb-TiO2-supported Pt-Ru nanoparticles, first, the Nb-TiO2 supports were prepared by sol-gel reaction of titanium tetraisopropoxide with a small amount of the niobium ethoxide in polystyrene (PS colloids. Second, Pt-Ru nanoparticles were then deposited by chemical reduction of the Pt4+ and Ru3+ ions onto Nb-TiO2 supports (Pt-Ru@Nb-TiO2-CS. Nb element was used to reduce electrical resistance to facilitate electron transport during the electrochemical reactions on a fuel cell electrode. Finally, the Pt-Ru@Nb-TiO2-H catalysts were formed by the removal of core-polystyrene ball from Pt-Ru@TiO2-CS at 500∘C. The successfully prepared Pt-Ru electrocatalysts were confirmed via TEM, XPS, and ICP analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via CO, MeOH, and EtOH oxidation for use in a direct methanol fuel cell (DMFC. As a result, the Pt-Ru@Nb-TiO2-H electrodes showed high electrocatalytic activity for the electrooxidation of CO, MeOH, and EtOH.

  11. In situ investigation of ordering phase transformations in FePt magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, James E., E-mail: j.wittig@vanderbilt.edu [Interdisciplinary Materials Science, Vanderbilt University, PMB 351683, 2301 Vanderbilt Place, Nashville, TN 37232 (United States); Bentley, James, E-mail: bentleyj48@gmail.com [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States); Allard, Lawrence F., E-mail: allardlfjr@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-6376 (United States)

    2017-05-15

    In situ high-resolution electron microscopy was used to reveal information at the atomic level for the disordered-to-ordered phase transformation of equiatomic FePt nanoparticles that can exhibit outstanding magnetic properties after transforming from disordered face-centered-cubic into the tetragonal L1{sub 0} ordered structure. High-angle annular dark-field imaging in the scanning transmission electron microscope provided sufficient contrast between the Fe and Pt atoms to readily monitor the ordering of the atoms during in situ heating experiments. However, during continuous high-magnification imaging the electron beam influenced the kinetics of the transformation so annealing had to be performed with the electron beam blanked. At 500 °C where the reaction rate was relatively slow, observation of the transformation mechanisms using this sequential imaging protocol revealed that ordering proceeded from (002) surface facets but was incomplete and multiple-domain particles were formed that contained anti-phase domain boundaries and anti-site defects. At 600 and 700 °C, the limitations of sequential imaging were revealed as a consequence of increased transformation kinetics. Annealing for only 5 min at 700 °C produced complete single-domain L1{sub 0} order; such single-domain particles were more spherical in shape with (002) facets. The in situ experiments also provided information concerning nanoparticle sintering, coalescence, and consolidation. Although there was resistance to complete sintering due to the crystallography of L1{sub 0} order, the driving force from the large surface-area-to-volume ratio resulted in considerable nanoparticle coalescence, which would render such FePt nanoparticles unsuitable for use as magnetic recording media. Comparison of the in situ data acquired using the protocol described above with parallel ex situ annealing experiments showed that identical behavior resulted in all cases. - Highlights: • HAADF STEM imaging reveals the

  12. Atomically thin Pt shells on Au nanoparticle cores: facile synthesis and efficient synergetic catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Seselj, Nedjeljko; Poreddy, Raju

    2016-01-01

    in electrooxidation of sustainable fuels (i.e. formic acid, methanol and ethanol), and selective hydrogenation of benzene derivatives. Especially high activity was achieved for formic acid oxidation, 549 mA (mgPt)−1 (at 0.6 V vs. SCE), which is 3.5 fold higher than a commercial ... properties were thoroughly characterized by ultraviolet-visible light spectrophotometry, transmission electron microscopy, nanoparticle tracking analysis and electrochemistry. The 8 ± 2 nm Au@PtNPs contained 24 ± 1 mol% Pt and 76 ± 1 mol% Au corresponding to an atomically thin Pt shell. Electrochemical data...

  13. Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents

    OpenAIRE

    Feng Li; Bo Cao; Wenxi Zhu; Hua Song; Keliang Wang; Cuiqin Li

    2017-01-01

    Carbon nanotubes (CNTs)-supported Pt nanoparticles were prepared with selective deposition of Pt nanoparticles inside and outside CNTs (Pt–in/CNTs and Pt–out/CNTs). The effects of Pt loading and reaction solvents on phenol hydrogenation were investigated. The Pt nanoparticles in Pt–in/CNTs versus Pt–out/CNTs are smaller and better dispersed. The catalytic activity and reuse stability toward phenol hydrogenation both improved markedly. The dichloromethane–water mixture as the reaction solvent,...

  14. Synthesis and characterization of CoPt nanoparticles prepared by room temperature chemical reduction with PAMAM dendrimer as template.

    Science.gov (United States)

    Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C

    2010-08-01

    We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.

  15. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    Science.gov (United States)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  16. Ultrathin Bi2WO6 nanosheet decorated with Pt nanoparticles for efficient formaldehyde removal at room temperature

    Science.gov (United States)

    Sun, Dong; Le, Yao; Jiang, Chuanjia; Cheng, Bei

    2018-05-01

    Two-dimensional (2D) ultrathin bismuth tungstate (Bi2WO6) nanosheets (BWO-NS) with a thickness of approximately 4.0 nm were synthesized by a one-step hydrothermal method, and decorated with platinum (Pt) nanoparticles (NPs) via an impregnation/borohydride-reduction approach. The as-prepared ultrathin Pt-BWO-NS exhibited superior catalytic activity for removing gaseous formaldehyde (HCHO) at ambient temperature, in comparison with bulk counterpart with Bi2WO6 sheet thickness of tens of nanometers. The ultrathin structure endowed the Pt-BWO-NS sample with larger specific surface area, which can provide abundant surface active sites for HCHO adsorption and facilitate the homogeneous dispersion of Pt NPs. X-ray photoelectron spectroscopy and hydrogen temperature-programmed reduction analyses revealed the interaction between the Bi2WO6 support and Pt species, which is crucial for activating surface oxygen atoms to participate in the catalytic HCHO oxidation process. By conducting in situ diffuse reflectance infrared Fourier transform spectroscopy under different atmospheres, i.e., gaseous HCHO in nitrogen or oxygen (O2), the reaction mechanism and the role of O2 were elucidated, with dioxymethylene, formate and linearly adsorbed carbon monoxide identified as the main reaction intermediates. This study may provide new enlightenment on fabricating novel 2D nanomaterials for efficient indoor air purification and potentially other environmental applications.

  17. Gram-Scale Synthesis of Highly Active and Durable Octahedral PtNi Nanoparticle Catalysts for Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Choi, Juhyuk; Jang, Jue-Hyuk; Roh, Chi-Woo

    2018-01-01

    for the commercialization of PEMFCs. In this study, we focus on gram-scale synthesis of octahedral PtNi nanoparticles with Pt overlayers (PtNi@Pt) supported on the carbon, resulting in enhanced catalytic activity and durability. Such PtNi@Pt catalysts show high mass activity (1.24 A mgPt−1) at 0.9 V (vs RHE) for the ORR......Proton exchange membrane fuel cells (PEMFC) are regarded as a promising renewable energy source for a future hydrogen energy society. However, highly active and durable catalysts are required for the PEMFCs because of their intrinsic high overpotential at the cathode and operation under the acidic...... condition for oxygen reduction reaction (ORR). Since the discovery of the exceptionally high surface activity of Pt3Ni(111), the octahedral PtNi nanoparticles have been synthesized and tested. Nonetheless, their milligram-scale synthesis method and poor durability make them unsuitable...

  18. Study of the electrical and nanosecond third order nonlinear optical properties of ZnO films doped with Au and Pt nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Trejo-Valdez, Martin, E-mail: martin.trejo@laposte.net [ESIQIE, Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico); Sobral, Hugo [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México, D.F. 04510, México (Mexico); Martínez-Gutiérrez, Hugo [Centro de Nanociencias y Micro y Nanotecnologías del Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico); Torres-Torres, Carlos [Sección de Estudios de Posgrado e Investigación, ESIME ZAC, Instituto Politécnico Nacional, México, D.F. 07738, México (Mexico)

    2016-04-30

    Zinc oxide films doped with platinum and gold nanoparticles were deposited by the spray pyrolysis technique on glass substrates. A titanium dioxide sol–gel solution containing gold and platinum aqueous ions was employed for synthesizing the nanoparticles by ultraviolet-light irradiation. The conductive properties of the samples were characterized by the electrochemical impedance spectroscopy technique. Our results showed that the impedance of zinc oxide films doped with metallic nanoparticles was, by far, lower than typical measurements in zinc oxide films. A strong enhancement in the nanosecond nonlinear optical response was also obtained in the studied metallic doped films. A vectorial two-mixing experiment performed at 532 nm and 4 ns allowed us to evaluate the sample with a third order optical nonlinearity described by approximately | χ{sub 1111}{sup (3)}| = 2.6 × 10{sup −8} esu. - Highlights: • ZnO films doped with Pt and Au nanoparticles were synthetized. • The inclusion of metallic nanoparticles in the film improves optical nonlinearities. • Conductivity of the films was enhanced by the contribution of the nanoparticles.

  19. Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Yawei; Du, Chunyu; Han, Guokang; Gao, Yunzhi; Yin, Geping

    2016-01-01

    Highlights: • A cost-efficient way is used to prepare transition-noble metal alloy nanoparticles. • The Pd 50 Fe 50 /C catalyst shows excellent activity for formic acid oxidation (FAO). • Much activity enhancement of FAO is acquired by ultra-low Pt decorated Pd 50 Fe 50 . • A synergistic mechanism between Pt clusters and PdFe is proposed during the FAO. - Abstract: Palladium (Pd), has demonstrated promising electro-catalytic activity for formic acid oxidation, but suffers from extremely low abundance. Recently alloying with a transition metal has been considered as an effective approach to reducing the loading of Pd and enhancing the activity of Pd-based catalysts simultaneously. Herein, carbon supported PdFe nanoparticles (NPs) are synthesized at room temperature by using sodium borohydride as reducing agent and potassium ferrocyanide as Fe precursor. The Pd 50 Fe 50 alloy sample annealed at 900 °C for 1 h shows the best catalytic activity among Pd x Fe 1-x (x = 0.2, 0.4, 0.5, 0.6, and 0.8) towards formic acid oxidation. To further improve both catalytic activity and stability, the ultra-low Pt (0.09 wt %) decorated Pd 50 Fe 50 NPs (PtPd/PdFe) are prepared via the galvanic replacement reaction. Compared with Pd 50 Fe 50 /C, the PtPd/PdFe/C Exhibits 1.52 times higher catalytic activity and lower onset potential (−0.12 V). The significant enhancements of formic acid oxidation can be attributed to the accelerated dehydrogenation reaction of formic acid by Pt atomic clusters. Moreover, the PtPd/PdFe/C also demonstrates better tolerance to poisons during formic acid oxidation.

  20. Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by a H2 plasma treatment in methanol and formic acid oxidation

    International Nuclear Information System (INIS)

    Jiang Zhongqing; Jiang Zhongjie

    2011-01-01

    Graphical abstract: A H 2 plasma, that aims at reducing the fraction of the oxidized species at the outermost perimeter of metal particles, has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, reduced charge transfer resistance, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H 2 plasma. Highlights: → A H 2 plasma technique is used to treat the PtRu nanoparticles. → The H 2 plasma treated PtRu/PS-MWCNTs exhibit improved electrocatalytic activity. → The H 2 plasma treated PtRu/PS-MWCNTs have significantly reduced charge transfer resistance. → The H 2 plasma treated PtRu/PS-MWCNTs show the increased stability. → The Pt:Ru atomic ratio of PtRu nanoparticles has a significant effect on the electrochemical activity. - Abstract: A H 2 plasma has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treatment does not change the size and crystalline structure of PtRu nanoparticles, but reduces the fraction of the oxidized species at the outermost perimeter of particles. The electrochemical results show that these plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H 2 plasma. The electrocatalytic activities of the plasma treated PtRu/PS-MWCNTs are found to be dependent upon the Pt:Ru atomic ratios of PtRu nanoparticles. The catalysts with a Pt:Ru atomic ratio close to 1:1 show superior properties in the electrooxidation of methanol and formic acid

  1. Z-Contrast STEM Imaging of Long-Range Ordered Structures in Epitaxially Grown CoPt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kazuhisa Sato

    2013-01-01

    Full Text Available We report on atomic structure imaging of epitaxial L10 CoPt nanoparticles using chemically sensitive high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM. Highly ordered nanoparticles formed by annealing at 973 K show single-variant structure with perpendicular c-axis orientation, while multivariant ordered domains are frequently observed for specimens annealed at 873 K. It was found that the (001 facets of the multivariant particles are terminated by Co atoms rather than by Pt, presumably due to the intermediate stage of atomic ordering. Coexistence of single-variant particles and multivariant particles in the same specimen film suggests that the interfacial energy between variant domains be small enough to form such structural domains in a nanoparticle as small as 4 nm in diameter.

  2. Pt nanoparticles supported over Ce-Ti-O: the solvothermal and photochemical approaches for the preparation of catalytic materials

    International Nuclear Information System (INIS)

    Silva, Adrian M. T.; Machado, Bruno F.; Gomes, Helder T.; Figueiredo, Jose L.; Drazic, Goran; Faria, Joaquim L.

    2010-01-01

    Ce-Ti-O supports with different Ce/Ti molar ratios were synthesized by the solvothermal method using hexadecyltrimethylammonium bromide. Pt nanoparticles were then supported by photochemical deposition. The shape, size, and structure of these materials were analyzed by high-resolution transmission electron microscopy. The single CeO 2 support was also prepared, consisting of agglomerated cubic particles ranging from ∼3 to 8 nm. When titania was combined with ceria, a nanostructured architecture was produced, evidencing the strong influence of Ti in the support structure. Photodeposition of Pt nanoparticles is more efficient on Ce-Ti-O supports than in pristine CeO 2 . Crystalline Pt nanoparticles (mainly of ∼2 to 4 nm) were detected. The catalytic properties of the materials were tested in the selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. It was observed that Pt supported on Ce-Ti-O is more active and selective than Pt on CeO 2 or TiO 2 separately. The catalyst with 40 mol% Ce leads to total conversion of cinnamaldehyde in a few minutes; however, higher selectivity toward the desired product (cinnamyl alcohol) was obtained with higher amounts of Ce (50 mol%).

  3. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.

    Science.gov (United States)

    Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J

    2016-07-05

    The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a

  4. Thermal dewetting with a chemically heterogeneous nano-template for self-assembled L1(0) FePt nanoparticle arrays.

    Science.gov (United States)

    Wang, Liang-Wei; Cheng, Chung-Fu; Liao, Jung-Wei; Wang, Chiu-Yen; Wang, Ding-Shuo; Huang, Kuo-Feng; Lin, Tzu-Ying; Ho, Rong-Ming; Chen, Lih-Juann; Lai, Chih-Huang

    2016-02-21

    A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.

  5. Carbon nanotubes-supported PtAu-alloy nanoparticles for electro-oxidation of formic acid with remarkable activity

    International Nuclear Information System (INIS)

    Bai Yancui; Zhang Weide; Chen Caihong; Zhang Jiaqi

    2011-01-01

    Research highlights: → Electro-oxidation of HCOOH over PtAu at lower potential, higher peak current. → The stability of the PtAu catalyst is high. → Au in the PtAu catalyst promotes utilization of Pt. - Abstract: PtAu-alloy nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully prepared by simultaneous reduction of H 2 PtCl 6 .6H 2 O and HAuCl 4 .3H 2 O with sodium borohydride as a reducing reagent and sodium citrate as a stabilizing reagent. The morphology and composition of the composite catalyst were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results show that the PtAu alloy nanoparticles with an average diameter of about 3.5 nm and narrow size distribution are supported on MWCNTs. Electrocatalytic oxidation of formic acid at the PtAu/MWCNTs nanocomposite electrode was investigated in a solution containing 0.50 M H 2 SO 4 as a supporting electrolyte and 0.50 M formic acid by cyclic voltammogram and chronoamperometry. The results demonstrate that the PtAu/MWCNTs catalyst exhibits higher activity and stability for electro-oxidation of formic acid than the commercial Pt/C catalyst, reflecting by its lower onset potential (-0.05 V), oxidation mainly occurring in low potential range of -0.05 ± 0.65 V and higher peak current density of 3.12 mA cm -2 . The result of CO stripping voltammetry discloses that gold in the PtAu/MWCNTs nanocomposite enhances the catalytic activity and stability.

  6. EXAFS Characterization of Dendrimer-Derived Pt/γ-Al2O3

    International Nuclear Information System (INIS)

    Siani, A.; Alexeev, O. S.; Williams, C. T.; Ploehn, H. J.; Amiridis, M. D.

    2007-01-01

    The various steps involved in the preparation of a Pt/γ-Al2O3 material using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as templates were monitored by EXAFS. The results indicate that Cl ligands in the Pt precursors (H2PtCl6 and K2PtCl4) were partially replaced by aquo ligands upon hydrolysis to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species. After interaction of such species with G4OH, Cl ligands from the first coordination shell of Pt were further replaced by nitrogen atoms from the dendrimer interior, indicating the complexation of Pt with the dendrimer. This process was accompanied by a transfer of the electron density from the dendrimer to Pt, indicating that the former plays the role of a ligand. Following treatment of the H2PtCl6/G4OH and K2PtCl4/G4OH composites with NaBH4, no substantial changes were detecteded in the electronic or coordination environment of Pt, and no formation of metal nanoparticles was observed. However, when the reduction treatment was performed with H2, the formation of extremely small Pt clusters incorporating no more than 4 Pt atoms was observed. These Pt species remained strongly bonded to the dendrimer and their nuclearity depends on the length of the H2 treatment. Formation of Pt nanoparticles with an average diameter of approximately 10 A was finally observed after the deposition of H2PtCl6/G4OH on γ-Al2O3 and drying, suggesting that their formation may be related to the collapse of the dendrimer structure. The Pt nanoparticles formed appear to have high mobility, since subsequent thermal treatment in O2/H2 led to further sintering

  7. Characterization of self-assembled electrodes based on Au-Pt nanoparticles for PEMFC application

    Energy Technology Data Exchange (ETDEWEB)

    Valenzuela, E. [Univ. Politecnica de Chiapas (Mexico). Energia y Sustentabilidad; Sebastian, P.J.; Gamboa, S.A.; Joseph, S. [Univ. Nacional Autonoma de Mexico, Morelos (Mexico). Centrode Investigacion en Energia; Pal, U. [Univ. Autonoma de Puebla, Pue (Mexico). Inst. de Fisica; Gonzalez, I. [Univ. Autonoma Metropolitana, Mexico City (Mexico). Dept. de Quimica

    2010-07-01

    This paper described the synthesis and characterization of gold (Au), platinum (Pt) and Au-Pt nanoparticles impregnated on a Nafion membrane in a proton exchange membrane fuel cell (PEMFC). The aim of the study was to fabricate the membrane electrode assembly (MEA) by depositing the nanoparticles on the membrane using an immersion technique. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to study the deposition process. Electrochemical impedance spectroscopy (EIS) was used to study the membrane proton conduction process. An elemental mapping analysis was performed in order to study the location of the Au and Pt in the self-assemblies. Results of the study showed that the particles deposited on the Nafion had good stability and a homogenous distribution along the membrane surface. The particles showed a direct relation in size and location with the hydrophilic and hydrophobic distribution phases of the membrane. The main membrane resistance was located between the membrane and the electrolyte. The self-assembled electrodes demonstrated a good performance at standard conditions. 33 refs., 4 tabs., 11 figs.

  8. Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion.

    Science.gov (United States)

    Singhania, Amit; Gupta, Shipra Mital

    2017-01-01

    Zirconia (ZrO 2 ) nanoparticles co-doped with Cu and Pt were applied as catalysts for carbon monoxide (CO) oxidation. These materials were prepared through solution combustion in order to obtain highly active and stable catalytic nanomaterials. This method allows Pt 2+ and Cu 2+ ions to dissolve into the ZrO 2 lattice and thus creates oxygen vacancies due to lattice distortion and charge imbalance. High-resolution transmission electron microscopy (HRTEM) results showed Cu/Pt co-doped ZrO 2 nanoparticles with a size of ca. 10 nm. X-ray diffraction (XRD) and Raman spectra confirmed cubic structure and larger oxygen vacancies. The nanoparticles showed excellent activity for CO oxidation. The temperature T 50 (the temperature at which 50% of CO are converted) was lowered by 175 °C in comparison to bare ZrO 2 . Further, they exhibited very high stability for CO reaction (time-on-stream ≈ 70 h). This is due to combined effect of smaller particle size, large oxygen vacancies, high specific surface area and better thermal stability of the Cu/Pt co-doped ZrO 2 nanoparticles. The apparent activation energy for CO oxidation is found to be 45.6 kJ·mol -1 . The CO conversion decreases with increase in gas hourly space velocity (GHSV) and initial CO concentration.

  9. Structural and magnetic properties of CoO-Pt core-shell nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Zeleňáková, A.; Zeleňák, V.; Michalik, Štefan; Kováč, J.; Meisel, M. W.

    2014-01-01

    Roč. 89, č. 10 (2014), "104417-1"-"104417-10" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : CoO-Pt core shell nanoparticles * superparamagnetism * superspin glass state * x-ray diffraction * x-ray absorption spectroscopy Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.736, year: 2014

  10. XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices

    International Nuclear Information System (INIS)

    Tournus, F.; Blanc, N.; Tamion, A.; Ohresser, P.; Perez, A.; Dupuis, V.

    2008-01-01

    We report the synthesis and characterization of CoPt nanoparticles, using X-ray magnetic circular dichroism (XMCD) at the Co L 2,3 edges. Clusters are produced in ultra-high vacuum conditions, following a physical route, and embedded in non-metallic matrices: MgO and amorphous carbon (a-C). In MgO, Co atoms are partially oxidized, which goes with a μ L /μ S enhancement. On the contrary, a-C appears as a very suitable matrix. In particular, annealing of CoPt cluster embedded in a-C is able to promote L 1 0 chemical order, without alteration of the sample. This transformation, which has been directly evidenced by transmission electron microscopy observations, is accompanied by a striking augmentation of μ S , μ L and the μ L /μ S ratio of Co. The presence of Pt leads to an enhanced Co magnetic moment, as compared to Co bulk, even for the chemically disordered alloy. Moreover, the high value of 1.91μ B /at. measured for μ S is unusual for Co and must be a signature of chemical order in CoPt alloy nanoparticles

  11. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    Karen Leus

    2016-03-01

    Full Text Available We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier by means of atomic layer deposition (ALD. The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF and transmission electron microscopy (TEM analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.

  12. Lifetimes of excited states in 196198Pt; application of interacting bason approximation model to even Pt isotopes systematics

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.

    1981-01-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1 + levels in 196 198 Pt were determined by the rcoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220-MeV 58 Ni ion beams and the measurements carried out in coincidence with backscattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194 - 198 Pt isotopes, are critically compared with our structure calculations employing the Interacting Boson Approximation (IBA) model incorporating a symmetry-breaking quadrupole force. Evaluative comparisons are also made with Boson Expansion Theory (BET) calculations

  13. Size effect on order-disorder transition kinetics of FePt nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Shuaidi; Qi, Weihong; Huang, Baiyun

    2014-01-01

    The kinetics of order-disorder transition of FePt nanoparticles during high temperature annealing is theoretically investigated. A model is developed to address the influence of large surface to volume ratio of nanoparticles on both the thermodynamic and kinetic aspect of the ordering process; specifically, the nucleation and growth of L1 0 ordered domain within disordered nanoparticles. The size- and shape-dependence of transition kinetics are quantitatively addressed by a revised Johnson-Mehl-Avrami equation that included corrections for deviations caused by the domination of surface nucleation in nanoscale systems and the non-negligible size of the ordered nuclei. Calculation results based on the model suggested that smaller nanoparticles are kinetically more active but thermodynamically less transformable. The major obstacle in obtaining completely ordered nanoparticles is the elimination of antiphase boundaries. The results also quantitatively confirmed the existence of a size-limit in ordering, beyond which, inducing order-disorder transitions through annealing is impossible. A good agreement is observed between theory, experiment, and computer simulation results

  14. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nano tubes and Their Use as Magnetically Recyclable Catalysts

    International Nuclear Information System (INIS)

    He, H.; Gao, C.

    2011-01-01

    We report a facile approach to prepare Fe 3 O 4 /Pt nanoparticles decorated carbon nano tubes (CNTs). The superparamagnetic Fe 3 O 4 nanoparticles with average size of 45 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl 3 . The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe 3 O 4 nanoparticles and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanoparticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe 3 O 4 /Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  15. V-groove SnO2 nanowire sensors: fabrication and Pt-nanoparticle decoration

    International Nuclear Information System (INIS)

    Sun, Gun-Joo; Choi, Sun-Woo; Jung, Sung-Hyun; Katoch, Akash; Kim, Sang Sub

    2013-01-01

    Networked SnO 2 nanowire sensors were achieved using the selective growth of SnO 2 nanowires and their tangling ability, particularly on on-chip V-groove structures, in an effort to overcome the disadvantages imposed on the conventional trench-structured SnO 2 nanowire sensors. The sensing performance of the V-groove-structured SnO 2 nanowire sensors was highly dependent on the geometrical dimension of the groove, being superior to those of their conventional trench-structured counterparts. Pt nanoparticles were decorated on the surface of the networked SnO 2 nanowires via γ-ray radiolysis to enhance the sensing performances of the V-groove sensors whose V-groove widths had been optimized. The V-groove-structured Pt-nanoparticle-decorated SnO 2 nanowire sensors exhibited outstanding and reliable sensing capabilities towards toluene and nitrogen dioxide gases, indicating their potential for use as a platform for chemical gas sensors. (paper)

  16. In situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater

    Science.gov (United States)

    Xue, Yuxi; Zhao, Jin; Qiu, Ri; Zheng, Jiyong; Lin, Cunguo; Ma, Bojiang; Wang, Peng

    2015-12-01

    In situ electrochemical chlorination is a promising way to prohibit the biofouling on glass used for optical devices in seawater. To make this approach practical, a conductive glass should have low overpotential to generate Cl2, so that the electrical energy consumption, a critical issue for field application, will be low. Moreover, a long sustainability should also be taken into consideration from the application perspective. Following these criteria, we propose Pt/ITO surface to electrochemically generate Cl2, which immunizes biofouling for glass substrate. In this report, firstly, Pt nanoparticle/ITO is prepared via an electrodeposition approach. Secondly, electrocatalysis capability of Pt/ITO is elucidated, which shows the catalysis for Cl2 generation from NaCl solution and seawater has been sparked with Pt on the surface. Also, Pt/ITO is more sustainable and efficient than the bare ITO in natural seawater. Thirdly, the antifouling property is evaluated taking diatom as the target organism. Electrochemical chlorination on Pt/ITO can efficiently prevent the glass from fouling.

  17. Pt-doped In{sub 2}O{sub 3} nanoparticles prepared by flame spray pyrolysis for NO{sub 2} sensing

    Energy Technology Data Exchange (ETDEWEB)

    Inyawilert, K. [Chiang Mai University, Department of Physics and Materials Science, Faculty of Science (Thailand); Channei, D. [Naresuan University, Department of Chemistry, Faculty of Science (Thailand); Tamaekong, N. [Maejo University, Program in Materials Science, Faculty of Science (Thailand); Liewhiran, C. [Chiang Mai University, Department of Physics and Materials Science, Faculty of Science (Thailand); Wisitsoraat, A.; Tuantranont, A. [National Electronics and Computer Technology Center (NECTEC), Nanoelectronics and MEMS Laboratory (Thailand); Phanichphant, S., E-mail: sphanichphant@gmail.com [Chiang Mai University, Faculty of Science, Materials Science Research Center (Thailand)

    2016-02-15

    Undoped In{sub 2}O{sub 3} and 0.25–1.00 wt% M (M=Pt, Nb, and Ru)-doped/loaded In{sub 2}O{sub 3} nanoparticles were successfully synthesized in a single-step flame spray pyrolysis technique using indium nitrate, platinum (II) acetylacetonate, niobium ethoxide, and ruthenium (III) acetylacetonate precursors. The undoped In{sub 2}O{sub 3} and M-doped In{sub 2}O{sub 3} nanoparticles were characterized by Brunauer–Emmett–Teller (BET) analysis, X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM & TEM). The BET average diameter of spherical nanoparticles was found to be in the range of 10.2–15.2 nm under 5/5 (precursor/oxygen) flame conditions. All XRD peaks were confirmed to correspond to the cubic structure of In{sub 2}O{sub 3}. TEM images showed that there is no Pt nanoparticle loaded on In{sub 2}O{sub 3} surface, suggesting that Pt should form solid solution with the In{sub 2}O{sub 3} lattice. Gas sensing studies showed that 0.5 wt% Pt doping in In{sub 2}O{sub 3} nanoparticles gave a significant enhancement of NO{sub 2} sensing performances in terms of sensor response and selectivity. 0.5 wt% Pt/In{sub 2}O{sub 3} exhibited a high NO{sub 2} response of ∼1904 to 5 ppm NO{sub 2} at 250 °C and good NO{sub 2} selectivity against NO, H{sub 2}S, H{sub 2}, and C{sub 2}H{sub 5}OH. In contrast, Nb and Ru loading resulted in deteriorated NO{sub 2} response. Therefore, Pt is demonstrated to be an effective additive to enhance NO{sub 2} sensing performances of In{sub 2}O{sub 3}-based sensors.

  18. Hollow ZSM-5 encapsulated Pt nanoparticles for selective catalytic reduction of NO by hydrogen

    Science.gov (United States)

    Hong, Zhe; Wang, Zhong; Chen, Dan; Sun, Qiang; Li, Xuebing

    2018-05-01

    Pt nanoparticles were successfully encapsulated in hollow ZSM-5 single crystals by tetrapropylammonium hydroxide (TPAOH) hydrothermal treatment with an "dissolution-recrystallization" process. The prepared Pt/hollow ZSM-5 (Pt/h-ZSM-5re) sample exhibited the best activity and a maximum NO conversion of 84% can be achieved at 90 °C with N2 selectivity of 92% (GHSV = 50,000 h-1). Meanwhile, Pt/h-ZSM-5re catalyst exhibited excellent SO2, H2O resistance and durability, which was related to the stabilization of Pt active sites by hollow structure during H2-SCR. It was found that the increase of NO2 concentration in the feed gas mixture led to an activity decline. In addition, the H2-SCR reaction routes over Pt/hollow ZSM-5 catalyst at different temperature were investigated.

  19. Insights into electrochemical dealloying of Cu out of Au-doped Pt-alloy nanoparticles at the sub-nano-scale

    Directory of Open Access Journals (Sweden)

    Matija Gatalo

    2018-03-01

    Full Text Available Pt alloy nanoparticles present the most probable candidate to be used as the cathode cathodic oxygen reduction reaction electrocatalyst for achieving commercialization targets of the low-temperature fuel cells. It is therefore very important to understand its activation and degradation processes. Besides the ones known from the pure Pt electrocatalysts, the dealloying phenomena possess a great threat since the leached less-noble metal can interact with the polymer membrane or even poison the electrocatalyst. In this study, we present a solution, supported by in-depth advance electrochemical characterization, on how to suppress the removal of Cu from the Pt alloy nanoparticles.

  20. Detecting decompositions of sulfur hexafluoride using reduced graphene oxide decorated with Pt nanoparticles

    Science.gov (United States)

    Chen, Dachang; Tang, Ju; Zhang, Xiaoxing; Fang, Jiani; Li, Yi; Zhuo, Ran

    2018-05-01

    The resistance-typed gas sensing material of Pt nanoparticles (PtNPs) decorated reduced graphene oxide (RGO) synthesized by one-step chemical reduction for the detection of four types of SF6 decompositions was explored. The PtNPs disperse uniformly on RGO with particle size near 2–4 nm and a small number of particles are larger than 10 nm. Gas sensing tests suggest that the introduction of PtNPs increases the response to SO2, SOF2 and H2S compared to pure RGO and PtNPs-RGO experiences resistance reducing in SO2 and SOF2 while presenting the opposite case in H2S. Elevating the temperature enhances the recovery properties to SO2 and H2S but lowers the sensitivity. The sensing mechanism for Pt-RGO in low oxygen and water environment depends mainly on the charge transfer between gas and adsorbent and the solvent on material surface. The work provides experimental investigation of Pt-RGO to detect SF6 decompositions.

  1. Carbon-coated NiPt, CoPt nanoalloys: size control and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, A.A. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Hampel, S.; Leonhardt, A.; Khavrus, V.; Buechner, B. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Klingeler, R. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany)

    2011-07-01

    Controlled synthesis of magnetic nanoparticles with well-defined size and composition is always a challenge in material-based nanoscience. Here, we apply the high pressure chemical vapour deposition technique (HPCVD) to obtain carbon-shielded magnetic alloy nanoparticles under control of the particle size. Carbon encapsulated NiPt, CoPt (NiPt rate at C, CoPt rate at C) nanoalloys were synthesized by means of HPCVD starting from sublimating appropriate metal-organic precursors. Structural characterization by means of high resolution transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction indicated the formation of coated bimetallic Ni{sub x}Pt{sub 100-x} and CoxPt{sub 100-x} nanoparticles. Adjusting the sublimation temperature of the different precursors allowed tuning the core sizes with small size distribution. In addition, detailed studies of the magnetic properties are presented. AC magnetic heating studies imply the potential of the coated nanoalloys for hyperthermia therapy.

  2. High-temperature catalytic reforming of n-hexane over supported and core-shell Pt nanoparticle catalysts: role of oxide-metal interface and thermal stability.

    Science.gov (United States)

    An, Kwangjin; Zhang, Qiao; Alayoglu, Selim; Musselwhite, Nathan; Shin, Jae-Youn; Somorjai, Gabor A

    2014-08-13

    Designing catalysts with high thermal stability and resistance to deactivation while simultaneously maintaining their catalytic activity and selectivity is of key importance in high-temperature reforming reactions. We prepared Pt nanoparticle catalysts supported on either mesoporous SiO2 or TiO2. Sandwich-type Pt core@shell catalysts (SiO2@Pt@SiO2 and SiO2@Pt@TiO2) were also synthesized from Pt nanoparticles deposited on SiO2 spheres, which were encapsulated by either mesoporous SiO2 or TiO2 shells. n-Hexane reforming was carried out over these four catalysts at 240-500 °C with a hexane/H2 ratio of 1:5 to investigate thermal stability and the role of the support. For the production of high-octane gasoline, branched C6 isomers are more highly desired than other cyclic, aromatic, and cracking products. Over Pt/TiO2 catalyst, production of 2-methylpentane and 3-methylpentane via isomerization was increased selectively up to 420 °C by charge transfer at Pt-TiO2 interfaces, as compared to Pt/SiO2. When thermal stability was compared between supported catalysts and sandwich-type core@shell catalysts, the Pt/SiO2 catalyst suffered sintering above 400 °C, whereas the SiO2@Pt@SiO2 catalyst preserved the Pt nanoparticle size and shape up to 500 °C. The SiO2@Pt@TiO2 catalyst led to Pt nanoparticle sintering due to incomplete protection of the TiO2 shells during the reaction at 500 °C. Interestingly, over the Pt/TiO2 catalyst, the average size of Pt nanoparticles was maintained even after 500 °C without sintering. In situ ambient pressure X-ray photoelectron spectroscopy demonstrated that the Pt/TiO2 catalyst did not exhibit TiO2 overgrowth on the Pt surface or deactivation by Pt sintering up to 600 °C. The extraordinarily high stability of the Pt/TiO2 catalyst promoted high reaction rates (2.0 μmol · g(-1) · s(-1)), which was 8 times greater than other catalysts and high isomer selectivity (53.0% of C6 isomers at 440 °C). By the strong metal-support interaction

  3. DNA-templated synthesis of Pt nanoparticles on single-walled carbon nanotubes.

    Science.gov (United States)

    Dong, Lifeng

    2009-11-18

    A series of electron microscopy characterizations demonstrate that single-stranded deoxyribonucleic acid (ssDNA) can bind to nanotube surfaces and disperse bundled single-walled carbon nanotubes (SWCNTs) into individual tubes. The ssDNA molecules on the nanotube surfaces demonstrate various morphologies, such as aggregated clusters and spiral wrapping around a nanotube with different pitches and spaces, indicating that the morphology of the SWCNT/DNA hybrids is not related solely to the base sequence of the ssDNA or the chirality or the diameter of the nanotubes. In addition to serving as a non-covalent dispersion agent, the ssDNA molecules bonded to the nanotube surface can provide addresses for localizing Pt(II) complexes along the nanotubes. The Pt nanoparticles obtained by a reduction of the Pt2+-DNA adducts are crystals with a size of direct ethanol/methanol fuel cells and nanoscale electronics.

  4. Synthesis and characterization of polyhedral and quasi-sphere non-polyhedral Pt nanoparticles: effects of their various surface morphologies and sizes on electrocatalytic activity for fuel cell applications

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Ohtaki, Michitaka; Hien, Tong Duy; Jalem, Randy; Nogami, Masayuki

    2011-01-01

    In this article, polyhedral and non-polyhedral Pt nanoparticles were prepared by modified polyol method using AgNO 3 as a good structure-modifying agent. Their TEM and HRTEM images showed the particle size in the range of 8–16 nm for both the above cases. The structures and properties of the surfaces of Pt nanoparticles were investigated through cyclic voltammetry in dilute perchloric acid (HClO 4 ) electrolyte solution. A comparison of the electrocatalytic property in methanol electrooxidation was made. Here, the effects of polyhedral and non-polyhedral morphologies on their catalytic properties were studied. The results revealed that the special catalytic activity of quasi-sphere non-polyhedral Pt nanoparticles is higher than that of polyhedral Pt nanoparticles. In addition, Pt nanoparticles of un-sharp and quasi-sphere morphologies exhibit the tolerance to poisoning species better than that of Pt nanoparticles of sharp and polyhedral morphologies due to the various morphologies of the catalyst surfaces in the chronoamperometric plots. Therefore, these experimental evidences showed the morphology-dependent catalytic property according to the various morphologies and complexity of their catalyst surfaces.

  5. Morphological features of electrodeposited Pt nanoparticles and its application as anode catalysts in polymer electrolyte formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hongrae; Joo, Jiyong; Kwon, Youngkook [Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, GIST, Gwangju 500-712 (Korea); Uhm, Sunghyun [Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju 500-712 (Korea); Lee, Jaeyoung [Electrochemical Reaction and Technology Laboratory (ERTL), Department of Environmental Science and Engineering, GIST, Gwangju 500-712 (Korea); Ertl Center for Electrochemistry and Catalysis, GIST, Gwangju 500-712 (Korea)

    2010-09-15

    Electrodeposited Pt nanoparticles on carbon substrate show various morphologies depending on the applied potentials. Dendritic, pyramidal, cauliflower-like, and hemi-spherical morphologies of Pt are formed at potential ranges between -0.2 and 0.3 V (vs. Ag/AgCl) and its particle sizes are distributed from 8 to 26 nm. Dendritic bulky particles over 20 nm are formed at an applied potential of -0.2 V, while low deposition potential of 0.2 V causes dense hemi-spherical structure of Pt less than 10 nm. The influence of different Pt shapes on an electrocatalytic oxidation of formic acid is represented. Consequently, homogeneous distribution of Pt nanoparticles with average particle of ca. 14 nm on carbon paper results in a high surface to volume ratio and the better power performance in a fuel cell application. (author)

  6. Pt-graphene electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Hoshi, Hajime; Tanaka, Shumpei; Miyoshi, Takashi

    2014-01-01

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I 3 − /I − . • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I 3 − /I − redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I 3 − /I − reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs

  7. Structure determination of chitosan-stabilized Pt and Pd based bimetallic nanoparticles by X-ray photoelectron spectroscopy and transmission electron microscopy

    International Nuclear Information System (INIS)

    Wu, Lihua; Shafii, Salimah; Nordin, Mohd Ridzuan; Liew, Kong Yong; Li, Jinlin

    2012-01-01

    Chitosan (CTS)-stabilized bimetallic nanoparticles were prepared at room temperature (rt.) in aqueous solution. Palladium (Pd) and platinum (Pt) were selected as the first metals while iron (Fe) and nickel (Ni) functioned as the second metals. In order to obtain the noble metal core-transition metal shell structures, bimetallic nanoparticles were prepared in a two-step process: the preparation of mono noble metallic (Pd or Pt) nanoparticles and the deposition of transition metals (Fe or Ni) on the surface of the monometallic nanoparticles. The structures of the nanoparticles were studied using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The XPS results show that Pd and Pt exist mainly in zero valences. The presence of Fe and Ni in the bimetallic nanoparticles affects the binding energy of Pd and Pt. Moreover, the studies of O 1s spectra indicate the presence of Fe or Ni shells. The analyses of TEM micrographs give the particle size and size distributions while the high-resolution TEM (HRTEM) micrographs show the existence of noble metal core lattices. The results confirm the formation of noble metal core-transition metal shell structures. -- Highlights: ► Chitosan-stabilized bimetallic nanoparticles were prepared at room temperature in aqueous solution. ► The presence of Fe or Ni shells was proven by XPS study. ► The existence of noble metal cores covered by amorphous shells was indicated by TEM study. ► The formation of noble metal core-transition metal shell structures was confirmed.

  8. Construction of Au@Pt core—satellite nanoparticles based on in-situ reduction of polymeric ionic liquid protected gold nanoparticles

    Science.gov (United States)

    Wu, Wenlan; Li, Junbo; Zou, Sheng; Guo, Jinwu; Zhou, Huiyun

    2017-03-01

    A method of in-situ reduction to prepare Au@Pt core-satellite nanoparticles (NPs) is described by using Au NPs coating poly[1-methyl 3-(2-methacryloyloxy propylimidazolium bromine)] (PMMPImB-@-Au NPs) as the template. After electrostatic complex chloroplatinic acid with PMMPImB shell, the composite NP was directly reduced with N2H4 to produce Au@Pt core-satellite NPs. The characterization of composite and core-satellite NPs under different amounts of chloroplatinic acid were studied by DLS, UV-vis absorption spectrum and TEM. The satellite Pt NPs with a small size ( 2 nm) dotted around Au core, and the resulting Au@Pt core-satellite NPs showed a red-shift surface plasmon resonance (SPR) and a good dispersion due to effectively electrostatic repulsion providing by the polymeric ionic liquid (PIL) shell. Finally, Au@Pt core-satellite NPs exhibit an enhanced catalytic activity and cycled catalytic capability for the reduction of p-nitrophenol with NaBH4.

  9. Lifetimes of excited states in 196, 198Pt; Application of interacting boson approximation model to even Pt isotopes systematics

    Science.gov (United States)

    Bolotin, H. H.; Stuchbery, A. E.; Morrison, I.; Kennedy, D. L.; Ryan, C. G.; Sie, S. H.

    1981-11-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 1+ levels in 196, 198Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58Ni ion beams and the measurements were carried out in coincidence with back-scattered projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even 194-198Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations.

  10. Lifetimes of excited states in 196,198Pt; application of interacting boson approximation model to even Pt isotopes systematics

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Stuchbery, A.E.; Morrison, I.; Kennedy, D.L.; Ryan, C.G.; Sie, S.H.

    1981-01-01

    The lifetimes and lifetime limits of the low-lying excited states up to and including the 6 + 1 levels in sup(196, 198)Pt were determined by the recoil-distance method (RDM). Gamma-ray angular distributions in 198 Pt were also measured. These states were populated by multiple Coulomb excitation using 220 MeV 58 Ni ion beams and the measurements were carried out in coincidence with backscattering projectiles. The measured mean lives of the states and B(E2) values inferred for the transitions between levels are presented. These specific findings, and the observed structure systematics obtained from the combination of the present results and those of prior workers for the even sup(194-198)Pt isotopes, are critically compared with our structure calculations employing the interacting boson approximation (IBA) model incorporating a symmetry-breaking quadrupole force; evaluative comparisons are also made with boson expansion theory (BET) calculations. (orig.)

  11. Electrodeposition of Pt-Ru nanoparticles on fibrous carbon substrates in the presence of nonionic surfactant: Application for methanol oxidation

    International Nuclear Information System (INIS)

    Bauer, Alex; Gyenge, Elod L.; Oloman, Colin W.

    2006-01-01

    Liquid crystalline and micellar aqueous solutions of the nonionic surfactant Triton X-100 were used to direct the electrodeposition of Pt-Ru nanoparticles onto graphite felts, which were investigated as novel anodes for the direct methanol fuel cell. The effects of surfactant concentration, current density and deposition time in the preparation of these three-dimensional electrodes were studied in a factorial experiment and the electrodes were characterized by SEM and ICP-AES. Cyclic voltammetry, chronoamperometry and chronopotentiometry were carried out to assess the activity of the catalyzed felts for methanol oxidation. The presence of Triton X-100 (40-60 wt.%) coupled with an acidic plating solution were essential for the efficient co-electrodeposition of Ru in the presence of Pt to yield approximately a 1:1 Pt:Ru atomic ratio in the deposit. The highest mass specific activity, 24 A g -1 at 298 K (determined by chronoamperometry after 180 s at 0 V versus Hg/Hg 2 SO 4 , K 2 SO 4std ), was obtained for the Pt-Ru electrodeposited in the presence of 40 wt.% Triton X-100 at 60 A m -2 , 298 K for 90 min. Surfactant mediated electrodeposition is a promising method for meso-scale (ca. 10-60 nm diameter) catalyst particle preparation on three-dimensional electrodes

  12. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo; Anjum, Dalaver H.; Wang, Qingxiao; Abou-Hamad, Edy; Emsley, Lyndon; Dong, Hailin; Laveille, Paco; Li, Lidong; Samal, Akshaya Kumar; Basset, Jean-Marie

    2014-01-01

    Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as

  13. Facile and Rapid Synthesis of Ultrafine PtPd Bimetallic Nanoparticles and Their High Performance toward Methanol Electrooxidation

    Directory of Open Access Journals (Sweden)

    Tiantian Xia

    2014-01-01

    Full Text Available Uniform and sub-10 nm size bimetallic PtPd nanoparticles (NPs have been synthesized via a simple and facile method without using any surfactants at an ambient temperature. As a green and clean reductive agent, ascorbic acid (AA was employed for the coreduction of K2PtCl4 and K2PdCl4 in aqueous solution. The morphology, composition, and structure of PtPd NPs had been characterized by transmission electron microscopy (TEM, field emission high resolution transmission electron microscopy (FE-HRTEM, energy dispersive spectroscopy (EDS, X-ray diffraction (XRD, and X-ray photoelectron spectroscope (XPS. Comparing with both the monometallic Pt and Pd, the as-prepared alloy nanoparticles show superior electrocatalytic activity and better tolerance against poisoning by intermediates generated during methanol electrooxidation, which makes them a promising electrocatalysts for direct methanol fuel cells (DMFCs. Meanwhile, the green and simple approach could be easily extended to the manufacture of bimetallic or trimetallic alloy nanomaterials.

  14. Ru-decorated Pt nanoparticles on N-doped multi-walled carbon nanotubes by atomic layer deposition for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta; Yang, R.B.; Haugshøj, K.B.

    2013-01-01

    We present atomic layer deposition (ALD) as a new method for the preparation of highly dispersed Ru-decorated Pt nanoparticles for use as catalyst in direct methanol fuel cells (DMFCs). The nanoparticles were deposited onto N-doped multi-walled carbon nanotubes (MWCNTs) at 250 °C using trimethyl......(methylcyclopentadienyl)platinum MeCpPtMe3, bis(ethylcyclopentadienyl)ruthenium Ru(EtCp)2 and O2 as the precursors. Catalysts with 5, 10 and 20 ALD Ru cycles grown onto the CNT-supported ALD Pt nanoparticles (150 cycles) were prepared and tested towards the electro-oxidation of CO and methanol, using cyclic voltammetry...... and chronoamperometry in a three-electrode electrochemical set-up. The catalyst decorated with 5 ALD Ru cycles was of highest activity in both reactions, followed by the ones with 10 and 20 ALD Ru cycles. It is demonstrated that ALD is a promising technique in the field of catalysis as highly dispersed nanoparticles...

  15. Pt-graphene electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Hajime, E-mail: hoshi@ed.tus.ac.jp; Tanaka, Shumpei; Miyoshi, Takashi

    2014-12-15

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I{sub 3}{sup −}/I{sup −}. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I{sub 3}{sup −}/I{sup −} reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs.

  16. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-09

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells.

  17. One-step synthesis of graphene-Pt nanocomposites by gamma-ray irradiation

    International Nuclear Information System (INIS)

    Tokai, Akihiro; Okitsu, Kenji; Hori, Fuminobu; Mizukoshi, Yoshiteru; Iwase, Akihiro

    2016-01-01

    We developed a one-step gamma-ray irradiation method to synthesize nanocomposites composed of graphene and Pt nanoparticles from aqueous solution containing graphene and Pt(IV) complex ions in the presence of 2-propanol (IPA) or sodium dodecyl sulfate (SDS). It was confirmed that gamma-ray irradiation provided carbonyl groups on graphene and Pt nanoparticles formed from the radiolytic reduction of Pt(IV) complex ions were deposited onto the carbonyl modified graphene. In the presence of IPA, small Pt nanoparticles were deposited on graphene, but large Pt nanoparticles were deposited in the presence of SDS: the size of Pt nanoparticles formed was larger in the presence of SDS than IPA. Based on the results, formation and deposition mechanisms of Pt nanoparticles were proposed. - Highlights: • Graphene-Pt nanocomposites were synthesized by gamma-ray irradiation. • Reduction of Pt(IV) complex ions and oxidation of graphene occurred simultaneously. • Smaller Pt nanoparticles were formed in the presence of IPA than SDS. • Mechanism for formation of graphene-Pt nanocomposites was proposed.

  18. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  19. 1-Aminoanthraquinone bridged small Pt nanoparticles on carbon nanotubes as efficient electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun; Huang, Hao; Du, Cuicui; Wang, Xiaolu [College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Rui [Stomatology Hospital of Jilin University, Changchun 130021 (China); Song, Wenbo, E-mail: wbsong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-11-30

    Graphical abstract: - Highlights: • π–π stacking of 1-Aminoanthraquinone (AAQ) on MWCNT surface. • NH{sub 2}-terminated AAQ as a linker leading to small Pt NPs with good dispersity. • Pt NPs display higher electrocatalytic activity towards H{sub 2}O{sub 2} reduction. - Abstract: Smaller nanosized Pt nanoparticles (Pt NPs) highly dispersed on the surface of multi-walled carbon nanotubes (MWCNTs) were prepared via a microwave-assisted approach by using 1-Aminoanthraquinone (AAQ) as the binding agent. As an alternative to the oxidative acid modification process, this noncovalent AAQ functionalization procedure was performed at room temperature, simplifying the experimental operation and getting rid of the corrosive acid at meanwhile. Raman spectroscopic analysis revealed that the AAQ modification preserved the intrinsic properties of MWCNTs without damaging their surface structure, unlike the oxidative acid treatment. Scanning electron microscopy, transmission electron microscopy and cyclic voltammetric measurements manifested that Pt-AAQ-MWCNTs was superior to those of pristine-MWCNTs in the following respects: (1) a smaller size and higher dispersion; (2) a larger electrochemical activity surface; (3) a higher electrocatalytic activity towards reduction H{sub 2}O{sub 2}. It was concluded that the Pt-AAQ-MWCNTs would be a promising candidate as an electrochemical material in construction of chemical/biosensor.

  20. High Methanol Oxidation Activity of Well-Dispersed Pt Nanoparticles on Carbon Nanotubes Using Nitrogen Doping

    Directory of Open Access Journals (Sweden)

    Fang Wei-Chuan

    2009-01-01

    Full Text Available Abstract Pt nanoparticles (NPs with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.

  1. Flower-Like Nanoparticles of Pt-BiIII Assembled on Agmatine Sulfate Modified Glassy Carbon Electrode and Their Electrocatalysis of H2O2

    Science.gov (United States)

    Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing

    2015-04-01

    A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.

  2. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  3. In Situ Generation of Pd-Pt Core-Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins.

    Science.gov (United States)

    Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek

    2017-01-25

    Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.

  4. Pd@Pt Core–Shell Nanoparticles with Branched Dandelion-like Morphology as Highly Efficient Catalysts for Olefin Reduction

    Science.gov (United States)

    A facile synthesis based on the addition of ascorbic acid to a mixture of Na2PdCl4, K2PtCl6, and Pluronic P123 results in highly branched core–shell nanoparticles (NPs) with a micro–mesoporous dandelion-like morphology comprising Pd core and Pt shell. The slow reduction kinetics ...

  5. Facile Synthesis of Pt Nanoparticle and Graphene Composite Materials: Comparison of Electrocatalytic Activity with Analogous CNT Composite

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihye; Jang, Ho Young; Jung, Insub; Yoon, Yeoheung; Jang, Heejeong; Lee, Hyoyoung; Park, Sungho [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2014-07-15

    Here, we present a facile method to synthesize Pt nanoparticles (NPs) and graphene composite materials (Pt/G) via vacuum filtration. Anodic aluminum oxide (AAO) templates were used to separate Pt/G composite and liquid phase. This method can be used to easily tune the mass ratio of Pt NPs and graphene. Pt NPs, graphene, and carbon nanotubes (CNTs) as building blocks were characterized by a variety of techniques such as scanning electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy. We compared the electrocatalytic activities of Pt/G with Pt NP and CNT films (Pt/CNT) by cyclic voltammetry (CV), CO oxidation, and methanol oxidation. Pt/G was much more stable than pure Pt films. Also, Pt/G had better electrochemical activity, CO tolerance and methanol oxidation than Pt/CNT loaded with the same amount of Pt NPs due to the better dispersion of Pt NPs on graphene flakes without aggregation. We further synthesized Au Pt disk/G and Pt nanorods/G to determine if our synthetic method can be applied to other NP shapes such as nanodisks and nanorods, for further electrocatalysis studies.

  6. PtNi alloy nanoparticles supported on carbon-doped TiO2 nanotube arrays for photo-assisted methanol oxidation

    International Nuclear Information System (INIS)

    He, Huichao; Xiao, Peng; Zhou, Ming; Liu, Feila; Yu, Shujuan; Qiao, Lei; Zhang, Yunhuai

    2013-01-01

    To develop anode catalysts for photo-assisted direct methanol fuel cell (PDMFC), carbon-doped TiO 2 nanotube arrays-supported PtNi alloy nanoparticles with different Pt/Ni atomic ratio (PtNi/C-TiO 2 NTs) prepared by pulsed electrodeposition method are evaluated as catalysts for photo-assisted methanol oxidation. The cyclic voltammetry (CV) and chronoamperometry results show that the PtNi/C-TiO 2 NTs prepared at t onPt :t onNi : = 10:7 (t on is the current-on time) with a Pt:Ni atomic ratio of 6.1:5.7 presents the highest catalytic activity for methanol oxidation both in the dark and under illumination. In addition, according to the results obtained from the CO stripping voltammetry and electrochemical impedance spectroscopy (EIS) tests, it was found that the light play an accelerative role in the oxidation of methanol on PtNi/C-TiO 2 NTs under illumination. The effect of illumination which enhancing the catalytic activity of PtNi/C-TiO 2 NTs are attributed to (1) methanol and the intermediates be oxidized directly on C-TiO 2 NTs for the light-induced catalytic effect; (2) more abundant oxygen-donating species be produced on C-TiO 2 NTs in the presence of light; (3) less CO ads adsorbing on catalysts due to the presence of stronger metal–support interactions between PtNi alloy nanoparticles and C-TiO 2 NTs under illumination

  7. Heterogeneous hydrogenation using stable and reusable calix[4]pyrrole fenced Pt nanoparticles and its mechanistic insight

    Science.gov (United States)

    Kongor, Anita; Panchal, Manthan; Athar, Mohd; Mehta, Viren; Bhatt, Keyur; Jha, P. C.; Jain, Vinod

    2018-04-01

    Novel calix[4]pyrrole encapsulated platinum nanoparticles (PtNPs) have been prepared in the aqueous medium using meso-tetra(methoxy) meso-tetra (4-phenoxy acetohydrazide) calix[4]pyrrole (MCPTH) as both reducing as well as the capping agent. The developed MCPTH-PtNPs nano-assembly has been characterized by HRTEM, XRD, XPS, TGA and FTIR methods. Grafting capability of MCPTH on PtNPs was envisaged by molecular dynamics simulations that renders towards the complemented role of ligand in capping the surface via metal-acceptor interactions. These nanoparticles have been exploited for chemoselective hydrogenation of nitroarenes using molecular hydrogen at room temperature. Supplemented computational and experimental apprehension clearly corroborates that hydrazide group remains in close contact with the surface and provides adequate coordination sites for the adsorption of nitrenes; required for hydrogenation. This catalytic approach can be conceived as an important tool for determining the electronic and structural influence on the catalytic activity which may open new vistas pertaining to the use of calix functionalized nanocatalyst.

  8. Synthesis of Fe3O4/Pt Nanoparticles Decorated Carbon Nanotubes and Their Use as Magnetically Recyclable Catalysts

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2011-01-01

    Full Text Available We report a facile approach to prepare Fe3O4/Pt nanoparticles decorated carbon nanotubes (CNTs. The superparamagnetic Fe3O4 nanoparticles with average size of 4∼5 nm were loaded on the surfaces of carboxyl groups functionalized CNTs via a high-temperature solution-phase hydrolysis method from the raw material of FeCl3. The synthesis process of magnetic CNTs is green and readily scalable. The loading amounts of Fe3O4 nanopartilces and the magnetizations of the resulting magnetic CNTs show good tunability. The Pt nanopaticles with average size of 2.5 nm were deposited on the magnetic CNTs through a solution-based method. It is demonstrated that the Fe3O4/Pt nanoparticles decorated CNTs have high catalytic activity in the reduction reaction of 4-nitrophenol and can be readily recycled by a magnet and reused in the next reactions with high efficiencies for at least fifteen successive cycles. The novel CNTs-supported magnetically recyclable catalysts are promising in heterogeneous catalysis applications.

  9. Amperometric biosensor based on carbon nanotubes coated with polyaniline/dendrimer-encapsulated Pt nanoparticles for glucose detection

    International Nuclear Information System (INIS)

    Xu Lihuan; Zhu Yihua; Yang Xiaoling; Li Chunzhong

    2009-01-01

    A novel amperometric glucose biosensor based on the nanocomposites of multi-wall carbon nanotubes (CNT) coated with polyaniline (PANI) and dendrimer-encapsulated Pt nanoparticles (Pt-DENs) is prepared. CNT coated with protonated PANI is in situ synthesized and Pt-DENs is absorbed on PANI/CNT composite surface by self-assembly method. Then Glucose oxidase (GOx) is crosslink-immobilizated onto Pt-DENs/PANI/CNT composite film. The results show that the fabricated GOx/Pt-DENs/PANI/CNT electrode exhibits excellent response performance to glucose, such as low detection limit (0.5 μM), wide linear range (1 μM-12 mM), short response time (about 5 s), high sensitivity (42.0 μA mM -1 cm -2 ) and stability (83% remains after 3 weeks).

  10. Uniform Pt Nanoparticles Incorporated into Reduced Graphene Oxides with MoO_3 as Advanced Anode Catalysts for Methanol Electro-oxidation

    International Nuclear Information System (INIS)

    Hao, Yanfei; Wang, Xudan; Zheng, Yuanyuan; Shen, Jianfeng; Yuan, Junhua; Wang, Ai-jun; Niu, Li; Huang, Shengtang

    2016-01-01

    Highlights: • Pt nanoparticles were uniformly deposited on graphene with MoO_3. Their size can be tuned by controlling MoO_3 loading. These Pt catalysts are high active on methanol oxidation. They also show high tolerance to CO poisoning. - Abstract: Pt nanoparticles (NPs) were uniformly deposited on the reduced graphene oxides (RGOs) by one-pot thermoreduction strategy with assist of MoO_3. MoO_3 can significantly reduce the size of Pt NPs on RGOs. These Pt NPs can be averaged to be 3.0 to 4.1 nm with MoO_3 loading from 27.4 to 8.8%. Without MoO_3, the size of Pt NPs can reach up to 15.2 nm. In addition, MoO_3 in Pt-MoO_3/RGO catalysts conducts a surface-confined reversible electron transfer. And the Pt-MoO_3/RGO catalysts show strong resistance to CO poisoning and high activity towards methanol oxidation reaction (MOR). Among these Pt-based catalysts, Pt-MoO_3/RGO catalysts with 16.5% MoO_3 loading possess a largest MOR current up to 610 mA mg"−"1 Pt with a smallest deteriorate rate of 0.000425 s"−"1 polarizing for 5000 s at 0.65 V. These results demonstrate commercial feasibility for Pt catalysts to reduce significantly the amount of precious metals Pt in parallel to maintain a high MOR activity and CO tolerance.

  11. H2 splitting on Pt, Ru and Rh nanoparticles supported on sputtered HOPG

    DEFF Research Database (Denmark)

    Fiordaliso, Elisabetta Maria; Murphy, Shane; Nielsen, R.M.

    2012-01-01

    The equilibrium hydrogen exchange rate between adsorbed and gas phase hydrogen at 1bar is measured for Pt, Ru and Rh nanoparticles supported on a sputtered HOPG substrate. The particles are prepared by Electron Beam Physical Vapor Deposition and the diameter of the particles varies between 2 and ...

  12. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites

    International Nuclear Information System (INIS)

    Zhang Yufan; Zeng Lijun; Bo Xiangjie; Wang Huan; Guo Liping

    2012-01-01

    Graphical abstract: A one-step microwave-assisted route for rapidly synthesizing Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites (PNMPC) has been reported. As a novel electrode material, the excellent electrochemical behavior of nitrobenzene was investigated thoroughly at the PNMPC modified glassy carbon electrode. And moreover, the modified electrode was successfully applied to the determination of nitrobenzene in real samples. Highlights: ► One-step microwave-assisted heating synthesis Pt nanoparticles/macroporous carbon hybrid nanocomposites (PNMPC). ► Catalytic rate constant being 3.14 × 10 4 M −1 s −1 for NB in pH 7.0. ► Sensitive electrochemical detection of NB at the PNMPC/Nafion/GC electrode. ► The electrode showing excellent anti-interference ability and good stability for NB. - Abstract: Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 10 4 M −1 s −1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM −1 ), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.

  13. Electrodeposition of Pt-Ru nanoparticles on fibrous carbon substrates in the presence of nonionic surfactant: Application for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alex; Gyenge, Elod L.; Oloman, Colin W. [Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2006-07-28

    Liquid crystalline and micellar aqueous solutions of the nonionic surfactant Triton X-100 were used to direct the electrodeposition of Pt-Ru nanoparticles onto graphite felts, which were investigated as novel anodes for the direct methanol fuel cell. The effects of surfactant concentration, current density and deposition time in the preparation of these three-dimensional electrodes were studied in a factorial experiment and the electrodes were characterized by SEM and ICP-AES. Cyclic voltammetry, chronoamperometry and chronopotentiometry were carried out to assess the activity of the catalyzed felts for methanol oxidation. The presence of Triton X-100 (40-60wt.%) coupled with an acidic plating solution were essential for the efficient co-electrodeposition of Ru in the presence of Pt to yield approximately a 1:1 Pt:Ru atomic ratio in the deposit. The highest mass specific activity, 24Ag{sup -1} at 298K (determined by chronoamperometry after 180s at 0V versus Hg/Hg{sub 2}SO{sub 4}, K{sub 2}SO{sub 4std}), was obtained for the Pt-Ru electrodeposited in the presence of 40wt.% Triton X-100 at 60Am{sup -2}, 298K for 90min. Surfactant mediated electrodeposition is a promising method for meso-scale (ca. 10-60nm diameter) catalyst particle preparation on three-dimensional electrodes. (author)

  14. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Zhou, Yi-Ge; Chen, Jing-Jing; Wang, Feng-bin; Sheng, Zhen-Huan; Xia, Xing-Hua

    2010-08-28

    A one-step electrochemical approach to the synthesis of highly dispersed Pt nanoparticles on graphene has been proposed. The resultant Pt NPs@G nanocomposite shows higher electrocatalytic activity and long-term stability towards methanol electrooxidation than the Pt NPs@Vulcan.

  15. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Science.gov (United States)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  16. The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-04-01

    Full Text Available Two structural forms of a ternary alloy PtRuIr/C catalyst, one amorphous and one highly crystalline, were synthesized and compared to determine the effect of their respective structures on their activity and stability as anodic catalysts in methanol oxidation. Characterization techniques included TEM, XRD, and EDX. Electrochemical analysis using a glassy carbon disk electrode for cyclic voltammogram and chronoamperometry were tested in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. Amorphous PtRuIr/C catalyst was found to have a larger electrochemical surface area, while the crystalline PtRuIr/C catalyst had both a higher activity in methanol oxidation and increased CO poisoning rate. Crystallinity of the active alloy nanoparticles has a big impact on both methanol oxidation activity and in the CO poisoning rate.

  17. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium

    Science.gov (United States)

    Godoi, Denis R. M.; Villullas, Hebe M.; Zhu, Fu-Chun; Jiang, Yan-Xia; Sun, Shi-Gang; Guo, Junsong; Sun, Lili; Chen, Rongrong

    2016-04-01

    The effects of interactions of Pt nanoparticles with hybrid supports on reactivity towards ethanol oxidation in alkaline solution are investigated. Studies involve catalysts with identical Pt nanoparticles on six hybrid supports containing carbon powder and transition metal oxides (TiO2, ZrO2, SnO2, CeO2, MoO3 and WO3). In situ X-ray absorption spectroscopy (XAS) results evidence that metal-support interactions produce changes in the Pt 5d band vacancy, which appears to determine the catalytic activity. The highest and lowest activities are observed for Pt nanoparticles on hybrid supports containing TiO2 and CeO2, respectively. Further studies are presented for these two catalysts. In situ FTIR reflection spectroscopy measurements, taken using both multi-stepped FTIR spectroscopy (MS-FTIR) and single potential alteration FTIR spectroscopy (SPA-FTIR), evidence that the main product of ethanol oxidation is acetate, although signals attributed to carbonate and CO2 indicate some differences in CO2 production. Fuel cell performances of these catalysts, tested in a 4.5 cm2 single cell at different temperatures (40-90 °C) show good agreement with data obtained by electrochemical techniques. Results of this comprehensive study point out the possibility of compensating a reduction of noble metal load with an increase in activity promoted by interactions between metallic nanoparticles and a support.

  18. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  19. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    International Nuclear Information System (INIS)

    Liu, Rui; Han, Lihao; Huang, Zhuangqun; Ferrer, Ivonne M.; Smets, Arno H.M.; Zeman, Miro; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe 3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  20. The effect of Pt nanoparticles loading on H{sub 2} sensing properties of flame-spray-made SnO{sub 2} sensing films

    Energy Technology Data Exchange (ETDEWEB)

    Liewhiran, Chaikarn, E-mail: chaikarn_l@yahoo.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand); Tamaekong, Nittaya [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Tuantranont, Adisorn; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Phanichphant, Sukon [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50202 (Thailand)

    2014-10-15

    SnO{sub 2} nanoparticles loaded with 0.2–2 wt% Pt have successfully been synthesized in a single step by flame spray pyrolysis (FSP) and investigated for gas sensing towards hydrogen (H{sub 2}). According to characterization results by X-ray diffraction, nitrogen adsorption, scanning/high resolution-transmission electron microscopy and analyses based on Hume-Rothery rules using atomic radii, crystal structure, electronegativities, and valency/oxidation states of Pt and Sn, it is conclusive that Pt is not solute in SnO{sub 2} crystal but forms nanoparticles loaded on SnO{sub 2} surface. H{sub 2} gas sensing was studied at 200–10,000 ppm and 150–350 °C in dry air. It was found that H{sub 2} response was enhanced by more than one order of magnitude with a small Pt loading concentration of 0.2 wt% but further increase of Pt loading amount resulted in deteriorated H{sub 2}-sensing performance. The optimal SnO{sub 2} sensing film (0.2 wt% Pt-loaded SnO{sub 2}, 20 μm in thickness) showed an optimum H{sub 2} response of ∼150.2 at 10,000 ppm and very short response time in a few seconds at a low optimal operating temperature of 200 °C. In addition, the response tended to increase linearly and the response times decreased drastically with increasing H{sub 2} concentration. Moreover, the selectivity against carbon monoxide (CO) and acetylene (C{sub 2}H{sub 2}) gases was also found to be considerably improved with the small amount of Pt loading. The H{sub 2} response dependence on Pt concentration can be explained based on the spillover mechanism, which is highly effective only when Pt catalyst is well-dispersed at the low Pt loading concentration of 0.2 wt%. - Highlights: • Pt/SnO{sub 2} nanoparticles were prepared in a single step by flame spray pyrolysis. • Pt loading on SnO{sub 2} nanoparticles at low level of 0.2 wt% gives optimal H{sub 2} response. • 0.2 wt% Pt/SnO{sub 2} sensor exhibits a low optimum operating temperature of 200 °C. • H

  1. Preparation of Pt Nanocatalyst on Carbon Materials via a Reduction Reaction of a Pt Precursor in a Drying Process.

    Science.gov (United States)

    Lee, Jae-Young; Lee, Woo-Kum; Rim, Hyung-Ryul; Joung, Gyu-Bum; Weidner, John W; Lee, Hong-Ki

    2016-06-01

    Platinum (Pt) nanocatalyst for a proton-exchange membrane fuel cell (PEMFC) was prepared on a carbon black particle or a graphite particle coated with a nafion polymer via a reduction of platinum(II) bis(acetylacetonate) denoted as Pt(acac)2 as a Pt precursor in a drying process. Sublimed Pt(acac)2 adsorbed on the nafion-coated carbon materials was reduced to Pt nanoparticles in a glass reactor at 180 degrees C of N2 atmosphere. The morphology of Pt nanoparticles on carbon materials was observed by scanning electron microscopy (SEM) and the distribution of Pt nanoparticles was done by transmission electron microscopy (TEM). The particle size was estimated by analyzing the TEM image using an image analyzer. It was found that nano-sized Pt particles were deposited on the surface of carbon materials, and the number density and the average particle size increased with increasing reduction time.

  2. An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.

    Science.gov (United States)

    Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian

    2015-04-14

    A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.

  3. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    Science.gov (United States)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  4. Neutron detection with integrated sub-2 nm Pt nanoparticles and 10B enriched dielectrics—A direct conversion device

    Directory of Open Access Journals (Sweden)

    Haisheng Zheng

    2016-07-01

    Full Text Available We report a direct conversion solid-state neutron detection device fabricated by combining the large neutron capture cross-section of 10B with the charge trapping attributes of sub-2 nm Pt nanoparticles (Pt NPs in MOSCAP structures. The 10B embedded polystyrene based neutron conversion layer also serves as the dielectric layer. Neutron sensing is achieved through carrier generation within the active 10B based dielectric layer and subsequent transfer to the embedded Pt NP layers, resulting in a significant change of the device's flat-band voltage upon ex-situ characterization. Both single and dual Pt NP layer embedded architectures, with varying electron addition energies, were tested within this study. While dual-layer Pt NPs embedded direct conversion devices with higher electron addition energy are shown to successfully capture charges generated through energetic reaction product upon neutron capture, the single Pt NP layer embedded device structure with lower electron addition energy displays signs of charge loss attributable to direct tunneling in the ex-situ capacitance–voltage measurement. Although only ex-situ detector operation is demonstrated within the realms of this study, sensitive in-situ neutron detectors and ultra-stable ex-situ dosimeters may be achievable utilizing a similar structure by fine-tuning the Pt NP size and the number of Pt NP layers in the device. Keywords: Neutron detection, Sub-2 nm Pt nanoparticles, 10B enriched dielectrics, Direct conversion, MOSCAP, Coulomb blockade

  5. Pt-Ru nanoparticles supported on functionalized carbon as electrocatalysts for the methanol oxidation

    International Nuclear Information System (INIS)

    Salgado, J.R.C.; Fernandes, J.C.S.; Botelho do Rego, A.M.; Ferraria, A.M.; Duarte, R.G.; Ferreira, M.G.S.

    2011-01-01

    Highlights: → The functionalized carbon using acid solutions contains surface oxygenated groups. → Uniform dispersion of PtRu nanoparticles on the carbon surface was achieved. → Physical analysis showed the formation of PtRu alloy catalysts on functionalized carbon. → PtRu alloy catalysts on functionalized carbon enhanced the methanol oxidation rate. - Abstract: Platinum-ruthenium alloy electrocatalysts, for methanol oxidation reaction, were prepared on carbons thermally treated in helium atmosphere or chemically functionalized in H 2 O 2 , or in HNO 3 + H 2 SO 4 or in HNO 3 solutions. The functionalized carbon that is produced using acid solutions contains more surface oxygenated functional groups than carbon treated with H 2 O 2 solution or HeTT. The XRD/HR-TEM analysis have showed the existence of a higher alloying degree for Pt-Ru electrocatalysts supported on functionalized carbon, which present superior electrocatalytic performance, assessed by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy, as compared to electrocatalysts on unfunctionalized carbon. It also was found that Pt-Ru alloy electrocatalysts on functionalized carbon improve the reaction rate compared to Pt-Ru on carbons treated with H 2 O 2 solution and thermally. A mechanism is discussed, where oxygenated groups generated from acid functionalization of carbon and adsorbed on Pt-Ru electrocatalysts are considered to enhance the electrocatalytic activity of the methanol oxidation reaction.

  6. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  7. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Felix-Navarro, R. M., E-mail: moi6salazar@hotmail.com; Beltran-Gastelum, M.; Salazar-Gastelum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Perez-Sicairos, S.; Lin, S. W. [Centro de Graduados e Investigacion, Instituto Tecnologico de Tijuana (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados (Mexico); Alonso-Nunez, G. [Centro de Nanociencias y Nanotecnologia (Mexico)

    2013-08-15

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O{sub 2} to H{sub 2}O{sub 2}. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H{sub 2}SO{sub 4} electrolyte using dissolved O{sub 2}. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H{sub 2}O{sub 2} electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H{sub 2}O{sub 2} alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  8. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    Science.gov (United States)

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.

  9. Structural and magnetic properties of FePt nanoparticles from the gas phase; Strukturelle und magnetische Eigenschaften von FePt-Nanopartikeln aus der Gasphase

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrieva, O.

    2007-09-21

    In this work, we present the structural and magnetic characterization of FePt nanoparticles. The nanoparticles with mean size of about 6 nm were prepared by sputtering in the gas and subsequent inert gas condensation. The particles are annealed in the furnace during their flight prior to deposition on a substrate. The aim of this work is to prepare magnetically hard FePt nanoparticles in the L1{sub 0}-ordered phase. The structure of the particles was investigated by high-resolution transmission electron microscopy, and the investigations were supported by contrast simulations. The morphology of the particles varies with the sputter-gas pressure and with the annealing temperature. At a pressure of 0.5 mbar, the FePt-nanoparticles are multiply-twinned with an icosahedral structure and exhibit no formation of the L1{sub 0}-ordered phase. At a higher pressure of 1 mbar and an annealing temperature of 1000 C, the particles are partially single-crystalline. About 36 % of the particles are found to be in the L1{sub 0}-ordered state as was estimated by statistical counting supported by simulations. In order to activate the volume diffusion in the particles and to stabilize the formation of the L1{sub 0}-ordered state, the addition of nitrogen was used during the sputtering phase. In this phase, atomic nitrogen is incorporated interstitially into the structure of the primary particles. After annealing nitrogen effuses out of the particles and, thereby, increases the volume diffusion of the Fe and Pt atoms. The incorporation of nitrogen atoms during nucleation and their effusion at an annealing temperature of 1000 C was verified by electron energy loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS). Structural investigations on particles prepared in the presence of nitrogen shows that most of the particles are single-crystalline and about 70 % of them are L1{sub 0}-ordered. Detailed structural analysis of the nanoparticles was done by the exit wave

  10. Nanoscale compositional changes and modification of the surface reactivity of Pt3Co/C nanoparticles during proton-exchange membrane fuel cell operation

    International Nuclear Information System (INIS)

    Dubau, L.; Maillard, F.; Chatenet, M.; Andre, J.; Rossinot, E.

    2010-01-01

    This study bridges the structure/composition of Pt-Co/C nanoparticles with their surface reactivity and their electrocatalytic activity. We show that Pt 3 Co/C nanoparticles are not stable during PEMFC operation (H 2 /air; j = 0.6 A cm -2 , T = 70 o C) but suffer compositional changes at the nanoscale. In the first hours of operation, the dissolution of Co atoms at their surface yields to the formation of a Pt-enriched shell covering a Pt-Co alloy core ('Pt-skeleton') and increases the affinity of the surface to oxygenated and hydrogenated species. This structure does not ensure stability in PEMFC conditions but is rather a first step towards the formation of 'Pt-shell/Pt-Co alloy core' structures with depleted Co content. In these operating conditions, the Pt-Co/C specific activity for the ORR varies linearly with the fraction of Co alloyed to Pt present in the core and is severely depreciated (ca. -50%) after 1124 h of operation. This is attributed to: (i) the decrease of both the strain and the ligand effect of Co atoms contained in the core (ii) the changes in the surface structure of the electrocatalyst (formation of a multilayer-thick Pt shell) and (iii) the relaxation of the Pt surface atoms.

  11. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    NARCIS (Netherlands)

    Yildirim, O.; Gang, T.; Kinge, S.S.; Reinhoudt, David; Blank, David H.A.; van der Wiel, Wilfred Gerard; Rijnders, Augustinus J.H.M.; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs

  12. PtRu nanoparticles dispersed on nitrogen-doped carbon nanohorns as an efficient electrocatalyst for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Zhang, Linwei; Gao, Ang; Liu, Yan; Wang, Yuan; Ma, Jiantai

    2014-01-01

    Highlights: • A novel anode catalyst is synthesized using N-doped carbon nanohorns as support. • PtRu/NCNHs exhibits an excellent activity for MOR relative to PtRu/C catalysts. • The enhancement is due to the electronic interaction between NCNHs and PtRu NPs. - Abstract: A novel anode catalyst (PtRu/NCNHs) assembled with nitrogen-doped carbon nanohorns (NCNHs) and PtRu nanoparticles (1.9 nm) exhibits an obvious enhancement in the tolerance to carbonaceous intermediates and the electocatalytic activity for methanol oxidation reaction (MOR) in comparison to a commercial PtRu/C-JM catalyst and a home-made PtRu/Vulcan catalyst. The MOR mass activity of PtRu/NCNHs (850 mA mg −1 PtRu ) is 2.5 times as high as that of PtRu/C-JM (341 mA mg −1 PtRu ). The MOR specific activity of PtRu/NCNHs is 1.8 times as high as that of PtRu/Vulcan having similar Pt/Ru atomic ratios, specific electrochemical surface areas and particle sizes of PtRu NPs. The electronic interaction between PtRu NPs and NCNHs is responsible for the enhancement in the MOR activity of PtRu/NCNHs

  13. Non-Aqueous Sol-Gel Synthesis of FePt Nanoparticles in the Absence of In Situ Stabilizers

    Directory of Open Access Journals (Sweden)

    Tobias Preller

    2018-05-01

    Full Text Available The synthesis of FePt nanocrystals is typically performed in an organic solvent at rather high temperatures, demanding the addition of the in situ stabilizers oleic acid and oleylamine to produce monomodal particles with well-defined morphologies. Replacing frequently-used solvents with organic media bearing functional moieties, the use of the stabilizers can be completely circumvented. In addition, various morphologies and sizes of the nanocrystals can be achieved by the choice of organic solvent. The kinetics of particle growth and the change in the magnetic behavior of the superparamagnetic FePt nanocrystals during the synthesis with a set of different solvents, as well as the resulting morphologies and stoichiometries of the nanoparticles were determined by powder X-ray diffraction (PXRD, small-angle X-ray scattering (SAXS, transmission electron microscopy (TEM, inductively coupled plasma optical emission spectroscopy (ICP-OES/mass spectrometry (ICP-MS, and superconducting quantum interference device (SQUID measurements. Furthermore, annealing of the as-prepared FePt nanoparticles led to the ordered L10 phase and, thus, to hard magnetic materials with varying saturation magnetizations and magnetic coercivities.

  14. Synthesis of Pt nanoparticles as catalysts of oxygen reduction with microbubble-assisted low-voltage and low-frequency solution plasma processing

    Science.gov (United States)

    Horiguchi, Genki; Chikaoka, Yu; Shiroishi, Hidenobu; Kosaka, Shinpei; Saito, Morihiro; Kameta, Naohiro; Matsuda, Naoki

    2018-04-01

    In the preparation of metallic nanoparticles by conventional solution plasma (SP) techniques, unstable plasma emission becomes an issue when the voltage and frequency of the waves applied between two electrodes placed in solution are lowered to avoid the boiling of the solution. In this study, we confirm that, in the presence of microbubbles, plasma is generated stably at low voltage (440 V) and low frequency (50-100 Hz) and small-size (≤10 nm) Pt nanoparticles (PtNPs) are synthesized in succession using a flow cell. The smallest PtNPs, ∼3.3 nm in diameter, are obtained using half-wave rectification, a tungsten wire anode, and a platinum wire cathode. The PtNPs are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and thermogravimeter-differential thermal analysis. The oxygen reduction reaction (ORR) is investigated in 0.1 M HClO4 solution on carbon-supported PtNPs using a rotating ring-disk electrode. The catalytic activities per initial electrochemical active surface area of the carbon-supported PtNPs synthesized employing the low-voltage, low-frequency (LVLF)-SP technique is higher than that of the commercially available 20 wt% Pt on Vulcan XC-72R. These results indicate that the LVLF-SP technique is a promising approach to producing carbon-supported PtNPs that catalyze ORR with low energy consumption.

  15. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min; Anjum, Dalaver H.; Sougrat, Rachid; Hedhili, Mohamed N.; Khashab, Niveen M.

    2012-01-01

    that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au

  16. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    Science.gov (United States)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  17. Self-Propelled Soft Protein Microtubes with a Pt Nanoparticle Interior Surface.

    Science.gov (United States)

    Kobayakawa, Satoshi; Nakai, Yoko; Akiyama, Motofusa; Komatsu, Teruyuki

    2017-04-11

    Human serum albumin (HSA) microtubes with an interior surface composed of Pt nanoparticles (PtNPs) are self-propelled in aqueous H 2 O 2 medium. They can capture cyanine dye and Escherichia coli (E. coli) efficiently. Microtubes were prepared by wet templating synthesis by using a track-etched polycarbonate (PC) membrane with alternate filtrations of aqueous HSA, poly-l-arginine (PLA), and citrate-PtNPs. Subsequent dissolution of the PC template yielded uniform hollow cylinders made of (PLA/HSA) 8 PLA/PtNP stacking layers (1.16±0.02 μm outer diameter, ca. 23 μm length). In aqueous H 2 O 2 media, the soft protein microtubes are self-propelled by jetting O 2 bubbles from the open-end terminus. The effects of H 2 O 2 and surfactant concentrations on the velocity were investigated. The swimming microtube captured cyanine dye in the HSA component of the wall. Addition of an intermediate γ-Fe 3 O 4 layer allowed manipulation of the direction of movement of the tubule by using a magnetic field. Because the exterior surface is positively charged, the bubble-propelled microtubes adsorbed E. coli with high efficiency. The removal ratio of E. coli by a single treatment reached 99 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Song XM

    2009-01-01

    Full Text Available Abstract The Pt nanoparticles (NPs, which posses the wider tunable localized-surface-plasmon (LSP energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors.

  19. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  20. N-Doped Carbon Nanofibrous Network Derived from Bacterial Cellulose for the Loading of Pt Nanoparticles for Methanol Oxidation Reaction.

    Science.gov (United States)

    Yuan, Fanshu; Huang, Yang; Fan, Mengmeng; Chen, Chuntao; Qian, Jieshu; Hao, Qingli; Yang, Jiazhi; Sun, Dongping

    2018-02-06

    The large-scale, low-cost preparation of Pt-based catalysts with high activity and durability for the methanol oxidation reaction is still challenging. The key to achieving this aim is finding suitable supporting materials. In this paper, N-doped carbon nanofibrous networks are prepared by annealing a gel containing two inexpensive and ecofriendly precursors, that is, bacterial cellulose and urea, for the loading of Pt nanoparticles. An undoped analogue is also prepared for comparison. Meanwhile, the effect of the annealing temperature on the performance of the catalysts is evaluated. The results show that the N doping and higher annealing temperature can improve the electron conductivity of the catalyst and provide more active sites for the loading of ultrafine Pt nanoparticles with a narrow size distribution. The best catalyst exhibits a remarkably high electrocatalytic activity (627 mA mg -1 ), excellent poison tolerance, and high durability. This work demonstrates an ideal Pt supporting material for the methanol oxidation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Stojmenović, Marija; Momčilović, Milan; Gavrilov, Nemanja; Pašti, Igor A.; Mentus, Slavko; Jokić, Bojan; Babić, Biljana

    2015-01-01

    Ordered mesoporous carbon, volume-doped up to 3 w.% with Pt, Ru and Pt-Ru nanoparticles was synthesized by evaporation-induced self-assembly method, under acidic conditions. The content of incorporated metal was determined by EDX analysis. The X-ray diffractometry confirmed the existence of highly dispersed metallic phases in doped samples. Specific surface area was determined by N 2 -physisorption measurements to range between 452 and 545 m 2 g −1 . Raman spectroscopy of investigated materials indicated highly disordered carbon structure with crystallite sizes around 1.4 nm. In a form of thin-layer electrode on glassy carbon support, in 0.1 M KOH solution, the prepared materials displayed high activity toward oxygen reduction reaction (ORR) in alkaline media, with onset potentials more positive than −0.10 V vs. SCE. The kinetics of O 2 reduction was found to be affected by both the specific surface area and the concentration of metal dopants. The ethanol tolerance of (Pt, Ru)-doped OMCs was found to be higher than that of common Pt/C ORR catalysts. Presented study provides a new route for the synthesis of active and selective ORR catalysts in alkaline media, being competitive with, or superior to, the existing ones in terms of performance and price

  2. Hemoglobin–Albumin Cluster Incorporating a Pt Nanoparticle: Artificial O2 Carrier with Antioxidant Activities

    Science.gov (United States)

    Hosaka, Hitomi; Haruki, Risa; Yamada, Kana; Böttcher, Christoph; Komatsu, Teruyuki

    2014-01-01

    A covalent core–shell structured protein cluster composed of hemoglobin (Hb) at the center and human serum albumins (HSA) at the periphery, Hb-HSAm, is an artificial O2 carrier that can function as a red blood cell substitute. Here we described the preparation of a novel Hb-HSA3 cluster with antioxidant activities and its O2 complex stable in aqueous H2O2 solution. We used an approach of incorporating a Pt nanoparticle (PtNP) into the exterior HSA unit of the cluster. A citrate reduced PtNP (1.8 nm diameter) was bound tightly within the cleft of free HSA with a binding constant (K) of 1.1×107 M−1, generating a stable HSA-PtNP complex. This platinated protein showed high catalytic activities for dismutations of superoxide radical anions (O2 •–) and hydrogen peroxide (H2O2), i.e., superoxide dismutase and catalase activities. Also, Hb-HSA3 captured PtNP into the external albumin unit (K = 1.1×107 M−1), yielding an Hb-HSA3(PtNP) cluster. The association of PtNP caused no alteration of the protein surface net charge and O2 binding affinity. The peripheral HSA-PtNP shell prevents oxidation of the core Hb, which enables the formation of an extremely stable O2 complex, even in H2O2 solution. PMID:25310133

  3. Non-volatile nano-floating gate memory with Pt-Fe{sub 2}O{sub 3} composite nanoparticles and indium gallium zinc oxide channel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Quanli [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Lee, Seung Chang; Baek, Yoon-Jae [Myongji University, Department of Materials Science and Engineering (Korea, Republic of); Lee, Hyun Ho [Myongji University, Department of Chemical Engineering (Korea, Republic of); Kang, Chi Jung [Myongji University, Department of Nano Science and Engineering (Korea, Republic of); Kim, Hyun-Mi; Kim, Ki-Bum [Seoul National University, Department of Materials Science and Engineering (Korea, Republic of); Yoon, Tae-Sik, E-mail: tsyoon@mju.ac.kr [Myongji University, Department of Nano Science and Engineering (Korea, Republic of)

    2013-02-15

    Non-volatile nano-floating gate memory characteristics with colloidal Pt-Fe{sub 2}O{sub 3} composite nanoparticles with a mostly core-shell structure and indium gallium zinc oxide channel layer were investigated. The Pt-Fe{sub 2}O{sub 3} nanoparticles were chemically synthesized through the preferential oxidation of Fe and subsequent pileup of Pt into the core in the colloidal solution. The uniformly assembled nanoparticles' layer could be formed with a density of {approx}3 Multiplication-Sign 10{sup 11} cm{sup -2} by a solution-based dip-coating process. The Pt core ({approx}3 nm in diameter) and Fe{sub 2}O{sub 3}-shell ({approx}6 nm in thickness) played the roles of the charge storage node and tunneling barrier, respectively. The device exhibited the hysteresis in current-voltage measurement with a threshold voltage shift of {approx}4.76 V by gate voltage sweeping to +30 V. It also showed the threshold shift of {approx}0.66 V after pulse programming at +20 V for 1 s with retention > {approx}65 % after 10{sup 4} s. These results demonstrate the feasibility of using colloidal nanoparticles with core-shell structure as gate stacks of the charge storage node and tunneling dielectric for low-temperature and solution-based processed non-volatile memory devices.

  4. Ultrasonic-electrodeposition of PtPd alloy nanoparticles on ionic liquid-functionalized graphene paper: towards a flexible and versatile nanohybrid electrode

    Science.gov (United States)

    Sun, Yimin; Zheng, Huaming; Wang, Chenxu; Yang, Mengmeng; Zhou, Aijun; Duan, Hongwei

    2016-01-01

    Here we fabricate a new type of flexible and versatile nanohybrid paper electrode by ultrasonic-electrodeposition of PtPd alloy nanoparticles on freestanding ionic liquid (IL)-functionalized graphene paper, and explore its multifunctional applications in electrochemical catalysis and sensing systems. The graphene-based paper materials demonstrate intrinsic flexibility, exceptional mechanical strength and high electrical conductivity, and therefore can serve as an ideal freestanding flexible electrode for electrochemical devices. Furthermore, the functionalization of graphene with IL (i.e., 1-butyl-3-methylimidazolium tetrafluoroborate) not only increases the electroactive surface area of a graphene-based nanohybrid paper electrode, but also improves the adhesion and dispersion of metal nanoparticles on the paper surface. These unique attributes, combined with the merits of an ultrasonic-electrodeposition method, lead to the formation of PtPd alloy nanoparticles on IL-graphene paper with high loading, uniform distribution, controlled morphology and favourable size. Consequently, the resultant nanohybrid paper electrode exhibits remarkable catalytic activity as well as excellent cycle stability and improved anti-poisoning ability towards electrooxidation of fuel molecules such as methanol and ethanol. Furthermore, for nonenzymatic electrochemical sensing of some specific biomarkers such as glucose and reactive oxygen species, the nanohybrid paper electrode shows high selectivity, sensitivity and biocompatibility in these bio-catalytic processes, and can be used for real-time tracking hydrogen peroxide secretion by living human cells. All these features demonstrate its promising application as a versatile nanohybrid electrode material in flexible and lightweight electrochemical energy conversion and biosensing systems such as bendable on-chip power sources, wearable/implantable detectors and in vivo micro-biosensors.Here we fabricate a new type of flexible and

  5. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    Science.gov (United States)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  6. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-01-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611}high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H_2PtCl_6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells. (paper)

  7. O{sub 2} adsorption and dissociation on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Sha; Yang, Yongpeng; Huang, Shiping, E-mail: huangsp@mail.buct.edu.cn

    2017-07-15

    Highlights: • O{sub 2} adsorption and dissociation on Pd{sub 13-n}Ni{sub n}@Pt{sub 42} NPs are performed by DFT. • Adsorption energies of O{sub 2} and O are strongly affected by the coordination number. • Adsorption energy and d-band center displays the opposite change tendency. • Ni{sub 13}@Pt{sub 42} is the most active catalyst among Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) NPs. - Abstract: Density functional theory calculations are performed to investigate O{sub 2} adsorption and dissociation on the icosahedral Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles. The parallel adsorption of O{sub 2} on Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) is stronger than the vertical adsorption. The adsorption of O{sub 2} on the bridge site (B1) is favorable in the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) nanoparticles, while the adsorption of O atom on the hollow site (H1) is preferred. The adsorption energies of O{sub 2} and O are strongly affected by the coordination number. Low coordination site shows strong adsorption of O{sub 2} and O on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) nanoparticles. The adsorption energies of O{sub 2} and O atoms are found to be correlated well with the d-band center of surface Pt. For the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and13) nanoparticles catalysts, the ORR activity follows the order of Ni{sub 13}@Pt{sub 42} > Pd{sub 13}@Pt{sub 42} > Pd{sub 12}Ni{sub 1}@Pt{sub 42} > Pd{sub 1}Ni{sub 12}@Pt{sub 42}, illustrating that the Ni{sub 13}@Pt{sub 42} is the strongest ORR activity among the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and13) nanoparticles catalysts. Our results have important significance to understand the mechanism of O{sub 2} dissociation on the Pd{sub 13-n}Ni{sub n}@Pt{sub 42} (n = 0, 1, 12, and 13) tri-metallic nanoparticles.

  8. Experimental and Theoretical Structural Investigation of AuPt Nanoparticles Synthesized Using a Direct Electrochemical Method.

    Science.gov (United States)

    Lapp, Aliya S; Duan, Zhiyao; Marcella, Nicholas; Luo, Long; Genc, Arda; Ringnalda, Jan; Frenkel, Anatoly I; Henkelman, Graeme; Crooks, Richard M

    2018-05-11

    In this report, we examine the structure of bimetallic nanomaterials prepared by an electrochemical approach known as hydride-terminated (HT) electrodeposition. It has been shown previously that this method can lead to deposition of a single Pt monolayer on bulk-phase Au surfaces. Specifically, under appropriate electrochemical conditions and using a solution containing PtCl 4 2- , a monolayer of Pt atoms electrodeposits onto bulk-phase Au immediately followed by a monolayer of H atoms. The H atom capping layer prevents deposition of Pt multilayers. We applied this method to ∼1.6 nm Au nanoparticles (AuNPs) immobilized on an inert electrode surface. In contrast to the well-defined, segregated Au/Pt structure of the bulk-phase surface, we observe that HT electrodeposition leads to the formation of AuPt quasi-random alloy NPs rather than the core@shell structure anticipated from earlier reports relating to deposition onto bulk phases. The results provide a good example of how the phase behavior of macro materials does not always translate to the nano world. A key component of this study was the structure determination of the AuPt NPs, which required a combination of electrochemical methods, electron microscopy, X-ray absorption spectroscopy, and theory (DFT and MD).

  9. CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells.

    Science.gov (United States)

    Yu, Xue; Kuai, Long; Geng, Baoyou

    2012-09-21

    Pt-based nanocomposites have been of great research interest. In this paper, we design an efficient MO/rGO/Pt sandwich nanostructure as an anodic electrocatalyst for DMFCs with combination of the merits of rigid structure of metallic oxides (MOs) and excellent electronic conductivity of reduced oxidized graphene (rGO) as well as overcoming their shortcomings. In this case, the CeO(2)/rGO/Pt sandwich nanostructure is successfully fabricated through a facile hydrothermal approach in the presence of graphene oxide and CeO(2) nanoparticles. This structure has a unique building architecture where rGO wraps up the CeO(2) nanoparticles and Pt nanoparticles are homogeneously dispersed on the surface of rGO. This novel structure endows this material with great electrocatalytic performance in methanol oxidation: it reduces the overpotential of methanol oxidation significantly and its electrocatalytic activity and stability are much enhanced compared with Pt/rGO, CeO(2)/Pt and Pt/C catalysts. This work supplies a unique MO/rGO/Pt sandwich nanostructure as an efficient way to improve the electrocatalytic performance, which will surely shed some light on the exploration of some novel structures of electrocatalyst for DMFCs.

  10. Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis: control of the specific surface area over three orders of magnitude

    NARCIS (Netherlands)

    Miller, T.S.; Sansuk, S.; Lai, Stanley; Macpherson, J.V.; Unwin, P.R.

    2015-01-01

    The electrodeposition of Pt nanoparticles (NPs) on two-dimensional single walled carbon nanotube (SWNT) network electrodes is investigated as a means of tailoring electrode surfaces with a well-defined amount of electrocatalytic material. Both Pt NP deposition and electrocatalytic studies are

  11. Nitrogen-Doped Ordered Mesoporous Carbon Supported Bimetallic PtCo Nanoparticles for Upgrading of Biophenolics.

    Science.gov (United States)

    Wang, Guang-Hui; Cao, Zhengwen; Gu, Dong; Pfänder, Norbert; Swertz, Ann-Christin; Spliethoff, Bernd; Bongard, Hans-Josef; Weidenthaler, Claudia; Schmidt, Wolfgang; Rinaldi, Roberto; Schüth, Ferdi

    2016-07-25

    Hydrodeoxygenation (HDO) is an attractive route for the upgrading of bio-oils produced from lignocellulose. Current catalysts require harsh conditions to effect HDO, decreasing the process efficiency in terms of energy and carbon balance. Herein we report a novel and facile method for synthesizing bimetallic PtCo nanoparticle catalysts (ca. 1.5 nm) highly dispersed in the framework of nitrogen-doped ordered mesoporous carbon (NOMC) for this reaction. We demonstrate that NOMC with either 2D hexagonal (p6m) or 3D cubic (Im3‾ m) structure can be easily synthesized by simply adjusting the polymerization temperature. We also demonstrate that PtCo/NOMC (metal loading: Pt 9.90 wt %; Co 3.31 wt %) is a highly effective catalyst for HDO of phenolic compounds and "real-world" biomass-derived phenolic streams. In the presence of PtCo/NOMC, full deoxygenation of phenolic compounds and a biomass-derived phenolic stream is achieved under conditions of low severity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Pauline Maffre

    2011-07-01

    Full Text Available Using dual-focus fluorescence correlation spectroscopy, we have analyzed the adsorption of three human blood serum proteins, namely serum albumin, apolipoprotein A-I and apolipoprotein E4, onto polymer-coated, fluorescently labeled FePt nanoparticles (~12 nm diameter carrying negatively charged carboxyl groups on their surface. For all three proteins, a step-wise increase in hydrodynamic radius with protein concentration was observed, strongly suggesting the formation of protein monolayers that enclose the nanoparticles. Consistent with this interpretation, the absolute increase in hydrodynamic radius can be correlated with the molecular shapes of the proteins known from X-ray crystallography and solution experiments, indicating that the proteins bind on the nanoparticles in specific orientations. The equilibrium dissociation coefficients, measuring the affinity of the proteins to the nanoparticles, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of the electrostatic properties of the proteins. From structure-based calculations of the surface potentials, positively charged patches of different extents can be revealed, through which the proteins interact electrostatically with the negatively charged nanoparticle surfaces.

  13. Lowering of the L10 ordering temperature of FePt nanoparticles by He+ ion irradiation

    International Nuclear Information System (INIS)

    Wiedwald, U.; Klimmer, A.; Kern, B.; Han, L.; Boyen, H.-G.; Ziemann, P.; Fauth, K.

    2007-01-01

    Arrays of FePt particles (diameter 7 nm) with mean interparticle distances of 60 nm are prepared by a micellar technique on Si substrates. The phase transition of these magnetic particles towards the chemically ordered L1 0 phase is tracked for 350 kV He + ion irradiated samples and compared to a nonirradiated reference. Due to the large separation of the magnetically decoupled particles the array can be safely annealed without any agglomeration as usually observed for more densely packed colloidal FePt nanoparticles. The He + ion exposure yields a significant reduction of the ordering temperature by more than 100 K

  14. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea

    International Nuclear Information System (INIS)

    Xu, Xiao; Zhou, Yingke; Yuan, Tao; Li, Yawei

    2013-01-01

    A facile hydrothermal reaction of graphene oxide with urea was used to produce nitrogen doped graphene, and Pt nanoparticles were deposited on the obtained nitrogen doped graphene by the NaBH 4 reduction route. The morphology and microstructure of the synthesized catalysts were characterized by transmission electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy, while the functional groups on the surface of the catalysts were investigated by the Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectra. Cyclic voltammetry, chronoamperometry and electrochemical impedance techniques were carried out to evaluate the methanol electrocatalytic oxidation activity and durability of Pt catalysts supported on the nitrogen doped graphene. The results showed that nitrogen doping and reduction of GO were achieved simultaneously by the facile hydrothermal reaction, which had beneficial effects for the deposition process and electrocatalytic activity of Pt nanoparticles. The Pt catalysts supported on the nitrogen doped graphene substrate presented excellent activity and durability of methanol oxidation reaction, which might be promising for application in direct methanol fuel cells

  15. Critical assessment of Pt surface energy - An atomistic study

    Science.gov (United States)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  16. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water

    Science.gov (United States)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-01

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m2 g-1 were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  17. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water.

    Science.gov (United States)

    Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong

    2016-06-22

    Graphitic carbon nitride nanosheets were investigated for developing effective Pt catalyst supports for selective hydrogenation of furfural to furfuryl alcohol in water. The nanosheets with an average thickness of about 3 nm were synthesized by a simple and green method through thermal oxidation etching of bulk g-C3N4 in air. Combined with the unique feature of nitrogen richness and locally conjugated structure, the g-C3N4 nanosheets with a high surface area of 142 m(2) g(-1) were demonstrated to be an excellent supports for loading small-size Pt nanoparticles. Superior furfural hydrogenation activity in water with complete conversion of furfural and high selectivity of furfuryl alcohol (>99%) was observed for g-C3N4 nanosheets supported Pt catalysts. The large specific surface area, uniform dispersion of Pt nanoparticles and the stronger furfural adsorption ability of nanosheets contributed to the considerable catalytic performance. The reusability tests showed that the novel Pt catalyst could maintain high activity and stability in the furfural hydrogenation reaction.

  18. Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

    Directory of Open Access Journals (Sweden)

    Biuck Habibi

    2017-04-01

    Full Text Available In this study, Ni-Al layered double hydroxide (LDH-Pt nanoparticles (PtNPs as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 30th March 2016; Revised: 29th July 2016; Accepted: 9th September 2016 How to Cite: Habibi, B., Ghaderi, S. (2017. Electro Synthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electro-Oxidation in Alkaline Media. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1: 1-13 (doi:10.9767/bcrec.12.1.460.1-13 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.460.1-13

  19. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  20. Stabilization of 200-atom platinum nanoparticles by organosilane fragments

    KAUST Repository

    Pelzer, Katrin

    2011-04-19

    Three\\'s a charm: Platinum nanoparticles of 2 nm diameter and containing approximately 200 atoms covered with n-octylsilyl groups (see picture, right; Pt blue, Si red, C gray, H turquoise) form when [Pt(dba)2] (dba=dibenzylideneacetone) decomposes in the presence of n-octylsilane. The particles adopt a cuboctahedral structure with an edge length of three atoms. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stabilization of 200-atom platinum nanoparticles by organosilane fragments

    KAUST Repository

    Pelzer, Katrin; Hä vecker, Michael; Boualleg, Malika; Candy, Jean Pierre; Basset, Jean-Marie

    2011-01-01

    Three's a charm: Platinum nanoparticles of 2 nm diameter and containing approximately 200 atoms covered with n-octylsilyl groups (see picture, right; Pt blue, Si red, C gray, H turquoise) form when [Pt(dba)2] (dba=dibenzylideneacetone) decomposes in the presence of n-octylsilane. The particles adopt a cuboctahedral structure with an edge length of three atoms. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High magnetic coercivity of FePt-Ag/MgO granular nanolayers

    Science.gov (United States)

    Roghani, R.; Sebt, S. A.; Khajehnezhad, A.

    2018-06-01

    L10-FePt ferromagnetic nanoparticles have a hight coercivity of Tesla order. Thus, these nanoparticles, with size of 10 to 15 nm and uniform surface distribution, are suitable in magnetic data storage technology with density of more than 1GB. In order to improve structural and magnetic properties of FePt nanoparticles, some elements and combinations have been added to compound. In this research, we show that due to the presence of the Ag, the phase transition temperature of FePt from fcc to L10-fct phase decreases. The presence of Ag as an additive in FePt-Ag nanocomposite, increases the magnetic coercivity. This nanocomposite, with 10% Ag, was deposited by magnetron sputtering on the MgO heat layer. VSM results of 10 nm nanoparticles show that coercivity has increased up to 1.4 T. XRD and FESEM results confirm that the size of the L10-FePt nanoparticles are 10 nm and their surface distribution are uniform. Ag gradually form nano scale clusters with separate lattice and FePt-Ag nanocomposite appears. The result of this process is emptiness of Ag position in FePt-fcc lattice. So, the mobility of Fe and Pt atoms in this lattice increases and it can be possible for them to move in lower temperature. This mechanism explain the effect of Ag on decreasing the transition temperature to fct-L10 phase, and hight coercivity of FePt nanoparticles.

  3. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO{sub 2} photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zielińska-Jurek, Anna, E-mail: annjurek@pg.gda.pl [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Wei, Zhishun [Catalysis Research Center, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Wysocka, Izabela [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Szweda, Piotr [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Kowalska, Ewa [Catalysis Research Center, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan)

    2015-10-30

    Graphical abstract: - Highlights: • Enhanced photocatalytic activity under visible light for bimetallic Ag-Pt/TiO{sub 2} was observed. • Phenol was removed efficiently after 60 min irradiation under Vis. • Most active sample contains fine Pt (1–3 nm) on TiO{sub 2}. • Ag/TiO{sub 2}, Ag-Pt/TiO{sub 2} revealed antimicrobial activity. - Abstract: Ag-Pt-modified TiO{sub 2} nanocomposites were synthesized using the sol–gel method. Bimetallic modified TiO{sub 2} nanoparticles exhibited improved photocatalytic activity under visible-light irradiation, better than monometallic Ag/TiO{sub 2} and Pt/TiO{sub 2} nanoparticles (NPs). All modified powders showed localized surface plasmon resonance (LSPR) in visible region. The photocatalysts’ characteristics by X-ray diffractometry (XRD), scanning transmission electron microscopy (STEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption (BET method for specific surface area) showed that sample with the highest photocatalytic activity had anatase structure, about 93 m{sup 2}/g specific surface area, maximum plasmon absorption at ca. 420 nm and contained small NPs of silver of 6 nm and very fine platinum NPs of 3 nm. The photocatalytic activity was estimated by measuring the decomposition rate of phenol in 0.2 mM aqueous solution under Vis and UV/vis light irradiation. It was found that size of platinum was decisive for the photocatalytic activity under visible light irradiation, i.e., the smaller Pt NPs were, the higher was photocatalytic activity. While, antimicrobial activities, estimated for bacteria Escherichia coli and Staphylococcus aureus, and pathogenic fungi belonging to Candida family, were only observed for photocatalysts containing silver, i.e., Ag/TiO{sub 2} and Ag-Pt/TiO{sub 2} nanocomposites.

  4. Proton conductive Pt-Co nanoparticles anchoring on citric acid functionalized graphene for efficient oxygen reduction reaction

    Science.gov (United States)

    Zhao, Yige; Liu, Jingjun; Wu, Yijun; Wang, Feng

    2017-08-01

    Designing highly efficient electro-catalysts for the oxygen reduction reaction (ORR) has been regarded as a demanding task in the development of renewable energy sources. However, little attention has been paid on improving Pt-based catalysts by promoting proton transfer from the electrolyte solutions to the catalyst layer at the cathode. Herein, we design proton conductive Pt-Co alloy nanoparticles anchoring on citric acid functionalized graphene (Pt-Co/CA-G) catalysts for efficient ORR. The facile modification approach for graphene can introduce oxygenated functional groups on the graphene surface to promote proton transfer as well as keeping the high electron conductivity without destroying the graphene original structure. The electrochemical results show that the Pt-Co/CA-G catalyst exhibits more excellent ORR activity and stability than the commercial Pt/C catalyst, which can be attributed to its improved proton transfer ability. The fast proton transfer comes from the hydrogen-bonding networks formed by the interaction between the oxygenated functional groups and water molecules. This work provides not only a novel and simple approach to modify graphene but also an effective strategy to improve Pt-based catalysts for the ORR.

  5. Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy

    KAUST Repository

    Michalak, William D.

    2013-01-31

    The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a ∼30% and ∼20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. © 2012 American Chemical Society.

  6. Polymeric carbon nitride/mesoporous silica composites as catalyst support for Au and Pt nanoparticles.

    Science.gov (United States)

    Xiao, Ping; Zhao, Yanxi; Wang, Tao; Zhan, Yingying; Wang, Huihu; Li, Jinlin; Thomas, Arne; Zhu, Junjiang

    2014-03-03

    Small and homogeneously dispersed Au and Pt nanoparticles (NPs) were prepared on polymeric carbon nitride (CNx )/mesoporous silica (SBA-15) composites, which were synthesized by thermal polycondensation of dicyandiamide-impregnated preformed SBA-15. By changing the condensation temperature, the degree of condensation and the loading of CNx can be controlled to give adjustable particle sizes of the Pt and Au NPs subsequently formed on the composites. In contrast to the pure SBA-15 support, coating of SBA-15 with polymeric CNx resulted in much smaller and better-dispersed metal NPs. Furthermore, under catalytic conditions the CNx coating helps to stabilize the metal NPs. However, metal NPs on CNx /SBA-15 can show very different catalytic behaviors in, for example, the CO oxidation reaction. Whereas the Pt NPs already show full CO conversion at 160 °C, the catalytic activity of Au NPs seems to be inhibited by the CNx support. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An Investigation of Methyl Viologen Functionalized Reduced Graphene Oxide: Chitosan as a Support for Pt Nanoparticles Towards Ethanol Electrooxidation

    Science.gov (United States)

    Ekrami-Kakhki, Mehri-Saddat; Farzaneh, Nahid; Abbasi, Sedigheh; Beitollahi, Hadi; Ekrami-Kakhki, Seyed Ali

    2018-05-01

    In this research, graphene oxide was prepared by a modified Hummers' method, and then functionalized with 1, 1'-dimethyl-4, 4'-bipyridinium dichloride (MV), and chitosan (CH) to get a MV-RGO-CH support. Pt nanoparticles were prepared on this support to get Pt/MV-RGO-CH catalyst. The morphology and microstructure of Pt/MV-RGO-CH catalyst were characterized with transmission electron microscopy image and X-ray diffraction analysis. The electrocatalytic activity of the prepared catalyst towards ethanol oxidation was investigated by carbon monoxide stripping voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy techniques. The effects of some experimental parameters such as scan rate, ethanol concentration, and temperature were investigated for ethanol electrooxidation at Pt/MV-RGO-CH catalyst. Durability of the catalyst was also investigated. The electrocatalytic performance of Pt/MV-RGO-CH catalyst for ethanol oxidation was compared with those of Pt/CH and Pt/MV-RGO catalysts. The higher electrocatalytic performance of Pt/MV-RGO-CH than Pt/CH and Pt/MV-RGO catalysts towards ethanol electrooxidation indicated that Pt/MV-RGO-CH could be a promising catalyst for application in direct ethanol fuel cells.

  8. Preparation of the vulcan XC-72R-supported Pt nanoparticles for the hydrogen evolution reaction in PEM water electrolysers

    International Nuclear Information System (INIS)

    Nguyen, Huy Du; Nguyen, T Thuy Luyen; Nguyen, Khac Manh; Ha, Thuc Huy; Nguyen, Quoc Hien

    2015-01-01

    Pt nanoparticles on vulcan XC-72R support (Pt/vulcan XC-72R) were prepared by the impregnation–reduction method. The Pt content, the morphological properties and the electrochemical catalysis of the Pt/vulcan XC 72R materials have been investigated by ICP-OES analysis, FESEM, TEM, and cyclic voltammetry. These materials were then used as catalyst for hydrogen evolution reaction at the cathode of proton exchange membrane (PEM) water electrolysers. The best catalyst was Pt/vulcan XC-72R prepared by the impregnation–reduction method which is conducted in two reducing steps with the reductants of sodium borohydride and ethylene glycol, respectively. The current density of PEM water electrolysers reached 1.0 A cm"−"2 when applying a voltage of 2.0 V at 25 °C. (paper)

  9. In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles

    International Nuclear Information System (INIS)

    Asoro, M.A.; Ferreira, P.J.; Kovar, D.

    2014-01-01

    Transmission electron microscopy and scanning transmission electron microscopy studies were conducted in situ on 2–5 nm Pt and 10–40 nm Ag nanoparticles to study mechanisms for sintering and to measure relevant sintering kinetics in nanoscale particles. Sintering between two separated particles was observed to initiate by either (1) diffusion of the particles on the sample support or (2) diffusion of atoms or small clusters of atoms to the neck region between the two particles. After particle contact, the rate of sintering was controlled by atomic surface diffusivity. The surface diffusivity was determined as a function of particle size and temperature from experimental measurements of the rate of neck growth of the particles. The surface diffusivities did not show a strong size effect for the range of particle sizes that were studied. The surface diffusivity for Pt nanoparticles exhibited the expected Arrhenius temperature dependence and did not appear to be sensitive to the presence of surface contaminants. In contrast, the surface diffusivity for Ag nanoparticles was affected by the presence of impurities such as carbon. The diffusivities for Ag nanoparticles were consistent with previous measurements of bulk surface diffusivities for Ag in the presence of C, but were significantly slower than those obtained from pristine Ag

  10. Hollow Au@Pd and Au@Pt core-shell nanoparticles as electrocatalysts for ethanol oxidation reactions

    KAUST Repository

    Song, Hyon Min

    2012-09-27

    Hybrid alloys among gold, palladium and platinum become a new category of catalysts primarily due to their enhanced catalytic effects. Enhancement means not only their effectiveness, but also their uniqueness as catalysts for the reactions that individual metals may not catalyze. Here, preparation of hollow Au@Pd and Au@Pt core-shell nanoparticles (NPs) and their use as electrocatalysts are reported. Galvanic displacement with Ag NPs is used to obtain hollow NPs, and higher reduction potential of Au compared to Ag, Pd, and Pt helps to produce hollow Au cores first, followed by Pd or Pt shell growth. Continuous and highly crystalline shell growth was observed in Au@Pd core-shell NPs, but the sporadic and porous-like structure was observed in Au@Pt core-shell NPs. Along with hollow core-shell NPs, hollow porous Pt and hollow Au NPs are also prepared from Ag seed NPs. Twin boundaries which are typically observed in large size (>20 nm) Au NPs were not observed in hollow Au NPs. This absence is believed to be due to the role of the hollows, which significantly reduce the strain energy of edges where the two lattice planes meet. In ethanol oxidation reactions in alkaline medium, hollow Au@Pd core-shell NPs show highest current density in forward scan. Hollow Au@Pt core-shell NPs maintain better catalytic activities than metallic Pt, which is thought to be due to the better crystallinity of Pt shells as well as the alloy effect of Au cores. © 2012 The Royal Society of Chemistry.

  11. Methanol oxidation reaction activity of microwave irradiated and heat-treated Pt/Co and Pt/Ni nano-electrocatalysts

    CSIR Research Space (South Africa)

    Mathe, NR

    2014-11-01

    Full Text Available Bimetallic Pt nanoparticles were prepared by alloying Pt with the non-noble transition metals, Co and Ni, using a conventional heat-treatment (HT) method and microwaveirradiation (MW). The resulting samples were PteCo-Ht, PteNi-HT, PteCo, MW and Pt...

  12. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Guus Rijnders

    2010-03-01

    Full Text Available FePt nanoparticles (NPs were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(onates were used as an adsorbate to form self-assembled monolayers (SAMs on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP or phosphonoundecanoic acid (PNDA SAMs or with poly(ethyleneimine (PEI as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2 led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

  13. Novel Pt-Ru nanoparticles formed by vapour deposition as efficient electrocatalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Sivakumar, Pasupathi; Tricoli, Vincenzo

    2006-01-01

    The methods developed and described in paper-part I are employed to prepare nanometer size Pt-Ru particles on a Vulcan[reg] XC72R substrate with controlled metal loading. Transmission Electron Microscopy (TEM) confirmed uniform particles size (average diameter 2 nm) and homogeneous dispersion of the particles over the substrate. Energy Dispersive X-ray absorption (EDX) analysis confirmed the compositional homogeneity. The catalytic activity of these supported nanoparticles with regard to methanol electrooxidation is investigated using cyclic voltammetry (CV), chronoamperometry (CA) and CO-stripping voltammetry techniques at temperatures between 25 and 60 deg. C. Such investigation concerns supported catalysts prepared with ca. 10 and 18 wt.% overall metal loading (Pt + Ru) onto the Vulca[reg] XC72R substrate. Comparative testing of our catalysts and a commercial Pt-Ru/Vulcan reveals markedly superior activity for our catalysts. In fact, we observe for the latter a five-fold increase of the oxidation current as compared to a commercial Pt-Ru/Vulcan with equal metal loading. One of the reasons for the greater activity is found to be the very high dispersion of the metals over the substrate, i.e. the large surface area of the active phase. Other reasons are plausibly ascribable to the varied Pt/Ru composition and/or reduced presence of contaminants at the catalyst surface

  14. Vertically aligned carbon nanotubes/carbon fiber paper composite to support Pt nanoparticles for direct methanol fuel cell application

    Science.gov (United States)

    Zhang, Jing; Yi, Xi-bin; Liu, Shuo; Fan, Hui-Li; Ju, Wei; Wang, Qi-Chun; Ma, Jie

    2017-03-01

    Vertically aligned carbon nanotubes (VACNTs) grown on carbon fiber paper (CFP) by plasma enhanced chemical vapor deposition is introduced as a catalyst support material for direct methanol fuel cells (DMFCs). Well dispersed Pt nanoparticles on VACNTs surface are prepared by impregnation-reduction method. The VACNTs on CFP possess well-maintained alignment, large surface area and good electrical conductivity, which leading to the formation of Pt particles with a smaller size and enhance the Pt utilization rate. The structure and nature of resulting Pt/VACNTs/CFP catalysts for methanol oxidation are investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning electron microscope (SEM). With the aid of VACNTs, well-dispersed Pt catalysts enable the reversibly rapid redox kinetic since electron transport efficiently passes through a one-dimensional pathway, which leads to enhance the catalytic activity and Pt utilization rate. Compared with the Pt/XC-72/CFP electrode, the electrochemical measurements results display that the Pt/VACNTs/CFP catalyst shows much higher electrocatalytic activity and better stability for methanol oxidation. In addition, the oxidation current from 200 to 1200 s decayed more slowly for the Pt/VACNTs/CFP than that of the Pt/XC-72/CFP catalysts, indicating less accumulation of adsorbed CO species. All those results imply that the Pt/VACNTs/CFP has a great potential for applications in DMFCs.

  15. Pt@Ag and Pd@Ag core/shell nanoparticles for catalytic degradation of Congo red in aqueous solution

    Science.gov (United States)

    Salem, Mohamed A.; Bakr, Eman A.; El-Attar, Heba G.

    2018-01-01

    Platinum/silver (Pt@Ag) and palladium/silver (Pd@Ag) core/shell NPs have been synthesized in two steps reaction using the citrate method. The progress of nanoparticle formation was followed by the UV/Vis spectroscopy. Transmission electron microscopy revealed spherical shaped core/shell nanoparticles with average particle diameter 32.17 nm for Pt@Ag and 8.8 nm for Pd@Ag. The core/shell NPs were further characterized by FT-IR and XRD. Reductive degradation of the Congo red dye was chosen to demonstrate the excellent catalytic activity of these core/shell nanostructures. The nanocatalysts act as electron mediators for the transfer of electrons from the reducing agent (NaBH4) to the dye molecules. Effect of reaction parameters such as nanocatalyst dose, dye and NaBH4 concentrations on the dye degradation was investigated. A comparison between the catalytic activities of both nanocatalysts was made to realize which of them the best in catalytic performance. Pd@Ag was the higher in catalytic activity over Pt@Ag. Such greater activity is originated from the smaller particle size and larger surface area. Pd@Ag nanocatalyst was catalytically stable through four subsequent reaction runs under the utilized reaction conditions. These findings can thus be considered as possible economical alternative for environmental safety against water pollution by dyes.

  16. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping

    2012-01-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H 2 O 2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H 2 O 2 . The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM −1 ), low detection limit (1.8 μM), fast response time m ) and the maximum current density (i max ) values for the biosensor were 10.94 mM and 887 μA cm −2 respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  17. Ultra-fine Pt nanoparticles on graphene aerogel as a porous electrode with high stability for microfluidic methanol fuel cell

    Science.gov (United States)

    Kwok, Y. H.; Tsang, Alpha C. H.; Wang, Yifei; Leung, Dennis Y. C.

    2017-05-01

    Platinum-decorated graphene aerogel as a porous electrode for flow-through direct methanol microfluidic fuel cell is introduced. Ultra-fine platinum nanoparticles with size ranged from diameter 1.5 nm-3 nm are evenly anchored on the graphene nanosheets without agglomeration. The electrode is characterized by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Catalytic activity is confirmed by cyclic voltammetry. The electroactive surface area and catalytic activity of platinum on graphene oxide (Pt/GO) are much larger than commercial platinum on carbon black (Pt/C). A counterflow microfluidic fuel cell is designed for contrasting the cell performance between flow-over type and flow-through type electrodes using Pt/C on carbon paper and Pt/GO, respectively. The Pt/GO electrode shows 358% increment in specific power compared with Pt/C anode. Apart from catalytic activity, the effect of porous electrode conductivity to cell performance is also studied. The conductivity of the porous electrode should be further enhanced to achieve higher cell performance.

  18. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    International Nuclear Information System (INIS)

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  19. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seto, Takafumi, E-mail: t.seto@aist.go.jp; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto [National Institute of Advanced Industrial Science and Technology (AIST), Research Consortium for Synthetic Nano-Function Materials Project (SYNAF) (Japan)

    2006-08-15

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism.

  20. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    Science.gov (United States)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  1. Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes

    DEFF Research Database (Denmark)

    He, Maoshuai; Jin, Hua; Zhang, Lili

    2016-01-01

    electron microscopy, restructuring of the acorn-like Pt-Fe2O3 nanoparticles at reaction conditions is investigated. Upon heating to reaction temperature, ε-Fe2O3 is converted to β-Fe2O3, which can be subsequently reduced to metallic Fe once introducing CO. As Pt promotes the carburization of Fe, part...... of the metallic Fe reacts with active carbon atoms to form Fe2.5C instead of Fe3C, catalyzing the nucleation of carbon nanotubes. Nanobeam electron diffraction characterizations on SWCNTs grown under ambient pressure at 800 °C demonstrate that their chiral angle and diameter distributions are similar to those...

  2. Transport properties of metal-semiconductor junctions on n-type InP prepared by electrophoretic deposition of Pt nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan; Brus, V.V.; Černohorský, Ondřej; Maryanchuk, P.D.; Bazioti, C.; Dimitrakopulos, G.P.; Komninou, Ph.

    2014-01-01

    Roč. 29, č. 4 (2014), Article number 045017 ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : electrophoretic deposition * Pt nanoparticles * Schottky diodes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.190, year: 2014

  3. Dynamics of electrocatalytic oxidation of ethylene glycol, methanol and formic acid at MWCNT platform electrochemically modified with Pt/Ru nanoparticles

    CSIR Research Space (South Africa)

    Maxakato, NW

    2010-03-01

    Full Text Available Comparative electrocatalytic behavior of functionalized multiwalled carbon nanotubes (fMWCNTs) electrodecorated with Pt/Ru nanoparticles towards the oxidation of methanol (MeOH), ethylene glycol (EG) and formic acid (FA) has been investigated...

  4. Pt nanoparticles residing in the pores of porous LaNiO₃ nanocubes as high-efficiency electrocatalyst for direct methanol fuel cells.

    Science.gov (United States)

    Yu, Nan; Kuai, Long; Wang, Qing; Geng, Baoyou

    2012-09-07

    Pt-filled porous LaNiO₃ cubes are prepared through a facile route. The characterizations reveal that large numbers of pores (9-10 nm) are distributed homogeneously in porous LaNiO₃ cubes. The Pt nanoparticles residing in the pores of porous LaNiO₃ cubes are about 5 nm in size. The investigation on the electrocatalytic activity reveals that electrocatalytic activity of the obtained Pt loaded porous LaNiO₃ nanocubes exhibit a significantly improved electrochemical active surface area (EASA) and a remarkably enhanced electrocatalytic performance toward methanol oxidation. The results are significant for improving the efficiency of Pt-based catalysts for DMFCs as well as the applications of perovskite compounds.

  5. Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant

    International Nuclear Information System (INIS)

    Velasco, V.; Martinez, A.; Recio, J.; Hernando, A.; Crespo, P.

    2012-01-01

    Highlights: ► Fe and Pt powders in the presence of surfactants don’t alloyed by HEBM technique. ► FePt alloys obtained by dry milling exhibit particle sizes of around 10 μm. ► FePt alloys obtained by dry milling exhibit soft magnetic behavior. ► A thermal treatment induces a phase transformation from FCC to FCT. - Abstract: FePt nanoparticles were prepared by high energy ball milling (HEBM) in two different ways. In the first one, elemental powders were mixed and milled whereas in the second one the milling was performed in the presence of oleyl amine and oleic acid as surfactants and hexane as a solvent. X-ray diffraction shows that when the milling is performed in dry conditions, Fe and Pt are alloyed after 5 h, whereas in the wet milling procedure alloying does not take place. In the first case, the diffraction pattern corresponds to the disordered FCC phase. This behavior is also corroborated by the evolution of the magnetic characteristics. In the case of the alloy obtained in dry conditions, the powder was heat treated in order to induce the transformation to the ordered phase. Coercivities of 2.5 kOe are obtained after 650 °C for 2 h.

  6. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  7. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis

    2013-10-01

    We present the synthesis and characterization of a new class of self-suspended ferrofluids that exhibit remanent magnetization at room temperature. Our system relies on the chemisorption of a thiol-terminated ionic liquid with very low melting point on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic component. The ferrofluids do not show any sign of flocculation or phase separation, despite the strong interactions between the magnetic nanoparticles due to the strong chemisorption of the ionic liquid as evidenced by Raman spectroscopy and thermal analysis. Composites with high FePt loading (40 and 70. wt%) exhibit a pseudo solid-like rheological behavior and high remanent magnetization values (10.1 and 12.8. emu/g respectively). At lower FePt loading (12. wt%) a liquid like behavior is observed and the remanent and saturation magnetization values are 3.5 and 6.2. emu/g, respectively. The magnetic and flow properties of the materials can be easily fine tuned by controlling the type and amount of FePt nanoparticles used. © 2013 Elsevier Inc.

  8. Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites

    International Nuclear Information System (INIS)

    Liao, Chien-Shiun; Liao, Chien-Tsao; Tso, Ching-Yu; Shy, Hsiou-Jeng

    2011-01-01

    Highlights: · One-pot microwave-polyol synthesis of Pt/graphene electrocatalyst. · Simultaneous formation of Pt nanoparticles and reduction of graphene oxide. · Electrocatalytic activities depend on the morphology of the deposited Pt particles. · Dense dispersion of isolated Pt particles with high electrochemical active surface. · Few particle clusters of Pt have large number of active sites for methanol oxidation. - Abstract: Graphene oxide (GO) prepared by the modified Hummers method is used as a support in the formation of a Pt/GO nanocomposite electrocatalyst by microwave-polyol synthesis. The effects of microwave reaction times on particle size, dispersion, and electrocatalytic performance of Pt nanoparticles are studied using wide-angle X-ray diffractometery, Raman spectroscopy, transmission electron microscopy and three-electrode electrochemical measurements. The results indicate that Pt nanoparticles nucleation and growth occur, and the particles are uniformly deposited on the GO nanosheets within a short time. The maximum electrochemical active surface area 85.71 m 2 g -1 for a Pt/GO reaction time of 5 min, is a result of the deposition of a dense dispersion of small Pt particles. The highest methanol oxidation peak current density, I f , of 0.59 A mg -1 occurs for a Pt/GO reaction time of 10 min and is due to the formation of interconnecting Pt particles clusters. This novel Pt/GO nanocomposite electrocatalyst with high electrocatalytic activities has the potential for use as an anode material in fuel cells.

  9. Processing and thin film formation of TiO{sub 2}-Pt nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Es-Souni, M.; Kartopu, G.; Habouti, S.; Piorra, A.; Solterbeck, C.H. [Institute for Materials and Surface Technology, Kiel University of Applied Sciences, Grenzstr. 3, 24149 Kiel (Germany); Es-Souni, Mar.; Brandies, H.F. [Faculty of Dentistry, Christian-Albrecht University, Kiel (Germany)

    2008-02-15

    Thin films of TiO{sub 2}-Pt nanocomposites containing 4 at% Pt have been processed via spin-coating. Film characterization involved XRD, Raman as well as XPS and scanning surface potential microscopy (SSPM). After annealing at 500 C the thin films consisted of nanocrystalline anatase and a few nm Pt nanoclusters. Annealing at 600 C resulted in the formation of a high volume fraction of rutile, {proportional_to}70%, and a coarsening of the microstructure, including Pt nanoparticles which attained a mean particle size of up to 11 nm. These results contrasted with those of pure TiO{sub 2} films obtained at 600 C which showed only a limited amount of rutile formation, namely 9%. Raman spectra of Pt-containing samples exhibited a fluorescence emission, as background to the Raman features, which was attributed to photoinduced luminescence from Pt nanoparticles supported by their surface plasmon resonance. Emission intensity being much higher in 600 C film indicated a difference between the two films in terms of the (Pt) particle size and crystallinity, in agreement with the XRD results. XPS investigations revealed different oxidation states of Pt at the surface and in the film interior. The spectra suggested a slight oxidation of Pt at the surface while mainly metallic Pt was revealed in the film interior. The morphology and distribution of the Pt nanoparticles in the films annealed at 600 C were investigated using SSPM. Discrete Pt nanoparticles, mainly distributed in the vicinity of TiO{sub 2} grain boundaries were revealed. Nanocomposite film formation, Pt distribution and morphology are explained in terms of the limited solubility of Pt in the TiO{sub 2} lattice and its higher surface energy in comparison to that of TiO{sub 2}. Both effects are believed to lead to the formation of Pt nanoparticles at the (anatase or rutile) grain boundaries. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Nanoparticles of Pt and Ag supported in meso porous SiO2: characterization and catalytic applications

    International Nuclear Information System (INIS)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G.; Arenas A, J.

    2004-01-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO 2 hey have been studied through reduction reactions of N 2 O with H 2 which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO 2 of great surface area (1100 m 2 /gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N 2 O depending on the size and dispersion of the metallic phases. (Author)

  11. Deficiency of Standard Effective-Medium Approximation for Ellipsometry of Layers of Nanoparticles

    Directory of Open Access Journals (Sweden)

    E. G. Bortchagovsky

    2015-01-01

    Full Text Available Correct description of optical properties of layers of disordered interacting nanoparticles is the problem. Contrary to volumes of nanocomposites, when standard models of effective-medium approximations (EMA work well, two-dimensional case of layers has intrinsic anisotropy, which influences interparticle interactions. The deficiency of standard Maxwell-Garnett model in the application to the ellipsometry of layers of gold nanoparticles is demonstrated. It demands the modification of EMA models and one way of this is considered in this paper. Contrary to existing 2D models with phenomenological parameters, the proposed Green function approach uses the same number of parameters as standard 3D EMA models for explicit calculations of effective parameters of layers of disordered nanoparticles.

  12. Biofunctionalized ferromagnetic CoPt{sub 3}/polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Martins, M A [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Neves, M C [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Esteves, A C C [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Girginova, P I [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Guiomar, A J [Department of Biochemistry and CNC, University of Coimbra, 3001-401 Coimbra (Portugal); Amaral, V S [Department of Physics, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Trindade, T [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal)

    2007-05-30

    Magnetic latexes were prepared by the encapsulation of organically capped CoPt{sub 3} nanoparticles via miniemulsion in situ radical polymerization of tert-butyl acrylate (tBA). This is the first example of a CoPt{sub 3} based polymer nanocomposite showing ferromagnetic behaviour at room temperature. Each nanocomposite particle contains a magnetic core composed of CoPt{sub 3} nanoparticles (d{approx}7 nm, a{sub 0} = 3.848 A) encapsulated by poly(t-butyl acrylate). The CoPt{sub 3}/PtBA latexes contain polyester groups that can be readily hydrolysed, rendering the surface with carboxylic functionalities and hence allowing bioconjugation. Complementary to such surface modification experiments, we report that bovine IgG antibodies can bind to the magnetic latexes, and the potential of the nanocomposites for in vitro specific bioapplications is discussed.

  13. Facile synthesis of porous Pt botryoidal nanowires and their electrochemical properties

    International Nuclear Information System (INIS)

    Huang, Zhongyuan; Zhou, Haihui; Chen, Zhongxue; Zeng, Fanyan; Chen, Liang; Luo, Wucheng; Kuang, Yafei

    2014-01-01

    Highlights: • Porous Pt nanowires were synthesized by combination of soft and hard templets. • Te nanowires were used as the hard templet and reductant. • The Pt nanowires are composed of many small Pt nanoparticles and pores. • The Pt nanowires have very good electrochemical activity and stability. - Abstract: Long and porous Pt botryoidal nanowires (Pt BNWs) were facilely synthesized by combination of soft and hard templates accompanying chemical reduction of ascorbic acid and replacement of Te nanowires. This bis-template and bis-reductant method is proved to be an effective way to prepare nanowires with special structure. The scanning electron microscopy and transmission electron microscopy images show the as-prepared product is botryoidal nanowires with diameter of 20–30 nm and length of several micrometers. High resolution transmission electron microscopy shows the Pt botryoidal nanowires are composed of many small Pt nanoparticles (about 3 nm in diameter), which is just like that many grapes grow on the branch. These small nanoparticles make Pt nanowires have botryoidal and porous structure. Moreover, the diameter of Pt BNWs can be adjusted by changing the dosage of Pt precursor, polyvinylpyrrolidone and L-ascorbic acid. The electrocatalytic performance of Pt botryoidal nanowires is studied, which shows that the as-prepared Pt botryoidal nanowires have not only high activity but also good stability for oxygen reduction reaction

  14. Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles

    International Nuclear Information System (INIS)

    Mankidy, Bijith D; Joseph, Babu; Gupta, Vinay K

    2013-01-01

    Converting carbon dioxide (CO 2 ) to hydrocarbons that can be used as fuels is beneficial from both environmental and economic points of view. In this study, nanoparticles are designed to enhance the photoreduction of CO 2 on a titanium dioxide (TiO 2 ) catalyst. An increase in catalytic activity is reported when silver (Ag), platinum (Pt) or bimetallic Ag–Pt and core–shell Ag@silica (SiO 2 ) nanoparticles are used with the TiO 2 semiconductor catalyst. Nanoparticles with different elemental composition or geometrical structure facilitate successive photo-excitation steps—generation, transport, storage and interfacial transfer of electrons and holes. Results show that while the addition of either type of nanoparticles augments product formation rates, bimetallic co-catalysts improve product selectivity. When both bimetallic co-catalysts and Ag@SiO 2 nanoparticles are used in combination, product yields are enhanced more than seven fold in comparison to native TiO 2 and high selectivity for methane (CH 4 ) is observed. When the bimetallic Ag–Pt co-catalysts are tuned, a selectivity of CH 4 of approximately 80%, as compared to 20% with only TiO 2 , can be achieved. (paper)

  15. Pt{sub 1-x}Co{sub x} nanoparticles as cathode catalyst for proton exchange membrane fuel cells with enhanced catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huimin; Wexler, David; Liu Huakun [Institute for Superconducting and Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Savadogo, O. [Materials Engineering Department, Ecole Polytechique de Montreal, Montreal, QC H3C3A7 (Canada); Ahn, Jungho [Department of Materials Engineering, Andong National University, Andong (Korea, Republic of); Wang Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [Department of Chemistry and Forensic Science, University of Technology, Sydney, NSW 2007 (Australia)

    2010-11-01

    Nanosize carbon-supported Pt{sub 1-x}Co{sub x} (x = 0.2, 0.3, and 0.45) electrocatalysts were prepared by a chemical reduction method using sodium borohydride (NaBH{sub 4}) as the reduction agent. Transmission electron microscopy examination showed uniform dispersion of Pt{sub 1-x}Co{sub x} alloy catalysts on carbon matrix, with the particle size less than 10 nm. The electrochemical characteristics of Pt{sub 1-x}Co{sub x} alloy catalysts were studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometric testing. The as-prepared Pt{sub 1-x}Co{sub x} alloy nanoparticles could be promising cathode catalysts for oxygen reduction in proton exchange membrane fuel cells with the feature of much reduced cost, but significantly increased catalytic activity.

  16. Magnetic structure of a nanoparticle in mean-field approximation

    International Nuclear Information System (INIS)

    Usov, N.A.; Gudoshnikov, S.A.

    2005-01-01

    Quantum mechanical Hartree-Fock approximation is used to calculate a magnetic state of a nanoparticle. The cases of ferromagnetic (FM), antiferromagnetic (AFM) and composite particles having an FM core surrounded by an AFM shell are considered in a unified manner. It is shown that effective interaction at the boundary between FM and AFM areas rotates FM and AFM spins perpendicular to each other. The coercive force of a composite particle increases as a function of the AFM shell thickness

  17. Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au–Pt nanoparticles suspended in ethanol

    International Nuclear Information System (INIS)

    Fernández-Valdés, D.; Torres-Torres, C.; Martínez-González, C. L.; Trejo-Valdez, M.; Hernández-Gómez, L. H.; Torres-Martínez, R.

    2016-01-01

    The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au–Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol–gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV–Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

  18. Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au–Pt nanoparticles suspended in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Valdés, D.; Torres-Torres, C., E-mail: ctorrest@ipn.mx, E-mail: crstorres@yahoo.com.mx; Martínez-González, C. L. [Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco (Mexico); Trejo-Valdez, M. [Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas (Mexico); Hernández-Gómez, L. H. [Instituto Politécnico Nacional, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco (Mexico); Torres-Martínez, R. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada Unidad Querétaro (Mexico)

    2016-07-15

    The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au–Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol–gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV–Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

  19. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Luhana, Charles; Bo Xiangjie; Ju Jian; Guo Liping, E-mail: guolp078@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China)

    2012-10-15

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H{sub 2}O{sub 2} at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H{sub 2}O{sub 2}. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 {mu}A mM{sup -1}), low detection limit (1.8 {mu}M), fast response time <3 s, and wide linear range (0.04-8.62 mM). The apparent Michaelis-Menten constant (K{sub m}) and the maximum current density (i{sub max}) values for the biosensor were 10.94 mM and 887 {mu}A cm{sup -2} respectively. Furthermore, this biosensor showed an acceptable reproducibility and high stability. The interfering signals from ascorbic acid and uric acid at concentration levels normally found in human blood were not much compared with the response to glucose. Blood serum samples were also tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  20. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Rong; Shao, Yuyan; Wang, Donghai; Engelhard, Mark H.; Kwak, Ja Hun; Wang, Jun; Viswanathan, Vilayanur V.; Wang, Chongmin; Lin, Yuehe; Wang, Yong; Liu, Jun [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Aksay, Ilhan A. [Department of Chemical Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-05-15

    Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with the commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets. (author)

  1. Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, V., E-mail: vvjimeno@fis.ucm.es [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Martinez, A.; Recio, J. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Hernando, A.; Crespo, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Dpto. de Fisica de Materiales, UCM, 28040 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Fe and Pt powders in the presence of surfactants don't alloyed by HEBM technique. Black-Right-Pointing-Pointer FePt alloys obtained by dry milling exhibit particle sizes of around 10 {mu}m. Black-Right-Pointing-Pointer FePt alloys obtained by dry milling exhibit soft magnetic behavior. Black-Right-Pointing-Pointer A thermal treatment induces a phase transformation from FCC to FCT. - Abstract: FePt nanoparticles were prepared by high energy ball milling (HEBM) in two different ways. In the first one, elemental powders were mixed and milled whereas in the second one the milling was performed in the presence of oleyl amine and oleic acid as surfactants and hexane as a solvent. X-ray diffraction shows that when the milling is performed in dry conditions, Fe and Pt are alloyed after 5 h, whereas in the wet milling procedure alloying does not take place. In the first case, the diffraction pattern corresponds to the disordered FCC phase. This behavior is also corroborated by the evolution of the magnetic characteristics. In the case of the alloy obtained in dry conditions, the powder was heat treated in order to induce the transformation to the ordered phase. Coercivities of 2.5 kOe are obtained after 650 Degree-Sign C for 2 h.

  2. A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis.

    Science.gov (United States)

    Bele, M; Jovanovič, P; Pavlišič, A; Jozinović, B; Zorko, M; Rečnik, A; Chernyshova, E; Hočevar, S; Hodnik, N; Gaberšček, M

    2014-11-07

    We present a novel, scaled-up sol-gel synthesis which enables one to produce 20 g batches of highly active and stable carbon supported PtCu3 nanoparticles as cathode materials for low temperature fuel cell application. We confirm the presence of an ordered intermetallic phase underneath a multilayered Pt-skin together with firm embedment of nanoparticles in the carbon matrix.

  3. Exotic chemical arrangements and magnetic moment evolution of NixPt1-x (0 ≤x≤ 1) nanoparticles

    Science.gov (United States)

    Mokkath, Junais Habeeb

    2018-06-01

    We present a systematic study on the chemical ordering pattern and the magnetic properties of NixPt1-x (0 ⩽ x≤ 1) nanoparticles having a size of 1.5 nm by means of an approach which combines basin hopping structure sampling technique and spin-polarized density functional theory. We found exotic chemical ordering patterns for different Ni/Pt ratios. In addition, we observed a sharp phase transition from non-magnetic to ferromagnetic behaviour around x = 67%. We show that this is a direct consequence of a unique atomic arrangement on the surface in which Ni atoms club together causing the strong Ni-Ni magnetic interaction. The observed magnetic properties are correlated to the electronic density of states.

  4. Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Chao-Kuang Cheng

    2017-10-01

    Full Text Available This paper reports architecturally designed nanocomposites synthesized by hybridizing the two-dimensional (2D nanostructure of molybdenum disulfide (MoS2 nanosheet (NS-supported Pt nanoparticles (PtNPs as counter electrodes (CEs for dye-sensitized solar cells (DSSCs. MoS2 NSs were prepared using the hydrothermal method; PtNPs were subsequently reduced on the MoS2 NSs via the water–ethylene method to form PtNPs/MoS2 NSs hybrids. The nanostructures and chemical states of the PtNPs/MoS2 NSs hybrids were characterized by high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Detailed electrochemical characterizations by electrochemical impedance spectroscopy, cyclic voltammetry, and Tafel-polarization measurement demonstrated that the PtNPs/MoS2 NSs exhibited excellent electrocatalytic activities, afforded a higher charge transfer rate, a decreased charge transfer resistance, and an improved exchange current density. The PtNPs/MoS2 NSs hybrids not only provided the exposed layers of 2D MoS2 NSs with a great deal of catalytically active sites, but also offered PtNPs anchored on the MoS2 NSs enhanced I3− reduction. Accordingly, the DSSCs that incorporated PtNPs/MoS2 NSs CE exhibited an outstanding photovoltaic conversion efficiency (PCE of 7.52%, which was 8.7% higher than that of a device with conventional thermally-deposited platinum CE (PCE = 6.92%.

  5. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  6. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  7. Preparation of Stable Pt-Clay Nanocatalysts for Self-humidifying Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing

    and complexity of the whole system. Therefore, we have designed a novel Pt-clay nanocatalyst and developed a Pt-clay/Nafion nanocomposite membrane to significantly enhanced proton conductivity without any external humidification. In this study, monolayer of Pt nanoparticles of diameters of 2-3 nm with a high...... crystallinity were successfully anchored onto exfoliated nanoclay surfaces using a novel chemical vapor deposition process. Chemical bonding of Pt to the oxygen on the clay surface ensured the stability of the Pt nanoparticles, and hence, no leaching of Pt particles was observed after a prolonged...

  8. Self-suspended permanent magnetic FePt ferrofluids

    KAUST Repository

    Dallas, Panagiotis; Kelarakis, Antonios; Sahore, Ritu; DiSalvo, Francis J.; Livi, Sebastien; Giannelis, Emmanuel P.

    2013-01-01

    on the surface of L10 FePt nanoparticles. In contrast, all types of ferrofluids previously reported employ either volatile solvents as the suspending media or superparamagnetic iron oxide nanoparticles (that lacks permanent magnetization) as the inorganic

  9. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    Science.gov (United States)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  10. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    International Nuclear Information System (INIS)

    Chen, Shu; Lee, Stephen L.; André, Pascal

    2016-01-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  11. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu; Lee, Stephen L. [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); André, Pascal, E-mail: pjpandre@riken.jp [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); RIKEN, Wako 351-0198 (Japan); Department of Physics, CNRS-Ewha International Research Center (CERC), Ewha W. University, Seoul 120-750 (Korea, Republic of)

    2016-11-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  12. From Single Atoms to Nanoparticles : Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO2 Nanopowder

    NARCIS (Netherlands)

    Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A.I.; Kovalgin, Alexey Y.; Kooyman, Patricia; Kreutzer, Michiel T.; van Ommen, Jan Rudolf

    2018-01-01

    A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O2 as the coreactant

  13. Synthesis and characterization of diverse Pt nanostructures in Nafion.

    Science.gov (United States)

    Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D

    2014-02-25

    With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

  14. All-proportional solid-solution Rh–Pd–Pt alloy nanoparticles by femtosecond laser irradiation of aqueous solution with surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Md. Samiul Islam, E-mail: samiul-phy@ru.ac.bd; Nakamura, Takahiro; Sato, Shunichi [Tohoku University, Institute of Multidisciplinary Research for Advanced Materials (Japan)

    2015-06-15

    Formation of Rh–Pd–Pt solid-solution alloy nanoparticles (NPs) by femtosecond laser irradiation of aqueous solution in the presence of polyvinylpyrrolidone (PVP) or citrate as a stabilizer was studied. It was found that the addition of surfactant (PVP or citrate) significantly contributed to reduce the mean size of the particles to 3 nm for PVP and 10 nm for citrate, which was much smaller than that of the particles fabricated without any surfactants (20 nm), and improved the dispersion state as well as the colloidal stability. The solid-solution formation of the Rh–Pd–Pt alloy NPs was confirmed by the XRD results that the diffraction pattern was a single peak, which was found between the positions corresponding to each pure Rh, Pd, and Pt NPs. Moreover, all the elements were homogeneously distributed in every particle by STEM-EDS elemental mapping, strongly indicating the formation of homogeneous solid-solution alloy. Although the Rh–Pd–Pt alloy NPs fabricated with PVP was found to be Pt rich by EDS observation, the composition of NPs fabricated with citrate almost exactly preserved the feeding ratio of ions in the mixed solution. To our best knowledge, these results demonstrated for the first time, the formation of all-proportional solid-solution Rh–Pd–Pt alloy NPs with well size control.

  15. Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2015-09-01

    Full Text Available Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt nanoparticles were deposited on oxidized graphene sheets (cG. The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%. The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA was 88 m2/g (Pt/cG, much higher than that of Pt/C (46 m2/g. The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33% > Pt/cG (7%. The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C.

  16. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation.

    Science.gov (United States)

    Liu, B; Chen, J H; Zhong, X X; Cui, K Z; Zhou, H H; Kuang, Y F

    2007-03-01

    Due to their high stability in general acidic solutions, SiO(2) nanoparticles were selected as the second catalyst for ethanol oxidation in sulfuric acid aqueous solution. Pt-SiO(2) nanocatalysts were prepared in this paper. The micrography and elemental composition of Pt-SiO(2) nanoparticles were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The electrocatalytic properties of Pt-SiO(2) nanocatalysts for ethanol oxidation were investigated by cyclic voltammetry. Under the same Pt loading mass and experimental conditions for ethanol oxidation, Pt-SiO(2) nanocatalysts show higher activity than PtRu/C (E-Tek), Pt/C (E-Tek), and Pt catalysts. Additionally, Pt-SiO(2) nanocatalysts possess good anti-poisoning ability. The results indicate that Pt-SiO(2) nanocatalysts may have good potential applications in direct ethanol fuel cells.

  17. Core-shell structural nanodiamond@TiN supported Pt nanoparticles as a highly efficient and stable electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Zhao, Yuling; Wang, Yanhui; Dong, Liang; Zhang, Yan; Huang, Junjie; Zang, Jianbing; Lu, Jing; Xu, Xipeng

    2014-01-01

    Highlights: • Core-shell structural nanodiamond@TiN was used as a novel support for Pt catalysts. • The ND@TiN support possessed a high electrochemical stability than carbon black. • The Pt/ND@TiN showed a higher catalytic activity for MOR and ORR than the Pt/C. • The Pt/ND@TiN demonstrated a much better durability compared with the Pt/C. - Abstract: A novel core-shell support material was designed with nanodiamond (ND) as core possessed excellent stability and TiN as shell improved the conductivity of support. The nano-TiN shell was decorated on the surface of ND by annealing TiO 2 in nitrogen atmosphere, and the obtained ND@TiN was employed to support Pt nanoparticles (NPs). The ND@TiN support and Pt/ND@TiN electrocatalyst were characterized by X-ray diffraction and transmission electron microscopy. ND particles were coated uniformly by the TiN layer and Pt NPs with a mean size of 4.2 nm were highly dispersed on the surface of ND@TiN. The electrochemical results confirmed that the ND@TiN support possessed a much more stability than the carbon black and exhibited a bigger background current density than the ND. The Pt/ND@TiN catalyst showed higher catalytic activity and better stability in methanol oxidation and oxygen reduction reactions compared with the Pt/C and Pt/ND

  18. Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction.

    Science.gov (United States)

    Rizo, Rubén; Arán-Ais, Rosa M; Padgett, Elliot; Muller, David A; Lázaro, Ma Jesús; Solla-Gullón, José; Feliu, Juan M; Pastor, Elena; Abruña, Héctor D

    2018-03-14

    Direct ethanol fuel cells are one of the most promising electrochemical energy conversion devices for portable, mobile and stationary power applications. However, more efficient and stable and less expensive electrocatalysts are still required. Interestingly, the electrochemical performance of the electrocatalysts toward the ethanol oxidation reaction can be remarkably enhanced by exploiting the benefits of structural and compositional sensitivity and control. Here, we describe the synthesis, characterization, and electrochemical behavior of cubic Pt-Sn nanoparticles. The electrochemical activity of the cubic Pt-Sn nanoparticles was found to be about three times higher than that obtained with unshaped Pt-Sn nanoparticles and six times higher than that of Pt nanocubes. In addition, stability tests indicated the electrocatalyst preserves its morphology and remains well-dispersed on the carbon support after 5000 potential cycles, while a cubic (pure) Pt catalyst exhibited severe agglomeration of the nanoparticles after a similar stability testing protocol. A detailed analysis of the elemental distribution in the nanoparticles by STEM-EELS indicated that Sn dissolves from the outer part of the shell after potential cycling, forming a ∼0.5 nm Pt skin. This particular atomic composition profile having a Pt-rich core, a Sn-rich subsurface layer, and a Pt-skin surface structure is responsible for the high activity and stability.

  19. Synergistic Effect of Nitrogen Doping and MWCNT Intercalation for the Graphene Hybrid Support for Pt Nanoparticles with Exemplary Oxygen Reduction Reaction Performance

    Directory of Open Access Journals (Sweden)

    Kang Fu

    2018-04-01

    Full Text Available The potential of graphene–multi-walled-carbon nanotube (G-M hybrids prepared by the one-pot modified Hummers method followed by thermal annealing has been demonstrated by employing one as an electrocatalyst support for oxygen reduction reaction (ORR. N doping effectively modified the electronic structure of the G-M hybrid support, which was beneficial for the uniform distribution of Pt nanoparticles, and ORR activities were further improved. The newly prepared Pt/N-G-M catalyst demonstrated higher electrochemical activity than Pt/G-M and Pt/G catalysts. Even compared with commercial 20 wt % Pt/C (JM20, Pt/N-G-M delivered a better half-wave potential and mass activity. In terms of the durability test, Pt/N-G-M maintained 72.7% of its initial electrochemical active surface area (ECSA after 2000 repeated potential cycles between 0 and 1.2 V in acidic media in relation to the 44.4% retention for JM20. Moreover, the half-wave potential for Pt/N-G-M showed only a minimal change, significantly superior to the 139 mV of loss for JM20. It is expected that Pt/N-G-M can be the potential candidate as a highly efficient and durable catalyst if utilized in proton exchange membrane fuel cells (PEMFCs.

  20. Electrocatalytic activity of Pt and PtCo deposited on Ebonex by BH reduction

    International Nuclear Information System (INIS)

    Slavcheva, E.; Nikolova, V.; Petkova, T.; Lefterova, E.; Dragieva, I.; Vitanov, T.; Budevski, E.

    2005-01-01

    The method of borohydride reduction (BH) has been applied to synthesize Pt and PtCo nanoparticles supported on Magneli phase titanium oxides, using Pt and Co ethylenediamine complexes as metal precursors. The phase composition of the synthesized catalysts, their morphology and surface structure were studied by physical methods for bulk and surface analysis, such as electron microprobe analysis (EMPA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET technique. The catalytic activity towards oxygen evolution reaction in alkaline aqueous solution was investigated using the common electrochemical techniques. It was found that PtCo/Ebonex facilitates essentially the oxygen evolution which starts at lower overpotentials and proceeds with higher rate compared to both the supported Pt and unsupported PtCo catalysts. The observed effect is prescribed to metal-metal and metal-support interactions. The Ebonex possesses a good electrical conductivity and corrosion resistance at high anodic potentials and despite its low surface area is considered as a potential catalyst carrier for the oxygen evolution reaction

  1. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation

    International Nuclear Information System (INIS)

    Jiang Luhua; Sun Gongquan; Sun Shiguo; Liu Jianguo; Tang Shuihua; Li Huanqiao; Zhou Bing; Xin Qin

    2005-01-01

    Carbon supported PtSn alloy and PtSnO x particles with nominal Pt:Sn ratios of 3:1 were prepared by a modified polyol method. High resolution transmission electron microscopy (HRTEM) and X-ray microchemical analysis were used to characterize the composition, size, distribution, and morphology of PtSn particles. The particles are predominantly single nanocrystals with diameters in the order of 2.0-3.0 nm. According to the XRD results, the lattice constant of Pt in the PtSn alloy is dilated due to Sn atoms penetrating into the Pt crystalline lattice. While for PtSnO x nanoparticles, the lattice constant of Pt only changed a little. HRTEM micrograph of PtSnO x clearly shows that the change of the spacing of Pt (1 1 1) plane is neglectable, meanwhile, SnO 2 nanoparticles, characterized with the nominal 0.264 nm spacing of SnO 2 (1 0 1) plane, were found in the vicinity of Pt particles. In contrast, the HRTEM micrograph of PtSn alloy shows that the spacing of Pt (1 1 1) plane extends to 0.234 nm from the original 0.226 nm. High resolution energy dispersive X-ray spectroscopy (HR-EDS) analyses show that all investigated particles in the two PtSn catalysts represent uniform Pt/Sn compositions very close to the nominal one. Cyclic voltammograms (CV) in sulfuric acid show that the hydrogen ad/desorption was inhibited on the surface of PtSn alloy compared to that on the surface of the PtSnO x catalyst. PtSnO x catalyst showed higher catalytic activity for ethanol electro-oxidation than PtSn alloy from the results of chronoamperometry (CA) analysis and the performance of direct ethanol fuel cells (DEFCs). It is deduced that the unchanged lattice parameter of Pt in the PtSnO x catalyst is favorable to ethanol adsorption and meanwhile, tin oxide in the vicinity of Pt nanoparticles could offer oxygen species conveniently to remove the CO-like species of ethanolic residues to free Pt active sites

  2. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Rajini P., E-mail: raji.anna@gmail.com; Preethi, L.K.; Gupta, Bhavana; Mathews, Tom, E-mail: tom@igcar.gov.in; Dash, S.; Tyagi, A.K.

    2015-10-15

    Highlights: • Synthesis of Pt–RGO nanohybrids of very high electrochemically active surface area. • Electrocatalytic activity-cum-stability: ∼10 times that of commercial Pt-C catalyst. • TEM confirms narrow size distribution and excellent dispersion of Pt nanoparticles. • SAED and XRD indicate (1 1 1) orientation of Pt nanoparticles. • Methanol oxidation EIS reveal decrease in charge transfer resistance with potential - Abstract: High quality thermally exfoliated reduced graphene oxide (RGO) nanosheets decorated with platinum nanocrystals have been synthesized using a simple environmentally benign process. The electrocatalytic behaviour of the Pt–RGO nanohybrid for methanol oxidation was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. High resolution transmission electron microscopy shows uniform dispersion of Pt nanoparticles of ∼2–4 nm size. X-ray diffraction and selected area diffraction studies reveal (1 1 1) orientation of the platinum nanoparticles. The cyclic voltammetry and chronoamperometry results indicate higher catalytic activity and stability for Pt–RGO compared to commercial Pt-C. The electrochemical active surface area of Pt–RGO (52.16 m{sup 2}/g) is found to be 1.5 times that of commercial Pt-C. Impedance spectroscopy shows different impedance behaviour at different potential regions, indicating change in methanol oxidation reaction mechanism with potential. The reversal of impedance pattern to the second quadrant, at potentials higher than ∼0.40 V, indicates change in the rate determining reaction.

  3. Synthesis and characterization of the Pt/SiO2 nanocomposite by the sol-gel method

    Directory of Open Access Journals (Sweden)

    A. Salabat

    2011-01-01

    Full Text Available The silica supported platinum nanoparticles was synthesized by using the sol-gel method. The possibility of using diamminedinitro platinum (II as Pt precursor and effect of metal precursor concentration on the final Pt nanoparticle size was investigated. A stable silica sol was prepared via hydrolysis of tetraethyl orthosilicate (TEOS as a metal alcoxide and condensation reaction. Subsequently, diamminedinitro platinum (II was added to sol to form the Pt/silica sol. After drying and calcination of the sol, the Pt/SiO2 nanocpmposite has been obtained. Crystallographic information and crystalline size of the synthesized Pt/SiO2 were determined by X-ray diffraction (XRD method. Morphology of the nanoparticles and hydrogen-bonding interaction between silanol groups and amine ligands were characterized by SEM and Fourier transform infrared (FTIR spectra, respectively. Transmission Electron Microscopy (TEM was employed in evaluating the distribution and size of the platinum nanoparticles in the silica.

  4. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    Science.gov (United States)

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  5. High Sensitive and Selective Sensing of Hydrogen Peroxide Released from Pheochromocytoma Cells Based on Pt-Au Bimetallic Nanoparticles Electrodeposited on Reduced Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Guangxia Yu

    2015-01-01

    Full Text Available In this study, a high sensitive and selective hydrogen peroxide (H2O2 sensor was successfully constructed with Pt-Au bimetallic nanoparticles (Pt-Au NPs/reduced graphene sheets (rGSs hybrid films. Various molar ratios of Au to Pt and different electrodeposition conditions were evaluated to control the morphology and electrocatalytic activity of the Pt-Au bimetallic nanoparticles. Upon optimal conditions, wide linear ranges from 1 µM to 1.78 mM and 1.78 mM to 16.8 mM were obtained, with a detection limit as low as 0.31 µM. Besides, due to the synergetic effects of the bimetallic NPs and rGSs, the amperometric H2O2 sensor could operate at a low potential of 0 V. Under this potential, not only common anodic interferences induced from ascorbic acid, uric acid and dopamine, but also the cathodic interference induced from endogenous O2 could be effectively avoided. Furthermore, with rat pheochromocytoma cells (PC 12 as model, the proposed sensor had been successfully used in the detection of H2O2 released from the cancer cells. This method with wide linear ranges and excellent selectivity can provide a promising alternative for H2O2 monitoring in vivo in the fields of physiology, pathology and diagnosis.

  6. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Júlio César M. [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Piasentin, Ricardo M.; Spinacé, Estevam V.; Neto, Almir O. [Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2016-09-01

    Platinum nanoparticles supported on carbon (Pt/C) and carbon with addition of ITO (Pt/C-ITO (In{sub 2}O{sub 3}){sub 9}·(SnO{sub 2}){sub 1}) and ATO (Pt/C-ATO (SnO{sub 2}){sub 9}·(Sb{sub 2}O{sub 5}){sub 1}) oxides were prepared by sodium borohydride reduction method and used for ammonia electro-oxidation reaction (AmER) in alkaline media. The effect of the supports on the catalytic activity of Pt for AmER was investigated using electrochemical (cyclic voltammetry and chronoamperometry) and direct ammonia fuel cell (DAFC) experiments. X-ray diffraction (XRD) showed Pt peaks attributed to the face-centered cubic (fcc) structure, as well as peaks characteristic of In{sub 2}O{sub 3} in ITO support and cassiterite SnO{sub 2} phase of ATO support. According to transmission electron micrographs the mean particles sizes of Pt over carbon were 5.4, 4.9 and 4.7 nm for Pt/C, Pt/C-ATO and Pt/C-ITO, respectively. Pt/C-ITO catalysts showed the highest catalytic activity for ammonia electrooxidation in both electrochemical and fuel cell experiments. We attributed this to the presence of In{sub 2}O{sub 3} phase in ITO, which provides oxygenated or hydroxide species at lower potentials resulting in the removal of poisonous intermediate, i.e., atomic nitrogen (N{sub ads}) and promotion of ammonia electro-oxidation. - Highlights: • Oxide support effect on the catalytic activity of Pt towards ammonia electro-oxidation. • Direct ammonia fuel cell (DAFC) performance using Pt over different supports as anode. • Pt/C-ITO shows better catalytic activity for ammonia oxidation than Pt/C and Pt/C-ATO.

  7. Sintering of Pt nanoparticles via volatile PtO_2: Simulation and comparison with experiments

    International Nuclear Information System (INIS)

    Plessow, Philipp N.; Abild-Pedersen, Frank

    2016-01-01

    It is a longstanding question whether sintering of platinum under oxidizing conditions is mediated by surface migration of Pt species or through the gas phase, by PtO_2(g). Clearly, a rational approach to avoid sintering requires understanding the underlying mechanism. A basic theory for the simulation of ripening through the vapor phase has been derived by Wynblatt and Gjostein. Recent modeling efforts, however, have focused entirely on surface-mediated ripening. In this work, we explicitly model ripening through PtO_2(g) and study how oxygen pressure, temperature, and shape of the particle size distribution affect sintering. On the basis of the available data on α-quartz, adsorption of monomeric Pt species on the support is extremely weak and has therefore not been explicitly simulated, while this may be important for more strongly interacting supports. Our simulations clearly show that ripening through the gas phase is predicted to be relevant. Assuming clean Pt particles, sintering is generally overestimated. This can be remedied by explicitly including oxygen coverage effects that lower both surface free energies and the sticking coefficient of PtO_2(g). Additionally, mass-transport limitations in the gas phase may play a role. Using a parameterization that accounts for these effects, we can quantitatively reproduce a number of experiments from the literature, including pressure and temperature dependence. Lastly, this substantiates the hypothesis of ripening via PtO_2(g) as an alternative to surface-mediated ripening.

  8. Preparation and characterization of Pt/C and Pt-Ru/C electrocatalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore)

    2005-09-26

    Nano-sized Pt and Pt-Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt-Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt-Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt-Ru catalysts (except Pt{sub 23}-Ru{sub 77}) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt{sub 23}-Ru{sub 77} alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt{sub 52}-Ru{sub 48}/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt-Ru catalysts. (author)

  9. Ni-Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature.

    Science.gov (United States)

    Wen, Lan; Du, Xiaoqiong; Su, Jun; Luo, Wei; Cai, Ping; Cheng, Gongzhen

    2015-04-07

    Well-dispersed bimetallic Ni-Pt nanoparticles (NPs) with different compositions have been successfully grown on the MIL-96 by a simple liquid impregnation method using NaBH4 as the reducing agent. Powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption-desorption, and inductively coupled plasma-atomic emission spectroscopy measurements were employed to characterize the NiPt/MIL-96. Catalytic activity of NiPt/MIL-96 catalysts was tested in the hydrogen generation from the aqueous alkaline solution of hydrazine at room temperature. These catalysts are composition dependent on their catalytic activity, while Ni64Pt36/MIL-96 exhibits the highest catalytic activity among all the catalysts tested, with a turnover frequency value of 114.3 h(-1) and 100% hydrogen selectivity. This excellent catalytic performance might be due to the synergistic effect of the MIL-96 support and NiPt NPs, while NiPt NPs supported on other conventional supports, such as SiO2, carbon black, γ-Al2O3, poly(N-vinyl-2-pyrrolidone) (PVP), and the physical mixture of NiPt and MIL-96, all of them exhibit inferior catalytic activity compared to that of NiPt/MIL-96.

  10. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    International Nuclear Information System (INIS)

    Qi, Zhiyuan

    2017-01-01

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here in this paper we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO 2 ) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO 2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a “non-CO” pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.

  11. Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of stable C-H bonds.

    Science.gov (United States)

    Bhowmick, Ranadeep; Rajasekaran, Srivats; Friebel, Daniel; Beasley, Cara; Jiao, Liying; Ogasawara, Hirohito; Dai, Hongjie; Clemens, Bruce; Nilsson, Anders

    2011-04-13

    Using in situ electrical conductivity and ex situ X-ray photoelectron spectroscopy (XPS) measurements, we have examined how the hydrogen uptake of single-walled carbon nanotubes (SWNTs) is influenced by the addition of Pt nanoparticles. The conductivity of platinum-sputtered single-walled carbon nanotubes (Pt-SWNTs) during molecular hydrogen exposure decreased more rapidly than that of the corresponding pure SWNTs, which supports a hydrogenation mechanism facilitated by "spillover" of dissociated hydrogen from the Pt nanoparticles. C 1s XPS spectra indicate that the Pt-SWNTs store hydrogen by means of chemisorption, that is, covalent C-H bond formation: molecular hydrogen charging at elevated pressure (8.27 bar) and room temperature yielded Pt-SWNTs with up to 16 ± 1.5 at. % sp(3)-hybridized carbon atoms, which corresponds to a hydrogen-storage capacity of 1.2 wt % (excluding the weight of Pt nanoparticles). Pt-SWNTs prepared by the Langmuir-Blodgett (LB) technique exhibited the highest Pt/SWNT ratio and also the best hydrogen uptake. © 2011 American Chemical Society

  12. Reproducible fabrication of stable small nano Pt with high activity for sensor applications

    International Nuclear Information System (INIS)

    Ye Pingping; Guo Xiaoyu; Liu Guiting; Chen Huifen; Pan Yuxia; Wen Ying; Yang Haifeng

    2013-01-01

    Pt nanoparticles with an average size of 2–3 nm in diameter were reproducibly synthesized by reduction of H 2 PtCl 6 solution containing inositol hexaphosphate (IP 6 ) as the stabilizing agent. Single crystals with Pt(111) faces of the resulting cubic nanoparticles were revealed by the electron diffraction pattern. The PtNPs–IP 6 nanoparticles were used to modify an electrode as a nonenzymatic sensor for H 2 O 2 detection, exhibiting a fast response and high sensitivity. A low detection limit of 2.0 × 10 −7 M (S/N = 3) with two linear ranges between 2.4 × 10 −7 and 1.3 × 10 −3 M (R 2 = 0.9987) and between 1.3 × 10 −3 and 1.3 × 10 −2 M (R 2 = 0.9980) was achieved. The attractive electrochemical performance of PtNPs–IP 6 enables it to be employed as a promising material for the development of Pt-based analytical systems and other applications. (paper)

  13. Ultrasensitive colorimetric immunoassay for hCG detection based on dual catalysis of Au@Pt core-shell nanoparticle functionalized by horseradish peroxidase

    Science.gov (United States)

    Wang, Weiguo; Zou, Yake; Yan, Jinwu; Liu, Jing; Chen, Huixiong; Li, Shan; Zhang, Lei

    2018-03-01

    In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8 nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8 IU L- 1 with a low limit of detection (LOD) of 0.1 IU L- 1 compared with the LODs of 0.8 IU L- 1 for BA-ELISA and of 2.0 IU L- 1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.

  14. NO{sub 2} gas sensing of flame-made Pt-loaded WO{sub 3} thick films

    Energy Technology Data Exchange (ETDEWEB)

    Samerjai, Thanittha [Nanoscience and Nanotechnology Program, Faculty of Graduate School, Chiang Mai University, Chiang Mai 50200 (Thailand); Tamaekong, Nittaya [Program in Materials Science, Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Liewhiran, Chaikarn [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Phanichphant, Sukon, E-mail: sphanichphant@yahoo.com [Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-06-01

    Unloaded WO{sub 3} and 0.25–1.0 wt% Pt-loaded WO{sub 3} nanoparticles for NO{sub 2} gas detection were synthesized by flame spray pyrolysis (FSP) and characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The BET surface area (SSA{sub BET}) of the nanoparticles was measured by nitrogen adsorption. The NO{sub 2} sensing properties of the sensors based on unloaded and Pt-loaded WO{sub 3} nanoparticles were investigated. The results showed that the gas sensing properties of the Pt-loaded WO{sub 3} sensors were excellent to those of the unloaded one. Especially, 0.25 wt% Pt-loaded WO{sub 3} sensor showed highest response to NO{sub 2} than the others at low operating temperature of 150 °C. - Graphical abstract: The response of 0.25 wt% Pt-loaded WO3 sensor was 637 towards NO{sub 2} concentration of 10 ppm at 150 °C. - Highlights: • Unloaded and Pt-loaded WO{sub 3} nanoparticles for NO{sub 2} gas detection were synthesized by flame spray pyrolysis (FSP). • Gas sensing properties of the Pt-loaded WO{sub 3} sensors were excellent to those of the unloaded one. • 0.25 wt% Pt-loaded WO{sub 3} sensor showed highest response to NO{sub 2} at low operating temperature of 150 °C.

  15. Selective and regular localization of accessible Pt nanoparticles inside the walls of an ordered silica: Application as a highly active and well-defined heterogeneous catalyst for propene and styrene hydrogenation reactions

    KAUST Repository

    Boualleg, Malika; Norsic, Sé bastien; Baudouin, David; Sayah, Reine; Quadrelli, Elsje Alessandra; Basset, Jean-Marie; Candy, Jean Pierre; Dé lichè re, Pierre; Pelzer, Katrin; Veyre, Laurent; Thieuleux, Chloé

    2011-01-01

    We describe here an original methodology related to the "build-the-bottle-around-the-ship" approach yielding a highly ordered silica matrix containing regularly distributed Pt nanoparticles (NPs) located inside the silica walls, Pt@{walls}SiO2. The starting colloidal solution of crystalline Pt nanoparticles was obtained from Pt(dba)2 (dba = dibenzylidene acetone) and 3-chloropropylsilane. The resulting nanoparticles (diameter: 2.0 ± 0.4 nm determined by HRTEM) resulted hydrophilic. The NPs present in the THF colloidal solution were incorporated inside the walls of a highly ordered 2D hexagonal mesoporous silica matrix via sol-gel process using a templating route with tetraethylorthosilicate, TEOS, as the silica source, and block copolymer (EthyleneOxide) 20(PropyleneOxide)70(EthyleneOxide)20 (Pluronic P123) as the structure-directing agent. Low-temperature calcination of the crude material at 593 K led to the final solid Pt@{walls}SiO2. Characterization by IR, HRTEM, BF-STEM and HAADF-STEM, SAXS, WAXS, XRD, XPS, H2 chemisorption, etc. of Pt@{walls}SiO2 confirmed the 2D hexagonal structuration and high mesoporosity (870 m2/g) of the material as well as the presence of stable 2-nm-sized crystalline Pt(0) NPs embedded inside the walls of the silica matrix. The material displayed no tendency to NPs sintering or leaching (Pt loading 0.3 wt.%) during its preparation. Pt@{walls}SiO2 was found to be a stable, selective and highly active hydrogenation catalyst. The catalytic performances in propene hydrogenation were tested under chemical regime conditions in a tubular flow reactor (278 K, propene/H2/He = 20/16/1.09 cm3/min, P tot = 1 bar) and were found superior to those of an homologous solid containing Pt NPs along its pore channels Pt@{pores}SiO2 and to those of a classical industrial catalysts Pt/Al2O3, (TOF = 2.3 s-1 vs. TOF = 0.90 and 0.92 s-1, respectively, calculated per surface platinum atoms). Pt@{walls}SiO2 also catalyzes fast and selective styrene

  16. Selective and regular localization of accessible Pt nanoparticles inside the walls of an ordered silica: Application as a highly active and well-defined heterogeneous catalyst for propene and styrene hydrogenation reactions

    KAUST Repository

    Boualleg, Malika

    2011-12-01

    We describe here an original methodology related to the "build-the-bottle-around-the-ship" approach yielding a highly ordered silica matrix containing regularly distributed Pt nanoparticles (NPs) located inside the silica walls, Pt@{walls}SiO2. The starting colloidal solution of crystalline Pt nanoparticles was obtained from Pt(dba)2 (dba = dibenzylidene acetone) and 3-chloropropylsilane. The resulting nanoparticles (diameter: 2.0 ± 0.4 nm determined by HRTEM) resulted hydrophilic. The NPs present in the THF colloidal solution were incorporated inside the walls of a highly ordered 2D hexagonal mesoporous silica matrix via sol-gel process using a templating route with tetraethylorthosilicate, TEOS, as the silica source, and block copolymer (EthyleneOxide) 20(PropyleneOxide)70(EthyleneOxide)20 (Pluronic P123) as the structure-directing agent. Low-temperature calcination of the crude material at 593 K led to the final solid Pt@{walls}SiO2. Characterization by IR, HRTEM, BF-STEM and HAADF-STEM, SAXS, WAXS, XRD, XPS, H2 chemisorption, etc. of Pt@{walls}SiO2 confirmed the 2D hexagonal structuration and high mesoporosity (870 m2/g) of the material as well as the presence of stable 2-nm-sized crystalline Pt(0) NPs embedded inside the walls of the silica matrix. The material displayed no tendency to NPs sintering or leaching (Pt loading 0.3 wt.%) during its preparation. Pt@{walls}SiO2 was found to be a stable, selective and highly active hydrogenation catalyst. The catalytic performances in propene hydrogenation were tested under chemical regime conditions in a tubular flow reactor (278 K, propene/H2/He = 20/16/1.09 cm3/min, P tot = 1 bar) and were found superior to those of an homologous solid containing Pt NPs along its pore channels Pt@{pores}SiO2 and to those of a classical industrial catalysts Pt/Al2O3, (TOF = 2.3 s-1 vs. TOF = 0.90 and 0.92 s-1, respectively, calculated per surface platinum atoms). Pt@{walls}SiO2 also catalyzes fast and selective styrene

  17. A label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) based on platinum (II)-oligonucleotide coordination induced gold nanoparticles aggregation.

    Science.gov (United States)

    Fan, Daoqing; Zhai, Qingfeng; Zhou, Weijun; Zhu, Xiaoqing; Wang, Erkang; Dong, Shaojun

    2016-11-15

    Herein, a gold nanoparticles (AuNPs) based label-free colorimetric aptasensor for simple, sensitive and selective detection of Pt (II) was constructed for the first time. Four bases (G-G mismatch) mismatched streptavidin aptamer (MSAA) was used to protect AuNPs from salt-induced aggregation and recognize Pt (II) specifically. Only in the presence of Pt (II), coordination occurs between G-G bases and Pt (II), leading to the activation of streptavidin aptamer. Streptavidin coated magnetic beads (MBs) were used as separation agent to separate Pt (II)-coordinated MSAA. The residual less amount of MSAA could not efficiently protect AuNPs anymore and aggregation of AuNPs will produce a colorimetric product. With the addition of Pt (II), a pale purple-to-blue color variation could be observed by the naked eye. A detection limit of 150nM and a linear range from 0.6μM to 12.5μM for Pt (II) could be achieved without any amplification. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Fast Synthesis of Pt Nanocrystals and Pt/Microporous La2O3 Materials Using Acoustic Levitation

    Science.gov (United States)

    Yu, Yinkai; Qu, Shaohua; Zang, Duyang; Wang, Liuding; Wu, Hongjing

    2018-02-01

    Usually, we must use an appropriate support material to keep the metal species stable and finely dispersed as supported metal nanoparticles for industry application. Therefore, the choice of support material is a key factor in determining the dispersion and particle size of the noble metal species. Here, we report the synthesis of a single-atom Pt material in the solution and supported Pt nanoclusters on microporous La2O3 by a one-step acoustic levitation method without any pretreatment/modification of raw oxide. We have strongly contributed to the synthetic methodology of the surface/interfacial heterogeneous catalysts in this study, and this finding could open another door for synthesis of supported metal nanoparticles on porous materials for environmental catalysis.

  19. Preparation and characterization of Pt/C and Pt sbnd Ru/C electrocatalysts for direct ethanol fuel cells

    Science.gov (United States)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming

    Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.

  20. A Highly Stable and Magnetically Recyclable Nanocatalyst System: Mesoporous Silica Spheres Embedded with FeCo/Graphitic Shell Magnetic Nanoparticles and Pt Nanocatalysts.

    Science.gov (United States)

    Kim, Da Jeong; Li, Yan; Kim, Yun Jin; Hur, Nam Hwi; Seo, Won Seok

    2015-12-01

    We have developed a highly stable and magnetically recyclable nanocatalyst system for alkene hydrogenation. The materials are composed of mesoporous silica spheres (MSS) embedded with FeCo/graphitic shell (FeCo/GC) magnetic nanoparticles and Pt nanocatalysts (Pt-FeCo/GC@MSS). The Pt-FeCo/GC@MSS have superparamagnetism at room temperature and show type IV isotherm typical for mesoporous silica, thereby ensuring a large enough inner space (surface area of 235.3 m(2)  g(-1), pore volume of 0.165 cm(3)  g(-1), and pore diameter of 2.8 nm) to undergo catalytic reactions. We have shown that the Pt-FeCo/GC@MSS system readily converts cyclohexene into cyclohexane, which is the only product isolated and Pt-FeCo/GC@MSS can be seperated very quickly by an external magnetic field after the catalytic reaction is finished. We have demonstrated that the recycled Pt-FeCo/GC@MSS can be reused further for the same hydrogenation reaction at least four times without loss in the initial catalytic activity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The performance of Pt nanoparticles supported on Sb{sub 2}O{sub 5}.SnO{sub 2}, on carbon and on physical mixtures of Sb{sub 2}O{sub 5}.SnO{sub 2} and carbon for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Neto, A.; Brandalise, M.; Dias, R.R.; Ayoub, J.M.S.; Silva, A.C.; Penteado, J.C.; Linardi, M.; Spinace, E.V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN - CNEN/SP, Av. Prof. Lineu Prestes, 2242 - Cidade Universitaria - CEP 05508-900 Sao Paulo, SP (Brazil)

    2010-09-15

    Pt nanoparticles were supported on Sb{sub 2}O{sub 5}.SnO{sub 2} (ATO), on carbon and on physical mixtures of ATO and carbon by an alcohol-reduction process using ethylene glycol as reducing agent. The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Their performance for ethanol oxidation was investigated at room temperature by chronoamperometry and in a direct ethanol fuel cell (DEFC) at 100 C. Pt nanoparticles supported on a physical mixture of ATO and carbon showed a significant increase of performance for ethanol oxidation compared to Pt nanoparticles supported on ATO or on carbon. (author)

  2. Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials

    Science.gov (United States)

    Merati, Zohreh; Basiri Parsa, Jalal

    2018-03-01

    Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.

  3. Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution

    Science.gov (United States)

    Shi, Ya-Cheng; Chen, Sai-Sai; Feng, Jiu-Ju; Lin, Xiao-Xiao; Wang, Weiping; Wang, Ai-Jun

    2018-05-01

    Ionic liquids as templates or directing agents have attracted great attention for shaping-modulated synthesis of advanced nanomaterials. In this work, reduced graphene oxide supported uniform core-shell Au@Pt nanoparticles (Au@Pt NPs/rGO) were fabricated by a simple one-pot aqueous approach, using N-methylimidazolium-based dicationic ionic liquid (1,1-bis(3-methylimadazoilum-1-yl)butylene bromide, [C4(Mim)2]2Br) as the shape-directing agent. The morphology evolution, structural information and formation mechanism of Au@Pt NPs anchored on rGO were investigated by a series of characterization techniques. The obtained nanocomposites displayed superior electrocatalytic features toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) compared with commercial Pt/C catalyst. This approach provides a novel route for facile synthesis of nanocatalysts in fuel cells.

  4. Synthesis of Pt nanoparticles and their burrowing into Si due to synergistic effects of ion beam energy losses

    Directory of Open Access Journals (Sweden)

    Pravin Kumar

    2014-10-01

    Full Text Available We report the synthesis of Pt nanoparticles and their burrowing into silicon upon irradiation of a Pt–Si thin film with medium-energy neon ions at constant fluence (1.0 × 1017 ions/cm2. Several values of medium-energy neon ions were chosen in order to vary the ratio of the electronic energy loss to the nuclear energy loss (Se/Sn from 1 to 10. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS, atomic force microscopy (AFM, scanning electron microscopy (SEM, X-ray diffraction (XRD and high resolution transmission electron microscopy (HRTEM. A TEM image of a cross section of the film irradiated with Se/Sn = 1 shows ≈5 nm Pt NPs were buried up to ≈240 nm into the silicon. No silicide phase was detected in the XRD pattern of the film irradiated at the highest value of Se/Sn. The synergistic effect of the energy losses of the ion beam (molten zones are produced by Se, and sputtering and local defects are produced by Sn leading to the synthesis and burrowing of Pt NPs is evidenced. The Pt NP synthesis mechanism and their burrowing into the silicon is discussed in detail.

  5. Characterization of binary gold/platinum nanoparticles prepared by sonochemistry technique

    International Nuclear Information System (INIS)

    Nakanishi, M.; Takatani, H.; Kobayashi, Y.; Hori, F.; Taniguchi, R.; Iwase, A.; Oshima, R.

    2005-01-01

    Aqueous solutions with Au 3+ and Pt 4+ ions and additives of surfactants (SDS or PEG-MS) were irradiated with an ultrasound at 200 kHz with an input power of 4.2 W/cm 2 , and colloidal nanoparticles were prepared. The prepared nanoparticles were characterized by XRD, TEM, HRTEM, EDX and 197 Au Moessbauer spectroscopy. It was found that the structures of nanoparticles were changed with the surfactants; Au and Pt nanoparticles were prepared individually by using SDS, and bimetallic Au/Pt alloy nanoparticles with a core-shell structure were produced in the presence of PEG-MS

  6. Magnetic properties of nanocrystallized Fe-Pt-B melt-spun ribbons

    International Nuclear Information System (INIS)

    Yamamoto, Tokujiro; Omori, Akihiro; Kimura, Hisamichi; Inoue, Akihisa

    2007-01-01

    L1 0 FePt nanoparticles have been prepared by etching grain boundaries of heat-treated melt-spun Fe-19Pt-25B (at.%) alloy ribbons. It is revealed that an L1 0 FePt nanocrystalline phase is directly formed from the Fe-Pt-B amorphous ribbons by long-time heat treatment at low temperatures in the vicinity of 723 K. With increasing heat treatment time, dimensions of the nanocrystallized FePt grains increase, accompanied by a change from soft ferromagnetic to hard ferromagnetic. The ribbon crystallized at 723 K for 1.8 ks consists of only an FePt L1 0 phase and its coercivity is as low as 0.381 kA/m. However, it increases to 372 kA/m with increasing grain size of precipitated L1 0 phase to about 30 nm by heat treatment for 86.4 ks, while the saturation magnetic flux density remains constant at about 0.4 T. Etching boundaries in heat-treated ribbons has been performed to obtain ferromagnetic L1 0 FePt nanoparticles and several particles were observed by means of transmission electron microscopy

  7. The influence of boron dopant on the electrochemical properties of graphene as an electrode material and a support for Pt catalysts

    International Nuclear Information System (INIS)

    Bo, Xiangjie; Li, Mian; Han, Ce; Guo, Liping

    2013-01-01

    Highlights: •More defective sites in graphene after the doping of boron atoms. •Fine dispersion of Pt nanoparticles supported on boron-doped graphene. •Low electron transfer resistance at boron-doped graphene. •High performance of boron-doped graphene as an electrode material or a support for Pt catalysts. -- Abstract: Boron-doped graphene (BGR) is prepared by thermal annealing of graphene oxide (GO) in the presence of boric acid. More defective sites are introduced into GR accompanied by the doping of boron. Low electron transfer resistance towards redox probe is observed at BGR. The BGR modified electrode can effectively distinguish the anodic peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The defective sites of BGR can also act as anchoring sites for the deposition of Pt nanoparticles. When used as a support for Pt electrocatalysts, Pt nanoparticles with an average diameter of 3.2 nm are deposited on BGR. The doping of boron into GR facilitates the dispersion of Pt nanoparticles and increases the utilization efficiency of Pt nanoparticles. The Pt/BGR exhibits significant catalytic activity towards the oxidation of methanol. The results demonstrate that BGR is a good support for Pt catalysts or an electrode material compared with the undoped GR

  8. Development of novel FePt/nanodiamond hybrid nanostructures: L1{sub 0} phase size-growth suppression and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Douvalis, A. P., E-mail: adouval@uoi.gr; Bourlinos, A. B. [University of Ioannina, Physics Department (Greece); Tucek, J.; Čépe, K. [Palacký University Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic); Bakas, T. [University of Ioannina, Physics Department (Greece); Zboril, R. [Palacký University Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic)

    2016-05-15

    A new type of hybrid nanomaterial composed of magnetic FePt nanoparticles grown on the surface of nanodiamond nanotemplate assemblies is described for the first time. Post annealing in vacuum of the as-made nanomaterial bearing cubic A1 soft magnetic FePt nanoparticles leads to the development of FePt nanoparticles with tetragonal L1{sub 0} hard, magnetic-phase characteristics, leaving untouched the nanodiamond nanotemplate assemblies. X-ray diffraction, high-resolution transmission electron microscopy including chemical mapping (HRTEM/HAADF), magnetization measurements, and {sup 57}Fe Mössbauer spectroscopy data show that the magnetic FePt nanoparticles, with average sizes of 3 and 8 nm in the as-made and annealed hybrids, respectively, are homogenously distributed within the nanodiamond template in both nanomaterials. As a consequence, their structural, morphological, and magnetic properties differ significantly from the corresponding properties of the nonsupported (free) as-made and annealed FePt nanoparticles with average sizes of 6 and 32 nm, respectively, developed by the same methods. This spatial isolation suppresses the size-growth of the FePt nanoparticles during the post-annealing procedure, triggering superparamagnetic relaxation phenomena, which are exposed as a combination of hard and soft magnetic-phase characteristics.

  9. The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media

    Directory of Open Access Journals (Sweden)

    JELENA LOVIC

    2007-07-01

    Full Text Available The kinetic of methanol electrochemical oxidation for a series of platinum and platinum–ruthenium catalysts was investigated. A correlation between the beginning of OHad adsorption and methanol oxidation was demonstarated on Pt single crystals and Pt nanocatalyst. The activity of the nano-structured Pt catalyst was compared with single crystal platinum electrodes assuming the Kinoshita model of nanoparticles. The ruthenium-containing catalysts shifted the onset of methanol oxidation to more negative potentials. The effect was more pronounced in acid than in alkaline media. Based on the established diagnostic criteria, the reaction between COad and OHad species according to the Langmuir–Hinshelwood mechanism was proposed as the rate determining step in alkaline and acid media on Pt and PtRu catalysts.

  10. Radiolytic Preparation of Electrocatalysts with Pt-Co and Pt-Sn Nanoparticles for a Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Sang Kyum Kim

    2014-01-01

    Full Text Available Nanosized Pt-Sn/VC and Pt-Co/VC electrocatalysts were prepared by a one-step radiation-induced reduction (30 kGy process using distilled water as the solvent and Vulcan XC72 as the supporting material. While the Pt-Co/VC electrodes were compared with Pt/VC (40 wt%, HiSpec 4000, in terms of their electrocatalytic activity towards the oxidation of H2, the Pt-Co/VC electrodes were evaluated in terms of their activity towards the hydrogen oxidation reaction (HOR and compared with Pt/VC (40 wt%, HiSpec 4000, Pt-Co/VC, and Pt-Sn/VC in a single cell. Additionally, the prepared electrocatalyst samples (Pt-Co/VC and Pt-Sn/VC were characterized by transmission electron microscopy (TEM, scanning electron microscope (SEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, electrochemical surface area (ECSA, and fuel cell polarization performance.

  11. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    Science.gov (United States)

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  12. Pt-Pd nanoelectrocatalyst of ultralow Pt content for the oxidation of ...

    Indian Academy of Sciences (India)

    formic acid oxidation on Pt4Pd96 nanoparticles. Keywords. ..... Choi J H, Jeong K J, Dong Y, Han J, Lim T H, Lee J S ... Rhee C K, Kim B J, Ham C, Kim Y J, Song K and Kwon ... Wang R, Liao S and Ji S 2008 J. Power Sources 180 205. 18.

  13. Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles

    NARCIS (Netherlands)

    Yurkin, M.A.; de Kanter, D.; Hoekstra, A.G.

    2010-01-01

    We studied the accuracy of the discrete dipole approximation (DDA) for simulations of absorption and scattering spectra by gold nanoparticles (spheres, cubes, and rods ranging in size from 10 to 100 nm). We varied the dipole resolution and applied two DDA formulations, employing the standard lattice

  14. Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Farida [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Zemirli, Mourad, E-mail: zemirlimourad@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Benakki, Mouloud; Bouarab, Said [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria)

    2012-02-15

    The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2 Multiplication-Sign 2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.

  15. A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation

    Science.gov (United States)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang

    The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.

  16. Synthesis and Characterization of Pt-loaded carbon nanostructures derived from polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gong Da; Kim, Pil; Lee, Youn Sik [Div. of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk NationalUniversity, Jeonju (Korea, Republic of)

    2017-03-15

    Proton exchange membrane fuel cells (PEMFC) are one of the most advanced fuel cells for future energy, owing to their high conversion efficiency, quick start-up, rapid response to variable loading, and relatively low operating temperature, compared with of her conventional energy conversion devices. PANTs were synthesized to have various aspect ratios and inner diameters. As the aniline concentration increased, the PANTs’ inner diameter greatly decreased, but their outer diameters only slightly increased, leading to a decrease in their aspect ratios. Carbonization of PANTs resulted in the formation of corresponding CNSs. Pt nanoparticles were successfully formed on the CNSs under N{sub 2} or N{sub 2}/NH{sub 3} flow. The Pt nanoparticles of the Pt- CNS-N{sub 2} /NH{sub 3} catalysts were smaller in size, less aggregated, and more uniformly dispersed than those of the Pt- CNS-N{sub 2} catalysts. The ECSA values of Pt-CNS-N{sub 2} /NH{sub 3} were larger than those of Pt-CNS-N{sub 2} and Pt/C. The half wave potentials of the Pt-CNS-N{sub 2} catalysts were lower than those of the Pt-CNS-N{sub 2} /NH{sub 3} , and close to those of the Pt/C. The Pt-CNS-N{sub 2} /NH{sub 3} catalysts exhibited better kinetic performance than the Pt-CNS -N{sub 2} catalysts and Pt/C.

  17. Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles.

    Science.gov (United States)

    Lee, Yi-Jae; Park, Jae-Yeong

    2010-12-15

    A sensitive macroporous Au electrode with a highly rough surface obtained through the use of with Pt nanoparticles (macroporous Au-/nPts) is reported. It has been designed for nonenzymatic free-cholesterol biosensor applications. A macroporous Au-/nPts electrode was fabricated by electroplating Pt nanoparticles onto a coral-like shaped macroporous Au electrode structure. The macroporous Au-/nPts electrode was physically characterized by field emission scanning electron microscopy (FESEM). It was confirmed that the Pt nanoparticles were well deposited on the surface of the macroporous Au electrode. The porosity and window pore size of the macroporous Au electrode were 50% and 100-300 nm, respectively. The electroplated Pt nanoparticle size was approximately 10-20 nm. Electrochemical experiments showed that the macroporous Au-/nPts exhibited a much larger surface activation area (roughness factor (RF)=2024.7) than the macroporous Au electrode (RF=46.07). The macroporous Au-/nPts also presented a much stronger electrocatalytic activity towards cholesterol oxidation than does the macroporous Au electrode. At 0.2 V, the electrode responded linearly up to a 5 mM cholesterol concentration in a neutral media, with a detection limit of 0.015 mM and detection sensitivity of 226.2 μA mM(-1) cm(-2). Meanwhile, interfering species such as ascorbic acid (AA), acetaminophen (AP), and uric acid (UA), were effectively avoided. This novel nonenzymatic detection electrode has strong applications as an electrochemically based cholesterol biosensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Chemically ordered face-centred tetragonal Fe–Pt nanoparticles ...

    Indian Academy of Sciences (India)

    2012-02-21

    Feb 21, 2012 ... Heat treatment of Fe/Pt co-doped films in air caused generation of Pt NPs first. At this stage, Fe .... water to salt can be varied from 26 to 28) and mixed with ..... electron diffraction (SAED) pattern (grey scale inverted; fig- ure 5c) ...

  19. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  20. Electrochemical stability of subnanometer Pt clusters

    DEFF Research Database (Denmark)

    Quinson, Jonathan; Röefzaad, Melanie; Deiana, Davide

    2018-01-01

    In the present work, the degradation of size-selected Pt nanoclusters is studied under electrochemical conditions. This model catalyst mimics carbon supported Pt nanoclusters and nanoparticles typically employed in proton exchange membrane fuel cells (PEMFCs). Insight into the early stage...... of degradation is given by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and confirmed by transmission electron microscopy (TEM). In contrast to common assumptions, it is demonstrated that even extremely small Pt clusters exhibit a remarkable stability under electrochemical...... - is observed. In light of the findings reported, developing highly-dispersed subnanometer Pt clusters as catalyst for PEMFCs is a realistic approach provided the operation conditions are suitably adjusted. Furthermore, mitigation strategies to improve the stability of few-atoms catalyst under electrochemical...

  1. Impact of metal cations on the electrocatalytic properties of Pt/C nanoparticles at multiple phase interfaces.

    Science.gov (United States)

    Durst, Julien; Chatenet, Marian; Maillard, Frédéric

    2012-10-05

    Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.

  2. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alex; Gyenge, Elod L.; Oloman, Colin W. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-05-15

    Pressed graphite felt (thickness {proportional_to}350 {mu}m) with electrodeposited PtRu (43 g m{sup -2}, 1.4:1 atomic ratio) or PtRuMo (52 g m{sup -2}, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m{sup -2} with PtRuMo at 5500 A m{sup -2} and 353 K while under the same conditions PtRu yielded 1925 W m{sup -2}. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation. (author)

  3. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    Science.gov (United States)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  4. Gyromagnetic ratios of excited states in 198Pt; measurements and interacting boson approximation model calculations

    Science.gov (United States)

    Stuchbery, A. E.; Ryan, C. G.; Bolotin, H. H.; Morrison, I.; Sie, S. H.

    1981-07-01

    The enhanced transient hyperfine field manifest at the nuclei of swiftly recoiling ions traversing magnetized ferromagnetic materials was utilized to measure the gyromagnetic ratios of the 2 +1, 2 +2 and 4 +1 states in 198Pt by the thin-foil technique. The states of interest were populated by Coulomb excitation using a beam of 220 MeV 58Ni ions. The results obtained were: g(2 +1) = 0.324 ± 0.026; g(2 +2) = 0.34 ± 0.06; g(4 +1) = 0.34 ± 0.06. In addition, these measurements served to discriminate between the otherwise essentially equally probable values previously reported for the E2/M1 ratio of the 2 +2 → 2 +1 transition in 198Pt. We also performed interacting boson approximation (IBA) model-based calculations in the O(6) limit symmetry, with and without inclusion of a small degree of symmetry breaking, and employed the M1 operator in both first- and second-order to obtain M1 selection rules and to calculate gyromagnetic ratios of levels. When O(6) symmetry is broken, there is a predicted departure from constancy of the g-factors which provides a good test of the nuclear wave function. Evaluative comparisons are made between these experimental and predicted g-factors.

  5. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.; Choi, YongMan; Hwang, Sun-Mi; Park, Gu-Gon; Yang, Tae-Hyun; Su, Dong; Sasaki, Kotaro; Liu, Ping; Adzic, Radoslav R.

    2015-01-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  6. Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts

    KAUST Repository

    Kuttiyiel, Kurian A.

    2015-04-01

    Given the harsh operating conditions in hydrogen/oxygen fuel cells, the stability of catalysts is one of the critical questions affecting their commercialization. We describe a distinct class of oxygen reduction (ORR) core–shell electrocatalysts comprised of nitride metal cores enclosed by thin Pt shells that is easily synthesized. The synthesis is reproducible and amenable to scale up. Our theoretical analysis and the experimental data indicate that metal nitride nanoparticle cores could significantly enhance the ORR activity as well as the durability of the core–shell catalysts as a consequence of combined geometrical, electronic and segregation effects on the Pt shells. In addition to its fuel cells application, this class of catalysts holds promise to significantly contribute in resolving the problem of platinum scarcity and furthermore indicates the guidelines for future research and development.

  7. Fabrication of CuO–Pt core–shell nanohooks by in situ reconstructing the Pt-shells

    Science.gov (United States)

    Cao, Fan; Zheng, He; Zhao, Ligong; Huang, Rui; Jia, Shuangfeng; Liu, Huihui; Li, Lei; Wang, Zhao; Hu, Yongming; Gu, Haoshuang; Wang, Jianbo

    2018-05-01

    The design of various nanostructures with specific compositions and shapes is highly demanded due to the widespread use of micro/nano electro-mechanical systems. In this work, one-dimensional CuO–Pt core–shell nanowires (NWs) are acquired by depositing Pt nanoparticles onto CuO NWs and then mechanically-shaped into nanohooks. Subsequently, the hook-like shape is maintained by the Pt-shell which is reconstructed via Joule heat and re-solidified after cooling down, during which the elastic strain energy is stored in the CuO-core. The results provide a simple strategy to design nanostructures with various compositions and shapes, implying the potential applications in mechanical energy storage and shape memory nanodevices.

  8. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    Science.gov (United States)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-07-01

    A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  9. Optimum Pt and Ru atomic composition of carbon-supported Pt-Ru alloy electrocatalyst for methanol oxidation studied by the polygonal barrel-sputtering method

    International Nuclear Information System (INIS)

    Hiromi, Chikako; Inoue, Mitsuhiro; Taguchi, Akira; Abe, Takayuki

    2011-01-01

    Highlights: → The sputtered Pt and Ru form the Pt-Ru alloy nanoparticles on the carbon support. → The deposited Pt-Ru alloy particles have uniform Pt:Ru atomic ratios. → The optimum Pt:Ru ratio of the Pt-Ru/C for methanol oxidation is 58:42 at.% at 25 deg. C. → The optimum Pt:Ru ratio of 58:42 shifts to 50:50 at.% at 40 and 60 deg. C. → The polygonal barrel-sputtering method is useful to prepare the DMFC anode catalyst. - Abstract: The optimum Pt and Ru atomic composition of a carbon-supported Pt-Ru alloy (Pt-Ru/C) used in a practical direct methanol fuel cell (DMFC) anode was investigated. The samples were prepared by the polygonal barrel-sputtering method. Based on the physical properties of the prepared Pt-Ru/C samples, the Pt-Ru alloy was found to be deposited on a carbon support. The microscopic characterization showed that the deposited alloy forms nanoparticles, of which the atomic ratios of Pt and Ru (Pt:Ru ratios) are uniform and are in accordance with the overall Pt:Ru ratios of the samples. The formation of the Pt-Ru alloy is also supported by the electrochemical characterization. Based on these results, methanol oxidation on the Pt-Ru/C samples was measured by cyclic voltammetry and chronoamperometry. The results indicated that the methanol oxidation activities of the prepared samples depended on the Pt:Ru ratios, of which the optimum Pt:Ru ratio is 58:42 at.% at 25 deg. C and 50:50 at.% at 40 and 60 deg. C. This temperature dependence of the optimum Pt:Ru ratio is well explained by the relationship between the methanol oxidation reaction process and the temperature, which is reflected in the rate-determining steps considered from the activation energies. It should be noted that at 25-60 deg. C, the Pt-Ru/C with Pt:Ru = 50:50 at.% prepared by our sputtering method has the higher methanol oxidation activity than that of a commercially available sample with the identical overall Pt:Ru ratio. Consequently, the polygonal barrel-sputtering method

  10. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  11. Low Pt content of carbon supported Pt-Ni-TiO2 nanotube electrocatalysts for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.Z; Wu, X.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai, (China). Dept. of Chemical Engineering

    2008-07-01

    Interest in titanium oxide (TiO2) nanomaterial is growing due to their special characteristics for optics, catalysis, and photoelectricity conversion. In this study, the anatase/rutile crystalline of TiO2 nanoparticles was synthesized by co-deposition. TiO2 nanotubes were then obtained by microwave irradiations. This paper described the mechanism to fabricate TiO2 nanotubes. The conditions for preparing TiO2 nanotubes by microwave irradiation were optimized. Electrocatalysts were then prepared on the basis of the synthesized TiO2 nanotube. Their performances were investigated by the electro-oxidation of methanol. When Pt electrocatalysts were doped with a certain content of TiO2 nanotubes, they had more electrocatalytic activity for methanol electro-oxidation, particularly if the second transition metal, such as Ni, was added into the electrocatalyst. The electrocatalysts contained 5 and 10 wt per cent of Pt and Ni respectively. The 10 wt per cent TiO2 nanotubes showed better activities than any other catalysts for methanol electro-oxidation. According to XRD and TEM results, the size of nanoparticles of Pt became smaller after adding TiO2 nanotubes into the catalysts. It was concluded that here might be some interactions between Pt, Ni, and TiO2 nanotubes.

  12. Effect of the structure of Pt-Ru/C particles on COad monolayer vibrational properties and electrooxidation kinetics

    International Nuclear Information System (INIS)

    Maillard, Frederic; Bonnefont, Antoine; Chatenet, Marian; Guetaz, Laure; Doisneau-Cottignies, Beatrice; Roussel, Herve; Stimming, Ulrich

    2007-01-01

    In this paper, we combined FTIR spectroscopy and CO ad stripping voltammetry to investigate CO ad adsorption and electrooxidation on Pt-Ru/C nanoparticles. The Pt:Ru elemental composition and the metal loading were determined by ICP-AES. The X-ray diffraction patterns of the Pt-Ru/C indicated formation of a Pt-Ru (fcc) alloy. HREM images revealed an increase in the fraction of agglomerated Pt-Ru/C particles with increasing the metal loading and showed that agglomerated Pt-Ru/C nanoparticles present structural defects such as twins or grain boundaries. In addition, isolated Pt-Ru/C nanoparticles have similar mean particle size (ca. 2.5 nm) and particle size distributions whatever the metal loading. Therefore, we could determine precisely the effect of particle agglomeration on the CO ad vibrational properties and electrooxidation kinetics. FTIR measurements revealed a main CO ad stretching band at ca. ν-bar CO L =2030cm -1 , which we ascribed to a-top CO ad on Pt domains electronically modified by the presence of Ru. As the metal loading increased, the position of this band was blue shifted by ca. 5 cm -1 and a shoulder around 2005 cm -1 developed, which was ascribed to a-top CO ad on Ru domains. The reason for this was suggested to be the increasing size of Ru domains on agglomerated Pt-Ru/C particles, which lifts dipole-dipole coupling and allows two vibrational features to be observed (CO ad /Ru, CO ad /Pt). This is evidence that FTIR spectroscopy can be used to probe small chemical fluctuations of the Pt-Ru/C surface. Finally, we comment on the CO ad electrooxidation kinetics. We observed that CO ad was converted more easily into CO 2 as the metal loading, i.e. the fraction of agglomerated Pt-Ru/C nanoparticles, increased

  13. Microemulsion prepared Ni88Pt12 for methane cracking

    KAUST Repository

    Zhou, Lu

    2017-01-16

    Monodispersed NiPt nanoparticles of 10 nm were synthesized by water-in-oil microemulsion. The Ni-Pt alloy structure was stable during the thermal treatment between 330 and 1037 °C, whereas the relatively low temperature range of 600-700 °C was favorable for methane cracking to produce hydrogen and carbon nanotubes.

  14. Microemulsion prepared Ni88Pt12 for methane cracking

    KAUST Repository

    Zhou, Lu; Harb, Moussab; Hedhili, Mohamed N.; Mana, Noor Al; Basset, Jean-Marie

    2017-01-01

    Monodispersed NiPt nanoparticles of 10 nm were synthesized by water-in-oil microemulsion. The Ni-Pt alloy structure was stable during the thermal treatment between 330 and 1037 °C, whereas the relatively low temperature range of 600-700 °C was favorable for methane cracking to produce hydrogen and carbon nanotubes.

  15. Synthesis and characterization of Pd-on-Pt and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuangyin; Jiang, San Ping; Wang Xin

    2011-01-01

    The authors have successfully synthesized Pd-on-Pt (thickness: 12 nm) and Au-on-Pt bimetallic nanosheaths on multiwalled carbon nanotubes (MWCNTs) via a seed-mediated growth approach. Pt nanoparticles as seeds were pre-deposited on MWCNTs with uniform distribution followed by the successive seed-mediated growth of metal atoms reduced by a weak reducing agent, ascorbic acid. The essential role of pre-deposited nanoseed particles on MWCNTs was demonstrated. The as-prepared materials were characterization by transition electron microscopy, energy-dispersive X-ray spectroscopy, and element mapping tools. The current strategy extends the classical seed-mediated growth method to prepare bimetallic nanosheath on MWCNT support.

  16. Nanoparticles of Pt and Ag supported in meso porous SiO{sub 2}: characterization and catalytic applications; Nanoparticulas de Pt y Ag soportadas en SiO{sub 2} mesoporosa: caracterizacion y aplicaciones cataliticas

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M.E.; Perez H, R.; Perez A, M.; Mondragon G, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Arenas A, J. [IFUNAM, A.P. 20-364, 01000 Mexico D.F. (Mexico)

    2004-07-01

    The surface properties of catalysts of Pt and Ag supported in conventional SiO{sub 2} hey have been studied through reduction reactions of N{sub 2}O with H{sub 2} which is a sensitive reaction to the structure. In our case it was used a meso porous ceramic support of SiO{sub 2} of great surface area (1100 m{sup 2}/gr), where it is caused a high dispersion of the metallic nanoparticles of Pt and Ag, the total charge of the active phase in the meso porous support was of 3% in weight. The catalysts show a variation in the percentages of conversion of N{sub 2}O depending on the size and dispersion of the metallic phases. (Author)

  17. Radiation chemical route for preparation of metal nanoparticles

    International Nuclear Information System (INIS)

    Kapoor, S.; Mukherjee, T.

    2006-01-01

    Nanoparticles show properties that are neither seen in the bulk or at atomic level. The unusual properties are governed by quantum size effect. Due to this various methodologies have been endeavored to control the size of the particles. In the present work we show the use of two complimentary techniques (radiation and photo) to synthesize and control the size of the metal particles. In-situ synthesis of fine silver, thallium and cadmium particles has been carried out by gamma-irradiation and electron pulse irradiation at room temperature in the pre-organized gel of polyacrylamide or cyclodextrin cavity. The role of generation of nuclei in high concentrations in stabilization of metal nanoparticles in hydrophobic cavity is shown. Similarly the importance of entrapment of metal ions in the polymer matrix during its formation is highlighted. The work is further extended to exploit the microemulsion droplets for stabilization of Cd nanoparticles. Utility of pulse radiolysis in probing the mechanism of the formation of metal nanoparticles is also shown. Ultrafast laser pulses were employed to control the morphology of the pre-prepared Pt nanoparticles. The changes in reduction of shape and size are considered to occur through melting and vaporization of the nanoparticles. Pt nanoparticles were coated on the inner walls of the tubular pyrex reactor and tested for their catalytic activity for oxidation of CO. It was observed that Pt nanoparticles prepared in the presence of a stabilizer (gelatin) showed a higher tendency to adhere to the inner walls of the pyrex reactor as compared to that prepared in the presence of silica nanoparticles. The catalyst was found to be active at ≥150 degree C giving CO 2 . Chemically reduced Pt nanoparticles stabilized on silica nanoparticles gave ∼7% CO conversion per hr. However, radiolytically prepared Pt nanoaprticles stabilized by gelatin gave ∼10% conversion per hr. The data indicates that catalytic oxidation of CO takes place

  18. Electrodeposition of platinum nanoparticles in a room-temperature ionic liquid.

    Science.gov (United States)

    Zhang, Da; Chang, Wan Cheng; Okajima, Takeyoshi; Ohsaka, Takeo

    2011-12-06

    The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger

  19. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    International Nuclear Information System (INIS)

    Hoda, Numan; Budama, Leyla; Çakır, Burçin Acar; Topel, Önder; Ozisik, Rahmi

    2013-01-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH 4 within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles

  20. Electrochemical characterization of platinum nanoparticles stabilized by amines

    International Nuclear Information System (INIS)

    Ramirez-Meneses, E.; Dominguez-Crespo, M.A.; Montiel-Palma, V.; Chavez-Herrera, V.H.; Gomez, E.; Hernandez-Tapia, G.

    2009-01-01

    In this work we present the synthesis by Chaudret approach of Pt nanoparticles stabilized by primary amine (-NH 2 ) compounds. Their electrochemical performance as cathodes in low temperature polymer electrolite fuel cells on the oxygen reduction reaction (ORR) is also presented. Transmission electron microscopy (TEM) images of the samples show Pt nanostructures with particle size varying from 10 to 100 nm depending on the kind of the stabilizer used during the catalyst preparation. In some cases well-dispersed isolated platinum nanoparticles were observed. The activity of the dispersed catalysts (Pt/C) with respect to the ORR was investigated using steady state polarization measurements. The kinetic parameters showed that although no significant differences between the Tafel slopes of the Pt catalysts exist, transfer coefficients and exchange current densities show higher activities when the Pt nanoparticles were stabilized by tert-butylamine (TBA). The performance with respect to the ORR of the Pt/C catalyst on vulcan carbon substrate is active and comparable to that reported in the literature for state-of-art electrocatalysts.

  1. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  2. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  3. The synthesis and characterization of platinum nanoparticles: a method of controlling the size and morphology

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Hayakawa, Tomokatsu; Lakshminarayana, Gandham; Nogami, Masayuki; Chien, Nguyen Duc; Hirata, Hirohito

    2010-01-01

    In this paper, Pt nanoparticles with good shapes of nanocubes and nano-octahedra and well-controlled sizes in the range 5-7 and 8-12 nm, respectively, have been successfully synthesized. The modified polyol method by adding silver nitrate and varying the molar ratio of the solutions of silver nitrate and H 2 PtCl 6 has been used to produce Pt nanoparticles of the size and shape to be controlled. The size and morphology of Pt nanoparticles have been studied by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The results have shown that their very sharp and good shapes exist in the main forms of cubic, cuboctahedral, octahedral and tetrahedral shapes directly related to the crystal nucleation along various directions of the {100} cubic, {111} octahedral and {111} tetrahedral facets during synthesis. In particular, various irregular and new shapes of Pt nanoparticles have been found. Here, it is concluded that the role of silver ions has to be considered as an important factor for promoting and controlling the development of Pt nanoparticles of {100} cubic, {111} octahedral and {111} tetrahedral facets, and also directly orienting the growth and formation of Pt nanoparticles.

  4. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  5. Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Minoru [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)]. E-mail: minaba@mail.doshisha.ac.jp; Ando, Miwa [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Hatanaka, Aoi [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Nomoto, Akihiro [Kyoto Prefecture Collaboration of Regional Entities, Keihanna Interaction Plaza Inc., Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Faculty of Engineering, Osaka Prefecture University, Sakai, Osaka 669-8531 (Japan); Matsuzawa, Koichi [Kyoto Prefecture Collaboration of Regional Entities, Keihanna Interaction Plaza Inc., Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Tasaka, Akimasa [Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan); Kinumoto, Taro [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Iriyama, Yasutoshi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2006-12-01

    Cubic Pt nanoparticles were prepared from a solution of K{sub 2}PtCl{sub 4} containing sodium polyacrylate as a capping reagent. The effects of the Pt/polymer molar ratio, the average molecular weight (M {sub w}) of the polymer, and reaction temperature on the shape and size were investigated. When the polymer of M {sub w} = 5100 was added at a molar ratio of Pt/polymer = 1/12, cubic platinum nanoparticles of an average size of 10.3 nm were predominantly formed (ca. 50% in number) at 25 deg. C. The electron diffraction pattern of the cubic nanoparticles revealed that they are single crystals with Pt {l_brace}1 0 0{r_brace} faces on the surface. The cubic nanoparticles were electrochemically active, and showed strong features of Pt {l_brace}1 0 0{r_brace} faces on cyclic voltammogram under argon atmosphere. After repeated potential cycling in the range 0.05-1.4 V, the features of Pt {l_brace}1 0 0{r_brace} were gradually lost, and changed to those of polycrystalline Pt. Rotating ring disk electrode measurements in O{sub 2}-saturated H{sub 2}SO{sub 4} solution revealed that the cubic nanoparticles had a high catalytic activity for oxygen reduction reaction (ORR). After polycrystallization by repeated potential cycling, the activity for ORR and hydrogen peroxide formation decreased slightly, which were attributed to the surface structural change from Pt {l_brace}1 0 0{r_brace} to polycrystalline.

  6. One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor

    International Nuclear Information System (INIS)

    Zhou, Juan; Zhao, Yanan; Bao, Jing; Huo, Danqun; Fa, Huanbao; Shen, Xin; Hou, Changjun

    2017-01-01

    The rationally designed sensor architecture is very important to improve the sensitivity and selectivity for H 2 O 2 enzyme-free electrochemical sensor. In this work, a sensitive H 2 O 2 biosensor was fabricated by electrochemical deposition of Au-Pt bimetallic nanoparticles (NPs) on molybdenum disulfide nanoflowers (MoS 2 NFs). Au-Pt NPs was dispersed or stabilized by the effective support matrix of MoS 2 nanosheets, which was effectively enhance the conductivity, catalytic performance and long-term stability. The experimental results show that MoS 2 -Au/Pt nanocomposites exhibit excellent catalytic activity for specific detection of H 2 O 2, and electrochemical measurement results show that the enzyme-free electrochemical sensor has large linear range of 10 μM to 19.07 mM with high sensitivity of 142.68 μA mM −1 cm −2 . This novel sensor produced satisfactory reproducibility and stability, and exhibited superior potential for the practical quantitative analysis of H 2 O 2 in serum samples.

  7. From Single Atoms to Nanoparticles: Autocatalysis and Metal Aggregation in Atomic Layer Deposition of Pt on TiO2 Nanopowder.

    Science.gov (United States)

    Grillo, Fabio; Van Bui, Hao; La Zara, Damiano; Aarnink, Antonius A I; Kovalgin, Alexey Y; Kooyman, Patricia; Kreutzer, Michiel T; van Ommen, Jan Rudolf

    2018-05-10

    A fundamental understanding of the interplay between ligand-removal kinetics and metal aggregation during the formation of platinum nanoparticles (NPs) in atomic layer deposition of Pt on TiO 2 nanopowder using trimethyl(methylcyclo-pentadienyl)platinum(IV) as the precursor and O 2 as the coreactant is presented. The growth follows a pathway from single atoms to NPs as a function of the oxygen exposure (P O2 × time). The growth kinetics is modeled by accounting for the autocatalytic combustion of the precursor ligands via a variant of the Finke-Watzky two-step model. Even at relatively high oxygen exposures ( 120 mbar s. The deposition of more Pt leads to the formation of NPs that can be as large as 6 nm. Crucially, high P O2 (≥5 mbar) hinders metal aggregation, thus leading to narrow particle size distributions. The results show that ALD of Pt NPs is reproducible across small and large surface areas if the precursor ligands are removed at high P O2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Au@AuPt nanoparticles embedded in B-doped graphene: A superior electrocatalyst for determination of rutin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xianlan; Yang, Guangming; Feng, Shaoping; Shi, Ling; Huang, Zhaolong [School of Science, Honghe University (China); Key Laboratory of Natural Pharamaceutical & Chemical Biology of Yunnan Province Mengzi, Yunnan 661100 (China); Pan, Haibo [Fujian Key Lab of Medical Instrument & Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Liu, Wei, E-mail: liuwei4728@126.com [School of Science, Honghe University (China); Key Laboratory of Natural Pharamaceutical & Chemical Biology of Yunnan Province Mengzi, Yunnan 661100 (China)

    2017-04-30

    Highlights: • The formation of B-doped graphene (BG) with high content of a total B species use hydrothermal method with B{sub 2}O{sub 3} as reducing agent and boron source. • BG was exfoliated into monolayer nanosheet impregnated by Au@AuPt NPs because B atom creates a net positive charge to facilitate NPs adsorption. • The dispersed carboxyl units of BG can form hydrogen bonding with the phenolic hydroxyl groups of rutin, making more rutin participate in reaction. • Au@AuPt NPs can form charge accumulation or valence change on prominent part of the surface, improving the catalytic effect to rutin. • More electroactive sites were generated by doping B atoms into graphene structures, which act as multidimensional electron transport pathways. - Abstract: A hydrothermal approach was used to prepare B-doped graphene with B{sub 2}O{sub 3} as reductant and boron source. Results reveal that the boron atoms have been successfully embedded into graphene with a high content of a total B species (2.85 at.%). Then, B-doped graphene was exfoliated further into monolayer nanosheet by impregnating Au@AuPt core-shell nanoparticles (Au@AuPt NPs) because boron atom creates a net positive charge, which facilitates Au@AuPt NPs adsorption to form Au@AuPt NPs/B-doped graphene hybrid nanocatalysts. After that, the Au@AuPt NPs/B-doped hybrid suspension was dropped on glassy carbon electrode for sensing rutin. In this way, the dispersed carboxyl units of B-doped graphene can form hydrogen bonding with the phenolic hydroxyl groups of rutin, making rutin enrich easily on modified electrode surface to enhance the electrochemical response. At the same time, its electrochemical mechanism on the modified electrode was elucidated using cyclic voltammetry. It was found that its electrochemical behavior on modified electrode surface was a surface-controlled quasi-reversible process, and the charge transfer coefficient (α) and electron transfer number (n) were 0.296 and 2, respectively

  9. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  10. The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles.

    Science.gov (United States)

    Erini, Nina; Beermann, Vera; Gocyla, Martin; Gliech, Manuel; Heggen, Marc; Dunin-Borkowski, Rafal E; Strasser, Peter

    2017-06-01

    Direct ethanol fuel cells are attractive power sources based on a biorenewable, high energy-density fuel. Their efficiency is limited by the lack of active anode materials which catalyze the breaking of the C-C bond coupled to the 12-electron oxidation to CO 2 . We report shape-controlled PtNiRh octahedral ethanol oxidation electrocatalysts with excellent activity and previously unachieved low onset potentials as low as 0.1 V vs. RHE, while being highly selective to complete oxidation to CO 2 . Our comprehensive characterization and in situ electrochemical ATR studies suggest that the formation of a ternary surface site ensemble around the octahedral Pt 3 Ni 1 Rh x nanoparticles plays a crucial mechanistic role for this behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nuclear Hartree-Fock approximation testing and other related approximations

    International Nuclear Information System (INIS)

    Cohenca, J.M.

    1970-01-01

    Hartree-Fock, and Tamm-Dancoff approximations are tested for angular momentum of even-even nuclei. Wave functions, energy levels and momenta are comparatively evaluated. Quadripole interactions are studied following the Elliott model. Results are applied to Ne 20 [pt

  12. Electrochemically assisted organosol method for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt support: Extended reaction zone anodes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lycke, Derek R.; Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-03-20

    Two electrochemically assisted variants of the Boenneman organosol method were developed for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt electrodes (e.g. thickness up to 2 mm). Tetraoctylammonium triethylhydroborate N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} was employed as colloid stabilizer and reductant dissolved in tetrahydrofuran (THF). The role of the electric field at a low deposition current density of 1.25 mA cm{sup -2} was mainly electrophoretic causing the migration and adsorption of N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} on the graphite felt surface where it reduced the PtCl{sub 2}-SnCl{sub 2} mixture. Faradaic electrodeposition was detected mostly for Sn. Typical Pt-Sn loadings were between 0.4 and 0.9 mg cm{sup -2} depending on the type of pre-deposition exposure of the graphite felt: surfactant-adsorption and metal-adsorption variant, respectively. The catalyst surface area and Pt:Sn surface area ratio was determined by anodic striping of an underpotential deposited Cu monolayer. The two deposition variants gave different catalyst surfaces: total area 233 and 76 cm{sup 2} mg{sup -1}, with Pt:Sn surface area ratio of 3.5:1 and 7.7:1 for surfactant and metal adsorption, respectively. Regarding electrocatalysis of ethanol oxidation, voltammetry and chronopotentiometry studies corroborated by direct ethanol fuel cell experiments using 0.5 M H{sub 2}SO{sub 4} as electrolyte, showed that due to a combination of higher catalyst load and Pt:Sn surface ratio, the graphite felt anodes prepared by the metal-adsorption variant gave better performance. The catalyzed graphite felt provided an extended reaction zone for ethanol electrooxidation and it gave higher catalyst mass specific peak power outputs compared to literature data obtained using gas diffusion anodes with carbon black supported Pt-Sn nanoparticles. (author)

  13. Boosting the performance of Pt electro-catalysts toward formic acid electro-oxidation by depositing sub-monolayer Au clusters

    International Nuclear Information System (INIS)

    Bi Xuanxuan; Wang Rongyue; Ding Yi

    2011-01-01

    Highlights: → Au decoration on Pt nanoparticles simultaneously increases the activity and stability. → Sub-monolayer Au decoration changes the reaction path and results in the activity improvement. → Increasing the Au coverage will increase the specific activity. → Proper Au coverage results in a maximum mass specific activity. - Abstract: CO poisoning is the main obstacle to the application of Pt nanoparticles as anode catalysts in direct formic acid fuel cells (DFAFCs). Significant types of Pt alloys have been investigated, which often demonstrate evidently improved catalytic performance governed by difference mechanisms. By using a well-known electrochemical technique of under potential deposition and in situ redox replacement, sub-monolayer Au clusters are deposited onto Pt nanoparticle surfaces in a highly controlled manner, generating a unique surface alloy structure. Under optimum conditions, the modified Pt nanoparticles can exhibit greatly enhanced specific activity (up to 23-fold increase) at potential of -0.2 V vs. MSE toward formic acid electro-oxidation (FAEO). Interestingly, the mass specific activity can also be improved by a factor of 2.3 at potential of -0.35 V vs. MSE although significant amount of surface Pt atoms are covered by the overlayer Au clusters. The much enhanced catalytic activity can be ascribed to a Pt surface ensemble effect, which induces change of the reaction path. Moreover, the sub-monolayer Au coating on the surface also contributes to the enhanced catalyst durability by inhibiting the Pt oxidation. These results show great potential to rationally design more active and stable nanocatalysts by modifying the Pt surface with otherwise inactive materials.

  14. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou, E-mail: duyk@suda.edu.cn

    2017-07-31

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt{sup 2+} were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt{sup 2+} to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  15. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    International Nuclear Information System (INIS)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-01-01

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt 2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt 2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  16. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P.

    2008-03-20

    Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.

  17. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  18. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  19. One-pot solvothermal synthesis of ordered intermetallic Pt{sub 2}In{sub 3} as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-10-15

    Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.

  20. Dynamics of oxide growth on Pt nanoparticles electrodes in the presence of competing halides by operando energy dispersive X-Ray absorption spectroscopy

    KAUST Repository

    Minguzzi, Alessandro

    2018-03-17

    In this work we studied the kinetics of oxide formation and reduction on Pt nanoparticles in HClO4 in the absence and in the presence of Br− and Cl− ions. The study combines potential step methods (i.e. chronoamperometry and choronocoulometry) with energy dispersive X-ray absorption spectroscopy (ED-XAS), which in principle allows to record a complete XAS spectrum in the timescale of milliseconds. Here, the information on the charge state and on the atomic surrounding of the considered element provided by XAS was exploited to monitor the degree of occupancy of 5d states of Pt in the course of oxide formation and growth, and to elucidate the competing halide adsorption/desorption phenomena. Electrochemical methods and XAS agree on the validity of a log(t) depending growth of Pt oxide, that is significantly delayed in the presence of Cl− and Br− anions. In the proximity of formation of one monolayer, the growth is further slowed down.

  1. Influence of polymolybdate adsorbates on electrooxidation of ethanol at PtRu nanoparticles: Combined electrochemical, mass spectrometric and X-ray photoelectron spectroscopic studies

    Science.gov (United States)

    Gralec, Barbara; Lewera, Adam; Kulesza, Pawel J.

    2016-05-01

    The role Keggin-type phosphomolybdate (PMo12O403-) ions (adsorbed on carbon-supported PtRu, PtRu/C) on electrooxidation of ethanol is addressed here. The combined results obtained using Differential Electrochemical Mass Spectrometry, X-ray Photoelectron Spectroscopy and Cyclic Voltammetry are consistent with the view that presence of the Keggin-type polyoxometallate, phosphomolybdate, ions (adsorbates) leads to enlargement of the current densities associated with electrooxidation of ethanol at potentials greater than 700 mV vs. RHE. This increase of the anodic currents is correlated with the higher acetaldehyde yield which is likely to reflect changes in the reaction kinetics (e.g. more dynamic dehydrogenation of ethanol leading to acetaldehyde) or in the reaction mechanism defined by the preferential surface modification resulting not only in faster kinetics but also in higher selectivity with respect to acetaldehyde production. It is apparent from the spectroscopic data that modification of PtRu/C nanoparticles with phosphomolybdate ions leads to suppression of the formation of Ru surface oxides.

  2. Dynamics of oxide growth on Pt nanoparticles electrodes in the presence of competing halides by operando energy dispersive X-Ray absorption spectroscopy

    KAUST Repository

    Minguzzi, Alessandro; Montagna, Linda; Falqui, Andrea; Vertova, Alberto; Rondinini, Sandra; Ghigna, Paolo

    2018-01-01

    In this work we studied the kinetics of oxide formation and reduction on Pt nanoparticles in HClO4 in the absence and in the presence of Br− and Cl− ions. The study combines potential step methods (i.e. chronoamperometry and choronocoulometry) with energy dispersive X-ray absorption spectroscopy (ED-XAS), which in principle allows to record a complete XAS spectrum in the timescale of milliseconds. Here, the information on the charge state and on the atomic surrounding of the considered element provided by XAS was exploited to monitor the degree of occupancy of 5d states of Pt in the course of oxide formation and growth, and to elucidate the competing halide adsorption/desorption phenomena. Electrochemical methods and XAS agree on the validity of a log(t) depending growth of Pt oxide, that is significantly delayed in the presence of Cl− and Br− anions. In the proximity of formation of one monolayer, the growth is further slowed down.

  3. Electrochemistry of conductive polymers 39. Contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy.

    Science.gov (United States)

    Cho, Shin Hyo; Park, Su-Moon

    2006-12-28

    Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.

  4. WE-FG-BRA-11: Theranostic Platinum Nanoparticle for Radiation Sensitization in Breast Cancer Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Y; Wagner, S; Medina-Kauwe, L; Cui, X; Zhang, G; Shiao, S; Sandler, H; Fraass, B [Cedars Sinai Medical Center, Los Angeles, CA (United States)

    2016-06-15

    Purpose: We have developed a novel receptor-targeted theranostic platinum nanoparticle (HER-PtNP) for enhanced radiation sensitization in HER2-positive breast cancer radiation treatment. This study aims to evaluate receptor-targeting specificity, and radiation sensitization of the nanoparticle. Methods: The platinum nanoparticle (PtNP) was synthesized with the diameter of 2nm, and capped with cysteine. The nanoparticle was tagged with a fluorescent dye (cy5) for the fluoresence detection, and conjuated with HER2/3 targeted protein (HerPBK10) for HER2-targeting specificity. We evaluated the theranostic features using in vitro breast cancer cell models: HER2-positive BT-474, and HER2-negative MDA-MB-231. The HER2-targeting specificity was evaluated using immunofluorescence and confocal microscopy. For each cell line, three sets of samples, including non-stained control, fluorescence stained PtNP-cy5 treated, and HER-PtNP treated, were imaged by confocal microscopy. Two breast cancer cell lineages were incubated with PtNP and HER-PtNP at 10 µg/mL, and then irradiated with X-rays for 2 Gy dose at 50 kVp. A colonogenic assay was used to determine cellular survival fractions by immediately reseeding 300 cells after irradiation in growth media and allowing colonies to grow for 2 weeks. Results: The results of confocal images show that no apparent nanoparticle cellular uptake was observed in the HER2-(MDA-MB-231) cells with 1% for PtNP-cy5 and 0.5% for HER-PtNP. Similarly no apparent PtNP-cy5 uptake (<1%) for BT474 cells was observed. However, there was significant HER-PtNP uptake (73%) for the HER2+(BT474) cells. The clonogenic assay showed that BT474 cells treated with HER-PtNP had significantly lower survival compared to those treated with PtNP (32% vs 81%, p=0.01). However, no significant radiosensitivity enhancement was observed for MDA-MB-231 cell treated with PtNP and HER-PtNP (89% vs 92%, p=0.78). Conclusion: Our studies suggest that the HER2-targeted platinum

  5. WE-FG-BRA-11: Theranostic Platinum Nanoparticle for Radiation Sensitization in Breast Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Yue, Y; Wagner, S; Medina-Kauwe, L; Cui, X; Zhang, G; Shiao, S; Sandler, H; Fraass, B

    2016-01-01

    Purpose: We have developed a novel receptor-targeted theranostic platinum nanoparticle (HER-PtNP) for enhanced radiation sensitization in HER2-positive breast cancer radiation treatment. This study aims to evaluate receptor-targeting specificity, and radiation sensitization of the nanoparticle. Methods: The platinum nanoparticle (PtNP) was synthesized with the diameter of 2nm, and capped with cysteine. The nanoparticle was tagged with a fluorescent dye (cy5) for the fluoresence detection, and conjuated with HER2/3 targeted protein (HerPBK10) for HER2-targeting specificity. We evaluated the theranostic features using in vitro breast cancer cell models: HER2-positive BT-474, and HER2-negative MDA-MB-231. The HER2-targeting specificity was evaluated using immunofluorescence and confocal microscopy. For each cell line, three sets of samples, including non-stained control, fluorescence stained PtNP-cy5 treated, and HER-PtNP treated, were imaged by confocal microscopy. Two breast cancer cell lineages were incubated with PtNP and HER-PtNP at 10 µg/mL, and then irradiated with X-rays for 2 Gy dose at 50 kVp. A colonogenic assay was used to determine cellular survival fractions by immediately reseeding 300 cells after irradiation in growth media and allowing colonies to grow for 2 weeks. Results: The results of confocal images show that no apparent nanoparticle cellular uptake was observed in the HER2-(MDA-MB-231) cells with 1% for PtNP-cy5 and 0.5% for HER-PtNP. Similarly no apparent PtNP-cy5 uptake (<1%) for BT474 cells was observed. However, there was significant HER-PtNP uptake (73%) for the HER2+(BT474) cells. The clonogenic assay showed that BT474 cells treated with HER-PtNP had significantly lower survival compared to those treated with PtNP (32% vs 81%, p=0.01). However, no significant radiosensitivity enhancement was observed for MDA-MB-231 cell treated with PtNP and HER-PtNP (89% vs 92%, p=0.78). Conclusion: Our studies suggest that the HER2-targeted platinum

  6. Controlled synthesis of Pt/CS/PW12-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen

    2015-01-01

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW 12 -GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW 12 -GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H 3 PW 12 O 40 (PW 12 ) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW 12 -GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW 12 -GNs exhibit the forward peak current density of 445 mA mg −1 , which is much higher than that (220 mA mg −1 ) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications

  7. Effects of the Electrodeposition Time in the Synthesis of Carbon-Supported Pt(Cu and Pt-Ru(Cu Core-Shell Electrocatalysts for Polymer Electrolye Fuel Cells

    Directory of Open Access Journals (Sweden)

    Griselda Caballero-Manrique

    2016-08-01

    Full Text Available Pt(Cu/C and Pt-Ru(Cu/C electrocatalysts with core-shell structure supported on Vulcan Carbon XC72R have been synthesized by potentiostatic deposition of Cu nanoparticles on the support, galvanic exchange with Pt and spontaneous deposition of Ru species. The duration of the electrodeposition time of the different species has been modified and the obtained electrocatalysts have been characterized using electrochemical and structural techniques. The High Resolution Transmission Electron Microscopy (HRTEM, Fast Fourier Transform (FFT and Energy Dispersive X-ray (EDX microanalyses allowed the determining of the effects of the electrodeposition time on the nanoparticle size and composition. The best conditions identified from Cyclic Voltammetry (CV corresponded to onset potentials for CO and methanol oxidation on Pt-Ru(Cu/C of 0.41 and 0.32 V vs. the Reversible Hydrogen Electrode (RHE, respectively, which were smaller by about 0.05 V than those determined for Ru-decorated commercial Pt/C. The CO oxidation peak potentials were about 0.1 V smaller when compared to commercial Pt/C and Pt-Ru/C. The positive effect of Cu was related to its electronic effect on the Pt shells and also to the generation of new active sites for CO oxidation. The synthesis conditions to obtain the best performance for CO and methanol oxidation on the core-shell Pt-Ru(Cu/C electrocatalysts were identified. When compared to previous results in literature for methanol, ethanol and formic acid oxidation on Pt(Cu/C catalysts, the present results suggest an additional positive effect of the deposited Ru species due to the introduction of the bifunctional mechanism for CO oxidation.

  8. One Pot Synthesis of Pt/Graphene Composite Using Polyamidoamine/Chitosan as a Template and Its Electrocatalysis for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2016-10-01

    Full Text Available A one-pot hydrothermal strategy was used to synthesize Pt/GNs (PAMAM & Pt/GNs (CS composites. Pt nanoparticles are deposited onto graphene sheets (GNs via synchronous reduction of K2PtCl4 and graphene oxide (GO under hydrothermal conditons without additional reducing agent. During the synthesis process, polyamidoamine (PAMAM or chitosan (CS was used as a template respectively to obtain shape controlled Pt particles on the surface of GNs, leading to the formation of flower-like Pt nanoclusters for Pt/GNs (PAMAM and uniform spherical Pt nanoparticles for Pt/GNs (CS. PAMAM and CS are simultaneously served as intrinsic reducing agents to accelerate reduction process; ensuring excellent electrical conductivity of the composites. Electrochemical tests show that Pt/GNs (PAMAM and Pt/GNs (CS have much higher electrocatalytic activity and better stability toward methanol oxidation reaction (MOR in comparison with counterpart Pt/GNs and the commercially available 20% Pt/C catalyst (Pt/C due to their better dispersion of Pt particles, stronger interaction between Pt and substrate materials, and better electron transfer capability.

  9. Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles

    Science.gov (United States)

    Nakagawa, Nobuyoshi; Ito, Yudai; Tsujiguchi, Takuya; Ishitobi, Hirokazu

    2014-02-01

    The electro-oxidation of ethanol by the catalyst of PtRu nanoparticles supported on a TiO2-embedded carbon nanofiber (PtRu/TECNF), which has recently been proposed by the authors as a highly active catalyst for methanol oxidation, is investigated by cyclic voltammetry using a glassy carbon electrode and by operating a direct ethanol fuel cell (DEFC) with the catalyst. The mass activity obtained from the cyclic voltammogram for the ethanol oxidation is compared to that for the methanol oxidation reported in our recent paper. The mass activity for the ethanol oxidation is comparable or slightly higher than that for the methanol oxidation, and the relationship between the TECNF composition, i.e., the Ti/C mass ratio, and the activity are also similar to that for the methanol oxidation. A DEFC fabricated with the PtRu/TECNF shows a higher power output compared to that with the commercial PtRu/C catalyst. An analysis of the reaction products by a simple two-step reaction model reveals that the PtRu/TECNF increases the rate constant for the reaction steps from ethanol to acetaldehyde and subsequently to CO2, but decreases that from acetaldehyde to acetic acid. This means that the PtRu/TECNF improves not only the kinetics, but also the selectivity to acetaldehyde.

  10. Effect of Mo addition on the electrocatalytic activity of Pt-Sn-Mo/C for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Lee, Eungje; Murthy, Arun; Manthiram, Arumugam

    2011-01-01

    Carbon-supported Pt-Sn-Mo electrocatalysts have been synthesized by a polyol reduction method and characterized for ethanol electro-oxidation reaction (EOR). While the percent loading of the synthesized nanoparticles on the carbon support is higher than 35%, energy dispersive spectroscopy (EDS) reveals that the Mo contents in the nanoparticle catalysts are lower than the nominal value, indicating incomplete reduction of the Mo precursor. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses reveal that the Sn and Mo exist as oxide phases at the surface layers of the nanoparticles and the degree of alloying is very low. The electrochemical properties of the electrocatalysts have been evaluated by cyclic voltammetry (CV) and chronoamperometry. The catalytic activity for EOR decreases in the order PtSnMo 0.6 /C > PtSnMo 0.4 /C > PtSn/C. Single cell direct ethanol fuel cell (DEFC) tests also confirm that the PtSnMo 0.6 /C anode catalyst exhibit better performance than the PtSn/C anode catalyst. An analysis of the electrochemical data suggests that the incorporation of Mo to Pt-Sn enhances further the catalytic activity for EOR.

  11. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity

    Science.gov (United States)

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K.; Wiltshire, Benjamin D.; Kisslinger, Ryan; Shankar, Karthik

    2018-01-01

    Anodically formed, vertically oriented, self-organized cylindrical TiO2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  12. Multifunctional nanocomposites of carbon nanotubes and nanoparticles formed via vacuum filtration

    Science.gov (United States)

    Hersam, Mark C; Ostojic, Gordana; Liang, Yu Teng

    2013-10-22

    In one aspect, the present invention provides a method of forming a film of nanocomposites of carbon nanotubes (CNTs) and platinum (Pt) nanoparticles. In one embodiment, the method includes the steps of (a) providing a first solution that contains a plurality of CNTs, (b) providing a second solution that contains a plurality of Pt nanoparticles, (c) combining the first solution and the second solution to form a third solution, and (d) filtering the third solution through a nanoporous membrane using vacuum filtration to obtain a film of nanocomposites of CNTs and Pt nanoparticles.

  13. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40{sup 0}, 47{sup 0}, 67{sup 0} and 82{sup 0}, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34{sup 0} and 52{sup 0} that were identified as a SnO{sub 2} phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  14. Fabrication 3 dimensional Pt catalysts via Na2Ti3O7 nanowires for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Hu, C. [Chongqing Univ., Chongqing (China). Dept. of Applied Physics

    2010-07-01

    This paper reported on a study in which platinum (Pt) nanoparticles deposited on Na{sub 2}Ti{sub 3}O{sub 7} nanowires were used for the electrooxidation of methanol and ethanol in acidic and alkaline media. The Na{sub 2}Ti{sub 3}O{sub 7} nanowires were used as 3D frames for loading Pt nanoparticles. The synthesized samples were characterized by X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The analysis revealed that Pt nanoparticles are uniformly deposited on the Na{sub 2}Ti{sub 3}O{sub 7} nanowires. The electrochemical properties of the electrocatalysts were determined by cyclic voltammetry, linear sweep voltammetry and chronoamperometry. Compared to the Pt electrocatalyst, the Pt/Na{sub 2}Ti{sub 3}O{sub 7} electrocatalyst had better catalytic activity and stability, suggesting that it has potential to be an excellent catalytic anode in fuel cells.

  15. Enhancing Photocatalytic Performance through Tuning the Interfacial Process between -Assembled and Pt-Loaded Microspheres

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2012-01-01

    Full Text Available This work reports on a simple two-step approach to rutile TiO2-assembled microspheres loaded by Pt with an aim to tune semiconductor-metal interfacial processes for enhancing the photocatalytic performance. Systematic sample characterizations and structural analysis indicate that Pt loading did not produce any significant influences on the lattice structure of TiO2-assembled microspheres. Instead, upon Pt loading, Schottky barrier was formed in the interfaces between microspheres and Pt nanoparticles, which inhabited efficiently the recombination of photo-generated electron-hole pairs essential for the photocatalytic activities. In addition, TiO2 microspheres also showed a capacity of electrons storage and releasing as represented by a high dielectric constant, which increased the utility rate of photogenerated electrons. All these structural advantages contribute to the excellent photocatalytic activity under ultraviolet light irradiation. The interfacial process between microspheres and Pt nanoparticles was further tuned through adjusting the loading Pt content of metal Pt. As a consequence, the best photocatalytic activity on TiO2 was obtained at 0.85 wt% Pt loading, above or below which photocatalytic activity was apparently decreased.

  16. Facile preparation of a Pt/Prussian blue/graphene composite and its application as an enhanced catalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Wang, Zonghua; Shi, Guoyu; Xia, Jianfei; Xia, Yanzhi; Zhang, Feifei; Xia, Lin; Song, Daimin; Liu, Jingquan; Li, Yanhui; Xia, Linhua; Brito, Manuel E.

    2014-01-01

    Graphical abstract: - Highlights: • Pt/Prussian blue/graphene catalyst was easily synthesized by the sequential electrodeposition method. • Prussian blue can promote the homogeneous growth of small Pt nanoparticles. • The as-made catalyst exhibited enhanced electro-catalytic performance for methanol oxidation. • The interplay of Prussian blue and Pt plays a significant role in reducing CO poisoning of the catalyst. - Abstract: Graphene nanosheets (GN) are modified by electrodeposition of Prussian blue (PB) followed by shape-regulated depositing of small Pt nanoparticles via the interaction between PB and PtCl 6 2− to form a novel catalyst Pt/PB/GN. The Pt/PB/GN composite exhibits significantly enhanced electrocatalytic activity with a mass activity of 445 mA mg −1 Pt (at 0.68 V vs. SCE) and high stability towards methanol oxidation. The high catalytic activity can be attributed to the unique porous architecture and peculiar electrical property of Prussian blue integrated with graphene layers which can not only well accommodate Pt nanoparticles but also provide multidimensional pathways to facilitate the mass and electron transport for methanol oxidation. This strategy can be readily extended to fabrication of other graphene-based hybrid supports for precious metal catalysts in fuel cell applications

  17. Structure and morphology of platinum nanoparticles with critical new issues of low- and high-index facets

    DEFF Research Database (Denmark)

    Nguyen, Viet-Long; Ohtaki, Michitaka; Van Nong, Ngo

    2012-01-01

    In this paper, Pt nanoparticles were successfully prepared by modified polyol method using silver nitrate as an effective structure-modifying agent. The characterization of Pt nanoparticles was investigated by using UV-Vis-NIR spectroscopy, transmission electron microscopy (TEM) and high resolution...... (HR) TEM, and x-ray diffraction (XRD). The method of selected area electron diffraction (SEAD) was used to study the structure of Pt nanoparticles. The results showed that the as-prepared Pt nanoparticles exhibiting the complexity of surface structure and morphology could be used as efficient...... catalysts for polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs)....

  18. An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere

    International Nuclear Information System (INIS)

    Dubau, L.; Castanheira, L.; Berthomé, G.; Maillard, F.

    2013-01-01

    This study shows that the predominant degradation mechanism of Pt/Vulcan XC72 electrocatalysts strongly depends on the nature of the gas atmosphere and of the upper potential limit used in accelerated stress tests (ASTs). The morphological changes of Pt/Vulcan XC72 nanoparticles were studied by identical location transmission electron microscopy (IL-TEM), following accelerated stress tests in different potential ranges and under various gas atmospheres. X-ray photoelectron spectroscopy was used to probe changes in carbon surface chemistry. Whereas minor changes were detected under neutral atmosphere (Ar) and low potential limit conditions (0.05 2 ). With an increase of the upper potential limit to 1.23 V vs. RHE, the trends observed previously were maintained but 3D Ostwald ripening strongly overlapped with the three other degradation mechanisms, precluding any identification of the dominant mechanism

  19. Controllable ALD synthesis of platinum nanoparticles by tuning different synthesis parameters

    International Nuclear Information System (INIS)

    Wang, Chuandao; Lin, Yuyuan; Marks, Laurence; Hu, Linhua; Poeppelmeier, Kenneth; Stair, Peter

    2017-01-01

    Pt nanoparticles were successfully deposited using three different atomic layer deposition (ALD) methods, e.g. AB-type, ABC-type and static ABC-type ALD, on two different types of strontium titanate nanocuboids (STO-NCs) samples in a reaction temperature window of 125 °C–300 °C. The influence of reaction temperature, number of ALD cycles, type of substrate, 2nd reagent and type of ALD method on Pt nanoparticle deposition are comprehensively studied and discussed in this work. Varying the reaction temperature and number of cycles across the three different ALD methods affects Pt particle size, density, and loading. Surface termination of STO-NCs substrate will change deposited Pt nanoparticle growth orientation and thermodynamic shape. The B reagent besides platinum precursor can lead to different ligand decomposition mechanism when Pt precursors are exposed: oxygen allows more effective ligand combustion compared to water, however, the Pt particles are more oxidized according to XPS studies. We expect this work provides a way for tailoring nanoparticles with desired size, dispersion, exposed surfaces and chemical state etc, which helps controlling and optimizing their performance when applied as catalysts or nanosensors. (paper)

  20. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  1. A novel binary Pt{sub 3}Te{sub x}/C nanocatalyst for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang [College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China)

    2008-03-15

    The Pt{sub 3}Te{sub x}/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt{sub 3}Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt{sub 3}Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt{sub 3}Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt{sub 3}Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g{sup -1}, respectively. On the current-time curve, the anodic current on the Pt{sub 3}Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt{sub 3}Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature. (author)

  2. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    Science.gov (United States)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  3. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size

  4. 1D-2D carbon heterostructure with low Pt loading as a superior cathode electrode for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nechiyil, Divya; Ramaprabhu, S., E-mail: ramp@iitm.ac.in [Indian Institute of Technology Madras, Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics (India)

    2017-02-15

    Cost-effective counter electrode (CE) with high electrocatalytic performance is very much essential for the wide application of dye-sensitized solar cells (DSSC). The 1D-2D carbon heterostructure (Pt/GR@CNT) with low platinum (Pt) loading has been synthesized by a facile in situ microwave-assisted polyol-reduction method. The excellent electrocatalytic activity as well as photovoltaic performance was achieved due to the combination of 2D graphene nanoribbons (GR) and 1D multi-walled carbon nanotubes (CNT) with high catalytically active Pt nanoparticles. Microwave-assisted longitudinal unzipping of few outer layers of CNTs along with co-reduction of Pt nanoparticles is an effective method to create electrochemically active defective edge sites, which have a crucial role in enhancing electrochemical performance. Synergistic effect of ultra-fine Pt nanoparticles, partially unzipped graphene nanoribbons and inner core tubes of CNTs modulates the power conversion efficiency of solar cell to 5.57% ± 0.03 as compared with 4.73% ± 0.13 of CNTs. Pt/GR@CNT CE even with low Pt loading of 14 μg cm{sup −2} showcases equivalent performance with that of pure Pt counter electrode.

  5. Statistical analysis of the electrocatalytic activity of Pt nanoparticles supported on novel functionalized reduced graphene oxide-chitosan for methanol electrooxidation

    Science.gov (United States)

    Ekrami-Kakhki, Mehri-Saddat; Abbasi, Sedigheh; Farzaneh, Nahid

    2018-01-01

    The purpose of this study is to statistically analyze the anodic current density and peak potential of methanol oxidation at Pt nanoparticles supported on functionalized reduced graphene oxide (RGO), using design of experiments methodology. RGO is functionalized with methyl viologen (MV) and chitosan (CH). The novel Pt/MV-RGO-CH catalyst is successfully prepared and characterized with transmission electron microscopy (TEM) image. The electrocatalytic activity of Pt/MV-RGOCH catalyst is experimentally evaluated for methanol oxidation. The effects of methanol concentration and scan rate factors are also investigated experimentally and statistically. The effects of these two main factors and their interactions are investigated, using analysis of variance test, Duncan's multiple range test and response surface method. The results of the analysis of variance show that all the main factors and their interactions have a significant effect on anodic current density and peak potential of methanol oxidation at α = 0.05. The suggested models which encompass significant factors can predict the variation of the anodic current density and peak potential of methanol oxidation. The results of Duncan's multiple range test confirmed that there is a significant difference between the studied levels of the main factors. [Figure not available: see fulltext.

  6. Glucose sensing based on Pt-MWCNT and MWCNT

    Science.gov (United States)

    Aryasomayajula, Lavanya; Xie, Jining; Wang, Shouyan; Varadan, Vijay K.

    2007-04-01

    It is known that multi walled carbon nanotubes (MWCNTs) is an excellent materials for biosensing applications and with the introduction of Pt nanoparticles (Pt-MWCNTs) of about 3nm in diameter in MWCNTs greatly increases the current sensitivity and also the signal to noise ratio. We fabricated the CNT- based glucose sensor by immobilization the bio enzyme, glucose oxidase (GoX), on the Pt-MWCNT and electrode were prepared. The sensor has been tested effectively for both the abnormal blood glucose levels- greater than 6.9 mM and less than 3.5 mM which are the prediabetic and diabetic glucose levels, respectively. The current signal obtained from the Pt-MWCNT was much higher compared to the MWCNT based sensors.

  7. Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Park, Kyung-Won; Park, In-Su; Nam, Woo-Hyun; Sung, Yung-Eun

    2004-01-01

    Pt-based binary or ternary catalysts containing Rh for use as anodes in direct methanol fuel cells (DMFC) were synthesized by borohydride reduction method combined with freeze-drying. The resulting catalysts had a specific surface area of approximately 65-75 m 2 /g. X-ray diffraction (XRD) patterns indicated that the catalysts were well alloyed and the average size of alloy catalysts was confirmed by transmission electron microscopy (TEM). The Pt/Rh (2:1) and Pt/Ru/Rh (5:4:1) alloy catalysts showed better catalytic activities for methanol electro-oxidation than Pt or Pt/Ru (1:1), respectively

  8. 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction.

    Science.gov (United States)

    Berillo, Dmitriy; Cundy, Andrew

    2018-07-15

    3D-macroporous chitosan-based scaffolds (cryogels) were produced via growth of metal-polymer coordinated complexes and electrostatic interactions between oppositely charged groups of chitosan and metal ions under subzero temperatures. A mechanism of reduction of noble metal complexes inside the cryogel walls by glutaraldehyde is proposed, which produces discrete and dispersed noble metal nanoparticles. 3D-macroporous scaffolds prepared under different conditions were characterised using TGA, FTIR, nitrogen adsorption, SEM, EDX and TEM, and the distribution of platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) in the material assessed. The catalytic activity of the in situ synthesised PdNPs, at 2.6, 12.5 and 21.0 μg total mass, respectively, was studied utilising a model system of 4-nitrophenol reduction. The kinetics of the reaction under different conditions (temperature, concentration of catalyst) were examined, and a decrease of catalytic activity was not observed over 17 treatment cycles. Increasing the temperature of the catalytic reaction from 10 to 22 and 35 °C by PdNPs supported within the cryogel increased the kinetic rate by 44 and 126%, respectively. Turnover number and turnover frequency of the PdNPs catalysts at room temperature were in the range 0.20-0.53 h -1 . The conversion degree of 4-nitrophenol at room temperature reached 98.9% (21.0 μg PdNPs). Significantly less mass of palladium nanoparticles (by 30-40 times) was needed compared to published data to obtain comparable rates of reduction of 4-nitrophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Preparation of PtRu/C anode electrocatalysts using gamma radiation for methanol electro-oxidation; Preparacao de eletrocatalisadores PtRu/C utilizando radiacao gama para aplicacao como anodo na oxidacao direta de metanol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio Fortunato da

    2006-07-01

    Pt Ru/C (carbon-supported Pt Ru nanoparticles) anode electrocatalysts were prepared using radiolytic process (gamma radiation) and tested for methanol electro-oxidation. In this process, water/2-propanol and water/ethylene glycol solutions containing the metallic ions and the carbon support were submitted to gamma radiation under stirring. The water/alcohol ratio (v/v) and the total dose (kGy) were studied. A nominal Pt Ru atomic ratio of 50:50 were used in all experiments. The electrocatalysts were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry (CV). The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique. The electrocatalysts prepared in water/2-propanol showed crystallite size in the range of 3-5 nm and Pt Ru atomic ratio of 50:50. The electrocatalysts prepared in water/ethylene glycol showed crystallite size (2-3 nm) smaller than the ones obtained in water/2-propanol, however, the Pt Ru atomic ratios obtained were approximately 80:20, showing that only part of ruthenium ions were reduced. For methanol oxidation the electrocatalytic activity depends on the water/2-propanol and water/ethylene glycol ratio used in the reaction medium. The electrocatalysts prepared in water/2-propanol showed inferior performance to the ones prepared in water/ethylene glycol, which showed similar or superior performances (amperes per gram of platinum) to the commercial electrocatalyst from E-TEK. (author)

  10. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    Science.gov (United States)

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  11. One-pot catalytic conversion of cellulose into polyols with Pt/CNTs catalysts.

    Science.gov (United States)

    Yang, Li; Yan, Xiaopei; Wang, Qiwu; Wang, Qiong; Xia, Haian

    2015-03-02

    A series of Pt nanoparticles supported on carbon nanotubes (CNTs) were synthesized using the incipient-wetness impregnation method. These catalysts were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscope (TEM) techniques. The characterization results indicate that the Pt nanoparticles were highly dispersed on the surface of the CNTs, and the mean size was less than 5 nm. These catalysts were utilized to convert cellulose to hexitol, ethylene glycerol (EG), and 1,2-propylene glycol (1,2-PG) under low H2 pressure. The total yields were as high as 71.4% for EG and 1,2-PG using 1Pt/CNTs as the catalyst in the hydrolytic hydrogenation of cellulose under mild reaction conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    International Nuclear Information System (INIS)

    Kepenienė, V.; Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J.; Vaitkus, R.; Norkus, E.

    2016-01-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  13. One-pot synthesis of graphene supported platinum–cobalt nanoparticles as electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kepenienė, V., E-mail: virginalisk@gmail.com [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Tamašauskaitė-Tamašiūnaitė, L.; Jablonskienė, J.; Semaško, M.; Vaičiūnienė, J. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania); Vaitkus, R. [Faculty of Chemistry, Vilnius University, Vilnius LT 03225 (Lithuania); Norkus, E. [Department of Catalysis, Center for Physical Sciences and Technology, Vilnius LT 01108 (Lithuania)

    2016-03-01

    In the present study the graphene supported platinum–cobalt nanoparticles were prepared via microwave synthesis. The composition of prepared catalysts was examined by Inductively Coupled Plasma Optical Emission Spectroscopy. The shape and size of catalyst particles were determined by Transmission Electron Microscopy. The electrocatalytic activity of the graphene supported platinum–cobalt nanoparticles was investigated towards the electro-oxidation of methanol in an alkaline medium. It has been found that the graphene supported platinum–cobalt nanoparticles having the Pt:Co molar ratio 1:7 show the highest activity towards the electro-oxidation of methanol among the catalysts with the Pt:Co molar ratios equal to 1:1 and 1:44, graphene supported bare Co and Pt/C catalysts. - Highlights: • Preparation of graphene supported Pt-Co nanoparticles by microwave synthesis. • Electrocatalysts for oxidation of methanol. • Higher activity of PtCo/graphene towards methanol oxidation.

  14. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-06-21

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  15. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  16. Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese oxide deposited on MWCNTs

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Rashidi, Alimorad; Choolaei, Mohammadmehdi

    2014-01-01

    Highlights: • Promoting effects of manganese oxide (MnO x ) on methanol electro-oxidation over Pt/MWCNTs are studied. • 3.3 times higher activity and improved stability are observed on Pt/MnO x -MWCNTs in MOR. • Both hydrogen spill over and bi-functional mechanism are facilitated in presence of MnO x . • MnO x significantly enhances electrochemical active surface area and dispersion of Pt nanoparticles. • Proton conductivity of electrocatalyst layer is improved upon MnO x incorporation. - Abstract: Electro-oxidation of methanol on platinum nanoparticles supported on a nanocomposite of manganese oxide (MnO x ) and multi-wall carbon nanotubes (MWCNTs) is investigated. The morphology, structure, and chemical composition of the electro-catalysts are characterized by TEM, XRD, EDS, TGA, and H 2 -TPR. The electro-catalytic properties of electrodes are examined by cyclic voltammetry, CO-stripping, electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Compared to Pt/MWCNTs, the Pt/MnO x -MWCNTs electro-catalyst exhibits about 3.3 times higher forward peak current density, during cyclic voltammetry, and 4.6 times higher exchange current density in methanol electro-oxidation reaction. In addition, deposition of manganese oxide onto MWCNTs dramatically increases the electrochemical active surface area from 29.7 for Pt/MWCNTs to 89.4 m 2 g −1 Pt for Pt/MnO x -MWCNTs. The results of long-term cyclic voltammetry show superior stability of Pt nanoparticles upon addition of manganese oxide to the support. Furthermore, the kinetics of formation of the chemisorbed OH groups improves upon manganese oxide incorporation. This leads to a lower onset potential of CO ads oxidation on Pt/MnO x -MWCNTs than on Pt/MWCNTs

  17. Optical properties of metal nanoparticles embedded in amorphous silicon analysed using discrete dipole approximation

    Science.gov (United States)

    Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela; Oliveira-Silva, Rui P.; Prazeres, D. M. F.; Ribeiro, Ana P. C.; Alegria, Elisabete C. B. A.

    2018-02-01

    Localized surface plasmons (LSP) can be excited in metal nanoparticles (NP) by UV, visible or NIR light and are described as coherent oscillation of conduction electrons. Taking advantage of the tunable optical properties of NPs, we propose the realization of a plasmonic structure, based on the LSP interaction of NP with an embedding matrix of amorphous silicon. This study is directed to define the characteristics of NP and substrate necessary to the development of a LSP proteomics sensor that, once provided immobilized antibodies on its surface, will screen the concentration of selected antigens through the determination of LSPR spectra and peaks of light absorption. Metals of interest for NP composition are: Aluminium and Gold. Recent advances in nanoparticle production techniques allow almost full control over shapes and size, permitting full control over their optical and plasmonic properties and, above all, over their responsive spectra. Analytical solution is only possible for simple NP geometries, therefore our analysis, is realized recurring to computer simulation using the Discrete Dipole Approximation method (DDA). In this work we use the free software DDSCAT to study the optical properties of metal nanoparticles embedded in an amorphous silicon matrix, as a function of size, shape, aspect-ratio and metal type. Experimental measurements realized with arrays of metal nanoparticles are compared with the simulations.

  18. One-step synthesis of Pt-reduced graphene oxide composites based on high-energy radiation technique

    International Nuclear Information System (INIS)

    Liu, Xuqiang; Jiang, Shubin; Huang, Wei; Song, Hongtao

    2014-01-01

    In this paper, we introduce a novel 60 Co-ray-irradiation-based one-step synthesis method of Pt-reduced graphene oxide composites (Pt-RGO) in acid aqueous solution. The compositional distribution of the particles in the samples was characterized by transmission electron microscopy. The structure and composition of the nanocomposite has been determined with a scanning electron microscope (SEM) equipped with an energy dispersion X-ray (EDS) analyzer. Surface enhanced Raman scattering (SERS) of graphene deposited by the Pt nanoparticles were investigated with the 514.5 nm excitation. It was found that small-sized and highly-dispersed Pt nanoparticles could easily grow on the RGO surface under acidic conditions. In addition, the obtained homogeneous dispersions exhibit long-term stability, which will facilitate the production of homogeneous composites. (orig.)

  19. Pt/Pb(Zr, Ti)O3/Pt capacitor with excellent fatigue properties prepared by sol-gel process applied to FeRAM

    International Nuclear Information System (INIS)

    Jia Ze; Ren Tianling; Zhang Zhigang; Liu Tianzhi; Wen Xinyi; Hu Hong; Shao Tianqi; Xie Dan; Liu Litian

    2006-01-01

    Lead zirconate titanate (PZT) film is prepared on Pt/Ti/SiO 2 /Si substrate by proposed processes based on the sol-gel method and rapid thermal anneal (RTA). The ratio of Zr/Ti in the PZT film is 40/60. The PZT film has a mixture of perovskite orientations in which the (110) orientation is dominant. The Pt/PZT/Pt capacitor has remanent polarization of approximately 28.8 μC cm -2 and coercive voltage of approximately 0.76 V at 3 V voltage amplitude. The Pt/PZT/Pt capacitor has excellent fatigue properties. Switch polarizations decrease to 93.1% after 6 x 10 12 switch cycles. The excellent fatigue properties result from the ameliorations of PZT/Pt interface conditions, restraining Pb volatilization and the directions of crystal domains in the RTA process. Some electric properties of the PZT capacitor proposed are contrasted with those of PZT capacitors with a different anneal process in the preparation

  20. Preparation of PtRu/C anode electrocatalysts using gamma radiation for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Silva, Dionisio Fortunato da

    2006-01-01

    Pt Ru/C (carbon-supported Pt Ru nanoparticles) anode electrocatalysts were prepared using radiolytic process (gamma radiation) and tested for methanol electro-oxidation. In this process, water/2-propanol and water/ethylene glycol solutions containing the metallic ions and the carbon support were submitted to gamma radiation under stirring. The water/alcohol ratio (v/v) and the total dose (kGy) were studied. A nominal Pt Ru atomic ratio of 50:50 were used in all experiments. The electrocatalysts were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and cyclic voltammetry (CV). The electro-oxidation of methanol was studied by cyclic voltammetry using the thin porous coating technique. The electrocatalysts prepared in water/2-propanol showed crystallite size in the range of 3-5 nm and Pt Ru atomic ratio of 50:50. The electrocatalysts prepared in water/ethylene glycol showed crystallite size (2-3 nm) smaller than the ones obtained in water/2-propanol, however, the Pt Ru atomic ratios obtained were approximately 80:20, showing that only part of ruthenium ions were reduced. For methanol oxidation the electrocatalytic activity depends on the water/2-propanol and water/ethylene glycol ratio used in the reaction medium. The electrocatalysts prepared in water/2-propanol showed inferior performance to the ones prepared in water/ethylene glycol, which showed similar or superior performances (amperes per gram of platinum) to the commercial electrocatalyst from E-TEK. (author)

  1. One-Pot Synthesis of Size- and Composition-Controlled Ni-Rich NiPt Alloy Nanoparticles in a Reverse Microemulsion System and Their Application

    KAUST Repository

    Biausque, Gregory

    2017-08-16

    Bimetallic nanoparticles have been the subject of numerous research studies in the nanotechnology field, in particular for catalytic applications. Control of the size, morphology, and composition has become a key challenge due to the relationship between these parameters and the catalytic behavior of the particles in terms of activity, selectivity, and stability. Here, we present a one-pot air synthesis of 2 nm NiPt nanoparticles with a narrow size distribution. Control of the size and composition of the alloy particles is achieved at ambient temperature, in the aqueous phase, by the simultaneous reduction of nickel and platinum precursors with hydrazine, using a reverse microemulsion system. After deposition on an alumina support, this Ni-rich nanoalloy exhibits unprecedented stability under the harsh conditions of methane dry reforming.

  2. One-Pot Synthesis of Size- and Composition-Controlled Ni-Rich NiPt Alloy Nanoparticles in a Reverse Microemulsion System and Their Application

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Zhang, Bei; Zhang, Xixiang; Caps, Valerie; Basset, Jean-Marie

    2017-01-01

    Bimetallic nanoparticles have been the subject of numerous research studies in the nanotechnology field, in particular for catalytic applications. Control of the size, morphology, and composition has become a key challenge due to the relationship between these parameters and the catalytic behavior of the particles in terms of activity, selectivity, and stability. Here, we present a one-pot air synthesis of 2 nm NiPt nanoparticles with a narrow size distribution. Control of the size and composition of the alloy particles is achieved at ambient temperature, in the aqueous phase, by the simultaneous reduction of nickel and platinum precursors with hydrazine, using a reverse microemulsion system. After deposition on an alumina support, this Ni-rich nanoalloy exhibits unprecedented stability under the harsh conditions of methane dry reforming.

  3. Controlled synthesis of Pt/CS/PW{sub 12}-GNs composite as an anodic electrocatalyst for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhongshui; Lei, Fengling; Ye, Lingting; Zhang, Xiaofeng; Lin, Shen, E-mail: shenlin@fjnu.edu.cn [Fujian Normal University, College of Chemistry & Chemical Engineering (China)

    2015-04-15

    Controlled assembly in aqueous solution was used to synthesize the well-organized Pt/CS/PW{sub 12}-GNs composite. By the aid of linear cationic polysaccharide chitosan, 2-D distribution worm-like Pt nanoparticles with their length and width of 15–20 and 3–4 nm, respectively, were formed on the surface of CS/PW{sub 12}-GNs using HCOOH as a reducing agent at room temperature. The introduction of CS leads to well dispersion of worm-like Pt nanoparticles, the electroactivity of H{sub 3}PW{sub 12}O{sub 40} (PW{sub 12}) alleviates CO poisoning toward Pt particles, and graphene nanosheets (GNs) ensure excellent electrical conductivity of the composites. The combined action among different components results in significantly enhanced catalytic activity of Pt/CS/PW{sub 12}-GNs toward methanol oxidation and better tolerance of CO. The as-synthesized Pt/CS/PW{sub 12}-GNs exhibit the forward peak current density of 445 mA mg{sup −1}, which is much higher than that (220 mA mg{sup −1}) for Pt/C-JM (the commercially available Johnson Matthey Hispec4000 catalyst, simplified as Pt/C-JM) and some recently reported Pt/graphene-based nanomaterials. The construction of 2-D distribution worm-like Pt nanoparticles and facile wet chemical synthesis strategy provide a promising way to develop superior performance electrocatalysts for direct methanol fuel cells applications.

  4. Morphology Control of Platinum Nanoparticles and their Catalytic Properties

    International Nuclear Information System (INIS)

    Miyazaki, Akane; Balint, Ioan; Nakano, Yoshio

    2003-01-01

    Platinum nanoparticles with different morphology were prepared by reduction of K 2 PtCl 4 solution in the presence of different capping polymers. It was found that the shapes and the sizes of the Pt nanocrystals resulted were related to the kind of capping polymer used. When poly(vinylpyrrolidon) (PVP), poly(N-isopropylacrylamide) (NIPA) and sodium poly(acrylate) (SPA) were used as capping agents, the dominant shapes of the Pt nanocrystals observed by transmission electron microscopy were hexagonal (∼62%), square (∼67%) and triangular (∼41%), respectively. The average sizes of Pt nanocrystals were 6.9, 13.6 and 14.6 nm for capping polymers of PVP, NIPA and SPA, respectively. The colloidal Pt nanoparticles with different morphologies were supported on γ-Al 2 O 3 (1 wt.% Pt) and then their catalytic activity for NO reduction by CH 4 was tested in the 350-600 deg. C temperature range. Additionally, the catalytic activities of these alumina-supported Pt nanocrystals were compared with a conventional catalyst having the average size of Pt particles of ∼2.4 nm. Over the alumina-supported Pt nanocrystals as compared with the conventional Pt/Al 2 O 3 , it was observed that the NO/CH 4 reaction yields to NH 3 and CO decreased significantly and on the other hand, the yield to N 2 O increased. The experimental results are suggesting that the catalytic behavior can be tuned in a convenient way through the morphological control of the metal nanoparticles

  5. Morphology Control of Platinum Nanoparticles and their Catalytic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Akane [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Technology (Japan)], E-mail: akanem@chemenv.titech.ac.jp; Balint, Ioan [Institute of Physical Chemistry, Romanian Academy (Romania); Nakano, Yoshio [Tokyo Institute of Technology, Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Technology (Japan)

    2003-04-15

    Platinum nanoparticles with different morphology were prepared by reduction of K{sub 2}PtCl{sub 4} solution in the presence of different capping polymers. It was found that the shapes and the sizes of the Pt nanocrystals resulted were related to the kind of capping polymer used. When poly(vinylpyrrolidon) (PVP), poly(N-isopropylacrylamide) (NIPA) and sodium poly(acrylate) (SPA) were used as capping agents, the dominant shapes of the Pt nanocrystals observed by transmission electron microscopy were hexagonal ({approx}62%), square ({approx}67%) and triangular ({approx}41%), respectively. The average sizes of Pt nanocrystals were 6.9, 13.6 and 14.6 nm for capping polymers of PVP, NIPA and SPA, respectively. The colloidal Pt nanoparticles with different morphologies were supported on {gamma}-Al{sub 2}O{sub 3} (1 wt.% Pt) and then their catalytic activity for NO reduction by CH{sub 4} was tested in the 350-600 deg. C temperature range. Additionally, the catalytic activities of these alumina-supported Pt nanocrystals were compared with a conventional catalyst having the average size of Pt particles of {approx}2.4 nm. Over the alumina-supported Pt nanocrystals as compared with the conventional Pt/Al{sub 2}O{sub 3}, it was observed that the NO/CH{sub 4} reaction yields to NH{sub 3} and CO decreased significantly and on the other hand, the yield to N{sub 2}O increased. The experimental results are suggesting that the catalytic behavior can be tuned in a convenient way through the morphological control of the metal nanoparticles.

  6. The tunable plasma synthesis of Pt-reduced graphene oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Yulong Ma

    2017-06-01

    Full Text Available Herein, we have developed Pt-plasma reduced graphene oxide (Pt/P-rGO catalysts displaying high overpotentials for methanol oxidation reaction (MOR through facile and tunable plasma treatments. We provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. The analysis results showed that the Pt nanoparticles (NPs were successfully deposited on P-rGO. The deposition and uniformity of Pt NPs were influenced by tuning the discharge power of the plasma. The catalytic performance towards the methanol oxidation reaction is investigated. The Pt/P-rGO NPs composites under 100 W show the best electrocatalytic activity. These results were vital to the further application of graphene-based metal nanocomposites synthesized by plasma technology.

  7. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  8. Excellent performance of Pt-C/TiO2 for methanol oxidation: Contribution of mesopores and partially coated carbon

    Science.gov (United States)

    Wu, Xinbing; Zhuang, Wei; Lu, Linghong; Li, Licheng; Zhu, Jiahua; Mu, Liwen; Li, Wei; Zhu, Yudan; Lu, Xiaohua

    2017-12-01

    Partial deposition of carbon onto mesoporous TiO2 (C/TiO2) were prepared as supporting substrate for Pt catalyst development. Carbon deposition is achieved by in-situ carbonization of furfuryl alcohol. The hybrid catalysts were characterized by XRD, Raman, SEM and TEM and exhibited outstanding catalytic activity and stability in methanol oxidation reaction. The heterogeneous carbon coated on mesoporous TiO2 fibers provided excellent electrical conductivity and strong interfacial interaction between TiO2 support and Pt metal nanoparticles. Methanol oxidation reaction results showed that the activity of Pt-C/TiO2 is 3.0 and 1.5 times higher than that of Pt-TiO2 and Pt-C, respectively. In addition, the Pt-C/TiO2 exhibited a 6.7 times enhanced stability compared with Pt-C after 2000 cycles. The synergistic effect of C/TiO2 is responsible for the enhanced activity of Pt-C/TiO2, and its excellent durability could be ascribed to the strong interfacial interaction between Pt nanoparticles and C/TiO2 support.

  9. ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere

    International Nuclear Information System (INIS)

    Yoshida, K; Zhang, X; Tanaka, N; Boyes, E D; Gai, P L

    2014-01-01

    There have been reports of challenges in designing platinum carbon (Pt/C) electrode catalysts for PEMFC. Pt/C electrode catalysts deactivate much faster on the cathode (in moisturized O 2 ) than on the anode (in H 2 ). To understand influences of moisture and oxygen on the deactivation of the Pt/C catalysts in proton-exchange-membrane fuel cells (PEMFCs), spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied with a high-speed CCD camera. Structural changes of the Pt/C electrode catalysts were dynamically recorded in moisturized nitrogen, oxygen and hydrogen. The mass spectrometry confirmed the moisture content (between 5 to 30 %) of nitrogen driving gas through a humidifier. Coalescence of platinum nanoparticles (D = 3.24 nm) was carefully evaluated in pure N 2 and moisturized N 2 atmosphere. The Pt/C showed considerable structural weakness in a moisturized N2 atmosphere. Comparable results obtained by AC-ETEM in different gas atmospheres also suggested ways to improve the oxygen reduction reaction (ORR). In this paper, the deactivation process due to moisture (hydroxylation) of carbon supports is discussed using for comparison the movement of platinum nanoparticles measured in moisturized nitrogen and pure nitrogen atmospheres

  10. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...... size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet...

  11. Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP

    International Nuclear Information System (INIS)

    Liu, Na; Feng, Feng; Liu, Zhimin; Ma, Zhanfang

    2015-01-01

    We describe the use of porous platinum nanoparticles (pPt NPs) and PdPt nanocages (PdPt NCs) in an electrochemical immunoassay for two tumor markers (CEA and AFP) directly in serum and with enhanced detection performance. The pPt NPs possess a high specific surface area and electrical conductivity, while the PdPt NCs display excellent catalytic property and high loading capacity. The PdPt NCs were labeled with anti-CEA and thionine, and the PdPt NCs were labeled with anti-AFP and ferrocene. The resulting electrode displayed a large decrease of the anodic peak current and an increase of cathodic peak current for hydrogen peroxide (H 2 O 2 ). The dual square wave voltammetric immunoassay was performed at −0.1 V (for CEA) and +0.6 V (for AFP) after exposure to a sample containing CEA and AFP and in the presence of H 2 O 2 . CEA can be detected in the 0.05 to 200 ng mL −1 concentration range and AFP between 0.03 and 100 ng mL −1 . The limits of detection are 1.4 pg mL −1 for CEA and 1 pg mL −1 for AFP (at an SNR of 3). The sensitivity of the method (expressed as slope vs. concentration) is better by a factor of 4.6 to 100 compared to conventional electrochemical immunoassays. Analytical data obtained with diluted serum samples were in good agreement with reference values obtained via a standard ELISA. Negligible cross-reactivity is found between CEA and AFP. In our opinion, this approach paves the way for developing other kinds of electrochemical immunosensors based on the use of pPt NPs and PdPt NCs as materials for designing new electrode interfaces. (author)

  12. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst wa......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society.......A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst...... was found to be a mixture of nanocrystalline, mostly unalloyed Pt and an amorphous phase mostly of Ru and to a lesser extent of Pt oxides on top of the crystalline phase. The flame-produced Pt1Ru1 demonstrated similar onset potential but similar to 60% higher activity compared to commercially available Pt1...

  13. High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Monireh Faraji

    2016-04-01

    Full Text Available Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, stacking of Graphene can be effectively prevented, promoting diffusion of oxygen molecules through the Graphene sheets and enhancing the oxygen reduction reaction electrocatalytic activity. Compared to commercial catalysts (i.e., state-of-the-art Pt/C catalyst the as synthesized Pt supported polydopamine grafted reduced graphite oxide (Pt@PDA-rGO hybrid displays very high oxygen reduction reaction catalytic activities. We propose a unique 2D profile of the polydopamine-rGO role as a barrier preventing leaching of Pt into the electrolyte. The fabricated electrodes were evaluated with electrochemical techniques for oxygen reduction reaction and the obtained results were further verified by the transmission electron microscopy micrographs on the microstructure of the integrated pt@PDA-rGO structures. It has been revealed that the electrochemical impedance spectroscopy technique can provide more explicit information than polarization curves on the performance dependence on charge-transfer and mass transport processes at different overpotential regions.

  14. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process

    Science.gov (United States)

    Xue, Xinzhong; Ge, Junjie; Tian, Tian; Liu, Changpeng; Xing, Wei; Lu, Tianhong

    In this paper, five Pt 3Sn 1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt 3Sn 1P 2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt 3Sn 1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm -2 that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.

  15. Alloys of Pt and Rare Earths for the Oxygen Electroreduction Reaction

    DEFF Research Database (Denmark)

    Malacrida, Paolo

    This thesis presents the development and characterization of a new class of Pt alloys for catalyzing the Oxygen Reduction Reaction (ORR), in perspective of a future substitution of traditional Pt-based catalysts at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Focused on spectr....... A number of bimetallic alloys based on Pt and a rare earth, like the Pt-Y system or more recently proposed Pt-lanthanide phases, have been tested and characterized. Polycrystalline Pt5La and Pt5Ce exhibited more than a factor of 3 enhancement in specific activity relative to state......-Y nanoparticles are among the most active ORR catalysts ever reported, although they lose 37 % of this activity after stability test. Similar to the case of polycrystals, after immersion in the acidic electrolyte and testing the active phase consists of a Pt shell surrounding an alloyed core. Also in this case...

  16. Pt20RuxSny nanoparticles dispersed on mesoporous carbon CMK-3 and their application in the oxidation of 2-carbon alcohols and fermentation effluent

    International Nuclear Information System (INIS)

    Lo, An-Ya; Chung, Yi-Chen; Hung, Wei-Hsuan; Hsu, Yun-Chi; Tseng, Chuan-Ming; Zhang, Wei-Lun; Wang, Fu-Kai; Lin, Chiu-Yue

    2017-01-01

    Highlights: • Pt 20 Ru x Sn y @C catalysts are formed by dispersing Pt-Sn and Pt-Ru-Sn NPs on CMK-3. • They are tested in fuel cells using ethanol, ethylene glycol, and CFHPE as fuels. • Higher Sn contents improve catalytic efficiency of Pt 20 Ru x Sn y when x = 0 or x = 10. • Role of Sn in C−C bond cleavage and improving poisoning tolerance is explained. • Pt 20 Ru 10 Sn 15 @C is used to show feasibility of using bioalcohol from CFHPE as fuel. - Abstract: We report the synthesis of Pt-Sn binary and Pt-Ru-Sn ternary alloy nanoparticles (NPs) dispersed on mesoporous carbon CMK-3 for bioalcohol fuel cell applications where ethanol, ethylene glycol, and fermentative hydrogen production effluent were used as the fuels. The proposed alloy electrocatalysts, denoted as Pt 20 Ru x Sn y @C (where 20, x, and y represent the weight fractions of Pt, Ru, and Sn, respectively), were examined using scanning electron microscopy, energy-dispersive X-ray spectroscopy mapping, transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction analysis, and electrochemical measurements, in order to determine their morphologies, microstructures, compositions, phase structures, and electrochemical characteristics. The effects of the Sn content on the following factors were examined: 1) average particle size of the alloy NPs, 2) mesoporosity, 3) electrochemically active surfaces of Pt 20 Ru x Sn y @C, and 4) ethanol oxidation reaction and ethylene glycol oxidation reaction activities. Higher Sn contents improved the catalytic efficiency of Pt 20 Ru x Sn y when x = 0 or x = 10, with the optimized compositions being Pt 20 Sn 30 and Pt 20 Ru 10 Sn 15 for the binary and ternary alloys, respectively. Based on the ethanol and ethylene glycol oxidation reactions, we explain the role of Sn in promoting C−C bond cleavage and in improving catalyst tolerance against poisoning. Overall, for both the ethanol system and the ethylene glycol system, the catalytic

  17. Effects of thermal annealing on C/FePt granular multilayers: in situ and ex situ studies

    International Nuclear Information System (INIS)

    Babonneau, D; Abadias, G; Toudert, J; Girardeau, T; Fonda, E; Micha, J S; Petroff, F

    2008-01-01

    The comprehensive study of C/FePt granular multilayers prepared by ion-beam sputtering at room temperature and subsequent annealing is reported. The as-deposited multilayers consist of carbon-encapsulated FePt nanoparticles (average size ∼3 nm) with a disordered face-centered-cubic structure. The effects of thermal annealing on the structural and magnetic properties are investigated by using dedicated ex situ and in situ techniques, including high-resolution transmission electron microscopy, extended x-ray absorption fine structure, magnetometry, and coupled grazing incidence small-angle x-ray scattering and x-ray diffraction. Our structural data show that the particle size and interparticle distance increase slightly with annealing at temperatures below 790 K by thermally activated migration of Fe and Pt atoms. We find that thermal annealing at temperatures above 870 K results in the dramatic growth of the FePt nanoparticles by coalescence and their gradual L1 0 ordering. In addition, we observe a preferential graphitization of the carbon matrix, which provides protection against oxidation for the FePt nanoparticles. Magnetization measurements indicate that progressive magnetic hardening occurs after annealing. The dependences of the blocking temperature, saturation magnetization, coercivity, and magnetocrystalline anisotropy energy on the annealing temperature are discussed on the basis of the structural data

  18. Synthesis and characterizations of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) functionalized multi-walled carbon nanotubes with superior activity for NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Zhao, Yanchun, E-mail: yanchunzhao@aliyun.com; Peng, Xinglan; Wang, Jing; Jing, Chen; Tian, Jianniao, E-mail: birdtjn@sina.com

    2015-10-15

    Highlights: • Simple strategy for the synthesis of CoPt-PEDOT:PSS/MWCNTs. • PEDOT:PSS as a modifier of MWCNTs can improve the particles dispersion. • Superior catalytic activities for the NaBH{sub 4} hydrolysis reaction. - Abstract: We present here a facile strategy for synthesis of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) functionalized multi-walled carbon nanotubes (MWCNTs). The as-prepared CoPt-PEDOT:PSS/MWCNT catalyst was characterized with UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron. The well-supported and low-Pt-content nanostructure catalyst exhibits superior catalytic activity for the NaBH{sub 4} hydrolysis reaction with a 47.3 kJ mol{sup −1} of activation energy. The maximum hydrogen generation rate is 6900 mL min{sup −1} g{sup −1} at 298 K.

  19. Synthesis of SWNT/Pt nanocomposites for their effective role in hydrogen storage applications

    Science.gov (United States)

    Sharma, Anshu; Andreas, Rossos; Nehra, S. P.

    2018-05-01

    Single Wall Carbon Nanotubes (SWNTs) decorated with platinum were synthesized for hydrogen storage applications. Platinum was deposited on the nanotubes using hexachloroplatinic acid (H2PtCl6.6H2O) as a precursor. Commercial SWNTs were also used to compare the results. The obtained SWNTs/Pt nanocomposite was characterized by various techniques such as powder X-ray diffractrometry (XRD), Raman Spectroscopy and Scanning Electron Microscopy (SEM). Furthermore, in the case of SWNTs/Pt, Pt nanoparticles are found to be uniformly dispersed and bound to the SWNTs acting like a single atom catalyst.

  20. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions.

    Science.gov (United States)

    Li, Wei; Chen, Bin; Zhang, Haixiang; Sun, Yanhua; Wang, Jun; Zhang, Jinli; Fu, Yan

    2015-04-15

    Bovine serum albumin (BSA) is chosen as the nucleation templates to synthesize Pt-based peroxidase nanomimetics with the average diameter of 2.0nm. The efficient Pt nanozymes consist of 57% Pt(0) and 43% Pt(2+), which possess highly peroxidase-like activity with the Km values of 0.119mM and 41.8mM toward 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), respectively. Interestingly, Hg(2+) is able to down-regulate the enzymatic activity of Pt nanoparticles, mainly through the interactions between Hg(2+) and Pt(0). It is the first report to explore a colorimetric Hg(2+) sensing system on the basis of peroxidase mimicking activities of Pt nanoparticles. One of our most intriguing results is that BSA-stabilized Pt nanozymes demonstrate the ability to sense Hg(2+) ions in aqueous solution without significant interference from other metal ions. The Hg(2+) detection limit of 7.2nM is achieved with a linear response range of 0-120nM, and the developed sensing system is potentially applicable for quantitative determination of Hg(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Ethanol electrooxidation on novel carbon supported Pt/SnO{sub x}/C catalysts with varied Pt:Sn ratio

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Colmenares, L.; Jusys, Z. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Sun, G.Q. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China)], E-mail: gqsun@dicp.ac.cn; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)], E-mail: juergen.behm@uni-ulm.de

    2007-12-01

    Novel carbon supported Pt/SnO{sub x}/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO{sub ad} stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO{sub x}/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO{sub x}/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO{sub x}/C catalysts, acetic acid and acetaldehyde represent dominant products, CO{sub 2} formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol{sup -1}), but are lower than on Pt/C (32 kJ mol{sup -1}). The somewhat better performance of the Pt/SnO{sub x}/C catalysts compared to alloyed PtSn{sub x}/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.

  2. Identification of the formation of metal-vinylidene interfacial bonds of alkyne-capped platinum nanoparticles by isotopic labeling.

    Science.gov (United States)

    Hu, Peiguang; Chen, Limei; Deming, Christopher P; Bonny, Lewis W; Lee, Hsiau-Wei; Chen, Shaowei

    2016-10-07

    Stable platinum nanoparticles were prepared by the self-assembly of 1-dodecyne and dodec-1-deuteroyne onto bare platinum colloid surfaces. The nanoparticles exhibited consistent core size and optical properties. FTIR and NMR measurements confirmed the formation of Pt-vinylidene (Pt[double bond, length as m-dash]C[double bond, length as m-dash]CH-) interfacial linkages rather than Pt-acetylide (Pt-C[triple bond, length as m-dash]C-) and platinum-hydride (Pt-H) bonds.

  3. Tuning the synthesis of platinum-copper nanoparticles with a hollow core and porous shell for the selective hydrogenation of furfural to furfuryl alcohol

    Science.gov (United States)

    Huang, Shuangshuang; Yang, Nating; Wang, Shibin; Sun, Yuhan; Zhu, Yan

    2016-07-01

    Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol.Pt-Cu nanoparticles constructed with a hollow core and porous shell have been synthesized in which Pt-Cu cages with multiporous outermost shells are formed at the initial stage and then the Pt and Cu atoms in solution continuously fed these hollow-core of cages by passing through the porous tunnels of the outermost shells, finally leading to the formation of hollow structures with different sizes. Furthermore, these hollow-core Pt-Cu nanoparticles are more effective than the solid-core Pt-Cu nanoparticles for the catalytic hydrogenation of furfural toward furfuryl alcohol. The former can achieve almost 100% conversion of furfural with 100% selectivity toward the alcohol. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03894h

  4. Printing graphene-carbon nanotube-ionic liquid gel on graphene paper: Towards flexible electrodes with efficient loading of PtAu alloy nanoparticles for electrochemical sensing of blood glucose.

    Science.gov (United States)

    He, Wenshan; Sun, Yimin; Xi, Jiangbo; Abdurhman, Abduraouf Alamer Mohamed; Ren, Jinghua; Duan, Hongwei

    2016-01-15

    The increasing demands for portable, wearable, and implantable sensing devices have stimulated growing interest in innovative electrode materials. In this work, we have demonstrated that printing a conductive ink formulated by blending three-dimensional (3D) porous graphene-carbon nanotube (CNT) assembly with ionic liquid (IL) on two-dimensional (2D) graphene paper (GP), leads to a freestanding GP supported graphene-CNT-IL nanocomposite (graphene-CNT-IL/GP). The incorporation of highly conductive CNTs into graphene assembly effectively increases its surface area and improves its electrical and mechanical properties. The graphene-CNT-IL/GP, as freestanding and flexible substrates, allows for efficient loading of PtAu alloy nanoparticles by means of ultrasonic-electrochemical deposition. Owing to the synergistic effect of PtAu alloy nanoparticles, 3D porous graphene-CNT scaffold, IL binder and 2D flexible GP substrate, the resultant lightweight nanohybrid paper electrode exhibits excellent sensing performances in nonenzymatic electrochemical detection of glucose in terms of sensitivity, selectivity, reproducibility and mechanical properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effect of heat treatment on stability of gold particle modified carbon supported Pt-Ru anode catalysts for a direct methanol fuel cell

    International Nuclear Information System (INIS)

    Li Xiaowei; Liu Juanying; Huang Qinghong; Vogel, Walter; Akins, Daniel L.; Yang Hui

    2010-01-01

    Carbon supported Au-PtRu (Au-PtRu/C) catalysts were prepared as the anodic catalysts for the direct methanol fuel cell (DMFC). The procedure involved simple deposition of Au particles on a commercial Pt-Ru/C catalyst, followed by heat treatment of the resultant composite catalyst at 125, 175 and 200 o C in a N 2 atmosphere. High-resolution transmission electron microscopy (HR-TEM) measurements indicated that the Au nanoparticles were attached to the surface of the Pt-Ru nanoparticles. We found that the electrocatalytic activity and stability of the Au-PtRu/C catalysts for methanol oxidation is better than that of the PtRu/C catalyst. An enhanced stability of the electrocatalyst is observed and attributable to the promotion of CO oxidation by the Au nanoparticles adsorbed onto the Pt-Ru particles, by weakening the adsorption of CO, which can strongly adsorb to and poison Pt catalyst. XPS results show that Au-PtRu/C catalysts with heat treatment lead to surface segregation of Pt metal and an increase in the oxidation state of Ru, which militates against the dissolution of Ru. We additionally find that Au-PtRu/C catalysts heat-treated at 175 o C exhibit the highest electrocatalytic stability among the catalysts prepared by heat treatment: this observation is explained as due to the attainment of the highest relative concentration of gold and the highest oxidation state of Ru oxides for the catalyst pretreated at this temperature.

  6. Practical chemical analysis of Pt and Pd based heterogeneous catalysts with hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H., E-mail: YOSHIKAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Matolínová, I.; Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2013-10-15

    Highlights: •Hard X-ray photoelectron spectroscopy (HAXPES) enables interface analysis of catalyst. •HAXPES enables overall analysis of porous film of Pt-doped CeO{sub 2} and related catalyst. •HAXPES enables analysis of trace elements for Pd and Pt{sub 3}Ni nanoparticle catalysts. -- Abstract: Interfacial properties including configuration, porosity, chemical states, and atomic diffusion greatly affect the performance of supported heterogeneous catalysts. Hard X-ray photoelectron spectroscopy (HAXPES) can be used to analyze the interfaces of heterogeneous catalysts because of its large information depth of more than 20 nm. We use HAXPES to examine Pt-doped CeO{sub 2} and related thin film catalysts evaporated on Si, carbon, and carbon nanotube substrates, because Pt-doped CeO{sub 2} has great potential as a noble metal-based heterogeneous catalyst for fuel cells. The HAXPES measurements clarify that the dopant material, substrate material, and surface pretreatment of substrate are important parameters that affect the interfacial properties of Pt-doped CeO{sub 2} and related thin film catalysts. Another advantage of HAXPES measurement of heterogeneous catalysts is that it can be used for chemical analysis of trace elements by detecting photoelectrons from deep core levels, which have large photoionization cross-sections in the hard X-ray region. We use HAXPES for chemical analysis of trace elements in Pd nanoparticle catalysts immobilized on sulfur-terminated substrates and Pt{sub 3}Ni nanoparticle catalysts enveloped by dendrimer molecules.

  7. The nonenzyme ethanol sensor based on pt nps and fe/sub 3/O/sub 4/ mnps modified au electrode

    International Nuclear Information System (INIS)

    Wan, J.; Ma, X.; Yin, G.

    2013-01-01

    The none enzyme ethanol sensor was prepared using Pt nanoparticles (NPs) and Fe/sub 3/O/sub 4/ magnetic nanoparticles (MNPs) modified Au electrode. Pt NPs were deposited on the gold plated electrode through the method of potentiostatic deposition. Fe/sub 3/O/sub 4/ magnetic nanoparticles were added to the surface of Pt NPs modified Au electrode to obtain the Au/Pt/ Fe/sub 3/O/sub 4/ MNPs electrode. The as-prepared Au/Pt/Fe/sub 3/O/sub 4/ MNPs electrode was used for the detection of liquid ethanol without using enzyme. Cyclic voltammetry and differential pulse voltammetry were used to study the behavior of ethanol electro-catalytic oxidation on Pt/Au/Fe/sub 3/O/sub 4/ electrode. It was found that Pt NPs played strong catalytic oxidation role of ethanol with the presence of Fe/sub 3/O/sub 4/ MNPs. The linear range of Au/Pt/Fe/sub 3/O/sub 4/ MNPs electrode for the detection of ethanol was of 2 x 10 /sup -5/ 1.1 x 10/sup -4/ mol L/sup -1/ and the detection limit was of 3.2 x 10/sup -6/ mol L/sup -5/ when signal to noise ratio was 3sigma. The sensibility of the sensor is 420.4 microA mmol/sup -1/ /sup -2cm/. The simple method provided an effective means for fabricating the novel sensors. (author)

  8. Facile synthesis of PbTiO3 truncated octahedra via solid-state reaction and their application in low-temperature CO oxidation by loading Pt nanoparticles

    KAUST Repository

    Yin, Simin; Zhu, Yihan; Ren, Zhaohui; Chao, Chunying; Li, Xiang; Wei, Xiao; Shen, Ge; Han, Yu; Han, Gaorong

    2014-01-01

    Perovskite PbTiO3 (PTO) nanocrystals with a truncated octahedral morphology have been prepared by a facile solid-state reaction. Pt nanoparticles preferentially nucleated on the {111} facet of PTO nanocrystals exhibit a remarkable low-temperature catalytic activity towards CO oxidation from a temperature as low as 30 °C and achieve 100% conversion at ∼50 °C. © 2014 the Partner Organisations.

  9. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xinzhong; Ge, Junjie; Tian, Tian [Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, Changpeng; Xing, Wei; Lu, Tianhong [Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China)

    2007-10-25

    In this paper, five Pt{sub 3}Sn{sub 1}/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt{sub 3}Sn{sub 1}P{sub 2}/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt{sub 3}Sn{sub 1}/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm{sup -2} that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst. (author)

  10. A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells.

    Science.gov (United States)

    Shimazaki, Yuzuru; Hayasaka, Sho; Koyama, Tsubasa; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2010-11-15

    A methanol oxidation catalyst with improved durability in acidic environments is reported. The catalyst consists of PtRu alloy nanoparticles on a carbon support that were stabilized with a silane-coupling agent. The catalyst was prepared by reducing ions of Pt and Ru in the presence of a carbon support and the silane-coupling agent. The careful choice of preparatory conditions such as the concentration of the silane-coupling agent and solution pH resulted in the preparation of catalyst in which the PtRu nanoparticles were dispersively adsorbed onto the carbon support. The catalytic activity was similar to that of a commercial catalyst and was unchanged after immersion in sulfuric acid solution for 1000 h, suggesting the high durability of the PtRu catalyst for the anode of direct methanol fuel cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Surface chemistry of "unprotected" nanoparticles

    DEFF Research Database (Denmark)

    Schrader, Imke; Warneke, Jonas; Neumann, Sarah

    2015-01-01

    The preparation of colloidal nanoparticles in alkaline ethylene glycol is a powerful approach for the preparation of model catalysts and ligand-functionalized nanoparticles. For these systems the term "unprotected" nanoparticles has been established because no strongly binding stabilizers...... study. "Unprotected" Pt and Ru nanoparticles were characterized by NMR spectroscopy, which does not evidence the presence of any C-H containing species bound to the particle surface. Instead, the colloids were found to be covered by CO, as demonstrated by IR spectroscopy. However, analysis...

  12. Platinum Iron Intermetallic Nanoparticles Supported on Carbon Formed In Situ by High-Pressure Pyrolysis for Efficient Oxygen Reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Zhang, Wei

    2016-01-01

    Carbon-supported PtFe alloy catalysts are synthesized by the one-step, high-temperature pyrolysis of Pt, Fe, and C precursors. As a result of the high temperature, the formed PtFe nanoparticles possess highly ordered, face-centered tetragonal, intermetallic structures with a mean size of ≈11.8 nm....... At 0.9 V versus the reversible hydrogen electrode, the PtFe nanoparticles show a 6.8 times higher specific activity than the reference Pt/C catalyst towards the oxygen reduction reaction (ORR) as well as excellent stability, most likely because of the durable intermetallic structure and the preleaching...... treatment of the catalyst. During these preliminary syntheses, we found that a portion of the PtFe nanoparticles is buried in the in situ formed carbon phase, which limits Pt utilization in the catalyst and results in a mass-specific activity equivalent to the commercial Pt/C catalyst. Moreover...

  13. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition.

    Science.gov (United States)

    Chen, Siguo; Wei, Zidong; Li, Hua; Li, Li

    2010-12-14

    High Pt utilization PEMFC electrodes were prepared by an alternative ion-exchange/electrodeposition (AIEE) technique. The results demonstrated that the MEA employing an AIEE electrode with a Pt loading of 0.014 mg Pt cm(-2) exhibits performance approximately 2.2 times larger than that employing a conventional Nafion-bonded Pt/C electrode with a same Pt loading.

  14. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Kim, Seok-Soon; Nah, Yoon-Chae; Noh, Yong-Young; Jo, Jang; Kim, Dong-Yu

    2006-01-01

    Pt electrodes were prepared by direct and pulse current electrodeposition for use as counter electrodes in dye-sensitized solar cells. Scanning electron microscope and transmission electron microscope images confirmed the formation of uniform Pt nanoclusters of ∼40 nm composed of 3 nm nanoparticles, when the pulse current electrodeposition method was used, as opposed to the dendritic growth of Pt by the results from direct current electrodeposition. By applying pulse electrodeposited Pt which has a 1.86 times higher surface area compared to direct current electrodeposited Pt, short-circuit current and conversion efficiency were increased from 10.34 to 14.11 mA/cm 2 and from 3.68 to 5.03%, respectively. In addition, a flexible solar cell with a pulse current electrodeposited Pt counter electrode with a conversion efficiency of 0.86% was demonstrated

  15. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  16. Radiolytic Synthesis of Pt-Ru Catalysts Based on Functional Polymer-Grafted MWNT and Their Catalytic Efficiency for CO and MeOH

    Directory of Open Access Journals (Sweden)

    Dae-Soo Yang

    2011-01-01

    Full Text Available Pt-Ru catalysts based on functional polymer-grafted MWNT (Pt-Ru@FP-MWNT were prepared by radiolytic deposition of Pt-Ru nanoparticles on functional polymer-grafted multiwalled carbon nanotube (FP-MWNT. Three different types of functional polymers, poly(acrylic acid (PAAc, poly(methacrylic acid (PMAc, and poly(vinylphenyl boronic acid (PVPBAc, were grafted on the MWNT surface by radiation-induced graft polymerization (RIGP. Then, Pt-Ru nanoparticles were deposited onto the FP-MWNT supports by the reduction of metal ions using γ-irradiation to obtain Pt-Ru@FP-MWNT catalysts. The Pt-Ru@FP-MWNT catalysts were then characterized by XRD, XPS, TEM ,and elemental analysis. The catalytic efficiency of Pt-Ru@FP-MWNT catalyst was examined for CO stripping and MeOH oxidation for use in a direct methanol fuel cell (DMFC. The Pt-Ru@PVPBAc-MWNT catalyst shows enhanced activity for electro-oxidation of CO and MeOH oxidation over that of the commercial E-TEK catalyst.

  17. The microwave-assisted ionic liquid nanocomposite synthesis: platinum nanoparticles on graphene and the application on hydrogenation of styrene

    Science.gov (United States)

    2013-01-01

    The microwave-assisted nanocomposite synthesis of metal nanoparticles on graphene or graphite oxide was introduced in this research. With microwave assistance, the Pt nanoparticles on graphene/graphite oxide were successfully produced in the ionic liquid of 2-hydroxyethanaminium formate [HOCH2CH2NH3][HCO2]. On graphene/graphite oxide, the sizes of Pt nanoparticles were about 5 to 30 nm from transmitted electron microscopy (TEM) results. The crystalline Pt structures were examined by X-ray diffraction (XRD). Since hydrogenation of styrene is one of the important well-known chemical reactions, herein, we demonstrated then the catalytic hydrogenation capability of the Pt nanoparticles on graphene/graphite oxide for the nanocomposite to compare with that of the commercial catalysts (Pt/C and Pd/C, 10 wt.% metal catalysts on activated carbon from Strem chemicals, Inc.). The conversions with the Pt nanoparticles on graphene are >99% from styrene to ethyl benzene at 100°C and under 140 psi H2 atmosphere. However, ethyl cyclohexane could be found as a side product at 100°C and under 1,520 psi H2 atmosphere utilizing the same nanocomposite catalyst. PMID:24103100

  18. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-01-01

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO x /MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO x addition. • Bi-functional mechanism is facilitated in presence of CoO x . - Abstract: The electro-catalytic behavior of Pt-CoO x /MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH 4  as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO x , Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO ads on Pt active sites by the participation of CoO x . Compared to Pt/MWCNTs, Pt-CoO x /MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO x /MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups

  19. Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes

    Directory of Open Access Journals (Sweden)

    Peter Mardle

    2018-01-01

    Full Text Available The stacking and overlapping effect of two-dimensional (2D graphene nanosheets in the catalyst coating layer is a big challenge for their practical application in proton exchange membrane fuel cells (PEMFCs. These effects hinder the effective transfer of reactant gases to reach the active catalytic sites on catalysts supported on the graphene surface and the removal of the produced water, finally leading to large mass transfer resistances in practical electrodes and poor power performance. In this work, we evaluate the catalytic power performance of aligned Pt nanowires grown on reduced graphene oxide (rGO (PtNW/rGO as cathodes in 16-cm2 single PEMFCs. The results are compared to Pt nanoparticles deposited on rGO (Pt/rGO and commercial Pt/C nanoparticle catalysts. It is found that the scaffolding effect from the aligned Pt nanowire structure reduces the mass transfer resistance in rGO-based catalyst electrodes, and a nearly double power performance is achieved as compared with the Pt/rGO electrodes. However, although a higher mass activity was observed for PtNW/rGO in membrane electrode assembly (MEA measurement, the power performance obtained at a large current density region is still lower than the Pt/C in PEMFCs because of the stacking effect of rGO.

  20. Effect of ordering of PtCu₃ nanoparticle structure on the activity and stability for the oxygen reduction reaction.

    Science.gov (United States)

    Hodnik, Nejc; Jeyabharathi, Chinnaiah; Meier, Josef C; Kostka, Alexander; Phani, Kanala L; Rečnik, Aleksander; Bele, Marjan; Hočevar, Stanko; Gaberšček, Miran; Mayrhofer, Karl J J

    2014-07-21

    In this study the performance enhancement effect of structural ordering for the oxygen reduction reaction (ORR) is systematically studied. Two samples of PtCu3 nanoparticles embedded on a graphitic carbon support are carefully prepared with identical initial composition, particle dispersion and size distribution, yet with different degrees of structural ordering. Thus we can eliminate all coinciding effects and unambiguously relate the improved activity of the ORR and more importantly the enhanced stability to the ordered nanostructure. Interestingly, the electrochemically induced morphological changes are common to both ordered and disordered samples. The observed effect could have a groundbreaking impact on the future directions in the rational design of active and stable platinum alloyed ORR catalysts.

  1. Silver ion mediated shape control of platinum nanoparticles: Removal of silver by selective etching leads to increased catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael E.; Yue, Yao; Habas, Susan E.; Rioux, Robert M.; Teall, Chelsea I.; Somorjai, G.A.

    2008-01-09

    A procedure has been developed for the selective etching of Ag from Pt nanoparticles of well-defined shape, resulting in the formation of elementally-pure Pt cubes, cuboctahedra, or octahedra, with a largest vertex-to-vertex distance of {approx}9.5 nm from Ag-modified Pt nanoparticles. A nitric acid etching process was applied Pt nanoparticles supported on mesoporous silica, as well as nanoparticles dispersed in aqueous solution. The characterization of the silica-supported particles by XRD, TEM, and N{sub 2} adsorption measurements demonstrated that the structure of the nanoparticles and the mesoporous support remained conserved during etching in concentrated nitric acid. Both elemental analysis and ethylene hydrogenation indicated etching of Ag is only effective when [HNO{sub 3}] {ge} 7 M; below this concentration, the removal of Ag is only {approx}10%. Ethylene hydrogenation activity increased by four orders of magnitude after the etching of Pt octahedra that contained the highest fraction of silver. High-resolution transmission electron microscopy of the unsupported particles after etching demonstrated that etching does not alter the surface structure of the Pt nanoparticles. High [HNO{sub 3}] led to the decomposition of the capping agent, polyvinylpyrollidone (PVP); infrared spectroscopy confirmed that many decomposition products were present on the surface during etching, including carbon monoxide.

  2. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  3. The performance and degradation of Pt electrocatalysts on novel carbon carriers for PEMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Mamat, M.S.; Grant, D.M.; Walker, G.S. [Energy and Sustainability Research Division, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Grigoriev, S.A.; Dzhus, K.A. [Hydrogen Energy and Plasma Technology Institute, Russian Research Center ' ' Kurchatov Institute' ' , Kurchatov sq. 1, 123182 Moscow (Russian Federation)

    2010-07-15

    Electrocatalyst stability is an important factor influencing the performance of polymer electrolyte membrane (PEM) fuel cells and is essential in maintaining the cell output. The aim of this work was to elucidate factors which influence the stability of platinum supported onto graphitic nanofibres (Pt/GNFs) and to compare the performance of these materials with the commonly used Pt/Vulcan electrocatalyst. Platinum nanoparticles (average diameter of 6.9 nm) were supported on GNFs which were prepared by chemical vapour deposition over an unsupported nickel oxide (NiO) catalyst precursor. The performance of Pt/GNFs based electrodes were studied by cyclic voltammetry and a single-cell fuel cell test and were compared with a commercially available carbon nanostructure, Vulcan XC-72, which was also impregnated with Pt nanoparticles. Characterisation of the pre- and post-operation of the Pt/GNFs by XRD and TEM showed that structural changes of the Pt had occurred during testing. It was found that the average diameter of each grain and the degree of agglomeration among particles was increased, creating elongated clusters of Pt along the carbon fibre. Analysis of electrocatalyst post-operation also identified that the sulphate from the Nafion membrane was reacting with the Pt surface forming platinum sulphide (PtS). These phases were confirmed by the presence of low intensity, but sharp XRD peaks, attributed to a few large diameter particles (49 nm). These two factors resulted in current density dropping from 0.2 A/cm{sup 2} to 0.1 A/cm{sup 2} (at 0.70 V) over a 25 h test period. (author)

  4. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.; Krier, James M.; Alayoglu, Selim; Shin, Jae-Yoon; An, Kwangjin; Komvopoulos, Kyriakos; Liu, Zhi; Somorjai, Gabor A.

    2014-01-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn

  5. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst

    Science.gov (United States)

    Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang

    2017-12-01

    Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.

  6. Photoacoustically-guided photothermal killing of mosquitoes targeted by nanoparticles.

    Science.gov (United States)

    Foster, Stephen R; Galanzha, Ekaterina I; Totten, Daniel C; Beneš, Helen; Shmookler Reis, Robert J; Zharov, Vladimir P

    2014-07-01

    In biomedical applications, nanoparticles have demonstrated the potential to eradicate abnormal cells in small localized pathological zones associated with cancer or infections. Here, we introduce a method for nanotechnology-based photothermal (PT) killing of whole organisms considered harmful to humans or the environment. We demonstrate that laser-induced thermal, and accompanying nano- and microbubble phenomena, can injure or kill C. elegans and mosquitoes fed carbon nanotubes, gold nanospheres, gold nanoshells, or magnetic nanoparticles at laser energies that are safe for humans. In addition, a photoacoustic (PA) effect was used to control nanoparticle delivery. Through the integration of this technique with molecular targeting, nanoparticle clustering, magnetic capturing and spectral sharpening of PA and PT plasmonic resonances, our laser-based PA-PT nano-theranostic platform can be applied to detection and the physical destruction of small organisms and carriers of pathogens, such as malaria vectors, spiders, bed bugs, fleas, ants, locusts, grasshoppers, phytophagous mites, or other arthropod pests, irrespective of their resistance to conventional treatments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  8. In vitro free radical scavenging activity of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Miyamoto, Yusei [Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 (Japan); Takahashi, Kyoko; Mashino, Tadahiko, E-mail: yusei74@k.u-tokyo.ac.j [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512 (Japan)

    2009-11-11

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 {+-} 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical AOO. generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O{sub 2} and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by AOO. generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 {mu}M DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 {mu}M DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  9. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    International Nuclear Information System (INIS)

    Garcia, M.G.; Armendariz, G.M.E.; Godinez, Luis A.; Torres, J.; Sepulveda-Guzman, S.; Bustos, E.

    2011-01-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 ± 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  10. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Department of Chemistry, Universidad de Guanajuato, Cerro de la Venada S/N Col. Pueblito de Rocha, 36040 Guanajuato, Gto (Mexico); Armendariz, G.M.E.; Godinez, Luis A.; Torres, J. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad, San Nicolas de los Garza, Nuevo Leon, 66451 Nuevo Leon (Mexico); Bustos, E., E-mail: ebustos@cideteq.mx [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico)

    2011-09-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 {+-} 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  11. Improving the stability and ethanol electro-oxidation activity of Pt catalysts by selectively anchoring Pt particles on carbon-nanotubes-supported-SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.J.; Wang, J.S.; Zhao, J.H.; Song, C.Y.; Wang, L.C. [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou (China); Guo, X. [Department of Chemistry, Tsinghua University, Beijing (China)

    2012-10-15

    To improve the stability and activity of Pt catalysts for ethanol electro-oxidation, Pt nanoparticles were selectively deposited on carbon-nanotubes (CNTs)-supported-SnO{sub 2} to prepare Pt/SnO{sub 2}/CNTs and Pt/CNTs was prepared by impregnation method for reference study. X-ray diffraction (XRD) was used to confirm the crystalline structures of Pt/SnO{sub 2}/CNTs and Pt/CNTs. The stabilities of Pt/SnO{sub 2}/CNTs and Pt/CNTs were compared by analyzing the Pt size increase amplitude using transmission electron microscopy (TEM) images recorded before and after cyclic voltammetry (CV) sweeping. The results showed that the Pt size increase amplitude is evidently smaller for Pt/SnO{sub 2}/CNTs, indicating the higher stability of Pt/SnO{sub 2}/CNTs. Although both catalysts exhibit degradation of electrochemical active surface area (EAS) after CV sweeping, the EAS degradation for the former is lower, further confirming the higher stability of Pt/SnO{sub 2}/CNTs. CV and potentiostatic current-time curves were recorded for ethanol electro-oxidation on both catalysts before and after CV sweeping and the results showed that the mass specific activity of Pt/CNTs increases more than that of Pt/SnO{sub 2}/CNTs, indicating that Pt/CNTs experiences more severe evolution and is less stable. The calculated area specific activity of Pt/SnO{sub 2}/CNTs is larger than that of Pt/CNTs, indicating SnO{sub 2} can co-catalyze Pt due to plenty of interfaces between SnO{sub 2} and Pt. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Preparation and charaterization of Pt/functionalized graphene and its electrocatalysis for methanol oxidation

    International Nuclear Information System (INIS)

    Liang, Qingsheng; Zhang, Li; Cai, Maolin; Li, Yong; Jiang, Kun; Zhang, Xin; Shen, Pei Kang

    2013-01-01

    Water-dispersible 8-hydroxy-1,3,6-pyrene trisulfonic acid trisodium salt (PyS)-functionalized graphene (PyS-graphene) sheets were prepared by a π–π interaction method, in which the aromatic organic molecules of PyS were reacted with graphene. The PyS-graphene sheets were used as Pt nanoparticle support to prepare a Pt/PyS-graphene catalyst for direct methanol fuel cells. The prepared materials were characterized by ultraviolet spectrometry (UV–vis), Fourier transform infrared spectrometry (FT-IR), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy (SERS), and transmission electron microscopy (TEM). The electrocatalytic properties of the catalysts for methanol oxidation were evaluated by cyclic voltammetry (CV). The Pt/PyS-graphene catalysts were found to have higher electrocatalytic activity for methanol oxidation than Pt/graphene catalyst. This finding can be attributed to the introduction of negative sulfonic (SO 3 − ) groups to the graphene sheet surface, which makes the graphene sheets dispersible in water. Consequently, the Pt nanoparticles were uniformly and securely deposited onto the graphene sheet surface. These results suggested that the sulfonic group-modified water-dispersible graphene sheets can be used to improve the electrocatalytic activity of catalysts for fuel cells

  13. Deposition of metallic nanoparticles on carbon nanotubes via a fast evaporation process

    International Nuclear Information System (INIS)

    Ren Guoqiang; Xing Yangchuan

    2006-01-01

    A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt 3 alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry

  14. Dealloyed Pt3Co nanoparticles with higher geometric strain for superior hydrogen evolution reaction

    Science.gov (United States)

    Saquib, Mohammad; Halder, Aditi

    2018-06-01

    In the present work, the effect of surface strain in the carbon supported Pt3Co dealloy catalyst towards hydrogen evolution reaction (HER) has been reported. Dealloying process is adopted to generate the geometric strain in Pt3Co/C alloy by preferential dissolution of non-noble metal (Co) from the alloy. The developed geometric strain has been estimated by different microstructural characterization techniques. Electrochemical studies showed that the highest current density for HER was obtained for Pt3Co/C dealloy catalyst and it was nearly 2 and 5 times higher than Pt3Co/C alloy and Pt/C respectively. Tafel slope for HER was improved from 49 (Pt/C) to 34 mV dec-1 (Pt3Co/C dealloy), indicating that the surface strain plays important role in the improvement of the catalytic activity of Pt3Co catalyst. The chronoamperometry data, LSV curves and ECSA values before and after chronoamperometry confirmed that Pt3Co/C dealloy catalyst was a stable as well as a durable electrocatalyst for HER.

  15. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamole and folic acid

    International Nuclear Information System (INIS)

    Karimi-Maleh, Hassan; Hatami, Mehdi; Moradi, Reza; Khalilzadeh, Mohammad A.; Amiri, Sedighe; Sadeghifar, Hasan

    2016-01-01

    A carbon paste electrode (CPE) was modified with Pt-Co nanoparticles and 2-(3,4-dihydroxyphenethyl)isoindoline-1,3-dione (3,4-DHPID) and then used for determination of N-acetylcysteine (N-AC) in the presence of paracetamole (PC) and folic acid (FA). The Pt-Co nanoparticles were synthesized by the polyol method and characterized by X-ray diffraction, energy dispersive X-ray analysis and transmission electron microscopy. The modified CPE displays good electrocatalytic activity towards the electrooxidation of N-AC in solution of pH 7.0. It was applied to the determination of N-AC in the presence of PC and FA (with well separated signals peaking at 0.2, 0.55 and 0.86 V vs. Ag/AgCl) by using square wave voltammetry. The peak currents are linearly dependent on the concentrations of N-AC, PC and FA in the respective ranges from 0.07 to 500, 1.0 to 850, and 2.0 to 550 μmol·L −1 , with detection limits of 0.009, 0.6 and 0.8 μmol·L −1 . The modified CPE was applied to the determination of N-AC, PC and FA in (spiked) pharmaceutical and biological samples. (author)

  16. Colloidal strategies for controlling the morphology, composition, and crystal structure of inorganic nanoparticles

    Science.gov (United States)

    Hodges, James M.

    exchange can be integrated into one multistep reaction sequence, which leads to a complete material transformation of a pre-synthesized nanotemplate. Importantly, although the final product does not contain any of the original elements, the morphology is retained, effectively decoupling morphology and composition control. Next, I demonstrate that both anion and cation sublattice features of preformed Cu2-xS nanocrystals can be retained during cation exchange with Co2+ and Mn2+, yielding wurtzite-type CoS and MnS polymorphs that are metastable in bulk systems. This study was enabled by new cation exchange chemistry with previously unexplored 3d transition metal systems, and offers new guidelines for predictably targeting sublattice features in colloidal nanomaterials. To conclude the dissertation, I offer two studies investigating the seeded-growth synthesis of three-component Ag-Pt-Fe3O4 heterotrimer nanoparticles, which are generated by adding a Ag domain to preformed Pt-Fe 3O4 heterodimers. First, to gain access to the alternate Pt-Fe3O4-Ag configuration, I demonstrate that a thin iron oxide shell can be applied to the Pt surface of the Pt-Fe3O 4 seeds, which acts as a solid-state protecting group that can direct Ag growth onto the Fe3O4 domain, producing the otherwise inaccessible Pt-Fe3O4-Ag architecture. This strategy is inspired by similar techniques used in organic synthesis, and represents an important addition to the 'total synthesis toolbox' used to construct colloidal hybrid nanoparticles. Finally, I offer an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe 3O4 to form the Ag-Pt-Fe3O4 heterotrimer product. This study reveals that Ag indiscriminately nucleates on both the Pt and Fe3O4 domains of the Pt-Fe3O 4 seeds during the early stages of the reaction, followed by a surface-mediated coalescence of Ag onto the Pt domain to yield the Ag-Pt-Fe3O 4 configuration. The mechanistic insights gained in this work provide new

  17. Preparation of Ag@mSiO{sub 2} and Pt@mSiO{sub 2}nano composites using trioctylmethyl ammonium hydrogen phthalate (TOMAHP) ionic liquid as reaction medium

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Sujoy, E-mail: sujoyb@barc.gov.in [Chemical Engineering Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Dasgupta, Kinshuk [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Bahadur, Jitendra [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Tewari, Raghavendra [Materials Group, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mazumder, Subhasish [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-09-15

    A novel one step green chemistry approach utilizing trioctylmethyl ammonium hydrogen phthalate (TOMAHP), task specific ionic liquid has been attempted for synthesis of Ag and Pt nanoparticles supported on silica (Ag@mSiO{sub 2} and Pt@mSiO{sub 2}). Structure, size distribution and morphology of these nano-composite particles were evaluated using X-ray diffraction (XRD), transmission electron microscopy (TEM), small angle neutron scattering (SANS) as well as small angle X-ray scattering (SAXS) techniques. The XRD results show that Ag/Pt metal nanoparticles deposited on to SiO{sub 2} surface are face center cubic (fcc) in nature. The TEM and SAXS/SANS results show the morphology and size distributions of Ag and Pt nanoparticles loaded on to the surface of SiO{sub 2}. It has been found that Ag nanoparticles are well dispersed on to the SiO{sub 2} surface and are quite monodisperse in size, whereas Pt nanoparticles are quite polydisperse in size and forms aggregate or chain like structure on SiO{sub 2} surface containing primary nanoparticles of typical size range 3–7 nm. The stability of nanoparticles, which controls its dispersion on SiO{sub 2} substrate, has been discussed. - Graphical abstract: Mechanism for Ag@mSiO{sub 2} and Pt@mSiO{sub 2} nano composites in TOMAHP ionic liquid medium. - Highlights: • Novel methods for preparation of Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite in functionalized ionic liquid. • Pt@SiO{sub 2} and Ag@SiO{sub 2} nano composite are characterized using XRD, TEM as well as small angle x-ray scattering techniques. • The sizes of nano composite is <10 nm in size. • The method is simple one step, green chemical reduction method to prepare SiO{sub 2} support nano catalyst.

  18. Generation of native polythiophene/PCBM composite nanoparticles via the combination of ultrasonic micronization of droplets and thermocleaving from aqueous dispersion

    DEFF Research Database (Denmark)

    Nan, Yaxiong; Hu, Xiaolian; Larsen-Olsen, Thue Trofod

    2011-01-01

    -PT/PCBM nanoparticles were determined by atomic force microscopy (AFM), small-angle x-ray scattering (SAXS) and grazing incidence SAXS (GISAXS), giving an average size of ~ 140 nm. The GISAXS results reveal that n-PT/PCBM nanoparticles pack in an ordered structure as opposed to the P3MHOCT/PCBM nanoparticles......We report the preparation of native polythiophene (n-PT)/[6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) composite nanoparticles from a poly[3-(2-methylhex-2-yl)oxy-carbonyldithiophene] (P3MHOCT)/PCBM aqueous dispersion prepared from an ultrasonically generated emulsion. The subsequent steps....... The successful vapour-phase preparation of phase-separated n-PT/PCBM nanoparticles provides a new route to all-aqueous processing of conjugated materials relevant to efficient polymer solar cells with long operational stability. The use of ultrasound was involved in both liquid and gas phases demonstrating...

  19. Addressing Challenges and Scalability in the Synthesis of Thin Uniform Metal Shells on Large Metal Nanoparticle Cores: Case Study of Ag-Pt Core-Shell Nanocubes.

    Science.gov (United States)

    Aslam, Umar; Linic, Suljo

    2017-12-13

    Bimetallic nanoparticles in which a metal is coated with an ultrathin (∼1 nm) layer of a second metal are often desired for their unique chemical and physical properties. Current synthesis methods for producing such core-shell nanostructures often require incremental addition of a shell metal precursor which is rapidly reduced onto metal cores. A major shortcoming of this approach is that it necessitates precise concentrations of chemical reagents, making it difficult to perform at large scales. To address this issue, we considered an approach whereby the reduction of the shell metal precursor was controlled through in situ chemical modification of the precursor. We used this approach to develop a highly scalable synthesis for coating atomic layers of Pt onto Ag nanocubes. We show that Ag-Pt core-shell nanostructures are synthesized in high yields and that these structures effectively combine the optical properties of the plasmonic Ag nanocube core with the surface properties of the thin Pt shell. Additionally, we demonstrate the scalability of the synthesis by performing a 10 times scale-up.

  20. Chemically designed Pt/PPy nano-composite for effective LPG gas sensor.

    Science.gov (United States)

    Gaikwad, Namrata; Bhanoth, Sreenu; More, Priyesh V; Jain, G H; Khanna, P K

    2014-03-07

    Simultaneous in situ reduction of hexachloroplatinic acid by the amine group in the pyrrole monomer and oxidation of pyrrole to form polypyrrole (PPy) was examined. The reactions were performed at various temperatures to understand the degree of reduction of platinum precursor as well as doping of polypyrrole with Pt(II) chloro-complex. Spectroscopic images revealed different morphologies for the Pt/PPy nano-composite prepared at various temperatures. The as-prepared Pt/PPy nano-composite samples were tested for their ability to sense liquefied petroleum gas (LPG) which resulted in excellent sensing at relatively low temperature. The porous nature and ohmic contact between the PPy and platinum nanoparticles makes the as-prepared Pt/PPy nano-composite highly useful for sensors as well as electronic applications.