WorldWideScience

Sample records for pt activated partial

  1. Highly Active, Carbon-supported, PdSn Nano-core, Partially ...

    African Journals Online (AJOL)

    Carbon-supported, Pt partially covered, PdSn alloy nanoparticles (Pt-PdSn/C) were synthesized via a metathetical reaction of PdSn alloy nanoparticles, and a platinum precursor. The electrochemical activity was evaluated by methanol oxidation. The Pt-PdSn/C catalysts were characterized by transmission electron ...

  2. A partial phase diagram of Pt-rich Pt-Mn alloys

    CERN Document Server

    Sembiring, T; Ohshima, K I; Ota, K; Shishido, T

    2002-01-01

    We have performed the X-ray and electron diffraction studies to reconstruct a partial phase diagram of Pt-rich Pt-Mn alloys in the composition range of 10 to 35 at.% Mn. Electrical resistivity measurement was also used for determining the order-disorder transition temperature in Pt-14.2 at.% Mn alloy. The phase boundary between Cu sub 3 Au type and ABC sub 6 type ordered structures is established, in which the latter has been found recently by the present [J.Phys. Soc. Jpn. 71 (2002) 681]. In the ABC sub 6 type ordered phase, superlattice reflections both at 1/2 1/2 1/2 and its equivalent position (L-point) and at 100, 110 and their equivalent positions (X-point) appear in the composition range from 12.5 to 14.4 at.% Mn below 682degC. In the Cu sub 3 Au type ordered phase, diffuse maxima at L-point appear in the composition range from 15.9 to 19.7 at.% Mn in addition to the superlattice reflections at X-point. The Cu sub 3 Au type ordered structure is found to be stable in the composition range from 19.7 to 3...

  3. Excellent performance of Pt-C/TiO2 for methanol oxidation: Contribution of mesopores and partially coated carbon

    Science.gov (United States)

    Wu, Xinbing; Zhuang, Wei; Lu, Linghong; Li, Licheng; Zhu, Jiahua; Mu, Liwen; Li, Wei; Zhu, Yudan; Lu, Xiaohua

    2017-12-01

    Partial deposition of carbon onto mesoporous TiO2 (C/TiO2) were prepared as supporting substrate for Pt catalyst development. Carbon deposition is achieved by in-situ carbonization of furfuryl alcohol. The hybrid catalysts were characterized by XRD, Raman, SEM and TEM and exhibited outstanding catalytic activity and stability in methanol oxidation reaction. The heterogeneous carbon coated on mesoporous TiO2 fibers provided excellent electrical conductivity and strong interfacial interaction between TiO2 support and Pt metal nanoparticles. Methanol oxidation reaction results showed that the activity of Pt-C/TiO2 is 3.0 and 1.5 times higher than that of Pt-TiO2 and Pt-C, respectively. In addition, the Pt-C/TiO2 exhibited a 6.7 times enhanced stability compared with Pt-C after 2000 cycles. The synergistic effect of C/TiO2 is responsible for the enhanced activity of Pt-C/TiO2, and its excellent durability could be ascribed to the strong interfacial interaction between Pt nanoparticles and C/TiO2 support.

  4. More on PT-Symmetry in (Generalized Effect Algebras and Partial Groups

    Directory of Open Access Journals (Sweden)

    J. Paseka

    2011-01-01

    Full Text Available We continue in the direction of our paper on PT-Symmetry in (Generalized Effect Algebras and Partial Groups. Namely we extend our considerations to the setting of weakly ordered partial groups. In this setting, any operator weakly ordered partial group is a pasting of its partially ordered commutative subgroups of linear operators with a fixed dense domain over bounded operators. Moreover, applications of our approach for generalized effect algebras are mentioned.

  5. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  6. The origin of high activity but low CO(2) selectivity on binary PtSn in the direct ethanol fuel cell.

    Science.gov (United States)

    Jin, Jia-Mei; Sheng, Tian; Lin, Xiao; Kavanagh, Richard; Hamer, Philip; Hu, Peijun; Hardacre, Christopher; Martinez-Bonastre, Alex; Sharman, Jonathan; Thompsett, David; Lin, Wen-Feng

    2014-05-28

    The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 °C and 60 °C, using variable temperature electrochemical in situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 °C to 60 °C facilitates both ethanol dissociation to CO(a) and then further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found upon modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in situ FTIR and DFT study provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts.

  7. CO oxidation on PtSn nanoparticle catalysts occurs at the interface of Pt and Sn oxide domains formed under reaction conditions

    KAUST Repository

    Michalak, William D.

    2014-04-01

    The barrier to CO oxidation on Pt catalysts is the strongly bound adsorbed CO, which inhibits O2 adsorption and hinders CO2 formation. Using reaction studies and in situ X-ray spectroscopy with colloidally prepared, monodisperse ∼2 nm Pt and PtSn nanoparticle catalysts, we show that the addition of Sn to Pt provides distinctly different reaction sites and a more efficient reaction mechanism for CO oxidation compared to pure Pt catalysts. To probe the influence of Sn, we intentionally poisoned the Pt component of the nanoparticle catalysts using a CO-rich atmosphere. With a reaction environment comprised of 100 Torr CO and 40 Torr O2 and a temperature range between 200 and 300 C, Pt and PtSn catalysts exhibited activation barriers for CO2 formation of 133 kJ/mol and 35 kJ/mol, respectively. While pure Sn is readily oxidized and is not active for CO oxidation, the addition of Sn to Pt provides an active site for O2 adsorption that is important when Pt is covered with CO. Sn oxide was identified as the active Sn species under reaction conditions by in situ ambient pressure X-ray photoelectron spectroscopy measurements. While chemical signatures of Pt and Sn indicated intermixed metallic components under reducing conditions, Pt and Sn were found to reversibly separate into isolated domains of Pt and oxidic Sn on the nanoparticle surface under reaction conditions of 100 mTorr CO and 40 mTorr O2 between temperatures of 200-275 C. Under these conditions, PtSn catalysts exhibited apparent reaction orders in O2 for CO 2 production that were 0.5 and lower with increasing partial pressures. These reaction orders contrast the first-order dependence in O 2 known for pure Pt. The differences in activation barriers, non-first-order dependence in O2, and the presence of a partially oxidized Sn indicate that the enhanced activity is due to a reaction mechanism that occurs at a Pt/Sn oxide interface present at the nanoparticle surface. © 2014 Published by Elsevier Inc.

  8. Engineering the Activity and Stability of Pt-Alloy Cathode Fuel-Cell Electrocatalysts by Tuning the Pt-Pt Distance

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Vej-Hansen, Ulrik Grønbjerg

    2014-01-01

    for enhancing the cathode activity is to alloy Pt with transition metals [1-2]. However, alloys of Pt and late transition metals are typically unstable under fuel-cell conditions. Herein, we present experimental and theoretical studies showing the trends in activity and stability of novel cathode catalysts...

  9. Improvement on electrochemical performance by partial replacement of Ru@Pt core-shell nanocatalyst by temperature modification

    International Nuclear Information System (INIS)

    Chang, Chih-Juei; Lin, Liang-You; Tseng, Fan-Gang

    2014-01-01

    In this paper, the homemade open-loop reduction system (OLRS), and redox transmetalation method were utilized to produce the core-shell Ru (ruthenium)/Pt (platinum) catalysts on the carbon cloth (CC) for direct methanol fuel cell (DMFC) application. By adjusting pH value and heating to proper temperature of the ionized reduction environment, Pt 4+ can be first converted into Pt 2+ to allow partial Ru replacement with Pt by redox transmetalation and produce Ru@Pt core-shell nanostructures[1]. And we change the reduction temperature to see how it affects the efficiency of the DMFC. The scanning electron microscopic (SEM) top-view micrographs showing that the apparent Ru@Pt nanoparticles successfully deposited on both the inner and outer surfaces of the hydrophilically-treated CC. At high SEM magnification, the small size and high-density distribution of the Ru@Pt nanoparticles were clearly observed on the hydrophilically-treated CC, and much more Pt@Ru catalyst deposit on the CC surface with the sample of 80 °C. The electrosorption charges of hydrogen ion (Q H ) and the peak current density (I P ) of the samples in the cyclic voltammetry (CV) curves. The magnitude of peak current density is positive correlation to the temperature. However, the CO tolerance, indicated that the better CO tolerance contributed to the less Pt replace on Ru cluster, which allow the Ru oxidizing CO to CO 2 efficiently, is negative correlation-- to the temperature. The sample of 50 °C shows the better combination catalyst efficiency between the CO tolerance and the electrochemical performance

  10. PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H.

    2011-11-10

    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  11. Electrocatalytic activity of Pt and PtCo deposited on Ebonex by BH reduction

    International Nuclear Information System (INIS)

    Slavcheva, E.; Nikolova, V.; Petkova, T.; Lefterova, E.; Dragieva, I.; Vitanov, T.; Budevski, E.

    2005-01-01

    The method of borohydride reduction (BH) has been applied to synthesize Pt and PtCo nanoparticles supported on Magneli phase titanium oxides, using Pt and Co ethylenediamine complexes as metal precursors. The phase composition of the synthesized catalysts, their morphology and surface structure were studied by physical methods for bulk and surface analysis, such as electron microprobe analysis (EMPA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET technique. The catalytic activity towards oxygen evolution reaction in alkaline aqueous solution was investigated using the common electrochemical techniques. It was found that PtCo/Ebonex facilitates essentially the oxygen evolution which starts at lower overpotentials and proceeds with higher rate compared to both the supported Pt and unsupported PtCo catalysts. The observed effect is prescribed to metal-metal and metal-support interactions. The Ebonex possesses a good electrical conductivity and corrosion resistance at high anodic potentials and despite its low surface area is considered as a potential catalyst carrier for the oxygen evolution reaction

  12. Correlating Structure and Oxygen Reduction Activity on Y/Pt(111) and Gd/Pt(111) Single Crystals

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese; Pedersen, Anders Filsøe; Johansson, Tobias Peter

    2015-01-01

    Polymer Electrolyte Membrane Fuel Cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the Oxygen Reduction Reaction (ORR) at the PEMFC cathode prevents the commercialisation of this tech......Polymer Electrolyte Membrane Fuel Cells (PEMFC) hold promise as a zero-emission source of power, particularly suitable for automotive vehicles. However, the high loading of Pt required to catalyse the Oxygen Reduction Reaction (ORR) at the PEMFC cathode prevents the commercialisation...... of this technology. Improving the activity of Pt by alloying it with other metals could decrease the loading of Pt at the cathode to a level comparable to Pt-group metal loading in internal combustion engines. PtxY and PtxGd exhibit exceptionally high activity for oxygen reduction, both in the polycrystalline form...

  13. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active

  14. Activity of carbon supported Pt3Ru2 nanocatalyst in CO oxidation

    Directory of Open Access Journals (Sweden)

    KSENIJA DJ. POPOVIĆ

    2009-08-01

    Full Text Available The electrocatalytic activity of Pt3Ru2/C nanocatalyst toward the electro-oxidation of bulk CO was examined in acid and alkaline solution at ambient temperature using the thin-film, rotating disk electrode (RDE method. The catalyst was characterized by XRD analysis. The XRD pattern revealed that the Pt3Ru2/C catalyst consisted of two structures, i.e., Pt–Ru-fcc and Ru-hcp (a solid solution of Ru in Pt and a small amount of Ru or a solid solution of Pt in Ru. Electrocatalytic activities were measured by applying potentiodynamic and steady state techniques. The oxidation of CO on the Pt3Ru2/C catalyst was influenced by pH and anions from the supporting electrolytes. The Pt3Ru2/C was more active in alkaline than in acid solution, as well as in perchloric than in sulfuric acid. Comparison of CO oxidation on Pt3Ru2/C and Pt/C revealed that the Pt3Ru2/C was more active than Pt/C in acid solution, while both catalysts had a similar activity in alkaline solution.

  15. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  16. Nano-Pt/C electrocatalysts: synthesis and activity for alcohol oxidation

    International Nuclear Information System (INIS)

    Huong Nguyen, Thi Giang; Anh Pham, Thi Van; Phuong, Thi Xuan; Binh Lam, Thi Xuan; Tran, Van Man; Thoa Nguyen, Thi Phuong

    2013-01-01

    Nano-sized platinum electrocatalysts on a carbon support (Pt/C) have been synthesized by the polyol reduction method under microwave irradiation using ethylene glycol (EG) as the reductant and carbon vulcan XC-72R as the support material. The physical characteristics of the Pt/C materials were analyzed using transmission electron microscopy and Brunauer–Emmet–Teller nitrogen adsorption theory. The glycerol and EG electro-oxidation in alkaline media on the Pt/C catalysts was investigated with cyclic voltammetry and chronoamperometry. The particle size of Pt on carbon was about 3.0 nm. The catalytic activity for the alcohol electro-oxidation of Pt/C materials synthesized in various pH values (7.9–9.5) was found to be significantly higher than that of commercial Pt/C (Aldrich Sigma, 10 wt% Pt/activated carbon). The Pt/C catalyst synthesized in pH 9.5 showed the best electrochemical behavior. At all the synthesized Pt/C electrodes, compared with glycerol, the oxidation rate of EG was about ten times higher. (paper)

  17. Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Bandur, Viktor

    2007-01-01

    The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt....../Ru)//PBI(H3PO4)/H-2, Ar] fuel cell. It has been shown that the partial methane oxidation to C2H2 and the C-2 selectivity were electrochemically promoted by the negative catalyst polarization. This was also the case in NO reduction with hydrogen for low NO and H-2 partial pressures. In both cases the catalytic...... reactions have been promoted by the electrochemically produced hydrogen. It has been found that the NO reduction with hydrogen on the Pt/PBI strongly depends on NO and hydrogen partial pressures in the working gas mixture. At higher NO and H-2 partial pressures the catalysis is promoted...

  18. Understanding CO-stripping mechanism from Ni{sub UPD}/Pt(1 1 0) in view of the measured nickel formal partial charge number upon underpotential deposition on platinum surfaces in sulphate media

    Energy Technology Data Exchange (ETDEWEB)

    Chatenet, Marian [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS-INPG-UJF, BP 75, 38402 Saint-Martin d' Heres Cedex (France)], E-mail: Marian.Chatenet@lepmi.inpg.fr; Soldo-Olivier, Yvonne; Chainet, Eric; Faure, Rene [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, LEPMI, UMR 5631 CNRS-INPG-UJF, BP 75, 38402 Saint-Martin d' Heres Cedex (France)

    2007-12-01

    {sub Ni} = 2. In consequence, upon underpotential deposition on platinum surfaces, nickel cations discharge and then undergo additional charge exchange processes, such as anion (or water) adsorption, resulting in apparent partial nickel cation discharge. Moreover, Ni{sub UPD}/Pt(1 1 0) surface displays high activity towards CO{sub ad} oxidation reaction. We explain such positive effect by the possible existence of a bifunctional mechanism in which oxygenated-species-covered Ni{sub UPD} adatoms provide the oxygen atom to CO{sub ad}...Pt species, enabling its facile oxidation.

  19. Improving the stability and ethanol electro-oxidation activity of Pt catalysts by selectively anchoring Pt particles on carbon-nanotubes-supported-SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.J.; Wang, J.S.; Zhao, J.H.; Song, C.Y.; Wang, L.C. [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou (China); Guo, X. [Department of Chemistry, Tsinghua University, Beijing (China)

    2012-10-15

    To improve the stability and activity of Pt catalysts for ethanol electro-oxidation, Pt nanoparticles were selectively deposited on carbon-nanotubes (CNTs)-supported-SnO{sub 2} to prepare Pt/SnO{sub 2}/CNTs and Pt/CNTs was prepared by impregnation method for reference study. X-ray diffraction (XRD) was used to confirm the crystalline structures of Pt/SnO{sub 2}/CNTs and Pt/CNTs. The stabilities of Pt/SnO{sub 2}/CNTs and Pt/CNTs were compared by analyzing the Pt size increase amplitude using transmission electron microscopy (TEM) images recorded before and after cyclic voltammetry (CV) sweeping. The results showed that the Pt size increase amplitude is evidently smaller for Pt/SnO{sub 2}/CNTs, indicating the higher stability of Pt/SnO{sub 2}/CNTs. Although both catalysts exhibit degradation of electrochemical active surface area (EAS) after CV sweeping, the EAS degradation for the former is lower, further confirming the higher stability of Pt/SnO{sub 2}/CNTs. CV and potentiostatic current-time curves were recorded for ethanol electro-oxidation on both catalysts before and after CV sweeping and the results showed that the mass specific activity of Pt/CNTs increases more than that of Pt/SnO{sub 2}/CNTs, indicating that Pt/CNTs experiences more severe evolution and is less stable. The calculated area specific activity of Pt/SnO{sub 2}/CNTs is larger than that of Pt/CNTs, indicating SnO{sub 2} can co-catalyze Pt due to plenty of interfaces between SnO{sub 2} and Pt. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Abrikosov, I. A.; Skriver, Hans Lomholt

    1995-01-01

    We have studied the ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys at the stoichiometric 1/4, 1/2, and 3/4 compositions in the framework of the multisublattice single-site (SS) coherent potential approximation (CPA). Charge-transfer effects in the random ...... for the ordered alloys are in good agreement with experimental data. For all the alloys the calculated ordering energy and the equilibrium lattices parameters are found to be almost exact quadratic functions of the long-range-order parameter....... and the partially ordered alloys are included in the screened impurity model. The prefactor in the Madelung energy is determined by the requirement that the total energy obtained in direct SS CPA calculations should equal the total energy given by the Connolly-Williams expansion based on Green’s function...

  1. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Malacrida, Paolo; Hansen, Martin Hangaard

    2016-01-01

    is lanthanum, cerium, samarium, gadolinium, terbium, dysprosium, thulium, or calcium. The materials are among the most active polycrystalline Pt-based catalysts reported, presenting activity enhancement by a factor of 3 to 6 over Pt. The active phase consists of a Pt overlayer formed by acid leaching. The ORR...

  2. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    Science.gov (United States)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  3. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun, E-mail: 1044208419@qq.com; Mao, Hui, E-mail: rejoice222@163.com [Sichuan Normal University, College of Chemistry and Materials Science (China)

    2016-10-15

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al{sub 2}O{sub 3} catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  4. Biopolymer-stabilized Pt nanoparticles colloid: a highly active and recyclable catalyst for biphasic catalysis

    International Nuclear Information System (INIS)

    Wang, Yujia; Shen, Yueyue; Qiu, Yunfei; Zhang, Ting; Liao, Yang; Zhao, Shilin; Ma, Jun; Mao, Hui

    2016-01-01

    Noble metal nanoparticles are promising candidates to replace conventional bulk counterparts owing to their high activity and selectivity. To enable catalyst recovery, noble metal nanoparticles are often supported onto solid matrices to prepare heterogeneous catalyst. Although recycle of noble metal nanoparticles is realized by heterogenization, a loss of activity is usually encountered. In the present investigation, Pt nanoparticles with tunable particle size (1.85–2.80 nm) were facilely prepared by using polyphenols as amphiphilic stabilizers. The as-prepared Pt nanoparticles colloid solution could be used as highly active catalyst in aqueous–organic biphasic catalysis. The phenolic hydroxyls of polyphenols could constrain Pt nanoparticles in aqueous phase, and simultaneously, the aromatic scaffold of polyphenols ensured effective interactions between substrates and Pt nanoparticles. As a consequence, the obtained polyphenols-stabilized Pt nanoparticles exhibited high activity and cycling stability in biphasic hydrogenation of a series of unsaturated compounds. Compared with conventional heterogeneous Pt-C and Pt-Al 2 O 3 catalysts, polyphenols-stabilized Pt nanoparticles showed obvious advantage both in activity and cycling stability.

  5. Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO(2) nanotubes.

    Science.gov (United States)

    Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M

    2011-02-01

    The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.

  6. Durable electrocatalytic-activity of Pt-Au/C cathode in PEMFCs.

    Science.gov (United States)

    Selvaganesh, S Vinod; Selvarani, G; Sridhar, P; Pitchumani, S; Shukla, A K

    2011-07-21

    Longevity remains as one of the central issues in the successful commercialization of polymer electrolyte membrane fuel cells (PEMFCs) and primarily hinges on the durability of the cathode. Incorporation of gold (Au) to platinum (Pt) is known to ameliorate both the electrocatalytic activity and stability of cathode in relation to pristine Pt-cathodes that are currently being used in PEMFCs. In this study, an accelerated stress test (AST) is conducted to simulate prolonged fuel-cell operating conditions by potential cycling the carbon-supported Pt-Au (Pt-Au/C) cathode. The loss in performance of PEMFC with Pt-Au/C cathode is found to be ∼10% after 7000 accelerated potential-cycles as against ∼60% for Pt/C cathode under similar conditions. These data are in conformity with the electrochemical surface-area values. PEMFC with Pt-Au/C cathode can withstand >10,000 potential cycles with very little effect on its performance. X-ray diffraction and transmission electron microscopy studies on the catalyst before and after AST suggest that incorporating Au with Pt helps mitigate aggregation of Pt particles during prolonged fuel-cell operations while X-ray photoelectron spectroscopy reflects that the metallic nature of Pt is retained in the Pt-Au catalyst during AST in comparison to Pt/C that shows a major portion of Pt to be present as oxidic platinum. Field-emission scanning electron microscopy conducted on the membrane electrode assembly before and after AST suggests that incorporating Au with Pt helps mitigating deformations in the catalyst layer. This journal is © the Owner Societies 2011

  7. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability

    Directory of Open Access Journals (Sweden)

    Ariel Jackson

    2018-01-01

    Full Text Available Improving the performance of oxygen reduction reaction (ORR electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs. Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mgPt−1 at 0.9 V versus the reversible hydrogen electrode (RHE, which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mgPt−1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s−1, maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  8. Mesoporous PtSnO2/C Catalyst with Enhanced Catalytic Activity for Ethanol Electro-oxidation

    Directory of Open Access Journals (Sweden)

    Siyu Chen

    2018-01-01

    Full Text Available In this paper, we report the synthesis, characterization, and electrochemical evaluation of a mesoporous PtSnO2/C catalyst, called PtSnO2(M/C, with a nominal Pt : Sn ratio of 3 : 1. Brunauer–Emmett–Teller and transmission electron microscopy characterizations showed the obvious mesoporous structure of SnO2 in PtSnO2(M/C catalyst. X-ray photoelectron spectroscopy analysis exhibited the interaction between Pt and mesoporous SnO2. Compared with Pt/C and commercial PtSnO2/C catalysts, PtSnO2(M/C catalyst has a lower active site, but higher catalytic activity for ethanol electro-oxidation reaction (EOR. The enhanced activity could be attributed to Pt nanoparticles deposited on mesoporous SnO2 that could decrease the amount of poisonous intermediates produced during EOR by the interaction between Pt and mesoporous SnO2.

  9. Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst

    Science.gov (United States)

    Cheng, Tianqiong; Wang, Jianli; Wang, Suning; Cui, Yajuan; Zhang, Hailong; Yan, Shuang; Yuan, Shandong; Chen, Yaoqiang

    2017-12-01

    Citric acid (CA), as the chelating agent, was introduced to obtain the enhanced Pt dispersion and catalytic activities for the Pt-based catalysts supported on oxygen-storage material. The role and content of CA were investigated systematically. It was found that the citric acid-assisted catalysts showed better Pt dispersion and smaller nanoparticle size of Pt. Thus, the catalyst had lower reduction temperature, preferable thermostability and possessed more oxidation state of Pt species under the oxidation atmosphere. The citric acid-induced fresh catalysts were excellent to convert CO and the corresponding aged ones exhibited higher activities for the elimination of all the target pollutants. Among the aged catalysts, P2-a (the mole ratio of Pt/CA is 2:1) presented the best performance. Particularly, compared with the reference sample (Pc-a), the light-off temperatures (T50) of NO, HC and CO for P2-a decreased by 39 °C, 42 °C and 72 °C, respectively, and the full-conversion temperatures (T90) of NO, HC and CO for P2-a decreased by 44 °C, 44 °C and 48 °C, respectively. Therefore, this work provides a facile and valid method to manufacture advanced catalysts for purification of the vehicle exhaust in the future.

  10. The functionalities of Pt/{gamma}-Al{sub 2}O{sub 3} catalysts in simultaneous HDS and HDA reactions

    Energy Technology Data Exchange (ETDEWEB)

    V.G. Baldovino-Medrano; Sonia A. Giraldo; Aristobulo Centeno [Universidad Industrial de Santander (UIS), Bucaramanga (Colombia). Centro de Investigaciones en Catalisis (CICAT)

    2008-08-15

    A Pt/{gamma}-Al{sub 2}O{sub 3} catalyst was tested in simultaneous hydrodesulfurization (HDS) of dibenzothiophene and hydrodearomatization (HDA) of naphthalene reactions. Samples of it were subjected to different pretreatments: reduction, reduction-sulfidation, sulfidation with pure H{sub 2}S and non-activation. The reduced catalyst presented the best performance, even comparable to that of Co(Ni)Mo catalysts. All catalyst samples were selective to the HDS reaction over HDA, and to the direct desulfurization pathway of dibenzothiophene HDS over the hydrogenation reaction pathway of HDS. The effect of H{sub 2}S partial pressure on the functionalities of the reduced Pt/{gamma}-Al{sub 2}O{sub 3} catalyst was studied. The results showed that an increase in H{sub 2}S partial pressure does not cause poisoning, but an inhibition effect, without changing the catalyst selectivity. Accordingly, the activity trends were ascribed to adsorption differences between the different reactive molecules over the same catalytic active site. TPR characterization along with a thermodynamics analysis showed that the active phase of reduced Pt/{gamma}-Al{sub 2}O{sub 3} is constituted by Pt{sup 0} particles. However, presulfidation of the catalyst leads to a mixture of PtS and Pt{sup 0}which has a negative effect on the catalytic performance without changing catalyst functionalities. 61 refs., 4 figs., 1 tab.

  11. Effects of composition on structure and activity of PtRu/C catalysts.

    Science.gov (United States)

    Wiltshire, Richard J K; King, Colin R; Rose, Abigail; Wells, Peter P; Davies, Hazel; Hogarth, Martin P; Thompsett, David; Theobald, Brian; Mosselmans, Fredrick W; Roberts, Mark; Russell, Andrea E

    2009-04-07

    A series of carbon supported PtRu bimetallic catalysts with varying Pt:Ru ratio were prepared and characterised using ex situ and in situ XRD, in situ EXAFS at 0 V vs. RHE, ex situ XPS and monolayer CO stripping voltammetry. Although the catalysts were found to be well mixed/alloyed, with no evidence of unalloyed Ru (oxides) present, the surfaces of the electrocatalyst nanoparticles were found to be enriched with Pt compared to the nominal bulk composition. The methanol oxidation activities of the catalysts were determined in 1.0 mol dm(-3) H2SO4. In agreement with published studies of polycrystalline bulk PtRu alloys the catalyst with a 0.6 surface fraction of Pt was found to give the best methanol oxidation activity at 30 degrees C. However, at 80 degrees C a greater surface fraction of Ru could be tolerated, with some activity at low current densities found for a Pt surface fraction as low as 0.2. The results support the conclusion that a limited amount of methanol dehydrogenation occurs at Ru sites or Ru dominated surface ensembles at 80 degrees C.

  12. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation

    International Nuclear Information System (INIS)

    Crisafulli, Rudy

    2013-01-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H 2 PtCl 6 .6H 2 O, SnCl 2 .2H 2 O and CuCl 2 .2H 2 O as metal sources, NaBH 4 and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of PtSnCu/C (50:40:10) AR/ED > PtSnCu/C (50:10:40) BR/CD. PtSn/C (50:50) BR/CD, PtSnCu/C (50:10:40) BR/CD, PtSnCu/C (50:40:10) AR/CD electrocatalysts and Pt/C BASF, PtSn/C (75:25) BASF commercial electrocatalysts were tested in single Direct Ethanol Fuel Cell. The results showed the following performance for ethanol electro-oxidation: PtSn/C (50:50) BR/CD > PtSnCu/C (50:40:10) AR/CD > PtSnCu/C > PtSn/C (75:25) BASF > PtSnCu/C (50:10:40) BR/CD > Pt/C BASF. (author)

  13. Hydrogen adsorption-mediated synthesis of concave Pt nanocubes and their enhanced electrocatalytic activity

    Science.gov (United States)

    Lu, Bang-An; Du, Jia-Huan; Sheng, Tian; Tian, Na; Xiao, Jing; Liu, Li; Xu, Bin-Bin; Zhou, Zhi-You; Sun, Shi-Gang

    2016-06-01

    Concave nanocubes are enclosed by high-index facets and have negative curvature; they are expected to have enhanced reactivity, as compared to nanocubes with flat surfaces. Herein, we propose and demonstrate a new strategy for the synthesis of concave Pt nanocubes with {hk0} high-index facets, by using a hydrogen adsorption-mediated electrochemical square-wave potential method. It was found that Pt atoms prefer to deposit on edge sites rather than terrace sites on Pt surfaces with intensive hydrogen adsorption, resulting in the formation of concave structures. The as-prepared concave Pt nanocubes exhibit enhanced catalytic activity and stability towards oxidation of ethanol and formic acid in acidic solutions, compared to commercial Pt/C catalysts.Concave nanocubes are enclosed by high-index facets and have negative curvature; they are expected to have enhanced reactivity, as compared to nanocubes with flat surfaces. Herein, we propose and demonstrate a new strategy for the synthesis of concave Pt nanocubes with {hk0} high-index facets, by using a hydrogen adsorption-mediated electrochemical square-wave potential method. It was found that Pt atoms prefer to deposit on edge sites rather than terrace sites on Pt surfaces with intensive hydrogen adsorption, resulting in the formation of concave structures. The as-prepared concave Pt nanocubes exhibit enhanced catalytic activity and stability towards oxidation of ethanol and formic acid in acidic solutions, compared to commercial Pt/C catalysts. Electronic supplementary information (ESI) available: Details of DFT calculation, SEM images of concave Pt nanocubes, mass activity and stability characterization of the catalysts. See DOI: 10.1039/c6nr02349e

  14. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation

    Science.gov (United States)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-03-01

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.

  15. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-01-08

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu- based catalysts are not practical for this chemistry due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Utilizing Pt/Cu single atom alloys (SAAs) we examine C-H activation in a number of systems including methyl groups, methane, and butane using a combination of simulations, surface science, and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke resistant C-H activation chemistry with the added economic benefit that the precious metal is diluted at the atomic limit.

  16. Antagonistic Activities of Novel Peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum.

    Science.gov (United States)

    Kim, Young Gwon; Kang, Hee Kyoung; Kwon, Kee-Deok; Seo, Chang Ho; Lee, Hyang Burm; Park, Yoonkyung

    2015-12-09

    Bacillus species have recently drawn attention due to their potential use in the biological control of fungal diseases. This paper reports on the antifungal activity of novel peptides isolated from Bacillus amyloliquefaciens PT14. Reverse-phase high-performance liquid chromatography revealed that B. amyloliquefaciens PT14 produces five peptides (PT14-1, -2, -3, -4a, and -4b) that exhibit antifungal activity but are inactive against bacterial strains. In particular, PT14-3 and PT14-4a showed broad-spectrum antifungal activity against Fusarium solani and Fusarium oxysporum. The PT14-4a N-terminal amino acid sequence was identified through Edman degradation, and a BLAST homology analysis showed it not to be identical to any other protein or peptide. PT14-4a displayed strong fungicidal activity with minimal inhibitory concentrations of 3.12 mg/L (F. solani) and 6.25 mg/L (F. oxysporum), inducing severe morphological deformation in the conidia and hyphae. On the other hand, PT14-4a had no detectable hemolytic activity. This suggests PT14-4a has the potential to serve as an antifungal agent in clinical therapeutic and crop-protection applications.

  17. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    Hu Sheng; Xiao Chengjian; Zhu Zuliang; Luo Shunzhong; Wang Heyi; Luo Yangming; Wang Changbin

    2007-01-01

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  18. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-06-21

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  19. Tuning the chemical activity through PtAu nanoalloying: a first principles study

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    The electronic structure and adsorption properties of 1.5 nm sized Pt, Au, and PtAu nanoclusters are studied by density functional theory. We explain the recent experimental finding that 20% Au content in PtAu nanoparticles is optimal to induce a dramatically different catalytic behavior. Our results show that the d-band center together with the density of states at the Fermi energy can be used as an indicator of the chemical activity of PtAu nanoclusters. The most favorable adsorption sites on the cluster surfaces as a function of the Pt/Au ratio are identified using atomic H as a probe.

  20. Ga-Doped Pt-Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe

    2018-04-11

    Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

  1. SiO2 stabilized Pt/C cathode catalyst for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhu Tong; Du Chunyu; Liu Chuntao; Yin Geping; Shi Pengfei

    2011-01-01

    This paper describes the preparation of SiO 2 stabilized Pt/C catalyst (SiO 2 /Pt/C) by the hydrolysis of alkoxysilane, and examines the possibility that the SiO 2 /Pt/C is used as a durable cathode catalyst for proton exchange membrane fuel cells (PEMFCs). TEM and XRD results revealed that the hydrolysis of alkoxysilane did not significantly change the morphology and crystalline structure of Pt particles. The SiO 2 /Pt/C catalyst exhibited higher durability than the Pt/C one, due to the facts that the silica layers covered were beneficial for reducing the Pt aggregation and dissolution as well as increasing the corrosion resistance of supports, although the benefit of silica covering was lower than the case of Pt/CNT catalyst. Also, it was observed that the activity of the SiO 2 /Pt/C catalyst for the oxygen reduction reaction was somewhat reduced compared to the Pt/C one after the silica covering. This reduction was partially due to the low oxygen kinetics as revealed by the rotating-disk-electrode measurement. Silica covering by hydrolysis of only 3-aminopropyl trimethoxysilane is able to achieve a good balance between the durability and activity, leading to SiO 2 /Pt/C as a promising cathode catalyst for PEMFCs.

  2. Highly active dealloyed Cu@Pt core-shell electrocatalyst towards 2-propanol electrooxidation in acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Poochai, Chatwarin, E-mail: p_chatwarin@yahoo.com

    2017-02-28

    Highlights: • This is the first report on electrooxidation of 2-propanol in acidic media on dealloyed Cu@Pt/CP core-shell electrocatalyst. • The dealloyed Cu@Pt/CP is prepared using cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD). • The structure of dealloyed Cu@Pt/CP is core-shell structure with Cu-rich core and Pt-rich surface. • The dealloyed Cu@Pt/CP shows high activity and great stability towards 2-propanol electrooxidation in acidic media. - Abstract: Dealloyed Cu@Pt core-shell electrocatalyst was fabricated by cyclic co-electrodeposition and selective Cu dealloying (CCEd-sCuD) on carbon paper (CP), namely Cu@Pt/CP. The Cu@Pt/CP exhibited a core-shell structure comprising with a Cu-rich core and a Pt-rich shell. The crystalline phases of Pt/CP and Cu@Pt/CP were a face-centered cubic (fcc). The compressive lattice strain approximately 0.85% was found in the Cu@Pt/CP owing to a lattice mismatch between a core and a shell region. In the core-region, Cu was formed Pt-Cu alloy as major and copper oxide and also metallic copper as minor. The morphology and grain size of the Cu@Pt/CP displayed a porous spherical shape with 100 nm in diameter, while those of Pt/CP seemed to be a cubic shape with smaller diameter of 40 nm. In electrochemical and catalytic activity, the surface of Cu@Pt/CP had a larger electrochemical active surface area (ECSA) than that of Pt/CP due to a porous formation caused by Cu dealloying. It is not surprising that the Cu@Pt/CP showed higher catalytic activity and greater stability towards 0.5 M 2-propanol electrooxidation in 0.5 M H{sub 2}SO{sub 4} in terms of peak current density (j{sub p}), peak potential (E{sub p}), onset potential (E{sub onset}), diffusion coefficient (D), and charge transfer resistance (R{sub ct}) which were caused by electronic structure modification, higher compressive lattice strain, and larger ECSA, compared with Pt/CP.

  3. Prothrombin Time, Activated Partial Thromboplastin Time, Fibrinogen, dan D-dimer Sebagai Prediktor Decompensated Disseminated Intravascular Coagulation Sisseminated pada Sepsis

    Directory of Open Access Journals (Sweden)

    Fenny

    2011-03-01

    Full Text Available Sepsis is a systemic response to infection especially in pneumonia case. Sepsis can cause complications such as disseminated intravascular coagulation (DIC which can be divided into compensated and decompensated DIC. The purpose of this study was to assess whether the value of prothrombin time (PT, activated partial thromboplastin time (aPTT, fibrinogen, and D-dimer levels can be used as predictors of decompensated DIC in sepsis patients. This study was conducted at the Laboratory of Clinical Pathology Rumah Sakit Hasan Sadikin Bandung since September 2008 to June 2010. Subjects were patients with sepsis caused by pneumonia. PT and aPTT values, fibrinogen, and D-dimer levels was recorded from all sepsis patients then patients were observed until diagnosed decompensated or non-decompensated DIC, then the value of PT, aPTT, fibrinogen and D-dimer levels in the group of decompensated DIC and non-decompensated DIC were analysed. This study used cohort design. Subjects were 39 sepsis patients (58% with outcome decompensated DIC and 28 sepsis patients (42% with outcome non-decompensated DIC. From the hemostasis parameter test out, it was found that PT, aPTT, and fibrinogen were the predictor of decompensated DIC in patients with sepsis with relative risk 240.500, 7.157, and 6.421; respectively. Conclusions, prothrombin time, aPTT, fibrinogen are the test to know coagulation activation. Hemostasis parameter to predict decompensated DIC in sepsis patients are the shorten PT, aPTT, and the increased fibrinogen

  4. On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering. Determination of redox-active sites using Multitrack

    International Nuclear Information System (INIS)

    Vaccaro, A.R.; Mul, G.; Moulijn, J.A.; Perez-Ramirez, J.

    2003-01-01

    A highly dispersed Pt/Al 2 O 3 catalyst was used for the selective catalytic reduction of NO x using propene (HC-SCR). Contact with the reaction gas mixture led to a significant activation of the catalyst at temperatures above 523K. According to CO chemisorption data and HRTEM analysis, Pt particles on the activated catalyst had sintered. The redox behavior of the fresh and sintered catalysts was investigated using Multitrack, a TAP-like pulse reactor. If Pt particles on the catalyst are highly dispersed (average size below =2nm), only a small part (=10%) of the total number of Pt surface sites as determined by CO chemisorption (Pt surf ) participates in H 2 /O 2 redox cycles (Pt surf,redox ) in Multitrack conditions. For a sintered catalyst, with an average particle size of 2.7nm, the number of Pt surf and Pt surf,redox sites are in good agreement. Similar results were obtained for both catalysts using NO as the oxidant. The low number of Pt surf,redox sites on highly dispersed Pt/Al 2 O 3 is explained by the presence of a kinetically more stable-probably ionic-form of Pt-O bonds on all surface sites of the smaller Pt particles, including corner, edge and terrace sites. When the average particle size shifts to =2.7nm, the kinetic stability of all Pt-O bonds is collectively decreased, enabling the participation of all Pt surface sites in the redox cycles. A linear correlation between the NO x conversion in HC-SCR, and the amount of Pt surf,redox was found. This suggests that redox-active Pt sites are necessary for catalytic activity. In addition, the correlation could be significantly improved by assuming that Pt surf,terrace sites of the particles larger than 2.7nm are mainly responsible for HC-SCR activity in steady state conditions. Implications of these results for the pathway of HC-SCR over Pt catalysts are discussed

  5. Effect of W on activity of Pt-Ru/C catalyst for methanol electrooxidation in acidic medium

    International Nuclear Information System (INIS)

    Wang Zhenbo; Zuo Pengjian; Yin Geping

    2009-01-01

    The effect of W on the activity of Pt-Ru/C catalyst was investigated. The Pt-Ru-W/C and Pt-Ru/C-TR catalysts were prepared by thermal reduction method. Comparison was made to a homemade Pt-Ru/C-CR catalyst prepared by chemical reduction. Their performances were tested by using a glassy carbon thin film electrode through cyclic voltammetric and chronoamperometric curves. The particle size, structure, composition, and surface state of homemade catalyst were determined by means of X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), and X-ray photoelectron spectrometry (XPS). The result of XRD analysis shows that the homemade ternary catalyst exhibits face-centered cubic structure and has smaller lattice parameter than Pt-alone and homemade Pt-Ru/C catalysts. The particle size of Pt-Ru-W/C catalyst is relatively large of 6.5 nm. Its electrochemically active specific area is 20 m 2 g -1 less than that of Pt-Ru/C-CR, and much twice as big as that of Pt-Ru/C-TR. But, XPS analysis shows that the addition of W changes the surface state of Pt components in the alloy and can clean Pt surface active sites which are adsorbed by hydrogen. The electrocatalytic activity and tolerance performance to CO ads of Pt-Ru-W/C catalyst for methanol electrooxidation is the best due to the promoting function of W in comparison with homemade Pt-Ru/C ones.

  6. Ion-irradiation induced chemical ordering of FePt and FePtAu nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu V. [Department of Physics, Grambling State University, RWE Jones Drive, Carver Hall 81, Grambling, LA 71245 (United States)]. E-mail: naidusv@gram.edu; Harrell, J.W. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Lawson, Jeremy [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Nikles, David E. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Williams, John R. [Department of Physics, Auburn University, Auburn, AL 36849 (United States); Isaacs-Smith, Tamara [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2005-12-15

    We have studied the effect of ion-beam irradiation on reducing the ordering temperature of FePt and FePtAu nanoparticles. FePt and FePt(Au14%) 4 nm particles dispersed on a Si-substrate were irradiated by 300 keV Al-ions with a dose of 1 x 10{sup 16} ions/cm{sup 2} at 43 {sup o}C using a water-cooled flange in order to minimize the vacancy migration and voids formation within the collision cascades. Partial chemical ordering has been observed in as-irradiated particles with coercivity of 60-130 Oe. Post-irradiation annealing at 220 {sup o}C enhanced chemical ordering in FePt nanoparticles with coercivity of 3500 Oe, magnetic anisotropy of 1.5 x 10{sup 7} erg/cc, and thermal stability factor of 130. A much higher 375 {sup o}C post-irradiation annealing was required in FePtAu, presumably because Au atoms were trapped at Fe/Pt lattice sites at lower temperatures. As the annealing temperature increased, anomalous features in the magnetization reversal curves were observed that disappeared at higher annealing temperatures.

  7. Mesoporous Pt and Pt/Ru alloy electrocatalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Esteban A. [Grupo de Celdas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Planes, Gabriel A. [Departamento de Quimica, Facultad de Ciencias Exactas, Fisicoquimicas y Naturales, Universidad Nacional de Rio Cuarto, Agencia Postal No 3, 5800, Rio Cuarto (Argentina); Williams, Federico J. [Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE CONICET, Facultad Ciencias Exactas y Naturales, Pabellon 2, Ciudad Universitaria, Buenos Aires (Argentina); Soler-Illia, Galo J.A.A. [Gerencia de Quimica, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Corti, Horacio R. [Grupo de Celdas de Combustible, Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, CNEA. Av. General Paz 1499 (1650), San Martin, Buenos Aires (Argentina); Departamento de Quimica Inorganica, Analitica y Quimica-Fisica, INQUIMAE CONICET, Facultad Ciencias Exactas y Naturales, Pabellon 2, Ciudad Universitaria, Buenos Aires (Argentina)

    2011-02-15

    Mesoporous Pt and Pt/Ru catalysts with 2D-hexagonal mesostructure were synthesized using a triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (Pluronic F127 {sup registered}) template, on a gold support. Large electrochemical surface areas were observed for the catalysts prepared at high overpotentials. Compared to the Pt catalyst, the Pt/Ru alloy containing 3 at% of Ru exhibited lower onset potential and more than three times the limit mass activity for methanol oxidation. This behavior is assigned to the larger pore size of the mesoporous Pt and Pt/Ru catalysts obtained with this template that seems to improve the methanol accessibility to the active sites compared to those obtained using lyotropic liquid crystals. (author)

  8. Electrocatalytic activity of Pt nanoparticles on bamboo shaped carbon nanotubes for ethanol oxidation

    International Nuclear Information System (INIS)

    Zhu Zanzan; Wang Jianlong; Munir, Ahsan; Zhou, H. Susan

    2010-01-01

    Recently, bamboo shaped carbon nanotubes (BCNTs) have received increased attention for its bamboo shaped structure associated properties and its application in direct methanol/ethanol fuel cell. In this work, the potential to use BCNTs as the support material of high loaded Pt nanoparticles for improving the efficiency of ethanol/methanol fuel cell is explored. The structure and nature of the resulting Pt-BCNTS composite were characterized by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) spectrum, it was found that Pt nanoparticles were homogeneously dispersed on the BCNTs surfaces with 23.5% by weight. Cyclic voltammogram (CV) indicated that the Pt-BCNTs catalyst displayed excellent electrocatalytic activity and long-term stability toward ethanol oxidation. The excellent performance may be attributed to the high dispersion of nanoscale Pt catalysts and the unique nature of BCNTs. The results imply that doping N atom introduces some defective sites and active sites onto the surface of CNTs. In general, this paper demonstrates that BCNTs are promising support material for Pt-nanoparticles catalyst and can be used to enhance the efficiency of fuel cell.

  9. Facile Synthesis of Pt Nanoparticle and Graphene Composite Materials: Comparison of Electrocatalytic Activity with Analogous CNT Composite

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihye; Jang, Ho Young; Jung, Insub; Yoon, Yeoheung; Jang, Heejeong; Lee, Hyoyoung; Park, Sungho [Sungkyunkwan Univ., Suwon (Korea, Republic of)

    2014-07-15

    Here, we present a facile method to synthesize Pt nanoparticles (NPs) and graphene composite materials (Pt/G) via vacuum filtration. Anodic aluminum oxide (AAO) templates were used to separate Pt/G composite and liquid phase. This method can be used to easily tune the mass ratio of Pt NPs and graphene. Pt NPs, graphene, and carbon nanotubes (CNTs) as building blocks were characterized by a variety of techniques such as scanning electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy. We compared the electrocatalytic activities of Pt/G with Pt NP and CNT films (Pt/CNT) by cyclic voltammetry (CV), CO oxidation, and methanol oxidation. Pt/G was much more stable than pure Pt films. Also, Pt/G had better electrochemical activity, CO tolerance and methanol oxidation than Pt/CNT loaded with the same amount of Pt NPs due to the better dispersion of Pt NPs on graphene flakes without aggregation. We further synthesized Au Pt disk/G and Pt nanorods/G to determine if our synthetic method can be applied to other NP shapes such as nanodisks and nanorods, for further electrocatalysis studies.

  10. Hemoglobin–Albumin Cluster Incorporating a Pt Nanoparticle: Artificial O2 Carrier with Antioxidant Activities

    Science.gov (United States)

    Hosaka, Hitomi; Haruki, Risa; Yamada, Kana; Böttcher, Christoph; Komatsu, Teruyuki

    2014-01-01

    A covalent core–shell structured protein cluster composed of hemoglobin (Hb) at the center and human serum albumins (HSA) at the periphery, Hb-HSAm, is an artificial O2 carrier that can function as a red blood cell substitute. Here we described the preparation of a novel Hb-HSA3 cluster with antioxidant activities and its O2 complex stable in aqueous H2O2 solution. We used an approach of incorporating a Pt nanoparticle (PtNP) into the exterior HSA unit of the cluster. A citrate reduced PtNP (1.8 nm diameter) was bound tightly within the cleft of free HSA with a binding constant (K) of 1.1×107 M−1, generating a stable HSA-PtNP complex. This platinated protein showed high catalytic activities for dismutations of superoxide radical anions (O2 •–) and hydrogen peroxide (H2O2), i.e., superoxide dismutase and catalase activities. Also, Hb-HSA3 captured PtNP into the external albumin unit (K = 1.1×107 M−1), yielding an Hb-HSA3(PtNP) cluster. The association of PtNP caused no alteration of the protein surface net charge and O2 binding affinity. The peripheral HSA-PtNP shell prevents oxidation of the core Hb, which enables the formation of an extremely stable O2 complex, even in H2O2 solution. PMID:25310133

  11. Isolated Pt Atoms Stabilized by Amorphous Tungstenic Acid for Metal-Support Synergistic Oxygen Activation.

    Science.gov (United States)

    Zhang, Qian; Qin, Xixi; Duanmu, Fanpeng; Ji, Huiming; Shen, Zhurui; Han, Xiaopeng; Hu, Wenbin

    2018-06-05

    Oxygen activation plays a crucial role in many important chemical reactions such as organics oxidation and oxygen reduction. For developing highly active materials for oxygen activation, herein, we report an atomically dispersed Pt on WO3 nanoplates stabilized by in-situ formed amorphous H2WO4 out-layer and the mechanism for activating molecular oxygen. Experimental and theoretical studies demonstrate that the isolated Pt atoms coordinated with oxygen atoms from [WO6] and water of H2WO4, consequently leading to optimized surface electronic configuration and strong metal support interaction (SMSI). In exemplified reactions of butanone oxidation sensing and oxygen reduction, the atomic Pt/WO3 hybrid exhibits superior activity than those of Pt nanoclusters/WO3 and bare WO3 as well as enhanced long-term durability. This work will provide insight on the origin of activity and stability for atomically dispersed materials, thus promoting the development of highly efficient and durable single atom-based catalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Towards the elucidation of the high oxygen electroreduction activity of PtxY: surface science and electrochemical studies of Y/Pt(111)

    DEFF Research Database (Denmark)

    Johansson, Tobias Peter; Ulrikkeholm, Elisabeth Therese; Hernandez-Fernandez, Patricia

    2014-01-01

    programmed desorption of CO. When depositing a large amount of yttrium at 1173 K, a (1.88 × 1.88)R30° structure relative to Pt(111) was observed by low energy electron diffraction. Such an electron diffraction pattern could correspond to a (2 × 2)R30° structure under 6% compressive strain. This structure...... is in agreement with the structure of the vacancies in a Pt Kagomé layer in Pt5Y rotated 30° with respect to the bulk of the Pt(111). The Pt overlayer is relatively stable in air; however, after performing oxygen reduction activity measurements in an electrochemical cell, a thick Pt overlayer was measured...

  13. Chitinase activity of Pseudomonas stutzeri PT5 in different fermentation condition

    Science.gov (United States)

    Chalidah, N.; Khotimah, I. N.; Hakim, A. R.; Meata, B. A.; Puspita, I. D.; Nugraheni, P. S.; Ustadi; Pudjiraharti, S.

    2018-03-01

    This study aimed to determine the incubation condition of Pseudomonas stutzeri PT5 in producing chitin degrading enzyme in various pH and temperatures; to compare the production of chitin degrading enzyme in chitin medium supplemented with additional nitrogen, carbon and a mixture of nitrogen and carbon sources and to observe the production of chitin degrading enzyme in 250 mL-shake flasks and 2 L-fermentor. The parameters tested during production were chitinase activity (U·mL-1) of culture supernatant and N-acetylglucosamine concentration (μg·mL-1) in the medium. The results showed that Pseudomonas stutzeri PT5 was able to produce the highest chitinase activity at pH 6 and temperature of 37 °C (0.024 U·mL-1). The addition of 0.1 % of ammonium phosphate and 0.1 % of maltose, increased the chitinase activity of Pseudomonas stutzeri PT5 by 3.24 and 8.08 folds, respectively, compared to the control. The addition of 0.1 % ammonium phosphate and 0.1 % maltose mixture to chitin medium resulted in the shorter time of chitinase production compared to the addition of sole nutrition. The production of chitinase using 2 L-fermentor shows that the highest chitinase activity produced by Pseudomonas stutzeri PT5 was reached at 1-day incubation (0.0283 U·mL-1), which was shorter than in 250 mL-shake flasks.

  14. Effect of the structural characteristics of binary Pt-Ru and ternary Pt-Ru-M fuel cell catalysts on the activity of ethanol electrooxidation in acid medium.

    Science.gov (United States)

    Antolini, Ermete

    2013-06-01

    In view of their possible use as anode materials in acid direct ethanol fuel cells, the electrocatalytic activity of Pt-Ru and Pt-Ru-M catalysts for ethanol oxidation has been investigated. This minireview examines the effects of the structural characteristics of Pt-Ru, such as the degree of alloying and Ru oxidation state, on the electrocatalytic activity for ethanol oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of microstructure and composition of anode Pt based electrocatalysts on performance of direct alcohol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L.; Li, H.; Yan, S.; Sun, G. [Dalian Inst. of Chemical Physics, Dalian (China). Direct Alcohol Fuel Cell Lab; Xin, Q. [Dalian Inst. of Chemical Physics, Dalian (China). Direct Alcohol Fuel Cell Lab; Dalian Inst. of Chemical Physics, Dalian (China). State Key Laboratory of Catalysis

    2008-07-01

    This paper reported on a study in which platinum (Pt)-based electrocatalysts were synthesized and characterized by XRD, TEM and EDS. The focus of the study was on the relationship between the microstructure and components of PtRu and PtSn catalysts and the performance of direct alcohol fuel cells (DAFCs). All of the Pt-based electrocatalysts were prepared by a modified polyol method. XRD patterns of the 2 catalysts showed that both catalysts have an fcc pattern of Pt. This was also confirmed by the shift of diffraction peaks of Pt in both catalysts. Electrochemical measurements were carried out using an EG and G model 273A potentiostat/galvanostat and a three-electrode test cell at room temperature. Membrane electrode assemblies (MEAs) were fabricated with a pair of stainless steel plates with parallel flow-fields. The MEAs were activated by 1 M methanol/ethanol at 75 degrees C for 3 hours before all the data were collected. The study showed that PtRu is active to methanol electrooxidation while PtSn is active to ethanol electrooxidation. Based on the above experimental analysis, it was determined that the dilatation of Pt lattice parameter is favourable for ethanol adsorption, while the suitable contract of Pt lattice parameter is favorable for methanol electrooxidation. Since Pt is more electronegative than Sn, the partial electrons of Sn atom could be transferred to Pt atom leading to filling of Pt d band. Although Ru is as electronegative as Pt, the electric effect of Pt and Ru may not be as pronounced. 4 refs., 4 figs.

  16. Photocatalytic Ethanol Oxidative Dehydrogenation over Pt/TiO2: Effect of the Addition of Blue Phosphors

    Directory of Open Access Journals (Sweden)

    J. J. Murcia

    2012-01-01

    Full Text Available Ethanol oxidative dehydrogenation over Pt/TiO2 photocatalyst, in the presence and absence of blue phosphors, was performed. The catalyst was prepared by photodeposition of Pt on sulphated TiO2. This material was tested in a gas-solid photocatalytic fluidized bed reactor at high illumination efficiency. The effect of the addition of blue phosphors into the fluidized bed has been evaluated. The synthesized catalysts were extensively characterized by different techniques. Pt/TiO2 with a loading of 0.5 wt% of Pt appeared to be an active photocatalyst in the selective partial oxidation of ethanol to acetaldehyde improving its activity and selectivity compared to pure TiO2. In the same way, a notable enhancement of ethanol conversion in the presence of the blue phosphors has been obtained. The blue phosphors produced an increase in the level of ethanol conversion over the Pt/TiO2 catalyst, keeping at the same time the high selectivity to acetaldehyde.

  17. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Whitacre, Jay F. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  18. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.

    Science.gov (United States)

    Yang, Xuan; Roling, Luke T; Vara, Madeline; Elnabawy, Ahmed O; Zhao, Ming; Hood, Zachary D; Bao, Shixiong; Mavrikakis, Manos; Xia, Younan

    2016-10-12

    Engineering the elemental composition of metal nanocrystals offers an effective strategy for the development of catalysts or electrocatalysts with greatly enhanced activity. Herein, we report the synthesis of Pt-Ag alloy nanocages with an outer edge length of 18 nm and a wall thickness of about 3 nm. Such nanocages with a composition of Pt 19 Ag 81 could be readily prepared in one step through the galvanic replacement reaction between Ag nanocubes and a Pt(II) precursor. After 10 000 cycles of potential cycling in the range of 0.60-1.0 V as in an accelerated durability test, the composition of the nanocages changed to Pt 56 Ag 44 , together with a specific activity of 1.23 mA cm -2 toward oxygen reduction, which was 3.3 times that of a state-of-the-art commercial Pt/C catalyst (0.37 mA cm -2 ) prior to durability testing. Density functional theory calculations attributed the increased activity to the stabilization of the transition state for breaking the O-O bond in molecular oxygen. Even after 30 000 cycles of potential cycling, the mass activity of the nanocages only dropped from 0.64 to 0.33 A mg -1 Pt , which was still about two times that of the pristine Pt/C catalyst (0.19 A mg -1 Pt ).

  19. Evaluation of partial beta-adrenoceptor agonist activity.

    Science.gov (United States)

    Lipworth, B J; Grove, A

    1997-01-01

    A partial beta-adrenoceptor (beta-AR) agonist will exhibit opposite agonist and antagonist activity depending on the prevailing degree of adrenergic tone or the presence of a beta-AR agonist with higher intrinsic activity. In vivo partial beta-AR agonist activity will be evident at rest with low endogenous adrenergic tone, as for example with chronotropicity (beta 1/beta 2), inotropicity (beta 1) or peripheral vasodilatation and finger tremor (beta 2). beta-AR blocking drugs which have partial agonist activity may exhibit a better therapeutic profile when used for hypertension because of maintained cardiac output without increased systemic vascular resistance, along with an improved lipid profile. In the presence of raised endogenous adrenergic tone such as exercise or an exogenous full agonist, beta-AR subtype antagonist activity will become evident in terms of effects on exercise induced heart rate (beta 1) and potassium (beta 2) responses. Reduction of exercise heart rate will occur to a lesser degree in the case of a beta-adrenoceptor blocker with partial beta 1-AR agonist activity compared with a beta-adrenoceptor blocker devoid of partial agonist activity. This may result in reduced therapeutic efficacy in the treatment of angina on effort when using beta-AR blocking drugs with partial beta 1-AR agonist activity. Effects on exercise hyperkalaemia are determined by the balance between beta 2-AR partial agonist activity and endogenous adrenergic activity. For predominantly beta 2-AR agonist such as salmeterol and salbutamol, potentiation of exercise hyperkalaemia occurs. For predominantly beta 2-AR antagonists such as carteolol, either potentiation or attenuation of exercise hyperkalaemia occurs at low and high doses respectively. beta 2-AR partial agonist activity may also be expressed as antagonism in the presence of an exogenous full agonist, as for example attenuation of fenoterol induced responses by salmeterol. Studies are required to investigate whether

  20. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    Science.gov (United States)

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  1. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation

    International Nuclear Information System (INIS)

    Wei Lu; Fan Youjun; Wang Honghui; Tian Na; Zhou Zhiyou; Sun Shigang

    2012-01-01

    Highlights: ► The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps. ► The as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. ► The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size. - Abstract: The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the electrocatalyst of Pt nanoflowers. The uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps were characterized by SEM, TEM, XRD, XPS and electrochemical tests. The results illustrated that the as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size, which can be applied in shape-controlled synthesis of other noble metal nanoparticles with high catalytic activity.

  2. Synthesis of three-dimensionally ordered macro-/mesoporous Pt with high electrocatalytic activity by a dual-templating approach

    Science.gov (United States)

    Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan

    2014-01-01

    Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.

  3. Radiolytic synthesis of carbon-supported PtRu nanoparticles using high-energy electron beam: effect of pH control on the PtRu mixing state and the methanol oxidation activity

    International Nuclear Information System (INIS)

    Ohkubo, Yuji; Kageyama, Satoru; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Nitani, Hiroaki; Ueno, Koji; Yamamoto, Takao A.

    2013-01-01

    Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.

  4. Radiolytic synthesis of carbon-supported PtRu nanoparticles using high-energy electron beam: effect of pH control on the PtRu mixing state and the methanol oxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@mit.eng.osaka-u.ac.jp; Kageyama, Satoru; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Osaka University, Graduate School of Engineering (Japan); Nitani, Hiroaki [High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd (Japan); Yamamoto, Takao A. [Osaka University, Graduate School of Engineering (Japan)

    2013-05-15

    Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.

  5. Preparation of PtSnCu/C and PtSn/C electrocatalysts and activation by dealloying processes for ethanol electrooxidation; Preparacao de eletrocatalisadores PtSnCu/C e PtSn/C e ativacao por processos de dealloying para aplicacao na oxidacao eletroquuimica do etanol

    Energy Technology Data Exchange (ETDEWEB)

    Crisafulli, Rudy

    2013-06-01

    PtSnCu/C (with different Pt:Sn:Cu atomic ratios) and PtSn/C (50:50) electrocatalysts were prepared by borohydride (BR) and alcohol-reduction (AR) processes using H{sub 2}PtCl{sub 6}.6H{sub 2}O, SnCl{sub 2}.2H{sub 2}O and CuCl{sub 2}.2H{sub 2}O as metal sources, NaBH{sub 4} and ethylene glycol as reducing agents, 2-propanol and ethylene glycol/water as solvents and carbon black as support. In a further step, these electrocatalysts were activated by chemical (CD) and electrochemical (ED) dealloying processes through acid treatment and thin porous coating technique, respectively. These materials were characterized by energy dispersive X-ray, Xray diffraction, transmission electron microscopy, line scan energy dispersive Xray and cyclic voltammetry. Electrochemical studies for ethanol electro-oxidation were performed by cyclic voltammetry, chronoamperometry and in single Direct Ethanol Fuel Cell using Membrane Electrode Assembly (MEA). The anodic effluents were analysed by gas chromatography. The X-ray diffractograms of the as-synthesized electrocatalysts showed the typical face-centered cubic structure (FCC) of platinum and its alloys. After dealloying, the X-ray diffractograms showed that the Pt FCC structure was preserved. The crystallite sizes of the assynthesized electrocatalysts were in the range of <=2 nm to 3 nm and after dealloying there were no significant variations in sizes. The energy dispersive Xray analysis of the as-synthesized electrocatalysts showed a Pt:Sn and Pt:Sn:Cu atomic ratios similar to the nominal values. After chemical and electrochemical dealloying of the electrocatalysts the ranged Pt:Sn and Pt:Sn:Cu atomic ratios showed that Cu and Sn atoms were removed. However, chemical dealloying process proved to be more efficient for removing Cu and electrochemical dealloying for removing Sn. The line scan energy dispersive X-ray analysis showed that acid and electrochemical treatments were efficient to dealloying Cu and/or Sn superficial atoms of

  6. Gram-Scale Synthesis of Highly Active and Durable Octahedral PtNi Nanoparticle Catalysts for Proton Exchange Membrane Fuel Cell

    DEFF Research Database (Denmark)

    Choi, Juhyuk; Jang, Jue-Hyuk; Roh, Chi-Woo

    2018-01-01

    for the commercialization of PEMFCs. In this study, we focus on gram-scale synthesis of octahedral PtNi nanoparticles with Pt overlayers (PtNi@Pt) supported on the carbon, resulting in enhanced catalytic activity and durability. Such PtNi@Pt catalysts show high mass activity (1.24 A mgPt−1) at 0.9 V (vs RHE) for the ORR......Proton exchange membrane fuel cells (PEMFC) are regarded as a promising renewable energy source for a future hydrogen energy society. However, highly active and durable catalysts are required for the PEMFCs because of their intrinsic high overpotential at the cathode and operation under the acidic...... condition for oxygen reduction reaction (ORR). Since the discovery of the exceptionally high surface activity of Pt3Ni(111), the octahedral PtNi nanoparticles have been synthesized and tested. Nonetheless, their milligram-scale synthesis method and poor durability make them unsuitable...

  7. 1D-2D carbon heterostructure with low Pt loading as a superior cathode electrode for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nechiyil, Divya; Ramaprabhu, S., E-mail: ramp@iitm.ac.in [Indian Institute of Technology Madras, Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics (India)

    2017-02-15

    Cost-effective counter electrode (CE) with high electrocatalytic performance is very much essential for the wide application of dye-sensitized solar cells (DSSC). The 1D-2D carbon heterostructure (Pt/GR@CNT) with low platinum (Pt) loading has been synthesized by a facile in situ microwave-assisted polyol-reduction method. The excellent electrocatalytic activity as well as photovoltaic performance was achieved due to the combination of 2D graphene nanoribbons (GR) and 1D multi-walled carbon nanotubes (CNT) with high catalytically active Pt nanoparticles. Microwave-assisted longitudinal unzipping of few outer layers of CNTs along with co-reduction of Pt nanoparticles is an effective method to create electrochemically active defective edge sites, which have a crucial role in enhancing electrochemical performance. Synergistic effect of ultra-fine Pt nanoparticles, partially unzipped graphene nanoribbons and inner core tubes of CNTs modulates the power conversion efficiency of solar cell to 5.57% ± 0.03 as compared with 4.73% ± 0.13 of CNTs. Pt/GR@CNT CE even with low Pt loading of 14 μg cm{sup −2} showcases equivalent performance with that of pure Pt counter electrode.

  8. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    International Nuclear Information System (INIS)

    Zhou Weiping; Li Meng; Koenigsmann, Christopher; Ma Chao; Wong, Stanislaus S.; Adzic, Radoslav R.

    2011-01-01

    Highlights: → We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. → Pt nanowires and nanoparticles were used as catalysts. → Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. → The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO 2 -to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  9. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weiping, E-mail: wpzhou@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Li Meng [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Koenigsmann, Christopher [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Ma Chao [Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Wong, Stanislaus S. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Adzic, Radoslav R. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-11-30

    Highlights: > We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. > Pt nanowires and nanoparticles were used as catalysts. > Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. > The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO{sub 2}-to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  10. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-07-01

    Full Text Available Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C, were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS, and methanol oxidation activity compared using CV and chronoamperometry (CA. While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells.

  11. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt{sub 3}M (where M = 3d transition metals) alloy catalyst from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Eun [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Lim, Dong-Hee [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 362-763 (Korea, Republic of); Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Hong, Seong-Ahn [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Advanced Materials Chemistry, Korea University, Sejong-city 339-700 (Korea, Republic of); Soon, Aloysius, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Ham, Hyung Chul, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Clean Energy and Chemical Engineering, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt{sub 3}M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt{sub 3}M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt{sub 3}M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt{sub 3}M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  12. Direct synthesis of L1 type Fe-Pt nanoparticles using microwave-polyol method

    International Nuclear Information System (INIS)

    Minami, Rumiko; Kitamoto, Yoshitaka; Chikata, Tsukasa; Kato, Shunsaku

    2005-01-01

    We report the synthesis of Fe-Pt nanoparticles with microwave irradiation during polyol-reduction reaction. Chemically ordered Fe-Pt nanoparticles with L1 structure are fabricated at 250 deg. C using a microwave-polyol method without any post-synthesis treatments. Moessbauer analyses reveal the nanoparticles have partially ordered L1 structure. The partially ordered Fe-Pt nanoparticles exhibit coercivity of 3.4 kOe, saturation magnetization of 49 emu/g, and anisotropy field of 83 kOe at room temperature

  13. Activation of surface lattice oxygen in single-atom Pt/CeO 2 for low-temperature CO oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Lei; Mei, Donghai; Xiong, Haifeng; Peng, Bo; Ren, Zhibo; Pereira Hernandez, Xavier I.; DelaRiva, Andrew; Wang, Meng; Engelhard, Mark H.; Kovarik, Libor; Datye, Abhaya K.; Wang, Yong

    2017-12-14

    While single-atom catalysts can provide high catalytic activity and selectivity, application in industrial catalysts demands long term performance and the ability to regenerate the catalysts. We have investigated the factors that lead to improved catalytic activity of a Pt/CeO2 catalyst for low temperature CO oxidation. Single-atom Pt/CeO2 becomes active for CO oxidation under lean condition only at elevated temperatures, because CO is strongly bound to ionic Pt sites. Reducing the catalyst, even under mild conditions, leads to onset of CO oxidation activity even at room temperature. This high activity state involves the transformation of mononuclear Pt species to sub-nanometer sized Pt particles. Under oxidizing conditions, the Pt can be restored to its stable, single-atom state. The key to facile regeneration is the ability to create mobile Pt species and suitable trapping sites on the support, making this a prototypical catalyst system for industrial application of single-atom catalysis.

  14. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuzhen; Gu Yonge; Lin Shaoxiong; Wei Jinping; Wang Zaihua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Du Yongling; Ye Weichun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-10-01

    Highlights: > PtPdAu nanoparticles were synthesized on graphene sheets via chemical reduction method. > The prepared PtPdAu nanoparticles were ternary alloy with fcc structure. > The catalyst exhibited superior catalytic activity and stability for MOR in alkaline. - Abstract: Well-dispersed PtPdAu ternary alloy nanoparticles were synthesized on graphene sheets via a simple one-step chemical reduction method in ethylene glycol (EG) and water system, in which EG served as both reductive and dispersing agent. The electrocatalytic activity of PtPdAu/G was tested by methanol oxidation reaction (MOR). The catalyst was further characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which indicated that the as-synthesized PtPdAu nanoparticles with alloy structures were successfully dispersed on the graphene sheets. Electrocatalytic properties of the catalyst for MOR in alkaline have been investigated by cyclic voltammetry (CV), chronoamperometry and Tafel curves. The electrocatalytic activity and stability of PtPdAu/G were superior to PtPd/G, PtAu/G and Pt/G. In addition, the anodic peak current on PtPdAu/G catalyst was proportional to the concentration of methanol in the range of 0.05-1.00 M. This study implies that the prepared catalyst have great potential applications in fuel cells.

  15. Highly active Pt nanoparticles on nickel phthalocyanine functionalized graphene nanosheets for methanol electrooxidation

    International Nuclear Information System (INIS)

    Zhong, Jing-Ping; Fan, You-Jun; Wang, Hui; Wang, Rui-Xiang; Fan, Li-Li; Shen, Xing-Can; Shi, Zu-Jin

    2013-01-01

    Highlights: • A new Pt-based catalyst using TSNiPc functionalized graphene as support is reported. • Pt nanoparticles are uniformly dispersed on the functionalized graphene surface. • The Pt/TSNiPc–graphene shows excellent catalytic performance for methanol oxidation. -- Abstract: A novel electrocatalyst using nickel (II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TSNiPc) functionalized graphene (TSNiPc–graphene) composite as catalyst support for Pt nanoparticles is reported. The surface morphology, composition and structure of the prepared nanocomposites as well as their electrocatalytic properties toward methanol oxidation are characterized by UV–vis absorption spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electrochemical tests. Pt nanoparticles are found uniformly dispersed on the surface of TSNiPc–graphene composite, with the small particle size of about 3.1 nm. Studies of cyclic voltammetry and chronoamperometry demonstrate that the Pt/TSNiPc–graphene exhibits much higher electrocatalytic activity and stability than the Pt/graphene catalyst for methanol oxidation

  16. MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.

    Science.gov (United States)

    Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian

    2009-07-07

    Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.

  17. Pt Single Atoms Embedded in the Surface of Ni Nanocrystals as Highly Active Catalysts for Selective Hydrogenation of Nitro Compounds.

    Science.gov (United States)

    Peng, Yuhan; Geng, Zhigang; Zhao, Songtao; Wang, Liangbing; Li, Hongliang; Wang, Xu; Zheng, Xusheng; Zhu, Junfa; Li, Zhenyu; Si, Rui; Zeng, Jie

    2018-06-13

    Single-atom catalysts exhibit high selectivity in hydrogenation due to their isolated active sites, which ensure uniform adsorption configurations of substrate molecules. Compared with the achievement in catalytic selectivity, there is still a long way to go in exploiting the catalytic activity of single-atom catalysts. Herein, we developed highly active and selective catalysts in selective hydrogenation by embedding Pt single atoms in the surface of Ni nanocrystals (denoted as Pt 1 /Ni nanocrystals). During the hydrogenation of 3-nitrostyrene, the TOF numbers based on surface Pt atoms of Pt 1 /Ni nanocrystals reached ∼1800 h -1 under 3 atm of H 2 at 40 °C, much higher than that of Pt single atoms supported on active carbon, TiO 2 , SiO 2 , and ZSM-5. Mechanistic studies reveal that the remarkable activity of Pt 1 /Ni nanocrystals derived from sufficient hydrogen supply because of spontaneous dissociation of H 2 on both Pt and Ni atoms as well as facile diffusion of H atoms on Pt 1 /Ni nanocrystals. Moreover, the ensemble composed of the Pt single atom and nearby Ni atoms in Pt 1 /Ni nanocrystals leads to the adsorption configuration of 3-nitrostyrene favorable for the activation of nitro groups, accounting for the high selectivity for 3-vinylaniline.

  18. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  19. Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity

    Science.gov (United States)

    Ding, Jieting; Ji, Shan; Wang, Hui; Key, Julian; Brett, Dan J. L.; Wang, Rongfang

    2018-01-01

    Network-like metallic alloys of solid nanoparticles have been frequently reported as promising electrocatalysts for fuel cells. The three-dimensional structure of such networks is rich in pores in the form of voids between nanoparticles, which collectively expose a large surface area for catalytic activity. Herein, we present a novel solution to this problem using a precursor comprising a flocculent core-shell PtNi@Ni to produce PtNi network catalysts with nanoparticle intraporosity after carefully controlled electrochemical dealloying. Physical characterization shows a hierarchical level of nanoporosity (intrapores within nanoparticles and pores between them) evolves during the controlled electrochemical dealloying, and that a Pt-rich surface also forms after 22 cycles of Ni leaching. In ORR cycling, the PtNi networks gain 4-fold activity in both jECSA and jmass over a state of the art Pt/C electrocatalyst, and also significantly exceed previously reported PtNi networks. In ORR degradation tests, the PtNi networks also proved stable, dropping by 30.4% and 62.6% in jECSA and jmass respectively. The enhanced performance of the catalyst is evident, and we also propose that the presented synthesis procedure can be generally applied to developing other metallic networks.

  20. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.

    Science.gov (United States)

    Abdelhafiz, Ali; Vitale, Adam; Joiner, Corey; Vogel, Eric; Alamgir, Faisal M

    2015-03-25

    In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.

  1. Enhanced methanol electro-oxidation activity of Pt/MWCNTs electro-catalyst using manganese oxide deposited on MWCNTs

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Rashidi, Alimorad; Choolaei, Mohammadmehdi

    2014-01-01

    Highlights: • Promoting effects of manganese oxide (MnO x ) on methanol electro-oxidation over Pt/MWCNTs are studied. • 3.3 times higher activity and improved stability are observed on Pt/MnO x -MWCNTs in MOR. • Both hydrogen spill over and bi-functional mechanism are facilitated in presence of MnO x . • MnO x significantly enhances electrochemical active surface area and dispersion of Pt nanoparticles. • Proton conductivity of electrocatalyst layer is improved upon MnO x incorporation. - Abstract: Electro-oxidation of methanol on platinum nanoparticles supported on a nanocomposite of manganese oxide (MnO x ) and multi-wall carbon nanotubes (MWCNTs) is investigated. The morphology, structure, and chemical composition of the electro-catalysts are characterized by TEM, XRD, EDS, TGA, and H 2 -TPR. The electro-catalytic properties of electrodes are examined by cyclic voltammetry, CO-stripping, electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV). Compared to Pt/MWCNTs, the Pt/MnO x -MWCNTs electro-catalyst exhibits about 3.3 times higher forward peak current density, during cyclic voltammetry, and 4.6 times higher exchange current density in methanol electro-oxidation reaction. In addition, deposition of manganese oxide onto MWCNTs dramatically increases the electrochemical active surface area from 29.7 for Pt/MWCNTs to 89.4 m 2 g −1 Pt for Pt/MnO x -MWCNTs. The results of long-term cyclic voltammetry show superior stability of Pt nanoparticles upon addition of manganese oxide to the support. Furthermore, the kinetics of formation of the chemisorbed OH groups improves upon manganese oxide incorporation. This leads to a lower onset potential of CO ads oxidation on Pt/MnO x -MWCNTs than on Pt/MWCNTs

  2. Effect of Pt coverage in Pt-deposited Pd nanostructure electrodes on electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah-Reum; Lee, Young-Woo; Kwak, Da-Hee; Park, Kyung-Won [Soongsil University, Seoul (Korea, Republic of)

    2015-06-15

    We have fabricated Pt-deposited Pd electrodes via a two-gun sputtering deposition system by separately operating Pd and Pt target as a function of sputtering time of Pt target. For Pt-deposited Pd electrodes (Pd/Pt-X), Pd were first deposited on the substrates at 20 W for 5min, followed by depositing Pt on the Pd-only electrodes as a function of sputtering time (X=1, 3, 5, 7, and 10min) at 20W on the Pt target. As the sputtering time of Pt target increased, the portion of Pt on the Pd electrodes increased, representing an increased coverage of Pt on the Pd electrodes. The Pd/Pt-7 electrode having an optimized Pt coverage exhibits an excellent electrocatalytic activity for methanol oxidation reaction.

  3. Pt Nanostructures/N-Doped Carbon hybrid, an Efficient Catalyst for Hydrogen Evolution/Oxidation Reactions: Enhancing its Base Media Activity through Bifunctionality of the Catalyst.

    Science.gov (United States)

    Barman, Sudip; Kundu, Manas; Bhowmik, Tanmay; Mishra, Ranjit

    2018-06-04

    Design and synthesis of active catalyst for HER/HOR are important for the development of hydrogen based renewable technologies. We report synthesis of Pt nanostructures-N-doped carbon hybrid (Pt-(PtO2)-NSs/C) for HER/HOR applications. The HER activity of this Pt-(PtOx)-NSs/C catalyst is 4 and 6.5 times better than commercial Pt/C in acid and base. The catalyst exhibits a current density of 10 mA/cm2 at overpotentials of 5 and 51 mV with tafel slopes of 29 and 64mV/dec in in 0.5 M H2SO4 and 0.5 M KOH. This catalyst also showed superior HOR activity at all pH values. The HER/HOR activity of Pt-(PtOx)-NSs/C and PtOx-free Pt-Nanostructures/C (PtNSs/C) catalysts are comparable in acid. The presence of PtOx in Pt-(PtOx)-NSs/C makes this Pt-catalyst more HER/HOR active in base media. The activity of Pt-(PtOx)NSs/C catalyst is 5 fold higher than that of PtNSs/C catalyst in basic medium although their activity is comparable in acid. Hydrogen binding energy and oxophilicity are the two equivalent descriptors for HER/HOR in basic media. We propose a bi-functional mechanism for the enhanced alkaline HER/HOR activity of Pt(PtOx)-NSs/C catalyst. In bi-functional Pt-(PtOx)-NSs/C catalyst, PtOx provide an active site for OH- adsorption to form OHads which reacts with hydrogen intermediate (Hads), present at neighbouring Pt sites to form H2O leading to enhancement of HOR activity in basic medium This work may provide opportunity to develop catalysts for various renewable energy technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Rong; Shao, Yuyan; Wang, Donghai; Engelhard, Mark H.; Kwak, Ja Hun; Wang, Jun; Viswanathan, Vilayanur V.; Wang, Chongmin; Lin, Yuehe; Wang, Yong; Liu, Jun [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Aksay, Ilhan A. [Department of Chemical Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2009-05-15

    Electrocatalysis of oxygen reduction using Pt nanoparticles supported on functionalized graphene sheets (FGSs) was studied. FGSs were prepared by thermal expansion of graphite oxide. Pt nanoparticles with average diameter of 2 nm were uniformly loaded on FGSs by impregnation methods. Pt-FGS showed a higher electrochemical surface area and oxygen reduction activity with improved stability as compared with the commercial catalyst. Transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical characterization suggest that the improved performance of Pt-FGS can be attributed to smaller particle size and less aggregation of Pt nanoparticles on the functionalized graphene sheets. (author)

  5. Carbon nanotubes-supported PtAu-alloy nanoparticles for electro-oxidation of formic acid with remarkable activity

    International Nuclear Information System (INIS)

    Bai Yancui; Zhang Weide; Chen Caihong; Zhang Jiaqi

    2011-01-01

    Research highlights: → Electro-oxidation of HCOOH over PtAu at lower potential, higher peak current. → The stability of the PtAu catalyst is high. → Au in the PtAu catalyst promotes utilization of Pt. - Abstract: PtAu-alloy nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully prepared by simultaneous reduction of H 2 PtCl 6 .6H 2 O and HAuCl 4 .3H 2 O with sodium borohydride as a reducing reagent and sodium citrate as a stabilizing reagent. The morphology and composition of the composite catalyst were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. The results show that the PtAu alloy nanoparticles with an average diameter of about 3.5 nm and narrow size distribution are supported on MWCNTs. Electrocatalytic oxidation of formic acid at the PtAu/MWCNTs nanocomposite electrode was investigated in a solution containing 0.50 M H 2 SO 4 as a supporting electrolyte and 0.50 M formic acid by cyclic voltammogram and chronoamperometry. The results demonstrate that the PtAu/MWCNTs catalyst exhibits higher activity and stability for electro-oxidation of formic acid than the commercial Pt/C catalyst, reflecting by its lower onset potential (-0.05 V), oxidation mainly occurring in low potential range of -0.05 ± 0.65 V and higher peak current density of 3.12 mA cm -2 . The result of CO stripping voltammetry discloses that gold in the PtAu/MWCNTs nanocomposite enhances the catalytic activity and stability.

  6. Carbon supported nanoparticles Pt Ru (Pt Ru/C electrocatalysts) prepared using electron beam irradiation; Preparacao de nanoparticulas de PtRu suportadas em carbono (eletrocatalisadores PtRu/C) utilizando feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F. da; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Celulas a Combustivel], e-mail: espinace@ipen.br, e-mail: dfsilva@ipen.br

    2006-07-01

    Carbon-supported Pt Ru (electrocatalysts PtRu/C nanoparticles) were prepared submitting a water/ethylene glycol mixture containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The PtRu/C electrocatalysts were characterized by EDX, XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C ETEK electrocatalyst at ambient temperature. (author)

  7. Nitric oxide-induced eosinophil apoptosis is dependent on mitochondrial permeability transition (mPT, JNK and oxidative stress: apoptosis is preceded but not mediated by early mPT-dependent JNK activation

    Directory of Open Access Journals (Sweden)

    Ilmarinen-Salo Pinja

    2012-08-01

    Full Text Available Abstract Background Eosinophils are critically involved in the pathogenesis of asthma. Nitric oxide (NO is produced in high amounts in asthmatic lungs and has an important role as a regulator of lung inflammation. NO was previously shown to induce eosinophil apoptosis mediated via c-jun N-terminal kinase (JNK and caspases. Our aim was to clarify the cascade of events leading to NO-induced apoptosis in granulocyte macrophage-colony stimulating factor (GM-CSF-treated human eosinophils concentrating on the role of mitochondria, reactive oxygen species (ROS and JNK. Methods Apoptosis was determined by flow cytometric analysis of relative DNA content, by Annexin-V labelling and/or morphological analysis. Immunoblotting was used to study phospho-JNK (pJNK expression. Mitochondrial membrane potential was assessed by JC-1-staining and mitochondrial permeability transition (mPT by loading cells with calcein acetoxymethyl ester (AM and CoCl2 after which flow cytometric analysis was conducted. Statistical significance was calculated by repeated measures analysis of variance (ANOVA or paired t-test. Results NO-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP induced late apoptosis in GM-CSF-treated eosinophils. SNAP-induced apoptosis was suppressed by inhibitor of mPT bongkrekic acid (BA, inhibitor of JNK SP600125 and superoxide dismutase-mimetic AEOL 10150. Treatment with SNAP led to late loss of mitochondrial membrane potential. Additionally, we found that SNAP induces early partial mPT (1 h that was followed by a strong increase in pJNK levels (2 h. Both events were prevented by BA. However, these events were not related to apoptosis because SNAP-induced apoptosis was prevented as efficiently when BA was added 16 h after SNAP. In addition to the early and strong rise, pJNK levels were less prominently increased at 20–30 h. Conclusions Here we demonstrated that NO-induced eosinophil apoptosis is mediated via ROS, JNK and late mPT. Additionally

  8. A highly active PtCu3 intermetallic core-shell, multilayered Pt-skin, carbon embedded electrocatalyst produced by a scale-up sol-gel synthesis.

    Science.gov (United States)

    Bele, M; Jovanovič, P; Pavlišič, A; Jozinović, B; Zorko, M; Rečnik, A; Chernyshova, E; Hočevar, S; Hodnik, N; Gaberšček, M

    2014-11-07

    We present a novel, scaled-up sol-gel synthesis which enables one to produce 20 g batches of highly active and stable carbon supported PtCu3 nanoparticles as cathode materials for low temperature fuel cell application. We confirm the presence of an ordered intermetallic phase underneath a multilayered Pt-skin together with firm embedment of nanoparticles in the carbon matrix.

  9. Tuning metal support interactions enhances the activity and durability of TiO2-supported Pt nanocatalysts

    International Nuclear Information System (INIS)

    Hsieh, Bing-Jen; Tsai, Meng-Che; Pan, Chun-Jern; Su, Wei-Nien; Rick, John; Chou, Hung-Lung; Lee, Jyh-Fu; Hwang, Bing-Joe

    2017-01-01

    Highlights: • The coverage of TiO x on Pt can be modified by thermal and fluoric acid treatments. • Strong metal support interaction (SMSI) can be testified by electrochemical method. • For the first time, the SMSI effect is observed at 200 °C with supporting TEM images. • Increased activity and stability are attributed to stronger SMSI. • This tunable approach is valid for other oxide supported catalysts, e.g. Pt/Nb-TiO 2 . - Abstract: A facile approach to enhance catalytic activity and durability of TiO 2 -supported Pt nanocatalysts by tuning strong metal support interaction (SMSI) is investigated in this work. No need for a high temperature treatment, the strong metal-support interaction (SMSI) in TiO 2 -supported Pt can be induced at 200° C by H 2 reduction. Moreover, electrochemical methods (methanol oxidation reaction and cyclic voltammetry) are first reported ever to be effective characterization tools for the coverage state caused by SMSI. In addition, the SMSI has also been confirmed by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and Transmission Electron Microscopy. It is found that the encapsulation of TiO 2-x species on the surface Pt clusters was induced and modified by thermal reduction and fluoric acid treatment. The catalytic activity and durability of the TiO 2 -supported Pt nanocatalysts are strongly dependent of the state of SMSI. The proposed SMSI-tunable approach to enhance the ORR activity and stability is also proved applicable to Pt/Ti 0.9 Nb 0.1 O 2 nanocatalysts. We believe that the reported approach paves the way for manipulating the activity and stability of other TiO 2 -supported metal nanocatalysts. Furthermore, the suggested electrochemical methods offer facile and effective ways to verify the presence of coverage state before combining with other physical analysis.

  10. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  11. Pt Skin Versus Pt Skeleton Structures of Pt3Sc as Electrocatalysts for Oxygen Reduction

    DEFF Research Database (Denmark)

    Johansson, Tobias Peter; Ulrikkeholm, Elisabeth Therese; Hernandez-Fernandez, Patricia

    2014-01-01

    . The development of new materials for this reaction is essential in order to increase the overall effeciency of the fuel cell. Herein, we study the effect of ultra high vacuum annealing on the structure and activity of polycrystalline Pt3Sc. Upon annealing in ultra high vacuum a Pt overlayer is formed......, relative to Pt(111), consistent with the CO adsorption energies calculated using density functional theory calculations. Exposing the annealed Pt3Sc sample to 200 mbar O2 at room temperature results in similar to 14 % Sc oxide as measured by X-ray photoelectron spectroscopy. Electrochemical testing...

  12. Enhanced Activity and Durability of Nanosized Pt-SnO2/IrO2/CNTs Catalyst for Methanol Electrooxidation.

    Science.gov (United States)

    Wang, Hongjuan; Wang, Xiaohui; Zheng, Jiadao; Peng, Feng; Yu, Hao

    2015-05-01

    Pt-SnO2/IrO2/CNTs anode catalyst for direct methanol fuel cell was designed and prepared with IrO2/CNTs as support for the subsequent immobilization of Pt and SnO2 at the same time. The structure of the catalysts and their catalytic performance in methanol electrooxidation were investigated and the roles of IrO2 and SnO2 in methanol electrooxidation were discussed as well. Results show that Pt-SnO2/IrO2/CNTs catalyst exhibits the best activity and durability for methanol electrooxidation when compared with Pt/CNTs, Pt/IrO2/CNTs and Pt-SnO2/CNTs. According to the results of electrochemical tests and physicochemical characterizations, the enhancements of Pt-SnO2/IrO2/CNTs were attributed to the special properties of IrO2 and SnO2, in which IrO2 mainly increases the methanol oxidation activity and SnO2 mainly improves the CO oxidation ability and durability. Therefore, Pt-SnO2/IrO2/CNTs exhibits excellent performance for methanol oxidation with higher electrocatalytic activity (I(f) of 1054 A g(Pt(-1)) and powerful anti-poisoning ability (the onset potential for CO oxidation of 0.3 V) and outstanding durability (the sustained time t in CP of 617 s), revealing a suitable anode catalyst for DMFCs.

  13. EFFECT OF METHANOLIC SEED EXTRACT OF PERSEA AMERICANA(AVOCADO PEAR ON PROTHROMBIN TIME AND ACTIVATED PARTIAL THROMBOPLASTIN TIME IN MICE

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Twenty (20 adult albino mice were used in the study to determine the effect of methanolic seed extract of Persea Americana on prothrombin time (PT and activated partial thromboplastin time (APTT test. The mice were obtained and kept for 2 weeks to acclimatize. They were weighed and divided into 5 groups. Group A served as control without the extract. Groups B to E were orally administered with graded doses of 200mg, 400 mg, 800 mg and 1600mg/kg body weight per mice daily for 28 days. Blood samples were collected through the median canthus into ti-sodium citrate anticoagulant containers for the analysis of PT and APTT, using standard operative procedure. The analysis was carried out at the Haematology Laboratory of University of Nigeria Teaching Hospital (UNTH Enugu. The results showed a prolonged APTT time at all the doses of the extract when compared with the control (P and lt;0.05. The prothrombin time at the dosage of 200mg/kg did not differ when compared with the control (P and gt;0.05. The increase in PT and APTT was dose dependent. This result pattern suggests that the extract causes prolonged prothrombin time and APTT at various concentrations possibly due to its high potassium content. The extract can be recommended in anticoagulant therapy since it prolongs PT and APTT.

  14. Synthesis, characterization and catalytic activity toward methanol oxidation of electrocatalyst Pt4+-NH2-MCM-41

    International Nuclear Information System (INIS)

    Zheng Huajun; Chen Zuo; Wang Limin; Ma Chun’an

    2012-01-01

    Highlights: ► It was first confirmed that the Pt 4+ exhibited a good electro-catalytic property for methanol oxidation. ► The Pt 4+ perfectly distributed on a mesoporous molecular sieve matrix synthesis by a facile method. ► The good performance of catalyst resistance to poisoning because of a homogeneous distribution of Pt 4+ and large specific surface area. - Abstract: Mesoporous material with functional group (Pt 4+ -NH 2 -MCM-41) was prepared by grafting aminopropyl group and adsorbing platinum ions on the surface of the commercial molecular sieve (MCM-41). The characterization carried out by X-ray photoelectron spectroscopy, X-ray diffraction, and N 2 adsorption–desorption measurement pointed out that Pt was adsorbed on the NH 2 -MCM-41 surface as the oxidation state (Pt 4+ ) and the surface area of Pt 4+ -NH 2 -MCM-41 was up to 564 m 2 /g. Transmission electron microscopy and elemental mapping indicated a homogeneous distribution of Pt 4+ throughout all surface of the mesoporous materials. Electro-catalytic properties of methanol oxidation on the Pt 4+ -NH 2 -MCM-41 electrode were investigated with electrochemical methods. The results showed that the Pt 4+ -NH 2 -MCM-41 electrode exhibited catalytic activity in the methanol electro-oxidation with the apparent activation energy being 49.29 kJ/mol, and the control step of methanol electro-oxidation was the mass transfer process. It is first proved that platinum ions had good electro-catalytic property for methanol oxidation and provided a new idea for developing electrode materials in future.

  15. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  16. Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, D.M. dos; Hahn, F.; Leger, J.M.; Kokoh, K.B. [Universite de Poitiers, Poitiers Cedex (France). Centre National de la Recherche Scientifique (CNRS). Equipe Electrocatalyse; Tremiliosi-Filho, G. [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Quimica

    2008-07-01

    Ethanol oxidation has been studied on Pt-Sn and Pt-Sn-W electrodes prepared in an arc-melting furnace. Different electrochemical techniques like cyclic voltammetry and chronoamperometry were used to evaluate the catalytic activity of these materials. The electro-oxidation process was also investigated by in situ infrared reflectance spectroscopy in order to determine adsorbed intermediates and reaction products. Experimental results indicated that Pt-Sn and Pt-Sn-W alloys are able to oxidize ethanol mainly to acetaldehyde and acetic acid. Adsorbed CO was also detected, demonstrating the viability of splitting the C-C bond in the ethanol molecule during the oxidation process. The adsorbed CO was further oxidized to CO{sub 2}.This reaction product was clearly detected by SNIFTIRS. Pt-Sn-W catalyst showed a better electrochemical performance than Pt-Sn that, in it turn, is better than Pt-alone. (author)

  17. Dual-functional Pt-on-Pd supported on reduced graphene oxide hybrids: peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic.

    Science.gov (United States)

    Zhang, Xiahong; Wu, Genghuang; Cai, Zhixiong; Chen, Xi

    2015-03-01

    In this study, a facile hydrothermal method was developed to synthesize Pt-on-Pd supported on reduced graphene oxide (Pt-on-Pd/RGO) hybrids. Because of the synergistic effect between Pt-on-Pd and RGO, the obtained Pt-on-Pd/RGO had superior peroxidase-mimic activities in H2O2 reduction and TMB oxidation. The reaction medium was optimized and a sensing approach for H2O2 was developed with a linear range from 0.98 to 130.7 μM of H2O2. In addition, the characteristic of electrocatalytic oxidation of methanol was investigated. The peak current density value, j(f), for the Pt-on-Pd/RGO hybrid (328 mA mg(Pt)(-1)) was about 1.85 fold higher than that of commercial Pt black (177 mA mg(Pt)(-1)) and, also, more durable electrocatalytic activity could be obtained. For the first time, the dual-functional Pt-on-Pd/RGO with peroxidase-mimic activity and an enhanced electrocatalytic oxidation characteristic was reported. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Understanding the electrocatalytic activity of Pt xSn y in direct ethanol fuel cells

    Science.gov (United States)

    Wang, Yi; Song, Shuqin; Andreadis, George; Liu, Hong; Tsiakaras, Panagiotis

    In the present work, the activity of Pt xSn y/C catalysts towards ethanol, acetaldehyde and acetic acid electrooxidation reactions is investigated for each one separately by means of cyclic voltammetry. To this purpose, a series of Pt xSn y/C catalysts with different atomic ratio (x: y = 2:1, 3:2, 1:1) and small particle size (∼3 nm) are fast synthesized by using the pulse microwave assisted polyol method. The catalysts are well dispersed over the carbon support based on the physicochemical characterization by means of XRD and TEM. Concerning the ethanol electrooxidation, it is found that the Sn addition strongly enhances Pt's electrocatalytic activity and the contributing effect of Sn depends on: (i) the Sn content and (ii) the operating temperature. More precisely, at lower temperatures, Sn-rich catalysts exhibit better ethanol electrooxidation performance while at higher temperatures Sn-poor catalysts give better performance. In the case of acetaldehyde electrooxidation, Pt 1Sn 1/C catalyst exhibits the highest activity at all the investigated temperatures; due to the role of Sn, which could effectively remove C 2 species and inhibit the poison formation by supplying oxygen-containing species. Finally, it is found that the Pt xSn y/C catalysts are almost inactive (little current was measured) towards the acetic acid electrooxidation. The above findings indicate that Sn cannot substantially promote the electrooxidation of acetic acid to C 1 species.

  19. Preparation and characterization of Pt/C and Pt-Ru/C electrocatalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming [Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore)

    2005-09-26

    Nano-sized Pt and Pt-Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt-Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt-Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt-Ru catalysts (except Pt{sub 23}-Ru{sub 77}) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt{sub 23}-Ru{sub 77} alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt{sub 52}-Ru{sub 48}/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt-Ru catalysts. (author)

  20. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes.

    Science.gov (United States)

    Hassan, Ayaz; Ticianelli, Edson A

    2018-01-01

    Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC) anodes are revised for the following catalyst systems: (1) a carbon supported PtMo electrocatalyst submitted to heat treatments; (2) Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C); (3) ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4) Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC) Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.

  1. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    AYAZ HASSAN

    2018-04-01

    Full Text Available ABSTRACT Studies aiming at improving the activity and stability of dispersed W and Mo containing Pt catalysts for the CO tolerance in proton exchange membrane fuel cell (PEMFC anodes are revised for the following catalyst systems: (1 a carbon supported PtMo electrocatalyst submitted to heat treatments; (2 Pt and PtMo nanoparticles deposited on carbon-supported molybdenum carbides (Mo2C/C; (3 ternary and quaternary materials formed by PtMoFe/C, PtMoRu/C and PtMoRuFe/C and; (4 Pt nanoparticles supported on tungsten carbide/carbon catalysts and its parallel evaluation with carbon supported PtW catalyst. The heat-treated (600 oC Pt-Mo/C catalyst showed higher hydrogen oxidation activity in the absence and in the presence of CO and better stability, compared to all other Mo-containing catalysts. PtMoRuFe, PtMoFe, PtMoRu supported on carbon and Pt supported on Mo2C/C exhibited similar CO tolerances but better stability, as compared to as-prepared PtMo supported on carbon. Among the tungsten-based catalysts, tungsten carbide supported Pt catalyst showed reasonable performance and reliable stability in comparison to simple carbon supported PtW catalyst, though an uneven level of catalytic activity towards H2 oxidation in presence of CO is observed for the former as compared to Mo containing catalyst. However, a small dissolution of Mo, Ru, Fe and W from the anodes and their migration toward cathodes during the cell operation is observed. These results indicate that the fuel cell performance and stability has been improved but not yet totally resolved.

  2. Pt monolayer shell on hollow Pd core electrocatalysts: Scale up synthesis, structure, and activity for the oxygen reduction reaction

    Directory of Open Access Journals (Sweden)

    Vukmirovic Miomir B.

    2013-01-01

    Full Text Available We report on synthesis, characterization and the oxygen reduction reaction (ORR kinetics of Pt monolayer shell on Pd(hollow, or Pd-Au(hollow core electrocatalysts. Comparison between the ORR catalytic activity of the electrocatalysts with hollow cores and those of Pt solid and Pt hollow nanoparticles has been obtained using the rotating disk electrode technique. Hollow nanoparticles were made using Ni or Cu nanoparticles as sacrificial templates. The Pt ORR specific and mass activities of the electrocatalysts with hollow cores were found considerably higher than those of the electrocatalysts with the solid cores. We attribute this enhanced Pt activity to the smooth surface morphology and hollow-induced lattice contraction, in addition to the mass-saving geometry of hollow particles.

  3. Mild Synthesis of Pt/SnO2 /Graphene Nanocomposites with Remarkably Enhanced Ethanol Electro-oxidation Activity and Durability.

    Science.gov (United States)

    Qu, Yunteng; Gao, Yunzhi; Wang, Long; Rao, Jiancun; Yin, Geping

    2016-01-04

    We have designed a new Pt/SnO2 /graphene nanomaterial by using L-arginine as a linker; this material shows the unique Pt-around-SnO2 structure. The Sn(2+) cations reduce graphene oxide (GO), leading to the in situ formation of SnO2 /graphene hybrids. L-Arginine is used as a linker and protector to induce the in situ growth of Pt nanoparticles (NPs) connected with SnO2 NPs and impede the agglomeration of Pt NPs. The obtained Pt/SnO2 /graphene composites exhibit superior electrocatalytic activity and stability for the ethanol oxidation reaction as compared with the commercial Pt/C catalyst owing to the close-connected structure between the Pt NPs and SnO2 NPs. This work should have a great impact on the rational design of future metal-metal oxide nanostructures with high catalytic activity and stability for fuel cell systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The electrocatalytic properties of carbon supported PtRu/C nanoalloys in oxidation of small organic molecules: Comparison with Pt/C catalyst

    Directory of Open Access Journals (Sweden)

    Lović Jelena D.

    2012-01-01

    Full Text Available The electrocatalytic activity of carbon supported PtRu/C catalysts, with different composition, toward the electrooxidation of methanol, CO and formic acid were examined in acid and alkaline solution at ambient temperature using thin-film rotating disk electrode (RDE method and compared with activity of Pt/C. The catalysts were characterized by XRD, AFM and STM techniques. XRD pattern revealed that PtRu-1/C catalyst is consisted of two structures e.g. Pt-Ru-fcc and Ru-hcp (the solid solution of Ru in Pt and the small amount of Ru or solid solution of Pt in Ru, as opposed to PtRu-2/C catalyst which is consisted of one structure mostly, Pt-Ru-fcc. According to STM images, PtRu as well as Pt, particles size were between 2 and 6 nm, which is in a good agreement with the mean particles size determined by XRD. To establish the activity and stability of the catalysts potentiodynamic and quasi steady-state measurements were performed. It was found that the activity of Pt and PtRu for CO and methanol oxidation is a strong function of pH of solution. The kinetics are much higher in alkaline than in acid solution and the difference between Pt/C and PtRu/C is much less pronounced in alkaline media. Results presented in this work indicate that activity of PtRu catalysts depends on catalyst composition, e.g. on Pt/Ru atomic ratio, as well as on alloying degree of catalysts. Comparison of CO, methanol and formic acid oxidation on PtRu-2/C, PtRu-1/C and Pt/C catalysts revealed that PtRu-2/C is the most active one. It was shown that the PtRu-2/C catalyst, due to fact that it is consisted of only one phase, with high alloying degree, through the bifunctional mechanism improved by electronic effect, achieve the activity two times higher related to PtRu-1/C in the oxidation of all organic molecules investigated, and about three times higher compared to Pt/C in the oxidation of methanol and CO, and five times higher in formic acid oxidation.

  5. Activity and stability of a <<Pt/AlGaPON>> oxynitride in the dehydrogenation of isobutane

    Energy Technology Data Exchange (ETDEWEB)

    Delsarte, S.; Grange, P. [Univ. Catholique de Louvain (Belgium). Unite de Catalyse et Chimie des Materiaux Divises; Laurent, Y. [Lab. de Chimie des Materiaux, Univ. de Rennes 1, Rennes (France)

    2000-07-01

    Isobutane dehydrogenation was studied on platinum impregnated mixed aluminium gallium phosphorus oxide and oxynitride, in a continuous, flow micro-reactor at 500-550 C. Comparison of the <<Pt/AlGaPO>> and <<Pt/AlGaPON>> shows the importance of nitridation on the acido-basic properties of the catalyst. A deactivation of the catalyst, due to the deposition of carbonaceous species on the surface, was observed. As the properties of the oxynitride would be altered by a regeneration treatment at high temperature with flowing oxygen, the possibility of decreasing the deactivation rate by decreasing the reaction temperature and by adding hydrogen to the reactant mixture was explored. Catalytic tests, carried out at different hydrogen partial pressures, showed that the hydrogen inhibits the carbon deposition on the surface of the catalyst and thus increases the catalytic stability. (orig.)

  6. Polymer-mediated synthesis of a nitrogen-doped carbon aerogel with highly dispersed Pt nanoparticles for enhanced electrocatalytic activity

    International Nuclear Information System (INIS)

    2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Kim, Gil-Pyo; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Lee, Minzae; Lee, Yoon Jae; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Bae, Seongjun; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Song, Hyeon Dong; Song, In Kyu; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Yi, Jongheop

    2016-01-01

    Highlights: • Highly dispersed Pt nanoparticles on N-doped carbon aerogel were synthesized for ORR. • Poly(ethyleneimine) was used as nitrogen source and as nucleation sites for Pt. • Precise discussion were conducted to clarify the effect of poly(ethyleneimine). • High Pt dispersion and N-doping results in superior electrocatalytic activity. - Abstract: A simple chemical process for the direct synthesis of a nitrogen (N)-doped carbon aerogel (NCA) with highly dispersed Pt nanoparticles via a poly(ethyleneimine) (PEI)-assisted strategy is described. A resorcinol-formaldehyde (RF) gel was treated with water soluble cationic PEI, which mainly functions as an anchoring site for metal ions. The functionalized PEI chains on the surface of the RF gel resulted in the unique formation of chemical complexes, with PtCl 6 2− anchored to the RF gel, and subsequent homogeneous metal nanoparticle growth. The abundant amino groups containing PEI grafted to the RF gel also allowed the nitrogen atoms to be incorporated into the carbon framework, which can directly be converted into a NCA. The spherical Pt nanoparticles in the resulting material (Pt/NCA) were highly dispersed on the surface of the NCA without any evidenced of agglomeration, even after a thermal annealing at 900 °C. Compared with a Pt/CA synthesized by a conventional reduction method, the Pt/NCA showed enhanced electrochemical performance with a high electrochemically active surface area (191.1 cm 2 g −1 ) and electrocatalytic activity (V onset = 0.95 V vs. RHE) with respect to oxygen reduction. The superior electrocatalytic activities of the Pt/NCA can be attributed to the synergistic effect of the highly dispersed Pt nanoparticles and the N-doped carbon supports that were prepared using the PEI-assisted strategy. The findings reported herein suggest that the use of PEI can be effectively extended to broad applications that require the homogeneous deposition of metal nanoparticles.

  7. New Method to Synthesize Highly Active and Durable Chemically Ordered fct-PtCo Cathode Catalyst for PEMFCs.

    Science.gov (United States)

    Jung, Won Suk; Popov, Branko N

    2017-07-19

    In the bottom-up synthesis strategy performed in this study, the Co-catalyzed pyrolysis of chelate-complex and activated carbon black at high temperatures triggers the graphitization reaction which introduces Co particles in the N-doped graphitic carbon matrix and immobilizes N-modified active sites for the oxygen reduction reaction (ORR) on the carbon surface. In this study, the Co particles encapsulated within the N-doped graphitic carbon shell diffuse up to the Pt surface under the polymer protective layer and forms a chemically ordered face-centered tetragonal (fct) Pt-Co catalyst PtCo/CCCS catalyst as evidenced by structural and compositional studies. The fct-structured PtCo/CCCS at low-Pt loading (0.1 mg Pt cm -2 ) shows 6% higher power density than that of the state-of-the-art commercial Pt/C catalyst. After the MEA durability test of 30 000 potential cycles, the performance loss of the catalyst is negligible. The electrochemical surface area loss is less than 40%, while that of commercial Pt/C is nearly 80%. After the accelerated stress test, the uniform catalyst distribution is retained and the mean particle size increases approximate 1 nm. The results obtained in this study indicated that highly stable compositional and structural properties of chemically ordered PtCo/CCCS catalyst contribute to its exceptional catalyst durability.

  8. Pt-Richcore/Sn-Richsubsurface/Ptskin Nanocubes As Highly Active and Stable Electrocatalysts for the Ethanol Oxidation Reaction.

    Science.gov (United States)

    Rizo, Rubén; Arán-Ais, Rosa M; Padgett, Elliot; Muller, David A; Lázaro, Ma Jesús; Solla-Gullón, José; Feliu, Juan M; Pastor, Elena; Abruña, Héctor D

    2018-03-14

    Direct ethanol fuel cells are one of the most promising electrochemical energy conversion devices for portable, mobile and stationary power applications. However, more efficient and stable and less expensive electrocatalysts are still required. Interestingly, the electrochemical performance of the electrocatalysts toward the ethanol oxidation reaction can be remarkably enhanced by exploiting the benefits of structural and compositional sensitivity and control. Here, we describe the synthesis, characterization, and electrochemical behavior of cubic Pt-Sn nanoparticles. The electrochemical activity of the cubic Pt-Sn nanoparticles was found to be about three times higher than that obtained with unshaped Pt-Sn nanoparticles and six times higher than that of Pt nanocubes. In addition, stability tests indicated the electrocatalyst preserves its morphology and remains well-dispersed on the carbon support after 5000 potential cycles, while a cubic (pure) Pt catalyst exhibited severe agglomeration of the nanoparticles after a similar stability testing protocol. A detailed analysis of the elemental distribution in the nanoparticles by STEM-EELS indicated that Sn dissolves from the outer part of the shell after potential cycling, forming a ∼0.5 nm Pt skin. This particular atomic composition profile having a Pt-rich core, a Sn-rich subsurface layer, and a Pt-skin surface structure is responsible for the high activity and stability.

  9. Efficient decomposition of formaldehyde at room temperature over Pt/honeycomb ceramics with ultra-low Pt content.

    Science.gov (United States)

    Nie, Longhui; Zheng, Yingqiu; Yu, Jiaguo

    2014-09-14

    Pt/honeycomb ceramic (Pt/HC) catalysts with ultra-low Pt content (0.005-0.055 wt%) were for the first time prepared by an impregnation of honeycomb ceramics with Pt precursor and NaBH4-reduction combined method. The microstructures, morphologies and textural properties of the resulting samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). The obtained Pt/HC catalysts were used for catalytic oxidative decomposition of formaldehyde (HCHO) at room temperature. It was found that the as-prepared Pt/HC catalysts can efficiently decompose HCHO in air into CO2 and H2O at room temperature. The catalytic activity of the Pt/HC catalysts increases with increasing the Pt loading in the range of 0.005-0.013 wt%, and the further increase of the Pt loading does not obviously improve catalytic activity. From the viewpoint of cost and catalytic performance, 0.013 wt% Pt loading is the optimal Pt loading amount, and the Pt/HC catalyst with 0.013 wt% Pt loading also exhibited good catalytic stability. Considering practical applications, this work will provide new insights into the low-cost and large-scale fabrication of advanced catalytic materials for indoor air purification.

  10. Two dimensional visible-light-active Pt-BiOI photoelectrocatalyst for efficient ethanol oxidation reaction in alkaline media

    Science.gov (United States)

    Zhai, Chunyang; Hu, Jiayue; Sun, Mingjuan; Zhu, Mingshan

    2018-02-01

    Two dimensional (2D) BiOI nanoplates were synthesized and used as support for the deposition of Pt nanoparticles. Owing to broad visible light absorption (up to 660 nm), the as-obtained Pt-BiOI electrode was used as effective photoelectrocatalyst in the application of catalytic ethanol oxidation in alkaline media under visible light irradiation. Compared to dark condition, the Pt-BiOI modified electrode displayed 3 times improved catalytic activity towards ethanol oxidation under visible light irradiation. The synergistic effect of electrocatalytic and photocatalytic, and the unique of 2D structures contribute to the improvement of catalytic activity. The mechanism of enhanced photoelectrocatalytic process is proposed. The present results suggest that 2D visible-light-activated BiOI can be served as promising support for the decoration of Pt and applied in the fields of photoelectrochemical and photo-assisted fuel cell applications

  11. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  12. Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.

    Science.gov (United States)

    Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian

    2016-05-11

    Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.

  13. SiO2 decoration dramatically enhanced the stability of PtRu electrocatalysts with undetectable deterioration in fuel cell performance

    Science.gov (United States)

    Yu, Xinxin; Xu, Zejun; Yang, Zehui; Xu, Sen; Zhang, Quan; Ling, Ying; Zhang, Yunfeng; Cai, Weiwei

    2018-06-01

    Prevention of Ru dissolution is essential for steady CO tolerance of anodic electrocatalysts in direct methanol fuel cells. Here, we demonstrate a facile way to stabilize Ru atoms by decorating commercial CB/PtRu with SiO2, which shows a six-fold higher stability and similar activity toward a methanol oxidation reaction leading to no discernible degradation in fuel cell performance compared to commercial CB/PtRu electrocatalysts. The higher stability and stable CO tolerance of SiO2-decorated electrocatalysts originate from the SiO2 coating, since Ru atoms are partially ionized during SiO2 decorating, resulting in difficulties in dissolution; while, in the case of commercial CB/PtRu, the dissolved Ru offers active sites for Pt coalescences and CO species resulting in the rapid decay of the electrochemical surface area and fuel cell performance. To the best of our knowledge, this is the first study about the stabilization of Ru atoms by SiO2. The highest stability is obtained for a PtRu electrocatalyst with negligible effect on the electrochemical properties.

  14. Preparation and characterization of Pt/C and Pt sbnd Ru/C electrocatalysts for direct ethanol fuel cells

    Science.gov (United States)

    Liu, Zhaolin; Ling, Xing Yi; Su, Xiaodi; Lee, Jim Yang; Gan, Leong Ming

    Nano-sized Pt and Pt sbnd Ru colloids are prepared by a microwave-assisted polyol process, and transferred to a toluene solution of decanthiol. Vulcan XC-72 is then added to the toluene solution to adsorb the thiolated Pt and Pt sbnd Ru colloids. Transmission electron microscopy examinations show nearly spherical particles and narrow size distributions for both supported and unsupported metals. The carbon-supported Pt and Pt sbnd Ru nanoparticles are activated by thermal treatment to remove the thiol stabilizing shell. All Pt and Pt sbnd Ru catalysts (except Pt 23sbnd Ru 77) give the X-ray diffraction pattern of a face-centered cubic (fcc) crystal structure, whereas the Pt 23sbnd Ru 77 alloy is more typical of the hexagonal close packed (hcp) structure. The electro-oxidation of liquid ethanol on these catalysts is investigated at room temperature by cyclic voltammetry. The results demonstrate that the alloy catalyst is catalytically more active than pure platinum. Preliminary tests on a single cell of a direct ethanol fuel cell (DEFC) indicate that a Pt 52sbnd Ru 48/C anode catalyst gives the best electrocatalytic performance among all the carbon-supported Pt and Pt sbnd Ru catalysts.

  15. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Júlio César M. [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Piasentin, Ricardo M.; Spinacé, Estevam V.; Neto, Almir O. [Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2016-09-01

    Platinum nanoparticles supported on carbon (Pt/C) and carbon with addition of ITO (Pt/C-ITO (In{sub 2}O{sub 3}){sub 9}·(SnO{sub 2}){sub 1}) and ATO (Pt/C-ATO (SnO{sub 2}){sub 9}·(Sb{sub 2}O{sub 5}){sub 1}) oxides were prepared by sodium borohydride reduction method and used for ammonia electro-oxidation reaction (AmER) in alkaline media. The effect of the supports on the catalytic activity of Pt for AmER was investigated using electrochemical (cyclic voltammetry and chronoamperometry) and direct ammonia fuel cell (DAFC) experiments. X-ray diffraction (XRD) showed Pt peaks attributed to the face-centered cubic (fcc) structure, as well as peaks characteristic of In{sub 2}O{sub 3} in ITO support and cassiterite SnO{sub 2} phase of ATO support. According to transmission electron micrographs the mean particles sizes of Pt over carbon were 5.4, 4.9 and 4.7 nm for Pt/C, Pt/C-ATO and Pt/C-ITO, respectively. Pt/C-ITO catalysts showed the highest catalytic activity for ammonia electrooxidation in both electrochemical and fuel cell experiments. We attributed this to the presence of In{sub 2}O{sub 3} phase in ITO, which provides oxygenated or hydroxide species at lower potentials resulting in the removal of poisonous intermediate, i.e., atomic nitrogen (N{sub ads}) and promotion of ammonia electro-oxidation. - Highlights: • Oxide support effect on the catalytic activity of Pt towards ammonia electro-oxidation. • Direct ammonia fuel cell (DAFC) performance using Pt over different supports as anode. • Pt/C-ITO shows better catalytic activity for ammonia oxidation than Pt/C and Pt/C-ATO.

  16. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    International Nuclear Information System (INIS)

    Ito, Junji; Hanaki, Yasunari; Shen, Qing; Toyoda, Taro

    2012-01-01

    Highlights: ► We determined the decay time of photoexcited electrons of Pt/Al 2 O 3 . ► Faster decay of excited electrons in Pt/Al 2 O 3 leads to its faster oxidation rate. ► Decreasing excited electron lifetime in Pt/Al 2 O 3 may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al 2 O 3 ) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al 2 O 3 and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al 2 O 3 and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO 2 with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt + becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt + returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  17. High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation.

    Science.gov (United States)

    Rao, Lu; Jiang, Yan-Xia; Zhang, Bin-Wei; Cai, Yuan-Rong; Sun, Shi-Gang

    2014-07-21

    Cubic PtRh alloys supported on graphene (PtxRhy/GN) with different atomic ratio of Pt and Rh were directly synthesized for the first time using the modified polyol method with Br(-) for the shape-directing agents. The process didn't use surface-capping agents such as PVP that easily occupy the active sites of electrocatalysts and are difficult to remove. Graphene is the key factor for cubic shape besides Br(-) and keeping catalysts high-dispersed. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structure and morphology of these electrocatalysts. The results showed that they were composed of homogeneous cubic PtRh alloys. Traditional electrochemical methods, such as cyclic voltammetry and chronoamperometry, were used to investigate the electrocatalytic properties of PtxRhy/GN towards ethanol electrooxidation. It can be seen that PtxRhy/GN with all atomic ratios exhibited high catalytic activity, and the most active one has a composition with Pt : Rh = 9 : 1 atomic ratio. Electrochemical in situ FTIR spectroscopy was used to evaluate the cleavage of C-C bond in ethanol at room temperature in acidic solutions, the results illustrated that Rh in an alloy can promote the split of C-C bond in ethanol, and the alloy catalyst with atomic ratio Pt : Rh = 1 : 1 showed obviously better performance for the C-C bond breaking in ethanol and higher selectivity for the enhanced activity of ethanol complete oxidation to CO2 than alloys with other ratios of Pt and Rh. The investigation indicates that high activity of PtxRhy/GN electrocatalyst towards ethanol oxidation is due to the specific shape of alloys and the synergistic effect of two metal elements as well as graphene support.

  18. Adsorption and activation of methane and methanol on Pt(100) surface: a density functional study

    International Nuclear Information System (INIS)

    Moussounda, P.S.

    2006-11-01

    The activation of methane (CH 4 ) and methanol (CH 3 OH) on Pt(100) surface has been investigated using density functional theory calculations based on plane-wave basis and pseudo-potential. We optimised CH 4 /Pt(100) system. The calculated adsorption energies over the top, bridge and hollow sites are small, weakly dependent on the molecular orientation. The nature of the CH 4 -Pt interaction was examined through the electronic structure changes. The adsorption of methyl (CH 3 ) and hydrogen (H) and the co-adsorption of CH 3 +H were also calculated. From these results, we examined the dissociation of CH 4 to CH 3 +H, and the activation energies found are in good agreement with the experimental and theoretical values. The activation of CH 3 OH/Pt(100) has been studied. All the sites have almost the same adsorption energy. The adsorption of oxygen (O) and the co-adsorption of CH 4 and O were also examined. In addition, the formation of CH 3 OH assuming a one-step mechanism step via the co-adsorption of CH 4 +O has been studied and the barrier height was found to be high. (authors)

  19. Electrochemical and structural characterization of carbon-supported Pt-Pd bimetallic electrocatalysts prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Masato; Beard, Kevin D.; Ma Shuguo; Blom, Douglas A.; St-Pierre, Jean; Van Zee, John W. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Monnier, John R., E-mail: monnier@cec.sc.ed [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-10-01

    Electrochemical and structural characteristics of various Pt-Pd/C bimetallic catalysts prepared by electroless deposition (ED) methods have been investigated. Structural analysis was conducted by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). Monometallic Pt or Pd particles were not detected by EDS, indicating the ED methodology formed only bimetallic particles. The size of the Pt-Pd bimetallic particles was smaller than those of a commercially available Pt/C catalyst. The morphology of the Pt on Pd/C catalysts was identified and corresponded to Pd particles partially encapsulated by Pt. The electrochemical characteristics of the lowest Pd loading catalyst (7.0% Pt on 0.5% Pd/C) for the oxygen reduction reaction (ORR) have been investigated by the rotating ring disk electrode technique. The electrochemical activity was equal or lower than the commercially available Pt/C catalyst; however, the amount of hydrogen peroxide observed at the ring was reduced by the Pd, suggesting that such a catalyst has the potential to decrease ionomer degradation in applications. The Pt on Pd/C catalysts also show a higher tolerance to ripening induced by potential cycling. Therefore, catalyst suitability cannot be judged solely by its initial performance; information related to specific degradation mechanisms is also needed for a more complete assessment.

  20. Pt3Co concave nanocubes: synthesis, formation understanding, and enhanced catalytic activity toward hydrogenation of styrene.

    Science.gov (United States)

    Wang, Chenyu; Lin, Cuikun; Zhang, Lihua; Quan, Zewei; Sun, Kai; Zhao, Bo; Wang, Feng; Porter, Nathan; Wang, Yuxuan; Fang, Jiye

    2014-02-03

    We report a facile synthesis route to prepare high-quality Pt3Co nanocubes with a concave structure, and further demonstrate that these concave Pt3Co nanocubes are terminated with high-index crystal facets. The success of this preparation is highly dependent on an appropriate nucleation process with a successively anisotropic overgrowth and a preservation of the resultant high-index planes by control binding of oleyl-amine/oleic acid with a fine-tuned composition. Using a hydrogenation of styrene as a model reaction, these Pt3Co concave nanocubes as a new class of nanocatalysts with more open structure and active atomic sites located on their high-index crystallographic planes exhibit an enhanced catalytic activity in comparison with low-indexed surface terminated Pt3Co nanocubes in similar size. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Methanol oxidation reaction activity of microwave irradiated and heat-treated Pt/Co and Pt/Ni nano-electrocatalysts

    CSIR Research Space (South Africa)

    Mathe, NR

    2014-11-01

    Full Text Available Bimetallic Pt nanoparticles were prepared by alloying Pt with the non-noble transition metals, Co and Ni, using a conventional heat-treatment (HT) method and microwaveirradiation (MW). The resulting samples were PteCo-Ht, PteNi-HT, PteCo, MW and Pt...

  2. Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Hongmei Qin

    2015-04-01

    Full Text Available Conventional supported Pt catalysts have often been prepared by loading Pt onto commercial supports, such as SiO2, TiO2, Al2O3, and carbon. These catalysts usually have simple metal-support (i.e., Pt-SiO2 interfaces. To tune the catalytic performance of supported Pt catalysts, it is desirable to modify the metal-support interfaces by incorporating an oxide additive into the catalyst formula. Here we prepared three series of metal oxide-modified Pt catalysts (i.e., Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3, where M = Al, Fe, Co, Cu, Zn, Ba, La for CO oxidation. Among them, Pt/CoOx/SiO2, Pt/CoOx/TiO2, and Pt/CoOx/Al2O3 showed the highest catalytic activities. Relevant samples were characterized by N2 adsorption-desorption, X-ray diffraction (XRD, transmission electron microscopy (TEM, H2 temperature-programmed reduction (H2-TPR, X-ray photoelectron spectroscopy (XPS, CO temperature-programmed desorption (CO-TPD, O2 temperature-programmed desorption (O2-TPD, and CO2 temperature-programmed desorption (CO2-TPD.

  3. Pt, Re and Pt-Re incorporation in sulfated zirconia as catalysts for n-pentane isomerization

    International Nuclear Information System (INIS)

    Aboul-Gheit, A.K.; El-Desouki, D.S.; Abdel-Hamid, S.M.; Ghoneim, S.A.; Ibrahim, A.H.; Gad, F.K.; Abdel-Aleem, G.M.

    2010-01-01

    Two groups of modified Sulfated Zirconia (S Z) catalysts were prepared by the sol-gel method. The first group was modified by four different concentrations of Pt metal (0.15, 0.30, 0.45 and 0.60 wt %), whereas the second group contained Pt-Re combinations on SZ. All the prepared catalysts were characterized by XRD, TPR, TEM, TGA, IR spectroscopy as well as surface properties using the BET method. The catalytic activity of the catalysts was examined for the hydro isomerization of n-pentane to iso-pentane. The catalytic activity was found to increase with increasing Pt concentration in the mono metallic catalysts. The combination of Re ion with Pt on SZ results in significant changes in the characters and activities of the catalysts. The 0.45 wt % Pt + 0.15 wt % Re/SZ catalyst exhibited the highest selective compared to other metal ratios investigated

  4. PtPb nanoparticle electrocatalysts: control of activity through synthetic methods

    International Nuclear Information System (INIS)

    Ghosh, Tanushree; Matsumoto, Futoshi; McInnis, Jennifer; Weiss, Marilyn; Abruna, Hector D.; DiSalvo, Francis J.

    2009-01-01

    Solution phase synthesis of intermetallic nanoparticles without using surfactants (for catalytic applications) and subsequent control of size distribution remains a challenge: of growing interest, but not widely explored yet. To understand the questions in the syntheses of Pt containing intermetallic nanoparticles (as electrocatalysts for direct fuel cells) by using sodium naphthalide as the reducing agent, the effects of the Pt precursors' organic ligands were investigated. PtPb syntheses were studied as the model case. In particular, methods that lead to nanoparticles that are independent single crystals are desirable. Platinum acetylacetonate, which is soluble in many organic solvents, has ligands that may interfere less with nanoparticle growth and ordering. Interesting trends, contrary to expectations, were observed when precursors were injected into a reducing agent solution at high temperatures. The presence of acetylacetonate, from the precursor, on the nanoparticles was confirmed by ATR, while SEM imaging showed evidence of morphological changes in the nanoparticles with increasing reaction temperature. A definite relationship between domain size and extent of observed residue (organic material and sodium) present on the particles could be established. By varying post-reaction solvent removal techniques, room temperature crystallization of PtPb nanoparticles was also achieved. Electrochemical activity of the nanoparticles was also much higher than that of nanoparticles synthesized by previous reaction schemes using sodium naphthalide as the reducing agent. Along with the above mentioned techniques, BET, TEM, CBED, SAED, and XRD were used as characterization tools for the prepared nanoparticles.

  5. Structural studies of precursor and partially oxidized conducting complexes. 19. Synthesis and crystal structure of Cs2[Pt(CN)4]Cl/sub 0.30, the first anhydrous one-dimensional tetracyanoplatinate chloride complex

    International Nuclear Information System (INIS)

    Brown, R.K.; Williams, J.M.

    1978-01-01

    The preparation and single-crystal x-ray structural characterization of a new, partially oxidized tetracyanoplatinate (POTCP), Cs 2 [Pt(CN) 4 ]Cl/sub 0.30/, CsCP(Cl), has been carried out. This one-dimensional conducting salt crystallizes with four formula units in the tetragonal unit cell I4/mcm, with cell constants a = 13.176 (2) A, c = 5.718 (1) A, and V = 992.7 A 3 . A total of 3112 observed data were averaged to yield 427 independent reflections. The structure was solved by standard heavy-atom methods and was refined by full-matrix least squares to a final R(F 0 2 ) = 0.045 and R/sub w/(F 0 2 ) = 0.059. Pertinent structural features include perfectly linear chains of Pt atoms with Pt-Pt separations crystallographically constrained to a value of (c/2) = 2.859 (2) A and interchain Pt-Pt distances of 9.317 A. Separations between the Cs + and Cl - ions are significantly shorter than the sum of the ionic radii. A discussion of these unusually short interionic distances and the absence of hydration as determined from the structural study and themogravimetric analyses is given. 2 figures, 2 tables

  6. Ethanol electrooxidation on novel carbon supported Pt/SnOx/C catalysts with varied Pt:Sn ratio

    International Nuclear Information System (INIS)

    Jiang, L.; Colmenares, L.; Jusys, Z.; Sun, G.Q.; Behm, R.J.

    2007-01-01

    Novel carbon supported Pt/SnO x /C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO ad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO x /C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO x /C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO x /C catalysts, acetic acid and acetaldehyde represent dominant products, CO 2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol -1 ), but are lower than on Pt/C (32 kJ mol -1 ). The somewhat better performance of the Pt/SnO x /C catalysts compared to alloyed PtSn x /C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies

  7. Highly Stable and Active Pt/Nb-TiO2 Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Shuhui Sun

    2012-01-01

    Full Text Available The current materials used in proton exchange membrane fuel cells (PEMFCs are not sufficiently durable for commercial deployment. One of the major challenges lies in the development of an inexpensive, efficient, and highly durable and active electrocatalyst. Here a new type of carbon-free Pt/Nb-TiO2 electrocatalyst has been reported. Mesoporous Nb-TiO2 hollow spheres were synthesized by the sol-gel method using polystyrene (PS sphere templates. Pt nanoparticles (NPs were then deposited onto mesoporous Nb-TiO2 hollow spheres via a simple wet-chemical route in aqueous solution, without the need for surfactants or potentiostats. The growth densities of Pt NPs on Nb-TiO2 supports could be easily modulated by simply adjusting the experimental parameters. Electrochemical studies of Pt/Nb-TiO2 show much enhanced activity and stability than commercial E-TEK Pt/C catalyst. PtNP/Nb-TiO2 is a promising new cathode catalyst for PEMFC applications.

  8. Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Lee, Hyunjoon; Sung, Yung-Eun; Choi, Insoo; Lim, Taeho; Kwon, Oh Joong

    2017-09-01

    Novel synthesis of a Pt catalyst encapsulated in a N-containing carbon layer for use in a polymer electrolyte membrane fuel cell is described in this study. A Pt-aniline complex, formed by mixing Pt precursor and aniline monomer, was used as the source of Pt, C, and N. Heat treatment of the Pt-aniline complex with carbon black yielded 5 nm Pt nanoparticles encapsulated by a N-containing carbon layer originating from aniline carbonization. The synthesized Pt catalyst exhibited higher mass specific activity to oxygen reduction reaction than that shown by conventional Pt/C catalyst because pyridinic N with graphitic carbon in the carbon layer provided active sites for oxygen reduction reaction in addition to those provided by Pt. In single cell testing, initial performance of the synthesized catalyst was limited because the thick catalyst layer increased resistance related to mass transfer. However, it was observed that the carbon layer successfully prevented Pt nanoparticles from growing via agglomeration and Ostwald ripening under fuel cell operation, thereby improving durability. Furthermore, a mass specific performance of the synthesized catalyst higher than that of a conventional Pt/C catalyst was achieved by modifying the synthesized catalyst's layer thickness.

  9. High Methanol Oxidation Activity of Well-Dispersed Pt Nanoparticles on Carbon Nanotubes Using Nitrogen Doping

    Directory of Open Access Journals (Sweden)

    Fang Wei-Chuan

    2009-01-01

    Full Text Available Abstract Pt nanoparticles (NPs with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.

  10. Relationship between the catalytic activity of Pt/alumina and the relaxation process of the photoexcited electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Junji, E-mail: j-itou@mail.nissan.co.jp [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hanaki, Yasunari [Advanced Materials Laboratory, Nissan Research Center, NISSAN MOTOR CO., LTD., 1 Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523 (Japan); Shen, Qing [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Toyoda, Taro [Department of Applied Physics and Chemistry, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We determined the decay time of photoexcited electrons of Pt/Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Faster decay of excited electrons in Pt/Al{sub 2}O{sub 3} leads to its faster oxidation rate. Black-Right-Pointing-Pointer Decreasing excited electron lifetime in Pt/Al{sub 2}O{sub 3} may decrease Pt consumption in catalytic convertors. - Abstract: In order to decrease the consumption of precious metals used in the catalytic converters used in automobiles, we studied the relationship between the catalytic activity of Pt/alumina (Pt/Al{sub 2}O{sub 3}) and the relaxation process of photoexcited electrons. Firstly, we studied the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and catalytic performance. Secondly, the relationship between the size of the Pt particles in Pt/Al{sub 2}O{sub 3} and the decay time of the excited electrons was studied using an improved transient grating (TG) technique. The results showed that faster decay of the excited electrons leads to greater oxidation rates. The decay time obtained with the improved TG technique gives an indication of the time that the exited electrons take to return to the ground state. According to studies utilizing FT-IR, one of the processes necessary for quickly generating CO{sub 2} with Pt is that the electron in the Pt-O bond moves to the Pt side and that the Pt{sup +} becomes Pt metal. Thus, the decay time obtained with the improved TG technique corresponds to the process whereby Pt{sup +} returns to Pt metal. Thus, we found that the consumption of precious metals can be reduced by increasing the speed of the decay of the excited electrons.

  11. Radiolytic Preparation of Electrocatalysts with Pt-Co and Pt-Sn Nanoparticles for a Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Sang Kyum Kim

    2014-01-01

    Full Text Available Nanosized Pt-Sn/VC and Pt-Co/VC electrocatalysts were prepared by a one-step radiation-induced reduction (30 kGy process using distilled water as the solvent and Vulcan XC72 as the supporting material. While the Pt-Co/VC electrodes were compared with Pt/VC (40 wt%, HiSpec 4000, in terms of their electrocatalytic activity towards the oxidation of H2, the Pt-Co/VC electrodes were evaluated in terms of their activity towards the hydrogen oxidation reaction (HOR and compared with Pt/VC (40 wt%, HiSpec 4000, Pt-Co/VC, and Pt-Sn/VC in a single cell. Additionally, the prepared electrocatalyst samples (Pt-Co/VC and Pt-Sn/VC were characterized by transmission electron microscopy (TEM, scanning electron microscope (SEM, thermogravimetric analysis (TGA, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, electrochemical surface area (ECSA, and fuel cell polarization performance.

  12. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core-shell nanocrystals show an enhanced electrocatalytic activity for formic acid oxidation compared with commercial Pd black. This journal is © 2014 The Royal Society of Chemistry.

  13. Microwave sinthesys and characterization of Pt and Pt-Rh-Sn electrocatalysts for ethanol oxidation

    Directory of Open Access Journals (Sweden)

    Jovanović Vladislava M.

    2011-01-01

    Full Text Available Carbon supported Pt and Pt-Rh-Sn catalysts were synthesized by microwave-polyol method in ethylene glycol solution and investigated for the ethanol electro-oxidation reaction. The catalysts were characterized in terms of structure, morphology and composition by employing XRD, STM and EDX techniques. STM analysis indicated rather uniform particles and particle size of below 2 nm for both catalysts. XRD analysis of the Pt/C catalyst revealed two phases, one with the main characteristic peaks of face centered cubic crystal structure (fcc of platinum and another related to graphite like structure of carbon support Vulcan XC-72R. However, in XRD pattern of the Pt-Rh-Sn/C catalyst diffraction peaks for Pt, Rh or Sn cannot be resolved, indicating an extremely low crystallinity. The small particle sizes and homogeneous size distributions of both catalysts should be attributed to the advantages of microwave assisted modified polyol process in ethylene glycol solution. Pt-Rh- Sn/C catalyst is highly active for the ethanol oxidation with the onset potential shifted for more than 150 mV to negative values and with currents nearly 5 times higher in comparison to Pt/C catalyst. The stability tests of the catalysts, as studied by the chronoamperometric experiments, reveal that the Pt-Rh-Sn/C catalyst is evidently less poisoned then Pt/C catalyst. The increased activity of Pt-Rh-Sn/C in comparison to Pt/C catalyst is most probably promoted by bifunctional mechanism and the electronic effect of alloyed metals.

  14. Ternary Pt-Ru-Ni catalytic layers for methanol electrooxidation prepared by electrodeposition and galvanic replacement

    Directory of Open Access Journals (Sweden)

    Athanasios ePapaderakis

    2014-06-01

    Full Text Available Ternary Pt-Ru-Ni deposits on glassy carbon substrates, Pt-Ru(Ni/GC, have been formed by initial electrodeposition of Ni layers onto glassy carbon electrodes, followed by their partial exchange for Pt and Ru, upon their immersion into equimolar solutions containing complex ions of the precious metals. The overall morphology and composition of the deposits has been studied by SEM microscopy and EDS spectroscopy. Continuous but nodular films have been confirmed, with a Pt÷Ru÷Ni % bulk atomic composition ratio of 37÷12÷51 (and for binary Pt-Ni control systems of 47÷53. Fine topographical details as well as film thickness have been directly recorded using AFM microscopy. The composition of the outer layers as well as the interactions of the three metals present have been studied by XPS spectroscopy and a Pt÷Ru÷Ni % surface atomic composition ratio of 61÷12÷27 (and for binary Pt-Ni control systems of 85÷15 has been found, indicating the enrichment of the outer layers in Pt; a shift of the Pt binding energy peaks to higher values was only observed in the presence of Ru and points to an electronic effect of Ru on Pt. The surface electrochemistry of the thus prepared Pt-Ru(Ni/GC and Pt(Ni/GC electrodes in deaerated acid solutions (studied by cyclic voltammetry proves the existence of a shell consisting exclusively of Pt-Ru or Pt. The activity of the Pt-Ru(Ni deposits towards methanol oxidation (studied by slow potential sweep voltammetry is higher from that of the Pt(Ni deposit and of pure Pt; this enhancement is attributed both to the well-known Ru synergistic effect due to the presence of its oxides but also (based on the XPS findings to a modification effect of Pt electronic properties.

  15. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols

    International Nuclear Information System (INIS)

    Teran, Freddy E.; Santos, Deise M.; Ribeiro, Josimar; Kokoh, Kouakou B.

    2012-01-01

    A systematic investigation of alcohol adsorption and oxidation on binary and ternary electrocatalysts in acid medium was performed. Binary (PtRh) and ternary (PtRhSn) were prepared by the Pechini modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by energy dispersive X-ray and X-ray diffraction (XRD) techniques. The XRD results showed that the Pt 80 Rh 20 /C and Pt 70 Sn 10 Rh 20 /C electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/Rh and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm −3 H 2 SO 4 ), and in the absence and presence of different alcohols (methanol, ethanol and ethylene glycol). The electrochemical results obtained at room temperature have shown that the Pt 70 Sn 10 Rh 20 /C catalyst display better catalytic activity for alcohol oxidation compared with the binary catalyst. In situ reflectance infrared spectroscopy measurements have shown that the oxidation of alcohols mentioned produced CO 2 at low potentials indicating that the materials synthesized could be used as efficient anodes in the fuel cell applications. - Highlights: ► Pt-based catalysts were synthesized by thermal decomposition polymeric precursors. ► Pt 70 Sn 10 Rh 20 /C displays better catalytic activity for the oxidation of alcohols. ► The co-catalysts tin and rhodium promote the removal of CO to CO 2 at low potentials. ► Ethylene glycol is oxidizing strongly to CO 2 at low potentials. ► Pt 70 Sn 10 Rh 20 /C catalyst is an efficient anode material for a direct alcohol fuel cell.

  16. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanqiao; Cao, Lei [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy Sciences, Beijing 100039 (China); Sun, Gongquan; Jiang, Luhua [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2007-08-01

    Well dispersed PtSn/C, PtRu/C and Pt/C electrocatalysts were synthesized by a modified polyol process and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and inductively coupled plasma-atomic emission spectrometry techniques. XRD patterns show that Ru induces the contraction of Pt lattice parameter while Sn makes the Pt crystal lattice extended. Ethanol oxidation activities on the catalysts were studied via cyclic voltammetry (CV) and chronoamperometry (CA) methods at room temperature. It is found that the electrode potential plays an important role in the electrochemical behavior of ethanol oxidation on PtRu/C and PtSn/C catalysts. In the lower potential region, PtSn/C possesses higher performance for ethanol oxidation, while in the higher potential region PtRu/C is more active. The different promotion effects of PtSn/C and PtRu/C to ethanol oxidation can be explained by the structural effect and modified bi-functional mechanism in different potential region. Single cell test of a direct ethanol fuel cell (DEFC) was also carried out to elucidate the promotion effect of PtRu/C and PtSn/C catalysts on the ethanol oxidation at 90 C. (author)

  17. Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Huanqiao; Sun, Gongquan; Cao, Lei; Jiang, Luhua; Xin, Qin

    2007-01-01

    Well dispersed PtSn/C, PtRu/C and Pt/C electrocatalysts were synthesized by a modified polyol process and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and inductively coupled plasma-atomic emission spectrometry techniques. XRD patterns show that Ru induces the contraction of Pt lattice parameter while Sn makes the Pt crystal lattice extended. Ethanol oxidation activities on the catalysts were studied via cyclic voltammetry (CV) and chronoamperometry (CA) methods at room temperature. It is found that the electrode potential plays an important role in the electrochemical behavior of ethanol oxidation on PtRu/C and PtSn/C catalysts. In the lower potential region, PtSn/C possesses higher performance for ethanol oxidation, while in the higher potential region PtRu/C is more active. The different promotion effects of PtSn/C and PtRu/C to ethanol oxidation can be explained by the structural effect and modified bi-functional mechanism in different potential region. Single cell test of a direct ethanol fuel cell (DEFC) was also carried out to elucidate the promotion effect of PtRu/C and PtSn/C catalysts on the ethanol oxidation at 90 o C

  18. Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora; Jensen, Kim Degn; Stephens, Ifan E.L.

    2017-01-01

    Platinum-lanthanide alloys are very promising as active and stable catalysts for the oxygen reduction reaction (ORR) in low-temperature fuel cells. We have fabricated Pt and Pt5Gd metallic thin films via (co-)sputtering deposition in an ultra-high vacuum (UHV) chamber. The electrochemical ORR...

  19. Pt-graphene electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Hoshi, Hajime; Tanaka, Shumpei; Miyoshi, Takashi

    2014-01-01

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I 3 − /I − . • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I 3 − /I − redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I 3 − /I − reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs

  20. One-pot synthesis of reduced graphene oxide supported PtCuy catalysts with enhanced electro-catalytic activity for the methanol oxidation reaction

    International Nuclear Information System (INIS)

    Peng, Xinglan; Zhao, Yanchun; Chen, Duhong; Fan, Yanfang; Wang, Xiao; Wang, Weili; Tian, Jianniao

    2014-01-01

    The outstanding performance PtCu y (y = 1,2,3) alloy nanoparticles supported on reduced graphene oxide (rGO) have been synthesized by a facile, efficient, one-pot hydrothermal synthesis approach. The as-prepared PtCu y /rGO catalysts are comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy. Cyclic voltammetry, CO-stripping voltammetry and chronoamperometry results reveal that the PtCu y /rGO catalysts have higher electro-catalytic activity, more negative onset oxidative potential, more excellent tolerance ability for CO poisoning and enhanced stability for the electro-oxidation of methanol compared to pure Pt/rGO. As far as the as-made PtCu y /rGO catalysts are concerned, the PtCu 2 /rGO exhibits the highest electro-catalytic activity. The mechanism of the promoting effect of Cu on Pt is explained based on the electronic modification effect. The nature of interfacial interactions between the Pt-Cu active metal phase and the rGO supporting materials is crucial to achieving high performance

  1. Sub-4 nm PtZn Intermetallic Nanoparticles for Enhanced Mass and Specific Activities in Catalytic Electrooxidation Reaction

    International Nuclear Information System (INIS)

    Qi, Zhiyuan

    2017-01-01

    Atomically ordered intermetallic nanoparticles (iNPs) have sparked considerable interest in fuel cell applications by virtue of their exceptional electronic and structural properties. However, the synthesis of small iNPs in a controllable manner remains a formidable challenge because of the high temperature generally required in the formation of intermetallic phases. Here in this paper we report a general method for the synthesis of PtZn iNPs (3.2 ± 0.4 nm) on multiwalled carbon nanotubes (MWNT) via a facile and capping agent free strategy using a sacrificial mesoporous silica (mSiO 2 ) shell. The as-prepared PtZn iNPs exhibited ca. 10 times higher mass activity in both acidic and basic solution toward the methanol oxidation reaction (MOR) compared to larger PtZn iNPs synthesized on MWNT without the mSiO 2 shell. Density functional theory (DFT) calculations predict that PtZn systems go through a “non-CO” pathway for MOR because of the stabilization of the OH* intermediate by Zn atoms, while a pure Pt system forms highly stable COH* and CO* intermediates, leading to catalyst deactivation. Experimental studies on the origin of the backward oxidation peak of MOR coincide well with DFT predictions. Moreover, the calculations demonstrate that MOR on smaller PtZn iNPs is energetically more favorable than larger iNPs, due to their high density of corner sites and lower-lying energetic pathway. Therefore, smaller PtZn iNPs not only increase the number but also enhance the activity of the active sites in MOR compared with larger ones. This work opens a new avenue for the synthesis of small iNPs with more undercoordinated and enhanced active sites for fuel cell applications.

  2. The atomistic origin of the extraordinary oxygen reduction activity of Pt3Ni7 fuel cell catalysts.

    Science.gov (United States)

    Fortunelli, Alessandro; Goddard Iii, William A; Sementa, Luca; Barcaro, Giovanni; Negreiros, Fabio R; Jaramillo-Botero, Andrés

    2015-07-01

    Recently Debe et al. reported that Pt 3 Ni 7 leads to extraordinary Oxygen Reduction Reaction (ORR) activity. However, several reports show that hardly any Ni remains in the layers of the catalysts close to the surface ("Pt-skin effect"). This paradox that Ni is essential to the high catalytic activity with the peak ORR activity at Pt 3 Ni 7 while little or no Ni remains close to the surface is explained here using large-scale first-principles-based simulations. We make the radical assumption that processing Pt-Ni catalysts under ORR conditions would leach out all Ni accessible to the solvent. To simulate this process we use the ReaxFF reactive force field, starting with random alloy particles ranging from 50% Ni to 90% Ni and containing up to ∼300 000 atoms, deleting the Ni atoms, and equilibrating the resulting structures. We find that the Pt 3 Ni 7 case and a final particle radius around 7.5 nm lead to internal voids in communication with the exterior, doubling the external surface footprint, in fair agreement with experiment. Then we examine the surface character of these nanoporous systems and find that a prominent feature in the surface of the de-alloyed particles is a rhombic structure involving 4 surface atoms which is crystalline-like but under-coordinated. Using density-functional theory, we calculate the energy barriers of ORR steps on Pt nanoporous catalysts, focusing on the O ad -hydration reaction (O ad + H 2 O ad → OH ad + OH ad ) but including the barriers of O 2 dissociation (O 2ad → O ad + O ad ) and water formation (OH ad + H ad → H 2 O ad ). We find that the reaction barrier for the O ad -hydration rate-determining-step is reduced significantly on the de-alloyed surface sites compared to Pt(111). Moreover we find that these active sites are prevalent on the surface of particles de-alloyed from a Pt-Ni 30 : 70 initial composition. These simulations explain the peak in surface reactivity at Pt 3 Ni 7 , and provide a rational guide to

  3. Hydrogenation of Phenol over Pt/CNTs: The Effects of Pt Loading and Reaction Solvents

    OpenAIRE

    Feng Li; Bo Cao; Wenxi Zhu; Hua Song; Keliang Wang; Cuiqin Li

    2017-01-01

    Carbon nanotubes (CNTs)-supported Pt nanoparticles were prepared with selective deposition of Pt nanoparticles inside and outside CNTs (Pt–in/CNTs and Pt–out/CNTs). The effects of Pt loading and reaction solvents on phenol hydrogenation were investigated. The Pt nanoparticles in Pt–in/CNTs versus Pt–out/CNTs are smaller and better dispersed. The catalytic activity and reuse stability toward phenol hydrogenation both improved markedly. The dichloromethane–water mixture as the reaction solvent,...

  4. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K., E-mail: ksasaki@bnl.go [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States); Wang, J.X. [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States); Naohara, H. [Toyota Motor Corporation, Susono 410-1193 (Japan); Marinkovic, N. [University of Delaware, Department of Chemical Engineering, Newark, DE 19716 (United States); More, K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Inada, H. [Hitachi High Technologies America, Pleasanton, CA 94588 (United States); Adzic, R.R., E-mail: adzic@bnl.go [Brookhaven National Laboratory, Chemistry Department, Upton, NY 11973 (United States)

    2010-03-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts' inadequate activity and high Pt content.

  5. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores

    International Nuclear Information System (INIS)

    Sasaki, K.; Wang, J.X.; Naohara, H.; Marinkovic, N.; More, K.; Inada, H.; Adzic, R.R.

    2010-01-01

    We have established a scale-up synthesis method to produce gram-quantities of Pt monolayer electrocatalysts. The core-shell structure of the Pt/Pd/C electrocatalyst has been verified using the HAADF-STEM Z-contrast images, STEM/EELS, and STEM/EDS line profile analysis. The atomic structure of this electrocatalyst and formation of a Pt monolayer on Pd nanoparticle surfaces were examined using in situ EXAFS. The Pt mass activity of the Pt/Pd/C electrocatalyst for ORR is considerably higher than that of commercial Pt/C electrocatalysts. The results with Pt monolayer electrocatalysts may significantly impact science of electrocatalysis and fuel-cell technology, as they have demonstrated an exceptionally effective way of using Pt that can resolve problems of other approaches, including electrocatalysts' inadequate activity and high Pt content.

  6. Pt-Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction.

    Science.gov (United States)

    Sun, Xiaojun; Yang, Xuan; Zhang, Yun; Ding, Yong; Su, Dong; Qin, Dong

    2017-10-12

    We report a facile synthesis of Pt-Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag template via wet etching. In a typical process, we inject a specific volume of aqueous H 2 PtCl 6 into a mixture of Ag nanocubes, ascorbic acid (H 2 Asc), NaOH, and poly(vinylpyrrolidone) in water under ambient conditions. At an initial pH of 11.9, the Pt(iv) precursor is quickly reduced by an ascorbate monoanion, a strong reducing agent derived from the neutralization of H 2 Asc with NaOH. The newly formed Pt atoms are deposited onto the edges and then corners and side faces of Ag nanocubes, leading to the generation of Ag@Pt core-shell nanocubes with a conformal Pt shell of approximately three atomic layers (or, about 0.6 nm in thickness) when 0.4 mL of 0.2 mM H 2 PtCl 6 is involved. After the selective removal of Ag in the core using an etchant based on a mixture of Fe(NO 3 ) 3 and HNO 3 , we transform the core-shell nanocubes into Pt-Ag alloy nanocages with an ultrathin wall thickness of less than 2 nm. We further demonstrate that the as-obtained nanocages with a composition of Pt 42 Ag 58 exhibit an enhanced catalytic activity toward the oxygen reduction reaction, with a mass activity of 0.30 A mg -1 and a specific activity of 0.93 mA cm -2 , which are 1.6 and 2.5 times, respectively, greater than those of a commercial Pt/C catalyst.

  7. Effect of Mo addition on the electrocatalytic activity of Pt-Sn-Mo/C for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Lee, Eungje; Murthy, Arun; Manthiram, Arumugam

    2011-01-01

    Carbon-supported Pt-Sn-Mo electrocatalysts have been synthesized by a polyol reduction method and characterized for ethanol electro-oxidation reaction (EOR). While the percent loading of the synthesized nanoparticles on the carbon support is higher than 35%, energy dispersive spectroscopy (EDS) reveals that the Mo contents in the nanoparticle catalysts are lower than the nominal value, indicating incomplete reduction of the Mo precursor. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analyses reveal that the Sn and Mo exist as oxide phases at the surface layers of the nanoparticles and the degree of alloying is very low. The electrochemical properties of the electrocatalysts have been evaluated by cyclic voltammetry (CV) and chronoamperometry. The catalytic activity for EOR decreases in the order PtSnMo 0.6 /C > PtSnMo 0.4 /C > PtSn/C. Single cell direct ethanol fuel cell (DEFC) tests also confirm that the PtSnMo 0.6 /C anode catalyst exhibit better performance than the PtSn/C anode catalyst. An analysis of the electrochemical data suggests that the incorporation of Mo to Pt-Sn enhances further the catalytic activity for EOR.

  8. Electrocatalytic oxidation of methanol on (Pb) lead modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) film

    Energy Technology Data Exchange (ETDEWEB)

    Golikand, Ahmad Nozad; Maragheh, Mohammad Ghannadi; Irannejad, Leila [Jaber Ibn Hayan Research Lab., Atomic Energy Organization of Iran (AEOI), Tehran (Iran); Golabi, Seyed Mehdi [Electroanalytical Chemistry Lab., Faculty of Chemistry, University of Tabriz, Tabriz (Iran)

    2005-08-18

    The electrocatalytic oxidation of methanol at a (Pb) lead electrode modified by Pt, Pt-Ru and Pt-Sn microparticles dispersed into poly(o-phenylenediamine) (PoPD) film has been investigated using cyclic voltammetry as analytical technique and 0.5M sulfuric acid as supporting electrolyte. It has been shown that the presence of PoPD film increases considerably the efficiency of deposited Pt and Pt alloys microparticles toward the electrocatalytic oxidation of methanol. The catalytic activity of Pt particles is further enhanced when Ru and especially Sn, is co-deposited in the polymer film. The effects of various parameters such as concentration of methanol, medium temperature as well as the long term stability of modified electrodes have also been investigated. (author)

  9. Er{sub 1.33}Pt{sub 3}Ga{sub 8}: A modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, Iain W.H. [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Gourdon, Olivier [Research and Development, ZS Pharma, Coppell, TX 75109 (United States); Bekins, Amy; Evans, Jess [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019 (United States); Treadwell, LaRico J. [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Chan, Julia Y., E-mail: Julia.Chan@utdallas.edu [Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX 75080 (United States); Macaluso, Robin T., E-mail: robin.macaluso@uta.edu [Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019 (United States); Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO 80639 (United States)

    2016-10-15

    Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were synthesized in a molten Ga flux. Er{sub 1.33}Pt{sub 3}Ga{sub 8} can be considered to be a modulated variant of the Er{sub 4}Pt{sub 9}Al{sub 24}-structure type, where the partial occupancies are ordered. Indeed, the presence of weak satellite reflections indicates a complex organization and distribution of the Er and Ga atoms within the [ErGa] slabs. The structure has been solved based on single crystal X-ray diffraction data in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*. Precession images also indicate diffusion in the perpendicular direction indicating a partial disorder of this arrangement from layer to layer. In addition, Er{sub 1.33}Pt{sub 3}Ga{sub 8} shows antiferromagnetic ordering at T{sub N}~5 K. - Graphical abstract: A precession image of the hk0 zone showing weak, periodic, unindexed reflections indicating modulation and representation of the commensurate [ErGa] layer showing the waving modulated occupation. - Highlights: • Single crystals of Er{sub 1.33}Pt{sub 3}Ga{sub 8} were grown from gallium flux. • The structure of Er{sub 1.33}Pt{sub 3}Ga{sub 8} is compared to Er{sub 4}Pt{sub 9}Al{sub 24}. • Structure has been solved in the monoclinic superspace group X2/m(0β0)00 with a commensurate modulated vector q=1/3b*.

  10. Pt-graphene electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Hajime, E-mail: hoshi@ed.tus.ac.jp; Tanaka, Shumpei; Miyoshi, Takashi

    2014-12-15

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I{sub 3}{sup −}/I{sup −}. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I{sub 3}{sup −}/I{sup −} reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs.

  11. 40 CFR Table 7 to Subpart Vvvvvv... - Partially Soluble HAP

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 14 2010-07-01 2010-07-01 false Partially Soluble HAP 7 Table 7 to... Pt. 63, Subpt. VVVVVV, Table 7 Table 7 to Subpart VVVVVV of Part 63—Partially Soluble HAP As required... partially soluble HAP listed in the following table. Partially soluble HAP name CAS No. 1. 1,1,1...

  12. Morphology and Activity Tuning of Cu 3 Pt/C Ordered Intermetallic Nanoparticles by Selective Electrochemical Dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Deli; Yu, Yingchao; Zhu, Jing; Liu, Sufen; Muller, David A.; Abruña, Héctor D.

    2015-02-11

    Improving the catalytic activity of Pt-based bimetallic nanoparticles is a key challenge in the application of proton-exchange membrane fuel cells. Electrochemical dealloying represents a powerful approach for tuning the surface structure and morphology of these catalyst nanoparticles. We present a comprehensive study of using electrochemical dealloying methods to control the morphology of ordered Cu3Pt/C intermetallic nanoparticles, which could dramatically affect their electrocatalytic activity for the oxygen reduction reaction (ORR). Depending on the electrochemical dealloying conditions, the nanoparticles with Pt-rich core–shell or porous structures were formed. We further demonstrate that the core–shell and porous morphologies can be combined to achieve the highest ORR activity. This strategy provides new guidelines for optimizing nanoparticles synthesis and improving electrocatalytic activity.

  13. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Xiao, Yonghao; Zhan, Guohe; Fu, Zhenggao; Pan, Zhanchang; Xiao, Chumin; Wu, Shoukun; Chen, Chun; Hu, Guanghui; Wei, Zhigang

    2014-01-01

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  14. Use of Hydrogen Chemisorption and Ethylene Hydrogenation as Predictors for Aqueous Phase Reforming of Lactose over Ni@Pt and Co@Pt Bimetallic Overlayer Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Qinghua; Skoglund, Michael D.; Zhang, Chen; Morris, Allen R.; Holles, Joseph H.

    2016-10-20

    Overlayer Pt on Ni (Ni@Pt) or Co (Co@Pt) were synthesized and tested for H2 generation from APR of lactose. H2 chemisorption descriptor showed that Ni@Pt and Co@Pt overlayer catalysts had reduced H2 adsorption strength compared to a Pt only catalyst, which agree with computational predictions. The overlayer catalysts also demonstrated lower activity for ethylene hydrogenation than the Pt only catalyst, which likely resulted from decreased H2 binding strength decreasing the surface coverage of H2. XAS results showed that overlayer catalysts exhibited higher white line intensity than the Pt catalyst, which indicates a negative d-band shift for the Pt overlayer, further providing evidence for overlayer formation. Lactose APR studies showed that lactose can be used as feedstock to produce H2 and CO under desirable reaction conditions. The Pt active sites of Ni@Pt and Co@Pt overlayer catalysts showed significantly enhanced H2 production selectivity and activity when compared with that of a Pt only catalyst. The single deposition overlayer with the largest d-band shift showed the highest H2 activity. The results suggest that overlayer formation using directed deposition technique could modify the behavior of the surface metal and ultimately modify the APR activity.

  15. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    Directory of Open Access Journals (Sweden)

    Feng Lili

    2011-01-01

    Full Text Available Abstract In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future.

  16. Improvements of electrocatalytic activity of PtRu nanoparticles on multi-walled carbon nanotubes by a H2 plasma treatment in methanol and formic acid oxidation

    International Nuclear Information System (INIS)

    Jiang Zhongqing; Jiang Zhongjie

    2011-01-01

    Graphical abstract: A H 2 plasma, that aims at reducing the fraction of the oxidized species at the outermost perimeter of metal particles, has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, reduced charge transfer resistance, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H 2 plasma. Highlights: → A H 2 plasma technique is used to treat the PtRu nanoparticles. → The H 2 plasma treated PtRu/PS-MWCNTs exhibit improved electrocatalytic activity. → The H 2 plasma treated PtRu/PS-MWCNTs have significantly reduced charge transfer resistance. → The H 2 plasma treated PtRu/PS-MWCNTs show the increased stability. → The Pt:Ru atomic ratio of PtRu nanoparticles has a significant effect on the electrochemical activity. - Abstract: A H 2 plasma has been used to treat the PtRu nanoparticles supported on the plasma functionalized multi-walled carbon nanotubes (PtRu/PS-MWCNTs). The plasma treatment does not change the size and crystalline structure of PtRu nanoparticles, but reduces the fraction of the oxidized species at the outermost perimeter of particles. The electrochemical results show that these plasma treated PtRu/PS-MWCNTs exhibit increased electrochemically active surface area, improved electrocatalytic activity and long term stability toward methanol and formic acid oxidation, and enhanced tolerance to carbonaceous species relative to the sample untreated with the H 2 plasma. The electrocatalytic activities of the plasma treated PtRu/PS-MWCNTs are found to be dependent upon the Pt:Ru atomic ratios of PtRu nanoparticles. The catalysts with a Pt:Ru atomic ratio close to 1:1 show superior properties in the electrooxidation of methanol and formic acid

  17. Improved Oxygen Reduction Activity and Durability of Dealloyed PtCox Catalysts for Proton Exchange Membrane Fuel Cells: Strain, Ligand, and Particle Size Effects

    Science.gov (United States)

    Jia, Qingying; Caldwell, Keegan; Strickland, Kara; Ziegelbauer, Joseph M.; Liu, Zhongyi; Yu, Zhiqiang; Ramaker, David E.; Mukerjee, Sanjeev

    2015-01-01

    The development of active and durable catalysts with reduced platinum content is essential for fuel cell commercialization. Herein we report that the dealloyed PtCo/HSC and PtCo3/HSC nanoparticle (NP) catalysts exhibit the same levels of enhancement in oxygen reduction activity (~4-fold) and durability over pure Pt/C NPs. Surprisingly, ex situ high-angle annular dark field scanning transmission electron microscopy (HAADF STEM) shows that the bulk morphologies of the two catalysts are distinctly different: D-PtCo/HSC catalyst is dominated by NPs with solid Pt shells surrounding a single ordered PtCo core; however, the D-PtCo3/HSC catalyst is dominated by NPs with porous Pt shells surrounding multiple disordered PtCo cores with local concentration of Co. In situ X-ray absorption spectroscopy (XAS) reveals that these two catalysts possess similar Pt–Pt and Pt–Co bond distances and Pt coordination numbers (CNs), despite their dissimilar morphologies. The similar activity of the two catalysts is thus ascribed to their comparable strain, ligand, and particle size effects. Ex situ XAS performed on D-PtCo3/HSC under different voltage cycling stage shows that the continuous dissolution of Co leaves behind the NPs with a Pt-like structure after 30k cycles. The attenuated strain and/or ligand effects caused by Co dissolution are presumably counterbalanced by the particle size effects with particle growth, which likely accounts for the constant specific activity of the catalysts along with voltage cycling. PMID:26413384

  18. ACTIVATION OF ACETYLENE BY COORDINATION TO BIS-TRIPHENYLPHOSPHINE COMPLEX OF Pt(0: DFT STUDY

    Directory of Open Access Journals (Sweden)

    N. N. Gorinchoy

    2009-06-01

    Full Text Available The present work is devoted to the theoretical study of the activation of the acetylene molecule coordinated in the [Pt(PPh32C2H2] complex. By means of DFT calculations it is shown that the geometrical and electronic characteristics of the C2H2 are essentially changed due to its coordination. The subsequent detailed analysis of the molecular orbitals (MO of the active valence zone of this complex allows one to make important conclusion that this activation is being realized mainly due to the orbital back donation of 5d-electronic density from one of the occupied MOs of the complex [Pt(PPh32] to the unoccupied antibonding π*-MO of C2H2.

  19. Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Teran, Freddy E. [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France); Santos, Deise M. [Departamento de Quimica, CCE-UFES, Av. Fernando Ferrari, 514, Goiabeiras-Vitoria, ES (Brazil); Ribeiro, Josimar, E-mail: josimar.ribeiro@ufes.br [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France); Departamento de Quimica, CCE-UFES, Av. Fernando Ferrari, 514, Goiabeiras-Vitoria, ES (Brazil); Kokoh, Kouakou B. [Universite de Poitiers, IC2MP UMR CNRS 7285, ' Equipe E-lyse' , 4 rue Michel Brunet-B27, BP 633, 86022 Poitiers cedex (France)

    2012-07-01

    A systematic investigation of alcohol adsorption and oxidation on binary and ternary electrocatalysts in acid medium was performed. Binary (PtRh) and ternary (PtRhSn) were prepared by the Pechini modified method on carbon Vulcan XC-72, and different nominal compositions were characterized by energy dispersive X-ray and X-ray diffraction (XRD) techniques. The XRD results showed that the Pt{sub 80}Rh{sub 20}/C and Pt{sub 70}Sn{sub 10}Rh{sub 20}/C electrocatalysts consisted of the Pt displaced phase, suggesting the formation of a solid solution between the metals Pt/Rh and Pt/Sn. Electrochemical investigations on these different electrode materials were carried out as a function of the electrocatalyst composition, in acid medium (0.5 mol dm{sup -3} H{sub 2}SO{sub 4}), and in the absence and presence of different alcohols (methanol, ethanol and ethylene glycol). The electrochemical results obtained at room temperature have shown that the Pt{sub 70}Sn{sub 10}Rh{sub 20}/C catalyst display better catalytic activity for alcohol oxidation compared with the binary catalyst. In situ reflectance infrared spectroscopy measurements have shown that the oxidation of alcohols mentioned produced CO{sub 2} at low potentials indicating that the materials synthesized could be used as efficient anodes in the fuel cell applications. - Highlights: Black-Right-Pointing-Pointer Pt-based catalysts were synthesized by thermal decomposition polymeric precursors. Black-Right-Pointing-Pointer Pt{sub 70}Sn{sub 10}Rh{sub 20}/C displays better catalytic activity for the oxidation of alcohols. Black-Right-Pointing-Pointer The co-catalysts tin and rhodium promote the removal of CO to CO{sub 2} at low potentials. Black-Right-Pointing-Pointer Ethylene glycol is oxidizing strongly to CO{sub 2} at low potentials. Black-Right-Pointing-Pointer Pt{sub 70}Sn{sub 10}Rh{sub 20}/C catalyst is an efficient anode material for a direct alcohol fuel cell.

  20. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V., E-mail: dfsilva@ipen.b, E-mail: espinace@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO{sub 2} phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  1. Effect of Pt:Sn atomic ratio on the preparation of PtSn/C electrocatalysts using electron beam irradiation

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V.

    2009-01-01

    PtSn/C electrocatalysts were prepared with Pt:Sn atomic ratios of 3:1, 1:1 and 1:3 in water/2-propanol using electron beam irradiation. The obtained materials were characterized by EDX, XRD and cyclic voltammetry. The ethanol electro-oxidation was studied by chronoamperometry. The XRD diffractograms of the PtSn/C electrocatalysts showed typical face-centered cubic (fcc) structure of platinum and the presence of a SnO 2 phase (cassiterite). The mean crystallite sizes of Pt fcc phase was in the range of 3.0-3.5 nm. The PtSn/C electrocatalysts were active for ethanol electro-oxidation at room temperature and the material prepared with Pt:Sn atomic ratio of 1:1 showed the best activity. (author)

  2. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fubing; Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo, E-mail: dongbowang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Fei; Zhao, Jianwei; Xie, Ting; Jiang, Chen; An, Hongxue; Zeng, Guangming; Li, Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2017-02-05

    Highlights: • Pd/Pt-NACF served as an adsorption/electrocatalysis electrode to reduce perchlorate. • The possible mechanisms involved in the reaction process were explained. • The reusability and stability of Pd/Pt-NACF bifunctional material was evaluated. - Abstract: In this work, Pd/Pt supported on N-doped activated carbon fiber (Pd/Pt-NACF) was employed as the electrode for electrocatalytic degradation of perchlorate through adsorption/electroreduction process. Perchlorate in solution was firstly adsorbed on Pd/Pt-NACF and then reduced to non-toxic chloride by the catalytic function of Pd/Pt at a constant current (20 mA). Compared with Pd/Pt-ACF, the adsorption capacity and electrocatalytic degradation efficiency of Pd/Pt-NACF for perchlorate increased 161% and 28%, respectively. Obviously, positively charged N-functional groups on NACF surface enhanced the adsorption capacity of Pd/Pt-NACF, and the dissociation of hydrogen to atomic H* by the Pd/Pt nanostructures on the cathode might drastically promote the electrocatalytic reduction of perchlorate. The role of atomic H* in the electroreduction process was identified by tertiary butanol inhibition test. Meanwhile, the perchlorate degradation performance was not substantially lower after three successive adsorption/electrocatalytic degradation experiments, demonstrating the electrochemical reusability and stability of the as-prepared electrode. These results showed that Pd/Pt-NACF was effective for electrocatalytic degradation of perchlorate and had great potential in perchlorate removal from water.

  3. Epitaxial growth of zigzag PtAu alloy surface on Au nano-pentagrams with enhanced Pt utilization and electrocatalytic performance toward ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Du, Cheng; Gao, Xiaohui; Zhuang, Zhihua; Cheng, Chunfeng; Zheng, Fuqin; Li, Xiaokun; Chen, Wei

    2017-01-01

    Highlights: • PtAu nanoalloy surface is heteroepitaxially grown on the pre-synthesized Au nano-pentagrams. • The PtAu/Au nano-pentagrams exhibit excellent electrocatalytic activity for ethanol oxidation. • The charge transfer resistance of PtAu/Au is lower than that of commercial Pt/C. • The durability and anti-poisoning ability of PtAu/Au is much better than those of commercial Pt/C - Abstract: Improving Pt utilization is of fundamental importance for many significant processes in energy conversion, which is strongly dependent on the surface structure of used catalysts. Based on the traditional Pt-on-Au system which has been proved to be an ideal nanostructure for improving the catalytic activity and stability of Pt, and the recent follow-up studies on this system, we introduce here a new strategy for fabricating Pt surface with high-index facets over the Pt-on-Au system. To achieve this goal, we elaborately designed and fabricated a unique zigzag PtAu alloy nanosurface on Au nano-pentagrams (PtAu/Au NPs) through epitaxial growth of Pt along the high-index facets on the pre-synthesized Au nano-pentagrams. Owing to the surface electronic interaction between Au and Pt and the exposed high-index facets from the unique morphology of zigzag PtAu alloy nanosurface, the as-prepared PtAu/Au NPs exhibited excellent electrocatalytic performance toward ethanol oxidation reaction (EOR) in alkaline condition. The specific activity (8.3 mA cm"−"2) and mass activity (4.4 A mg"−"1) obtained from PtAu/Au NPs are about 5.2 and 5.5 times, respectively, higher than those from commercial Pt/C for EOR.

  4. Strongly bound excitons in monolayer PtS2 and PtSe2

    KAUST Repository

    Sajjad, M.

    2018-01-22

    Based on first-principles calculations, the structural, electronic, and optical properties of monolayers PtS2 and PtSe2 are investigated. The bond stiffnesses and elastic moduli are determined by means of the spring constants and strain-energy relations, respectively. Dynamic stability is confirmed by calculating the phonon spectra, which shows excellent agreement with experimental reports for the frequencies of the Raman-active modes. The Heyd-Scuseria-Ernzerhof functional results in electronic bandgaps of 2.66 eV for monolayer PtS2 and 1.74 eV for monolayer PtSe2. G0W0 calculations combined with the Bethe-Salpeter equation are used to predict the optical spectra and exciton binding energies (0.78 eV for monolayer PtS2 and 0.60 eV for monolayer PtSe2). It turns out that the excitons are strongly bound and therefore very stable against external perturbations.

  5. Ni-Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature.

    Science.gov (United States)

    Wen, Lan; Du, Xiaoqiong; Su, Jun; Luo, Wei; Cai, Ping; Cheng, Gongzhen

    2015-04-07

    Well-dispersed bimetallic Ni-Pt nanoparticles (NPs) with different compositions have been successfully grown on the MIL-96 by a simple liquid impregnation method using NaBH4 as the reducing agent. Powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption-desorption, and inductively coupled plasma-atomic emission spectroscopy measurements were employed to characterize the NiPt/MIL-96. Catalytic activity of NiPt/MIL-96 catalysts was tested in the hydrogen generation from the aqueous alkaline solution of hydrazine at room temperature. These catalysts are composition dependent on their catalytic activity, while Ni64Pt36/MIL-96 exhibits the highest catalytic activity among all the catalysts tested, with a turnover frequency value of 114.3 h(-1) and 100% hydrogen selectivity. This excellent catalytic performance might be due to the synergistic effect of the MIL-96 support and NiPt NPs, while NiPt NPs supported on other conventional supports, such as SiO2, carbon black, γ-Al2O3, poly(N-vinyl-2-pyrrolidone) (PVP), and the physical mixture of NiPt and MIL-96, all of them exhibit inferior catalytic activity compared to that of NiPt/MIL-96.

  6. Pt-Ni and Pt-M-Ni (M = Ru, Sn Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review

    Directory of Open Access Journals (Sweden)

    Ermete Antolini

    2017-01-01

    Full Text Available In view of a possible use as anode materials in acidic direct alcohol fuel cells, the electro-catalytic activity of Pt-Ni and Pt-M-Ni (M = Ru, Sn catalysts for methanol and ethanol oxidation has been widely investigated. An overview of literature data regarding the effect of the addition of Ni to Pt and Pt-M on the methanol and ethanol oxidation activity in acid environment of the resulting binary and ternary Ni-containing Pt-based catalysts is presented, highlighting the effect of alloyed and non-alloyed nickel on the catalytic activity of these materials.

  7. An XAS experimental approach to study low Pt content electrocatalysts operating in PEM fuel cells.

    Science.gov (United States)

    Principi, Emiliano; Witkowska, Agnieszka; Dsoke, Sonia; Marassi, Roberto; Di Cicco, Andrea

    2009-11-21

    We present an X-ray absorption spectroscopy (XAS) study of a low Pt content catalyst layer (Pt loading 0.1 mg cm(-2)) operating at the cathode of a proton exchange membrane fuel cell (PEMFC). This catalyst is based on the use of a mesoporous inorganic matrix as a support for the catalyst Pt nanoparticles. Due to the high Pt dilution, in situ measurements of its structural properties by XAS are challenging and suitable experimental strategies must be devised for this purpose. In particular, we show that accurate XAS in situ fluorescence measurements can be obtained using an optimized fuel cell, suitable protocols for alignment of a focused X-ray beam and an appropriate filter for the background signal of the other atomic species contained in the electrodes. Details, advantages and limitations of the XAS technique for in situ measurements are discussed. Analysis of the near-edge XAS and EXAFS (extended X-ray absorption fine structure) data, corroborated by a HRTEM (high-resolution transmission electron microscopy) study, shows that the Pt particles have a local structure compatible with that of bulk Pt (fcc) and coordination numbers match those expected for particles with typical sizes in the 1.5-2.0 nm range. Substantial changes in the oxidation state and in local atomic arrangement of the Pt particles are found for different applied potentials. The catalyst support, containing W atoms, exhibits a partial reduction upon PEMFC activation, thus mimicking the catalyst behavior. This indicates a possible role of the mesoporous matrix in favouring the oxygen reduction reaction (ORR) and stimulates further research on active catalyst supports.

  8. Methanol electro-oxidation on Pt-Ru-P/C and Pt-Ru-P/MWCNT in acidic medium

    CSIR Research Space (South Africa)

    Modibedi, M

    2009-06-01

    Full Text Available . The electro-catalytic activity towards methanol oxidation in acidic medium was studied by cyclic voltammetry and linear sweep voltammetry. Pt-Ru-P/MWCNT showed excellent activity compared to that of Pt-Ru-P/C. This may be attributed to the effectiveness...

  9. Chemonuclear studies for identification for new production routes for the therapeutically useful radionuclides {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt, und {sup 195m}Pt; Kernchemische Studien zur Entwicklung neuerer Produktionsverfahren fuer die therapierelevanten Radionuklide {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt, und {sup 195m}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Hilgers, K.

    2005-12-15

    New production routes for the therapeutically useful radionuclides {sup 140}Nd, {sup 192}Ir, {sup 191}Pt, {sup 193m}Pt and {sup 195m}Pt were investigated. Cross section data were measured using the stacked-foil technique and compared with theoretical calculations. A production method for the platinum nuclides was developed. The {sup 141}Pr(p, 2n){sup 140}Nd and {sup nat}Ce({sup 3}He, xn){sup 140}Nd reactions were investigated for production of {sup 140}Nd. Cross section data of nuclear reactions leading to the side products {sup 141}Nd, {sup 139}Nd and {sup 139}Ce could also be achieved. The experimental data were compared with theoretical calculations using the code ALICE-IPPE. A comparison of the calculated thick target yields showed that the {sup 141}Pr(p, 2n){sup 140}Nd reaction gives a higher yield. The {sup 192}Os(p, n){sup 192}Ir reaction was examined in the context of the production of {sup 192}Ir. Cross section data were determined and compared with theoretical calculations using the codes ALICE-IPPE and EMPIRE II. The yield of this reaction was compared with the yield of the reactor production of this nuclide. The reactor production seems to be more suitable because of a higher purity and yield. Cross section data were measured for the {sup 192}Os({alpha}, n){sup 195m}Pt, {sup 192}Os({alpha}, 3n){sup 193m}Pt and {sup 192}Os({sup 3}He, 4n){sup 191}Pt reactions. The activity of {sup 193m}Pt and {sup 195m}Pt was determined by X-ray spectroscopy after a chemical separation procedure. The ALICE-IPPE code was found to be inappropriate to reproduce the experimental values. The calculated yields were compared with the yields of other reactions, especially the reactor production of {sup 195m}Pt. The yield of the {sup 192}Os({alpha}, n){sup 195m}Pt reaction is lower compared to the yield of the reactor production, but offers lower target costs and higher specific activity. A production method for {sup 193m}Pt and {sup 195m}Pt was developed. Batch yields of 0.9 MBq

  10. CLOUD COMPUTING ADOPTION STRATEGIES AT PT TASPEN INDONESIA, Tbk

    Directory of Open Access Journals (Sweden)

    Julirzal Sarmedy

    2014-10-01

    Full Text Available PT. Taspen as Indonesian institution, is responsible for managing social insuranceprograms of civil servants. With branch offices and business partners who are geographicallydispersed throughout Indonesia, information technology is very important to support thebusiness processes. Cloud computing is a model of information technology services that couldpotentially increase the effectiveness and efficiency of PT. Taspen information system. Thisstudy examines the phenomenon exists at PT. Taspen in order to adopt cloud computing inthe information system, by using the framework of Technology-Organization-Environment,Diffusion of Innovation theory, and Partial Least Square method. Organizational factor isthe most dominant for PT. Taspen to adopt cloud computing. Referring to these findings,then a SWOT analysis and TOWS matrix are performed, which in this study recommendsthe implementation of a strategy model of cloud computing services that are private andgradually in process.

  11. Ethanol electrooxidation on novel carbon supported Pt/SnO{sub x}/C catalysts with varied Pt:Sn ratio

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, L. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China); Colmenares, L.; Jusys, Z. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany); Sun, G.Q. [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian (China)], E-mail: gqsun@dicp.ac.cn; Behm, R.J. [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)], E-mail: juergen.behm@uni-ulm.de

    2007-12-01

    Novel carbon supported Pt/SnO{sub x}/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, CO{sub ad} stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnO{sub x}/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnO{sub x}/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 deg. C. On all Pt/SnO{sub x}/C catalysts, acetic acid and acetaldehyde represent dominant products, CO{sub 2} formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol{sup -1}), but are lower than on Pt/C (32 kJ mol{sup -1}). The somewhat better performance of the Pt/SnO{sub x}/C catalysts compared to alloyed PtSn{sub x}/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.

  12. Re-examination of the Pt Particle Size Effect on the Oxygen Reduction Reaction for Ultrathin Uniform Pt/C Catalyst Layers without Influence from Nafion

    International Nuclear Information System (INIS)

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-01-01

    Highlights: • Pt particle size effect on ORR was re-evaluated for Pt/C catalysts. • Nafion-free activity of Pt/C catalysts was evaluated using thin-film RDE methods. • Ultrathin-uniform catalyst layers were employed to obtain accurate activity values. • Specific activity increased steeply from 2 to 10 nm and less steeply at over 10 nm. • Re-evaluated effect agrees with a particle model assuming terrace active sites. - Abstract: The platinum ‘particle size effect’ on the oxygen reduction reaction (ORR) has been re-evaluated using commercial Pt/C catalysts (2–10 nm Pt particle) and polycrystalline Pt (poly-Pt) in 0.1 M HClO 4 with a rotating disk electrode method. Nafion-free catalyst layers were employed to obtain specific activities (SA) that were not perturbed (suppressed) by sulfonate anion adsorption/blocking. By using ultrathin uniform catalyst layers, O 2 diffusion limitation was minimized as confirmed from the high SAs of our supported catalysts that were comparable to unsupported sputtered Pt having controlled sizes. The specific activity (SA) steeply increased for the particle sizes in the range ∼2–10 nm (0.8–1.8 mA/cm 2 Pt at 0.9 V vs. RHE) and plateaued over ∼10 nm to 2.7 mA/cm 2 Pt for bulk poly-Pt. On the basis of the activity trend for the range of particle sizes studied, it appears that the effect of carbon support on activity is negligible. The experimental results and the concomitant profile of SA vs. particle size was found to be in an agreement to a truncated octahedral particle model that assumes active terrace sites.

  13. Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films

    Science.gov (United States)

    Testoni, Glaucio O.; Amoresi, Rafael A. C.; Lustosa, Glauco M. M. M.; Costa, João P. C.; Nogueira, Marcelo V.; Ruiz, Miguel; Zaghete, Maria A.; Perazolli, Leinig A.

    2018-02-01

    In this work, a high photocatalytic activity was attained by intercalating a Pt layer between SnO2 and TiO2 semiconductors, which yielded a TiO2/Pt/SnO2 - type heterostructure used in the discoloration of blue methylene (MB) solution. The porous films and platinum layer were obtained by electrophoretic deposition and DC Sputtering, respectively, and were both characterized morphologically and structurally by FE-SEM and XRD. The films with the Pt interlayer were evaluated by photocatalytic activity through exposure to UV light. An increase in efficiency of 22% was obtained for these films compared to those without platinum deposition. Studies on the reutilization of the films pointed out high efficiency and recovery of the photocatalyst, rendering the methodology favorable for the construction of fixed bed photocatalytic reactors. A proposal associated with the mechanism is discussed in this work in terms of the difference in Schottky barrier between the semiconductors and the electrons transfer and trapping cycle. These are fundamental factors for boosting photocatalytic efficiency.

  14. Facile Electrodeposition of Flower-Like PMo12-Pt/rGO Composite with Enhanced Electrocatalytic Activity towards Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoying Wang

    2015-07-01

    Full Text Available A facile, rapid and green method based on potentiostatic electrodeposition is developed to synthesize a novel H3PMo12O40-Pt/reduced graphene oxide (denoted as PMo12-Pt/rGO composite. The as-prepared PMo12-Pt/rGO is characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. The results reveal that graphene oxide (GO is reduced to the rGO by electrochemical method and POMs clusters are successfully located on the rGO as the modifier. Furthermore, the PMo12-Pt/rGO composite shows higher electrocatalytic activity, better tolerance towards CO and better stability than the conventional pure Pt catalyst.

  15. Highly Selective TiN-Supported Highly Dispersed Pt Catalyst: Ultra Active toward Hydrogen Oxidation and Inactive toward Oxygen Reduction.

    Science.gov (United States)

    Luo, Junming; Tang, Haibo; Tian, Xinlong; Hou, Sanying; Li, Xiuhua; Du, Li; Liao, Shijun

    2018-01-31

    The severe dissolution of the cathode catalyst, caused by an undesired oxygen reduction reaction at the anode during startup and shutdown, is a fatal challenge to practical applications of polymer electrolyte membrane fuel cells. To address this important issue, according to the distinct structure-sensitivity between the σ-type bond in H 2 and the π-type bond in O 2 , we design a HD-Pt/TiN material by highly dispersing Pt on the TiN surface to inhibit the unwanted oxygen reduction reaction. The highly dispersed Pt/TiN catalyst exhibits excellent selectivity toward hydrogen oxidation and oxygen reduction reactions. With a Pt loading of 0.88 wt %, our catalyst shows excellent hydrogen oxidation reaction activity, close to that of commercial 20 wt % Pt/C catalyst, and much lower oxygen reduction reaction activity than the commercial 20 wt % Pt/C catalyst. The lack of well-ordered Pt facets is responsible for the excellent selectivity of the HD-Pt/TiN materials toward hydrogen oxidation and oxygen reduction reactions. Our work provides a new and cost-effective solution to design selective catalysts toward hydrogen oxidation and oxygen reduction reactions, making the strategy of using oxygen-tolerant anode catalyst to improve the stability of polymer electrolyte membrane fuel cells during startup and shutdown more affordable and practical.

  16. Activity of bimetallic catalysts (Pt + Me)/A12030 in butane hydrogenolysis and benzene hydrogenation

    International Nuclear Information System (INIS)

    Zharkov, B.B.; Rubinov, A.Z.

    1986-01-01

    The authors evaluate the decomposing and hydrogenating activity of some Me/Al 2 0 3 0 and (Pt + Me)/Al 203 catalysis for the reactions of butane hydrogenolysis and conversion of benzene to cyclohexane. The temperature was 180-300 C for butane transformation and 150 C for benzene hydrogenation. During both reactions some initial decrease of catalytic activity which stabilized over 2-3 h was observed. The results show that roasting Re-containing reforming catalysts at fairly high temperatures (500-550 C) balances maximum hydrogenating and average splitting activities, thus guaranteeing high resistance to coke deposition while preserving the necessary selectivity. The decreased hydrogenating capacity of Ir/A1 2 0 3 0 and (Pt + Ir)/A1 23 0 catalysts after roasting at 500 C indicates insufficient thermal stability, which can be why renewing the initial activity of iridium containing forming catalysts by oxidating regeneration is difficult

  17. First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains

    International Nuclear Information System (INIS)

    Hayes, Kayla E.; Lee, Hee-Seung

    2012-01-01

    Highlights: ► Electronic and magnetic properties of (5, 5)-SWNT doped with Pt clusters and chains. ► Pt-doping can change metallic (5, 5)-SWNT to semiconducting CNT. ► Oxygen adsorption on Pt-doped (5, 5)-SWNT is barrierless process. ► Pt-doping reduces the activation barrier of oxygen dissociation reaction. ► Adsorbed oxygen has 2 O 2 - – character. - Abstract: We report the results of density functional theory calculations on the electronic structures, geometrical parameters, and magnetic properties of a wide variety of Pt clusters/chains adsorbed on metallic (5,5) single-walled carbon nanotube (SWNT). It was found that the electronic band structures of Pt/CNT systems are very sensitive to the small changes in the geometries of Pt clusters and chains. In some cases, metallic (5, 5)-SWNT becomes a small-gap semiconducting nanotube with adsorbed Pt clusters and chains. We also investigated the dissociation of molecular oxygen on the (5, 5)-SWNT doped with a single Pt atom via the nudged elastic band (NEB) method. The NEB results showed that the activation barrier is lowered even with a single Pt atom compared to that of pristine SWNT. It was found that the electronic structure of molecular oxygen adsorbed on Pt-doped CNT resembles that of 2 O 2 - , which should facilitate the dissociation process.

  18. A comparative study of the adsorption and hydrogenation of acrolein on Pt(1 1 1), Ni(1 1 1) film and Pt Ni Pt(1 1 1) bimetallic surfaces

    Science.gov (United States)

    Murillo, Luis E.; Chen, Jingguang G.

    In this study we have investigated the reaction pathways for the decomposition and hydrogenation of acrolein (CH 2dbnd CH-CH dbnd O) on Ni/Pt(1 1 1) surfaces under ultra-high vacuum (UHV) conditions using temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS). While gas-phase hydrogenation products are not observed from clean Pt(1 1 1), the subsurface Pt-Ni-Pt(1 1 1), with Ni residing below the first layer of Pt, is active for the self-hydrogenation of the C dbnd O bond to produce unsaturated alcohol (2-propenol) and the C dbnd C bond to produce saturated aldehyde (propanal), with the latter being the main hydrogenation product without the consecutive hydrogenation to saturated alcohol. For a thick Ni(1 1 1) film prepared on Pt(1 1 1), the self-hydrogenation yields for both products are lower than that from the Pt-Ni-Pt(1 1 1) surface. The presence of pre-adsorbed hydrogen further enhances the selectivity toward C dbnd O bond hydrogenation on the Pt-Ni-Pt(1 1 1) surface. In addition, HREELS studies of the adsorption of the two hydrogenation products, 2-propenol and propanal, are performed on the Pt-Ni-Pt(1 1 1) surface to identify the possible surface intermediates during the reaction of acrolein. The results presented here indicate that the hydrogenation activity and selectivity of acrolein on Pt(1 1 1) can be significantly modified by the formation of the bimetallic surfaces.

  19. Continuous Catalytic Hydrodeoxygenation of Guaiacol over Pt/SiO2 and Pt/H-MFI-90

    Directory of Open Access Journals (Sweden)

    Melanie Hellinger

    2015-07-01

    Full Text Available Hydrodeoxygenation of guaiacol in the presence of 1-octanol was studied in a fixed-bed reactor under mild conditions (50–250 °C over platinum particles supported on silica (Pt/SiO2 and a zeolite with framework type MFI at a Si/Al-ratio of 45 (Pt/H-MFI-90. The deoxygenation selectivity strongly depended on the support and the temperature. Both guaiacol and octanol were rapidly deoxygenated in the presence of hydrogen over Pt/H-MFI-90 at 250 °C to cyclohexane and octane, respectively. In contrast, Pt/SiO2 mostly showed hydrogenation, but hardly any deoxygenation activity. The acidic sites of the MFI-90 support lead to improved deoxygenation performance at the mild temperature conditions of this study. Significant conversions under reaction conditions applied already occurred at temperatures of 200 °C. However, during long-term stability tests, the Pt/H-MFI-90 catalyst deactivated after more than 30 h, probably due to carbon deposition, whereas Pt/SiO2 was more stable. The catalytic activity of the zeolite catalyst could only partly be regained by calcination in air, as some of the acidic sites were lost.

  20. High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Ma Liang; Liu Changpeng; Liao Jianhui; Lu Tianhong; Xing Wei; Zhang Jiujun

    2009-01-01

    A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH 4 ) 2 PtCl 6 and Ru(OH) 3 ) on the carbon support before metal reduction; the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method, even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst. Based on XPS measurements, the high activity of this catalyst was found to originate from both metallic Ru (Ru 0 ) and hydrous ruthenium oxides (RuO x H y ) species on the catalyst surface. However, RuO x H y was found to be more active than metallic Ru. In addition, the anhydrous ruthenium oxide (RuO 2 ) species on the catalyst surface was found to be less active.

  1. Microwave-polyol synthesis and electrocatalytic performance of Pt/graphene nanocomposites

    International Nuclear Information System (INIS)

    Liao, Chien-Shiun; Liao, Chien-Tsao; Tso, Ching-Yu; Shy, Hsiou-Jeng

    2011-01-01

    Highlights: · One-pot microwave-polyol synthesis of Pt/graphene electrocatalyst. · Simultaneous formation of Pt nanoparticles and reduction of graphene oxide. · Electrocatalytic activities depend on the morphology of the deposited Pt particles. · Dense dispersion of isolated Pt particles with high electrochemical active surface. · Few particle clusters of Pt have large number of active sites for methanol oxidation. - Abstract: Graphene oxide (GO) prepared by the modified Hummers method is used as a support in the formation of a Pt/GO nanocomposite electrocatalyst by microwave-polyol synthesis. The effects of microwave reaction times on particle size, dispersion, and electrocatalytic performance of Pt nanoparticles are studied using wide-angle X-ray diffractometery, Raman spectroscopy, transmission electron microscopy and three-electrode electrochemical measurements. The results indicate that Pt nanoparticles nucleation and growth occur, and the particles are uniformly deposited on the GO nanosheets within a short time. The maximum electrochemical active surface area 85.71 m 2 g -1 for a Pt/GO reaction time of 5 min, is a result of the deposition of a dense dispersion of small Pt particles. The highest methanol oxidation peak current density, I f , of 0.59 A mg -1 occurs for a Pt/GO reaction time of 10 min and is due to the formation of interconnecting Pt particles clusters. This novel Pt/GO nanocomposite electrocatalyst with high electrocatalytic activities has the potential for use as an anode material in fuel cells.

  2. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  3. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    International Nuclear Information System (INIS)

    Liu, Rui; Han, Lihao; Huang, Zhuangqun; Ferrer, Ivonne M.; Smets, Arno H.M.; Zeman, Miro; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe 3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  4. Optimum Pt and Ru atomic composition of carbon-supported Pt-Ru alloy electrocatalyst for methanol oxidation studied by the polygonal barrel-sputtering method

    International Nuclear Information System (INIS)

    Hiromi, Chikako; Inoue, Mitsuhiro; Taguchi, Akira; Abe, Takayuki

    2011-01-01

    Highlights: → The sputtered Pt and Ru form the Pt-Ru alloy nanoparticles on the carbon support. → The deposited Pt-Ru alloy particles have uniform Pt:Ru atomic ratios. → The optimum Pt:Ru ratio of the Pt-Ru/C for methanol oxidation is 58:42 at.% at 25 deg. C. → The optimum Pt:Ru ratio of 58:42 shifts to 50:50 at.% at 40 and 60 deg. C. → The polygonal barrel-sputtering method is useful to prepare the DMFC anode catalyst. - Abstract: The optimum Pt and Ru atomic composition of a carbon-supported Pt-Ru alloy (Pt-Ru/C) used in a practical direct methanol fuel cell (DMFC) anode was investigated. The samples were prepared by the polygonal barrel-sputtering method. Based on the physical properties of the prepared Pt-Ru/C samples, the Pt-Ru alloy was found to be deposited on a carbon support. The microscopic characterization showed that the deposited alloy forms nanoparticles, of which the atomic ratios of Pt and Ru (Pt:Ru ratios) are uniform and are in accordance with the overall Pt:Ru ratios of the samples. The formation of the Pt-Ru alloy is also supported by the electrochemical characterization. Based on these results, methanol oxidation on the Pt-Ru/C samples was measured by cyclic voltammetry and chronoamperometry. The results indicated that the methanol oxidation activities of the prepared samples depended on the Pt:Ru ratios, of which the optimum Pt:Ru ratio is 58:42 at.% at 25 deg. C and 50:50 at.% at 40 and 60 deg. C. This temperature dependence of the optimum Pt:Ru ratio is well explained by the relationship between the methanol oxidation reaction process and the temperature, which is reflected in the rate-determining steps considered from the activation energies. It should be noted that at 25-60 deg. C, the Pt-Ru/C with Pt:Ru = 50:50 at.% prepared by our sputtering method has the higher methanol oxidation activity than that of a commercially available sample with the identical overall Pt:Ru ratio. Consequently, the polygonal barrel-sputtering method

  5. Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials

    Science.gov (United States)

    Merati, Zohreh; Basiri Parsa, Jalal

    2018-03-01

    Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.

  6. Effects of the top-electrode preparation method on the ferroelectric properties of Pt/Pb(Zr,Ti)O3/Pt thin film capacitors

    International Nuclear Information System (INIS)

    Lee, Eun Gu; Lee, Jae Gab; Kim, Sun Jae

    2006-01-01

    The deformation in the hysteresis loop of Pt/PZT/Pt thin-film capacitors due to deposition and patterning of the top electrode has been investigated. The PZT film was aged during the deposition of the top electrode and was positively poled during reactive ion etching (RIE). The PZT film having sputtered top electrode was very sensitive to the RIE process. The film with a thinner top electrode showed less initial switching polarization due to less compressive stress, but better fatigue characteristics due to an enhanced partial-switching region.

  7. Antitumor activity of [Pt(O,O'-acac)(γ-acac)(DMS)] in mouse xenograft model of breast cancer.

    Science.gov (United States)

    Muscella, A; Vetrugno, C; Migoni, D; Biagioni, F; Fanizzi, F P; Fornai, F; De Pascali, S A; Marsigliante, S

    2014-01-23

    The higher and selective cytotoxicity of [Pt(O,O'-acac)(γ-acac)(DMS)] toward cancer cell in both immortalized cell lines and in breast cancer cells in primary cultures, stimulated a pre-clinical study so as to evaluate its therapeutic potential in vivo. The efficacy of [Pt(O,O'-acac)(γ-acac)(DMS)] was assessed using a xenograft model of breast cancer developed by injection of MCF-7 cells in the flank of BALB/c nude mice. Treatment of solid tumor-bearing mice with [Pt(O,O'-acac)(γ-acac)(DMS)] induced up to 50% reduction of tumor mass compared with an average 10% inhibition recorded in cisplatin-treated animals. Thus, chemotherapy with [Pt(O,O'-acac)(γ-acac)(DMS)] was much more effective than cisplatin. We also demonstrated enhanced in vivo pharmacokinetics, biodistribution and tolerability of [Pt(O,O'-acac)(γ-acac)(DMS)] when compared with cisplatin administered in Wistar rats. Pharmacokinetics studies with [Pt(O,O'-acac)(γ-acac)(DMS)] revealed prolonged Pt persistence in systemic blood circulation and decreased nefrotoxicity and hepatotoxicity, major target sites of cisplatin toxicity. Overall, [Pt(O,O'-acac)(γ-acac)(DMS)] turned out to be extremely promising in terms of greater in vivo anticancer activity, reduced nephrotoxicity and acute toxicity compared with cisplatin.

  8. Pt, PtCo and PtNi electrocatalysts prepared with mechanical alloying for oxygen reduction reaction in alkaline medium; Electrocatalizadores de Pt, PtCo y PtNi preparados por aleado mecanico para la reaccion de reduccion de oxigeno en medio alcalino

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Contreras, M.A.; Fernandez-Valverde, S.M. [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: miguel.garcia@inin.gob.mx; Vargas-Garcia, J.R. [ESIQIE-IPN, Mexico D.F. (Mexico

    2009-09-15

    Pt, PtCo and PtNi electrocatalysts were prepared using mechanical alloying and their electrocatalytic activity was investigated for oxygen reduction reaction (ORR) in KOH 0.5 M using cyclic voltametry and rotary disc electrode (RDE) techniques. The electrocatalysts were characterized using x-ray diffraction, sweep electron microscopy, dispersive x-ray transmission and chemical analysis. The physical characterization indicated that all the electrocatalysts are alloys formed by agglomerated particles composed of nanocrystals. The chemical analysis showed the presence of iron in the alloys. For the electrocatalytic evaluation, polarization curves and Koutecky-Levich and Tafel graphs were obtained to determine the kinetic parameters of the electrocatalysts in the study. With the same experimental conditions, the PtCo presented better electrocatalytic performance with a higher exchange current density. [Spanish] Se prepararon electrocatalizadores de Pt, PtCo y PtNi por aleado mecanico y se investigo su actividad electrocatalitica para la reaccion de reduccion de oxigeno (RRO) en KOH 0.5 M utilizando las tecnicas de Voltametria ciclica y Electrodo de Disco Rotatorio. Los electrocatalizadores se caracterizaron por difraccion de rayos X, Microscopia electronica de Barrido, de Transmision y analisis quimico por dispersion de rayos X. La caracterizacion fisica indico que todos los electrocatalizadores son aleaciones formadas de particulas aglomeradas, compuestas de nanocristales. El analisis quimico mostro la presencia de hierro en las aleaciones. Para la evaluacion electrocatalitica se obtuvieron curvas de polarizacion, graficas de Koutecky-Levich y de Tafel para determinar los parametros cineticos de los electrocatalizadores en estudio. En las mismas condiciones experimentales, el PtCo presento el mejor desempeno electrocatalitico con la densidad de corriente de intercambio mas alta.

  9. Electrocatalytic Activity for CO, MeOH, and EtOH Oxidation on the Surface of Pt-Ru Nanoparticles Supported by Metal Oxide

    Directory of Open Access Journals (Sweden)

    Kwang-Sik Sim

    2011-01-01

    Full Text Available This paper describes the electrocatalytic activity for CO, MeOH, and EtOH oxidation on the surface of Pt-Ru nanoparticles supported by metal oxide (Nb-TiO2-H prepared for use in a fuel cell. To prepare Nb-TiO2-supported Pt-Ru nanoparticles, first, the Nb-TiO2 supports were prepared by sol-gel reaction of titanium tetraisopropoxide with a small amount of the niobium ethoxide in polystyrene (PS colloids. Second, Pt-Ru nanoparticles were then deposited by chemical reduction of the Pt4+ and Ru3+ ions onto Nb-TiO2 supports (Pt-Ru@Nb-TiO2-CS. Nb element was used to reduce electrical resistance to facilitate electron transport during the electrochemical reactions on a fuel cell electrode. Finally, the Pt-Ru@Nb-TiO2-H catalysts were formed by the removal of core-polystyrene ball from Pt-Ru@TiO2-CS at 500∘C. The successfully prepared Pt-Ru electrocatalysts were confirmed via TEM, XPS, and ICP analysis. The electrocatalytic efficiency of Pt-Ru nanoparticles was evaluated via CO, MeOH, and EtOH oxidation for use in a direct methanol fuel cell (DMFC. As a result, the Pt-Ru@Nb-TiO2-H electrodes showed high electrocatalytic activity for the electrooxidation of CO, MeOH, and EtOH.

  10. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH4

    International Nuclear Information System (INIS)

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH 4 , and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory

  11. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    Science.gov (United States)

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-22

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt 9 RhFe x (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N 2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt 9 RhFe x /C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt 9 RhFe 3 /C when compared to Pt 9 Rh/C, Pt 3 Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt 9 RhFe 3 /C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt 9 Rh/C (0.326 V), Pt 3 Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt 9 RhFe 3 /C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt 9 RhFe 3 /C offers a promising anode catalyst for direct ethanol fuel cells.

  12. Magnetic anisotropy and order parameter in nanostructured CoPt particles

    Science.gov (United States)

    Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.

    2013-10-01

    The correlation of magnetic anisotropy energy with order parameter in the crystallites of CoPt nanostructured particles prepared by thermal decomposition and further annealing has been studied by investigation of the approach magnetization to saturation curves and x-ray powder diffraction pattern profiles. It is shown that magnetic anisotropy energy value in partially ordered CoPt crystallite could be described as an intermediate case between two extremes, corresponding to either single or several c-domains of L10 phase in crystallite.

  13. Influence of Pt thickness on magnetization reversal processes in (Pt/Co)3 multilayers with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Belhi, R.; Adanlété Adjanoh, A.; Vogel, J.

    2012-01-01

    We present a detailed study of the magnetization reversal in perpendicularly magnetized (Pt/Co) 3 multilayers with different values of the platinum interlayer thickness t Pt . To study the magnetization reversal in our samples we combined measurements of relaxation curves with the direct visualization of domain structures. Magnetization reversal was dominated by domain wall propagation for t Pt =1 nm and by domain nucleation for t Pt =0.2 nm, while a mixed process was observed for t Pt =0.8 nm. We interpret our results within the framework of a model of thermally activated reversal where a distribution of activation energy barriers is taken into account. The reversal process was correlated with the energy barrier distribution. - Highlights: ► We show that the coercivity decreases with the Pt interlayer thickness. ► The reversal process is sensitively dependent on platinum interlayer thickness. ► We interpreted the results by taking into account of an energy barrier distribution. ► The reversal process was correlated with the energy barrier distribution width. ► The energy barrier distribution width varies linearly with the applied field.

  14. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  15. Efficient Aerobic Oxidation of Cyclohexane to KA Oil Catalyzed by Pt ...

    Indian Academy of Sciences (India)

    127, No. 7, July 2015, pp. 1167–1172. c Indian Academy of Sciences. ... The catalyst was used for the partial oxidation of cyclohexane in a Parr type reactor. It was found that Pt-Sn supported on MWCNTs can act as an efficient catalyst for the partial ... version ratio with high selectivity for KA oil in a liquid ... These gases.

  16. Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Park, Kyung-Won; Park, In-Su; Nam, Woo-Hyun; Sung, Yung-Eun

    2004-01-01

    Pt-based binary or ternary catalysts containing Rh for use as anodes in direct methanol fuel cells (DMFC) were synthesized by borohydride reduction method combined with freeze-drying. The resulting catalysts had a specific surface area of approximately 65-75 m 2 /g. X-ray diffraction (XRD) patterns indicated that the catalysts were well alloyed and the average size of alloy catalysts was confirmed by transmission electron microscopy (TEM). The Pt/Rh (2:1) and Pt/Ru/Rh (5:4:1) alloy catalysts showed better catalytic activities for methanol electro-oxidation than Pt or Pt/Ru (1:1), respectively

  17. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  18. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    Science.gov (United States)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  19. Pt based anode catalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weijiang; Zhou, Zhenhua; Song, Shuqin; Li, Wenzhen; Sun, Gongquan; Xin, Qin [Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, CAS, P.O. Box 110, Dalian 116023 (China); Tsiakaras, Panagiotis [Department of Mechanical and Industrial Engineering, University of Thessalia, Pedion Areos, GR 38334 Volos (Greece) 7

    2003-11-10

    In the present work several Pt-based anode catalysts supported on carbon XC-72R were prepared with a novel method and characterized by means of XRD, TEM and XPS analysis. It was found that all these catalysts are consisted of uniform nanosized particles with sharp distribution and Pt lattice parameter decreases with the addition of Ru or Pd and increases with the addition of Sn or W. Cyclic voltammetry (CV) measurements and single direct ethanol fuel cell (DEFC) tests jointly showed that the presence of Sn, Ru and W enhances the activity of Pt towards ethanol electro-oxidation in the following order: Pt{sub 1}Sn{sub 1}/C>Pt{sub 1}Ru{sub 1}/C>Pt{sub 1}W{sub 1}/C>Pt{sub 1}Pd{sub 1}/C>Pt/C. Moreover, Pt{sub 1}Ru{sub 1}/C further modified by W and Mo showed improved ethanol electro-oxidation activity, but its DEFC performance was found to be inferior to that measured for Pt{sub 1}Sn{sub 1}/C. Under this respect, several PtSn/C catalysts with different Pt/Sn atomic ratio were also identically prepared and characterized and their direct ethanol fuel cell performances were evaluated. It was found that the single direct ethanol fuel cell having Pt{sub 1}Sn{sub 1}/C or Pt{sub 3}Sn{sub 2}/C or Pt{sub 2}Sn{sub 1}/C as anode catalyst showed better performances than those with Pt{sub 3}Sn{sub 1}/C or Pt{sub 4}Sn{sub 1}/C. It was also found that the latter two cells exhibited higher performances than the single cell using Pt{sub 1}Ru{sub 1}/C, which is exclusively used in PEMFC as anode catalyst for both methanol electro-oxidation and CO-tolerance. This distinct difference in DEFC performance between the catalysts examined here would be attributed to the so-called bifunctional mechanism and to the electronic interaction between Pt and additives. It is thought that an amount of -OH{sub ads}, an amount of surface Pt active sites and the conductivity effect of PtSn/C catalysts would determine the activity of PtSn/C with different Pt/Sn ratios. At lower temperature values or at low

  20. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kisielewski, J., E-mail: jankis@uwb.edu.pl; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A. [Faculty of Physics, University of Białystok, Ciołkowskiego 1L, 15-245 Białystok (Poland); Wawro, A. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw (Poland)

    2016-05-21

    Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

  1. Magnetic phases in Pt/Co/Pt films induced by single and multiple femtosecond laser pulses

    International Nuclear Information System (INIS)

    Kisielewski, J.; Kurant, Z.; Sveklo, I.; Tekielak, M.; Maziewski, A.; Wawro, A.

    2016-01-01

    Ultrathin Pt/Co/Pt trilayers with initial in-plane magnetization were irradiated with femtosecond laser pulses. In this way, an irreversible structural modification was introduced, which resulted in the creation of numerous pulse fluence-dependent magnetic phases. This was particularly true with the out-of-plane magnetization state, which exhibited a submicrometer domain structure. This effect was studied in a broad range of pulse fluences up to the point of ablation of the metallic films. In addition to this single-pulse experiment, multiple exposure spots were also investigated, which exhibited an extended area of out-of-plane magnetization phases and a decreased damage threshold. Using a double exposure with partially overlapped spots, a two-dimensional diagram of the magnetic phases as a function of the two energy densities was built, which showed a strong inequality between the first and second incoming pulses.

  2. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  3. Microwave-assisted synthesis of high-loading, highly dispersed Pt

    Indian Academy of Sciences (India)

    Cyclic voltammetry and chronoamperometry were used to evaluate the electrocatalytic activity of the Pt/carbon aerogel catalyst for methanol oxidation at room temperature. The Pt/carbon aerogel catalyst shows higher electrochemical catalytic activity and stability for methanol oxidation than a commercial Pt/C catalyst of the ...

  4. Promotion effect of manganese oxide on the electrocatalytic activity of Pt/C for methanol oxidation in acid medium

    International Nuclear Information System (INIS)

    Abdel Hameed, R.M.; Fetohi, Amani E.; Amin, R.S.; El-Khatib, K.M.

    2015-01-01

    Graphical abstract: Physical and electrochemical properties of Pt/C, Pt–MnO_2/C-1 and Pt–MnO_2/C-2 electrocatalysts. - Highlights: • Adding MnO_2 to Pt/C improved the dispersion of Pt nanoparticles. • The existence of MnO_2 improved the kinetics of methanol oxidation reaction. • R_c_t value of Pt–MnO_2/C was about 10 times as low as that at Pt/C. • The removal of CO_a_d_s poisoning species was facilitated at Pt–MnO_2/C. - Abstract: The modification of Pt/C by incorporating metal oxides for electrocatalytic oxidation of methanol has gained major attention because of the efficiency loss during the course of long-time operation. This work describes the preparation of Pt–MnO_2/C electrocatalysts through a chemical route using ethylene glycol or a mixture of ethylene glycol and sodium borohydride as a reducing agent. The crystallite structure and particle size of synthesized electrocatalysts are determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The addition of MnO_2 improves the dispersion of Pt nanoparticles. The electrocatalytic activity of Pt–MnO_2/C towards methanol oxidation in H_2SO_4 solution is investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The onset potential value of methanol oxidation peak is negatively shifted by 169 mV when MnO_2 is introduced to Pt/C. Moreover, the charge transfer resistance value at Pt–MnO_2/C is about 10 times as low as that at Pt/C. Chronoamperometry and chronopotentiometry show that CO tolerance is greatly improved at Pt–MnO_2/C. The increased electrocatalytic activity and enhanced ability to clean platinum surface elect manganese oxide as a suitable promoter for the anode performance in direct methanol fuel cells (DMFCs).

  5. EXAFS Characterization of Dendrimer-Derived Pt/γ-Al2O3

    International Nuclear Information System (INIS)

    Siani, A.; Alexeev, O. S.; Williams, C. T.; Ploehn, H. J.; Amiridis, M. D.

    2007-01-01

    The various steps involved in the preparation of a Pt/γ-Al2O3 material using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as templates were monitored by EXAFS. The results indicate that Cl ligands in the Pt precursors (H2PtCl6 and K2PtCl4) were partially replaced by aquo ligands upon hydrolysis to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species. After interaction of such species with G4OH, Cl ligands from the first coordination shell of Pt were further replaced by nitrogen atoms from the dendrimer interior, indicating the complexation of Pt with the dendrimer. This process was accompanied by a transfer of the electron density from the dendrimer to Pt, indicating that the former plays the role of a ligand. Following treatment of the H2PtCl6/G4OH and K2PtCl4/G4OH composites with NaBH4, no substantial changes were detecteded in the electronic or coordination environment of Pt, and no formation of metal nanoparticles was observed. However, when the reduction treatment was performed with H2, the formation of extremely small Pt clusters incorporating no more than 4 Pt atoms was observed. These Pt species remained strongly bonded to the dendrimer and their nuclearity depends on the length of the H2 treatment. Formation of Pt nanoparticles with an average diameter of approximately 10 A was finally observed after the deposition of H2PtCl6/G4OH on γ-Al2O3 and drying, suggesting that their formation may be related to the collapse of the dendrimer structure. The Pt nanoparticles formed appear to have high mobility, since subsequent thermal treatment in O2/H2 led to further sintering

  6. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  7. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  8. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  9. Alloys of Pt and Rare Earths for the Oxygen Electroreduction Reaction

    DEFF Research Database (Denmark)

    Malacrida, Paolo

    This thesis presents the development and characterization of a new class of Pt alloys for catalyzing the Oxygen Reduction Reaction (ORR), in perspective of a future substitution of traditional Pt-based catalysts at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Focused on spectr....... A number of bimetallic alloys based on Pt and a rare earth, like the Pt-Y system or more recently proposed Pt-lanthanide phases, have been tested and characterized. Polycrystalline Pt5La and Pt5Ce exhibited more than a factor of 3 enhancement in specific activity relative to state......-Y nanoparticles are among the most active ORR catalysts ever reported, although they lose 37 % of this activity after stability test. Similar to the case of polycrystals, after immersion in the acidic electrolyte and testing the active phase consists of a Pt shell surrounding an alloyed core. Also in this case...

  10. PT-1 selectively activates AMPK-γ1 complexes in mouse skeletal muscle, but activates all three γ subunit complexes in cultured human cells by inhibiting the respiratory chain

    DEFF Research Database (Denmark)

    Jensen, Thomas Elbenhardt; Ross, Fiona A; Kleinert, Maximilian

    2015-01-01

    strategy to combat diseases such as cancer and type 2 diabetes. We report that the AMPK activator PT-1 selectively increased the activity of γ1- but not γ3-containing complexes in incubated mouse muscle. PT-1 increased the AMPK-dependent phosphorylation of the autophagy-regulating kinase ULK1 on Ser555...

  11. Nanoscale insight of high piezoelectricity in high-TC PMN-PH-PT ceramics

    Science.gov (United States)

    Zhu, Rongfeng; Zhang, Qihui; Fang, Bijun; Zhang, Shuai; Zhao, Xiangyong; Ding, Jianning

    2018-03-01

    The piezoelectric properties of the high-Curie temperature (high-TC) 0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3 (0.15PMN-0.38PH-0.47PT) ceramics prepared by three different methods were compared. The 0.15PMN-0.38PH-0.47PT ceramics synthesized by the partial oxalate route exhibit the optimum properties, in which d33* = 845.3 pm/V, d33 = 456.2 pC/N, Kp = 67.2%, and TC = 291 °C. The nanoscale origin of the high piezoelectric response of the 0.15PMN-0.38PH-0.47PT ceramics was investigated by piezoresponse force microscopy (PFM) using the ceramics synthesized by the partial oxalate route. Large quantities of fine stripe submicron ferroelectric domains are observed, which form large island domains. In order to give further insights into the piezoelectric properties of the 0.15PMN-0.38PH-0.47PT ceramics from a microscopic point of view, the local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) were investigated, from which the local converse piezoelectric coefficient d33*(l) is calculated as 220 pm/V.

  12. Formation of FePt nanodots by wetting of nanohole substrates

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abdelgawad

    2016-05-01

    Full Text Available Large area arrays of FePt nanodots are fabricated on patterned substrates made of SiOx, SiNx and TiNx. The templates have a depth of ∼10 nm and a pitch of ∼20 nm with 18 nm wide holes. FePt is sputtered on the nanohole arrays, then back-etched, leaving a highly ordered array of FePt nanodots behind. To promote phase transformation to the L10 phase, the samples are annealed at temperatures of 550-650° C. During annealing, the FePt strongly dewets SiOx and SiNx substrates, causing sintering and coalescence of the FePt nanodots, but the nanodots remain highly ordered on the TiNx substrate. The nanodot arrays on TiNx are characterized magnetically before and after annealing. The out-of-plane coercivity increases by ∼1 kOe, suggesting partial transformation to the L10 phase. We also show that a capping layer can be sputtered on top of the nanodot arrays prior to annealing to prevent dewetting.

  13. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Lu, Lilin [College of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Cao, Yingnan; Du, Shuang [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China); Cheng, Zhong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Zhang, Shaowei [State Key Laboratory Breeding Base of Refractories and Ceramics, Wuhan University of Science and Technology, Wuhan 430081 (China)

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  14. Pt/XC-72 catalysts coated with nitrogen-doped carbon (Pt/XC-72@C–N) for methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Jun; Chu, Yuanyuan; Tan, Xiaoyao, E-mail: cestanxy@aliyun.com

    2014-03-01

    Pt/XC-72 catalysts coated with N-doped carbon (denoted as Pt/XC-72@C–N) for the electro-oxidation of methanol are prepared through a combined microwave-assisted polyol with in-situ carbonization of N-doped carbon coating process using polyvinylpyrrolidone (PVP), 1-vinyl-3-ethylimidazolium nitrate (VEIN) or 1-ethyl-3-methylimidazolium dicyanamide (EMID) ionic liquid as the N-doped carbon precursor. X-ray diffraction, energy dispersive of X-ray, transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammograms and accelerated aging test techniques are applied to characterize the structure and the electro-catalytic activity of the catalysts. The results show that the Pt particles with the average size of around 2.5 nm are highly dispersed in face-centered cubic crystal structure in the carbon support. The structure of the N-doped carbon coating precursor has considerable influence on the electro-catalytic performance of the catalysts. The resultant catalyst with EMID ionic liquid as the N-doped carbon source exhibits 115.9 m{sup 2} g{sup −1}Pt electrochemical surface area (ESA) and 0.66 A mg{sup −1}Pt catalytic activity towards the electro-oxidation of methanol, which are 1.37 times the ESA and 1.35 times the catalytic activity of the PVP-derived catalyst, and 2.02 times the electrochemical surface area and 1.94 times the catalytic activity of the VEIN-derived catalyst. The appropriate amount of the EMID ionic liquid used in the catalyst synthesis process is around 10 uL for 100 mg XC-72 support so as to obtain the highest electro-catalytic activity. - Highlights: • N-doped carbon coated Pt/C catalyst is prepared for methanol electro-oxidation. • Pt/XC-72@C–N exhibits excellent electrocatalytic activity over uncoated catalysts. • Ionic liquid with anionic cyano groups is most suitable as N-doped carbon precursor. • The appropriate amount of ionic liquid for coating is around 10 μL for 100 mg carbon.

  15. Evaluation of Prothrombin Time and Activated Partial ...

    African Journals Online (AJOL)

    and activated partial thromboplastin time (APTT) were investigated in treated and untreated diabetics as well as ... decrease the availability of these proteins which affect the clotting ... calcum rabbit brain thromboplastin reagent placed in.

  16. Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lohrasbi, Elaheh [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Javanbakht, Mehran, E-mail: mehranjavanbakht@gmail.com [Department of Chemistry, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Fuel and Solar Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Mozaffari, Sayed Ahmad [Fuel and Solar Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Thin Layer and Nanotechnology Laboratory, Department of Chemical Technology, Iranian Research Organization for Science and Technology (IROST), Tehran (Iran, Islamic Republic of)

    2017-06-15

    Highlights: • SO{sub 3}H-graphene supported PtFeCo alloy nanoparticles were prepared. • Co:Fe atomic ratio plays important role in the electrocatalytic performance. • PtCoFe/SG with 7:3 Co:Fe atomic ratio is optimized for PEMFCs. • Power density of 530 mW cm{sup −2} with 0.1 mg cm{sup −2} Pt loading was obtained at 75 °C. - Abstract: The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO{sub 3}− groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm{sup −2} Pt) reaches to a maximum of 530 mW cm{sup −2} at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.

  17. Effect of atomic composition on the compressive strain and electrocatalytic activity of PtCoFe/sulfonated graphene

    International Nuclear Information System (INIS)

    Lohrasbi, Elaheh; Javanbakht, Mehran; Mozaffari, Sayed Ahmad

    2017-01-01

    Highlights: • SO_3H-graphene supported PtFeCo alloy nanoparticles were prepared. • Co:Fe atomic ratio plays important role in the electrocatalytic performance. • PtCoFe/SG with 7:3 Co:Fe atomic ratio is optimized for PEMFCs. • Power density of 530 mW cm"−"2 with 0.1 mg cm"−"2 Pt loading was obtained at 75 °C. - Abstract: The aim of this work is improvement of the stability and durability of sulfonated graphene supported PtCoFe electrocatalyst (PtCoFe/SG) for application in proton exchange membrane fuel cells (PEMFCs). The durability investigation of PtCoFe/SG is evaluated by a repetitive potential cycling test. The compressive strain in the lattice of PtCoFe/SG towards the electrocatalytic oxygen reduction reaction is studied. The synthesized electrocatalysts are examined physically and electrochemically for their structure, morphology and electrocatalytic performance. It is shown that presence of SO_3− groups on the graphene cause better adsorption of PtCoFe nanoparticles on the support and increase stability of electrocatalysts. Also, it is shown that Co:Fe atomic ratio in the synthesized electrocatalysts plays important role in their electrocatalytic performance. In the optimum Co:Fe atomic ratio, the compressive strain goes through the ideal value of the binding energy; further increase in Co/Fe atomic fraction introduces the excessive compressive strain and the activity of electrocatalyst decreases. The electrocatalyst synthesized in the optimum conditions is utilized as cathode in PEMFC. The power density of the PEMFC in low metal loading (0.1 mg cm"−"2 Pt) reaches to a maximum of 530 mW cm"−"2 at 75 °C. It suggests that PtCoFe/SG with 7:3 Co:Fe atomic ratio promises to improve the power density of PEMFCs.

  18. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  19. Pt/AlPO{sub 4} nanocomposite thin-film electrodes for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yuhong; Kang, Joonhyeon; Nam, Seunghoon; Byun, Sujin [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Byungwoo, E-mail: byungwoo@snu.ac.kr [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2012-07-16

    The enhanced catalytic properties toward ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposite thin-film electrodes were investigated. The Pt/AlPO{sub 4} nanocomposites with various Al/Pt ratios (0.27, 0.57, and 0.96) were fabricated by a co-sputtering method. All of the Pt/AlPO{sub 4} nanocomposites showed a negative shift in the onset potential and a higher current density than those of pure Pt electrode for the electrooxidation of ethanol. Among the various Pt/AlPO{sub 4} nanocomposite thin-film electrodes, the electrode with an atomic ratio of Al to Pt of 0.57 showed the highest electrocatalytic activity for ethanol electrooxidation. The activation enthalpy for the optimum Pt/AlPO{sub 4} nanocomposite was approximately 0.05 eV lower than that of pure Pt. It is believed that the enhancement in catalytic activity is due to the electron-rich Pt resulting from the Fermi-energy difference between Pt and AlPO{sub 4}. - Highlights: Black-Right-Pointing-Pointer The enhanced ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposites is investigated. Black-Right-Pointing-Pointer The Pt/AlPO{sub 4} exhibits higher current density and lower onset potential than pure Pt. Black-Right-Pointing-Pointer The activation enthalpy for optimum Pt/AlPO{sub 4} electrode is {approx}0.05 eV lower than pure Pt. Black-Right-Pointing-Pointer XPS shows electron-rich Pt due to Fermi-energy difference between Pt and AlPO{sub 4}.

  20. Penerapan Metode Activity Based Costing dalam Menentukan Harga Pokok Produksi Karet PT. Sumber Djantin Sambas

    Directory of Open Access Journals (Sweden)

    Gowardy Gowardy

    2015-12-01

    Full Text Available This study aims to understand how to allocate overhead cost in rubber-processing factory of PT. Sumber Djantin Sambas using Activity-Based Costing method. Furthermore, this research also attempts to compare the allocation results of the existing costing systems in PT. Sumber Djantin Sambas with those created through Activity-Based Costing systems. To accomplish these objectives, this study applies case study method. The main sources of data come from interview transcript and cost and financial documents. This study results show that the cost of goods manufactured for product SIR 20 and compound rubber are overcosted. Betweeen these two products, SIR 20 is more overcosted. The total overcosting of these two products reaches Rp 2.749.997.488,57. Using Activity Based Costing, company can allocate the costs more accurately and reduce the distortion effect of costs which is caused by traditional overhead allocation method.

  1. Porous graphene supported Pt catalysts for proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Cheng, Kun; He, Daping; Peng, Tao; Lv, Haifeng; Pan, Mu; Mu, Shichun

    2014-01-01

    Graphene nanosheet (GNS) has a remarkably high ratio of surface area to thickness and intense inter-sheet aggregation, which heavily resist mass diffusion in vertical orientation. Here, we establish a fast-speed mass diffusion passage by creating pores in GNS, and the corresponding Pt catalyst (Pt/rPGO) displays 15.5 times mass diffusion rate than that of the pristine GNS supported Pt catalyst (Pt/rGO). Thus, the Pt/rPGO catalyst exhibits 1.5 times increase in Pt mass activity toward oxygen reduction reaction compared with the Pt/rGO. Significantly, after H 2 thermal treatment, the mass activity of the Pt/rPGO further increases to 1.9 times that of the Pt/rGO, and its electrochemical stability is also greatly improved

  2. Spectroelectrochemical Study of Carbon Monoxide and Ethanol Oxidation on Pt/C, PtSn(3:1/C and PtSn(1:1/C Catalysts

    Directory of Open Access Journals (Sweden)

    Rubén Rizo

    2016-09-01

    Full Text Available PtSn-based catalysts are one of the most active materials toward that contribute ethanol oxidation reaction (EOR. In order to gain a better understanding of the Sn influence on the carbon monoxide (principal catalyst poison and ethanol oxidation reactions in acidic media, a systematic spectroelectrochemical study was carried out. With this end, carbon-supported PtSnx (x = 0, 1/3 and 1 materials were synthesized and employed as anodic catalysts for both reactions. In situ Fourier transform infrared spectroscopy (FTIRS and differential electrochemical mass spectrometry (DEMS indicate that Sn diminishes the amount of bridge bonded CO (COB and greatly improves the CO tolerance of Pt-based catalysts. Regarding the effect of Sn loading on the EOR, it enhances the catalytic activity and decreases the onset potential. FTIRS and DEMS analysis indicate that the C-C bond scission occurs at low overpotentials and at the same potential values regardless of the Sn loading, although the amount of C-C bond breaking decreases with the rise of Sn in the catalytic material. Therefore, the elevated catalytic activity toward the EOR at PtSn-based electrodes is mainly associated with the improved CO tolerance and the incomplete oxidation of ethanol to form acetic acid and acetaldehyde species, causing the formation of a higher amount of both C2 products with the rise of Sn loading.

  3. Promotion effect of manganese oxide on the electrocatalytic activity of Pt/C for methanol oxidation in acid medium

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Hameed, R.M., E-mail: randa311eg@yahoo.com [Chemistry Department, Faculty of Science, Cairo University, Giza (Egypt); Fetohi, Amani E.; Amin, R.S.; El-Khatib, K.M. [Chemical Engineering Department, National Research Center, Dokki, Giza (Egypt)

    2015-12-30

    Graphical abstract: Physical and electrochemical properties of Pt/C, Pt–MnO{sub 2}/C-1 and Pt–MnO{sub 2}/C-2 electrocatalysts. - Highlights: • Adding MnO{sub 2} to Pt/C improved the dispersion of Pt nanoparticles. • The existence of MnO{sub 2} improved the kinetics of methanol oxidation reaction. • R{sub ct} value of Pt–MnO{sub 2}/C was about 10 times as low as that at Pt/C. • The removal of CO{sub ads} poisoning species was facilitated at Pt–MnO{sub 2}/C. - Abstract: The modification of Pt/C by incorporating metal oxides for electrocatalytic oxidation of methanol has gained major attention because of the efficiency loss during the course of long-time operation. This work describes the preparation of Pt–MnO{sub 2}/C electrocatalysts through a chemical route using ethylene glycol or a mixture of ethylene glycol and sodium borohydride as a reducing agent. The crystallite structure and particle size of synthesized electrocatalysts are determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The addition of MnO{sub 2} improves the dispersion of Pt nanoparticles. The electrocatalytic activity of Pt–MnO{sub 2}/C towards methanol oxidation in H{sub 2}SO{sub 4} solution is investigated using cyclic voltammetry and electrochemical impedance spectroscopy. The onset potential value of methanol oxidation peak is negatively shifted by 169 mV when MnO{sub 2} is introduced to Pt/C. Moreover, the charge transfer resistance value at Pt–MnO{sub 2}/C is about 10 times as low as that at Pt/C. Chronoamperometry and chronopotentiometry show that CO tolerance is greatly improved at Pt–MnO{sub 2}/C. The increased electrocatalytic activity and enhanced ability to clean platinum surface elect manganese oxide as a suitable promoter for the anode performance in direct methanol fuel cells (DMFCs).

  4. Atomic layer deposition synthesis and evaluation of core–shell Pt-WC electrocatalysts

    International Nuclear Information System (INIS)

    Hsu, Irene J.; Chen, Jingguang G.; Jiang, Xiaoqiang; Willis, Brian G.

    2015-01-01

    Pt-WC core shell particles were produced using atomic layer deposition (ALD) to deposit Pt layers onto WC particle substrates. A range of Pt depositions were used to determine the growth mechanism for the Pt-WC powder system. TEM imaging and Cu stripping voltammetry found that Pt ALD growth on WC powder substrates was similar to that on WC thin films. However, excess free carbon was found to affect Pt ALD by blocking adsorption sites on WC. The Pt-WC samples were evaluated for the oxygen reduction reaction using a rotating disk electrode to obtain quantitative activity information. The mass and specific activities for the 30 and 50 ALD cycle samples were found to be comparable to a 10 wt. % Pt/C catalyst. However, higher overpotentials and lower limiting currents were observed with ALD Pt-WC compared to Pt/C catalysts, indicating that the oxygen reduction mechanism is not as efficient on Pt-WC as on bulk Pt. Additionally, these Pt-WC catalysts were used to demonstrate hydrogen evolution reaction activity and were found to perform as well as bulk Pt catalyst but with a fraction of the Pt loading, in agreement with the previous work on Pt-WC thin film catalysts

  5. Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Umeda, Minoru; Kokubo, Mitsuhiro; Mohamedi, Mohamed; Uchida, Isamu

    2003-01-01

    We have developed a porous-microelectrode (PME) to investigate the electroactivity of catalyst particles for proton exchange membrane fuel cells. The cavity at the tip of the PME was filled with Pt/C catalysts prepared by impregnation method. Cyclic voltammograms (CVs) recorded in 1 N H 2 SO 4 aqueous solution revealed that the active area of the stacked catalysts exist not only at the surface but also inside of the stack. For methanol electrooxidation, 30 wt.% Pt/C exhibited the highest electroactivity, whereas the 50 wt.% Pt/C showed extremely small current. The small current is considered as a result of a small active-surface area. Methanol oxidation peak potential shifted toward cathodic direction as Pt-loading decreased, which agrees well with the Pt-oxide formation potential. The activation energy for methanol oxidation was assessed to be 44±3 kJ mol -1 for all Pt/C catalysts and Pt-disc electrode

  6. Comparison between the Oxygen Reduction Reaction Activity of Pd5Ce and Pt5Ce

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Zheng, Jian; Rizzi, Gian Andrea

    2015-01-01

    A set of electrochemical and X-ray spectroscopy measurements have been used conjointly with density functional theory (DFT) simulations to study the activity and stability of Pd5Ce for the oxygen reduction reaction. A polycrystalline Pd5Ce rod has been selected as a model catalyst to test if resu......-Pd5Ce is more facile, requires less atom rearrangement, than transformation from Pt5Ce to Pt3Ce, which might explain the kinetic stability of Pt5Ce at low temperatures....

  7. Ethanol tolerant Pt-alloy cathodes for DEFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Valera, F.J. [CINVESTAV Unidad Saltillo, Coahuila (Mexico). Grupo de Recursos Minerales y Energeticos; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Direct ethanol fuel cells (DEFCs) based on Ru/C cathodes have interesting current density versus cell voltage behaviour. In particular, the selectivity towards the oxygen reduction reaction (ORR) in acid medium in the presence of ethanol was improved when this cathode material was used. This study quantified the degree of tolerance to ethanol and the electrocatalytic activity for the ORR. It compared the specific activity towards the ORR for Pt1Co1/C and Pt3Cr1/C. The study showed that these cathodes have a high tolerance to this alcohol and demonstrated the good performance of this type of Pt-alloy in a DEFC as oxygen reduction cathodes. The performance of the Pt1Co1/C alloy was shown to be better than the Pt3Cr1/C, even when the former had a lower Pt content. The enhanced catalytic behaviour of the PtCo/C alloy can be attributed to the higher degree of allying or a smaller mean particle size and a larger surface area. Polarization measurements with relatively high ethanol concentrations confirmed the good catalytic behaviour of the PtCo/C alloy as cathode in a DEFC operating at 90 degrees C. Current work is focusing on the variation of Co content in the alloy structure and the analysis of this change in terms of ORR activity, tolerance to ethanol and electrochemical behaviour in a DEFC. 10 refs., 5 figs.

  8. Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt-Co alloy in HClO4 solutions.

    Science.gov (United States)

    Omura, J; Yano, H; Tryk, D A; Watanabe, M; Uchida, H

    2014-01-14

    To gain deeper insight into the role of adsorbed oxygenated species in the O2 reduction reaction (ORR) kinetics on platinum and platinum-cobalt alloys for fuel cells, we carried out a series of measurements with the electrochemical quartz crystal microbalance (EQCM) and the rotating disk electrode (RDE) in acid solution. The effects of anion adsorption on the activities for the ORR were first assessed in HClO4 and HF electrolyte solutions at various concentrations. In our previous work (Part 1), we reported that the perchlorate anion adsorbs specifically on bulk-Pt, with a Frumkin-Temkin isotherm, that is, a linear relationship between Δm and log[HClO4]. Here, we find that the specific adsorption on the Pt-skin/Pt3Co alloy was significantly stronger than that on bulk-Pt, in line with its modified electronic properties. The kinetically controlled current density j(k) for the O2 reduction at the Pt-skin/Pt3Co-RDE was about 9 times larger than that of the bulk-Pt-RDE in 0.01 M HClO4 saturated with air, but the j(k) values on Pt-skin/Pt3Co decreased with increasing [HClO4] more steeply than in the case of Pt, due to the blocking of the active sites by the specifically adsorbed ClO4(-). We have detected reversible mass changes for one or more adsorbed oxygen-containing species (Ox = O2, O, OH, H2O) on the Pt-skin/Pt3Co-EQCM and Pt-EQCM in O2-saturated and He-purged 0.01 M HClO4 solutions, in which the specific adsorption of ClO4(-) anions was negligible. The coverages of oxygen species θ(Ox) on the Pt-skin/Pt3Co in the potential range from 0.86 to 0.96 V in the O2-saturated solution were found to be larger than those on pure Pt, providing strong evidence that the higher O2 reduction activity on the Pt3Co is correlated with higher θ(Ox), contrary to the conventional view.

  9. Electronic structures of PtCu, PtAg, and PtAu molecules: a Dirac four-component relativistic study

    International Nuclear Information System (INIS)

    Abe, Minori; Mori, Sayaka; Nakajima, Takahito; Hirao, Kimihiko

    2005-01-01

    Relativistic four-component calculations at several correlated levels have been performed for diatomic PtCu, PtAg, and PtAu molecules. The ground state spectroscopic constants of PtCu were calculated using the four-component MP2 method, and show good agreement with experiment. We also performed calculations on the experimentally unknown species, PtAg and PtAu, and the mono-cationic systems, PtCu + , PtAg + , and PtAu + . The low-lying excited states of these diatomic molecules were also investigated using the four-component multi-reference CI method

  10. Incorporation effect of nanosized perovskite LaFe₀.₇Co₀.₃O₃ on the electrochemical activity of Pt nanoparticles-multi walled carbon nanotube composite toward methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Noroozifar, Meissam, E-mail: mnoroozifar@chem.usb.ac.ir [Department of Chemistry, University of Sistan and Baluchestan, PO Box 98155-147, Zahedan (Iran, Islamic Republic of); Khorasani-Motlagh, Mozhgan; Khaleghian-Moghadam, Roghayeh; Ekrami-Kakhki, Mehri-Saddat; Shahraki, Mohammad [Department of Chemistry, University of Sistan and Baluchestan, PO Box 98155-147, Zahedan (Iran, Islamic Republic of)

    2013-05-01

    Nanosized perovskite LaFe₀.₇Co₀.₃O₃ (LFCO) is synthesized through conventional co-precipitation method and characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques. The incorporation effect of the mentioned perovskite to catalytic activity of the PtNPs-MWCNTs-nafion (or -chitosan) catalyst toward methanol oxidation has been studied by cyclic voltammetry. Based on the electrochemical studies, all MWCNTs-PtNPs-nafion (or chitosan) and MWCNTs-PtNPs-LFCO-nafion (or chitosan) catalysts show a considerable activity for methanol oxidation. However, a synergistic effect is observed when LFCO is added to the catalyst by decreasing the poisoning rate of the Pt catalyst. - Graphical abstract: Nanosized perovskite LaFe₀.₇Co₀.₃O₃ is synthesized and characterized. The incorporation effect of the mentioned perovskite to catalytic activity of the PtNPS-MWCNTs-nafion (or -chitosan) catalyst toward methanol oxidation is studied. Highlights: • Nanocrystalline LaFe₀.₇Co₀.₃O₃ (LFCO) is prepared by a new simple co-precipitation method. • Effect of LFCO to catalytic activity of PtNPS for methanol oxidation is studied. • A synergistic effect is observed when LFCO is added to the Pt catalyst. • Oxygen of LFCO could be considered as active oxygen to remove CO intermediates.

  11. Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nitani, Hiroaki; Nakagawa, Takashi; Ono, Takahiro; Honda, Yusuke; Koizumi, Akiko; Seino, Satoshi; Yamamoto, Takao A. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Daimon, Hideo; Kurobe, Yukiko [Development and Technology Division, Hitachi Maxell Ltd., 6-20-1 Kinunodai, Tsukubamirai, Ibaraki 300-2496 (Japan)

    2007-07-15

    Catalytic material of PtRu nanoparticles supported on carbon (PtRu/C) for direct methanol fuel cells was synthesized by a polyol reduction method. Addition of phosphorus was effective for downsizing PtRu particles and improving their catalytic activity. The activity obtained was six times of that of a commercial catalysis. The samples were analyzed by techniques of X-ray absorption fine structure (XAFS) at Pt L{sub III}-edge and Ru K-edge, transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). These results indicated a core-shell structure consisting of a Pt-rich core and Ru-rich shell. By examining coordination numbers determined by XAFS analysis, we found a clear correlation between the catalytic activity and the Pt-Ru atomic pair frequency occurring on the particle surface, which supports the 'bi-functional mechanism'. (author)

  12. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Adeniyi [Stevens Inst. of Technology, Hoboken, NJ (United States); Manganaro, James [Anasyn LLC, Princeton, NJ (United States); Goodall, Brian [Valicor Renewables LLC, Dexter, MI (United States); Farrauto, Robert [Columbia Univ., New York, NY (United States)

    2015-03-24

    catalysts, and consumes less hydrogen, if methanation can be mitigated. Our methanation data on Pt and Rh indicate effective suppression of methanation. Our data also show that our catalysts are less susceptible to coking; and unlike NiMo and CoMo, precious metal catalysts are not deactivated by water, a by-product of HDO of algae oil. Finally, our catalysts do not need to be sulfided to be active. A rigorous techno-economic analysis of our process for commercial scale production of 10,000 barrels per day of hydrotreated algae oil, with nutraceuticals co-product claiming only 0.05% of the raw algae oil, indicates an estimated plant gate price of ~$10/gal. Sensitivity analysis shows that critical parameters affecting sale price include (1) algae doubling time (2) biomass oil content (3) CAPEX, and (4) moisture content of post extracted algae residue. Modest improvements in these areas will result in enhanced and competitive economics. Based on a life cycle assessment for greenhouse gas emission, we found that if algae oil replaced 10% of the US consumption, this would result in a CO2e reduction of 210,000 tons per day. Improving the drying process for animal feed by 50% would result in further significant reduction in CO2e.

  13. Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]{sub 6}/Pt/Co/Pt multilayer structure

    Energy Technology Data Exchange (ETDEWEB)

    Kalaycı, Taner, E-mail: taner.kalayci@marmara.edu.tr [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Deger, Caner [Department of Physics, Marmara University, 34722, Kadıköy, Istanbul (Turkey); Akbulut, Salih [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey); Yildiz, Fikret, E-mail: fyildiz@gtu.edu.tr [Department of Physics, Gebze Technical University, 41400, Gebze, Kocaeli (Turkey)

    2017-08-15

    Highlights: • Effects of Pt spacer and reference layers thickness are investigated by MOKE and FMR. • Controlling of non-collinear states in multilayered thin film systems is studied. • Micromagnetic approach is used for modeling of magnetic multilayered structure. • Magnetic parameters are determined by a simulation based on metropolis algorithm. - Abstract: In this study, effects of Pt spacer and Co reference layers thickness in [Co/Pt]{sub 6}/Pt/Co multilayer have been revealed to tailor magnetization directions in non-collinear configuration. Magneto-optic Kerr effect and ferromagnetic resonance techniques were employed to investigate magnetic properties. Bilinear coupling between [Co/Pt]{sub 6} and Co layers and anisotropy constants were determined by a micromagnetic simulation based on metropolis algorithm. 3 nm spacer causes ferromagnetic coupling while the samples have 4 and 5 nm spacer are coupled anti-ferromagneticaly. Also, tuning magnetic anisotropy of [Co/Pt]{sub 6} layer was accomplished by Co reference layer. It is revealed that controlling of non-collinear states in such systems is possible by variation of thickness of spacer and reference layers and [Co/Pt]{sub 6}/t{sub Pt}/t{sub Co} trilayer system can be used in multilayered magnetic systems.

  14. Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying

    DEFF Research Database (Denmark)

    Stephens, Ifan; Bondarenko, A.S.; Perez-Alonso, F.J.

    2011-01-01

    To enable the development of low temperature fuel cells, significant improvements are required to the efficiency of the Pt electrocatalysts at the cathode, where oxygen reduction takes place. Herein, we study the effect of subsurface solute metals on the reactivity of Pt, using a Cu/Pt(111) near-...

  15. Synthesis of Pt@TiO2@CNTs Hierarchical Structure Catalyst by Atomic Layer Deposition and Their Photocatalytic and Photoelectrochemical Activity.

    Science.gov (United States)

    Liao, Shih-Yun; Yang, Ya-Chu; Huang, Sheng-Hsin; Gan, Jon-Yiew

    2017-04-29

    Pt@TiO2@CNTs hierarchical structures were prepared by first functionalizing carbon nanotubes (CNTs) with nitric acid at 140 °C. Coating of TiO2 particles on the CNTs at 300 °C was then conducted by atomic layer deposition (ALD). After the TiO2@CNTs structure was fabricated, Pt particles were deposited on the TiO2 surface as co-catalyst by plasma-enhanced ALD. The saturated deposition rates of TiO2 on a-CNTs were 1.5 Å/cycle and 0.4 Å/cycle for substrate-enhanced process and linear process, respectively. The saturated deposition rate of Pt on TiO2 was 0.39 Å/cycle. The photocatalytic activities of Pt@TiO2@CNTs hierarchical structures were higher than those without Pt co-catalyst. The particle size of Pt on TiO2@CNTs was a key factor to determine the efficiency of methylene blue (MB) degradation. The Pt@TiO2@CNTs of 2.41 ± 0.27 nm exhibited the best efficiency of MB degradation.

  16. Te/Pt nanonetwork modified carbon fiber microelectrodes for methanol oxidation

    International Nuclear Information System (INIS)

    Tsai, Hsiang-Yu; Shih, Zih-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2013-01-01

    Te/Pt nanonetwork-decorated carbon fiber microelectrodes (CFMEs) have been fabricated and employed as anodic catalysts in a direct methanol fuel cell (DMFC). Te nanowires were prepared from tellurite ions (TeO 3 2− ) through a seed-mediated growth process and were deposited onto CFMEs to form three-dimensional Te nanonetworks. The Te nanonetworks then acted as a framework and reducing agent to reduce PtCl 6 2− ions to form Te/Pt through a galvanic replacement reaction, leading to the formation of Te/PtCFMEs. By controlling the reaction time, the amount of Pt and morphology of Te/Pt nanonetworks were controlled, leading to various degrees of electrocatalytic activity. The Te/PtCFMEs provide a high electrochemical active surface area (129.2 m 2 g −1 ), good catalytic activity (1.2 A mg −1 ), high current density (20.0 mA cm −2 ), long durability, and tolerance toward the poisoning species for methanol oxidation in 0.5 M sulfuric acid containing 1 M methanol. We have further demonstrated an enhanced current density by separately using 3 and 5 Te/PtCFMEs. Our results show that the low-cost, stable, and effective Te/PtCFMEs have great potential in the fabrication of cost-effective fuel cells. (paper)

  17. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2{theta} =40 deg, 47 deg, 67 deg and 82 deg, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2-3 nm. For Pt Sn/C and PtSnRh/C two additional peaks were observed at 2 = 34 deg and 52 deg that were identified as a SnO{sub 2} phase. Pt Sn/C (50:50) and PtSnRh/C (50:40:10) electro catalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature Pt Ru/C, Pt Sn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  18. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane Complex as a Pt Source for Pt/SnO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Agnieszka Martyla

    2014-01-01

    Full Text Available This paper presents new preparation method of Pt/SnO2, an important catalytic system. Besides of its application as a heterogenic industrial catalyst, it is also used as a catalyst in electrochemical processes, especially in fuel cells. Platinum is commonly used as an anode catalyst in low temperature fuel cells, fuelled with alcohols of low molecular weight such as methanol. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was used as a precursor of metallic phase. The aim of the research was to obtain a highly active in electrochemical system Pt/SnO2 catalyst with low metal load. Considering small size of Pt crystallites, it should result in high activity of Pt/SnO2 system. The presented method of SnO2 synthesis allows for obtaining support consisting of nanoparticles. The effect of the thermal treatment on activity of Pt/SnO2 gel was demonstrated. The system properties were investigated using TEM, FTIR (ATR, and XRD techniques to describe its thermal structural evolution. The results showed two electrocatalytical activity peaks for drying at a temperature of 430 K and above 650 K.

  19. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    Directory of Open Access Journals (Sweden)

    Chunguang Suo

    2014-03-01

    Full Text Available The electrocatalysts used in micro direct methanol fuel cell (μDMFC, such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt:n(Ru:n(Mo = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  20. X-band EPR studies of ferroelectric lead titanate (PT), piezoelectric lead magnesium niobate (PMN), and PMN/PT powders at 10 and 85 K

    International Nuclear Information System (INIS)

    Huang, J.; Fitzgerald, J.J.; Chasteen, N.D.

    1998-01-01

    X-band EPR spectra of lead titanate (PT) and lead magnesium niobate (PMN) powders prepared by different synthetic methods and a PMN/PT powder of the composition 0.9 PMN/01 PT were obtained at 85 and 10 K. Several EPR signals due to adventitious Fe 3+ ion impurities, a signal due to the Ti 3+ ion, and a signal due to the Pb 3+ ion are observed for PT, PMN, and PMN/PT powders. The EPR signals observed at g = 2.0 and 6.0 are assigned to Fe 3+ ions in the B-sites of the perovskite lattice structure of lad titanate with axial symmetry. The EPR signals observed at g = 1.99 and 4.25 are assigned to Fe 3+ ions in the B-sites of the perovskite lattice structure of PMN and 0.9 PMN/0.1 PT materials with cubic and rhombic symmetries, respectively. The sharp EPR signal observed at g = 1.94 is assigned to Ti 3= ion for PT and 0.9 PMN/0.1 PT powders. In addition, a broader EPR signal at g = 2.28--2.30 for PMN obtained by the molten salt method is assigned to axial Pb 3+ ion sites in this PMN material. EPR results obtained here for the e 3+ ions in the B-sites of the PMN materials, in particular, suggest that both cubic and rhombic symmetry sites corresponding to a range of Nb(OMg) x (ONb) 6-x site configurations exist in the PMN. These EPR results indicate that PMN likely exists with partial B-site cation (Mg/Nb) ordering in the perovskite lattice structure

  1. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    Science.gov (United States)

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  2. Modulation of spin-orbit torque efficiency by thickness control of heavy metal layers in Co/Pt multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, P.; Krishnia, S.; Li, S.H.; Lew, W.S., E-mail: wensiang@ntu.edu.sg

    2017-03-15

    We investigate and quantify spin-orbit torque (SOT) strength by current induced effective in-plane magnetic fields and spin Hall angle (SHA) using AC harmonic Hall voltage measurements techniques on Ta/Pt/Co/Pt/Co/Ta thin film structures. The proposed Co/Pt thin film double stack gives property enhancement on thermal stability and perpendicular magnetization anisotropy strength over the single stack Pt/Co/Ta. In the proposed Co/Pt double stack we observed that increasing the Ta capping thickness to three times enhances the SHA in similar order, consistent with larger spin injection efficiency. Doubling the Pt spacer layer thickness reduces the SHA by nearly 1.4 times, due to partial cancellation of SOT by bottom layer Pt, negating the increase from the top Co/Pt interface. The in-plane current threshold for magnetization switching is lower with the increase of the SHA.

  3. The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media

    Directory of Open Access Journals (Sweden)

    JELENA LOVIC

    2007-07-01

    Full Text Available The kinetic of methanol electrochemical oxidation for a series of platinum and platinum–ruthenium catalysts was investigated. A correlation between the beginning of OHad adsorption and methanol oxidation was demonstarated on Pt single crystals and Pt nanocatalyst. The activity of the nano-structured Pt catalyst was compared with single crystal platinum electrodes assuming the Kinoshita model of nanoparticles. The ruthenium-containing catalysts shifted the onset of methanol oxidation to more negative potentials. The effect was more pronounced in acid than in alkaline media. Based on the established diagnostic criteria, the reaction between COad and OHad species according to the Langmuir–Hinshelwood mechanism was proposed as the rate determining step in alkaline and acid media on Pt and PtRu catalysts.

  4. Structure–activity relationships of Pt/Al2O3 catalysts for CO and NO oxidation at diesel exhaust conditions

    DEFF Research Database (Denmark)

    Boubnov, Alexey; Dahl, Søren; Johnson, Erik

    2012-01-01

    Structure–performance relationships for Pt/Al2O3 catalysts with mean Pt particle sizes of 1, 2, 3, 5 and 10nm are investigated for the catalytic oxidation of CO and NO under lean-burning diesel exhaust conditions. The most active catalysts for CO oxidation exhibit Pt particles of 2–3nm, having...

  5. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation; Preparacao e caracterizacao de eletrocatalisadores PtRu, PtSn, PtRh, PtRuRh e PtSnRh para oxidacao direta de alcoois em celulas a combustivel tipo PEM utilizando a metodologia da reducao por alcool

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Ricardo Rodrigues

    2009-07-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H{sub 2}PtCl{sub 6}.6H{sub 2}O (Aldrich), SnCl{sub 2}.2H{sub 2}O (Aldrich),and RhCl{sub 2}.XH{sub 2}O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40{sup 0}, 47{sup 0}, 67{sup 0} and 82{sup 0}, which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34{sup 0} and 52{sup 0} that were identified as a SnO{sub 2} phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  6. Investigation of obsessive-compulsive disorder and assessment of obsessionality as a personality trait in patients with complex partial seizure

    Directory of Open Access Journals (Sweden)

    Banihashemian K

    2010-05-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Behavioral changes in patients with epilepsy could cause comorbid psychiatric disorders such as anxiety disorders. This study is concerned with investigation of obsessive-compulsive disorders and assessment of obsessionality as a personality trait in patients with complex partial seizure. "n"nMethods: Seventy six patients with complex partial seizure, 74 patients with generalized epilepsy that referred to Shiraz psychiatric professional center during three month (from July to September 2009, and 76 matched healthy controls were randomly selected and evaluated using the Yale-Brown obsessive compulsive scale (Y-BOCS, short form of Minnesota multiphasic personality inventory (MMPI and clinical interview. "n"nResults: Complex partial seizure and obsessive-compulsive disorder (%13.15 are significantly more prevalent than generalized seizure (%2.70 and than control groups (%1.31 (p<0.001, and mean of psychasthenia scale (Pt scale scores in patients with complex partial seizure is more than mean of Pt scores in generalized epilepsy and control groups (p<0.001. There is significant relationship between total score of Yale-Brown scale and Pt scale in MMPI (r=0.79, p<0.01."n"nConclusions: Patients with complex

  7. Pt and PtRu nanoparticles supported on N-doped carbons as electrocatalysts for methanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Viviane Santos; Silva, Julio Cesar Martins; Oliveira Neto, Almir; Spinace, Estevam Vitorio, E-mail: viviane_sp_saopaulo@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: Methanol is a liquid transportation fuel that can be produced from fossil or renewable resources. Fuel cells employing methanol directly as fuel (Direct Methanol Fuel Cell - DMFC) are very attractive as power source for portable, mobile and stationary applications [1]. PtRu/C electrocatalyst has been considered the best electrocatalyst for methanol electro-oxidation, however, its performance is strongly dependent on the method of preparation and on the characteristics of the carbon support. N-doped carbons with different N contents (1, 2 and 5 wt%) were prepared by thermal treatment of carbon with urea at 800 deg C. Pt and PtRu nanoparticles were supported on N-doped carbons by coreduction of Pt(IV) and Ru(III) ions using an alcohol-reduction process [2]. The obtained materials were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction, Transmission electron microscopy and Cyclic Voltammetry. Pt and PtRu nanoparticles supported on N-doped carbons showed superior performance for methanol electro-oxidation when compared to the materials supported on non-modified carbon and to Pt/C and PtRu/C commercial electrocatalysts. Pt/C and PtRu/C prepared with the carbon modified with 2.5 wt% of N content showed the best activities. (author) [1] Y. Zhou, K. Neyerlin, T.S. Olson, S. Pylypenko, J. Bult, H.N. Dinh, T. Gennett, Z. Shao and R. O'Hayre, Energy Environ. Sci. 3, 1437 (2010); [2] E.V. Spinace, A.Oliveira Neto, T.R.R. Vasconcellos, M. Linardi, J. Power Sources 137, 17 (2004)

  8. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  9. Multifunctional Pt(II) Reagents: Covalent Modifications of Pt Complexes Enable Diverse Structural Variation and In-Cell Detection.

    Science.gov (United States)

    White, Jonathan D; Haley, Michael M; DeRose, Victoria J

    2016-01-19

    To enhance the functionality of Pt-based reagents, several strategies have been developed that utilize Pt compounds modified with small, reactive handles. This Account encapsulates work done by us and other groups regarding the use of Pt(II) compounds with reactive handles for subsequent elaboration with fluorophores or other functional moieties. Described strategies include the incorporation of substituents for well-known condensation or nucleophilic displacement-type reactions and their use, for example, to tether spectroscopic handles to Pt reagents for in vivo investigation. Other chief uses of displacement-type reactions have included tethering various small molecules exhibiting pharmacological activity directly to Pt, thus adding synergistic effects. Click chemistry-based ligation techniques have also been applied, primarily with azide- and alkyne-appended Pt complexes. Orthogonally reactive click chemistry reactions have proven invaluable when more traditional nucleophilic displacement reactions induce side-reactivity with the Pt center or when systematic functionalization of a larger number of Pt complexes is desired. Additionally, a diverse assortment of Pt-fluorophore conjugates have been tethered via click chemistry conjugation. In addition to providing a convenient synthetic path for diversifying Pt compounds, the use of click-capable Pt complexes has proved a powerful strategy for postbinding covalent modification and detection with fluorescent probes. This strategy bypasses undesirable influences of the fluorophore camouflaged as reactivity due to Pt that may be present when detecting preattached Pt-fluorophore conjugates. Using postbinding strategies, Pt reagent distributions in HeLa and lung carcinoma (NCI-H460) cell cultures were observed with two different azide-modified Pt compounds, a monofunctional Pt(II)-acridine type and a difunctional Pt(II)-neutral complex. In addition, cellular distribution was observed with an alkyne-appended difunctional

  10. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    Science.gov (United States)

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  11. Theoretical evidence of PtSn alloy efficiency for CO oxidation.

    Science.gov (United States)

    Dupont, Céline; Jugnet, Yvette; Loffreda, David

    2006-07-19

    The efficiency of PtSn alloy surfaces toward CO oxidation is demonstrated from first-principles theory. Oxidation kinetics based on atomistic density-functional theory calculations shows that the Pt3Sn surface alloy exhibits a promising catalytic activity for fuel cells. At room temperature, the corresponding rate outstrips the activity of Pt(111) by several orders of magnitude. According to the oxidation pathways, the activation barriers are actually lower on Pt3Sn(111) and Pt3Sn/Pt(111) surfaces than on Pt(111). A generalization of Hammer's model is proposed to elucidate the key role of tin on the lowering of the barriers. Among the energy contributions, a correlation is evidenced between the decrease of the barrier and the strengthening of the attractive interaction energy between CO and O moieties. The presence of tin modifies also the symmetry of the transition states which are composed of a CO adsorbate on a Pt near-top position and an atomic O adsorption on an asymmetric mixed PtSn bridge site. Along the reaction pathways, a CO2 chemisorbed surface intermediate is obtained on all the surfaces. These results are supported by a thorough vibrational analysis including the coupling with the surface phonons which reveals the existence of a stretching frequency between the metal substrate and the CO2 molecule.

  12. New evaluation of alpha decay half-life of 190Pt isotope for the Pt-Os dating system

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Medeiros, E.L.; Terranova, M.L.

    2005-08-01

    A semiempirical model based on the quantum mechanical tunnelling mechanism of alpha emission from nuclei has been used to evaluate the half-life of the Pt isotopes. For the important naturally occurring 190 Pt isotope, the radiogenic parent in the 190 Pt → 186 Os dating system, the model yielded a half-life value of (3.7± 0.3) versus 10 11 y. This is comparable to (3.2±0.1) versus 10 11 y which was obtained in the last direct counting experiment to measure the alpha activity of 190 Pt (Tavares and Terranova, Rad. Measurem. 27 (1997) 19). A literature survey of available alpha decay half-life values for 190 Pt isotope is also reported. The significant discrepancies found between data obtained by direct counting, indirect geological methods and different calculation models are analysed and discussed. (author)

  13. Electrochemical characterization of Pt-CeO{sub 2}/C and Pt-Ce{sub x}Zr{sub 1-x}O{sub 2}/C catalysts for ethanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuxia; Qiu, Xinping; Xi, Jingyu; Wang, Jianshe; Li, Jinfeng; Zhu, Wentao; Chen, Liquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Wu, Jianjun [Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Department of Chemistry, Shijiazhuang College, Shijiazhuang 050801 (China)

    2007-04-24

    Pt-CeO{sub 2}/C and a series of Pt-Ce{sub x}Zr{sub 1-x}O{sub 2}/C catalyst powders with different Ce/Zr ratio were prepared and evaluated in terms of the electrochemical activity for ethanol electro-oxidation using cyclic voltammetry (CV), steady state polarization experiments and CO-stripping technique at room temperature. XRD results show that Ce{sub x}Zr{sub 1-x}O{sub 2} and Pt coexist in the Pt-Ce{sub x}Zr{sub 1-x}O{sub 2}/C catalyst and Ce{sub x}Zr{sub 1-x}O{sub 2} has no effect on the crystalline lattice of Pt. TEM results show that the Pt and Ce{sub x}Zr{sub 1-x}O{sub 2} particles dispersed uniformly over the surface of the carbon black. Cyclic voltammetry results show that the mass activity and specific activity of Pt-CeO{sub 2}/C for ethanol electro-oxidation is higher than that of Pt/C. The structure and Ce/Zr ratio of Pt-Ce{sub x}Zr{sub 1-x}O{sub 2}/C has effect on the catalytic activity of catalysts. CO-stripping voltammetry showed that the inclusion of CeO{sub 2} and Ce{sub x}Zr{sub 1-x}O{sub 2} favors the CO oxidation at lower potential. (author)

  14. Visible light photoactivity of TiO{sub 2} loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gołąbiewska, Anna, E-mail: annagolabiewska@o2.pl [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland); Lisowski, Wojciech [Mazovia Center for Surface Analysis, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw (Poland); Jarek, Marcin; Nowaczyk, Grzegorz [NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Zielińska-Jurek, Anna; Zaleska, Adriana [Department of Chemical Technology, Gdansk University of Technology, 80-233 Gdańsk (Poland)

    2014-10-30

    Graphical abstract: - Highlights: • Au/Pt nanoparticles enhanced TiO{sub 2} photocatalytic activity under visible irradiation. • Higher photoactivity of Au/Pt-TiO{sub 2} resulted from smaller Au/Pt particles. • Intermetallic state of AuPt favors charge transfer between the metals. • TiO{sub 2} obtained by TIP hydrolysis seems to be best matrix for Au/Pt-TiO{sub 2}. - Abstract: TiO{sub 2} modified with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles have been prepared using a water-in-oil microemulsion system (water/AOT/cyclohexane) followed by calcination step. The effect of metal ratio, reducing agent type (NaBH{sub 4} or N{sub 2}H{sub 4}), TiO{sub 2} matrix type (P-25, ST-01, TiO-5, TiO{sub 2} nanotubes or TiO{sub 2} obtained by TIP hydrolysis) as well as calcination temperature (from 350 to 650 °C) were systematically investigated. Obtained photocatalysts were characterized by UV–vis diffuse-reflectance spectroscopy (DRS), BET surface area measurements, scanning transmission microscopy (STEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). Photocatalytic activity under visible light (λ > 420 nm) has been estimated in phenol degradation reaction in aqueous phase. The results showed that phenol degradation rate under visible light in the presence of TiO{sub 2} loaded with Au/Pt nanoparticles differed from 0.7 to 2.2 μmol dm{sup −3} min{sup −1} for samples prepared using different reducing agent. Sodium borohydride (NaBH{sub 4}) favors formation of smaller Au/Pt nanoparticles and higher amount gold in Au/Pt is in the form of electronegative species (Au{sup δ−}) resulted in higher photoactivity. TiO{sub 2} obtained by TIP hydrolysis in microemulsion system seems to be the best support for Au/Pt nanoparticles from all among investigated matrix. It was also observed that enhancement of calcination temperature from 450 to 650 °C resulted in rapid drop of Au/Pt-TiO{sub 2} photoactivity under visible light

  15. Magnetic and electronic properties of a Pt-Co bilayer on Pt(1 1 1)

    International Nuclear Information System (INIS)

    Giovanelli, L.; De Santis, M.; Panaccione, G.; Sirotti, F.; Torelli, P.; Vobornik, I.; Larcipretea, R.; Egger, S.; Saint-Lager, M.C.; Dolle, P.; Rossi, G.

    2005-01-01

    Atomically thin Co/Pt(1 1 1) interfaces grown at different temperatures are characterized by very different values of perpendicular magnetic anisotropy as a consequence of the local structure and coordination. Here we present a study of the structural, magnetic and electronic properties for interfaces grown in UHV onto clean Pt(1 1 1) in different kinetic conditions. When one monolayer of Co is deposited at 540 K a thermally activated exchange reaction leads to a sharp Pt-Co double interface giving rise to a strong increase of the magneto-optical response with respect to the Co monolayer deposited at room temperature. The results are interpreted in terms of atomic hybridization as detected by valence band photoelectron spectroscopy

  16. Nanocrystalline Fe-Pt alloys. Phase transformations, structure and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Lyubina, J.V.

    2006-12-21

    This work has been devoted to the study of phase transformations involving chemical ordering and magnetic properties evolution in bulk Fe-Pt alloys composed of nanometersized grains. Nanocrystalline Fe{sub 100-x}Pt{sub x} (x=40-60) alloys have been prepared by mechanical ball milling of elemental Fe and Pt powders at liquid nitrogen temperature. The as-milled Fe-Pt alloys consist of {proportional_to} 100 {mu}m sized particles constituted by randomly oriented grains having an average size in the range of 10-40 nm. Depending on the milling time, three major microstructure types have been obtained: samples with a multilayer-type structure of Fe and Pt with a thickness of 20-300 nm and a very thin (several nanometers) A1 layer at their interfaces (2 h milled), an intermediate structure, consisting of finer lamellae of Fe and Pt (below approximately 100 nm) with the A1 layer thickness reaching several tens of nanometers (4 h milled) and alloys containing a homogeneous A1 phase (7 h milled). Subsequent heat treatment at elevated temperatures is required for the formation of the L1{sub 0} FePt phase. The ordering develops via so-called combined solid state reactions. It is accompanied by grain growth and thermally assisted removal of defects introduced by milling and proceeds rapidly at moderate temperatures by nucleation and growth of the ordered phases with a high degree of the long-range order. In a two-particle interaction model elaborated in the present work, the existence of hysteresis in recoil loops has been shown to arise from insufficient coupling between the low- and the high-anisotropy particles. The model reveals the main features of magnetisation reversal processes observed experimentally in exchange-coupled systems. Neutron diffraction has been used for the investigation of the magnetic structure of ordered and partially ordered nanocrystalline Fe-Pt alloys. (orig.)

  17. Ethanol Electrooxidation on Pt with Lanthanum Oxide as Cocatalyst in a DAFC

    Directory of Open Access Journals (Sweden)

    T. A. B. Santoro

    2012-01-01

    Full Text Available Electrocatalytic activity toward ethanol electrooxidation of Pt particles in PtLa/C catalysts with different Pt : La ratios has been studied with different electrochemical and spectroscopic techniques, and the results were compared to those of Pt/C catalyst. Significant enhancement in the electrocatalytic activity has been achieved by depositing the Pt particles with lanthanum oxides/hydroxides using an alcohol reduction method. Compared to Pt/C catalyst, PtLa/C materials exhibit a lower onset potential and a higher electron-transfer rate constant for the investigated reaction. These studies illustrate the possibility of utilizing Pt/C with La oxides/hidroxides as electrocatalyst for direct alcohol fuel cells (DAFCs.

  18. SELECTIVE HYDROGENATION OF CINNAMALDEHYDE WITH Pt AND Pt-Fe CATALYSTS: EFFECTS OF THE SUPPORT

    Directory of Open Access Journals (Sweden)

    A.B. da Silva

    1998-06-01

    Full Text Available Low-temperature reduced TiO2-supported Pt and Pt-Fe catalysts are much more active and selective for the liquid–phase hydrogenation of cinnamaldehyde to unsaturated cinnamyl alcohol than the corresponding carbon-supported catalysts. High-temperature reduced catalysts, where the SMSI effect should be present, are almost inactive for this reaction. There is at present no definitive explanation for this effect but an electronic metal-support interaction is most probably involved.

  19. Reactivity differences of Pt0 phosphine complexes in C-C bond activation of asymmetric acetylenes

    NARCIS (Netherlands)

    Gunay, A.; Müller, C.; Lachicotte, R.J.; Brennessel, W.W.; Jones, W.D.

    2009-01-01

    Carbon-carbon bond activation reactions of asymmetric acetylene derivatives of the type L2Pt(PhC=CR) were studied with 1,2-bis(diisopropylphosphino)ethane (dippe), 1,2-bis(di-tert-butylphosphino)ethane (dtbpe), and 1-diisopropylphosphino-2-dimethylaminoethane (dippdmae) chelates.

  20. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    International Nuclear Information System (INIS)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-01

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl 3 as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells

  1. Mechanisms of self-diffusion on Pt(110)

    DEFF Research Database (Denmark)

    Lorensen, Henrik Qvist; Nørskov, Jens Kehlet; Jacobsen, Karsten Wedel

    1999-01-01

    The self-diffusion of Pt on the missing row reconstructed Pt(110) surface is discussed based on density functional calculations of activation energy barriers. Different competing diffusion mechanisms are considered and we show that several different diffusion paths along the reconstruction troughs...

  2. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    Science.gov (United States)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g-1), a high mass activity (398 mA mg-1) and specific activity (0.98 mA cm-2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  3. Pengaruh Komunikasi Interpersonal dan Iklim Organisasi terhadap Kinerja Karyawan PT. Selatan Prima Sejahtera Jaya Pekanbaru

    OpenAIRE

    Restu, Restu; Indarti, Sri; Johanes, Johanes

    2015-01-01

    The purpose of this study was to determine the effect of partial and simultaneous interpersonal communication and organizational climate simultaneously on the performance of employees of PT. South Prima Sejahtera Jaya Pekanbaru. The sample in this study were all employees of PT. South PrimaSejahtera Jaya Pekanbaru totaling 35 people. The technique of collecting data using questionnaires. Data analysis technique is quantitative descriptive method and regression.The results showed that interper...

  4. Preparation of Pt Au/C and Pt Au Bi/C electrocatalysts using electron beam irradiation for ethanol electro-oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Silva, Dionisio F.; Geraldes, Adriana N.; Cardoso, Elisangela S.Z.; Gomes, Thiago B.; Linardi, Marcelo; Oliveira Neto, Almir; Spinace, Estevam V.

    2011-01-01

    Pt Au/C (50:50) and PtAuBi/C electrocatalysts with Pt:Au:Bi atomic ratios of 50:40:10, 50:30:20 and 50:10:40 were prepared in water/2-propanol using electron beam irradiation. The materials were characterized by X-ray diffraction (XRD) and the electro-oxidation of ethanol was studied by chronoamperometry at room temperature. The X-ray diffraction measurements for all electrocatalysts prepared showed four peaks, which are associated with the planes of the face-centered cubic (fcc) structure characteristic of Pt and Pt alloys. For PtAuBi/C it was also observed the presence of a mixture of BiPt alloys and bismuth phases. The average crystallite sizes for Pt/C, PtAu/C, PtAuBi/C (50:40:10), PtAuBi/C (50:30:20) and PtAuBi/C (50:10:40) were in the range of 2.0 - 4.0 nm. The activity of the electrocatalysts for ethanol oxidation in alkaline medium showed that PtAuBi/C (50:40:10) had a higher performance for ethanol oxidation compared to others electrocatalysts prepared. (author)

  5. Preparation of Pt Au/C and Pt Au Bi/C electrocatalysts using electron beam irradiation for ethanol electro-oxidation in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F.; Geraldes, Adriana N.; Cardoso, Elisangela S.Z.; Gomes, Thiago B.; Linardi, Marcelo; Oliveira Neto, Almir; Spinace, Estevam V., E-mail: dfsilva@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Pt Au/C (50:50) and PtAuBi/C electrocatalysts with Pt:Au:Bi atomic ratios of 50:40:10, 50:30:20 and 50:10:40 were prepared in water/2-propanol using electron beam irradiation. The materials were characterized by X-ray diffraction (XRD) and the electro-oxidation of ethanol was studied by chronoamperometry at room temperature. The X-ray diffraction measurements for all electrocatalysts prepared showed four peaks, which are associated with the planes of the face-centered cubic (fcc) structure characteristic of Pt and Pt alloys. For PtAuBi/C it was also observed the presence of a mixture of BiPt alloys and bismuth phases. The average crystallite sizes for Pt/C, PtAu/C, PtAuBi/C (50:40:10), PtAuBi/C (50:30:20) and PtAuBi/C (50:10:40) were in the range of 2.0 - 4.0 nm. The activity of the electrocatalysts for ethanol oxidation in alkaline medium showed that PtAuBi/C (50:40:10) had a higher performance for ethanol oxidation compared to others electrocatalysts prepared. (author)

  6. Magnetization dynamics of perpendicular exchange-biased (Pt/Co)-Pt-IrMn multilayers studied by MOKE microscopy and magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Czapkiewicz, M.; Stobiecki, T.; Rak, R.; Zoladz, M.; Mietniowski, P. [Department of Electronics, AGH University of Science and Technology, 30-059 Krakow (Poland); Dijken, S. van [SFI Trinity Nanoscience Laboratory, Physics Department, Trinity College, Dublin 2 (Ireland)

    2006-01-01

    In this paper the dynamics of the magnetization reversal process in perpendicularly biased [20 Aa Pt/5 Aa Co]{sub 3}/t Aa Pt/100 Aa IrMn/20 Aa Pt multilayers with different Pt insertion layer thickness (0 Aa{<=}t{<=}12 Aa) is studied. The insertion of 1 Aa thick Pt enhances the exchange bias field (H{sub ex}) and for t>3 Aa H{sub ex} decreases exponentially with increasing Pt layer thickness. We show by magnetization relaxation measurements and direct observation of magnetic domains that magnetization reversal takes place by the nucleation of isolated cylindrical domains with a different nucleation site density in the forward and backward branches of the hysteresis loop. All the results were quantitatively analyzed using the Fatuzzo model for the dynamics of domain reversal processes. The activation energies for magnetization reversal by domain nucleation and domain propagation were determined. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Exposure to ultrafine particles in hospitality venues with partial smoking bans.

    Science.gov (United States)

    Neuberger, Manfred; Moshammer, Hanns; Schietz, Armin

    2013-01-01

    Fine particles in hospitality venues with insufficient smoking bans indicate health risks from passive smoking. In a random sample of Viennese inns (restaurants, cafes, bars, pubs and discotheques) effects of partial smoking bans on indoor air quality were examined by measurement of count, size and chargeable surface of ultrafine particles (UFPs) sized 10-300 nm, simultaneously with mass of particles sized 300-2500 nm (PM2.5). Air samples were taken in 134 rooms unannounced during busy hours and analyzed by a diffusion size classifier and an optical particle counter. Highest number concentrations of particles were found in smoking venues and smoking rooms (median 66,011 pt/cm(3)). Even non-smoking rooms adjacent to smoking rooms were highly contaminated (median 25,973 pt/cm(3)), compared with non-smoking venues (median 7408 pt/cm(3)). The particle number concentration was significantly correlated with the fine particle mass (Phospitality premises. Health protection of non-smoking guests and employees from risky UFP concentration is insufficient, even in rooms labeled "non-smoking". Partial smoking bans with separation of smoking rooms failed.

  8. Economical analysis of the second partial reload for Angra 1 with partial low-leakage

    International Nuclear Information System (INIS)

    Mascarenhas, H.A.; Teixeira, M.C.C.; Dias, A.M.

    1990-01-01

    Preliminary results for the Angra 1 second reload design with partial low-leakage were assessed with NUCOST 1.0, code for nuclear power costs calculation. In the proposed scheme, some partially burned fuel assemblies (FAs) are located at the core boundary, while new FAs occupy more internal positions. The nuclear design - utilizing the code system SAV (from Siemens/KWU Group, F.R. Germany) - has been performed with detail for the 3rd cycle while simpler approach has been utilized for subsequent reloads. Results of NUCOST 1.0 show that the partial low-leakage reload in the 3rd cycle of Angra 1 offers fuel costs 1% lower when compared to the Plant's actual reload scheme, what corresponds to an savings of about US$190.000. When operation and maintenance and capital costs are also considered, economies in the order of US$2.6 million are obrained. (author) [pt

  9. Monometallic Pd and Pt and Bimetallic Pd-Pt/Al2O3-TiO2 for the HDS of DBT: Effect of the Pd and Pt Incorporation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Martínez Guerrero

    2014-01-01

    Full Text Available The effect of the preparation method of monometallic Pd and Pt and bimetallic Pd-Pt/Al2O3-TiO2 catalysts on the hydrodesulfurization (HDS of dibenzothiophene (DBT was investigated in this study. The synthesis was accomplished using three methods: (A impregnation, (B metal organic chemical vapor deposition (MOCVD, and (C impregnation-MOCVD. The bimetallic Pd-Pt catalyst prepared by the impregnation-MOCVD method was most active for the HDS of DBT compared to those prepared by the single impregnation or MOCVD method due to the synergetic effect between both noble metals. The greater selectivity toward biphenyl indicated that this bimetallic Pd-Pt catalyst preferentially removes sulfur via the direct desulfurization mechanism. However, the bimetallic Pd-Pt catalyst prepared using the single MOCVD method did not produce any cyclohexylbenzene, which is most likely associated with the hydrogenation/dehydrogenation sites.

  10. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity.

    Science.gov (United States)

    Ma, Teng; Fu, Qiang; Su, Hai-Yan; Liu, Hong-Yang; Cui, Yi; Wang, Zhen; Mu, Ren-Tao; Li, Wei-Xue; Bao, Xin-He

    2009-05-11

    Tunable surface: The surface structure of the Fe-Pt bimetallic catalyst can be reversibly modulated between the iron-oxide-rich Pt surface and the Pt-skin structure with subsurface Fe via alternating reduction and oxidation treatments (see figure). The regenerated active Pt-skin structure is active in reactions involving CO and/or O.

  11. Facile solvothermal synthesis of monodisperse Pt2.6Co1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions

    International Nuclear Information System (INIS)

    Jiang, Liu-Ying; Lin, Xiao-Xiao; Wang, Ai-Jun; Yuan, Junhua; Feng, Jiu-Ju; Li, Xin-Sheng

    2017-01-01

    Highlights: • Uniform Pt 2.6 Co 1 nanoflowers were prepared by a simple solvothermal method. • Glucose and CTAC were used as the green reductant and structure director, respectively. • The architectures had the enlarged ECSA. • The architectures exhibited excellent catalytic performances for HER in acid and alkaline media. • The architectures showed highly catalytic performances for ORR in acid media. - Abstract: Herein, uniform Pt 2.6 Co 1 nanoflowers (NFs) were synthesized in oleylamine by a one-pot solvothermal method, using cetyltrimethylammonium chloride (CTAC) and glucose as the capping agent and green reducing agent. The samples were mainly characterized by transmission electron microscopy (TEM), high angle annular dark-field scanning TEM (HAADF-STEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The architectures had larger electrochemically active surface area (ECSA) of 23.84 m 2 g −1 Pt than Pt 1.2 Co 1 nanocrystals (NCs, 14.96 m 2 g −1 Pt ), Pt 3.7 Co 1 NCs (16.96 m 2 g −1 Pt ) and commercial Pt black (20.35 m 2 g −1 Pt ). And the as-obtained Pt 2.6 Co 1 catalyst displayed superior catalytic performance and better durability for hydrogen evolution reaction (HER) as compared to Pt 1.2 Co 1 NCs, Pt 3.7 Co 1 NCs, commercial 50% Pt/C and Pt black catalysts in acid and alkaline media. Meanwhile, the electrocatalytic performance of Pt 2.6 Co 1 NFs for oxygen reduction reaction (ORR) is better in acid media as compared with that in alkaline media. It indicates the great potential applications of the as-prepared catalyst in fuel cells.

  12. Preparation of Pt-PTFE hydrophobic catalyst for hydrogen-water isotope exchange

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Han Yande; Ruan Hao; Dou Qincheng; Hu Shilin

    2001-01-01

    The hydrophobic catalyst used in the hydrogen-water isotope exchange is prepared with Pt as the active metal, PTFE as the hydrophobic material, active carbon or silicon dioxide as the support. The isotope catalytic exchange reaction between hydrogen and water is carried out in the trickle bed and the effects of different carriers, mass fraction of Pt and PTFE on the catalytic activity are discussed. The experimental results show that the activity of Pt-C-PTFE hydrophobic catalyst with the ratio between PTFE and Pt-C from 1 to 2 is higher than other kinds of catalysts and the overall volume transfer coefficient is increased with the increasing of the hydrogen flow rate and reaction temperature

  13. Electrocatalytic activity of Pt grown by ALD on carbon nanotubes for Si-based DMFC applications

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Dalslet, Bjarke Thomas; Yang, R.B.

    2012-01-01

    in a top-flow ALD reactor at 250°C, using MeCpPtMe3 and O2 as precursors. The anode was tested for the methanol oxidation reaction (MOR) in a three-electrode electrochemical set-up and it showed improved catalytic activity compared to a reference sample of Pt deposited on flat Si. It is demonstrated......We present an anode design for silicon-based direct methanol fuel cell (DMFC) applications. Platinum was deposited conformally by atomic layer deposition (ALD) onto vertically aligned, nitrogendoped multi-walled carbon nanotubes (MWCNTs) grown on porous silicon. The deposition was carried out...... that ALD could be a MEMS compatible deposition technique for Si-based fuel cell applications. © The Electrochemical Society....

  14. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    Science.gov (United States)

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  15. Surface and electrochemical characterization of electrodeposited PtRu alloys

    Science.gov (United States)

    Richarz, Frank; Wohlmann, Bernd; Vogel, Ulrich; Hoffschulz, Henning; Wandelt, Klaus

    1995-07-01

    PtRu alloys of different compositions were electrodeposited on Au. Twelve alloys between 0% and 100% Pt were characterized with surface sensitive spectroscopies (XPS, LEIS) after transfer from an electrochemical cell to an ultra high vaccum chamber without contact to air. The composition of the thus prepared alloys showed a linear dependence on the concentrations of the deposition solution, but was Pt-enriched both in the bulk and (even more so) at the surface. During the electrochemical reduction of the metal cations, sulfur from the supporting electrolyte 1N H 2SO 4 was found to be incorporated into the electrodes. Cyclic voltammetry was used for the determination of the electrocatalytic activity of the electrodes for the oxidation of carbon monoxide. The highest activity for this oxidation as measured by the (peak) potential of the CO oxidation cyclovoltammograms was found for a surface concentration of ˜ 50%Pt. The asymmetry of this "activity curve" (oxidation potential versus Pt surface concentration) is tentatively explained in terms of a surface structural phase separation.

  16. Influence of Sn content on PtSn/C catalysts for electrooxidation of C{sub 1}-C{sub 3} alcohols: Synthesis, characterization, and electrocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hong; Choi, Sung Mook; Nam, Sang Hoon; Seo, Min Ho; Kim, Won Bae [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea); Choi, Sun Hee [Pohang Accelerator Laboratory, San-31 Hyoja-dong, Pohang, Kyungbuk 790-984 (Korea)

    2008-07-16

    A series of carbon-supported bimetallic PtSn catalysts for the electrooxidation of C{sub 1}-C{sub 3} alcohols (i.e., methanol (C{sub 1}), ethanol (C{sub 2}), and 1-propanol (C{sub 3})) were prepared with different Pt:Sn atomic ratios using borohydride reduction method combined with freeze-drying procedure at room temperature. The catalysts were investigated by employing various physicochemical analyses: X-ray diffraction (XRD), transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS) to investigate the structural modification, and X-ray photoelectron spectroscopy (XPS) and X-ray absorption-near-edge spectroscopy (XANES) to characterize the change in electronic features. The variation of Sn content by forming PtSn alloys causes significant structural and electronic modifications of Pt crystallites, resulting in increases of lattice parameter and decreases of the Pt 5d band vacancies with Sn content. Cyclic voltammetry (CV) measurements showed that the addition of Sn into the Pt catalyst promotes the electro-catalytic activities for the electrooxidations of C{sub 1}, C{sub 2}, and C{sub 3} alcohols, in which the maximum activities appeared at different Sn contents for the C{sub 1}-C{sub 3} alcohols. In particular, a shift in optimum Pt:Sn composition was observed in that the Sn content required to reach the maximum peak current density was increased with the increasing number of carbon atoms in the C{sub 1}-C{sub 3} alcohols. Both the geometric and electronic effects with variation of Sn content are in close relationship in the bimetallic PtSn catalysts, consequently affecting the electrocatalytic activities by showing volcano-type behaviors over the electrooxidation of the individual alcohol. (author)

  17. Facile synthesis of porous Pt botryoidal nanowires and their electrochemical properties

    International Nuclear Information System (INIS)

    Huang, Zhongyuan; Zhou, Haihui; Chen, Zhongxue; Zeng, Fanyan; Chen, Liang; Luo, Wucheng; Kuang, Yafei

    2014-01-01

    Highlights: • Porous Pt nanowires were synthesized by combination of soft and hard templets. • Te nanowires were used as the hard templet and reductant. • The Pt nanowires are composed of many small Pt nanoparticles and pores. • The Pt nanowires have very good electrochemical activity and stability. - Abstract: Long and porous Pt botryoidal nanowires (Pt BNWs) were facilely synthesized by combination of soft and hard templates accompanying chemical reduction of ascorbic acid and replacement of Te nanowires. This bis-template and bis-reductant method is proved to be an effective way to prepare nanowires with special structure. The scanning electron microscopy and transmission electron microscopy images show the as-prepared product is botryoidal nanowires with diameter of 20–30 nm and length of several micrometers. High resolution transmission electron microscopy shows the Pt botryoidal nanowires are composed of many small Pt nanoparticles (about 3 nm in diameter), which is just like that many grapes grow on the branch. These small nanoparticles make Pt nanowires have botryoidal and porous structure. Moreover, the diameter of Pt BNWs can be adjusted by changing the dosage of Pt precursor, polyvinylpyrrolidone and L-ascorbic acid. The electrocatalytic performance of Pt botryoidal nanowires is studied, which shows that the as-prepared Pt botryoidal nanowires have not only high activity but also good stability for oxygen reduction reaction

  18. Low content of Pt supported on Ni-MoCx/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    Science.gov (United States)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui

    2017-08-01

    Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.

  19. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution

    International Nuclear Information System (INIS)

    Chatterjee, Moitrayee; Chatterjee, Abhik; Ghosh, Susanta; Basumallick, I.

    2009-01-01

    Present paper reports kinetics of electro-oxidation of ethanol (EtOH) and ethylene glycol (EG) onto Pt and PtRu nanocatalysts of different compositions in the temperature range of 298-318 K. These catalysts have been characterized by SEM, EDX, XRD, CV and amperometry. It has been observed that apparent activation energies for oxidation of EtOH and EG pass through a minimum at about 15-20 at.% of Ru in the PtRu alloy catalysts. Anodic peak current vs. composition curve also shows a maximum around this composition. The results have been explained by a geometric model, which proposes requirement of an ensemble of three Pt atoms with an adjacent Ru atom onto PtRu surface for an efficient electro-oxidation of EtOH or EG. This is further supported from statistical data analysis of probability of occurrence of such ensembles onto PtRu alloy surface. Present results also suggest that electro-oxidation of EG onto nano-PtRu catalyst surfaces follows a different path from that of EtOH at alloy composition less than 15 at.% of Ru.

  20. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Moitrayee; Chatterjee, Abhik; Ghosh, Susanta [Electrochemical Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Basumallick, I., E-mail: ibasumallick@yahoo.co.u [Electrochemical Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India)

    2009-12-01

    Present paper reports kinetics of electro-oxidation of ethanol (EtOH) and ethylene glycol (EG) onto Pt and PtRu nanocatalysts of different compositions in the temperature range of 298-318 K. These catalysts have been characterized by SEM, EDX, XRD, CV and amperometry. It has been observed that apparent activation energies for oxidation of EtOH and EG pass through a minimum at about 15-20 at.% of Ru in the PtRu alloy catalysts. Anodic peak current vs. composition curve also shows a maximum around this composition. The results have been explained by a geometric model, which proposes requirement of an ensemble of three Pt atoms with an adjacent Ru atom onto PtRu surface for an efficient electro-oxidation of EtOH or EG. This is further supported from statistical data analysis of probability of occurrence of such ensembles onto PtRu alloy surface. Present results also suggest that electro-oxidation of EG onto nano-PtRu catalyst surfaces follows a different path from that of EtOH at alloy composition less than 15 at.% of Ru.

  1. Evidence of surface migration and formation of catalytically inactive Pt in corrosion studies of Pt+ implanted Ti

    International Nuclear Information System (INIS)

    Appleton, B.R.; Kelly, E.J.; White, C.W.; Thompson, N.G.; Lichter, B.D.

    1980-08-01

    This investigation is part of an ongoing research project directed at applying the techniques of ion implantation doping and ion scattering analysis to identify the mechanisms associated with the anodic dissolution of Ti-Pt alloys. The Ti-Pt alloys produced by ion implantation were electrochemically examined in hydrogen saturated 1 N H 2 SO 4 by both potentiostatic polarization and open-circuit potential methods. In this study, Ti samples implanted to relatively high doses (5.4 x 10 15 to 2.9 x 10 16 atoms/cm 2 ) were examined by ion scattering analysis at various stages in the electrochemical measurements. Quantitative measurements showed that the majority of the implanted Pt accumulated on the surface during anodic dissolution and underwent large scale surface migration. Evidence is also presented for the transition of the Pt on the surface from a catalytically active to inactive state. Possible mechanisms for the observed catalytically inactive Pt are discussed

  2. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  3. Reproducible fabrication of stable small nano Pt with high activity for sensor applications

    International Nuclear Information System (INIS)

    Ye Pingping; Guo Xiaoyu; Liu Guiting; Chen Huifen; Pan Yuxia; Wen Ying; Yang Haifeng

    2013-01-01

    Pt nanoparticles with an average size of 2–3 nm in diameter were reproducibly synthesized by reduction of H 2 PtCl 6 solution containing inositol hexaphosphate (IP 6 ) as the stabilizing agent. Single crystals with Pt(111) faces of the resulting cubic nanoparticles were revealed by the electron diffraction pattern. The PtNPs–IP 6 nanoparticles were used to modify an electrode as a nonenzymatic sensor for H 2 O 2 detection, exhibiting a fast response and high sensitivity. A low detection limit of 2.0 × 10 −7 M (S/N = 3) with two linear ranges between 2.4 × 10 −7 and 1.3 × 10 −3 M (R 2 = 0.9987) and between 1.3 × 10 −3 and 1.3 × 10 −2 M (R 2 = 0.9980) was achieved. The attractive electrochemical performance of PtNPs–IP 6 enables it to be employed as a promising material for the development of Pt-based analytical systems and other applications. (paper)

  4. Influence of plasma treatment of carbon blacks on electrochemical activity of Pt/carbon blacks catalysts for DMFCs

    Science.gov (United States)

    Kim, Seok; Cho, Mi-Hwa; Lee, Jae-Rock; Park, Soo-Jin

    In this work, in order to improve the dispersion of platinum catalysts deposited on carbon materials, the effects of surface plasma treatment of carbon blacks (CBs) were investigated. The surface characteristics of the CBs were determined by fourier transformed-infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and Boehm's titration method. The electrochemical properties of the plasma-treated CBs-supported Pt (Pt/CBs) catalysts were analyzed by linear sweep voltammetry (LSV) experiments. From the results of FT-IR and acid-base values, N 2-plasma treatment of the CBs at 300 W intensity led to a formation of a free radical on the CBs. The peak intensity increased with increase of the treatment time, due to the formation of new basic functional groups (such as C-N, C dbnd N, -NH 3 +, -NH, and dbnd NH) by the free radical on the CBs. Accordingly, the basic values were enhanced by the basic functional groups. However, after a specific reaction time, N 2-plasma treatment could hardly influence on change of the surface functional groups of CBs, due to the disappearance of free radical. Consequently, it was found that optimal treatment time was 30 s for the best electro activity of Pt/CBs catalysts and the N 2-plasma treated Pt/CBs possessed the better electrochemical properties than the pristine Pt/CBs.

  5. Pt-Si Bifunctional Surfaces for CO and Methanol Electro-Oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia A.; Han, Binghong; Jensen, Jens Oluf

    2015-01-01

    and storage. Here we report on Pt-Si bulk samples prepared by arc-melting, for the first time, with high activities toward the electro-oxidation of CO and methanol. Increasing the Si concentration on the surface was correlated with the shifts of onset oxidation potentials to lower values and higher activities...... for CO and methanol electro-oxidation. It is proposed that the reaction on the Pt-Si catalyst could follow a Langmuir-Hinshelwood type of mechanism, where substantially enhanced catalytic activity is attributed to the fine-tuning of the surface Pt-Si atomic structure....

  6. Enhanced Electrocatalytic Activity of Pt Particles Supported on Reduced Graphene Oxide/Poly(3,4-ethylenedioxythiophene RGO/PEDOT Composite towards Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Juanito Raphael F. Foronda

    2013-01-01

    Full Text Available Catalysts in fuel cells are normally platinum based because platinum exhibits high electrocatalytic activity towards ethanol oxidation in acidic medium. However, bulk Pt is expensive and rare in nature. To reduce the consumption of Pt, a support material or matrix is needed to disperse Pt on its surface as micro- or nanoparticles with potential application as anode material in direct ethanol fuel cells (DEFCs. In this study, a composite material consisting of platinum particles dispersed on reduced graphene oxide/poly(3,4-ethylenedioxythiophene (RGO/PEDOT support was electrochemically prepared for ethanol oxidation in sulfuric acid electrolyte. PEDOT, a conductive polymer, was potentiodynamically polymerized from the corresponding monomer, 0.10 M EDOT in 0.10 M HClO4 electrolyte. The PEDOT-modified electrode was used as a substrate for exfoliated graphene oxide (EGO which was prepared by electrochemical exfoliation of graphite from carbon rod of spent batteries and subsequently reduced to form RGO. The Pt/RGO/PEDOT composite gave the highest electrocatalytic activity with an anodic current density of 2688.7 mA·cm−2 at E = 0.70 V (versus Ag/AgCl towards ethanol oxidation compared to bare Pt electrode and other composites. Scanning electron microscopy (SEM revealed the surface morphology of the hybrid composites while energy dispersive X-ray (EDX confirmed the presence of all the elements for the Pt/RGO/PEDOT composite.

  7. PtRu nanoparticles dispersed on nitrogen-doped carbon nanohorns as an efficient electrocatalyst for methanol oxidation reaction

    International Nuclear Information System (INIS)

    Zhang, Linwei; Gao, Ang; Liu, Yan; Wang, Yuan; Ma, Jiantai

    2014-01-01

    Highlights: • A novel anode catalyst is synthesized using N-doped carbon nanohorns as support. • PtRu/NCNHs exhibits an excellent activity for MOR relative to PtRu/C catalysts. • The enhancement is due to the electronic interaction between NCNHs and PtRu NPs. - Abstract: A novel anode catalyst (PtRu/NCNHs) assembled with nitrogen-doped carbon nanohorns (NCNHs) and PtRu nanoparticles (1.9 nm) exhibits an obvious enhancement in the tolerance to carbonaceous intermediates and the electocatalytic activity for methanol oxidation reaction (MOR) in comparison to a commercial PtRu/C-JM catalyst and a home-made PtRu/Vulcan catalyst. The MOR mass activity of PtRu/NCNHs (850 mA mg −1 PtRu ) is 2.5 times as high as that of PtRu/C-JM (341 mA mg −1 PtRu ). The MOR specific activity of PtRu/NCNHs is 1.8 times as high as that of PtRu/Vulcan having similar Pt/Ru atomic ratios, specific electrochemical surface areas and particle sizes of PtRu NPs. The electronic interaction between PtRu NPs and NCNHs is responsible for the enhancement in the MOR activity of PtRu/NCNHs

  8. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    Science.gov (United States)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  9. Partial Purification and Characterization of Anticoagulant Factor from the Snake (Echis Carinatus) Venom

    Science.gov (United States)

    Amrollahi Byoki, Elham; Zare Mirakabadi, Abbas

    2013-01-01

    Objective(s): Snake venoms contain complex mixture of proteins with biological activities. Some of these proteins affect blood coagulation and platelet function in different ways. Snake venom toxin may serve as a starting material for drug design to combat several pathophysiological problems such as cardiovascular disorders. In the present study, purification of anticoagulation factor from venom of snake (Echis carinatus) was studied. Materials and Methods: Anticoagulation activity of crude venom, fractions and purified peptide were determined by using prothrombin time (PT) and thrombin time (TT). Three fractions were partially purified from the venom of E. Carinatus by gel filtration on sephadex G-75 and final purification was performed by high-performance liquid chromatography (HPLC) with C18 column. A purified anticoagulant factor was derived which showed a single protein band in SDS-PAGE electrophoresis under reducing condition. Results: Results of PT and TT tests for purified peptide (EC217) were found to be 102±4.242 and < 5 min. respectively. Determination of molecular weight revealed that the active purified peptide (EC217) was about 30 KD. Conclusion: The present study showed that the venom of E. carinatus contains at least one anticoagulant factor. PMID:24494065

  10. Partial Purification and Characterization of Anticoagulant Factor from the Snake (Echis carinatus Venom

    Directory of Open Access Journals (Sweden)

    Elham Amrollahi Byoki

    2013-11-01

    Full Text Available   Objective(s: Snake venoms contain complex mixture of proteins with biological activities. Some of these proteins affect blood coagulation and platelet function in different ways. Snake venom toxin may serve as a starting material for drug design to combat several pathophysiological problems such as cardiovascular disorders. In the present study, purification of anticoagulation factor from venom of snake (Echis carinatus was studied. Anticoagulation activity of crude venom, fractions and purified peptide were determined by using prothrombin time (PT and thrombin time (TT. Three fractions were partially purified from the venom of E. Carinatus by gel filtration on sephadex G-75 and final purification was performed by high-performance liquid chromatography (HPLC with C18 column. A purified anticoagulant factor was derived which showed a single protein band in SDS-PAGE electrophoresis under reducing condition. Results of PT and TT tests for purified peptide (EC217 were found to be 102±4.242 and < 5 min. respectively. Determination of molecular weight revealed that the active purified peptide (EC217 was about 30 KD. In conclusion, the present study showed that the venom of E. carinatus contains at least one anticoagulant factor.

  11. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Shen, Pei kang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China)

    2007-02-10

    This research aims to investigate Pd-based catalysts as a replacement for Pt-based catalysts for ethanol electrooxidation in alkaline media. The results show that Pd/C has a higher catalytic activity and better steady-state behaviour for ethanol oxidation than that of Pt/C. The effect of the addition of CeO{sub 2} and NiO to the Pt/C and Pd/C electrocatalysts on ethanol oxidation is also studied in alkaline media. The electrocatalysts with a weight ratio of noble metal (Pt, Pd) to CeO{sub 2} of 2:1 and a noble metal to NiO ration 6:1 show the highest catalytic activity for ethanol oxidation. The oxide promoted Pt/C and Pd/C electrocatalysts show a higher activity than the commercial E-TEK PtRu/C electrocatalyst for ethanol oxidation in alkaline media. (author)

  12. Bactericidal activity of partially oxidized nanodiamonds.

    Science.gov (United States)

    Wehling, Julia; Dringen, Ralf; Zare, Richard N; Maas, Michael; Rezwan, Kurosch

    2014-06-24

    Nanodiamonds are a class of carbon-based nanoparticles that are rapidly gaining attention, particularly for biomedical applications, i.e., as drug carriers, for bioimaging, or as implant coatings. Nanodiamonds have generally been considered biocompatible with a broad variety of eukaryotic cells. We show that, depending on their surface composition, nanodiamonds kill Gram-positive and -negative bacteria rapidly and efficiently. We investigated six different types of nanodiamonds exhibiting diverse oxygen-containing surface groups that were created using standard pretreatment methods for forming nanodiamond dispersions. Our experiments suggest that the antibacterial activity of nanodiamond is linked to the presence of partially oxidized and negatively charged surfaces, specifically those containing acid anhydride groups. Furthermore, proteins were found to control the bactericidal properties of nanodiamonds by covering these surface groups, which explains the previously reported biocompatibility of nanodiamonds. Our findings describe the discovery of an exciting property of partially oxidized nanodiamonds as a potent antibacterial agent.

  13. Investigation of Au-Pt/C electro-catalysts for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Lin Rui; Zhang Haiyan; Zhao Tiantian; Cao Chunhui; Yang Daijun; Ma Jianxin

    2012-01-01

    Highlights: ► Au-Pt core shell catalyst. ► Seed-mediated growth method. ► Au-Pt (2:4)/C best activity toward ORR. ► Four-electron pathway in acid solution. ► Single cell performance. - Abstract: Carbon-supported Au-Pt core shell nano-structured catalysts were synthesized by the seed-mediated growth method. The nano-structured catalysts were characterized by UV–vis spectroscopy, X-ray photoelectron spectra (XPS) and transmission electron microscopy (TEM) techniques. The oxygen reduction reaction (ORR) activity of the Au-Pt/C was tested by means of linear sweep voltammetry (LSV) by employing rotating disk electrode (RDE). It revealed that Au-Pt (2:4)/C (atomic ratio) catalyst exhibited the best catalytic activity toward ORR. Au-Pt (2:4)/C proceeded by an approximately four-electron pathway in acid solution, through which molecular oxygen was directly reduced to water. The stability of Au-Pt (2:4)/C is tested by cyclic voltammetry for 500 cycles. The performance of the membrane electrode assembly (MEA) prepared by Au-Pt (2:4)/C as the cathode catalyst in a single proton exchange membrane fuel cell (PEMFC) generated a maximum power density of 479 mW cm −2 at 0.431 V using H 2 and O 2 at 80 °C.

  14. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium

    Science.gov (United States)

    Godoi, Denis R. M.; Villullas, Hebe M.; Zhu, Fu-Chun; Jiang, Yan-Xia; Sun, Shi-Gang; Guo, Junsong; Sun, Lili; Chen, Rongrong

    2016-04-01

    The effects of interactions of Pt nanoparticles with hybrid supports on reactivity towards ethanol oxidation in alkaline solution are investigated. Studies involve catalysts with identical Pt nanoparticles on six hybrid supports containing carbon powder and transition metal oxides (TiO2, ZrO2, SnO2, CeO2, MoO3 and WO3). In situ X-ray absorption spectroscopy (XAS) results evidence that metal-support interactions produce changes in the Pt 5d band vacancy, which appears to determine the catalytic activity. The highest and lowest activities are observed for Pt nanoparticles on hybrid supports containing TiO2 and CeO2, respectively. Further studies are presented for these two catalysts. In situ FTIR reflection spectroscopy measurements, taken using both multi-stepped FTIR spectroscopy (MS-FTIR) and single potential alteration FTIR spectroscopy (SPA-FTIR), evidence that the main product of ethanol oxidation is acetate, although signals attributed to carbonate and CO2 indicate some differences in CO2 production. Fuel cell performances of these catalysts, tested in a 4.5 cm2 single cell at different temperatures (40-90 °C) show good agreement with data obtained by electrochemical techniques. Results of this comprehensive study point out the possibility of compensating a reduction of noble metal load with an increase in activity promoted by interactions between metallic nanoparticles and a support.

  15. Pengaruh Kualitas Pelayanan Terhadap Kepuasan Nasabah Di Pt. Bank Central Asia (Bca Tbk Cabang Undaan Surabaya

    Directory of Open Access Journals (Sweden)

    Yulian Belinda Rahmawati

    2014-10-01

    Full Text Available This study aims to determine the effect of Quality of Service Characteristics on Customer Satisfaction in the PT. Bank Central Asia (BCA Branch Surabaya Undaan. The sampling in this study using stratified sampling (Stratified Random Sampling. Analysis techniques that are used are double linear regression. The calculation result shows that the quality of services simultaneous effect on customer satisfaction in PT. Bank Central Asia (BCA Branch Surabaya Undaaan. The quality of services that include variables Responsiveness, Tangibles, Empathy, Assurance, and Reliability in a partial effect on customer satisfaction in PT. Bank Central Asia (BCA Branch Surabaya undaaan.

  16. Retroperitoneal approach for robot-assisted partial nephrectomy: technique and early outcomes

    Directory of Open Access Journals (Sweden)

    A. Porreca

    Full Text Available ABSTRACT Objectives The aim of our study is to present early outcomes of our series of retroperitoneal-RAPN (Robot Assisted Partial Nephrectomy. Materials and methods From September 2010 until December 2015, we performed 81 RAPN procedures (44 at left kidney and 37 at right. Average size was 3cm (1-9. Average PADUA score 7.1 (5-10. Average surgical time (overall and only robot time, ischemia time, blood loss, pathological stage, complications and hospital stay have been recorded. Results All of the cases were completed successfully without any operative complication or surgical conversion. Average surgical time was 177 minutes (75-340. Operative time was 145 minutes (80-300, overall blood loss was 142cc (60-310cc. In 30 cases the pedicle was late clamped with an average ischemia time of 4 minutes (2-7. None of the patient had positive surgical margins at definitive histology (49pT1a, 12pT1b, 3pT2a, 2pT3a. Hospital stay was 3 days (2-7. Conclusions The retroperitoneal robotic partial nephrectomy approach is safe and allows treatment of even quite complex tumors. It also combines the already well known advantages guaranteed by the da Vinci® robotic surgical system, with the advantages of the retroperitoneoscopic approach.

  17. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Neburchilov, Vladimir; Wang, Haijiang; Zhang, Jiujun [Institute for Fuel Cell Innovation, National Research Council (Canada)

    2007-07-15

    In this communication we report our research work on low Pt content Pt-Ru-Ir-Sn quaternary catalysts for use in DMFC anodes. The carbon-supported quaternary metal alloy catalyst was synthesized according to the solution reduction method and was deposited onto a carbon fiber paper or a carbon aerogel nanofoam to form the anode for direct methanol fuel cells. The Pt loading of the electrode is 0.1 mg/cm{sup 2}. The testing results from a three-electrode electrochemical cell show that the simultaneous use of higher Ir (25-35 wt.%) and Sn (10 wt.%) content gives satisfactory stability and higher activity for methanol oxidation than the commercially available E-TEK anode (80%[0.5Pt 0.5Ru]/C on carbon cloth). Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), scanning electron microscope (SEM), and Bruner-Emmett-Teller method (BET) measurements were carried out to characterize the composition, structure, morphology, and surface area of the developed catalysts. (author)

  18. PENGARUH LAYANAN LOW COST CARRIER (LCC) TERHADAP KEPUASAN WISATAWAN DOMESTIK DI PT. INDONESIA AIRASIA

    OpenAIRE

    Agnes Tresia Silalahi; I Wayan Suardana; Ni Gusti Ayu Susrami Dewi

    2017-01-01

    AirAsia airline crash incident in December 2014 raises a big question to the satisfaction of the user rating AirAsia. Therefore, this study aims to determine: (1) the effect of partially Low Cost Carrier services to tourist satisfaction PT. Indonesia AirAsia; (2 effect of simultaneous service Low Cost Carrier to tourist satisfaction PT. Indonesia AirAsia. The samples in this study with a total sample of 110 respondents. The analysis used T-test & F-test. The results showed that parti...

  19. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  20. Reversibility of Pt-Skin and Pt-Skeleton Nanostructures in Acidic Media.

    Science.gov (United States)

    Durst, Julien; Lopez-Haro, Miguel; Dubau, Laetitia; Chatenet, Marian; Soldo-Olivier, Yvonne; Guétaz, Laure; Bayle-Guillemaud, Pascale; Maillard, Frédéric

    2014-02-06

    Following a well-defined series of acid and heat treatments on a benchmark Pt3Co/C sample, three different nanostructures of interest for the electrocatalysis of the oxygen reduction reaction were tailored. These nanostructures could be sorted into the "Pt-skin" structure, made of one pure Pt overlayer, and the "Pt-skeleton" structure, made of 2-3 Pt overlayers surrounding the Pt-Co alloy core. Using a unique combination of high-resolution aberration-corrected STEM-EELS, XRD, EXAFS, and XANES measurements, we provide atomically resolved pictures of these different nanostructures, including measurement of the Pt-shell thickness forming in acidic media and the resulting changes of the bulk and core chemical composition. It is shown that the Pt-skin is reverted toward the Pt-skeleton upon contact with acid electrolyte. This change in structure causes strong variations of the chemical composition.

  1. Electrocatalytical activity of Pt, SnO2 and RuO2 mixed electrodes for the electrooxidation of formic acid and formaldehyde

    International Nuclear Information System (INIS)

    Profeti, L.P.R.; Profeti, D.; Olivi, P.

    2005-01-01

    The electrocatalytical activity of binary electrodes of Pt and SnO 2 and ternary electrodes of Pt and SnO 2 and RuO 2 for the electrooxidation of formic acid and formaldehyde was investigated by cyclic voltammetry and chronoamperometry techniques. The electrode materials were prepared by the thermal decomposition of polymeric precursors at 400 deg C. The cyclic voltammetry results showed that the methanol electrooxidation process presents peak potentials for those electrodes approximately 100 mV lower than the values obtained for metallic platinum electrodes. The Pt 0.6 Ru 0.2 Sn 0.2 O y electrodes presented the highest current density values for potentials lower than the peak potential values. The chronoamperometric experiments also showed that the addition of SnO 2 and RuO 2 contributed for the enhancement of the electrode activity in low potential values. The preparation method was found to be useful to obtain high active materials. (author)

  2. Coulomb excitation of the 4+1 states of 194Pt, 196Pt and 198Pt

    International Nuclear Information System (INIS)

    Fewell, M.P.; Gyapong, G.J.; Spear, R.H.

    1987-09-01

    Probabilities for the Coulomb excitation of the 4 1 + states of 194 Pt, 196 Pt, 198 Pt by the backscattering of 4 He, 12 C and 16 O ions are reported. Model-independent values of the matrix elements 1 + ; M(E4), 4 1 + > and 1 + , M(E2), 4 1 + > are extracted. Agreement with previous measurements of these matrix elements is good. Values of β 2 and β 4 are determined for 194 Pt and compared with calculations of these quantities

  3. Enhanced methanol electro-oxidation reaction on Pt-CoOx/MWCNTs hybrid electro-catalyst

    International Nuclear Information System (INIS)

    Nouralishahi, Amideddin; Rashidi, Ali Morad; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Choolaei, Mohammadmehdi

    2015-01-01

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO x /MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO x addition. • Bi-functional mechanism is facilitated in presence of CoO x . - Abstract: The electro-catalytic behavior of Pt-CoO x /MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH 4  as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO x , Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO ads on Pt active sites by the participation of CoO x . Compared to Pt/MWCNTs, Pt-CoO x /MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO x /MWCNTs, at small overpotentials. However, at higher overpotentials, the oxidation of adsorbed oxygen-containing groups

  4. Pt{sub 1-x}Co{sub x} nanoparticles as cathode catalyst for proton exchange membrane fuel cells with enhanced catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Wu Huimin; Wexler, David; Liu Huakun [Institute for Superconducting and Electronic Materials, School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Savadogo, O. [Materials Engineering Department, Ecole Polytechique de Montreal, Montreal, QC H3C3A7 (Canada); Ahn, Jungho [Department of Materials Engineering, Andong National University, Andong (Korea, Republic of); Wang Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [Department of Chemistry and Forensic Science, University of Technology, Sydney, NSW 2007 (Australia)

    2010-11-01

    Nanosize carbon-supported Pt{sub 1-x}Co{sub x} (x = 0.2, 0.3, and 0.45) electrocatalysts were prepared by a chemical reduction method using sodium borohydride (NaBH{sub 4}) as the reduction agent. Transmission electron microscopy examination showed uniform dispersion of Pt{sub 1-x}Co{sub x} alloy catalysts on carbon matrix, with the particle size less than 10 nm. The electrochemical characteristics of Pt{sub 1-x}Co{sub x} alloy catalysts were studied by cyclic voltammetry, linear sweep voltammetry, and chronoamperometric testing. The as-prepared Pt{sub 1-x}Co{sub x} alloy nanoparticles could be promising cathode catalysts for oxygen reduction in proton exchange membrane fuel cells with the feature of much reduced cost, but significantly increased catalytic activity.

  5. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  6. Low content of Pt supported on Ni-MoC{sub x}/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui, E-mail: diamond_wangyanhui@163.com

    2017-08-01

    Highlights: • Ni-MoC{sub x}/C catalyst support was synthesized by a two-step method. • 10Pt/Ni-MoC{sub x}/C was an active and durable low Pt catalyst for MOR, ORR and HER. • The high stability of 10Pt/Ni-MoC{sub x}/C was ascribed to the anchoring effect of MoC{sub x}. • High activity of 10Pt/Ni-MoC{sub x}/C was due to a synergistic of Pt, Ni, MoO{sub x} and MoC{sub x}. - Abstract: Nickel and molybdenum carbide modified carbon black (Ni-MoC{sub x}/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoC{sub x}/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoC{sub x}/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoC{sub x}/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoC{sub x}/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoC{sub x}/C reached 68.4 m{sup 2} g{sup −1}, which was higher than that of 20Pt/C (63.2 m{sup 2} g{sup −1}). The enhanced stability and activity of 10Pt/Ni-MoC{sub x}/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoC{sub x} formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoO{sub x} and MoC{sub x}. These findings indicated that 10Pt/Ni-MoC{sub x}/C was a promising electrocatalyst for direct methanol fuel cells.

  7. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  8. Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity

    Directory of Open Access Journals (Sweden)

    Tao Ding

    2016-01-01

    Full Text Available Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni23.6Pt and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

  9. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan

    2002-01-18

    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  10. Effects of pH value on composition structure and catalytic activity of Pt-SnO{sub x}/C prepared by ethylene glycol method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.H. [School of Chemical Engineering and Environment, Beijing Institute of Technology, 100081 Beijing (China); Wu, F.; Wu, C. [School of Chemical Engineering and Environment, Beijing Institute of Technology, 100081 Beijing (China); National Development Center for High Technology Green Materials, 100081 Beijing (China)

    2012-06-15

    Pt-SnO{sub x} nanoparticles were synthesized by the ethylene glycol (EG) method in solution of H{sub 2}PtCl{sub 6} and SnCl{sub 2}, with the same concentrations of Pt and Sn, but different pH values. The pH value after the end of platinum reduction reaction was not changed any more, except that a certain amount of water was added to deposit the Pt-SnO{sub x} nanoparticles on the carbon support. The pre-nanocatalysts were characterized by X-ray photoelectron spectroscopy (XPS) to investigate the contents of Pt and Sn, and their catalytic activities for ethanol electrooxidation were tested by cyclic voltammetry (CV). The result was that the Sn contents were increasing as the Pt/Sn atomic ratios of 2.2, 2.6, 5.1, 7.4, 8.7, with the decreasing end pH values of 4.5, 5.0, 5.5, 6.5, 7.5, and the Pt contents became less than the addition in the preparation solution while the end pH values were <5.5, but the catalytic activities for ethanol electrooxidation were not so much regularly changed. Besides, from the end pH value of 5.5 to the increasing 9.0, all the platinum nanoparticles could be completely deposited on the carbon support, under the condition that only a certain amount of water was added. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Determination of amylase activity of crude extract from partially ...

    African Journals Online (AJOL)

    Amylase activity of crude extract from partially germinated mango seeds ( Mangifera oraphila) was determined using Caraway-Somogyi iodine/potassium iodide (IKI) method. The effects of varied pH and temperature were also investigated. The amylase was extracted with 0.1 M acetate buffer (pH 4.2). Amylase activity of the ...

  12. Partial radiative capture of resonance neutrons

    International Nuclear Information System (INIS)

    Samour, C.

    1969-01-01

    The radiative capture of resonance neutrons has been studied near the Saclay linac between 0.5 and 700 eV with time-of-flight method and a Ge(Li) detector. 195 Pt + n and 183 W + n allow the study of the distribution of partial radiative widths and their eventual correlation and also the variation of γ i > with E γ . The mean values of Ml and El transition intensities are compared in several tin isotopes. Interference effects, either between resonances or between direct capture and resonant capture are found in 195 Pt + n, 197 Au + n and 59 Co + n. The excited level schemes of a great deal of nuclei are obtained and compared with theoretical predictions. This study has been completed by an analysis of thermal spectrum. (author) [fr

  13. Evaluation of Pt-Ru-Ni and Pt-Sn-Ni catalysts as anodes in direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ribadeneira, Esteban; Hoyos, Bibian A. [Escuela de Procesos y Energia, Facultad de Minas, Universidad Nacional de Colombia, Medellin (Colombia)

    2008-05-15

    In this study, the electrooxidation of ethanol on carbon supported Pt-Ru-Ni and Pt-Sn-Ni catalysts is electrochemically studied through cyclic voltammetry at 50 C in direct ethanol fuel cells. All electrocatalysts are prepared using the ethylene glycol-reduction process and are chemically characterized by energy-dispersive X-ray analysis (EDX). For fuel cell evaluation, electrodes are prepared by the transfer-decal method. Nickel addition to the anode improves DEFC performance. When Pt{sub 75}Ru{sub 15}Ni{sub 10}/C is used as an anode catalyst, the current density obtained in the fuel cell is greater than that of all other investigated catalysts. Tri-metallic catalytic mixtures have a higher performance relative to bi-metallic catalysts. These results are in agreement with CV results that display greater activity for PtRuNi at higher potentials. (author)

  14. Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts.

    Science.gov (United States)

    Li, L; Chen, S G; Wei, Z D; Qi, X Q; Xia, M R; Wang, Y Q

    2012-12-28

    Using a combination of experiments and density functional theory (DFT) calculations, we explored the mechanisms of the stabilization effect of the thiolized (-SH) group on the Pt/SH-CNTs catalyst. Pt particles supported on the hydroxyl functionalized CNTs (Pt/OH-CNTs) are synthesized as a baseline for comparison. Experimentally, the platinum on OH-CNTs has a stronger tendency for aggregation than that on SH-CNTs. The differences in the oxidation resistance, migration activation energy, and corrosion resistance between the Pt/SH-CNTs and Pt/OH-CNTs are calculated using DFT. The DFT calculations indicate that the -SH group enhances the oxidation resistance of the Pt cluster and CNTs and restricts Pt migration on the CNTs. DFT calculations also suggest that the enhanced stability of Pt/SH-CNTs originates from the increased interaction between Pt and SH-CNTs and the depressed d-band center of the Pt NPs. Thus, the functional groups on the CNTs used for stabilization of supported Pt NPs should provide a deposit and anchor site for Pt NPs and maintain the perfect structure of CNTs rather than destroying it.

  15. Pt coating on flame-generated carbon particles

    International Nuclear Information System (INIS)

    Choi, In Dae; Lee, Dong Geun

    2008-01-01

    Carbon black, activated carbon and carbon nanotube have been used as supporting materials for precious metal catalysts used in fuel cell electrodes. One-step flame synthesis method is used to coat 2-5nm Pt dots on flame-generated carbon particles. By adjusting flame temperature, gas flow rates and resident time of particles in flame, we can obtain Pt/C nano catalyst-support composite particles. Additional injection of hydrogen gas facilitates pyrolysis of Pt precursor in flame. The size of as-incepted Pt dots increases along the flame due to longer resident time and sintering in high temperature flame. Surface coverage and dispersion of the Pt dots is varied at different sampling heights and confirmed by Transmission Electron Microscopy (TEM), Energy Dispersive Spectra (EDS) and X-Ray Diffraction (XRD). Crystallinity and surface bonding groups of carbon are investigated through X-ray Photoelectron Spectroscoy (XPS) and Raman spectroscopy

  16. PtRu colloid nanoparticles for CO oxidation in microfabricated reactors

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Saadi, Souheil; Toftegaard, Maja Bøg

    2006-01-01

    The catalytic activity of PtRu colloid nanoparticles for CO oxidation is investigated in microfabricated reactors. The measured catalytic performance describes a volcano curve as a function of the Pt/Ru ratio. The apparent activation energies for the different alloy catalysts are between 21 and 1...

  17. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    Science.gov (United States)

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Ethanol Electro-oxidation on Novel Electrocatalyst PtVSnO2/C in Acidic Media

    International Nuclear Information System (INIS)

    Jin, Biyao; Sun, Hongyan; Huang, Minghui; Zhao, Lianhua

    2014-01-01

    Graphical abstract: - Highlights: • Novel electrocatalyst PtVSnO 2 /C is synthesized by a modified Bönnemann method. • Adding Sn and V changes the geometric and electronic structure of Pt. • PtVSnO 2 /C improved catalytic activity and the ability of resisting CO poisoning. - Abstract: A novel carbon-supported Pt-V-SnO 2 catalyst is prepared by a modified Bönnemann method. Pt/C, PtV/C, and PtSnO 2 /C are used for comparative analysis to study PtVSnO 2 /C in terms of its structure and electrocatalytic activity for the ethanol oxidation reaction (EOR). Characterization of its structural properties by X-ray diffraction (XRD) and transmission electron microscopy (TEM) is described. It is shown that the Pt lattice parameter decreases with the addition of V but increases with the addition of Sn in the PtVSn/C catalyst. TEM analysis reveals that the prepared catalyst particles are in the nanosize range (2-4 nm). EDS confirms the atomic compositions of the synthesized catalysts to be similar to the nominal values. The electrocatalytic activities are characterized by cyclic voltammetry (CV) and amperometric i-t curve measurement (i-t) techniques. The incorporation of a small amount of V in the PtSnO 2 /C electrocatalyst leads to higher activity for the ethanol oxidation reaction at room temperature. According to the Arrhenius equation, the apparent activation energy of PtVSnO 2 /C (3:1:3) for EOR is the lowest among the studied catalysts, which may be attributed to a synergistic effect between Sn and V

  19. Composition dependence of phase transformation behavior and shape memory effect of Ti(Pt, Ir)

    International Nuclear Information System (INIS)

    Yamabe-Mitarai, Y.; Hara, T.; Kitashima, T.; Miura, S.; Hosoda, H.

    2013-01-01

    Highlights: ► The partial isothemal section at 1523 K was determined in Ti–Pt–Ir. ► The high-temperature shape memory effect of Ti(Pt, Ir) was investigated. ► The shape recovery ratio was 72% in Ti–10Pt–32Ir after deformation at 1123 K. ► Ir addition to TiPt is effective to improve shape memory effect of TiPt. -- Abstract: The phase transformation and high-temperature shape memory effect of Ti(Pt, Ir) were investigated. First, the Ti-rich phase boundary of Ti(Pt, Ir) was investigated by phase composition analysis by secondary electron microscopy (SEM) using an electron probe X-ray micro analyzer (EPMA), X-ray diffraction analysis and transmission electron microscopy (TEM). Then, the three alloys Ti–35Pt–10Ir, Ti–22Pt–22Ir, and Ti–10Pt–32Ir (at%) close to the phase boundary but in the single phase of Ti(Pt, Ir) were prepared by the arc melting method. The shape memory effect and crystal structure were investigated by compression loading–unloading tests and high-temperature X-ray diffraction analysis, respectively

  20. Electrocatalytic activity of atomic layer deposited Pt-Ru catalysts onto N-doped carbon nanotubes

    NARCIS (Netherlands)

    Johansson, A.-C.; Larsen, J.V.; Verheijen, M.A.; Haugshøj, K.B.; Clausen, H.; Kessels, W.M.M.; Christensen, L.H.; Thomsen, E.V.

    2014-01-01

    Pt-Ru catalysts of various compositions, between 0 and 100 at.% of Ru, were deposited onto N-doped multi-walled carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) at 250 C. The Pt and Ru precursors were trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3) and

  1. Results of the Proficiency Test, PT1 and PT2, 2012

    DEFF Research Database (Denmark)

    Vendramin, Niccolò; Nicolajsen, Nicole; Christophersen, Maj-Britt

    A comparative test of diagnostic procedures was provided by the European Union Reference Laboratory (EURL) for Fish Diseases. The test was divided into proficiency test 1 (PT1) and proficiency test 2 (PT2). The number of National Reference Laboratories (NRLs) participating in PT1 and PT2 was 43. ....... The tests were sent from the EURL in the beginning of September 2012. Both PT1 and PT2 are accredited by DANAK under registration number 515 for proficiency testing according to the quality assurance standard DS/EN ISO/IEC 17043....

  2. Analisis Niat Penggunaan E-filing Di PT “X” Dan Pt”y” Surabaya Dengan Structural Equation Modeling

    OpenAIRE

    Jimantoro, Christina; Tjondro, Elisa

    2014-01-01

    Penelitian ini dilakukan untuk mengetahui pengaruh persepsi kegunaan, persepsi kemudahan, sikap penggunaan, norma subjektif dan persepsi kemampuan mengontrol terhadap niat penggunaan e-filing oleh wajib pajak orang pribadi. Sampel penelitian ini adalah 64 karyawan PT “X” dan PT “Y” di Surabaya. Teknik analisis data yang digunakan adalah Structural Equation Modelling berbasis Variance (Partial Least Square).Hasil penelitian ini menunjukkan adanya pengaruh persepsi kegunaan dan kemudahan terhad...

  3. Pengaruh Kompensasi dan Lingkungan Kerja terhadap Kepuasan Kerja Karyawan PT. Enseval Putera Megatrading (Persero) Tbk Cabang Pekanbaru

    OpenAIRE

    Amsal, Chairul; Ningsih, Dewita Suryati; Rinaldi, Muhammad Fadil

    2014-01-01

    This study aims to explain the variable of Compensation and Working Environment on employee job satisfaction PT. Enseval Putera Megatrading (Persero) Tbk pekanbaru Branch and to determine which variables are dominant influences between two variables, influence Compensation and Working Environment simultaneously or partially on Employee Job Satisfaction in PT. Enseval Putera Megatrading (Persero) Tbk pekanbaru Branch. Method for collecting the samples is census sampling, the method that all me...

  4. Structure/activity of Pt{sup II}/N,N-disubstituted-N'-acylthiourea complexes: Anti-tumor and anti-mycobacterium tuberculosis activities

    Energy Technology Data Exchange (ETDEWEB)

    Plutín, Ana M.; Alvarez, Anislay; Mocelo, Raúl; Ramos, Raúl; Sánchez, Osmar C. [Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de La Habana (Cuba); Castellano, Euardo E. [Universidade de São Paulo (USP), São Carlos, SP (Brazil); Silva, Monize M. da; Villarreal, Wilmer; Colina-Vegas, Legna; Batista, Alzir A. [Universidade Federal de São Carlos (UFSCar), SP (Brazil); Pavan, Fernando R., E-mail: anap@fq.uh.cu, E-mail: daab@ufscar.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Faculdade de Ciências Farmacêuticas

    2018-05-01

    The syntheses, characterization, cytotoxicity against tumor cells and anti-Mycobacterium tuberculosis activity assays of Pt{sup II}/PPh{sub 3}/N,N-disubstituted-N'-acylthioureas complexes with general formulae [Pt(PPh{sub 3}){sub 2}(L)]PF{sub 6}, PPh{sub 3} = triphenylphosphine; L = N,N-disubstituted-N'-acylthiourea, are here reported. The complexes were characterized by elemental analysis, molar conductivity, infrared (IR), nuclear magnetic resonance (NMR) ({sup 1} H, {sup 13}C{1 H} and {sup 31}P{"1 H}) spectroscopy. The {sup 31}P{"1 H} NMR data are consistent with the presence of two PPh{sup 3} ligands cis to each other position, and one N,N-disubstituted-N'-acylthiourea coordinated to the metal through O and S, in a chelate form. The structures of the complexes were determined by X-ray crystallography, forming distorted square-planar structures. The complexes were tested in human cell lines carcinomas and also screened with respect to their anti-Mycobacterium tuberculosis activity (H37RvATCC 27294). It was found that complexes with N,N-disubstituted-N'-acylthiourea containing open and small chains as R2 groups show higher cytotoxic and higher anti-Mycobacterium tuberculosis activity than those containing rings in this position. (author)

  5. Temperature-programmed reduction and cyclic voltammetry of Pt/carbon-fibre paper catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Attwood, P.A.; McNicol, B.D.; Short, R.T.

    1981-01-01

    Temperature-programmed reduction (TPR) and cyclic voltammetry (CV) studies of platinum catalysts supported on pyrographite-coated carbon-fibre paper, and prepared by either ion exchange or impregnation, clearly demonstrate the nature of the interactions between the platinum species and the support. After drying the above catalysts at 120 0 C, the ion-exchanged preparation exhibits the stronger interaction with the carbon support, as might be expected since a chemical interaction with carbon surface groups is known to occur in such catalysts. The presence of a fraction of bulk Pt(NH 3 ) 4 (OH) 2 impregnating salt in the impregnated catalyst has been detected using TPR. After air activation at 300 0 C, subambient reduction peaks were observed and the strength of binding of Pt in the ion-exchanged catalyst was reflected by its increased difficulty of reduction in comparison with that of the impregnated catalyst. The stoichiometry of reduction in ion-exchanged catalysts corresponds to Pt 2+ → Pt 0 in both dried and activated catalysts, with a small amount of Pt 4+ present in the latter. Upon activation the impregnated catalyst showed the presence of some Pt metal, which was thought to arise from the decomposition of the fraction of bulk Pt(NH 3 ) 4 (OH) 2 in the dried catalyst. Activation of ion-exchanged catalysts at temperatures higher than 300 0 C led to a progressive weakening of the Pt-support interaction and consequent smaller Pt surface areas. Activation at 500 0 C in air produced Pt metal exclusively and very low Pt surface areas. The strong interaction between Pt and the carbon support upon activation of the ion-exchanged catalyst at 300 0 C is thought to be the origin of the large metal surface area and the high catalytic activity for methanol electrooxidation found upon reduction

  6. Defects and Interfaces on PtPb Nanoplates Boost Fuel Cell Electrocatalysis.

    Science.gov (United States)

    Sun, Yingjun; Liang, Yanxia; Luo, Mingchuan; Lv, Fan; Qin, Yingnan; Wang, Lei; Xu, Chuan; Fu, Engang; Guo, Shaojun

    2018-01-01

    Nanostructured Pt is the most efficient single-metal catalyst for fuel cell technology. Great efforts have been devoted to optimizing the Pt-based alloy nanocrystals with desired structure, composition, and shape for boosting the electrocatalytic activity. However, these well-known controls still show the limited ability in maximizing the Pt utilization efficiency for achieving more efficient fuel cell catalysis. Herein, a new strategy for maximizing the fuel cell catalysis by controlling/tuning the defects and interfaces of PtPb nanoplates using ion irradiation technique is reported. The defects and interfaces on PtPb nanoplates, controlled by the fluence of incident C + ions, make them exhibit the volcano-like electrocatalytic activity for methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and oxygen reduction reaction (ORR) as a function of ion irradiation fluence. The optimized PtPb nanoplates with the mixed structure of dislocations, subgrain boundaries, and small amorphous domains are the most active for MOR, EOR, and ORR. They can also maintain high catalytic stability in acid solution. This work highlights the impact and significance of inducing/controlling the defects and interfaces on Pt-based nanocrystals toward maximizing the catalytic performance by advanced ion irradiation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structure and chemical composition of supported Pt-Sn electrocatalysts for ethanol oxidation

    International Nuclear Information System (INIS)

    Jiang Luhua; Sun Gongquan; Sun Shiguo; Liu Jianguo; Tang Shuihua; Li Huanqiao; Zhou Bing; Xin Qin

    2005-01-01

    Carbon supported PtSn alloy and PtSnO x particles with nominal Pt:Sn ratios of 3:1 were prepared by a modified polyol method. High resolution transmission electron microscopy (HRTEM) and X-ray microchemical analysis were used to characterize the composition, size, distribution, and morphology of PtSn particles. The particles are predominantly single nanocrystals with diameters in the order of 2.0-3.0 nm. According to the XRD results, the lattice constant of Pt in the PtSn alloy is dilated due to Sn atoms penetrating into the Pt crystalline lattice. While for PtSnO x nanoparticles, the lattice constant of Pt only changed a little. HRTEM micrograph of PtSnO x clearly shows that the change of the spacing of Pt (1 1 1) plane is neglectable, meanwhile, SnO 2 nanoparticles, characterized with the nominal 0.264 nm spacing of SnO 2 (1 0 1) plane, were found in the vicinity of Pt particles. In contrast, the HRTEM micrograph of PtSn alloy shows that the spacing of Pt (1 1 1) plane extends to 0.234 nm from the original 0.226 nm. High resolution energy dispersive X-ray spectroscopy (HR-EDS) analyses show that all investigated particles in the two PtSn catalysts represent uniform Pt/Sn compositions very close to the nominal one. Cyclic voltammograms (CV) in sulfuric acid show that the hydrogen ad/desorption was inhibited on the surface of PtSn alloy compared to that on the surface of the PtSnO x catalyst. PtSnO x catalyst showed higher catalytic activity for ethanol electro-oxidation than PtSn alloy from the results of chronoamperometry (CA) analysis and the performance of direct ethanol fuel cells (DEFCs). It is deduced that the unchanged lattice parameter of Pt in the PtSnO x catalyst is favorable to ethanol adsorption and meanwhile, tin oxide in the vicinity of Pt nanoparticles could offer oxygen species conveniently to remove the CO-like species of ethanolic residues to free Pt active sites

  8. Anodic oxidation of ammonia in alkaline solutions at Pt/Pt electrodes. Hakkin denkyokujo ni okeru enkisei ammonia yoeki no anodo sanka

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Ryoichiro; Katsuta, Masahiro; Matsumoto, Tamotsu; Kobayashi, Yoshikazu; Asami, Yusaku; Hirano, Katsuhiko (Shibaura Inst. of Tech., Tokyo (Japan))

    1989-01-05

    Anodic oxidation of ammonia in alkaline solutions on Pt/Pt electrode, in which NH {sub 3} is oxidized producing N {sub 2}, is a promising reaction in application to a fuel cell and water treatment. In this study, the relations between electrode potential and adsorbed intermediates, reaction process were elucidated by potentiodynamic method and potential step method. In measurement, a transient memory device and a microprocessor were connected to an electrolysis device as a new method, then measurement of electric potential and current and integral calculation were perfromed at high speed. Active sites of electrode were covered by Pt NH {sub x}. Faradic current corresponds to the N {sub 2} evolution was shown markedly by anodic scanning. The relation between electrode potential and reaction process was revealed by potential step method. It is found that Pt-NH {sub 2} is the active intermediate for the N {sub 2} evolution, and when current shows maximum, its coverage is nearly 0.5. 15 refs., 7 figs.

  9. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    Science.gov (United States)

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Enhancing Photocatalytic Performance through Tuning the Interfacial Process between -Assembled and Pt-Loaded Microspheres

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2012-01-01

    Full Text Available This work reports on a simple two-step approach to rutile TiO2-assembled microspheres loaded by Pt with an aim to tune semiconductor-metal interfacial processes for enhancing the photocatalytic performance. Systematic sample characterizations and structural analysis indicate that Pt loading did not produce any significant influences on the lattice structure of TiO2-assembled microspheres. Instead, upon Pt loading, Schottky barrier was formed in the interfaces between microspheres and Pt nanoparticles, which inhabited efficiently the recombination of photo-generated electron-hole pairs essential for the photocatalytic activities. In addition, TiO2 microspheres also showed a capacity of electrons storage and releasing as represented by a high dielectric constant, which increased the utility rate of photogenerated electrons. All these structural advantages contribute to the excellent photocatalytic activity under ultraviolet light irradiation. The interfacial process between microspheres and Pt nanoparticles was further tuned through adjusting the loading Pt content of metal Pt. As a consequence, the best photocatalytic activity on TiO2 was obtained at 0.85 wt% Pt loading, above or below which photocatalytic activity was apparently decreased.

  11. Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Farida [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Zemirli, Mourad, E-mail: zemirlimourad@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria); Benakki, Mouloud; Bouarab, Said [Laboratoire de Physique et Chimie Quantique, Faculte des Sciences, Universite Mouloud Mammeri, 15000 Tizi-Ouzou (Algeria)

    2012-02-15

    The coadsorption of Li and H atoms on Pt(001), Pt(110) and Pt(111) surfaces is studied using density functional theory with generalised gradient approximation. In all calculations Li, H and the two topmost layers of the metal were allowed to relax. At coverage of 0.25 mono-layer in a p(2 Multiplication-Sign 2) unit cell, lithium adsorption at the hollow site for the three surfaces is favoured over top and bridge sites. The most favoured adsorption sites for H atom on the Pt(001) and Pt(110) surfaces are the top and bridge sites, while on Pt(111) surface the fcc site appears to be slightly favoured over the hcp site. The coadsorption of Li and atomic hydrogen shows that the interaction between the two adsorbates is stabilising when they are far from each other. The analysis of Li, H and Pt local density of states shows that Li strongly interacts with the Pt surfaces.

  12. ANALISIS PENGARUH KAIZEN TERHADAP KINERJA KARYAWAN PT FUMAKILLA INDONESIA UNIT BANJARMASIN

    Directory of Open Access Journals (Sweden)

    Muhammad Iman Ramadhan

    2016-04-01

    Full Text Available This  research  aimed  to  identify  and  analyze  the  infl uence  of  kaizen  which consist of seiri (X1, seiton (X2, seiso (X3, seikestu (X4, and shitsuke (X5 as independent variables either simultaneously or partially to the employees’ performance (Y as dependent variable at PT Fumakilla Indonesia, Banjarmasin unit.  The instrument used in this research was questionnaire and then it distributed to all production employees (105 people at PT Fumakilla Indonesia, Banjarmasin Unit based on a sample census. The variable measured by using Likert Scale from 1 to 5. Multiple linear regression analysis also used to determine the effect of independent variables, namely seiri (X1, seiton (X2, seiso (X3, seikestu (X4, and shitsuke (X5 to the dependent variable, that is employees’ performance (Y simultaneously or partially. The results indicate that kaizen which consist of seiri (X1, seiton (X2, seiso (X3,  seikestu  (X4,  and  shitsuke  (X5  simultaneously  affect  the  employees’ performance (Y. Whereas, as partially, only seiri (X1, seiton (X2, and seiso (X3 signifi cantly have infl uence to the employees’ performance, whereas seikestu (X4 and shitsuke (X5 have no signifi cant infl uence. Keywords : Kaizen, employees’ performance

  13. Halogen poisoning effect of Pt-TiO{sub 2} for formaldehyde catalytic oxidation performance at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaofeng; Cheng, Bei [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Yu, Jiaguo, E-mail: jiaguoyu@yahoo.com [State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122#, Wuhan 430070 (China); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ho, Wingkei, E-mail: keithho@ied.edu.hk [Department of Science and Environmental Studies and Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, N.T. Hong Kong (China)

    2016-02-28

    Graphical abstract: - Highlights: • The Pt-TiO{sub 2} catalyst is deactivated by adsorption of halogen ions. • The halogen poison is mainly attributed to the active site blocking of the Pt surface. • Halogen ions and Pt form Pt−X coordination bonds. • Large halogen diameter exhibits severe poisoning effect. - Abstract: Catalytic decomposition of formaldehyde (HCHO) at room temperature is an important method for HCHO removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. However, the stability of this catalyst remains unexplored. In this study, Pt-TiO{sub 2} (Pt-P25) catalysts with and without adsorbed halogen ions (including F{sup −}, Cl{sup −}, Br{sup −}, and I{sup −}) were prepared through impregnation and ion modification. Pt-TiO{sub 2} samples with adsorbed halogen ions exhibited reduced catalytic activity for formaldehyde decomposition at room temperature compared with the Pt-TiO{sub 2} sample; the catalytic activity followed the order of F-Pt-P25, Cl-Pt-P25, Br-Pt-P25, and I-Pt-P25. Characterization results (including XRD, TEM, HRTEM, BET, XPS, and metal dispersion) showed that the adsorbed halogen ions can poison Pt nanoparticles (NPs), thereby reducing the HCHO oxidation activity of Pt-TiO{sub 2}. The poison mechanism is due to the strong adsorption of halogen ions on the surface of Pt NPs. The adsorbed ions form coordination bonds with surface Pt atoms by transferring surplus electrons into the unoccupied 5d orbit of the Pt atom, thereby inhibiting oxygen adsorption and activation of the Pt NP surface. Moreover, deactivation rate increases with increasing diameter of halogen ions. This study provides new insights into the fabrication of high-performance Pt-based catalysts for indoor air purification.

  14. Synthesis and characterization of diverse Pt nanostructures in Nafion.

    Science.gov (United States)

    Ingle, N J C; Sode, A; Martens, I; Gyenge, E; Wilkinson, D P; Bizzotto, D

    2014-02-25

    With the aid of TEM characterization, we describe two distinct Pt nanostructures generated via the electroless reduction of Pt(NH3)4(NO2)2 within Nafion. Under one set of conditions, we produce bundles of Pt nanorods that are 2 nm in diameter and 10-20 nm long. These bundled Pt nanorods, uniformly distributed within 5 μm of the Nafion surface, are strikingly similar to the proposed hydrated nanomorphology of Nafion, and therefore strongly suggestive of Nafion templating. By altering the reaction environment (pH, reductant strength, and Nafion hydration), we can also generate nonregular polyhedron Pt nanoparticles that range in size from a few nanometers in diameter up to 20 nm. These Pt nanoparticles form a dense Pt layer within 100-200 nm from the Nafion surface and show a power-law dependence of particle size and distribution on the distance from the Nafion membrane surface. Control over the distribution and the type of Pt nanostructures in the surface region may provide a cost-effective, simple, and scaleable pathway for enhancing manufacturability, activity, stability, and utilization efficiency of Pt catalysts for electrochemical devices.

  15. Electrochemical properties of mixed WC and Pt-black powders

    Directory of Open Access Journals (Sweden)

    MAJA D. OBRADOVIC

    2008-12-01

    Full Text Available The electrochemical characteristics of a mixture of Pt-black and WC powders and its catalytic activity for methanol and formic acid oxidation were investigated in acid solution. XRD and AFM measurements revealed that the WC powder employed for the investigation was a single-phase material consisting of crystallites/spherical particles of average size of about 50 nm, which were agglomerated into much larger particles. Cyclic voltammetry showed that the WC underwent electrochemical oxidation, producing tungstate species. In the case of the mixed Pt + WC powders, the tungstate species were deposited on the Pt as a thin film of hydrous tungsten oxide. Enhanced hydrogen intercalation in the hydrous tungsten oxide was observed and it was proposed to be promoted in mixed powders by the presence of hydrogen adatoms on bare Pt sites. The determination of Pt surface area in the Pt + WC layer by stripping of underpotentially deposited Cu revealed that the entire Pt surface was accessible for underpotential deposition of Cu. Investigation of the electrochemical oxidation of methanol and formic acid on Pt + WC and pure Pt layers did not indicate electrocatalytic promotion due to the presence of WC.

  16. Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts

    Directory of Open Access Journals (Sweden)

    Tingting Yang

    2015-02-01

    Full Text Available A simple and effective method for the preparation of platinum nanoparticles (Pt NPs grown on amino-func‐ tionalized halloysite nanotubes (HNTs was developed. The nanostructures were synthesized through the func‐ tionalization of the HNTs, followed by an in situ approach to generate Pt NPs with diameter of approximately 1.5 nm within the entire HNTs. The synthesis process, composition and morphology of the nanostructures were characterized. The results suggest PtNPs/NH2-HNTs nanostructures with ultrafine PtNPs were successfully synthesized by green chemically-reducing H2PtCl6 without the use of surfactant. The nanostructures exhibit promising catalytic properties for reducing potassium hexacyanoferrate(III to potassium hexacyanoferrate(II. The presented experiment for novel PtNPs/NH2-HNTs nanostructures is quite simple and environmentally benign, permitting it as a potential application in the future field of catalysts.

  17. Exchange coupled CoPt/FePtC media for heat assisted magnetic recording

    Science.gov (United States)

    Dutta, Tanmay; Piramanayagam, S. N.; Ru, Tan Hui; Saifullah, M. S. M.; Bhatia, C. S.; Yang, Hyunsoo

    2018-04-01

    L10 FePtC granular media are being studied as potential future magnetic recording media and are set to be used in conjunction with heat assisted magnetic recording (HAMR) to enable recording at write fields within the range of current day recording heads. Media structures based on a FePtC storage layer and a capping layer can alleviate the switching field distribution (SFD) requirements of HAMR and reduce the noise originating from the writing process. However, the current designs suffer from SFD issues due to high temperature writing. To overcome this problem, we study a CoPt/FePtC exchange coupled composite structure, where FePtC serves as the storage layer and CoPt (with higher Curie temperature, Tc) as the capping layer. CoPt remains ferromagnetic at near Tc of FePtC. Consequently, the counter exchange energy from CoPt would reduce the noise resulting from the adjacent grain interactions during the writing process. CoPt/FePtC bilayer samples with different thicknesses of CoPt were investigated. Our studies found that CoPt forms a continuous layer at a thickness of 6 nm and leads to considerable reduction in the saturation field and its distribution.

  18. Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea

    Directory of Open Access Journals (Sweden)

    Torres Marta

    2010-01-01

    Full Text Available Abstract Background Cognitive impairment is one of the main consequences of obstructive sleep apnea (OSA and is usually attributed in part to the oxidative stress caused by intermittent hypoxia in cerebral tissues. The presence of oxygen-reactive species in the brain tissue should be produced by the deoxygenation-reoxygenation cycles which occur at tissue level during recurrent apneic events. However, how changes in arterial blood oxygen saturation (SpO2 during repetitive apneas translate into oxygen partial pressure (PtO2 in brain tissue has not been studied. The objective of this study was to assess whether brain tissue is partially protected from intermittently occurring interruption of O2 supply during recurrent swings in arterial SpO2 in an animal model of OSA. Methods Twenty-four male Sprague-Dawley rats (300-350 g were used. Sixteen rats were anesthetized and non-invasively subjected to recurrent obstructive apneas: 60 apneas/h, 15 s each, for 1 h. A control group of 8 rats was instrumented but not subjected to obstructive apneas. PtO2 in the cerebral cortex was measured using a fast-response oxygen microelectrode. SpO2 was measured by pulse oximetry. The time dependence of arterial SpO2 and brain tissue PtO2 was carried out by Friedman repeated measures ANOVA. Results Arterial SpO2 showed a stable periodic pattern (no significant changes in maximum [95.5 ± 0.5%; m ± SE] and minimum values [83.9 ± 1.3%]. By contrast, brain tissue PtO2 exhibited a different pattern from that of arterial SpO2. The minimum cerebral cortex PtO2 computed during the first apnea (29.6 ± 2.4 mmHg was significantly lower than baseline PtO2 (39.7 ± 2.9 mmHg; p = 0.011. In contrast to SpO2, the minimum and maximum values of PtO2 gradually increased (p 2 were significantly greater relative to baseline and the first apnea dip, respectively. Conclusions These data suggest that the cerebral cortex is partially protected from intermittently occurring interruption of

  19. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  20. Tuning of size and shape of Au–Pt nanocatalysts for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Hunyadi Murph, Simona E.; Murphy, Catherine J.; Colon-Mercado, Hector R.; Torres, Ricardo D.; Heroux, Katie J.; Fox, Elise B.; Thompson, Lucas B.; Haasch, Richard T.

    2011-01-01

    In this article, we report the precise control of the size, shape, and surface morphology of Au–Pt nanocatalysts (cubes, blocks, octahedrons, and dogbones) synthesized via a seed-mediated approach. Gold “seeds” of different aspect ratios (1–4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au–Pt nanocatalysts at a low temperature (40 °C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis, UV–Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was employed to evaluate the Au–Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction of direct methanol fuel cells. The results indicate the Au–Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au–Pt dogbones and Pt-black; however, its performance is affected by the presence of MeOH.

  1. TUNING OF SIZE AND SHAPE OF AU-PT NANOCATALYST FOR DIRECT METHANOL FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Murph, S.

    2011-04-20

    In this paper, we report the precise control of the size, shape and surface morphology of Au-Pt nanocatalysts (cubes, blocks, octahedrons and dogbones) synthesized via a seed-mediated approach. Gold 'seeds' of different aspect ratios (1 to 4.2), grown by a silver-assisted approach, were used as templates for high-yield production of novel Au-Pt nanocatalysts at a low temperature (40 C). Characterization by electron microscopy (SEM, TEM, HRTEM), energy dispersive X-ray analysis (EDX), UV-Vis spectroscopy, zeta-potential (surface charge), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) were used to better understand their physico-chemical properties, preferred reactivities and underlying nanoparticle growth mechanism. A rotating disk electrode was used to evaluate the Au-Pt nanocatalysts electrochemical performance in the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) of direct methanol fuel cells. The results indicate the Au-Pt dogbones are partially and in some cases completely unaffected by methanol poisoning during the evaluation of the ORR. The ORR performance of the octahedron particles in the absence of MeOH is superior to that of the Au-Pt dogbones and Pt-black, however its performance is affected by the presence of MeOH.

  2. Hollow ZSM-5 encapsulated Pt nanoparticles for selective catalytic reduction of NO by hydrogen

    Science.gov (United States)

    Hong, Zhe; Wang, Zhong; Chen, Dan; Sun, Qiang; Li, Xuebing

    2018-05-01

    Pt nanoparticles were successfully encapsulated in hollow ZSM-5 single crystals by tetrapropylammonium hydroxide (TPAOH) hydrothermal treatment with an "dissolution-recrystallization" process. The prepared Pt/hollow ZSM-5 (Pt/h-ZSM-5re) sample exhibited the best activity and a maximum NO conversion of 84% can be achieved at 90 °C with N2 selectivity of 92% (GHSV = 50,000 h-1). Meanwhile, Pt/h-ZSM-5re catalyst exhibited excellent SO2, H2O resistance and durability, which was related to the stabilization of Pt active sites by hollow structure during H2-SCR. It was found that the increase of NO2 concentration in the feed gas mixture led to an activity decline. In addition, the H2-SCR reaction routes over Pt/hollow ZSM-5 catalyst at different temperature were investigated.

  3. Monodispersed porous flowerlike PtAu nanocrystals as effective electrocatalysts for ethanol oxidation

    Science.gov (United States)

    Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou

    2017-11-01

    Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.

  4. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Al-Shareef, Reem A.; Harb, Moussab; Saih, Youssef; Ould-Chikh, Samy; Roldan, Manuel A.; Anjum, Dalaver H.; Guyonnet, Elodie Bile; Candy, Jean-Pierre; Jan, Deng-Yang; Abdo, Suheil F.; Aguilar-Tapia, Antonio; Proux, Olivier; Hazemann, Jean-Louis; Basset, Jean-Marie

    2018-01-01

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  5. Understanding of the structure activity relationship of PtPd bimetallic catalysts prepared by surface organometallic chemistry and ion exchange during the reaction of iso-butane with hydrogen

    KAUST Repository

    Alshareef, Reem Abdul aziz Hamed

    2018-04-25

    Well-defined silica supported bimetallic catalysts Pt100-x Pdx were prepared by Surface Organometallic Chemistry (SOMC) and Ionic-Exchange (IE) methods. For all investigated catalysts, iso-butane reaction with hydrogen under differential conditions led to the formation of methane and propane, n-butane, and traces of iso-butylene. The total reaction rate decreased with increasing the Pd loading for both catalysts series as a result of decreasing turnover rate of both isomerization and hydrogenolysis. In the case of Pt100-x Pdx(SOMC) catalysts, the experimental results in combination with DFT calculations suggested a selective coverage of Pt (1 0 0) surface by agglomerated Pd atoms like “islands”, assuming that each metal roughly keeps its intrinsic catalytic properties with relatively small electron transfer from Pt to Pd in the case of Pt-rich sample and from Pd to Pt in the case of Pd-rich sample. For the PtPd catalysts prepared by IE, the catalytic behavior could be explained by the formation of a surface alloy between Pt and Pd in the case of Pd-rich sample and by the segregation of a small amount of Pd on the surface in the case of Pt-rich sample, as demonstrated by TEM, EXAFS and DFT. The catalytic results were explained by a structure activity relationship based on the proposed mechanism of CH bond and CC bond activation and cleavage for iso-butane hydrogenolysis, isomerization, cracking and dehydrogenation.

  6. Low Pt content of carbon supported Pt-Ni-TiO2 nanotube electrocatalysts for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.Z; Wu, X.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai, (China). Dept. of Chemical Engineering

    2008-07-01

    Interest in titanium oxide (TiO2) nanomaterial is growing due to their special characteristics for optics, catalysis, and photoelectricity conversion. In this study, the anatase/rutile crystalline of TiO2 nanoparticles was synthesized by co-deposition. TiO2 nanotubes were then obtained by microwave irradiations. This paper described the mechanism to fabricate TiO2 nanotubes. The conditions for preparing TiO2 nanotubes by microwave irradiation were optimized. Electrocatalysts were then prepared on the basis of the synthesized TiO2 nanotube. Their performances were investigated by the electro-oxidation of methanol. When Pt electrocatalysts were doped with a certain content of TiO2 nanotubes, they had more electrocatalytic activity for methanol electro-oxidation, particularly if the second transition metal, such as Ni, was added into the electrocatalyst. The electrocatalysts contained 5 and 10 wt per cent of Pt and Ni respectively. The 10 wt per cent TiO2 nanotubes showed better activities than any other catalysts for methanol electro-oxidation. According to XRD and TEM results, the size of nanoparticles of Pt became smaller after adding TiO2 nanotubes into the catalysts. It was concluded that here might be some interactions between Pt, Ni, and TiO2 nanotubes.

  7. Neuronal Activity in the Subthalamic Cerebrovasodilator Area under Partial-Gravity Conditions in Rats

    Directory of Open Access Journals (Sweden)

    Zeredo L Zeredo

    2014-03-01

    Full Text Available The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA, a key area that controls cerebral blood flow (CBF, in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth and 0 g (complete weightlessness in space. Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter.

  8. Spontaneous deposition of Ru on Pt (100: morphological and electrochemical studies. Preliminary results of ethanol oxidation at Pt(100/Ru

    Directory of Open Access Journals (Sweden)

    Colle Vinicius D.

    2003-01-01

    Full Text Available In the present work ruthenium was deposited in submonolayer amounts on Pt(100 by spontaneous deposition at several deposition times. The Pt (100/Ru surfaces were analyzed using ex-situ STM to image the deposits characteristic of ruthenium on Pt (100. It was observed the formation of ruthenium islands with diameters between 1.0 and 4.5 nm with bi-atomic thickness in the center of the islands. A homogeneous distribution of the ruthenium islands on the platinum terraces was found, with no preferential deposition on steps or surface defect sites. The ruthenium coverage degree had been calculated by the decrease of charge of the hydrogen adsorption-desorption peaks in the cyclic voltammograms of the Pt(100/Ru electrodes. The Pt(100/Ru electrodes with a ruthenium coverage degree of ca. 0.3 showed a high activity for the ethanol electrooxidation. The electrochemical experimental results support strongly the bifunctional mechanism for the enhanced ethanol oxidation.

  9. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation

    International Nuclear Information System (INIS)

    Cai, Zhi-xiong; Liu, Cong-cong; Wu, Geng-huang; Chen, Xiao-mei; Chen, Xi

    2014-01-01

    Graphical abstract: - Highlights: • Porous 3D dendrite-like structure of Pt-on-Pd bimetallic nanostructures supported on graphene were prepared. • The surface of nanostructures was very “clean” because of the surfactant-free formation process and the use of green reagent. • The hetero-nanostructures showed excellent electrocatalytic performance in methanol oxidation. - Abstract: A green synthesis of Pt-on-Pd bimetallic nanodendrites supported on graphene (GPtPdNDs) with a Pd interior and a dendrite-like Pt exterior was achieved using a two-step preparation, mixing graphene and PdCl 4 2− first, then adding PtCl 4 2− and ethanol without any other solvent. The morphology, structure and composition of the thus-prepared GPtPdNDs were characterized by transmission electron microscopy (TEM), high resolution TEM, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Because no halide ions (refer in particular to Br - , I − ) or surfactant was involved in the synthesis, the prepared GPtPdNDs were directly modified onto a glassy carbon electrode and showed excellent electrocatalytic performance in methanol oxidation without any pretreatments. Moreover, with the special structure of PtPdNDs and the synergetic effects of Pt and Pd and the enhanced electron transfer by graphene, the GPtPdNDs composites exhibited higher electrocatalytic activity and better tolerance to Pt nanoparticles supported on graphene (GPtNPs) and Pt/C for methanol oxidation

  10. Analisis Pengaruh Motivasi Kerja dan Training terhadap Produktivitas Kerja Karyawan Produksi pada PT. Bina Busana Internusa

    Directory of Open Access Journals (Sweden)

    Laksmi Sito Dwi Irvianti

    2012-11-01

    Full Text Available PT Bina Busana Internusa is a company engaged in garment, established since 1989, and has been widely recognized as one of the leading garment industry in Indonesia. The purpose of this study is to determine whether there is influence between working motivation and training on employee productivity partially and simultaneously. The method of analysis used in this study is the Pearson correlation, simple and multiple regressions. Data are obtained from the distribution of questionnaires to 92 production employees as respondents, and interviews with respondents and with the HRD PT Bina Busana Internusa as well. The questionnaire uses Likert scale which was to know the degree of disagreement and agreement from the employee to the statement on the questionnaire. The results in this study stated that motivation and training simultaneously have a significant impact on employee productivity. Working motivation has a relationship and partially affects employee productivity. So is the training has a relationship and partially affects employee productivity. Therefore, the expected results of this research may provide inputs for firms and employees in particular to increase the productivity.

  11. Approach for partial derivatives of the J (ξ, β) function in respect to β

    International Nuclear Information System (INIS)

    Martinez, A.S.; Monteiro, M.A.M.

    1989-01-01

    An approximated method for the calculation of the J (ξ, β) function, and its partial derivatives in respect to β, is presented in this paper. The J (ξ, β) - function and its partial derivatives are frequently used in the resonance integrals calculations. The results obtained with the present approximated method are found to be in good agreement with benchmark results. (author) [pt

  12. Penerapan Activity-based Costing System Untuk Menentukan Harga Pokok Produksi PT. Celebes Mina Pratama

    OpenAIRE

    Rahmaji, Danang

    2013-01-01

    PT. Celebes Mina Pratama yang selama ini masih menggunakan Sistem Tradisional dengan metode Full Costing mempunyai aset tetap Rp.7.127.242.784 dari total aset Rp.13.740.563.379. Activity-Based Costing System mampu memberikan perhitungan Harga Pokok Produksi yang lebih akurat. Penelitian ini mempunyai tiga tujuan utama. Pertama, bertujuan untuk mengetahui perhitungan Harga Pokok Produksi dengan metode tradisional yang digunakan oleh Perusahaan. Kedua, untuk mengetahui perhitungan Harga Pokok P...

  13. Synthesis of Pt/rGO catalysts with two different reducing agents and their methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Thu Ha Thi, E-mail: ptntd2004@yahoo.fr [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Tran, Thanh Thuy Thi, E-mail: tranthithanhthuygl@gmail.com [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Le, Hong Ngan Thi; Tran, Lien Thi; Nguyen, Phuong Hoa Thi; Nguyen, Minh Dang [Key Laboratory for Petrochemical and Refinery Technologies, 2 Pham Ngu Lao street, Hanoi (Viet Nam); Quynh, Bui Ngoc [Institut de recherches sur la catalyse et l’environnement de Lyon, UMR5256, 2 avenue Albert Einstein, 69626 Villeurbanne cedex (France)

    2016-01-15

    Highlights: • Pt/rGO catalysts were successfully synthesized using either NaBH{sub 4} or ethylene glycol. • Synthesis using NaBH{sub 4} could improve electrocatalytic towards methanol oxidation of Pt/rGO catalyst. • 40%Pt/rGO synthesized using NaBH{sub 4} showed the best electrocatalytic performance. - Abstract: The synthesis processes of Platinum (Pt) on reduced graphene oxide (rGO) catalysts from graphene oxide (GO) using two reducing agents including sodium borohydride and ethylene glycol is reported. Structure and morphology of Pt/rGO catalysts are characterized by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrocatalytic methanol oxidation properties of these catalysts are evaluated by cyclic voltammetry and chronoamperometry. The results show that catalyst synthesized using sodium borohydride has a higher metallic Pt content and an improved catalytic performance in comparison to catalyst synthesized using ethylene glycol. Moreover, effect of Pt loading amount on electrocatalytic methanol oxidation performance of catalysts synthesized using sodium borohydride is systematically investigated. The optimal Pt loading amount on graphene is determined to be 40%.

  14. Enhanced methanol electro-oxidation reaction on Pt-CoO{sub x}/MWCNTs hybrid electro-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nouralishahi, Amideddin, E-mail: Nouralishahi@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Caspian Faculty of Engineering, University of Tehran, P.O. Box 43841-119, Rezvanshahr (Iran, Islamic Republic of); Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rashidi, Ali Morad, E-mail: Rashidiam@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Mortazavi, Yadollah, E-mail: Mortazav@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Khodadadi, Abbas Ali, E-mail: Khodadad@ut.ac.ir [Catalysis and Nanostructured Materials Research Laboratory, School of Chemical Engineering, University of Tehran, P.O. Box 11155/4563, Tehran (Iran, Islamic Republic of); Choolaei, Mohammadmehdi, E-mail: Choolaeimm@ripi.ir [Catalysis and Nanotechnology Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2015-04-30

    Highlights: • Promoting effects of Cobalt oxide on methanol electro-oxidation over Pt/MWCNTs are investigated. • Higher activity, about 2.9 times, and enhanced stability are observed on Pt-CoO{sub x}/MWCNTs. • Electrochemical active surface area of Pt nanoparticles is significantly improved upon CoO{sub x} addition. • Bi-functional mechanism is facilitated in presence of CoO{sub x}. - Abstract: The electro-catalytic behavior of Pt-CoO{sub x}/MWCNTs in methanol electro-oxidation reaction (MOR) is investigated and compared to that of Pt/MWCNTs. The electro-catalysts were synthesized by an impregnation method using NaBH{sub 4} as the reducing agent. The morphological and physical characteristics of samples are examined by XRD, TEM, ICP and EDS techniques. In the presence of CoO{sub x}, Pt nanoparticles were highly distributed on the support with an average particle size of 2 nm, an obvious decrease from 5.1 nm for Pt/MWCNTs. Cyclic voltammetry, CO-stripping, Chronoamperometry, and electrochemical impedance spectroscopy (EIS) measurements are used to study the electrochemical behavior of the electro-catalysts. The results revealed a considerable enhancement in the oxidation kinetics of CO{sub ads} on Pt active sites by the participation of CoO{sub x}. Compared to Pt/MWCNTs, Pt-CoO{sub x}/MWCNTs sample has a larger electrochemical active surface area (ECSA) and higher electro-catalytic activity and stability toward methanol electro-oxidation. According to the results of cyclic voltammetry, the forward anodic peak current density enhances more than 89% at the optimum atomic ratio of Pt:Co = 2:1. Furthermore, inclusion of cobalt oxide species causes the onset potential of methanol electro-oxidation reaction to shift 84 mV to negative values compared to that on Pt/MWCNTs. Based on EIS data, dehydrogenation of methanol is the rate-determining step of MOR on both Pt/MWCNTs and Pt-CoO{sub x}/MWCNTs, at small overpotentials. However, at higher overpotentials, the

  15. The Use of C-MnO2 as Hybrid Precursor Support for a Pt/C-MnxO1+x Catalyst with Enhanced Activity for the Methanol Oxidation Reaction (MOR

    Directory of Open Access Journals (Sweden)

    Alessandro H.A. Monteverde Videla

    2015-07-01

    Full Text Available Platinum (Pt nanoparticles are deposited on a hybrid support (C-MnO2 according to a polyol method. The home-made catalyst, resulted as Pt/C-MnxO1+x, is compared with two different commercial platinum based materials (Pt/C and PtRu/C. The synthesized catalyst is characterized by means of FESEM, XRD, ICP-MS, XPS and μRS analyses. MnO2 is synthesized and deposited over a commercial grade of carbon (Vulcan XC72 by facile reduction of potassium permanganate in acidic solution. Pt nanoparticles are synthesized on the hybrid support by a polyol thermal assisted method (microwave irradiation, followed by an annealing at 600 °C. The obtained catalyst displays a support constituted by a mixture of manganese oxides (Mn2O3 and Mn3O4 with a Pt loading of 19 wt. %. The electro-catalytic activity towards MOR is assessed by RDE in acid conditions (0.5 M H2SO4, evaluating the ability to oxidize methanol in 1 M concentration. The synthesized Pt/C-MnxO1+x catalyst shows good activity as well as good stability compared to the commercial Pt/C based catalyst.

  16. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Science.gov (United States)

    Chhina, H.; Campbell, S.; Kesler, O.

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.

  17. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada); Campbell, S. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada)

    2008-04-15

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 C and compared to that of HiSpec 4000 trademark Pt/Vulcan XC-72R in 0.5 M H{sub 2}SO{sub 4}. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000 trademark. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization. (author)

  18. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... adsorption site. We will discuss the enhanced activity of Pt-Si alloys for small organic molecule oxidation, which can be attributed to the improved CO electro-oxidation kinetics on Pt-Si....

  19. Assessment for the role of rare earth oxide in the R2O3 - RuO2 - Pt composite electrode

    International Nuclear Information System (INIS)

    Do Ngoc Lien; Nguyen Van Sinh

    2004-01-01

    Our work has showed several results related to assessment for the role of rare earth oxide in the R 2 O 3 - RuO 2 - Pt composite electrode. The precursor method was used for preparing composite electrode in the following forms: a- RuO 2 - Pt electrode b- La 2 O 3 (55%) - RuO 2 (45%) - Pt electrode c- CeO 2 (60%) - RuO 2 (40%) - Pt electrode By measurements of anodic polarization and cyclic potential for the types of a, b, c electrodes we can see that the La 2 O 3 (55%) - 45% RuO 2 - Pt electrode will be the best anodic electrode. It means that the partial replacement of ruthenium oxide by lanthanum oxide in composite oxide electrode will be an effective one. (author)

  20. Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.

    Science.gov (United States)

    Sun, Zhenyu; Wang, Xiang; Liu, Zhimin; Zhang, Hongye; Yu, Ping; Mao, Lanqun

    2010-07-20

    Pt-Ru/CeO(2)/multiwalled carbon nanotube (MWNT) electrocatalysts were prepared using a rapid sonication-facilitated deposition method and were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. Morphological characterization by TEM revealed that CeO(2) nanoparticles (NPs) were in intimate contact with Pt-Ru NPs, and both were highly dispersed on the exteriors of nanotubes with a small size and a very narrow size distribution. Compared with the Pt-Ru/MWNT and Pt/MWNT electrocatalysts, the as-prepared Pt-Ru/CeO(2)/MWNT exhibited a significantly improved electrochemically active surface area (ECSA) and a remarkably enhanced activity toward methanol oxidation. The effects of the Pt-Ru loading and the Pt-to-Ru molar ratio on the electrocatalytic activity of Pt-Ru/CeO(2)/MWNT for methanol oxidation were investigated. We found that a maximum activity toward methanol oxidation reached at the 10 wt % of Pt-Ru loading and 1:1 of Pt-to-Ru ratio. Moreover, the role of CeO(2) in the catalysts for the enhancement of methanol oxidation was discussed in terms of both bifunctional mechanism and electronic effects.

  1. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  2. Efficient electrocatalytic performance of thermally exfoliated reduced graphene oxide-Pt hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Antony, Rajini P., E-mail: raji.anna@gmail.com; Preethi, L.K.; Gupta, Bhavana; Mathews, Tom, E-mail: tom@igcar.gov.in; Dash, S.; Tyagi, A.K.

    2015-10-15

    Highlights: • Synthesis of Pt–RGO nanohybrids of very high electrochemically active surface area. • Electrocatalytic activity-cum-stability: ∼10 times that of commercial Pt-C catalyst. • TEM confirms narrow size distribution and excellent dispersion of Pt nanoparticles. • SAED and XRD indicate (1 1 1) orientation of Pt nanoparticles. • Methanol oxidation EIS reveal decrease in charge transfer resistance with potential - Abstract: High quality thermally exfoliated reduced graphene oxide (RGO) nanosheets decorated with platinum nanocrystals have been synthesized using a simple environmentally benign process. The electrocatalytic behaviour of the Pt–RGO nanohybrid for methanol oxidation was studied using cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. High resolution transmission electron microscopy shows uniform dispersion of Pt nanoparticles of ∼2–4 nm size. X-ray diffraction and selected area diffraction studies reveal (1 1 1) orientation of the platinum nanoparticles. The cyclic voltammetry and chronoamperometry results indicate higher catalytic activity and stability for Pt–RGO compared to commercial Pt-C. The electrochemical active surface area of Pt–RGO (52.16 m{sup 2}/g) is found to be 1.5 times that of commercial Pt-C. Impedance spectroscopy shows different impedance behaviour at different potential regions, indicating change in methanol oxidation reaction mechanism with potential. The reversal of impedance pattern to the second quadrant, at potentials higher than ∼0.40 V, indicates change in the rate determining reaction.

  3. Bimetallic Ag-Pt Sub-nanometer Supported Clusters as Highly Efficient and Robust Oxidation Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Negreiros, Fabio R. [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Halder, Avik [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Yin, Chunrong [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Singh, Akansha [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Barcaro, Giovanni [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Sementa, Luca [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Bartling, Stephan [Institut für Physik, Universität Rostock, Rostock Germany; Meiwes-Broer, Karl-Heinz [Institut für Physik, Universität Rostock, Rostock Germany; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, Lemont IL USA; Sen, Prasenjit [Harish-Chandra Research Institute, HBNI, Chhatnag Road Jhunsi Allahabad 211019 India; Nigam, Sandeep [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai- 400 085 India; Fukui, Nobuyuki [East Tokyo Laboratory, Genesis Research Institute, Inc., Ichikawa Chiba 272-0001 Japan; Yasumatsu, Hisato [Cluster Research Laboratory, Toyota Technological Institute: in, East Tokyo Laboratory, Genesis Research Institute, Inc. Ichikawa, Chiba 272-0001 Japan; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, Lemont IL USA; Nanoscience and Technology Division, Argonne National Laboratory, Lemont IL USA; Institute for Molecular Engineering, University of Chicago, Chicago IL USA; Fortunelli, Alessandro [CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa Italy; Materials and Process Simulation Center, California Institute of Technology, Pasadena CA USA

    2017-12-29

    A combined experimental and theoretical investigation of Ag-Pt sub-nanometer clusters as heterogeneous catalysts in the CO -> CO2 reaction (COox) is presented. Ag9Pt2 and Ag9Pt3 clusters are size-selected in the gas phase, deposited on an ultrathin amorphous alumina support, and tested as catalysts experimentally under realistic conditions and by first-principles simulations at realistic coverage. Insitu GISAXS/TPRx demonstrates that the clusters do not sinter or deactivate even after prolonged exposure to reactants at high temperature, and present comparable, extremely high COox catalytic efficiency. Such high activity and stability are ascribed to a synergic role of Ag and Pt in ultranano-aggregates, in which Pt anchors the clusters to the support and binds and activates two CO molecules, while Ag binds and activates O-2, and Ag/Pt surface proximity disfavors poisoning by CO or oxidized species.

  4. Ultra-low Pt decorated PdFe Alloy Nanoparticles for Formic Acid Electro-oxidation

    International Nuclear Information System (INIS)

    Zhou, Yawei; Du, Chunyu; Han, Guokang; Gao, Yunzhi; Yin, Geping

    2016-01-01

    Highlights: • A cost-efficient way is used to prepare transition-noble metal alloy nanoparticles. • The Pd 50 Fe 50 /C catalyst shows excellent activity for formic acid oxidation (FAO). • Much activity enhancement of FAO is acquired by ultra-low Pt decorated Pd 50 Fe 50 . • A synergistic mechanism between Pt clusters and PdFe is proposed during the FAO. - Abstract: Palladium (Pd), has demonstrated promising electro-catalytic activity for formic acid oxidation, but suffers from extremely low abundance. Recently alloying with a transition metal has been considered as an effective approach to reducing the loading of Pd and enhancing the activity of Pd-based catalysts simultaneously. Herein, carbon supported PdFe nanoparticles (NPs) are synthesized at room temperature by using sodium borohydride as reducing agent and potassium ferrocyanide as Fe precursor. The Pd 50 Fe 50 alloy sample annealed at 900 °C for 1 h shows the best catalytic activity among Pd x Fe 1-x (x = 0.2, 0.4, 0.5, 0.6, and 0.8) towards formic acid oxidation. To further improve both catalytic activity and stability, the ultra-low Pt (0.09 wt %) decorated Pd 50 Fe 50 NPs (PtPd/PdFe) are prepared via the galvanic replacement reaction. Compared with Pd 50 Fe 50 /C, the PtPd/PdFe/C Exhibits 1.52 times higher catalytic activity and lower onset potential (−0.12 V). The significant enhancements of formic acid oxidation can be attributed to the accelerated dehydrogenation reaction of formic acid by Pt atomic clusters. Moreover, the PtPd/PdFe/C also demonstrates better tolerance to poisons during formic acid oxidation.

  5. Facile synthesis of octahedral Pt-Pd nanoparticles stabilized by silsesquioxane for the electrooxidation of formic acid

    International Nuclear Information System (INIS)

    Li, Yusong; Hao, Furui; Wang, Yihong; Zhang, Yihong; Ge, Cunwang; Lu, Tianhong

    2014-01-01

    Graphical abstract: The octahedral Pt-Pd alloy nanoparticles (octahedral Pt-Pd NPs) with dominant {111} facets were successfully synthesized through a facile route in the presence of octa(3-aminopropyl) silsesquioxane as the capping agent and complexing agent, methanol as the reductant and solvent. The octahedral Pt-Pd NPs display the significantly enhanced electrocatalytic activity, increased CO tolerance and favourable stability for the electrooxidation of formic acid. - Highlights: • Octa Pt-Pd nanoparticles were synthesized with silsesquioxane as capping agent. • Octa Pt-Pd nanoparticles display uniform morphology and favorable dispersibility. • Octa Pt-Pd nanoparticles have high catalytic activity for formic acid by direct process. - Abstract: The octahedral Pt-Pd alloy nanoparticles (octahedral Pt-Pd NPs) with dominant {111} facets were successfully synthesized through a facile route in the presence of octa(3-aminopropyl) silsesquioxane as the capping agent and complexing agent, methanol as the reductant and solvent. Their morphology, composition and structure were charactered by transmission electron microscopy (TEM), energy dispersive spectrum (EDS) and X-ray diffraction (XRD). The electrocatalytic activity, CO tolerance and stability of the octahedral Pt-Pd NPs for the electrooxidation of formic acid were investigated by cyclic voltammetry, CO stripping voltammetry and chronoamperometry, respectively. Compared with the Pt nanoparticles and commercial Pt black, the octahedral Pt-Pd NPs display a significantly enhanced electrocatalytic activity, increased CO tolerance and favourable stability for the electrooxidation of formic acid. Therefore, the octahedral Pt-Pd NPs might be an alternative candidate for the anode catalyst for the electrooxidation of formic acid in future

  6. Remarks on the PT-pseudo-norm in PT-symmetric quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Duc Tai Trinh [Department of Mathematics, Teacher Training College of Dalat, 29 Yersin, Dalat (Viet Nam)]|[Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste 34014 (Italy)

    2005-04-22

    This paper presents an underlying analytical relationship between the PT-pseudo-norm associated with the PT-symmetric Hamiltonian H = p{sup 2} + V(q) and the Stokes multiplier of the differential equation corresponding to this Hamiltonian. We show that the sign alternation of the PT-pseudo-norm, which has been observed as a generic feature of the PT-inner product, is essentially controlled by the derivative of a Stokes multiplier with respect to the eigenparameter.

  7. Single Pt Atoms Confined into a Metal-Organic Framework for Efficient Photocatalysis.

    Science.gov (United States)

    Fang, Xinzuo; Shang, Qichao; Wang, Yu; Jiao, Long; Yao, Tao; Li, Yafei; Zhang, Qun; Luo, Yi; Jiang, Hai-Long

    2018-02-01

    It is highly desirable yet remains challenging to improve the dispersion and usage of noble metal cocatalysts, beneficial to charge transfer in photocatalysis. Herein, for the first time, single Pt atoms are successfully confined into a metal-organic framework (MOF), in which electrons transfer from the MOF photosensitizer to the Pt acceptor for hydrogen production by water splitting under visible-light irradiation. Remarkably, the single Pt atoms exhibit a superb activity, giving a turnover frequency of 35 h -1 , ≈30 times that of Pt nanoparticles stabilized by the same MOF. Ultrafast transient absorption spectroscopy further unveils that the single Pt atoms confined into the MOF provide highly efficient electron transfer channels and density functional theory calculations indicate that the introduction of single Pt atoms into the MOF improves the hydrogen binding energy, thus greatly boosting the photocatalytic H 2 production activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Is it acceptable to use coagulation plasma samples stored at room temperature and 4°C for 24 hours for additional prothrombin time, activated partial thromboplastin time, fibrinogen, antithrombin, and D-dimer testing?

    Science.gov (United States)

    Rimac, V; Coen Herak, D

    2017-10-01

    Coagulation laboratories are faced on daily basis with requests for additional testing in already analyzed fresh plasma samples. This prompted us to examine whether plasma samples stored at room temperature (RT), and 4°C for 24 hours can be accepted for additional prothrombin time (PT), activated partial thromboplastin time (aPTT), fibrinogen (Fbg), antithrombin (AT), and D-dimer testing. We measured PT, aPTT, Fbg in 50 and AT in 30 plasma samples with normal and pathological values, within 4 hours of blood collection (baseline results) and after 24-hours storage at RT (primary tubes), and 4°C (aliquots). D-dimer stability was investigated in 20 samples stored in primary tubes at 4°C. No statistically significant difference between baseline results and results in samples stored at RT and 4°C was observed for PT (P=.938), aPTT (P=.186), Fbg (P=.962), AT (P=.713), and D-dimers (P=.169). The highest median percentage changes were found for aPTT, being more pronounced for samples stored at 4°C (13.0%) than at RT (8.7%). Plasma samples stored both at RT and 4°C for 24 hours are acceptable for additional PT, Fbg, and AT testing. Plasma samples stored 24 hours in primary tubes at 4°C are suitable for D-dimer testing. © 2017 John Wiley & Sons Ltd.

  9. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou, E-mail: duyk@suda.edu.cn

    2017-07-31

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt{sup 2+} were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt{sup 2+} to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  10. Seed-mediated synthesis of cross-linked Pt-NiO nanochains for methanol oxidation

    International Nuclear Information System (INIS)

    Gu, Zhulan; Bin, Duan; Feng, Yue; Zhang, Ke; Wang, Jin; Yan, Bo; Li, Shumin; Xiong, Zhiping; Wang, Caiqin; Shiraishi, Yukihide; Du, Yukou

    2017-01-01

    Highlights: • Cross-linked Pt-NiO nanochains using seed-mediated growth method are synthesized. • The as-prepared catalysts exhibit higher electrocatalytic activity than Pt/C for MOR. • The Pt-NiO(1:1 by molar) catalyst shows the best electrocatalytic property towards MOR. - Abstract: A simple method was reported for employing NiO nanoparticles act as seeds and then different amounts of Pt 2+ were reduced on the NiO nanoparticles, forming a cross-linked Pt-NiO nanocatalysts. These as-prepared catalysts were characterized using different physical-chemical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that the morphology of the cross-linked Pt-NiO nanochain was successfully produced regardless of the molar ratio of Pt 2+ to NiO precursors. The electrochemical characteristics of Pt-NiO nanochain catalysts were evaluated for the oxidation of methanol as a model reaction, which verify that the Pt-NiO catalysts show enhanced activity and high stability in comparison with the commercial Pt/C catalyst. The optimized ratio of Pt to NiO is 1:1, then tuned by simple adjusting the feed ratio of the precursors as well. The synthesized nanocatalysts will be found the great potential applications as electrocatalysts for fuel cells owe to their enhanced catalytic performance and long-term stability.

  11. Understanding the Effects of Surface Chemistry and Microstructure on the Activity and Stability of Pt Electrocatalysts on Non-Carbon Supports

    Energy Technology Data Exchange (ETDEWEB)

    Mustain, William [Univ. of Conneticut, Storrs, CT (United States)

    2015-02-12

    The objective of this project is to elucidate the effects of the chemical composition and microstructure of the electrocatalyst support on the activity, stability and utilization of supported Pt clusters.

  12. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation.

    Science.gov (United States)

    Mao, Junjie; Chen, Wenxing; He, Dongsheng; Wan, Jiawei; Pei, Jiajing; Dong, Juncai; Wang, Yu; An, Pengfei; Jin, Zhao; Xing, Wei; Tang, Haolin; Zhuang, Zhongbin; Liang, Xin; Huang, Yu; Zhou, Gang; Wang, Leyu; Wang, Dingsheng; Li, Yadong

    2017-08-01

    Developing cost-effective, active, and durable electrocatalysts is one of the most important issues for the commercialization of fuel cells. Ultrathin Pt-Mo-Ni nanowires (NWs) with a diameter of ~2.5 nm and lengths of up to several micrometers were synthesized via a H 2 -assisted solution route (HASR). This catalyst was designed on the basis of the following three points: (i) ultrathin NWs with high numbers of surface atoms can increase the atomic efficiency of Pt and thus decrease the catalyst cost; (ii) the incorporation of Ni can isolate Pt atoms on the surface and produce surface defects, leading to high catalytic activity (the unique structure and superior activity were confirmed by spherical aberration-corrected electron microscopy measurements and ethanol oxidation tests, respectively); and (iii) the incorporation of Mo can stabilize both Ni and Pt atoms, leading to high catalytic stability, which was confirmed by experiments and density functional theory calculations. Furthermore, the developed HASR strategy can be extended to synthesize a series of Pt-Mo-M (M = Fe, Co, Mn, Ru, etc.) NWs. These multimetallic NWs would open up new opportunities for practical fuel cell applications.

  13. Selective hydrogenation of citral over supported Pt catalysts: insight into support effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaofeng [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States); Hu, Weiming; Deng, Baolin [University of Missouri, Department of Civil and Environmental Engineering (United States); Liang, Xinhua, E-mail: liangxin@mst.edu [Missouri University of Science and Technology, Department of Chemical and Biochemical Engineering (United States)

    2017-04-15

    Highly dispersed platinum (Pt) nanoparticles (NPs) were deposited on various substrates by atomic layer deposition (ALD) in a fluidized bed reactor at 300 °C. The substrates included multi-walled carbon nanotubes (MWCNTs), silica gel (SiO{sub 2}), commercial γ-Al{sub 2}O{sub 3}, and ALD-prepared porous Al{sub 2}O{sub 3} particles (ALD-Al{sub 2}O{sub 3}). The results of TEM analysis showed that ~1.3 nm Pt NPs were highly dispersed on all different supports. All catalysts were used for the reaction of selective hydrogenation of citral to unsaturated alcohols (UA), geraniol, and nerol. Both the structure and acidity of supports affected the activity and selectivity of Pt catalysts. Pt/SiO{sub 2} showed the highest activity due to the strong acidity of SiO{sub 2} and the conversion of citral reached 82% after 12 h with a selectivity of 58% of UA. Pt/MWCNTs showed the highest selectivity of UA, which reached 65% with a conversion of 38% due to its unique structure and electronic effect. The cycling experiments indicated that Pt/MWCNTs and Pt/ALD-Al{sub 2}O{sub 3} catalysts were more stable than Pt/SiO{sub 2}, as a result of the different interactions between the Pt NPs and the supports.

  14. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    Science.gov (United States)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  15. Influence of surface morphology on methanol oxidation at a glassy carbon-supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    S. STEVANOVIC

    2008-08-01

    Full Text Available Platinum supported on glassy carbon (GC was used as a model system for studying the influence of the surface morphology of a Pt catalyst on methanol oxidation in alkaline and acidic solutions. Platinum was deposited by the potential step method on GC samples from H2SO4 + H2PtCl6 solution under the same conditions with loadings from 10 to 80 mg cm-2. AFM and STM images of the GC/Pt electrodes showed that the Pt was deposited in the form of 3D agglomerates composed of spherical particles. Longer deposition times resulted in increased growth of Pt forms and a decrease in the specific area of the Pt. The real surface area of Pt increased with loading but the changes were almost negligible at higher loadings. Nevertheless, both the specific and mass activity of platinum supported on glassy carbon for methanol oxidation in acidic and in alkaline solutions exhibit a volcanic dependence with respect to the platinum loading. The increase in the activity can be explained by the increasing the particle size with the loading and thus an increase in the contiguous Pt sites available for adsorption and decomposition of methanol. However, the decrease in the activity of the catalyst with further increase of loading and particle size after reaching the maximum is related to the decrease of active sites available for methanol adsorption and their accessibility as a result of more close proximity and pronounced coalescence of the Pt particles.

  16. Pt/glassy carbon model catalysts prepared from PS-b-P2VP micellar templates.

    Science.gov (United States)

    Gu, Yunlong; St-Pierre, Jean; Ploehn, Harry J

    2008-11-04

    Poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer was used as a micellar template to fabricate arrays of Pt nanoparticles on mica and glassy carbon (GC) supports. Polymer micellar deposition yields Pt nanoparticles with tunable particle size and surface number density on both mica and GC. After deposition of precursor-loaded micelles onto GC, oxygen plasma etching removes the polymer shell, followed by thermal treatment with H2 gas to reduce the Pt. Etching conditions were optimized to maximize removal of the polymer while minimizing damage to the GC. Arrays of Pt nanoparticles with controlled size and surface number density can be prepared on mica (for particle size characterization) and GC to make Pt/GC model catalysts. These model catalysts were characterized by tapping mode atomic force microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry to measure activity for oxidation of carbon monoxide or methanol. Cyclic voltammetry results demonstrate the existence of a correlation between Pt particle size and electrocatalytic properties including onset potential, tolerance of carbonaceous adsorbates, and intrinsic activity (based on active Pt area from CO stripping voltammetry). Results obtained with Pt/GC model catalysts duplicate prior results obtained with Pt/porous carbon catalysts therefore validating the synthesis approach and offering a new, tunable platform to study catalyst structure and other effects such as aging on proton exchange membrane fuel cell (PEMFC) reactions.

  17. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2 electrocatalysts for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Bedolla-Valdez, Z.I.; Verde-Gómez, Y.; Valenzuela-Muñiz, A.M.; Gochi-Ponce, Y.; Oropeza-Guzmán, M.T.; Berhault, Gilles; Alonso-Núñez, G.

    2015-01-01

    Highlights: • Pt/CNT/TiO 2 electrocatalyst was successfully prepared by the sonochemical method. • The electrocatalyst Pt/CNT/TiO 2 was synthesized without heat treatments, additives or surfactants. • The TiO 2 -Pt interaction improves the CO-tolerance of Pt/CNT/TiO 2 , as well as the electrocatalyst stability. • Low amount of multi-walled carbon nanotubes increases the current density of Pt/CNT/TiO 2 significantly compared to Pt/TiO 2 . - Abstract: Pt electrocatalyst supported on composite formed of multi-walled carbon nanotubes and titanium oxide (CNT/TiO 2 ) was successfully synthesized by a sonochemical method without heat treatments, surfactants or additives. This electrocatalyst could be used for direct methanol fuel cells (DMFC) applications. For comparison, Pt/CNT and Pt/TiO 2 electrocatalysts were prepared as reference samples. Structural properties and morphology of the synthesized materials were examined by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and their specific surface areas were determined by the Brunauer-Emmett-Teller method. The Pt and acid-treated CNT contents were analyzed by inductively coupled plasma atomic emission spectroscopy and thermogravimetric analysis, respectively. The electrochemical properties of the synthesized electrocatalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry in a three-electrode cell at room temperature. The evaluation performed using electrochemical techniques suggests that TiO 2 promotes the CO-tolerance due to TiO 2 -Pt interaction. The CV tests demonstrated that 6 wt.% of acid-treated CNT increases significantly the current density when Pt selectively interacts with TiO 2 .

  18. Pengukuran Kepuasan Kerja Karyawan APLP & A PT Semen Padang (PT X

    Directory of Open Access Journals (Sweden)

    Shelly Nolandari

    2016-04-01

    Full Text Available Thoughts on employee satisfaction arise because the company believes its employees have a high level of satisfaction will result in a better level of productivity, work more accurate, the fewer the number of absences and higher loyalty than employees with low satisfaction levels.Company's with good productivity will grow and increase revenue. PT Semen Padang has several subsidiaries and affiliates like PT X. PT X will measure employee satisfaction with the company's expectations are always making changes that sustainable about employee satisfaction because companies believe that employee satisfaction level of its high yield levels better productivity, work more accurate, the number of absences are fewer and loyalty higher than employees with low satisfaction levels. Companies with good productivity will experience growth as indicated by the increase in revenue, in line with the increase in the welfare of the employees. PT Semen Padang has several subsidiaries and affiliates PT X. PT Xwill measure employee satisfaction with the Company's expectations.

  19. One-step Synthesis of Pt Nanoparticles Highly Loaded on Graphene Aerogel as Durable Oxygen Reduction Electrocatalyst

    International Nuclear Information System (INIS)

    Huang, Qinghong; Tao, Feifei; Zou, Liangliang; Yuan, Ting; Zou, Zhiqing; Zhang, Haifeng; Zhang, Xiaogang; Yang, Hui

    2015-01-01

    Synthesis of highly active and durable Pt based catalysts with a high metal loading for fuel cells’ applications still remains a big challenge. The three-dimensional (3D) graphene aerogel (GA) not only possess the intrinsic property of graphene, but also have abundant pore architecture for anchoring metal nanoparticles, thus would be suitable as metal catalysts’ support. This work reports a simple and mild one-step co-reduction synthesis of Pt nanoparticles highly loaded on 3D GA and the use as durable oxygen reduction catalyst. Both X-ray diffraction and TEM measurements confirm that Pt nanoparticles (ca. 60 wt.% Pt loading) with an average diameter of ca. 3.2 nm are uniformly decorated on the homogeneously interconnected pores of 3D GA even after a heat treatment at 300 °C. Such a Pt/GA catalyst exhibits significantly enhanced electrocatalytic activity and improved durability for the oxygen reduction reaction. The enhancement in both catalytic activity and durability may result from the unique 3-D architecture structure of GA, the uniform dispersion of Pt nanoparticles, and the interaction between the Pt nanoparticles and GA. The GA-supported Pt can serve as a highly active catalyst for fuel cell applications

  20. The tunable plasma synthesis of Pt-reduced graphene oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Yulong Ma

    2017-06-01

    Full Text Available Herein, we have developed Pt-plasma reduced graphene oxide (Pt/P-rGO catalysts displaying high overpotentials for methanol oxidation reaction (MOR through facile and tunable plasma treatments. We provide insight into the improved performance of these catalysts by combining electrochemical measurements with microscopic and spectroscopic characterization techniques. The analysis results showed that the Pt nanoparticles (NPs were successfully deposited on P-rGO. The deposition and uniformity of Pt NPs were influenced by tuning the discharge power of the plasma. The catalytic performance towards the methanol oxidation reaction is investigated. The Pt/P-rGO NPs composites under 100 W show the best electrocatalytic activity. These results were vital to the further application of graphene-based metal nanocomposites synthesized by plasma technology.

  1. Effect of TiO_2 Loading on Pt-Ru Catalysts During Alcohol Electrooxidation

    International Nuclear Information System (INIS)

    Hasa, Bjorn; Kalamaras, Evangelos; Papaioannou, Evangelos I.; Vakros, John; Sygellou, Labrini; Katsaounis, Alexandros

    2015-01-01

    Highlights: • TiO_2 can be used to modify Pt-Ru based electrodes for alcohol oxidation. • TiO_2 modified electrodes with lower amount of metals had higher active surface area than pure Pt-Ru electrodes. • TiO_2 modified electrodes showed comparable performance with pure Pt-Ru electrode both in a single cell and in a PEM fuel cell under alcohol fuelling. - Abstract: In this study, Pt-Ru based electrodes modified by TiO_2 were prepared by means of thermal decomposition of chloride and isopropoxide precursors on Ti substrates, characterised by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), electrochemical techniques and CO stripping and used as anodes for alcohol oxidation. The minimization of the metal loading without electrocatalytic activity losses was also explored. TiO_2 was chosen due to its chemical stability, low cost and excellent properties as substrate for metal dispersion. It was found that TiO_2 loading up to 50% results in a 3-fold increase of the Electrochemically Active Surface (EAS). This conclusion has been confirmed by CO stripping experiments. All samples have been evaluated during the electrochemical oxidation of methanol, ethanol and glycerol. In all cases, the Pt_2_5-Ru_2_5-(TiO_2)_5_0 electrode had better electrocatalytic activity than the pure Pt_5_0-Ru_5_0 anode. The best modified electrode, (Pt_2_5-Ru_2_5-(TiO_2)_5_0), was also evaluated as anode in a PEM fuel cell under methanol fuelling conditions. The observed higher performance of the TiO_2 modified electrodes was attributed to the enhanced Pt-Ru dispersion as well as the formation of smaller Pt and Ru particles.

  2. Atomic resolution structural insights into PdPt nanoparticle–carbon interactions for the design of highly active and stable electrocatalysts

    International Nuclear Information System (INIS)

    Slanac, Daniel A.; Li Lin; Mayoral, Alvaro; Yacaman, Miguel José; Manthiram, Arumugam; Stevenson, Keith J.; Johnston, Keith P.

    2012-01-01

    Graphical abstract: - Abstract: Interfacial interactions between sub-4 nm metal alloy nanoparticles and carbon supports, although not well understood at the atomic level, may be expected to have a profound influence on catalytic properties. Pd 3 Pt 2 alloy particles comprised of a disordered surface layer over a corrugated crystalline core are shown to exhibit strong interfacial interactions with a ∼20–50 nm spherical carbon support, as characterized by probe aberration corrected scanning transmission electron microscopy (pcSTEM). The disordered shells were formed from defects introduced by Pd during arrested growth synthesis of the alloy nanoparticles. The chemical and morphological changes in the catalyst, before and after cyclic stability testing (1000 cycles, 0.5–1.2 V), were probed with cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and pcSTEM. The strong metal–support interaction, along with the uniform alloy structure raised the mass activity by a factor of 1.8 versus pure Pt. The metal–support interactions also mitigated nanoparticle coalescence, dissolution, and ripening, resulting in only a 20% loss in mass activity (versus 60% for pure Pt on carbon) after the cyclic stability test. The design of alloy structure, guided by insight from atomic scale pcSTEM, for enhanced catalytic activity and stability, resulting from strong wetting with a deformable disordered shell, has the potential to be a general paradigm for improving catalytic performance.

  3. Exploring the Effect of Au/Pt Ratio on Glycerol Oxidation in Presence and Absence of a Base

    Directory of Open Access Journals (Sweden)

    Alberto Villa

    2018-01-01

    Full Text Available Bimetallic AuPt nanoparticles with different Au:Pt ratios (molar ratio: 9-1, 8-2, 6-4, 2-8, 1-9 and the corresponding Au and Pt monometallic ones were prepared by sol immobilization and immobilized on commercial TiO2 (P25. The catalytic activity was evaluated in the liquid phase glycerol oxidation in presence and absence of a base (NaOH. It was found that the Au:Pt molar ratio and reaction conditions strongly influence the catalytic performance. In the presence of NaOH, Au-rich catalysts were more active than Pt-rich ones, with the highest activity observed for Au9Pt1/TiO2 (6575 h−1. In absence of a base, a higher content of Pt is needed to produce the most active catalyst (Au6Pt4/TiO2, 301 h−1. In terms of selectivity, in presence of NaOH, Au-rich catalysts showed a high selectivity to C3 products (63–72% whereas Pt-rich catalysts promote the formation of formic and glycolic acids. The opposite trend was observed in absence of a base with Pt-rich catalysts showing higher selectivity to C3 products (83–88%.

  4. Reduction of Pt{sup 2+} species in model Pt–CeO{sub 2} fuel cell catalysts upon reaction with methanol

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Armin [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Johánek, Viktor [Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Lykhach, Yaroslava, E-mail: yaroslava.lykhach@fau.de [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Skála, Tomáš; Tsud, Nataliya; Vorokhta, Mykhailo; Matolín, Vladimír [Charles University, Faculty of Mathematics and Physics, Department of Surface and Plasma Science, V Holešovičkách 2, 18000 Prague (Czech Republic); Libuda, Jörg [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)

    2016-11-30

    Highlights: • Pt{sup 2+} species are reduced upon reaction with methanol. • Reduction of one Pt{sup 2+} requires presence of two oxygen vacancies. • Reduction of Pt{sup 2+} species leads to formation of ultra-small Pt particles. • Ultra-small Pt particles (around 25 atoms or less) are resistant to sintering. - Abstract: The stability of atomically dispersed Pt{sup 2+} species on the surface of nanostructured CeO{sub 2} films during the reaction with methanol has been investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The isolated Pt{sup 2+} species were prepared at low Pt concentration in Pt–CeO{sub 2} film. Additionally, Pt{sup 2+} species coexisting with metallic Pt particles were prepared at high Pt concentration. We found that adsorption of methanol yields similar decomposition products regardless of Pt concentration in Pt–CeO{sub 2} films. A small number of oxygen vacancies formed during the methanol decomposition can be replenished in the Pt–CeO{sub 2} film with low Pt concentration by diffusion of oxygen from the bulk. In the presence of supported Pt particles, a higher number of oxygen vacancies leads to a partial reduction of the Pt{sup 2+} species. The isolated Pt{sup 2+} species are reduced under rather strongly reducing conditions only, i.e. during annealing under continuous exposure to methanol. Reduction of isolated Pt{sup 2+} species results in the formation of ultra-small Pt particles containing around 25 atoms per particle or less. Such ultra-small Pt particles demonstrate excellent stability against sintering during annealing of Pt–CeO{sub 2} film with low Pt concentration under reducing conditions.

  5. 1-Aminoanthraquinone bridged small Pt nanoparticles on carbon nanotubes as efficient electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun; Huang, Hao; Du, Cuicui; Wang, Xiaolu [College of Chemistry, Jilin University, Changchun 130012 (China); Wang, Rui [Stomatology Hospital of Jilin University, Changchun 130021 (China); Song, Wenbo, E-mail: wbsong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-11-30

    Graphical abstract: - Highlights: • π–π stacking of 1-Aminoanthraquinone (AAQ) on MWCNT surface. • NH{sub 2}-terminated AAQ as a linker leading to small Pt NPs with good dispersity. • Pt NPs display higher electrocatalytic activity towards H{sub 2}O{sub 2} reduction. - Abstract: Smaller nanosized Pt nanoparticles (Pt NPs) highly dispersed on the surface of multi-walled carbon nanotubes (MWCNTs) were prepared via a microwave-assisted approach by using 1-Aminoanthraquinone (AAQ) as the binding agent. As an alternative to the oxidative acid modification process, this noncovalent AAQ functionalization procedure was performed at room temperature, simplifying the experimental operation and getting rid of the corrosive acid at meanwhile. Raman spectroscopic analysis revealed that the AAQ modification preserved the intrinsic properties of MWCNTs without damaging their surface structure, unlike the oxidative acid treatment. Scanning electron microscopy, transmission electron microscopy and cyclic voltammetric measurements manifested that Pt-AAQ-MWCNTs was superior to those of pristine-MWCNTs in the following respects: (1) a smaller size and higher dispersion; (2) a larger electrochemical activity surface; (3) a higher electrocatalytic activity towards reduction H{sub 2}O{sub 2}. It was concluded that the Pt-AAQ-MWCNTs would be a promising candidate as an electrochemical material in construction of chemical/biosensor.

  6. Core/shell AgNi/PtAgNi nanoparticles as methanol-tolerant oxygen reduction electrocatalysts

    International Nuclear Information System (INIS)

    Wu, Dengfeng; Cheng, Daojian

    2015-01-01

    A core/shell AgNi/PtAgNi nanoparticle (NP) was synthesized via a new seed-mediated growth method in organic solvent medium. The as-synthesized AgNi/PtAgNiNP exhibits an AgNi core coated with PtAgNi shell, which was confirmed by transmission electron microscopy (TEM), ultraviolet–visible absorption spectroscopy and X-ray Photoelectron Spectroscopy (XPS). The AgNi/PtAgNiNPs/C catalyst possesses higher oxygen reduction reaction (ORR) activity and better durability compared with the commercial Pt/C catalyst. It is found that the ORR polarization curve of the AgNi/PtAgNiNPs/C catalyst shows an onset potential of 0.91 V vs. RHE, which is superior to the commercial Pt/C (0.88 V vs. RHE). In addition, the AgNi/PtAgNiNPs/C catalyst shows much better durability than the commercial Pt/C catalyst. More interestingly, the AgNi/PtAgNiNPs/C catalyst displays much higher methanol tolerance than the commercial Pt/C catalyst in 0.1 M KOH solution in the presence of 0.5 M methanol. Our results show that core/shell AgNi/PtAgNiNPs possess selective activity for ORR even in the presence of methanol, showing potential application as methanol-tolerant cathode catalysts in direct methanol fuel cells.

  7. Preparation and electrocatalytic properties of Pt-SiO2 nanocatalysts for ethanol electrooxidation.

    Science.gov (United States)

    Liu, B; Chen, J H; Zhong, X X; Cui, K Z; Zhou, H H; Kuang, Y F

    2007-03-01

    Due to their high stability in general acidic solutions, SiO(2) nanoparticles were selected as the second catalyst for ethanol oxidation in sulfuric acid aqueous solution. Pt-SiO(2) nanocatalysts were prepared in this paper. The micrography and elemental composition of Pt-SiO(2) nanoparticles were characterized by scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. The electrocatalytic properties of Pt-SiO(2) nanocatalysts for ethanol oxidation were investigated by cyclic voltammetry. Under the same Pt loading mass and experimental conditions for ethanol oxidation, Pt-SiO(2) nanocatalysts show higher activity than PtRu/C (E-Tek), Pt/C (E-Tek), and Pt catalysts. Additionally, Pt-SiO(2) nanocatalysts possess good anti-poisoning ability. The results indicate that Pt-SiO(2) nanocatalysts may have good potential applications in direct ethanol fuel cells.

  8. Surface science approach to Pt/carbon model catalysts: XPS, STM and microreactor studies

    Science.gov (United States)

    Motin, Abdul Md.; Haunold, Thomas; Bukhtiyarov, Andrey V.; Bera, Abhijit; Rameshan, Christoph; Rupprechter, Günther

    2018-05-01

    Pt nanoparticles supported on carbon are an important technological catalyst. A corresponding model catalyst was prepared by physical vapor deposition (PVD) of Pt on sputtered HOPG (highly oriented pyrolytic graphite). The carbon substrate before and after sputtering as well as the Pt/HOPG system before and after Pt deposition and annealing were examined by XPS and STM. This yielded information on the surface density of defects, which serve as nucleation centres for Pt, and on the size distribution (mean size/height) of the Pt nanoparticles. Two different model catalysts were prepared with mean sizes of 2.0 and 3.6 nm, both turned out to be stable upon UHV-annealing to 300 °C. After transfer into a UHV-compatible flow microreactor and subsequent cleaning in UHV and under mbar pressure, the catalytic activity of the Pt/HOPG model system for ethylene hydrogenation was examined under atmospheric pressure flow conditions. This enabled to determine temperature-dependent conversion rates, turnover frequencies (TOFs) and activation energies. The catalytic results obtained are in line with the characteristics of technological Pt/C, demonstrating the validity of the current surface science based model catalyst approach.

  9. ANALISIS KINERJA KEUANGAN PADA PT PERKEBUNAN NUSANTARA XIV MAKASSAR

    Directory of Open Access Journals (Sweden)

    Jefri Dominggus Simon

    2017-08-01

    Full Text Available JEFRI DOMINGGUS SIMON.2017. Thesis.4513012048. "Financial Performance Analysis at PT Perkebunan Nusantara XIV Makassar". (Mentored by Dr.Miah Said, SE., M.Si as consultant I and Muh.Kafrawi Yunus, SE., MM as consultant II. This study aims to analyze the financial performance of PT Perkebunan Nusantara XIV Makassar during 2013 until 2015 by using ratio analysis: Liquidity, solvency, Activity and Profitability. The results of this study indicate that based on Liquidity ratios including Current ratio, Quick ratio and Cash ratio has increased. In general, the ratio of Solvency is in a less good position, while for Profitability ratio of receivables turnover, inventory turnover and asset turnover fluctuated. In general, the activity ratio of PT Perkebunan Nusantara XIV Makassar in the period of 2013 to 2015 has decreased

  10. Synthesis and characterizations of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) functionalized multi-walled carbon nanotubes with superior activity for NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Zhao, Yanchun, E-mail: yanchunzhao@aliyun.com; Peng, Xinglan; Wang, Jing; Jing, Chen; Tian, Jianniao, E-mail: birdtjn@sina.com

    2015-10-15

    Highlights: • Simple strategy for the synthesis of CoPt-PEDOT:PSS/MWCNTs. • PEDOT:PSS as a modifier of MWCNTs can improve the particles dispersion. • Superior catalytic activities for the NaBH{sub 4} hydrolysis reaction. - Abstract: We present here a facile strategy for synthesis of CoPt nanoparticles supported on poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) functionalized multi-walled carbon nanotubes (MWCNTs). The as-prepared CoPt-PEDOT:PSS/MWCNT catalyst was characterized with UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron. The well-supported and low-Pt-content nanostructure catalyst exhibits superior catalytic activity for the NaBH{sub 4} hydrolysis reaction with a 47.3 kJ mol{sup −1} of activation energy. The maximum hydrogen generation rate is 6900 mL min{sup −1} g{sup −1} at 298 K.

  11. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Stojmenović, Marija; Momčilović, Milan; Gavrilov, Nemanja; Pašti, Igor A.; Mentus, Slavko; Jokić, Bojan; Babić, Biljana

    2015-01-01

    Ordered mesoporous carbon, volume-doped up to 3 w.% with Pt, Ru and Pt-Ru nanoparticles was synthesized by evaporation-induced self-assembly method, under acidic conditions. The content of incorporated metal was determined by EDX analysis. The X-ray diffractometry confirmed the existence of highly dispersed metallic phases in doped samples. Specific surface area was determined by N 2 -physisorption measurements to range between 452 and 545 m 2 g −1 . Raman spectroscopy of investigated materials indicated highly disordered carbon structure with crystallite sizes around 1.4 nm. In a form of thin-layer electrode on glassy carbon support, in 0.1 M KOH solution, the prepared materials displayed high activity toward oxygen reduction reaction (ORR) in alkaline media, with onset potentials more positive than −0.10 V vs. SCE. The kinetics of O 2 reduction was found to be affected by both the specific surface area and the concentration of metal dopants. The ethanol tolerance of (Pt, Ru)-doped OMCs was found to be higher than that of common Pt/C ORR catalysts. Presented study provides a new route for the synthesis of active and selective ORR catalysts in alkaline media, being competitive with, or superior to, the existing ones in terms of performance and price

  12. Antitumour and antiangiogenic activities of [Pt(O,O'-acac)(γ-acac)(DMS)] in a xenograft model of human renal cell carcinoma.

    Science.gov (United States)

    Muscella, A; Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P

    2016-09-01

    It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non-genomic targets, on human renal carcinoma and compared them with those of the well-established anticancer drug, cisplatin. Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki-1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Treatment of the Caki-1 cells with cisplatin or [Pt(DMS)] resulted in a dose-dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. © 2016 The British Pharmacological Society.

  13. Synthesis and Electrocatalytic Performance of Multi-Component Nanoporous PtRuCuW Alloy for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Xiaoting Chen

    2015-06-01

    Full Text Available We have prepared a multi-component nanoporous PtRuCuW (np-PtRuCuW electrocatalyst via a combined chemical dealloying and mechanical alloying process. The X-ray diffraction (XRD, transmission electron microscopy (TEM and electrochemical measurements have been applied to characterize the microstructure and electrocatalytic activities of the np-PtRuCuW. The np-PtRuCuW catalyst has a unique three-dimensional bi-continuous ligament structure and the length scale is 2.0 ± 0.3 nm. The np-PtRuCuW catalyst shows a relatively high level of activity normalized to mass (467.1 mA mgPt−1 and electrochemically active surface area (1.8 mA cm−2 compared to the state-of-the-art commercial PtC and PtRu catalyst at anode. Although the CO stripping peak of np-PtRuCuW 0.47 V (vs. saturated calomel electrode, SCE is more positive than PtRu, there is a 200 mV negative shift compared to PtC (0.67 V vs. SCE. In addition, the half-wave potential and specific activity towards oxygen reduction of np-PtRuCuW are 0.877 V (vs. reversible hydrogen electrode, RHE and 0.26 mA cm−2, indicating a great enhancement towards oxygen reduction than the commercial PtC.

  14. Partially spin-polarized Josephson tunneling between non-centrosymmetric superconductors like CePt3Si

    International Nuclear Information System (INIS)

    Mandal, S.S.; Mukherjee, S.P.

    2007-01-01

    Full text: The recent discovery of the superconductivity in the heavy fermionic compound CePt 3 Si have attracted much of the attention of the physics community. The presence of strong Rashba kind of spin-orbit coupling in them split the otherwise degenerate electronic band into two nondegenerate bands. This peculiarity in the band structure gives rise to complicated kind of order parameter whose exact nature is unknown till date. Traditionally Josephson junctions in superconductors draw interest both scientifically and its applicability in making devices. It has been used in several cases as a probe to the order parameter symmetry of the superconductor. It has also been studied in unconventional superconductors like spin-singlet cuprate and spin-triplet Sr 2 RuO 4 superconductors. However no Josephson junction between nonmagnetic superconductors is known to generate spin-polarized current. The purpose of this work is to theoretically show that the direction dependent tunneling matrix element across the junction between two recently discovered non-centrosymmetric superconductors like CePt 3 Si, leads to tunneling of both spin-singlet and spin-triplet Cooper pairs. As a consequence, nonvanishing spin-Josephson current is viable along with the usual charge-Josephson current. This novel spin-Josephson current depends on the relative angle xi between the axes of non-centrosymmetry {n} L and that {n} R in the left and right side of the junction respectively. This angular dependence may be used to make Josephson spin switch. (authors)

  15. Magnetic properties of the alloy system Fe-Pt. Bulk materials and nanoparticles; Magnetische Eigenschaften des Legierungssystems Fe-Pt. Volumenmaterialien und Nanopartikel

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, C.

    2007-12-14

    explained by an increase of the effective anisotropy from 5.5 x 10{sup 4}J/m{sup 3} to 3.85 x 10{sup 5}J/{sup 3} due to the (partial) transformation to the chemically ordered phase. The effective anisotropy of very small Fe{sub 0.70}Pt{sub 0.30} nanoparticles with a mean diameter of 2.5 nm show a strong temperature dependence due to thermal fluctuations which was measured using the ferromagnetic resonance technique. The damping of the magnetisation precession in such measurements is increasing with increasing Pt content in agreement to the composition dependence of the damping in Fe{sub x}Pt{sub 1-x} films. (orig.)

  16. Graphitized nanodiamond supporting PtNi alloy as stable anodic and cathodic electrocatalysts for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, Yongjiao; Zang, Jianbing; Dong, Liang; Pan, Hong; Yuan, Yungang; Wang, Yanhui

    2013-01-01

    Highlights: • The graphitized nanodiamond (GND) showed a higher oxidation-resistance than XC-72. • The PtNi/GND electrocatalytic exhibited greater stability than PtNi/XC-72. • The PtNi/GND had a better catalytic activity for MOR and ORR than Pt/GND. -- Abstract: Surface graphitized nanodiamond (GND) with a diamond core covered by a graphitic carbon shell was prepared by annealing ND at the temperature of 1300 °C in a vacuum of 10 −3 Pa. PtNi electrocatalysts were prepared by a microwave heating polyol method using the prepared GND as a support. The composition and morphology of the PtNi electrocatalysts supported on GND (PtNi/GND) were characterized by X-ray diffraction, transmission electron microscopy and energy dispersion spectra. The results showed that nano-scaled PtNi alloy particles with an atomic ratio of approximately 1:1 were uniformly deposited on the GND through co-reduction process. The electrocatalytic activities of the PtNi/GND electrocatalysts for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) were investigated by cyclic voltammetry, chronoamperometry and linear sweep voltammetry. The PtNi/GND exhibited better electrocatalytic activities than the Pt/GND either for MOR and ORR. In comparison with traditional carbon support Vulcan XC-72, GND showed higher oxidation-resistance, and consequently led to greater stability for the PtNi/GND than PtNi/XC-72

  17. Crumpled rGO-supported Pt-Ir bifunctional catalyst prepared by spray pyrolysis for unitized regenerative fuel cells

    Science.gov (United States)

    Kim, In Gyeom; Nah, In Wook; Oh, In-Hwan; Park, Sehkyu

    2017-10-01

    Three-dimensional (3D) crumpled reduced graphene oxide supported Pt-Ir alloys that served as bifunctional oxygen catalysts for use in untized regenerative fuel cells were synthesized by a facile spray pyrolysis method. Pt-Ir catalysts supported on rGO (Pt-Ir/rGOs) were physically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) to observe change in composition by heat treatment, alloying, and morphological transition of the catalysts. Their catalytic activities and stabilities for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) conditions were electrochemically investigated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), potential cycling and hold tests on the rotating disk electrode (RDE). Pt-Ir/rGO with no post heat-treatment (Pt-Ir/rGO_NP) showed a lower activity for ORR and OER although metal nanoparticles decorated on the support are relatively small. However, Pt-Ir/rGO showed remarkably enhanced activity following heat treatment, depending on temperature. Pt-Ir/rGO heat-treated at 600 °C after spray pyrolysis (Pt-Ir/rGO_P600) exhibited a higher activity and stability than a commercially available Pt/C catalyst kept under the ORR condition, and it also revealed a comparable OER activity and durability versus the commercial unsupported Ir catalyst.

  18. Metal Phosphate-Supported Pt Catalysts for CO Oxidation

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Qian

    2014-12-01

    Full Text Available Oxides (such as SiO2, TiO2, ZrO2, Al2O3, Fe2O3, CeO2 have often been used to prepare supported Pt catalysts for CO oxidation and other reactions, whereas metal phosphate-supported Pt catalysts for CO oxidation were rarely reported. Metal phosphates are a family of metal salts with high thermal stability and acid-base properties. Hydroxyapatite (Ca10(PO46(OH2, denoted as Ca-P-O here also has rich hydroxyls. Here we report a series of metal phosphate-supported Pt (Pt/M-P-O, M = Mg, Al, Ca, Fe, Co, Zn, La catalysts for CO oxidation. Pt/Ca-P-O shows the highest activity. Relevant characterization was conducted using N2 adsorption-desorption, inductively coupled plasma (ICP atomic emission spectroscopy, X-ray diffraction (XRD, transmission electron microscopy (TEM, CO2 temperature-programmed desorption (CO2-TPD, X-ray photoelectron spectroscopy (XPS, and H2 temperature-programmed reduction (H2-TPR. This work furnishes a new catalyst system for CO oxidation and other possible reactions.

  19. Preparation of supported PtRu/C electrocatalyst for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Jiang Luhua; Sun Gongquan; Zhao Xinsheng; Zhou Zhenhua; Yan Shiyou; Tang Shuihua; Wang Guoxiong; Zhou Bing; Xin Qin

    2005-01-01

    In this work, high-surface supported PtRu/C were prepared with Ru(NO)(NO 3 ) 3 and [Pt(H 2 NCH 2 CH 2 NH 2 ) 2 ]Cl 2 as the precursors and hydrogen as a reducing agent. XRD and TEM analyses showed that the PtRu/C catalysts with different loadings possessed small and homogeneous metal particles. Even at high metal loading (40 wt.% Pt, 20 wt.% Ru) the mean metal particle size is less than 4 nm. Meanwhile, the calculated Pt crystalline lattice parameter and Pt (2 2 0) peak position indicated that the geometric structure of Pt was modified by Ru atoms. Among the prepared catalysts, the lattice parameter of 40-20 wt.% PtRu/C contract most. Cyclic voltammetry (CV), chronoamperometry (CA), CO stripping and single direct methanol fuel cell tests jointly suggested that the 40-20 wt.% PtRu/C catalyst has the highest electrochemical activity for methanol oxidation

  20. The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles.

    Science.gov (United States)

    Erini, Nina; Beermann, Vera; Gocyla, Martin; Gliech, Manuel; Heggen, Marc; Dunin-Borkowski, Rafal E; Strasser, Peter

    2017-06-01

    Direct ethanol fuel cells are attractive power sources based on a biorenewable, high energy-density fuel. Their efficiency is limited by the lack of active anode materials which catalyze the breaking of the C-C bond coupled to the 12-electron oxidation to CO 2 . We report shape-controlled PtNiRh octahedral ethanol oxidation electrocatalysts with excellent activity and previously unachieved low onset potentials as low as 0.1 V vs. RHE, while being highly selective to complete oxidation to CO 2 . Our comprehensive characterization and in situ electrochemical ATR studies suggest that the formation of a ternary surface site ensemble around the octahedral Pt 3 Ni 1 Rh x nanoparticles plays a crucial mechanistic role for this behavior. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    Science.gov (United States)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  2. Carbon supported Pt-NiO nanoparticles for ethanol electro-oxidation in acid media

    Science.gov (United States)

    Comignani, Vanina; Sieben, Juan Manuel; Brigante, Maximiliano E.; Duarte, Marta M. E.

    2015-03-01

    In the present work, the influence of nickel oxide as a co-catalyst of Pt nanoparticles for the electro-oxidation of ethanol in the temperature range of 23-60 °C was investigated. The carbon supported nickel oxide and platinum nanoparticles were prepared by hydrothermal synthesis and microwave-assisted polyol process respectively, and characterized by XRD, EDX, TEM and ICP analysis. The electrocatalytic activity of the as-prepared materials was studied by cyclic voltammetry and chronoamperometry. Small metal nanoparticles with sizes in the range of 3.5-4.5 nm were obtained. The nickel content in the as-prepared Pt-NiO/C catalysts was between 19 and 35 at.%. The electrochemical experiments showed that the electrocatalytic activity of the Pt-NiO/C materials increase with NiO content in the entire temperature range. The apparent activation energy (Ea,app) for the overall ethanol oxidation reaction was found to decrease with NiO content (24-32 kJ mol-1 at 0.3 V), while for Pt/C the activation energy exceeds 48 kJ mol-1. The better performance of the Pt-NiO/C catalysts compared to Pt/C sample is ascribed to the activation of both the C-H and O-H bonds via oxygen-containing species adsorbed on NiO molecules and the modification of the surface electronic structure (changes in the density of states near the Fermi level).

  3. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  4. Shape-dependent surface magnetism of Co-Pt and Fe-Pt nanoparticles from first principles

    Science.gov (United States)

    Liu, Zhenyu; Wang, Guofeng

    2017-12-01

    In this paper, we have performed the first-principles density functional theory calculations to predict the magnetic properties of the CoPt and FePt nanoparticles in cuboctahedral, decahedral, and icosahedral shapes. The modeled alloy nanoparticles have a diameter of 1.1 nm and consist of 31 5 d Pt atoms and 24 3 d Co (or Fe) atoms. For both CoPt and FePt, we found that the decahedral nanoparticles had appreciably lower surface magnetic moments than the cuboctahedral and icosahedral nanoparticles. Our analysis indicated that this reduction in the surface magnetism was related to a large contraction of atomic spacing and high local Co (or Fe) concentration in the surface of the decahedral nanoparticles. More interestingly, we predicted that the CoPt and FePt cuboctahedral nanoparticles exhibited dramatically different surface spin structures when noncollinear magnetism was taken into account. Our calculation results revealed that surface anisotropy energy decided the fashion of surface spin canting in the CoPt and FePt nanoparticles, confirming previous predictions from atomistic Monte Carlo simulations.

  5. Carbon Corrosion at Pt/C Interface in Proton Exchange Membrane Fuel Cell Environment

    International Nuclear Information System (INIS)

    Choi, Min Ho; Beam, Won Jin; Park, Chan Jin

    2010-01-01

    This study examined the carbon corrosion at Pt/C interface in proton exchange membrane fuel cell environment. The Pt nano particles were electrodeposited on carbon substrate, and then the corrosion behavior of the carbon electrode was examined. The carbon electrodes with Pt nano electrodeposits exhibited the higher oxidation rate and lower oxidation overpotential compared with that of the electrode without Pt. This phenomenon was more active at 75 .deg. C than 25 .deg. C. In addition, the current transients and the corresponding power spectral density (PSD) of the carbon electrodes with Pt nano electrodeposits were much higher than those of the electrode without Pt. The carbon corrosion at Pt/C interface was highly accelerated by Pt nano electrodeposits. Furthermore, the polarization and power density curves of PEMFC showed degradation in the performance due to a deterioration of cathode catalyst material and Pt dissolution

  6. Valores de referência do tempo de protrombina (TP e tempo de tromboplastina parcial ativada (TTPa em cães Reference ranges of prothrombin time (PT and activated partial thromboplastin time (aPTT in dogs

    Directory of Open Access Journals (Sweden)

    Sonia Terezinha dos Anjos Lopes

    2005-04-01

    Full Text Available Os fatores de coagulação são parte integrante da hemostasia normal, e tanto as coagulopatias hereditárias como adquiridas que envolvem este sistema são de grande importância veterinária, geralmente evidenciadas por manifestações clínicas, tais como, petéquias, equimoses, hematomas e sangramentos tardios. O presente trabalho teve por objetivo a determinação dos valores de referência do tempo de protrombina (TP e tempo de tromboplastina parcial ativada (TTPa, por métodos manuais. Para tanto, utilizou-se "kits" para dosagens humanas, devido à inexistência de produtos similares de uso específico veterinário. Foram utilizados 40 cães clinicamente sadios, sem raça definida, machos ou fêmeas, de diferentes idades. As amostras sanguíneas foram de 2,5ml cada, colhidas por venopunção cefálica e acondicionadas em tubos de centrífuga contendo 0,25ml de citrato de sódio a 3,8%. O plasma foi imediatamente separado por centrifugação e as determinações de TP e TTPa foram realizadas utilizando-se "kits" comerciais "HemoStat Thromboplastin-SIª" e "HemoStat aPTT-El b", respectivamente. Os resultados obtidos foram de 6,87 ± 1,4 segundos para o TP com valores mínimo e máximo de 4,07 e 9,67, respectivamente, e de 15,10 ± 1,6 segundos para TTPa com valores mínimo e máximo de 11,9 e 18,3, respectivamente. Conclui-se, que os valores obtidos neste trabalho podem ser utilizados como referência. Os reagentes utilizados para plasma humano podem ser empregados para o plasma de cães.The coagulation factors are part of normal hemostasis, and both hereditary and acquired coagulopathies that involve this system have an important role in veterinary medicine, generally evidenced by clinical signs such as: petechias, ecchymosis, hematomas and late hemorrhagies. The objective of this experiment was to determine reference range values of prothrombin time (PT and activated partial thromboplastin time (aPTT, for manual methods. Human commercial

  7. The anisotropy field of FePt L10 nanoparticles controlled by very thin Pt layer

    International Nuclear Information System (INIS)

    Okamoto, Satoshi; Kitakami, Osamu; Kikuchi, Nobuaki; Miyazaki, Takamichi; Shimada, Yutaka; Chiang, Te-Hsuan

    2004-01-01

    We have prepared epitaxial FePt L1 0 (001) nanoparticles covered with Pt [d Pt nm]/Ag[(4-d Pt ) nm] overlayers. The particles are oblate spheroids approximately 10 nm in diameter and 2 nm in height. The anisotropy field H k at 0 K, which is evaluated from the temperature dependences of coercivity H c , decreases from 90 to 60 kOe on increasing the Pt thickness from d Pt 0 to 1.5 nm, while the energy barrier at zero field remains unchanged. The significant reduction of H k due to the presence of the adjacent Pt layer can be attributed to an enhanced magnetic moment caused by the ferromagnetic polarization of Pt atoms at the interface. This finding suggests an effective method of controlling the switching field of FePt L1 0 nanoparticles

  8. Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC

    International Nuclear Information System (INIS)

    Yaldagard, Maryam; Jahanshahi, Mohsen; Seghatoleslami, Naser

    2014-01-01

    Highlights: • In this work nanosized WC/C were successfully coated by PANI. • Pt particles (10.56 nm) were uniformly dispersed on the surface of PANI/WC/C support. • The Pt/PANI/WC/C exhibited higher MOR activity and CO tolerance than Pt/C. • The Pt/PANI/WC/C exhibited higher activity for ORR than Pt/C in RDE experiments. • Pt/PANI/WC/C showed good stability than that of Pt/C in the presence of methanol. - Abstract: In the present study a Pt/PANI/WC/C electrocatalyst was developed to increase the methanol electro-oxidation and oxygen electro-reduction activity and stability of commercial Pt/C electrocatalyst. WC/C was coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. Fourier transform infrared (FTIR) results illustrate the presence of PANI in the composite. The conductivity of PANI coated – WC/C has been compared with the conductivity of the corresponding mixtures of WC/C and Vulcan XC-72. X-ray diffraction results showed that Pt particles were dispersed on the support with mean particle size of about 10.56 nm. Transition electron microscopy images showed that the nanosized WC/C were successfully coated by PANI. Based on the electrochemical properties characterized by cyclic voltammetry, CO stripping and rotating disk electrode measurements it was found that the as prepared Pt/PANI/WC/C electrocatalyst exhibited a comparable activity for methanol oxidation reaction and oxygen reduction reaction with respect to the commercial one. A significant reduction in the potential of CO electro-oxidation peak from 0.75 V for Pt/C to 0.52 V for Pt/PANI/WC/C electrocatalyst indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support by PANI coated WC/C. Chronoamerometry results also showed, in the presence of methanol the Pt/PANI/WC/C electrocatalyst still maintains a higher current density than Pt/WC/C and Pt/C

  9. Pt catalysts on PANI coated WC/C nanocomposites for methanol electro-oxidation and oxygen electro-reduction in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Yaldagard, Maryam, E-mail: m_yaldagard@yahoo.com [Department of Chemical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran, Islamic Republic of); Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Jahanshahi, Mohsen, E-mail: mjahan@nit.um.ac.ir [Nanotechnology Research Institute, School of Chemical Engineering, Babol University of Technology (Iran, Islamic Republic of); Seghatoleslami, Naser, E-mail: Slami@um.ac.ir [Department of Chemical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-1111 (Iran, Islamic Republic of)

    2014-10-30

    Highlights: • In this work nanosized WC/C were successfully coated by PANI. • Pt particles (10.56 nm) were uniformly dispersed on the surface of PANI/WC/C support. • The Pt/PANI/WC/C exhibited higher MOR activity and CO tolerance than Pt/C. • The Pt/PANI/WC/C exhibited higher activity for ORR than Pt/C in RDE experiments. • Pt/PANI/WC/C showed good stability than that of Pt/C in the presence of methanol. - Abstract: In the present study a Pt/PANI/WC/C electrocatalyst was developed to increase the methanol electro-oxidation and oxygen electro-reduction activity and stability of commercial Pt/C electrocatalyst. WC/C was coated with protonated polyaniline (PANI) in situ during the polymerization of aniline. Fourier transform infrared (FTIR) results illustrate the presence of PANI in the composite. The conductivity of PANI coated – WC/C has been compared with the conductivity of the corresponding mixtures of WC/C and Vulcan XC-72. X-ray diffraction results showed that Pt particles were dispersed on the support with mean particle size of about 10.56 nm. Transition electron microscopy images showed that the nanosized WC/C were successfully coated by PANI. Based on the electrochemical properties characterized by cyclic voltammetry, CO stripping and rotating disk electrode measurements it was found that the as prepared Pt/PANI/WC/C electrocatalyst exhibited a comparable activity for methanol oxidation reaction and oxygen reduction reaction with respect to the commercial one. A significant reduction in the potential of CO electro-oxidation peak from 0.75 V for Pt/C to 0.52 V for Pt/PANI/WC/C electrocatalyst indicates that an increase in the activity for CO electro-oxidation is achieved by replacing the carbon support by PANI coated WC/C. Chronoamerometry results also showed, in the presence of methanol the Pt/PANI/WC/C electrocatalyst still maintains a higher current density than Pt/WC/C and Pt/C.

  10. Boosting the performance of Pt electro-catalysts toward formic acid electro-oxidation by depositing sub-monolayer Au clusters

    International Nuclear Information System (INIS)

    Bi Xuanxuan; Wang Rongyue; Ding Yi

    2011-01-01

    Highlights: → Au decoration on Pt nanoparticles simultaneously increases the activity and stability. → Sub-monolayer Au decoration changes the reaction path and results in the activity improvement. → Increasing the Au coverage will increase the specific activity. → Proper Au coverage results in a maximum mass specific activity. - Abstract: CO poisoning is the main obstacle to the application of Pt nanoparticles as anode catalysts in direct formic acid fuel cells (DFAFCs). Significant types of Pt alloys have been investigated, which often demonstrate evidently improved catalytic performance governed by difference mechanisms. By using a well-known electrochemical technique of under potential deposition and in situ redox replacement, sub-monolayer Au clusters are deposited onto Pt nanoparticle surfaces in a highly controlled manner, generating a unique surface alloy structure. Under optimum conditions, the modified Pt nanoparticles can exhibit greatly enhanced specific activity (up to 23-fold increase) at potential of -0.2 V vs. MSE toward formic acid electro-oxidation (FAEO). Interestingly, the mass specific activity can also be improved by a factor of 2.3 at potential of -0.35 V vs. MSE although significant amount of surface Pt atoms are covered by the overlayer Au clusters. The much enhanced catalytic activity can be ascribed to a Pt surface ensemble effect, which induces change of the reaction path. Moreover, the sub-monolayer Au coating on the surface also contributes to the enhanced catalyst durability by inhibiting the Pt oxidation. These results show great potential to rationally design more active and stable nanocatalysts by modifying the Pt surface with otherwise inactive materials.

  11. Properties of Pt/C catalyst modified by chemical vapor deposition of Cr as a cathode of phosphoric acid fuel cell

    International Nuclear Information System (INIS)

    Seo, Sang Joon; Joh, Han-Ik; Kim, Hyun Tae; Moon, Sang Heup

    2006-01-01

    Cr-modified Pt/C catalysts were prepared by the chemical vapour deposition (CVD) of Cr on Pt/C, and their performance as a cathode of phosphoric acid fuel cell (PAFC) was compared with the case of catalysts containing Cr added by impregnation (IMP). The catalyst prepared by CVD showed a higher activity for oxygen reduction reaction (ORR) than one prepared by IMP. There was an optimum amount of Cr that yielded the maximum mass activity of the catalyst because the gain in the intrinsic activity due to the promotional effect of Cr was counterbalanced by the loss of exposed Pt surface area as a result of the Cr introduction. Nevertheless, the activity increase at the optimum amount of Cr was greater for the CVD catalyst than for the IMP catalyst. Also, the optimum amount of Cr to yield the maximum activity was smaller for the former catalyst [Cr/Pt] CVD = 0.6, than for the latter, [Cr/Pt] IMP = 1.0. The enhancement of the Pt catalyst activity by Cr addition is attributed to two factors: changes in the surface Pt-Pt spacing and the electronic modification of the Pt surface. The formation of a Pt-Cr alloy, as confirmed by X-ray diffraction, decreased the lattice parameter of Pt, which was beneficial to the catalyst activity for ORR. X-ray photoelectron spectroscopy results showed that the binding energies of Pt electrons were shifted to higher energies due to Cr modification. Accordingly, the electron density of Pt was lowered and the Pt-O bond became weak on the Cr-modified catalysts, which was also beneficial to the catalyst activity for ORR. The promotion of oxygen reduction on Cr-modified catalysts was confirmed by measuring the cyclic voltammograms of the catalysts. All the above changes were made more effectively for catalysts prepared by CVD than for those prepared by IMP because the former method allowed Cr to interact more closely with the Pt surface than the latter, which was demonstrated by the characterization of catalysts in this study

  12. Measurement of the electromagnetic lifetimes of the first four excited states of /sup 192/Pt

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D K; Raoof, M A; Raoof, S A [Birkbeck Coll., London (UK)

    1976-11-01

    Measurements of the electromagnetic lifetimes of the first four excited states of /sup 192/Pt have been made by the self-comparison method using electron-electron coincidences. The partial lifetimes of the gamma transitions involved have been interpreted in terms of the pairing-plus-quadrupole model of Kumar and Baranger.

  13. Adsorption and oxidation of acetaldehyde on carbon supported Pt, PtSn and PtSn-based trimetallic catalysts by in situ Fourier transform infrared spectroscopy

    Science.gov (United States)

    Beyhan, Seden; Léger, Jean-Michel; Kadırgan, Figen

    2013-11-01

    The adsorption and oxidation of acetaldehyde on carbon supported Pt, Pt90Sn10 and Pt80Sn10M10 (M = Ni, Co, Rh, Pd) catalysts have been investigated by using in situ Fourier transform infrared (FTIR) spectroscopy. The result revealed that Pt90Sn10/C catalyst is not very efficient for the conversion of acetaldehyde to CO2 due to the weak adsorption of acetaldehyde in the presence of Sn. However, the addition of a third metal to Pt--Sn facilitates the C-C bond cleavage of acetaldehyde. It seems that acetaldehyde is adsorbed dissociatively on the surface of Pt80Sn10Ni10/C, Pt80Sn10Co10/C, Pt80Sn10Rh10/C catalysts, producing CH3 and CHO adsorbate species, which can be further oxidized to CO2. However, the pathway forming CO2 for Pt80Sn10Pd10/C catalyst mainly originates from the oxidation of CH3CO species. Thus, the presence of third metal in the PtSn catalyst has a strong impact upon the acetaldehyde adsorption behaviour and its reaction products.

  14. Influence of method of preparation of Pt Ru/C electrocatalysts on the catalytic activity for the ethanol oxidation reaction in acidic medium; Influencia do metodo de preparacao de eletrocatalisadores PtRu/C sobre a atividade catalitica frente a reacao de oxidacao de etanol em meio acido

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Walber dos Santos; Silva, Uriel Lean Valente; Souza, Jose Pio Iudice de, E-mail: jpio@ufpa.br [Universidade Federal do Para, (UFPA), Belem, PA (Brazil). Instituto de Ciencias Exatas e Naturais. Faculdade de Quimica

    2013-09-01

    In this work the influence of variations in the borohydrate reduction method on the properties of Pt Ru/C electrocatalysts was investigated. The electrocatalysts were prepared using 1:1 ; 2:1; 5:1; 50:1 and 250:1 molar ratios of NaBH{sub 4} to metals. The reduction was also performed by dripping or by fast addition of the solution. The results showed that Pt Ru nanoparticles obtained by fast addition had the smallest crystallite sizes. It was also noted that the catalytic activity increased as the borohydrate:metal molar ratio increased. The Pt Ru/C electrocatalysts (50:1) obtained by fast addition presented the best catalytic activity for ethanol electro-oxidation. (author)

  15. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang; Huang, Dabing; Wang, Honghui; Zhou, Zhiyou; Wang, Qingxiao

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core

  16. Carbon-coated NiPt, CoPt nanoalloys: size control and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, A.A. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany); Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Hampel, S.; Leonhardt, A.; Khavrus, V.; Buechner, B. [Leibniz Institute for Solid State and Materials Research (IFW) Dresden (Germany); Klingeler, R. [Kirchhoff Institute for Physics, University of Heidelberg, D-69120 Heidelberg (Germany)

    2011-07-01

    Controlled synthesis of magnetic nanoparticles with well-defined size and composition is always a challenge in material-based nanoscience. Here, we apply the high pressure chemical vapour deposition technique (HPCVD) to obtain carbon-shielded magnetic alloy nanoparticles under control of the particle size. Carbon encapsulated NiPt, CoPt (NiPt rate at C, CoPt rate at C) nanoalloys were synthesized by means of HPCVD starting from sublimating appropriate metal-organic precursors. Structural characterization by means of high resolution transmission electron microscopy, energy dispersive X-ray analysis and X-ray diffraction indicated the formation of coated bimetallic Ni{sub x}Pt{sub 100-x} and CoxPt{sub 100-x} nanoparticles. Adjusting the sublimation temperature of the different precursors allowed tuning the core sizes with small size distribution. In addition, detailed studies of the magnetic properties are presented. AC magnetic heating studies imply the potential of the coated nanoalloys for hyperthermia therapy.

  17. Photoelectrocatalytic property of microporous Pt-TiO2/Ti electrodes

    International Nuclear Information System (INIS)

    Hung, Chung-Hsuang; Wu, Kee-Rong; Yeh, Chung-Wei; Sun, Jui-Ching; Hsu, Chuan-Jen

    2013-01-01

    This study investigates the photoelectrocatalytic (PEC) property of microporous WO 3 -loaded TiO 2 /Ti layer, prepared via micro-arc oxidation (MAO) of Ti plate, followed by sputtering deposition of a thin Pt layer as a Pt-TiO 2 /Ti electrode. The WO 3 -loaded TiO 2 layer which is associated with a more acidic surface forms many local electrochemical cells on its micro-pores immersed in cationic dye solution. The electrocatalytic (EC) reactions can take place in the local cells by the applied electrons. A low resistivity that is accomplished by MAO technique and by platinization offers an easy path for the electron motions in the Pt-TiO 2 /Ti electrode. All these features make the EC oxidation of aqueous dye pollutants practically feasible without using counter electrodes and supporting electrolytes. Our experiments demonstrate that, under PEC condition, the Pt-TiO 2 /Ti shows the highest degradation rate constant of 0.83 h − 1 at an applied bias of 1.0 V and exhibits significantly high PEC and EC oxidation activities at a low applied bias of 0.25 V. This is attributable to high anodic currents generated in the Pt-TiO 2 /Ti even at low bias. The modified microporous electrodes conclusively reveal a very interesting EC property as a two double-sided device that functions the PEC and EC oxidation simultaneously without a need of supporting electrolyte and expensive Pt cathode. - Highlights: ► Pt-TiO 2 /Ti exhibits enhanced photoelectrocatalytic (PEC) activity at low applied bias. ► The proposed device uses low applied bias (< 1.0 V) with no explicit cathode. ► PEC oxidation can be performed without supporting electrolyte and Pt cathode

  18. Effect of the applied magnetic field and the layer thickness on the magnon properties in bilayers Co/Pt and symmetrical trilayer Pt/Co/Pt

    International Nuclear Information System (INIS)

    Mehdioui, M.; Fahmi, A.; Lassri, H.; Fahoume, M.; Qachaou, A.

    2014-01-01

    We have studied the elementary magnetic excitations and their dynamics in multilayer Co(t Co)/Pt(t Pt) and Pt(t Pt)/Co(t Co)/Pt(t Pt) under an applied magnetic field. The Heisenberg hamiltonian used takes into account the magneto-crystalline and surface anisotropies, the exchange and dipolar interactions. The calculated excitation spectrum ε N (k) presents a structure with two sub-bands corresponding to the magnons of surface and volume respectively. The existence of a gap of creating these magnons is also highlighted. The lifetimes deduced from these gaps are in good agreement with the results of previous studies. The thermal evolution of the magnetization m z indicates that the system undergoes a dimensional crossover 3D–2D when the temperature increases. The calculated and measured magnetizations are compared and they are in good agreement. The exchange integral and critical temperature values deduced from these adjustments are in very good agreement with the results of previous works. - Highlights: • The magnons of surface and volume exist in Co/Pt and Pt/Co/Pt. • Samples undergo dimensional crossover (3D–2D) when T increases. • A good agreement is obtained between M(T) measured and calculated. • Deduced exchange integrals and critical temperature values are correct. • The magnetism of the sample is reduced by increasing t Pt or capping Co by two Pt layers

  19. Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers

    International Nuclear Information System (INIS)

    Lee, Kwangbae; Rhee, Byung Roh; Lee, Chanku

    2001-01-01

    We have investigated the feasibility of the Pt/PtO x multilayer as an electrode barrier for Pb(Zr,Ti)O 3 (PZT)-based ferroelectric random access memories. PtO x and Pt layers were prepared on polycrystalline-Si/SiO 2 /Si substrates by means of the sputtering method in Ar and O 2 ambience, and the Pb(Zr 0.53 Ti 0.47 )O 3 layer was prepared by the sol-gel method. A capacitor consisting of Pt/PtO x /PZT/PtO x /Pt/PtO x /poly-Si had a remanent polarization of 18 μC/cm 2 and a low coercive field of 32 kV/cm. The polarization fatigue behavior of test capacitors was improved as compared with that of Pt/PZT/Pt, which showed negligible fatigue loss of 15% after 10 11 switching repetitions with a frequency of 1 MHz. Copyright 2001 American Institute of Physics

  20. Electron transport in a Pt-CO-Pt nanocontact: Density functional theory calculations

    DEFF Research Database (Denmark)

    Strange, Mikkel; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2006-01-01

    We have performed first-principles calculations for the mechanic and electric properties of pure Pt nanocontacts and a Pt contact with a single CO molecule adsorbed. For the pure Pt contacts we see a clear difference between point contacts and short chains in good agreement with experiments. We...

  1. Manipulating magnetic anisotropy of the ultrathin Co2FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    International Nuclear Information System (INIS)

    Wen, F.S.; Xiang, J.Y.; Hao, C.X.; Zhang, F.; Lv, Y.F.; Wang, W.H.; Hu, W.T.; Liu, Z.Y.

    2013-01-01

    The ultrathin films of Co 2 FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films. - Highlights: • Different Pt orientations lead to different magnetic anisotropy for sandwiched ultrathin CFA films. • The Pt (111) orientation favors the perpendicular anisotropy for CFA layer. • Temperature and thickness-induced spin reorientation transitions were investigated in sandwiched ultrathin CFA films. • 0.8 nm CFA film is good candidate as electrode in magnetic tunnel junctions

  2. Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops

    International Nuclear Information System (INIS)

    Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.

    2004-01-01

    This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16 3 x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58±0.34 GeV from the exponential time dependence of the dynamical correlators with m val =m sea and N f =2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m val ≠m sea . They are positive for m val ≥m sea and negative for m val sea . In order to understand this striking effect of partial quenching, we derive the scalar correlator within the partially quenched chiral perturbation theory (ChPT) and find it describes lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m val ≥m sea and negative for m val sea at large t. After the subtraction of this unphysical contribution from the partially quenched lattice correlators, the correlators are positive and exponentially falling. The resulting scalar meson mass 1.51±0.19 GeV from the partially quenched correlators is consistent with the dynamical result and has an appreciably smaller error bar

  3. N, P-codoped Mesoporous Carbon Supported PtCox Nanoparticles and Their Superior Electrochemical toward Methanol Oxidation

    Science.gov (United States)

    Cui, Hangjun; Li, Yueming; Liu, Shimin

    2018-03-01

    In this report, a novel strategy by using the N, P co-doped mesoporous carbon structure as catalyst support to enhance the electrochemical catalytic activity of Pt-based catalysts is proposed. The as-synthesized PtCox@N, P-doped mesoporous carbon nanocomposties have been studied as an anode catalyst toward methanol oxidation, exhibiting greatly improved electrochemical activity and stability compared with Pt@mesoporous carbon. The synergistic effects of N, P dual-doping and porous carbon structure help to achieve better electron transport at the electrode surface, which eventually leads to greatly enhanced catalytic activity compared to the pristine Pt/mesoporous carbon.…

  4. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation

    KAUST Repository

    Zhu, Haibo

    2014-12-01

    A new one pot, surfactant-free, synthetic route based on the surface organometallic chemistry (SOMC) concept has been developed for the synthesis of Sn surface-enriched Pt-Sn nanoparticles. Bu3SnH selectively reacts with [Pt]-H formed in situ at the surface of Pt nanoparticles, Pt NPs, obtained by reduction of K2PtCl4 by LiB(C2H5)3H. Chemical analysis, 1H MAS and 13C CP/MAS solid-state NMR as well as two-dimensional double-quantum (DQ) and triple-quantum (TQ) experiments show that organo-tin moieties Sn(n-C4H9) are chemically linked to the surface of Pt NPs to produce, in fine, after removal of most of the n-butyl fragment, bimetallic Pt-Sn nanoparticles. The Sn(n-CH2CH2CH2CH3) groups remaining at the surface are believed to stabilize the as-synthesized Pt-Sn NPs, enabling the bimetallic NPs to be well dispersed in THF. Additionally, the Pt-Sn nanoparticles can be supported on MgAl2O4 during the synthesis of the nanoparticles. Some of the Pt-Sn/MgAl2O4 catalyst thus prepared exhibits high activity in PROX of CO and an extremely high selectivity and stability in propane dehydrogenation to propylene. The enhanced activity in propane dehydrogenation is associated with the high concentration of inactive Sn at the surface of Pt nanoparticles which ”isolates” the active Pt atoms. This conclusion is confirmed by XRD, NMR, TEM, and XPS analysis.

  5. A theoretical understanding on the CO-tolerance mechanism of the WC(0001) supported Pt monolayer: Some improvement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xilin [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Lu, Zhansheng [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China); Yang, Zongxian, E-mail: yzx@henannu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, 453007 (China); Collaborative Innovation Center of Nano Functional Materials and Applications, Henan Province (China)

    2016-12-15

    Highlights: • The mechanism of CO tolerance and oxidation on Pt{sub ML}/WC(0001) is clarified. • The high tolerance of Pt{sub ML}/WC(0001) to CO originate from the weak adsorption. • The minimum energy path and the rate-determining step are identified. • The activity of Pt{sub ML}/WC(0001) to CO oxidation is comparable to that of Pt(111). • Some probable strategies are proposed to improve the activity of Pt{sub ML}/WC(0001). - Abstract: The deposition of platinum on the tungsten carbide (Pt/WC) have been achieved and proved with high stability, activity and CO-tolerance toward some reactions in experiments. Although a lot of experimental efforts have been focused on understanding the activity, stability and CO-tolerance of Pt/WC, the relevant theoretical works related to the CO-tolerance mechanism are still scarce. In current study, the adsorption and oxidation of CO on the Pt monolayer supported on WC(0001) surface (Pt{sub ML}/WC(0001)) are investigated using density functional theory calculations. It is found that the oxidation of CO on Pt{sub ML}/WC(0001) proceeds preferably along the Langmuir-Hinshelwood mechanism. The energy barrier of 1.06 eV for the rate-determining step of OOCO formation is almost equal to that (1.05 eV) for CO oxidation by atomic O on Pt(111), while the adsorption energy of 1.59 eV for CO on Pt{sub ML}/WC(0001) is smaller than that on Pt(111) (1.85 eV), indicating that the high resistance to CO poisoning of Pt{sub ML}/WC(0001) may originate from the weak interaction between them. To further improve the CO tolerance, some probable strategies are proposed based on the relevant kinetics results. The current results are helpful to understanding the origin of the highly resistant to CO poisoning of Pt{sub ML}/WC(0001) and rationally designing catalysts to improve the CO oxidation activity.

  6. Pengaruh Kualitas Sistem Informasi Dan Lingkungan Kerja Terhadap Kinerja Karyawan (Studi Pada PT Pembangkitan Jawa Bali Unit Pembangkitan Paiton)

    OpenAIRE

    Ningrum, Ika Rosita; Susilo, Heru

    2017-01-01

    The aim of this study was to asses and know the condition of quality information system and work environment applied in PT Pembangkitan Jawa Bali (PJB UP) Paiton. The type of study used is expalantive with through quantitative approach. The population in this study were employees of ellipse users of PT PJB UP Paiton with a sample of 62 respondents. The data analysis in this study used multiple linier regression. The testing showed that there was a partial and simultaneous effect which signifi...

  7. Reaction of cyanide with Pt-nucleobase complexes: preparative, spectroscopic, and structural studies. Unexpected stability of Pt-thymine and Pt-uracil complexes

    International Nuclear Information System (INIS)

    Raudaschl-Sieber, G.; Lippert, B.

    1985-01-01

    In order to improve the understanding of the nature of the strongly bound cisplatin on DNA, the reactivity of a large number of complexes of cis-(NH 3 ) 2 Pt/sup II/ with the model nucleobases, 9-ethylguanine, 9-methyladenine, 1-methylcytisine, 1-methylthymine, and i-methyluracil, toward a large excess of cyanide was studied. The behavior of Pt-nucleobase complexes toward CN - is compared with that of simple Pt-amine complexes, and reactions of thiourea with two selected nucleobase complexes is reported. The relevance of these findings with respect to substitution reactions of Pt-nucleobase complexes and the nature of the tightly DNA-bound Pt, which cannot be removed by excess KCN, is discussed

  8. Pt nanocrystals electrodeposited on reduced graphene oxide/carbon fiber paper with efficient electrocatalytic properties

    Directory of Open Access Journals (Sweden)

    Zhiling Chen

    2017-08-01

    Full Text Available Carbon fiber paper (CFP wrapped with reduced graphene oxide (rGO film as the composite support (rGO/CFP of Pt catalysts was studied. It was found that rGO could affect the size and morphology of Pt nanocrystals (NCs. Concave nanocubes (CNC Pt NCs ~ 20 nm were uniformly electrodeposited on high reduced HrGO/CFP while irregular Pt NCs ~ 62 nm were loaded on low reduced LrGO. Compared with Pt-LrGO/CFP and Pt-MrGO/CFP, the CNC Pt-HrGO/CFP exhibited a higher electrochemically active surface area (121.7 m2 g−1, as well as enhanced electrooxidation activity of methanol (499 mA mg−1 and formic acid (950 mA mg−1. The results further demonstrated that the CNC Pt-HrGO/CFP could serve as the gas diffusion electrode in fuel cells and yielded a satisfactory performance (1855 mW mg−1. The work can provide an attractive perspective on the convenient preparation of the novel gas diffusion electrode for proton exchange membrane fuel cells.

  9. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    International Nuclear Information System (INIS)

    Bijnens, Johan; Rössler, Thomas

    2015-01-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique. Partial analytical results can be found in the appendices. Some examples of cases relevant to lattice QCD are studied numerically. Numerical programs for all results are available as part of the CHIRON package.

  10. Finite volume for three-flavour Partially Quenched Chiral Perturbation Theory through NNLO in the meson sector

    Energy Technology Data Exchange (ETDEWEB)

    Bijnens, Johan; Rössler, Thomas [Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, SE 223-62 Lund (Sweden)

    2015-11-16

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark flow technique. Partial analytical results can be found in the appendices. Some examples of cases relevant to lattice QCD are studied numerically. Numerical programs for all results are available as part of the CHIRON package.

  11. XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices

    International Nuclear Information System (INIS)

    Tournus, F.; Blanc, N.; Tamion, A.; Ohresser, P.; Perez, A.; Dupuis, V.

    2008-01-01

    We report the synthesis and characterization of CoPt nanoparticles, using X-ray magnetic circular dichroism (XMCD) at the Co L 2,3 edges. Clusters are produced in ultra-high vacuum conditions, following a physical route, and embedded in non-metallic matrices: MgO and amorphous carbon (a-C). In MgO, Co atoms are partially oxidized, which goes with a μ L /μ S enhancement. On the contrary, a-C appears as a very suitable matrix. In particular, annealing of CoPt cluster embedded in a-C is able to promote L 1 0 chemical order, without alteration of the sample. This transformation, which has been directly evidenced by transmission electron microscopy observations, is accompanied by a striking augmentation of μ S , μ L and the μ L /μ S ratio of Co. The presence of Pt leads to an enhanced Co magnetic moment, as compared to Co bulk, even for the chemically disordered alloy. Moreover, the high value of 1.91μ B /at. measured for μ S is unusual for Co and must be a signature of chemical order in CoPt alloy nanoparticles

  12. [Pt(O,O'-acac)(gamma-acac)(DMS)], a new Pt compound exerting fast cytotoxicity in MCF-7 breast cancer cells via the mitochondrial apoptotic pathway.

    Science.gov (United States)

    Muscella, A; Calabriso, N; Fanizzi, F P; De Pascali, S A; Urso, L; Ciccarese, A; Migoni, D; Marsigliante, S

    2008-01-01

    We showed previously that a new Pt complex containing an O,O'-chelated acetylacetonate ligand (acac) and a dimethylsulphide in the Pt coordination sphere, [Pt(O,O'-acac)(gamma-acac)(DMS)], induces apoptosis in HeLa cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also cytotoxic in a MCF-7 breast cancer cell line relatively insensitive to cisplatin, and to gain a more detailed analysis of the cell death pathways. Cells were treated with Pt compounds and cytotoxicity tests were performed, together with Western blotting of various proteins involved in apoptosis. The mitochondrial membrane potential was assessed by fluorescence microscopy and spectrofluorometry and the Pt bound to cell fractions was measured by atomic absorption spectrometry. In contrast to cisplatin, the cytotoxicity of [Pt(O,O'-acac)(gamma-acac)(DMS)] correlated with cellular accumulation but not with DNA binding. Also, the Pt content in DNA bases was considerably higher for cisplatin than for [Pt(O,O'-acac)(gamma-acac)(DMS)], thus excluding DNA as a target of [Pt(O,O'-acac)(gamma-acac)(DMS)]. [Pt(O,O'-acac)(gamma-acac)(DMS)] exerted high and fast apoptotic processes in MCF-7 cells since it provoked: (a) mitochondria depolarization; (b) cytochrome c accumulation in the cytosol; (c) translocation of Bax and truncated-Bid from cytosol to mitochondria and decreased expression of Bcl-2; (d) cleavage of caspases -7 and -9, and PARP degradation; (e) chromatin condensation and DNA fragmentation. [Pt(O,O'-acac)(gamma-acac)(DMS)] is highly cytotoxic for MCF-7 cells, cells relatively resistant to many chemotherapeutic agents, as it activates the mitochondrial apoptotic pathway. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] has the potential to provide us with new opportunities for therapeutic intervention.

  13. Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting

    International Nuclear Information System (INIS)

    Yang, Zhengbao; Zu, Jean

    2016-01-01

    Highlights: • Systematic analysis of PMN-PT and PZN-PT single crystals for energy harvesters. • Performance analysis and comparison under various conditions. • Discussion of the effect of the SSHI technique on single crystal energy harvesters. • Efficiency analysis in both on-resonance and off-resonance conditions. - Abstract: Vibration energy harvesting has a great potential to achieve self-powered operations for wireless sensors, wearable devices and medical electronics, and thus has attracted much attention in academia and industry. The majority of research into this subject has focused on the piezoelectric effect of synthetic materials, especially the perovskite PZT ceramics. Recently the new-generation piezoelectric materials PMN-PT and PZN-PT single crystals have gained significant interest because of their outstanding piezoelectric properties. They can be used to replace the widely-adopted PZT ceramics for improving energy harvesters’ performance substantially. However, there is little research on comparing PMN-PT and PZN-PT energy harvesters against PZT harvesters. In this paper, we present a systematic comparison between vibration energy harvesters using the PMN-PT, PZN-PT single crystals and those using the PZT ceramics. Key properties of the three materials are summarized and compared. The performance of the PMN-PT and PZN-PT energy harvesters is characterized under different conditions (beam length, resistance, frequency, excitation strength, and backward coupling effect), and is quantitatively compared with the PZT counterpart. Furthermore, the effect of the synchronized switch harvesting on inductor (SSHI) circuit on the three harvesters is discussed. The experimental results indicate that energy harvesters using the PMN-PT and PZN-PT single crystals can significantly outperform those using the PZT ceramics. This study provides a strong base for future research on high-performance energy harvesters using the new PMN-PT and PZN-PT single

  14. Combined wet-chemical process to synthesize 65PMN-35PT nanosized powders

    International Nuclear Information System (INIS)

    Santos, Luis P.S.; Longo, Elson; Leite, Edson R.; Camargo, Emerson R.

    2004-01-01

    Columbite MgNb 2 O 6 precursors were synthesized by a wet-chemical method by means of the dissolution of Nb 2 O 5 .5H 2 O and magnesium carbonate in a solution of oxalic acid. Pure 65PMN-35PT powders could be obtained by the columbite method with the use of the partial oxalate and oxidant peroxo methods. Powders were characterized by X-ray diffraction and FT-Raman spectroscopy showing that pure 65PMN-35PT are obtained when the powders are calcined up to 800 deg. C, without any trace of Pb-Nb pyrochlore. Cubic Pb 1,86 Mg 0.24 Nb 1.76 O 6.5 pyrochlore phase is formed by lead loss in the powders calcined at 900 deg. C and higher temperatures as undoubtedly characterized by Raman spectroscopy

  15. Time-invariant PT product and phase locking in PT -symmetric lattice models

    Science.gov (United States)

    Joglekar, Yogesh N.; Onanga, Franck Assogba; Harter, Andrew K.

    2018-01-01

    Over the past decade, non-Hermitian, PT -symmetric Hamiltonians have been investigated as candidates for both a fundamental, unitary, quantum theory and open systems with a nonunitary time evolution. In this paper, we investigate the implications of the former approach in the context of the latter. Motivated by the invariance of the PT (inner) product under time evolution, we discuss the dynamics of wave-function phases in a wide range of PT -symmetric lattice models. In particular, we numerically show that, starting with a random initial state, a universal, gain-site location dependent locking between wave-function phases at adjacent sites occurs in the PT -symmetry-broken region. Our results pave the way towards understanding the physically observable implications of time invariants in the nonunitary dynamics produced by PT -symmetric Hamiltonians.

  16. Electrochemical fabrication of clean dendritic Au supported Pt clusters for electrocatalytic oxidation of formic acid

    International Nuclear Information System (INIS)

    Xia Yue; Liu Jun; Huang Wei; Li Zelin

    2012-01-01

    Highlights: ► A smooth Au surface was rebuilt into clean dendrite via square wave potential pulses. ► It was performed in blank H 2 SO 4 solution without Au(III) species and other additives. ► Dendritic Au provided certain advantage for dispersing Pt due to its unique structure. ► Pt-decorated dendritic Au demonstrated high activity for the HCOOH electrooxidation. - Abstract: We report here the fabrication of clean dendritic gold (DG) directly on a smooth Au electrode via square wave potential pulses (SWPPs) in a blank H 2 SO 4 solution containing no Au(III) species and additives. The effects of potential range, frequency and duration time of SWPPs and H 2 SO 4 concentration on the construction of DG were systematically investigated. A possible mechanism was proposed to explain the growth of DG. The whole process was templateless and surfactantless, and therefore effectively avoided possible contaminations that occurred in other synthetic routes. Further, the prepared DG electrode functioned as a scaffold to support electrodeposited Pt clusters, producing Pt-decorated DG (Pt-DG) electrodes. The electrocatalytic properties of Pt-DG electrodes with various Pt loadings were examined for the oxidation of formic acid. The low Pt loading Pt-DG demonstrated different electrochemical behavior from that on Pt-decorated smooth gold (Pt-SG) and on Pt-decorated gold nanoparticles because there were more defect sites like steps and edges on the DG surface. Ensemble effect, as well as electronic effect, accounts for the improved electrocatalytic activity of low Pt loading Pt-DG.

  17. Photoactivation of Diiodido-Pt(IV) Complexes Coupled to Upconverting Nanoparticles.

    Science.gov (United States)

    Perfahl, Stefanie; Natile, Marta M; Mohamad, Heba S; Helm, Christiane A; Schulzke, Carola; Natile, Giovanni; Bednarski, Patrick J

    2016-07-05

    The preparation, characterization, and surface modification of upconverting lanthanide-doped hexagonal NaGdF4 nanocrystals attached to light sensitive diiodido-Pt(IV) complexes is presented. The evaluation for photoactivation and cytotoxicity of the novel carboxylated diiodido-Pt(IV) cytotoxic prodrugs by near-infrared (NIR) light (λ = 980 nm) is also reported. We attempted two different strategies for attachment of light-sensitive diiodido-Pt(IV) complexes to Yb,Er- and Yb,Tm-doped β-NaGdF4 upconverting nanoparticles (UCNPs) in order to provide nanohybrids, which offer unique opportunities for selective drug activation within the tumor cells and subsequent spatiotemporal controlled drug release by NIR-to-visible light-upconversion: (A) covalent attachment of the Pt(IV) complex via amide bond formation and (B) carboxylate exchange of oleate on the surface of the UCNPs with diiodido-Pt(IV) carboxylato complexes. Initial feasibility studies showed that NIR applied by a 980 nm laser had only a slight effect on the stability of the various diiodido-Pt(IV) complexes, but when UCNPs were present more rapid loss of the ligand-metal-charge transfer (LMCT) bands of the diiodido-Pt(IV) complexes was observed. Furthermore, Pt released from the Pt(IV) complexes platinated calf-thymus DNA (ct-DNA) more rapidly when NIR was applied compared to dark controls. Of the two attachment strategies, method A with the covalently attached diiodido-Pt(IV) carboxylates via amide bond formation proved to be the most effective method for generating UCNPs that release Pt when irradiated with NIR; the released Pt was also able to bind irreversibly to calf thymus DNA. Nonetheless, only ca. 20% of the Pt on the surface of the UCNPs was in the Pt(IV) oxidation state, the rest was Pt(II), indicating chemical reduction of the diiodido-Pt(IV) prodrug by the UCNPs. Cytotoxicity studies with the various UCNP-Pt conjugates and constructs, tested on human leukemia HL60 cells in culture, indicated a

  18. Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.; Habas, S.E.; Somorjai, G.A.; Yang, P.

    2008-03-20

    Binary Pt/Pd nanoparticles were synthesized by localized overgrowth of Pd on cubic Pt seeds for the investigation of electrocatalytic formic acid oxidation. The binary particles exhibited much less self-poisoning and a lower activation energy relative to Pt nanocubes, consistent with the single crystal study.

  19. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  20. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Science.gov (United States)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  1. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    Science.gov (United States)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  2. Prothrombin time (PT)

    Science.gov (United States)

    PT; Pro-time; Anticoagulant-prothrombin time; Clotting time: protime; INR; International normalized ratio ... PT is measured in seconds. Most of the time, results are given as what is called INR ( ...

  3. Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.

    Science.gov (United States)

    Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao

    2017-02-01

    A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.

  4. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  5. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...... size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet...

  6. Architecture-dependent surface chemistry for Pt monolayers on carbon-supported Au.

    Science.gov (United States)

    Cheng, Shuang; Rettew, Robert E; Sauerbrey, Marc; Alamgir, Faisal M

    2011-10-01

    Pt monolayers were grown by surface-limited redox replacement (SLRR) on two types of Au nanostructures. The Au nanostructures were fabricated electrochemically on carbon fiber paper (CFP) by either potentiostatic deposition (PSD) or potential square wave deposition (PSWD). The morphology of the Au/CFP heterostructures, examined using scanning electron microscopy (SEM), was found to depend on the type of Au growth method employed. The properties of the Pt deposit, as studied using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and cyclic voltammetry (CV), were found to depend strongly on the morphology of the support. Specifically, it was found that smaller Au morphologies led to a higher degree of cationicity in the resulting Pt deposit, with Pt(4+) and Pt(2+) species being identified using XPS and XAS. For fuel-cell catalysts, the resistance of ultrathin catalyst deposits to surface area loss through dissolution, poisoning, and agglomeration is critical. This study shows that an equivalent of two monolayers (ML) is the low-loading limit of Pt on Au. At 1 ML or below, the Pt film decreases in activity and durability very rapidly due to presence of cationic Pt. © 2011 American Chemical Society

  7. Performance and hemtochemical parameters of buck-kids fed concentrate partially replaced with tropical Piliostigma thonningii foliage.

    Science.gov (United States)

    Olafadehan, Olurotimi A; Njidda, Ahmed A; Okunade, Sunday A; Salihu, Sarah O; Balogun, David O; Salem, Abdelfattah Z M

    2018-02-01

    Fifteen 5-month-old Red Sokoto buck-kids, (6.6 ± 0.71 kg body weight (BW)) randomly distributed into three groups of five animals per group, were used to study the effects of supplementary concentrate partially replaced with Piliostigma thonningii (PT) foliage on the growth performance, economic benefit and blood profile in a completely randomized design using analysis of variance. The goats in group 1 received 100% supplementary concentrates (PT0), groups 2 and 3 received 25% (PT25) and 50% (PT50), respectively, of concentrate replaced with an equal amount (dry matter basis) of Piliostigma foliage. The goats were fed a basal diet of threshed sorghum top (TST). Intake of concentrate, hemoglobin, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, total feeding cost and cost/kg BW were greater (P kids. © 2017 Japanese Society of Animal Science.

  8. Manipulating magnetic anisotropy of the ultrathin Co{sub 2}FeAl full-Heusler alloy film via growth orientation of the Pt buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Wen, F.S., E-mail: wenfsh03@126.com [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Xiang, J.Y.; Hao, C.X.; Zhang, F.; Lv, Y.F. [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Wang, W.H. [Institute of Physics, Chinese Academy of Science, Beijing 100080 (China); Hu, W.T.; Liu, Z.Y. [State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)

    2013-12-15

    The ultrathin films of Co{sub 2}FeAl (CFA) full-Heusler alloy were prepared between two Pt layers on MgO single crystals by magnetron sputtering. By controlling the substrate temperature, different growth orientations of the Pt underlayers were realized, and their effects were investigated on the magnetic anisotropy of the ultrathin CFA film. It was revealed that different Pt orientations lead to distinctly different magnetic anisotropy for the sandwiched ultrathin CFA films. The Pt (111) orientation favors the perpendicular anisotropy, while the appearance of partial Pt (001) orientation leads to the quick decrease of perpendicular anisotropy and the complete Pt (001) orientation gives rise to the in-plane anisotropy. With the Pt (111) orientation, the temperature and thickness-induced spin reorientation transitions were investigated in the sandwiched ultrathin CFA films. - Highlights: • Different Pt orientations lead to different magnetic anisotropy for sandwiched ultrathin CFA films. • The Pt (111) orientation favors the perpendicular anisotropy for CFA layer. • Temperature and thickness-induced spin reorientation transitions were investigated in sandwiched ultrathin CFA films. • 0.8 nm CFA film is good candidate as electrode in magnetic tunnel junctions.

  9. Cyclic voltammetric analysis of C 1-C 4 alcohol electrooxidations with Pt/C and Pt-Ru/C microporous electrodes

    Science.gov (United States)

    Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu

    The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.

  10. Pengaruh Gaya Kepemimpinan Terhadap Motivasi Kerja (Studi Pada Karyawan PT. Indolakto Factory Pandaan)

    OpenAIRE

    Adiani, Atika Laili; Susilo, Heru; Prasetya, Arik

    2016-01-01

    This research was aimed to understand the general description and effect of leadership styles, concerning with telling, selling, participating and delegating, either simultaneously or partially, on work motivation of the employees at PT. Indolakto Factory Pandaan. Indeed, quantitative analysis was employed to describe the variables using statistic test. Explanatory approach was considered to explain the causal relationship across variable through hypothesis testing. Population of research inc...

  11. Atom distribution and interactions in Ag{sub x}Pt{sub 1-x} and Au{sub x}Pt{sub 1-x} surface alloys on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Roetter, Ralf T.; Bergbreiter, Andreas; Hoster, Harry E.; Behm, R. Juergen [Institute of Surface Chemistry and Catalysis, Ulm University, D-89069 Ulm (Germany)

    2009-07-01

    The atom distributions in Ag{sub x}Pt{sub 1-x}/Pt(111) and Au{sub x}Pt{sub 1-x}/Pt(111) surface alloys were studied by high resolution UHV-STM. These surfaces were prepared by submonolayer Ag (Au) metal deposition on Pt(111), followed by annealing at 900 K or 1000 K, respectively, which in both cases results in surface confined 2D alloys, with equilibrated distribution of the components. Both systems show a tendency towards two-dimensional clustering, which fits well to their known bulk immiscibility. Effective cluster interactions (ECIs) will be derived by a quantitative evaluation of the 2D atom distributions in the surface alloys. By comparing the ECIs for PtAg and PtAu on Pt(111), and considering that Ag and Au have almost similar lattice constants, the results allow conclusion on the physical origin of the tendency for clustering.

  12. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  13. Study of PtNi/C catalyst for direct ethanol fuel cell; Estudo do catalisador PtNi/C para celula a combustivel de etanol direto

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, L.P.R. de; Silva, E.L. da; Amico, S.C.; Malfatti, C.F., E-mail: eticiaprm@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2014-07-01

    In this work, PtNi binary catalyst and pure platin catalyst were synthesized by the impregnation-reduction method, using Vulcan XC72R as support, for direct ethanol fuel cells. The composition and structure of the catalysts were analyzed by X-ray diffraction, the electrochemical behavior was evaluated by cyclic voltammetry and morphology of the catalysts was studied by high-resolution transmission electron microscopy. The results showed that the addition of Ni to Pt led to the contraction of the crystal lattice, increased the catalytic activity compared to pure Pt and initiated the electrooxidation of ethanol at lower potential. (author)

  14. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  15. Synthesis and characterization of supported Pt and Pt alloys nanoparticles used for the catalytic oxidation of sulfur dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Eriksen, Kim Michael; Fehrmann, Rasmus

    2006-01-01

    pressure in the temperature range of 250–700 °C. The effect of doping the active metal with rhodium and palladium was also studied. The catalytic activities of the supported catalysts were found to follow the order Pt–Pd/CPG > Pt–Rh/CPG > Pt/CPG. A significant synergistic effect of the Pt–Pd alloy...

  16. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; Kokoh, K.B.; Coutanceau, C.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Dos Anjos, D.M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Olivi, P.; De Andrade, A.R. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP (Brazil); Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-08-01

    Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt{sub 3}Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm{sup -3} H{sub 2}SO{sub 4} solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO{sub 2} were found, indicating that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 C, the Pt{sub 89}Sn{sub 11}/C and Pt{sub 68}Sn{sub 9}Ir{sub 23}/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC). (author)

  17. A novel binary Pt 3Te x/C nanocatalyst for ethanol electro-oxidation

    Science.gov (United States)

    Huang, Meihua; Wang, Fei; Li, Lirong; Guo, Yonglang

    The Pt 3Te x/C nanocatalyst was prepared and its catalytic performance for ethanol oxidation was investigated for the first time. The Pt 3Te/C nanoparticles were characterized by an X-ray diffractometer (XRD), transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy equipped with TEM (TEM-EDX). The Pt 3Te/C catalyst has a typical fcc structure of platinum alloys with the presence of Te. Its particle size is about 2.8 nm. Among the synthesized catalysts with different atomic ratios, the Pt 3Te/C catalyst has the highest anodic peak current density. The cyclic voltammograms (CV) show that the anodic peak current density for the Pt 3Te/C, commercial PtRu/C and Pt/C catalysts reaches 1002, 832 and 533 A g -1, respectively. On the current-time curve, the anodic current on the Pt 3Te/C catalyst was higher than those for the catalysts reported. So, these findings show that the Pt 3Te/C catalyst has uniform nanoparticles and the best activity among the synthesized catalysts, and it is better than commercial PtRu/C and Pt/C catalysts for ethanol oxidation at room temperature.

  18. BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury(II) ions.

    Science.gov (United States)

    Li, Wei; Chen, Bin; Zhang, Haixiang; Sun, Yanhua; Wang, Jun; Zhang, Jinli; Fu, Yan

    2015-04-15

    Bovine serum albumin (BSA) is chosen as the nucleation templates to synthesize Pt-based peroxidase nanomimetics with the average diameter of 2.0nm. The efficient Pt nanozymes consist of 57% Pt(0) and 43% Pt(2+), which possess highly peroxidase-like activity with the Km values of 0.119mM and 41.8mM toward 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), respectively. Interestingly, Hg(2+) is able to down-regulate the enzymatic activity of Pt nanoparticles, mainly through the interactions between Hg(2+) and Pt(0). It is the first report to explore a colorimetric Hg(2+) sensing system on the basis of peroxidase mimicking activities of Pt nanoparticles. One of our most intriguing results is that BSA-stabilized Pt nanozymes demonstrate the ability to sense Hg(2+) ions in aqueous solution without significant interference from other metal ions. The Hg(2+) detection limit of 7.2nM is achieved with a linear response range of 0-120nM, and the developed sensing system is potentially applicable for quantitative determination of Hg(2+) in drinking water. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Hydrogen evolution from aqueous-phase photocatalytic reforming of ethylene glycol over Pt/TiO{sub 2} catalysts: Role of Pt and product distribution

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fuying [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); Gu, Quan [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shanxi Normal University, Xi’an 710062 (China); Niu, Yu [College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); School of Chemical Engineering, Fuzhou University, Fuzhou 350116 (China); Wang, Renzhang [College of Resources and Chemical Engineering, Sanming University, Sanming 365004 (China); Tong, Yuecong; Zhu, Shuying; Zhang, Hualei [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Zhang, Zizhong, E-mail: z.zhang@fzu.edu.cn [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Wang, Xuxu [State Key Laboratory of Photocatalysis on Energy and Environment, Research Institute of Photocatalysis, Fuzhou University, Fuzhou 350002 (China)

    2017-01-01

    Highlights: • Photocatalytic EG reforming generates many hydrocarbons besides H{sub 2}, CO{sub 2} and CO. • Pt loading greatly improves the photocatalytic activity of TiO{sub 2} for EG reforming. • Half amount of the produced H{sub 2} over Pt/TiO{sub 2} originates from EG reforming. - Abstract: Pt nanoparticles were loaded on anatase TiO{sub 2} by the photodeposition method to investigate their photocatalytic activity for H{sub 2} evolution in an aqueous solution containing a certain amount of ethylene glycol (EG) as the sacrificial agent. The surface properties and chemical states of the Pt/TiO{sub 2} sample were characterized by X-ray powder diffraction analysis, Brunauer–Emmett–Teller surface area analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and electrochemical resistance. The aqueous-phase photocatalytic EG reforming using Pt/TiO{sub 2} and anatase TiO{sub 2} generated not only H{sub 2} and CO{sub 2}, but also CO, CH{sub 4}, C{sub 2}H{sub 6}, and C{sub 2}H{sub 4}. Moreover, the amount of formate and acetate complexes in the solution increased gradually. The EG adsorption and gas-phase intermediates during photocatalytic reaction processes were investigated by the in situ FTIR spectrum. Finally, the photocatalytic EG reforming reaction mechanism was elucidated. This helped to better understand the role of a sacrificial agent in a photocatalytic hydrogen production.

  20. Partial pressure measurements with an active spectrometer

    International Nuclear Information System (INIS)

    Brooks, N.H.; Jensen, T.H.; Colchin, R.J.; Maingi, R.; Wade, M.R.; Finkenthal, D.F.; Naumenko, N.; Tugarinov, S.

    1998-07-01

    Partial pressure neutral ga measurements have been made using a commercial Penning gauge in conjunction with an active spectrometer. In prior work utilizing bandpass filters and conventional spectrometers, trace concentrations of the hydrogen isotopes H, D, T and of the noble gases He, Ne and Ar were determined from characteristic spectral lines in the light emitted by the neutral species of these elements. For all the elements mentioned, the sensitivity was limited by spectral contamination from a pervasive background of molecular hydrogen radiation. The active spectrometer overcomes this limitations by means of a digital lock-in method and correlation with reference spectra. Preliminary measurements of an admixture containing a trace amount of neon in deuterium show better than a factor of 20 improvement in sensitivity over conventional techniques. This can be further improved by correlating the relative intensities of multiple lines to sets of reference spectra

  1. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry.

    Science.gov (United States)

    Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C

    2010-05-04

    Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

  2. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature

    Science.gov (United States)

    Xu, Feiyan; Le, Yao; Cheng, Bei; Jiang, Chuanjia

    2017-12-01

    Catalytic oxidation at room temperature over well-designed catalysts is an environmentally friendly method for the abatement of indoor formaldehyde (HCHO) pollution. Herein, nanocomposites of platinum (Pt) and titanium dioxide (TiO2) nanofibers with various phase compositions were prepared by calcining the electrospun TiO2 precursors at different temperatures and subsequently depositing Pt nanoparticles (NPs) on the TiO2 through a NaBH4-reduction process. The phase compositions and structures of Pt/TiO2 can be easily controlled by varying the calcination temperature. The Pt/TiO2 nanocomposites showed a phase-dependent activity towards the catalytic HCHO oxidation. Pt/TiO2 containing pure rutile phase showed enhanced activity with a turnover frequency (TOF) of 16.6 min-1 (for a calcination temperature of 800 °C) as compared to those containing the anatase phase or mixed phases. Density functional theory calculation shows that TiO2 nanofibers with pure rutile phase have stronger adsorption ability to Pt atoms than anatase phase, which favors the reduction of Pt over rutile phase TiO2, leading to higher contents of metallic Pt in the nanocomposite. In addition, the Pt/TiO2 with rutile phase possesses more abundant oxygen vacancies, which is conducive to the activation of adsorbed oxygen. Consequently, the Pt/rutile-TiO2 nanocomposite exhibited better catalytic activity towards HCHO oxidation at room temperature.

  3. Studies of radioactive cisplatin (191Pt) for tumour imaging and therapy

    International Nuclear Information System (INIS)

    Areberg, J.

    2000-01-01

    A radioactive variant of the cytostatic agent cis-dichlorodiammineplatinum(II), cisplatin, was synthesised from 191 PtCl 4 . The 191 Pt-cisplatin was found to be a sterile product of high radionuclide, radiochemical and chemical purity. The pharmacokinetics of platinum in tumour tissue and organs at risk of fourteen patients undergoing treatment with cisplatin were studied by exchanging a small fraction of the prescribed amount of cisplatin with 191 Pt-cisplatin. The uptake and retention of platinum were investigated by gamma camera measurements up to ten days after infusion of 191 Pt-cisplatin. Highest concentration of platinum was found in the liver, on average 5.7 ± 0.5 μg/g normalised to a given amount of 180 mg cisplatin. Corresponding value for the kidneys was 1.9 ± 0.3 μg/g. Uptake of platinum in tumours was visualised in five patients with an average maximum concentration of 4.9 ± 1.0 μg/g normalised to a given amount of 180 mg cisplatin. The data from the pharmacokinetic study was used together with data from the literature to estimate the absorbed dose and effective dose to patients receiving radioactive cisplatin. The effective doses were calculated to be 0.10 ± 0.02 mSv/MBq, 0.17 ± 0.04 mSv/MBq and 0.23 ± 0.05 mSv/MBq for 191 Pt-, 193m Pt-, and 195m Pt-cisplatin respectively. The combined effect of the radio- and chemotoxicity from 191 Pt-cisplatin was investigated both in vitro and in vivo. A cervical cancer cell line was incubated with cisplatin or 191 Pt-cisplatin with various concentrations and specific activities. It was shown that the surviving fraction was smaller for cells treated with 191 Pt-cisplatin than for cells treated with the same concentration of non-radioactive cisplatin. The surviving fraction decreased with increasing specific activity. Isobologram technique showed that the radio- and chemotoxicity interacted in a supra-additive (synergistic) manner. In an in vivo model, nude mice with xenografted tumours were given

  4. Thermodynamic modeling of the Pt-Zr system

    International Nuclear Information System (INIS)

    Gao Yongliang; Guo Cuiping; Li Changrong; Du Zhenmin

    2010-01-01

    By means of the CALPHAD (CALculation of PHAse Diagram) technique, the Pt-Zr system was critically assessed. The solution phases (liquid, bcc, fcc and hcp) are described with the substitutional model. The intermetallic compounds Pt 4 Zr, Pt 4 Zr 3 , αPtZr and Pt 3 Zr 5 are treated as the formula (Pt,Zr) m (Pt,Zr) n by a two-sublattice model with the elements Pt and Zr on the first and the second sublattices, respectively. A two-sublattice model (Pt,Zr) 0.5 (Pt,Zr) 0.5 is applied to describe the compound βPtZr with CsCl-type structure (B2) in order to cope with the order-disorder transition between bcc solution (A2) and βPtZr (B2). Another two-sublattice model (Pt,Zr) 0.75 (Pt,Zr) 0.25 with Ni 3 Ti-type structure (D0 24 ) is applied to describe the compound Pt 3 Zr in order to cope with the order-disorder transition between hexagonal close-packed (A3) and Pt 3 Zr (D0 24 ). The compound Pt 10 Zr 7 is treated as a stoichiometric compound. A set of self-consistent thermodynamic parameters of the Pt-Zr system was obtained. (orig.)

  5. Catalytic hydrodeoxygenation of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolites

    International Nuclear Information System (INIS)

    Lee, Hyung Won; Jun, Bo Ram; Kim, Hannah; Kim, Do Heui; Jeon, Jong-Ki; Park, Sung Hoon; Ko, Chang Hyun; Kim, Tae-Wan; Park, Young-Kwon

    2015-01-01

    The hydrodeoxygenation of 2-methoxy phenol and dibenzofuran, which are representative model compounds of bio-oil, was performed using two different Pt/mesoporous zeolite catalysts, Pt/mesoporous Y and Pt/mesoporous MFI. The reforming of 2-methoxy phenol and dibenzofuran via catalytic hydrodeoxygenation was investigated using a batch reactor at 40 bar and 250 °C. The characteristics of the catalysts were analyzed by N 2 adsorption-desorption, X-ray diffraction, and NH 3 temperature programmed desorption. Pt/mesoporous zeolite catalysts containing both strong acid sites and mesopores showed the higher conversion of 2-methoxy phenol than Pt/SiO 2 and Pt/Si-MCM-48 with no acid sites, Pt/γ-Al 2 O 3 , and a mixture of mesoporous Y and Pt/SiO 2 , indicating the importance of both Pt and strong acid sites for high catalytic activity. Among the two Pt/mesoporous zeolite catalysts tested, the conversion of 2-methoxy phenol to cyclohexane over Pt/mesoporous Y was much higher than that over the Pt/mesoporous MFI. This was attributed to the better textural properties, such as surface area, pore volume and micropore size, compared to those of Pt/mesoporous MFI. The catalytic conversions of dibenzofuran obtained using two Pt/mesoporous zeolite catalysts were similar and the main products were 1,1′-bicyclohexyl, cyclopentylmethyl-cyclohexane and cyclohexane. In addition, the reaction mechanisms of 2-methoxy phenol and dibenzofuran over Pt/mesoporous zeolite were suggested. - Highlights: • HDO of 2-methoxy phenol and dibenzofuran was performed over Pt/mesoporous zeolites. • Pt/mesoporous zeolites have mesopores and strong acid sites. • Main product of HDO of 2-methoxy phenol was cyclohexane. • Main products of HDO of dibenzofuran were bicyclohexyl (BCH), i-BCH, and cyclohexane

  6. Ensemble averaged structure–function relationship for nanocrystals: effective superparamagnetic Fe clusters with catalytically active Pt skin [Ensemble averaged structure-function relationship for composite nanocrystals: magnetic bcc Fe clusters with catalytically active fcc Pt skin

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Valeri [Central Michigan University, Mt. Pleasant, MI (United States); Prasai, Binay [Central Michigan University, Mt. Pleasant, MI (United States); Shastri, Sarvjit [Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division; Park, Hyun-Uk [Sungkyunkwan University, Suwon (Korea). Department of Chemistry; Kwon, Young-Uk [Sungkyunkwan University, Suwon (Korea). Department of Chemistry; Skumryev, Vassil [Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain); Universitat Autònoma de Barcelona (Spain). Department of Physics

    2017-09-12

    Practical applications require the production and usage of metallic nanocrystals (NCs) in large ensembles. Besides, due to their cluster-bulk solid duality, metallic NCs exhibit a large degree of structural diversity. This poses the question as to what atomic-scale basis is to be used when the structure–function relationship for metallic NCs is to be quantified precisely. In this paper, we address the question by studying bi-functional Fe core-Pt skin type NCs optimized for practical applications. In particular, the cluster-like Fe core and skin-like Pt surface of the NCs exhibit superparamagnetic properties and a superb catalytic activity for the oxygen reduction reaction, respectively. We determine the atomic-scale structure of the NCs by non-traditional resonant high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Using the experimental structure data we explain the observed magnetic and catalytic behavior of the NCs in a quantitative manner. Lastly, we demonstrate that NC ensemble-averaged 3D positions of atoms obtained by advanced X-ray scattering techniques are a very proper basis for not only establishing but also quantifying the structure–function relationship for the increasingly complex metallic NCs explored for practical applications.

  7. PtRu nanoparticles embedded in nitrogen doped carbon with highly stable CO tolerance and durability

    Science.gov (United States)

    Ling, Ying; Yang, Zehui; Yang, Jun; Zhang, Yunfeng; Zhang, Quan; Yu, Xinxin; Cai, Weiwei

    2018-02-01

    As is well known, the lower durability and sluggish methanol oxidation reaction (MOR) of PtRu alloy electrocatalyst blocks the commercialization of direct methanol fuel cells (DMFCs). Here, we design a new PtRu electrocatalyst, with highly stable CO tolerance and durability, in which the PtRu nanoparticles are embedded in nitrogen doped carbon layers derived from carbonization of poly(vinyl pyrrolidone). The newly fabricated electrocatalyst exhibits no loss in electrochemical surface area (ECSA) and MOR activity after potential cycling from 0.6-1.0 V versus reversible hydrogen electrode, while commercial CB/PtRu retains only 50% of its initial ECSA. Meanwhile, due to the same protective layers, the Ru dissolution is decelerated, resulting in stable CO tolerance. Methanol oxidation reaction (MOR) testing indicates that the activity of newly fabricated electrocatalyst is two times higher than that of commercial CB/PtRu, and the fuel cell performance of the embedded PtRu electrocatalyst was comparable to that of commercial CB/PtRu. The embedded PtRu electrocatalyst is applicable in real DMFC operation. This study offers important and useful information for the design and fabrication of durable and CO tolerant electrocatalysts.

  8. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    Science.gov (United States)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  9. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition.

    Science.gov (United States)

    Johnston, Christina M; Strbac, Svetlana; Lewera, Adam; Sibert, Eric; Wieckowski, Andrzej

    2006-09-12

    Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer

  10. Synthesis and Electrochemical Evaluation of Carbon Supported Pt-Co Bimetallic Catalysts Prepared by Electroless Deposition and Modified Charge Enhanced Dry Impregnation

    Directory of Open Access Journals (Sweden)

    John Meynard M. Tengco

    2016-06-01

    Full Text Available Carbon-supported bimetallic Pt-Co cathode catalysts have been previously identified as higher activity alternatives to conventional Pt/C catalysts for fuel cells. In this work, a series of Pt-Co/C catalysts were synthesized using electroless deposition (ED of Pt on a Co/C catalyst prepared by modified charge enhanced dry impregnation. X-ray diffraction (XRD and scanning transmission electron microscopy (STEM characterization of the base catalyst showed highly dispersed particles. A basic ED bath containing PtCl62− as the Pt precursor, dimethylamine borane as reducing agent, and ethylenediamine as stabilizing agent successfully targeted deposition of Pt on Co particles. Simultaneous action of galvanic displacement and ED resulted in Pt-Co alloy formation observed in XRD and energy dispersive X-ray spectroscopy (XEDS mapping. In addition, fast deposition kinetics resulted in hollow shell Pt-Co alloy particles while particles with Pt-rich shell and Co-rich cores formed with controlled Pt deposition. Electrochemical evaluation of the Pt-Co/C catalysts showed lower active surface but much higher mass and surface activities for oxygen reduction reaction compared to a commercial Pt/C fuel cell catalyst.

  11. Mechanisms of current conduction in Pt/BaTiO3/Pt resistive switching cell

    International Nuclear Information System (INIS)

    Pan, R.K.; Zhang, T.J.; Wang, J.Y.; Wang, J.Z.; Wang, D.F.; Duan, M.G.

    2012-01-01

    The 80-nm-thickness BaTiO 3 (BT) thin film was prepared on the Pt/Ti/SiO 2 /Si substrate by the RF magnetron sputtering technique. The Pt/BT/Pt/Ti/SiO 2 /Si structure was investigated using X-ray diffraction and scanning electron microscopy. The current–voltage characteristic measurements were performed. The bipolar resistive switching behavior was found in the Pt/BT/Pt cell. The current–voltage curves were well fitted in different voltage regions at the high resistance state (HRS) and the low resistance state (LRS), respectively. The conduction mechanisms are concluded to be Ohmic conduction and Schottky emission at the LRS, while space-charge-limited conduction and Poole–Frenkel emission at the HRS. The electroforming and switching processes were explained in terms of the valence change mechanism, in which oxygen vacancies play a key role in forming conducting paths. - Highlights: ►Pt/BaTiO 3 /Pt cell shows the bipolar resistive switching behavior. ►The current–voltage curves were well fitted for different conduction mechanisms. ►The electroforming and switching processes were explained.

  12. CO oxidation catalyzed by Pt-embedded graphene: A first-principles investigation

    KAUST Repository

    Liu, Xin; Sui, Yanhui; Duan, Ting; Meng, Changong; Han, Yu

    2014-01-01

    We addressed the potential catalytic role of Pt-embedded graphene in CO oxidation by first-principles-based calculations. We showed that the combination of highly reactive Pt atoms and defects over graphene makes the Pt-embedded graphene a superior mono-dispersed atomic catalyst for CO oxidation. The binding energy of a single Pt atom onto monovacancy defects is up to -7.10 eV, which not only ensures the high stability of the embedded Pt atom, but also vigorously excludes the possibility of diffusion and aggregation of embedded Pt atoms. This strong interfacial interaction also tunes the energy level of Pt-d states for the activation of O2, and promotes the formation and dissociation of the peroxide-like intermediate. The catalytic cycle of CO oxidation is initiated through the Langmuir-Hinshelwood mechanism, with the formation of a peroxide-like intermediate by the coadsorbed CO and O2, by the dissociation of which the CO2 molecule and an adsorbed O atom are formed. Then, another gaseous CO will react with the remnant O atom and make the embedded Pt atom available for the subsequent reaction. The calculated energy barriers for the formation and dissociation of the peroxide-like intermediate are as low as 0.33 and 0.15 eV, respectively, while that for the regeneration of the embedded Pt atom is 0.46 eV, indicating the potential high catalytic performance of Pt-embedded graphene for low temperature CO oxidation.

  13. Pt nanoparticle-reduced graphene oxide nanohybrid for proton exchange membrane fuel cells.

    Science.gov (United States)

    Park, Dae-Hwan; Jeon, Yukwon; Ok, Jinhee; Park, Jooil; Yoon, Seong-Ho; Choy, Jin-Ho; Shul, Yong-Gun

    2012-07-01

    A platinum nanoparticle-reduced graphene oxide (Pt-RGO) nanohybrid for proton exchange membrane fuel cell (PEMFC) application was successfully prepared. The Pt nanoparticles (Pt NPs) were deposited onto chemically converted graphene nanosheets via ethylene glycol (EG) reduction. According to the powder X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) analysis, the face-centered cubic Pt NPs (3-5 nm in diameter) were homogeneously dispersed on the RGO nanosheets. The electrochemically active surface area and PEMFC power density of the Pt-RGO nanohybrid were determined to be 33.26 m2/g and 480 mW/cm2 (maximum values), respectively, at 75 degrees C and at a relative humidity (RH) of 100% in a single-cell test experiment.

  14. Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu.; Zhou, Yiming; Tang, Yawen; Lu, Tianhong [College of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210097 (China)

    2010-07-01

    A series of carbon-supported bimetallic Pt-Ru catalysts with high alloying degree and different Pt/Ru atomic ratio have been prepared by a chemical reduction method in the H{sub 2}O/ethanol/tetrahydrofuran (THF) mixture solvent. The structural and electronic properties of catalysts are characterized using X-ray reflection (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM). The electrooxidation of formic acid on these Pt-Ru nanoparticles are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The results of electrochemical measurements illustrate that the alloying degree and Pt/Ru atomic ratio of Pt-Ru catalyst play an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for formic acid electrooxidation due to the bifunctional mechanism and the electronic effect. Since formic acid is an intermediate in the methanol electrooxidation on Pt electrode in acidic electrolyte, the observation provides an additional fundamental understanding of the structure-activity relationship of Pt-Ru catalyst for methanol electrooxidation. (author)

  15. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Chongmin; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Wang, Xiqing; Dai, Sheng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-04-02

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H{sub 2}PtCl{sub 6}) in ethylene glycol. Pt nanoparticles of {proportional_to}3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of {proportional_to}2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials. (author)

  16. The Effect of PtRuIr Nanoparticle Crystallinity in Electrocatalytic Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Vladimir Linkov

    2013-04-01

    Full Text Available Two structural forms of a ternary alloy PtRuIr/C catalyst, one amorphous and one highly crystalline, were synthesized and compared to determine the effect of their respective structures on their activity and stability as anodic catalysts in methanol oxidation. Characterization techniques included TEM, XRD, and EDX. Electrochemical analysis using a glassy carbon disk electrode for cyclic voltammogram and chronoamperometry were tested in a solution of 0.5 mol L−1 CH3OH and 0.5 mol L−1 H2SO4. Amorphous PtRuIr/C catalyst was found to have a larger electrochemical surface area, while the crystalline PtRuIr/C catalyst had both a higher activity in methanol oxidation and increased CO poisoning rate. Crystallinity of the active alloy nanoparticles has a big impact on both methanol oxidation activity and in the CO poisoning rate.

  17. Mechanistic studies of formic acid oxidation at polycarbazole supported Pt nanoparticles

    International Nuclear Information System (INIS)

    Moghaddam, Reza B.; Pickup, Peter G.

    2013-01-01

    Highlights: •A polycarbazole support decreases the accumulation of adsorbed intermediates on Pt during formic acid oxidation. •Polycarbazole causes a bilayer of Cu to form on Pt nanoparticles during Cu underpotential deposition. •XPS suggests that both of these effects are due to electron donation from the metal (Pt or Cu) into the polymer π-system. -- Abstract: Mechanistic aspects of the promotion of formic acid oxidation at Pt nanoparticles supported on a thin layer of polycarbazole (PCZ) have been investigated by voltammetry and X-ray photoelectron spectroscopy (XPS). The Pt nanoparticles were drop coated onto a glassy carbon (GC) electrode coated with a ca. 9 nm layer of electrochemically deposited polycarbazole. After 500 s of formic acid oxidation at 0 V vs. SCE, the current at a GC/PCZ/Pt electrode was 25 times higher than at a GC/Pt electrode. Voltammetry in formic acid free H 2 SO 4 following potentiostatic oxidation of formic acid revealed that there was less accumulation of adsorbed intermediates for the polycarbazole supported Pt nanoparticles than for those deposited directly onto the glassy carbon with, 50% more Pt sites remaining available for the GC/PCZ/Pt electrode relative to the GC/Pt electrode. Independent CO stripping experiments revealed only slight differences, while Cu underpotential deposition surprisingly resulted in the deposition of a ca. two-fold excess of Cu on the polycarbazole supported particles. This observation was supported by XPS which also revealed a second Cu signal at a higher binding energy, suggesting electron donation into the conjugated π system of the polymer. Such an interaction of Pt with the polycarbazole may be responsible for its higher activity for formic acid oxidation

  18. Synthesis and characterization of polyhedral and quasi-sphere non-polyhedral Pt nanoparticles: effects of their various surface morphologies and sizes on electrocatalytic activity for fuel cell applications

    International Nuclear Information System (INIS)

    Long, Nguyen Viet; Ohtaki, Michitaka; Hien, Tong Duy; Jalem, Randy; Nogami, Masayuki

    2011-01-01

    In this article, polyhedral and non-polyhedral Pt nanoparticles were prepared by modified polyol method using AgNO 3 as a good structure-modifying agent. Their TEM and HRTEM images showed the particle size in the range of 8–16 nm for both the above cases. The structures and properties of the surfaces of Pt nanoparticles were investigated through cyclic voltammetry in dilute perchloric acid (HClO 4 ) electrolyte solution. A comparison of the electrocatalytic property in methanol electrooxidation was made. Here, the effects of polyhedral and non-polyhedral morphologies on their catalytic properties were studied. The results revealed that the special catalytic activity of quasi-sphere non-polyhedral Pt nanoparticles is higher than that of polyhedral Pt nanoparticles. In addition, Pt nanoparticles of un-sharp and quasi-sphere morphologies exhibit the tolerance to poisoning species better than that of Pt nanoparticles of sharp and polyhedral morphologies due to the various morphologies of the catalyst surfaces in the chronoamperometric plots. Therefore, these experimental evidences showed the morphology-dependent catalytic property according to the various morphologies and complexity of their catalyst surfaces.

  19. Antitumour and antiangiogenic activities of [Pt(O,O′‐acac)(γ‐acac)(DMS)] in a xenograft model of human renal cell carcinoma

    Science.gov (United States)

    Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P

    2016-01-01

    Background and Purpose It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O′‐acac)(γ‐acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non‐genomic targets, on human renal carcinoma and compared them with those of the well‐established anticancer drug, cisplatin. Experimental Approach Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki‐1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Key Results Treatment of the Caki‐1 cells with cisplatin or [Pt(DMS)] resulted in a dose‐dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. Conclusions and Implications The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. PMID:27351124

  20. CO Sensing Performance of a Micro Thermoelectric Gas Sensor with AuPtPd/SnO₂ Catalyst and Effects of a Double Catalyst Structure with Pt/α-Al₂O₃.

    Science.gov (United States)

    Goto, Tomoyo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2015-12-15

    The CO sensing properties of a micro thermoelectric gas sensor (micro-TGS) with a double AuPtPd/SnO₂ and Pt/α-Al₂O₃ catalyst were investigated. While several nanometer sized Pt and Pd particles were uniformly dispersed on SnO₂, the Au particles were aggregated as particles measuring >10 nm in diameter. In situ diffuse reflectance Fourier transform Infrared spectroscopy (DRIFT) analysis of the catalyst showed a CO adsorption peak on Pt and Pd, but no clear peak corresponding to the interaction between CO and Au was detected. Up to 200 °C, CO combustion was more temperature dependent than that of H₂, while H₂ combustion was activated by repeated exposure to H₂ gas during the periodic gas test. Selective CO sensing of the micro-TGS against H₂ was attempted using a double catalyst structure with 0.3-30 wt% Pt/α-Al₂O₃ as a counterpart combustion catalyst. The sensor output of the micro-TGS decreased with increasing Pt content in the Pt/α-Al₂O₃ catalyst, by cancelling out the combustion heat from the AuPtPd/SnO₂ catalyst. In addition, the AuPtPd/SnO₂ and 0.3 wt% Pt/α-Al₂O₃ double catalyst sensor showed good and selective CO detection. We therefore demonstrated that our micro-TGS with double catalyst structure is useful for controlling the gas selectivity of CO against H₂.

  1. [Zn(NH3)4][PtCl6] and [Cd(NH3)4][PtCl6] as precursors for intermetallic compounds PtZn and PtCd

    International Nuclear Information System (INIS)

    Zadesenets, A.V.; Venediktov, A.B.; Shubin, Yu.V.; Korenev, S.V.

    2007-01-01

    Double complex salts (tetraamminezinc and tetraamminecadmium hexachloroplatinates) have been synthesized. Their thermal properties have been studied, as well as the products of their degradation in hydrogen and helium atmospheres. Optimal thermolysis schedules have been determined. Thermolysis under hydrogen yields intermetallic compounds PtZn and PtCd [ru

  2. Effects of the Electrodeposition Time in the Synthesis of Carbon-Supported Pt(Cu and Pt-Ru(Cu Core-Shell Electrocatalysts for Polymer Electrolye Fuel Cells

    Directory of Open Access Journals (Sweden)

    Griselda Caballero-Manrique

    2016-08-01

    Full Text Available Pt(Cu/C and Pt-Ru(Cu/C electrocatalysts with core-shell structure supported on Vulcan Carbon XC72R have been synthesized by potentiostatic deposition of Cu nanoparticles on the support, galvanic exchange with Pt and spontaneous deposition of Ru species. The duration of the electrodeposition time of the different species has been modified and the obtained electrocatalysts have been characterized using electrochemical and structural techniques. The High Resolution Transmission Electron Microscopy (HRTEM, Fast Fourier Transform (FFT and Energy Dispersive X-ray (EDX microanalyses allowed the determining of the effects of the electrodeposition time on the nanoparticle size and composition. The best conditions identified from Cyclic Voltammetry (CV corresponded to onset potentials for CO and methanol oxidation on Pt-Ru(Cu/C of 0.41 and 0.32 V vs. the Reversible Hydrogen Electrode (RHE, respectively, which were smaller by about 0.05 V than those determined for Ru-decorated commercial Pt/C. The CO oxidation peak potentials were about 0.1 V smaller when compared to commercial Pt/C and Pt-Ru/C. The positive effect of Cu was related to its electronic effect on the Pt shells and also to the generation of new active sites for CO oxidation. The synthesis conditions to obtain the best performance for CO and methanol oxidation on the core-shell Pt-Ru(Cu/C electrocatalysts were identified. When compared to previous results in literature for methanol, ethanol and formic acid oxidation on Pt(Cu/C catalysts, the present results suggest an additional positive effect of the deposited Ru species due to the introduction of the bifunctional mechanism for CO oxidation.

  3. Pt and PtRu catalyst bilayers increase efficiencies for ethanol oxidation in proton exchange membrane electrolysis and fuel cells

    Science.gov (United States)

    Altarawneh, Rakan M.; Pickup, Peter G.

    2017-10-01

    Polarization curves, product distributions, and reaction stoichiometries have been measured for the oxidation of ethanol at anodes consisting of Pt and PtRu bilayers and a homogeneous mixture of the two catalysts. These anode structures all show synergies between the two catalysts that can be attributed to the oxidation of acetaldehyde produced at the PtRu catalyst by the Pt catalyst. The use of a PtRu layer over a Pt layer produces the strongest effect, with higher currents than a Pt on PtRu bilayer, mixed layer, or either catalyst alone, except for Pt at high potentials. Reaction stoichiometries (average number of electrons transferred per ethanol molecule) were closer to the values for Pt alone for both of the bilayer configurations but much lower for PtRu and mixed anodes. Although Pt alone would provide the highest overall fuel cell efficiency at low power densities, the PtRu on Pt bilayer would provide higher power densities without a significant loss of efficiency. The origin of the synergy between the Pt and PtRu catalysts was elucidated by separation of the total current into the individual components for generation of carbon dioxide and the acetaldehyde and acetic acid byproducts.

  4. Structural changes of noble metal catalysts during ignition and extinction of the partial oxidation of methane studied by advanced QEXAFS techniques

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Beier, M.; Kimmerle, B.

    2009-01-01

    The dynamics of the ignition and extinction of the catalytic partial oxidation (CPO) of methane to hydrogen and carbon monoxide over Pt-Rh/Al2O3 and Pt/Al2O3 were studied in the subsecond timescale using quick-EXAFS with a novel cam-driven X-ray monochromator employing Si(111) and Si(311) crystals...... to discuss the potential and limitation of this technique in catalysis and related areas. With respect to the noble metal catalysed partial oxidation of methane, several interesting observations were made: structural changes during ignition were-independent of the chosen reaction conditions......-significantly faster than during the extinction of the reaction. The dynamic behavior of the catalysts was dependent on the flow conditions and the respective noble metal component(s). Higher reaction gas flow led to a faster ignition process. While the ignition over Pt-Rh/Al2O3 occurred at lower temperature than over...

  5. Intracarotid injection of 195mPt-CDDP on rat brain tumors

    International Nuclear Information System (INIS)

    Ikawa, Eishi; Kamitani, Hideki; Hori, Tomokatsu; Akaboshi, Mitsuhiko.

    1995-01-01

    We began to try intracarotid injection of 195m Pt-CDDP on transplanted rats of C6 glioma. As a control, normal rats were also treated with intracarotid injection of 195m Pt-CDDP. After injection, the tumor, the normal brain of injected site, the brain of contralateral site, and the blood were sampled for the measurement of the Pt uptake. On normal rats, the ratio of the Pt uptake of the brain to that of the blood was highest in 20 minutes after injection. The ratio of the Pt uptake of the brain of injected site to that of the blood was almost same as that of the brain of contralateral site, so it seemed that the Pt uptake was not so enhanced with intracarotid injection on the normal brain. On the other hand, the ratio of the Pt uptake of the transplanted brain tumor to that of the blood was greatly higher than that of the normal brain. So it seemed that the intracarotid injection of CDDP may have some activities against brain tumors. This study was now started, so we continue this study further more. (author)

  6. The study of stability of Pt-SDB in isotopic exchange between tritium oxide and hydrogen

    International Nuclear Information System (INIS)

    Dan Guiping

    2008-06-01

    The stability of Pt-SDB on its catalytic activity and the Pt contained in Pt-SDB have been studied during three years in isotopic exchange between tritium oxide and hydrogen. The convert efficiency of the catalyst declined 10% in first two years and then it is 2% after another two years, when it is used interruptedly. The losing of Pt on Pt-SDB is separately 9.09% and 2.31% after it is washed 2000 hours by water and immersed in water 525 days. (authors)

  7. Pt-Fe catalyst nanoparticles supported on single-wall carbon nanotubes: Direct synthesis and electrochemical performance for methanol oxidation

    Science.gov (United States)

    Ma, Xiaohui; Luo, Liqiang; Zhu, Limei; Yu, Liming; Sheng, Leimei; An, Kang; Ando, Yoshinori; Zhao, Xinluo

    2013-11-01

    Single-wall carbon nanotubes (SWCNTs) supported Pt-Fe nanoparticles have been prepared by one-step hydrogen arc discharge evaporation of carbon electrode containing both Pt and Fe metal elements. The formation of SWCNTs and Pt-Fe nanoparticles occur simultaneously during the evaporation process. High-temperature hydrogen treatment and hydrochloric acid soaking have been carried out to purify and activate those materials in order to obtain a new type of Pt-Fe/SWCNTs catalyst for methanol oxidation. The Pt-Fe/SWCNTs catalyst performs much higher electrocatalytic activity for methanol oxidation, better stability and better durability than a commercial Pt/C catalyst according to the electrochemical measurements, indicating that it has a great potential for applications in direct methanol fuel cells.

  8. SFG study of methanol dissociative adsorption at Pt(1 0 0), Pt(1 1 0) and Pt(1 1 1) electrodes surfaces

    Science.gov (United States)

    Vidal, F.; Busson, B.; Six, C.; Pluchery, O.; Tadjeddine, A.

    2002-04-01

    The Pt( hkl)/methanol in acidic solution interface which constitutes a model of the anodic part of a fuel cell is studied by infrared-visible sum frequency generation vibrational spectroscopy. Methanol dissociative adsorption leads to CO poisoning of the Pt electrode surfaces. The structure of the CO/Pt( hkl) interface depends strongly on the orientation of the surface electrode.

  9. Novel Platinum (Pt)-Vandetanib Hybrid Compounds: Design, Synthesis and Investigation of Anti-cancer Activity and Mechanism of Action

    Science.gov (United States)

    Fei, Rong

    Purpose: Lung cancer is one of the most common cancers and non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancers. 70% of individuals with NSCLC harboring somatic mutations in exons of the epidermal growth factor receptor (EGFR) gene that encode tyrosine kinase domain. EGFR tyrosine kinase inhibitors (TKIs) are promising molecular targeted therapy for NSCLC with sensitizing EGFR mutations. However, secondary mutation of EGFR after treatment of TKIs develops resistance. Vandetanib is introduced to overcome erlotinib resistance as a multi-targeted TKI. However, its anticancer effect is still compromised by EGFR T790M mutation. Therefore, new molecular anticancer strategies are necessarily needed. In this study, vandetanib is incorporated with Pt-based anticancer agents as hybrid compounds, aiming to circumvent TKI resistance. Furthermore, hybrid compounds are investigated in cisplatin resistant problem to expect to overcome resistance by introduction of vandetanib. Methods: Three novel Pt-vandetanib hybrid compounds were synthesized and its physicochemical properties were characterized. Anticancer activity and cytotoxicity were evaluated by sulforhodamine B assay and lactate dehydrogenase release. Docking simulation was performed to investigate the interaction of compounds with EGFR harboring different mutations. Inhibition efficacy of hybrids to kinases was evaluated by kinase inhibition profiling service and cell-free kinase inhibition assay. Mechanistic studies on cytotoxicity activity of the hybrid compounds were carried out. DNA damage response of hybrid compounds was further investigated in KB cells. The cytotoxicity of hybrids was tested in cisplatin resistant KB CP20 cells. Mechanistic of anticancer activity was studied to test inhibition on oncoprotein CIP2Aand DNA damage. Results: Platinum-vandetanib hybrid compounds were synthesized and test to be stable under extracellular condition. Hybrids reacted with 5'-GMP2- and glutathione, and both

  10. Enhancement of the electrooxidation of ethanol on Pt-Sn-P/C catalysts prepared by chemical deposition process

    Science.gov (United States)

    Xue, Xinzhong; Ge, Junjie; Tian, Tian; Liu, Changpeng; Xing, Wei; Lu, Tianhong

    In this paper, five Pt 3Sn 1/C catalysts have been prepared using three different methods. It was found that phosphorus deposited on the surface of carbon with Pt and Sn when sodium hypophosphite was used as reducing agent by optimization of synthetic conditions such as pH in the synthetic solution and temperature. The deposition of phosphorus should be effective on the size reduction and markedly reduces PtSn nanoparticle size, and raise electrochemical active surface (EAS) area of catalyst and improve the catalytic performance. TEM images show PtSnP nanoparticles are highly dispersed on the carbon surface with average diameters of 2 nm. The optimum composition is Pt 3Sn 1P 2/C (note PtSn/C-3) catalyst in my work. With this composition, it shows very high activity for the electrooxidation of ethanol and exhibit enhanced performance compared with other two Pt 3Sn 1/C catalysts that prepared using ethylene glycol reduction method (note PtSn/C-EG) and borohydride reduction method (note PtSn/-B). The maximum power densities of direct ethanol fuel cell (DEFC) were 61 mW cm -2 that is 150 and 170% higher than that of the PtSn/C-EG and PtSn/C-B catalyst.

  11. Strategic Alliance Between PT Dirgantara Indonesia and Airbus Millitary (a Case Study of PT Dirgantara Indonesia)

    OpenAIRE

    Indriyanto, Reza Relen; Wandebori, Harimukti; Astuti, Novika Candra

    2013-01-01

    PT Dirgantara Indonesia (PT DI) is one of the aircraft manufacturing companies in Indonesia. The tight of competition in aerospace industry needs to improve its performance to gain niche market. Therefore, Ministry State of Own Enterprises has instructed PT Perusahaan Pengelola Aset (PT PPA) and PT DI to restructure and revitalize company with supported by Airbus Military as a strategic alliance partner, in order to increase the performance of production capacity, aircraft sales, and financia...

  12. Return to Sports and Physical Activities After Primary Partial Arthrodesis for Lisfranc Injuries in Young Patients.

    Science.gov (United States)

    MacMahon, Aoife; Kim, Paul; Levine, David S; Burket, Jayme; Roberts, Matthew M; Drakos, Mark C; Deland, Jonathan T; Elliott, Andrew J; Ellis, Scott J

    2016-04-01

    Research regarding outcomes in sports and physical activities after primary partial arthrodesis for Lisfranc injuries has been sparse. The purposes of this study were to assess various sports and physical activities in young patients following primary partial arthrodesis for Lisfranc injuries and to compare these with clinical outcomes. Patients who underwent primary partial arthrodesis for a Lisfranc injury were identified by a retrospective registry review. Thirty-eight of 46 eligible patients (83%) responded for follow-up at a mean of 5.2 (range, 1.0 to 9.3) years with a mean age at surgery of 31.8 (range, 16.8 to 50.3) years. Physical activity participation was assessed with a new sports-specific, patient-administered questionnaire. Clinical outcomes were assessed with the Foot and Ankle Outcome Score (FAOS). Patients participated in 29 different and 155 total physical activities preoperatively, and 27 different and 145 total physical activities postoperatively. Preoperatively, 47.1% were high impact, and postoperatively, 44.8% were high impact. The most common activities were walking, bicycling, running, and weightlifting. Compared to preoperatively, difficulty was the same in 66% and increased in 34% of physical activities. Participation levels were improved in 11%, the same in 64%, and impaired in 25% of physical activities. Patients spent on average 4.2 (range, 0.0 to 19.8) hours per week exercising postoperatively. In regard to return to physical activity, 97% of respondents were satisfied with their operative outcome. Mean postoperative FAOS subscores were significantly worse for patients who had increased physical activity difficulty. Most patients were able to return to their previous physical activities following primary partial arthrodesis for a Lisfranc injury, many of which were high-impact. However, the decreased participation or increase in difficulty of some activities suggests that some patients experienced postoperative limitations in exercise

  13. Double switching hysteresis loop in a single layer Fe3Pt alloy thin films

    International Nuclear Information System (INIS)

    Nahid, M.A.I.; Suzuki, Takao

    2008-01-01

    The Fe 3 Pt alloy thin films were epitaxially grown on MgO(100) substrate by e-beam evaporation. The films were partially ordered at the substrate deposition temperature above 350 deg. C. These partially ordered films exhibit very large biaxial magnetic anisotropy constant in the order of 10 5 J/m 3 and produce double switching in the hysteresis loops. The difference of the switching field of these films can be up to about 3 x 10 5 A/m by tuning the angle of the applied field with respect to the easy axes. This double switching behavior stems from the large biaxial magnetic anisotropy of the films

  14. Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells.

    Science.gov (United States)

    Choi, M; Han, C; Kim, I T; An, J C; Lee, J J; Lee, H K; Shim, J

    2011-01-01

    PtRuPd nanoparticles on carbon black were prepared and characterized as electrocatalysts for methanol oxidation reaction in direct methanol fuel cells. Nano-sized Pd (2-4 nm) particles were deposited on Pt/C and PtRu/C (commercial products) by a simple chemical reduction process. The structural and physical information of the PtRuPd/C were confirmed by TEM and XRD, and their electrocatalytic activities were measured by cyclic voltammetry and linear sweep voltammetry. The catalysts containing Pd showed higher electrocatalytic activity for methanol oxidation reaction than the other catalysts. This might be attributed to an increase in the electrochemical surface area of Pt, which is caused by the addition of Pd; this results in increased catalyst utilization.

  15. Alterations in knee kinematics after partial medial meniscectomy are activity dependent.

    Science.gov (United States)

    Edd, Shannon N; Netravali, Nathan A; Favre, Julien; Giori, Nicholas J; Andriacchi, Thomas P

    2015-06-01

    Alterations in knee kinematics after partial meniscectomy have been linked to the increased risk of osteoarthritis in this population. Understanding differences in kinematics during static versus dynamic activities of increased demand can provide important information regarding the possible underlying mechanisms of these alterations. Differences in the following 2 kinematics measures will increase with activity demand: (1) the offset toward external tibial rotation for the meniscectomized limb compared with the contralateral limb during stance and (2) the difference in knee flexion angle at initial foot contact between the meniscectomized and contralateral limbs. Controlled laboratory study. This study compared side-to-side differences in knee flexion and rotation angles during static and dynamic activities. Thirteen patients (2 female) were tested in a motion capture laboratory at 6 ± 2 months after unilateral, arthroscopic, partial medial meniscectomy during a static reference pose and during 3 dynamic activities: walking, stair ascent, and stair descent. The meniscectomized limb demonstrated more external tibial rotation compared with the contralateral limb during dynamic activities, and there was a trend that this offset increased with activity demand (repeated-measures analysis of variance [ANOVA] for activity, P = .07; mean limb difference: static pose, -0.1° ± 3.3°, P = .5; walking, 1.2° ± 3.8°, P = .1; stair ascent, 2.0° ± 3.2°, P = .02; stair descent, 3.0° ± 3.5°, P = .005). Similarly, the meniscectomized knee was more flexed at initial contact than the contralateral limb during dynamic activities (repeated-measures ANOVA for activity P = .006; mean limb difference: reference pose, 1.0° ± 2.5°, P = .09; walking, 2.0° ± 3.9°, P = .05; stair ascent, 5.9° ± 5.3°, P = .009; stair descent, 3.5° ± 4.0°, P = .004). These results suggest both a structural element and a potential muscular element for the differences in kinematics after

  16. Adsorption and activation of methane and methanol on Pt(100) surface: a density functional study; Adsorption et activation du methane et du methanol sur la surface (100) du platine: une etude par la fonctionnelle de la densite

    Energy Technology Data Exchange (ETDEWEB)

    Moussounda, P.S

    2006-11-15

    The activation of methane (CH{sub 4}) and methanol (CH{sub 3}OH) on Pt(100) surface has been investigated using density functional theory calculations based on plane-wave basis and pseudo-potential. We optimised CH{sub 4}/Pt(100) system. The calculated adsorption energies over the top, bridge and hollow sites are small, weakly dependent on the molecular orientation. The nature of the CH{sub 4}-Pt interaction was examined through the electronic structure changes. The adsorption of methyl (CH{sub 3}) and hydrogen (H) and the co-adsorption of CH{sub 3}+H were also calculated. From these results, we examined the dissociation of CH{sub 4} to CH{sub 3}+H, and the activation energies found are in good agreement with the experimental and theoretical values. The activation of CH{sub 3}OH/Pt(100) has been studied. All the sites have almost the same adsorption energy. The adsorption of oxygen (O) and the co-adsorption of CH{sub 4} and O were also examined. In addition, the formation of CH{sub 3}OH assuming a one-step mechanism step via the co-adsorption of CH{sub 4}+O has been studied and the barrier height was found to be high. (authors)

  17. Biobutanol as Fuel for Direct Alcohol Fuel Cells-Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation.

    Science.gov (United States)

    Puthiyapura, Vinod Kumar; Brett, Dan J L; Russell, Andrea E; Lin, Wen-Feng; Hardacre, Christopher

    2016-05-25

    Direct alcohol fuel cells (DAFCs) mostly use low molecular weight alcohols such as methanol and ethanol as fuels. However, short-chain alcohol molecules have a relative high membrane crossover rate in DAFCs and a low energy density. Long chain alcohols such as butanol have a higher energy density, as well as a lower membrane crossover rate compared to methanol and ethanol. Although a significant number of studies have been dedicated to low molecular weight alcohols in DAFCs, very few studies are available for longer chain alcohols such as butanol. A significant development in the production of biobutanol and its proposed application as an alternative fuel to gasoline in the past decade makes butanol an interesting candidate fuel for fuel cells. Different butanol isomers were compared in this study on various Pt and PtSn bimetallic catalysts for their electro-oxidation activities in acidic media. Clear distinctive behaviors were observed for each of the different butanol isomers using cyclic voltammetry (CV), indicating a difference in activity and the mechanism of oxidation. The voltammograms of both n-butanol and iso-butanol showed similar characteristic features, indicating a similar reaction mechanism, whereas 2-butanol showed completely different features; for example, it did not show any indication of poisoning. Ter-butanol was found to be inactive for oxidation on Pt. In situ FTIR and CV analysis showed that OHads was essential for the oxidation of primary butanol isomers which only forms at high potentials on Pt. In order to enhance the water oxidation and produce OHads at lower potentials, Pt was modified by the oxophilic metal Sn and the bimetallic PtSn was studied for the oxidation of butanol isomers. A significant enhancement in the oxidation of the 1° butanol isomers was observed on addition of Sn to the Pt, resulting in an oxidation peak at a potential ∼520 mV lower than that found on pure Pt. The higher activity of PtSn was attributed to the

  18. Oxygen Reduction Reaction on PtCo Nanocatalyst: (Bi)sulfate Anion Poisoning

    Science.gov (United States)

    Liu, Jie; Huang, Yan

    2018-05-01

    Pt alloy electrocatalysts are susceptible to anion adsorption in the working environment of fuel cells. In this work, the unavoidable bisulfate and sulfate ((bi)sulfate) poisoning of the oxygen reduction reaction (ORR) on a common PtCo nanocatalyst was studied by the rotating disk electrode (RDE) technique, for the first time to the best of our knowledge. The specific activity decreases linearly with the logarithm of (bi)sulfate concentration under various high potentials. This demonstrates that the (bi)sulfate adsorption does not affect the free energy of ORR activation at a given potential. Moreover, it is speculated that these two conditions, the adsorption of one O2 molecule onto two Pt sites and this adsorption as a rate-determining step of ORR reaction, are unlikely to exist simultaneously.

  19. Silicon Nano wires with MoS_x and Pt as Electrocatalysts for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Hsieh, S.H.; Ho, S.T.; Chen, W.J.

    2016-01-01

    A convenient method was used for synthesizing Pt-nanoparticle//silicon nano wires nano composites. Obtained Pt-/silicon nano wires electrocatalysts were characterized by transmission electron microscopy (TEM). The hydrogen evolution reaction efficiency of the Pt-/silicon nano wire nano composite catalysts was assessed by examining polarization and electrolysis measurements under solar light irradiations. The electrochemical characterizations demonstrate that Pt-/silicon nano wire electrodes exhibited an excellent catalytic activity for hydrogen evolution reaction in an acidic electrolyte. The hydrogen production capability of Pt-/silicon nano wires is also comparable to /silicon nano wires and Pt/silicon nano wires. Electrochemical impedance spectroscopy experiments suggest that the enhanced performance of Pt-/silicon nano wires can be attributed to the fast electron transfer between Pt-/silicon nano wire electrodes and electrolyte interfaces.

  20. Magnetic Properties and Microstructure of FeOx/Fe/FePt and FeOx/FePt Films

    Directory of Open Access Journals (Sweden)

    Jai-Lin Tsai

    2013-01-01

    Full Text Available The Fe(6 nm/FePt film with perpendicular magnetization was deposited on the glass substrate. To study the oxygen diffusion effect on the coupling of Fe/FePt bilayer, the plasma oxidation with 0.5~7% oxygen flow ratio was performed during sputtered part of Fe layer and formed the FeOx(3 nm/Fe(3 nm/FePt trilayer. Two-step magnetic hysteresis loops were found in trilayer with oxygen flow ratio above 1%. The magnetization in FeOx and Fe/FePt layers was decoupled. The moments in FeOx layer were first reversed and followed by coupled Fe/FePt bilayer. The trilayer was annealed again at 500°C and 800°C for 3 minutes. When the FeOx(3 nm/Fe(3 nm/FePt trilayer was annealed at 500°C, the layers structure was changed to FeOx(6 nm/FePt bilayer due to oxygen diffusion. The hard-magnetic FeOx(6 nm/FePt film was coupled with single switching field. The FeOx/(disordered FePt layer structure was observed with further annealing at 800°C and presented soft-magnetic loop. In summary, the coupling between soft-magnetic Fe, FeOx layer, and hard-magnetic L10 FePt layer can be controlled by the oxygen diffusion behavior, and the oxidation of Fe layer was tuned by the annealing temperature. The ordered L10 FePt layer was deteriorated by oxygen and became disordered FePt when the annealed temperature was up to 800°C.