WorldWideScience

Sample records for psychiatric technology radiation

  1. Psychiatric disorders after radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kokai, Masahiro [Hyogo Coll. of Medicine, Nishinomiya (Japan); Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-04-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  2. Psychiatric disorders after radiation exposure

    International Nuclear Information System (INIS)

    Kokai, Masahiro; Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-01-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  3. Technological Advances in Psychiatric Nursing: An update.

    Science.gov (United States)

    Bostrom, Andrea C

    2016-06-01

    Understanding and treating mental illness has improved in many ways as a result of the fast pace of technological advances. The technologies that have the greatest potential impact are those that (1) increase the knowledge of how the brain functions and changes based on interventions, (2) have the potential to personalize interventions based on understanding genetic factors of drug metabolism and pharmacodynamics, and (3) use information technology to provide treatment in the absence of an adequate mental health workforce. Technologies are explored for psychiatric nurses to consider. Psychiatric nurses are encouraged to consider the experiences of psychiatric patients, including poor health, stigmatization, and suffering. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Radiation Technology

    International Nuclear Information System (INIS)

    1990-01-01

    The conference was organized to evaluate the application directions of radiation technology in Vietnam and to utilize the Irradiation Centre in Hanoi with the Co-60 source of 110 kCi. The investigation and study of technico-economic feasibility for technology development to various items of food and non-food objects was reported. (N.H.A)

  5. Radiation technology in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Vo Van Thuan [Institute for Nuclear Science and Technique, VAEC, Hanoi (Viet Nam)

    2001-03-01

    Most of researches and developments in the field of radiation technology that have completed in a decade before 1995 were concentrated to sterilization and food irradiation. A series of medical devices and products were the main commodities for research and application trials. Also, many kind of food have attracted the scientists and technologists to investigate the application and commercialization of irradiated food. In addition, the radiation technology also was utilized for processing of non-food items including herbs, medicinal produces, and tobacco material. Since 1996 VAEC and INST has realized the important role of radiation processing on natural polymers. Hence, along with the commercialization of radiation technology, three research teams were established for the target. This report reviews the recent activities and achievements on radiation technology in the country emphasizing on the radiation processing of polysaccharides. A number of polysaccharides, which originated from bio-/agro-wastes such as seaweed, shrimp shells, lignocelluloses, was modified or degraded by irradiation to prepare hydrogel and bio-active material using for health-care and crop production. (author)

  6. Radiation technology in Vietnam

    International Nuclear Information System (INIS)

    Vo Van Thuan

    2001-01-01

    Most of researches and developments in the field of radiation technology that have completed in a decade before 1995 were concentrated to sterilization and food irradiation. A series of medical devices and products were the main commodities for research and application trials. Also, many kind of food have attracted the scientists and technologists to investigate the application and commercialization of irradiated food. In addition, the radiation technology also was utilized for processing of non-food items including herbs, medicinal produces, and tobacco material. Since 1996 VAEC and INST has realized the important role of radiation processing on natural polymers. Hence, along with the commercialization of radiation technology, three research teams were established for the target. This report reviews the recent activities and achievements on radiation technology in the country emphasizing on the radiation processing of polysaccharides. A number of polysaccharides, which originated from bio-/agro-wastes such as seaweed, shrimp shells, lignocelluloses, was modified or degraded by irradiation to prepare hydrogel and bio-active material using for health-care and crop production. (author)

  7. Environmental radiation sensing technologies

    International Nuclear Information System (INIS)

    Nishizawa, Hiroshi; Inomata, Kenji; Tamuro, Masaru; Fujita, Kazuhiko

    2013-01-01

    After the Fukushima nuclear accident, environmental radiation monitoring and radioactivity measurement of contamination of wastes, soils, food and drinking water were needed in accurate and reliable way. Based on radiation sensing technologies and radiation and light coupled analysis method, new environmental radiation measurement system for simple monitoring post without exclusive house and also portable monitoring post for temporary use were developed with low cost. Measurement accuracy was improved by real-time processing of detected pulses and corrected non-linearity of low-energy range by analysis. Environmental performance was upgraded to assure detector gain with compensated against temperature change and aging. Inspection and maintenance were also simplified using touch panel display with standardized application menu and data format. (T. Tanaka)

  8. Radiation technology in agriculture

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2013-01-01

    The Department of Atomic Energy through its research, development and deployment activities in nuclear science and technology, has been contributing towards enhancing the production of agricultural commodities and their preservation. Radiations and radioisotopes are used in agricultural research to induce genetic variability in crop plants to develop improved varieties, to manage insect pests, monitor fate and persistence of pesticides, to study fertilizer use efficiency and plant micronutrient uptake and also to preserve agricultural produce. Use of radiation and radioisotopes in agriculture which is often referred to as nuclear agriculture is one of the important fields of peaceful applications of atomic energy for societal benefit and BARC has contributed significantly in this area. 41 new crop varieties developed at BARC have been released and Gazette notified by the MoA, GOI for commercial cultivation and are popular among the farming community and grown through out the country

  9. Radioisotopes and radiation technology

    International Nuclear Information System (INIS)

    Ramamoorthy, N.

    2011-01-01

    The field of radioisotopes and radiation processing has grown enormously all over the world with India being no exception. The chemistry and radiochemistry related inputs to the overall technology development and achievements have been, and will continue to be, of considerable value and importance in this multi-disciplinary and multi-specialty field. Harnessing further benefits as well as sustaining proven applications should be the goal in planning for the future. An objective analysis of the socio-economic impact and benefits from this field to the society at large will undoubtedly justify assigning continued high priority, and providing adequate resources and support, to relevant new projects and programmes on the anvil in the area of radioisotopes and radiation technology. It is necessary to nurture and strengthen inter-disciplinary and multi-specialty collaborations and cooperation - at both national and international level as a rule (not as exception) - for greater efficiency, cost-effectiveness and success of ongoing endeavors and future developments in this important field

  10. Radiation technology in the Philippines

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1994-01-01

    This report was presented during the Second National Coordinators Meeting for radiation technology, held in Vietnam, 21-25 November 1994. The report was about the research and development work in the field of radiation technology at the Philippine Nuclear Research Institute. Transfer of technology in the Philippines can be very difficult without the technical assistance of the IAEA. A multipurpose irradiation facility was set up that encouraged the interest of local industry in radiation sterilization and food irradiation. Also research and development on radiation vulcanization of natural rubber latex has been initiated and the interest in wood plastic combinations has been revived. 1 tab

  11. Radiation technology and feed production

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1986-01-01

    The use of radiation technology to prepare feeds and feed additions for cattle of non-feed vegetable blends is considered.Physicochemical foundations of radiation-chemical processes, possibilities of the use of various radiation devices are given. Data on practical realization of the technology are presented and prospects of its introduction to solve the tasks put forward by the USSR program on feed production are analyzed

  12. Radiation technologies at INR NASU

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Sakhno, V.Yi.; Tomchaj, S.P.

    2011-01-01

    The results of Institute for Nuclear Research of National Academy of Sciences of Ukraine in the development and use of nuclear and radiation technologies applied for a number of scientific, technical and technological projects in the framework of state budget themes, research programs, innovation and scientific and technological national and international programs and projects are presented.

  13. Ionizing Radiation Processing Technology

    International Nuclear Information System (INIS)

    Rida Tajau; Kamarudin Hashim; Jamaliah Sharif; Ratnam, C.T.; Keong, C.C.

    2017-01-01

    This book completely brief on the basic concept and theory of ionizing radiation in polymers material processing. Besides of that the basic concept of polymerization addition, cross-linking and radiation degradation also highlighted in this informative book. All of the information is from scientific writing based on comprehensive scientific research in polymerization industry which using the radiation ionizing. It is very useful to other researcher whose study in Nuclear Sciencea and Science of Chemical and Material to use this book as a guideline for them in future scientific esearch.

  14. Radiation chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    2006-01-01

    The importance of radiation chemistry in the field of nuclear technology including reactor chemistry, spent fuel reprocessing and radioactive high level waste repository, is summarized and, in parallel, our research activity will be briefly presented. (author)

  15. Radiation technology in South Africa

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1976-01-01

    A review is given of the relatively new field of radiation technology in South Africa. Attention is drawn particularly to the role which radioactive radiation can play in the spheres of medicine, polymer chemistry and agriculture. The possibilities inherent in ionizing radiation in the synthesis of chemicals and new synthetic materials, are dealt with briefly, and the promising results already achieved in the manufacture of polymer-wood are considered [af

  16. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO 2 and NO X are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author)

  17. Radiation technology for environmental conservation

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo; Tokunaga, Okihiro; Arai, Hidehiko; Hashimoto, Shoji [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1991-01-01

    This paper reviews research and development of radiation technology application for environmental conservation. Our group in cooperation with Ebara Mfg. co., Ltd. first found and studied removals of sulfur dioxide and nitrogen oxides from flue gases by electron beam irradiation. Most of sulfer dioxide and nitrogen oxides are converted to ammonium sulfate and nitrate by radiation with the addition of ammonia. Feasibility studies of this technology by pilot scale experiments have been carried out in Japan, USA and Germany for flue gases from iron-ore sintering furnace and coal fire power station. About 90 % of CO{sub 2} and NO{sub X} are removed with 15 kGy. Organic pollutants in wastewater, drinking water and ground water have been found to be reduced by radiation technology. Synergetic effect of radiation and ozone to remove pollutants was also found. Disinfection of water effluent from sewage water treatment plant by radiation instead of using chlorine to avoid formation of chlorinated organic compounds has been studied by our group. Efficient composting of sewage sludge using radiation disinfection followed by fermentation has been developed and produced compost can be used as fertilizer. In conclusion, radiation technology can provide new efficient treatment method for wastes. (author).

  18. High technology for radiation application

    International Nuclear Information System (INIS)

    Iida, Toshiyuki

    2005-03-01

    Fundamentals of radiations, radioactivity, and their applications in recent industrial, medical, agricultural and various research fields are reviewed. The book begins with historical description regarding to discovery of radiation at the end of 19th century and the exploration into the inside of an atom utilizing the radiation discovered, discovery of the neutron which finally leaded to nuclear energy liberation. Developments of radiation sources, including nuclear reactors, and charged-particle accelerators follow with simultaneous description on radiation measurement or detection technology. In medical fields, X-ray diagnosis, interventional radiology (IVR), nuclear medicine (PET and others), and radiation therapy are introduced. In pharmaceutical field, synthesis of labeled compounds and tracer techniques are explained. In industrial application, radiation-reinforced wires and heat-resistant cables whose economic effect can be estimated to amount to more than 10 12 yen, radiation mutation, food irradiation, and applied accelerators such as polymer modifications, decomposition of environmentally harmful substances, and ion-implantations important in semiconductor device fabrication. Finally, problems relating to general public such as radiation education and safety concept are also discussed. (S. Ohno)

  19. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sabharwal, Sunil

    2005-01-01

    In recent years, radiation processing has emerged as an alternative to conventional technologies such as thermal and chemical processing for many industrial applications. The industry is expanding at a fast rate all over the world. The actual industrial benefits on commercial basis, however, depends on the need of the individual society and may vary from country to country. In India, the applications of radiation technology have been found in areas of health care, agriculture, food preservation, industry and environment. Both gamma radiation and electron beam accelerators are being utilized for this purpose. Presently, 6 commercial gamma irradiators housing about 1.5 million curie 60 Co and an annual turnover of over US$ 2 million and 3 commercial electron beam (EB) accelerators with installed capacity of 185 kW are commercially operating in India. The new areas being explored include use of electron beam irradiation for surface treatment, radiation processed membranes for a variety of applications and radiation processing of natural polymers. In the present paper, the current status of this program, especially the recent developments and future direction of radiation processing technology is reviewed. (author)

  20. Radiation processing technology in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan

    2004-01-01

    Radiation processing technology is widely used in industry to enhance efficiency and productivity, improve product quality and competitiveness. Efforts have been made by MINT to expand the application of radiation processing technology for modification of indigenous materials such as natural rubber and rubber based products, palm oil and palm oil based products and polysaccharide into new and high value added products. This paper described MINT experiences on developing products through R and D from the laboratory to the pilot plant stage and commercialization. The paper also explained some issues and challenges that MINT encountered in the process of commercialization of its R and D results. (author)

  1. Industrial applications of radiation technology

    International Nuclear Information System (INIS)

    Sarma, K.S.S.

    2012-01-01

    During the past one decade, Radiation Technology applications utilizing gamma radiation and high energy electrons have made a big way into the Indian industry bringing quality and value-added products in a more environment-friendly way. While radiation sterilization of health care products, hygienization of food materials, modification of polymer materials etc. are established as successful processes world wide including India, new applications are emerging especially in the field of environmental remediation. Two types of installations viz. gamma irradiators and high energy electron accelerators are in use right now to carry out such applications. The aim of the talk is to put forward before the audience about the potential applications developed in India and abroad, role of Department of Atomic Energy and current status of radiation processing for industrial utilization

  2. Radiation curing: Science and technology

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1992-01-01

    The science and technology of radiation curing have progressed substantially within the last 20 years. Nevertheless, radiation-curable compositions typically command relatively small shares in many of their competitive markets. This situation signifies that potential advantages of radiation curing are not generally perceived to overcome their limitations. An important objective of this book is to address this issue, within the scope of the subjects offered, by providing the present state of knowledge and by identifying the directions and challenges for future studies. The first chapter introduces radiation curing. Chapter 2 offers the first systematic presentation of inorganic and organometallic photoinitiators. Chapters 3 and 4 present the analytical techniques of photocalorimetry and real-time infrared spectroscopy, respectively. Recent advances in resin technology are offered in Chapters 5 and 6, which constitute the first comprehensive accounts of (meth)acrylated silicones and vinyl ethers, respectively. Radiation-curable coatings, printing inks, and adhesives are discussed in Chapters 7-9, respectively. Chapter 10 offers a discussion on photopolymer imaging systems

  3. Radiation technology for environmental conservation

    International Nuclear Information System (INIS)

    Machi, S.

    1983-01-01

    The use of radiation technology for environmental conservation is becoming increasingly important. Commercial plants for the radiation treatment of sewage sludge to reduce pathogenic micro-organisms have been operating in the Federal Republic of Germany for the past ten years and their technical and economical feasibility has been demonstrated. Irradiation of dried sludge has been developed at the Sandia National Laboratory (USA) using Cs-137, and the construction of a commercial plant is planned in Albuquerque. At the Japan Atomic Energy Research Institute (JAERI), efforts are under way to increase the rate of composting of sludge by radiation. Regarding waste water treatment, a significant synergistic effect of radiation and ozone was found in the reduction of TOC. The construction of a gamma irradiation plant is in the planning stage in Canada, for the disinfection of virus-contaminated waste effluents from the Canadian Animal Disease Research Institute. The treatment of exhaust gases by electron beam has been studied in Japan using a large pilot plant which demonstrated that 90% of SO 2 and 80% of NOsub(x) can be removed from the flue gas of iron ore sintering furnaces. The US Department of Energy is assisting in projects for the further development of this technology for combined removal of SO 2 and NOsub(x) in flue gas from coal burning power stations. (author)

  4. Exposure to non-ionizing electromagnetic radiation from mobile telephony and the association with psychiatric symptoms.

    Science.gov (United States)

    Silva, Denize Francisca da; Barros, Warley Rocha; Almeida, Maria da Conceição Chagas de; Rêgo, Marco Antônio Vasconcelos

    2015-10-01

    The aim of this study was to investigate the association between exposure to non-ionizing electromagnetic radiation from mobile phone base stations and psychiatric symptoms. In a cross-sectional study in Salvador, Bahia State, Brazil, 440 individuals were interviewed. Psychiatric complaints and diagnoses were the dependent variables and distance from the individual's residence to the base station was considered the main independent variable. Hierarchical logistic regression analysis was conducted to assess confounding. An association was observed between psychiatric symptoms and residential proximity to the base station and different forms of mobile phone use (making calls with weak signal coverage, keeping the mobile phone close to the body, having two or more chips, and never turning off the phone while sleeping), and with the use of other electronic devices. The study concluded that exposure to electromagnetic radiation from mobile phone base stations and other electronic devices was associated with psychiatric symptoms, independently of gender, schooling, and smoking status. The adoption of precautionary measures to reduce such exposure is recommended.

  5. The Use of Virtual Reality Technology in the Treatment of Anxiety and Other Psychiatric Disorders.

    Science.gov (United States)

    Maples-Keller, Jessica L; Bunnell, Brian E; Kim, Sae-Jin; Rothbaum, Barbara O

    After participating in this activity, learners should be better able to:• Evaluate the literature regarding the effectiveness of incorporating virtual reality (VR) in the treatment of psychiatric disorders• Assess the use of exposure-based intervention for anxiety disorders ABSTRACT: Virtual reality (VR) allows users to experience a sense of presence in a computer-generated, three-dimensional environment. Sensory information is delivered through a head-mounted display and specialized interface devices. These devices track head movements so that the movements and images change in a natural way with head motion, allowing for a sense of immersion. VR, which allows for controlled delivery of sensory stimulation via the therapist, is a convenient and cost-effective treatment. This review focuses on the available literature regarding the effectiveness of incorporating VR within the treatment of various psychiatric disorders, with particular attention to exposure-based intervention for anxiety disorders. A systematic literature search was conducted in order to identify studies implementing VR-based treatment for anxiety or other psychiatric disorders. This article reviews the history of the development of VR-based technology and its use within psychiatric treatment, the empirical evidence for VR-based treatment, and the benefits for using VR for psychiatric research and treatment. It also presents recommendations for how to incorporate VR into psychiatric care and discusses future directions for VR-based treatment and clinical research.

  6. The use of virtual reality technology in the treatment of anxiety and other psychiatric disorders

    Science.gov (United States)

    Maples-Keller, Jessica L.; Bunnell, Brian E.; Kim, Sae-Jin; Rothbaum, Barbara O.

    2016-01-01

    Virtual reality, or VR, allows users to experience a sense of presence in a computer-generated three-dimensional environment. Sensory information is delivered through a head mounted display and specialized interface devices. These devices track head movements so that the movements and images change in a natural way with head motion, allowing for a sense of immersion. VR allows for controlled delivery of sensory stimulation via the therapist and is a convenient and cost-effective treatment. The primary focus of this article is to review the available literature regarding the effectiveness of incorporating VR within the psychiatric treatment of a wide range of psychiatric disorders, with a specific focus on exposure-based intervention for anxiety disorders. A systematic literature search was conducted in order to identify studies implementing VR based treatment for anxiety or other psychiatric disorders. This review will provide an overview of the history of the development of VR based technology and its use within psychiatric treatment, an overview of the empirical evidence for VR based treatment, the benefits for using VR for psychiatric research and treatment, recommendations for how to incorporate VR into psychiatric care, and future directions for VR based treatment and clinical research. PMID:28475502

  7. Philippine country report on radiation technology

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1993-01-01

    This report was presented during the First National Coordinators Meeting for Radiation Technology, held in Takasaki, Japan, 6-9 September 1993. The report was about the active involvement of Philippine Nuclear Research Institute (PNRI) in research and development on the application of radiation technology. Activities were on mutation breeding, food irradiation, radiation sterilization, wood-plastic combinations and radiation chemistry. The transfer of technology in the Philippines was supported and assisted by the UNDP/IAEA Industrial Project. With these technologies, many industries were interested in radiation processing

  8. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Kim, Ingyu; Kim, Enhan; Keum, Dongkwon

    2012-04-01

    To develop the comprehensive environmental radiation management technology, - An urban atmospheric dispersion model and decision-aiding model have been developed. - The technologies for assessing the radiation impact to non-human biota and the environmental medium contamination have developed. - The analytical techniques of the indicator radionuclides related to decommissioning of nuclear facilities and nuclear waste repository have been developed. - The national environmental radiation impact has been assessed, and the optimum management system of natural radiation has been established

  9. Psychiatric therapeutic applications of virtual reality technology (VRT): research prospectus and phenomenological critique.

    Science.gov (United States)

    Bloom, R W

    1997-01-01

    There is theoretical and empirical research supporting the hypothesis that virtual reality technology (VRT) can be efficaciously applied to attenuate the symptoms of mental disorders (Baer, 1996; Rothbaum et al, 1995a, 1995b; Rothbaum et al, 1996.) Yet there is also research suggesting psychiatric therapeutic applications of VRT may induce noxious or unexpected psychological consequences (Kolasinski, 1996; Muscott & Gifford, 1994; Regan & Price, 1994; Regan & Ramsey, 1996; Strickland, 1995.) A prudent conclusion would be to advocate ever more sophisticated studies on psychiatric therapeutic applications of VRT concerning (1) increasing the overall socioadaptiveness of patients, (2) the robustness of moderating, modifying, or other intermediary variables effecting or affecting VRT therapeutic efficacy, and (3) variables, processes, and hypotheses generated from VRT applications in non-psychiatric fields.

  10. Radiation-hardened bulk CMOS technology

    International Nuclear Information System (INIS)

    Dawes, W.R. Jr.; Habing, D.H.

    1979-01-01

    The evolutionary development of a radiation-hardened bulk CMOS technology is reviewed. The metal gate hardened CMOS status is summarized, including both radiation and reliability data. The development of a radiation-hardened bulk silicon gate process which was successfully implemented to a commercial microprocessor family and applied to a new, radiation-hardened, LSI standard cell family is also discussed. The cell family is reviewed and preliminary characterization data is presented. Finally, a brief comparison of the various radiation-hardened technologies with regard to performance, reliability, and availability is made

  11. New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity.

    Science.gov (United States)

    Rudan, Igor

    2010-06-01

    The completion of Human Genome Project and the "HapMap" project was followed by translational activities from companies within the private sector. This led to the introduction of genome-wide scans based on hundreds of thousands of single nucleotide polymorphysms (SNP). These scans were based on common genetic variants in human populations. This new and powerful technology was then applied to the existing DNA-based datasets with information on psychiatric disorders. As a result, an unprecedented amount of novel scientific insights related to the underlying biology and genetics of psychiatric disorders was obtained. The dominant design of these studies, so called "genome-wide association studies" (GWAS), used statistical methods which minimized the risk of false positive reports and provided much greater power to detect genotype-phenotype associations. All findings were entirely data-driven rather than hypothesis-driven, which often made it difficult for researchers to understand or interpret the findings. Interestingly, this work in genetics is indicating how non-specific some genes are for psychiatric disorders, having associations in common for schizophrenia, bipolar disorder and autism. This suggests that the earlier stages of psychiatric disorders may be multi-valent and that early detection, coupled with a clearer understanding of the environmental factors, may allow prevention. At the present time, the rich "harvest" from GWAS still has very limited power to predict the variation in psychiatric disease status at individual level, typically explaining less than 5% of the total risk variance. The most recent studies of common genetic variation implicated the role of major histocompatibility complex in schizophrenia and other disorders. They also provided molecular evidence for a substantial polygenic component to the risk of psychiatric diseases, involving thousands of common alleles of very small effect. The studies of structural genetic variation, such as copy

  12. Political and social aspects of radiation technology

    International Nuclear Information System (INIS)

    Smith, S.L.

    1990-01-01

    The political and social aspects of radiation technology are presented. The importance of radiation processing to economies dependent on the storage, transportation and sale of produce is emphasised. Efforts by pressure groups in Canada, to discredit food irradiation processes are discussed. Methods used to overcome objections to food irradiation and radiation technology by public information and education through the media are presented. (U.K.)

  13. Radiation hardening of integrated circuits technologies

    International Nuclear Information System (INIS)

    Auberton-Herve, A.J.; Leray, J.L.

    1991-01-01

    The radiation hardening studies started in the mid decade -1960-1970. To survive the different military or space radiative environment, a new engineering science borned, to understand the degradation of electronics components. The different solutions to improve the electronic behavior in such environment, have been named radiation hardening of the technologies. Improvement of existing technologies, and qualification method have been widely studied. However, at the other hand, specific technologies was developped : The Silicon On Insulator technologies for CMOS or Bipolar. The HSOI3HD technology (supported by DGA-CEA DAM and LETI with THOMSON TMS) offers today the highest hardening level for the integration density of hundreds of thousand transistors on the same silicon. Full complex systems would be realized on a single die with a technological radiation hardening and no more system hardening

  14. Technological aspects of the radiation chemistry

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2006-01-01

    Main technological aspects of the radiation chemistry are reviewed: network formation in polymers and caoutchouc, production of the sterile hydrogels, sterilisation of the expendable medical equipment and the environmental protection technologies (e.g. purification of the combustion gases from the sulfur oxides). Achievements of the are reviewed Institute of Nuclear Chemistry and Technology, Warsaw (Poland) in these fields are presented

  15. Improving clinical outcomes in psychiatric care with touch-screen technology.

    Science.gov (United States)

    Newnham, Elizabeth A; Doyle, Emma L; Sng, Adelln A H; Hooke, Geoffrey R; Page, Andrew C

    2012-05-01

    Patient-focused research, which uses clinical characteristics to predict outcomes, is a field in which information technology has been effectively integrated with practice. The present research used touch-screen technology to monitor the daily self-report measures of 1,308 consecutive inpatients and day patients participating in a 2-week cognitive-behavioral therapy group. Providing regular feedback was effective in reducing symptoms for patients at risk of poor outcomes (Newnham, Hooke, & Page, 2010b). The use of touch screens in psychiatric monitoring encourages a collaborative dialogue between patients and therapists and promotes engagement in the process of progress monitoring and treatment evaluation.

  16. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  17. Radiation processing: a versatile technology for industry

    International Nuclear Information System (INIS)

    Cabalfin, E.G.

    1996-01-01

    Soon after the discovery of x-ray in 1895 and radioactivity in 1896, it was recognized that ionizing radiation can modify the chemical, physical and/or biological properties of materials. However, it was only in the late 50's, when large radiation sources become available, has this unique property of radiation found industrial applications in radiation processing. Today, radiation processing has been used by industry in such diverse applications, such as radiation sterilization/decontamination of medical products, pharmaceuticals, cosmetics and their raw materials; radiation cross-linking of wire and cable insulation; production of heat shrinkable materials and polymer foam; and radiation curing of coatings, adhesives and inks on a wide variety of substrates. In addition to being a clean environment-friendly technology, radiation processing can also be used for the conservation of the environment by such processes as radiation treatment of flue gases to remove SO 2 and NO x and disinfection of sewage sludge. Because of the many advantages offered by radiation processing, industry is showing strong interest in the technology as evidenced by the growing number of industrial radiation facilities in many countries. (author)

  18. Information technology-based standardized patient education in psychiatric inpatient care.

    Science.gov (United States)

    Anttila, Minna; Koivunen, Marita; Välimäki, Maritta

    2008-10-01

    This paper is a report of a study to describe nurses' experiences of information technology-based standardized patient education in inpatient psychiatric care. Serious mental health problems are an increasing global concern. Emerging evidence supports the implementation of practices that are conducive to patient self-management and improved patient outcomes among chronically ill patients with mental health problems. In contrast, the attitude of staff towards information technology has been reported to be contradictory in mental health care. After 1 year of using an Internet-based portal (Mieli.Net) developed for patients with schizophrenia spectrum psychosis, all 89 participating nurses were asked to complete questionnaires about their experiences. The data were collected in 2006. Fifty-six participants (63%) returned completed questionnaires and the data were analysed using content analysis. Nurses' experiences of the information technology-based standardized patient education were categorized into two major categories describing the advantages and obstacles in using information technology. Nurses thought that it brought the patients and nurses closer to each other and helped nurses to provide individual support for their patients. However, the education was time-consuming. Systematic patient education using information technology is a promising method of patient-centred care which supports nurses in their daily work. However, it must fit in with clinical activities, and nurses need some guidance in understanding its benefits. The study data can be used in policy-making when developing methods to improve the transparency of information provision in psychiatric nursing.

  19. Technology development for radiation shielding analysis

    International Nuclear Information System (INIS)

    Ha, Jung Woo; Lee, Jae Kee; Kim, Jong Kyung

    1986-12-01

    Radiation shielding analysis in nuclear engineering fields is an important technology which is needed for the calculation of reactor shielding as well as radiation related safety problems in nuclear facilities. Moreover, the design technology required in high level radioactive waste management and disposal facilities is faced on serious problems with rapidly glowing nuclear industry development, and more advanced technology has to be developed for tomorrow. The main purpose of this study is therefore to build up the self supporting ability of technology development for the radiation shielding analysis in order to achieve successive development of nuclear industry. It is concluded that basic shielding calculations are possible to handle and analyze by using our current technology, but more advanced technology is still needed and has to be learned for the degree of accuracy in two-dimensional shielding calculation. (Author)

  20. Technology for Innovation in Radiation Oncology

    Energy Technology Data Exchange (ETDEWEB)

    Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan (United States); Martel, Mary K., E-mail: mmartel@mdanderson.org [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jaffray, David A. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Hospital, Toronto, Ontario (Canada); Benedict, Stanley H. [Department of Radiation Oncology, University of California – Davis Cancer Center, Sacramento, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Deye, James [Radiation Research Programs, National Cancer Institute, Bethesda, Maryland (United States); Jeraj, Robert [Department of Medical Physics, University of Wisconsin, Madison, Wisconsin (United States); Kavanagh, Brian [Department of Radiation Oncology, University of Colorado, Aurora, Colorado (United States); Krishnan, Sunil [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, Nancy [Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Low, Daniel A. [Department of Radiation Oncology, University of California – Los Angeles, Los Angeles, California (United States); Mankoff, David [Department of Radiology, University of Washington Medical School, Seattle, Washington (United States); Marks, Lawrence B. [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States); Ollendorf, Daniel [Institute for Clinical and Economic Review, Boston, Massachusetts (United States); and others

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  1. Technology for Innovation in Radiation Oncology.

    Science.gov (United States)

    Chetty, Indrin J; Martel, Mary K; Jaffray, David A; Benedict, Stanley H; Hahn, Stephen M; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A; Mankoff, David; Marks, Lawrence B; Ollendorf, Daniel; Paganetti, Harald; Ross, Brian; Siochi, Ramon Alfredo C; Timmerman, Robert D; Wong, John W

    2015-11-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled "Technology for Innovation in Radiation Oncology," which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Technology for Innovation in Radiation Oncology

    International Nuclear Information System (INIS)

    Chetty, Indrin J.; Martel, Mary K.; Jaffray, David A.; Benedict, Stanley H.; Hahn, Stephen M.; Berbeco, Ross; Deye, James; Jeraj, Robert; Kavanagh, Brian; Krishnan, Sunil; Lee, Nancy; Low, Daniel A.; Mankoff, David; Marks, Lawrence B.; Ollendorf, Daniel

    2015-01-01

    Radiation therapy is an effective, personalized cancer treatment that has benefited from technological advances associated with the growing ability to identify and target tumors with accuracy and precision. Given that these advances have played a central role in the success of radiation therapy as a major component of comprehensive cancer care, the American Society for Radiation Oncology (ASTRO), the American Association of Physicists in Medicine (AAPM), and the National Cancer Institute (NCI) sponsored a workshop entitled “Technology for Innovation in Radiation Oncology,” which took place at the National Institutes of Health (NIH) in Bethesda, Maryland, on June 13 and 14, 2013. The purpose of this workshop was to discuss emerging technology for the field and to recognize areas for greater research investment. Expert clinicians and scientists discussed innovative technology in radiation oncology, in particular as to how these technologies are being developed and translated to clinical practice in the face of current and future challenges and opportunities. Technologies encompassed topics in functional imaging, treatment devices, nanotechnology, and information technology. The technical, quality, and safety performance of these technologies were also considered. A major theme of the workshop was the growing importance of innovation in the domain of process automation and oncology informatics. The technologically advanced nature of radiation therapy treatments predisposes radiation oncology research teams to take on informatics research initiatives. In addition, the discussion on technology development was balanced with a parallel conversation regarding the need for evidence of efficacy and effectiveness. The linkage between the need for evidence and the efforts in informatics research was clearly identified as synergistic.

  3. National Laboratory of Synchrotron Radiation: technologic potential

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da; Rodrigues, A.R.D.

    1987-01-01

    The technological or industrial developments based on the accumulated experience by research group of condensed matter physics, in Brazil, are described. The potential of a National Laboratory of Synchrotron Radiation for personnel training, absorption and adaptation of economically important technologies for Brazil, is presented. Examples of cooperations between the Laboratory and some national interprises, and some industrial applications of the synchrotron radiation are done. (M.C.K.) [pt

  4. Radiation technology in emerging industrial applications. Proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  5. Radiation technology in emerging industrial applications. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    In many industrial applications radiation processing has proven to be a technology of choice either because of its economic competitiveness or its technical superiority. Although the chemical effects of ionizing radiation have been known for more than a century, its industrial applications became possible only after the availability of reliable gamma sources and powerful electron accelerators during the last couple of decades.The programmes of the International Atomic Energy Agency (IAEA) in radiation processing are implemented through the Department of Nuclear Sciences and Applications and the Department of Technical Co-operation. The IAEA has been active in this field for many years, contributing to new developments, training, promotion and transfer of technology. In September 1997, the IAEA held an international symposium in Zakopane, Poland on the 'Use of radiation technology for the conservation of environment' where the status of current developments and of applications of radiation processing in the control of environmental pollution was reviewed (IAEA-TECDOC-1023, 1998). Recent developments and achievements in various aspects of radiation processing have been assessed continuously through the organization of consultants meetings, advisory group meetings and research co-ordination meetings. Worldwide growing interest in the use of radiation technology in various new industrial applications, as exemplified by the reports and presentations made at these meetings, has led the IAEA to organize a symposium to cover every aspect of radiation processing and, exclusively, the emerging industrial applications of radiation technology. The International Symposium on Radiation Technology in Emerging Industrial Applications was convened in November 2000 in Beijing, China. Its main purpose was to bring scientists,technologists, industrialists and regulatory authorities together with a view of exchanging information and reviewing the status of current developments and

  6. Information technologies for radiation oncology

    International Nuclear Information System (INIS)

    Chen, George T.Y.

    1996-01-01

    Electronic exchange of information is profoundly altering the ways in which we share clinical information on patients, our research mission, and the ways we teach. The three panelists each describe their experiences in information exchange. Dr. Michael Vannier is Professor of Radiology at the Mallinkrodt Institute of Radiology, and directs the image processing laboratory. He will provide insights into how radiologists have used the Internet in their specialty. Dr. Joel Goldwein, Associate Professor in the Department of Radiation Oncology at the University of Pennsylvania, will describe his experiences in using the World Wide Web in the practice of academic radiation oncology and the award winning Oncolink Web Site. Dr. Timothy Fox Assistant, Professor of Radiation Oncology at Emory University will discuss wide area networking of multi-site departments, to coordinate center wide clinical, research and teaching activities

  7. Radiation technology of improved quality materials production

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Nadirov, N.K.; Zajkina, R.F.

    1997-01-01

    The technology of materials production from metals and alloys with high operational properties is developed. The technology is based on use of radiation methods in powder metallurgy. Use of radiation processing allows to improve technological conditions of sintering. It is established, that in certain regimes the sintering temperature is decreasing from 1200 deg C up to 950 deg C in the result of radiation processing of stainless steel powders . According to the processing regimes it is possible load reduction by powder pressing on 15-20 % and sintering time in to 1,5 - 2 times . The radiation methods give possibility to produce high qualitative goods from cheap powder materials without use energy-intensive processes and prolonged processing of finished products

  8. Liquid droplet radiator technology issues

    International Nuclear Information System (INIS)

    Mattick, A.T.; Hertzberg, A.

    1985-01-01

    The operation of the liquid droplet radiator (LDR) is analyzed to establish design constraints for the LDR components and to predict the performance of an integrated LDR system. The design constraints largely result from mass loss considerations: fluid choice is governed by evaporation loss; droplet generation techniques must be capable of precise aiming of >10 5 droplet streams; and collection losses must be less than 1 droplet in 10 7 . Concepts for droplet generation and collection components are discussed and incorporated into a mass model for an LDR system. This model predicts that LDR's using lithium, Dow 705 silicone fluid, or NaK may be several times lighter than heat pipe radiators. 13 refs

  9. Development of Radiation Breeding Technology of Macroalgae

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongil; Park, J. H.; Song, B. S.; Kim, J. K.; Kim, J. H.; Lee, H. J.; Yang, H. Y.

    2013-01-15

    Macroalgae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the macroalgae is just beginning and the study on radiation effect and radiation breeding technology was not reported. In this study, the effect of radiation on the macroalgae Porphyra was investigated for the development of new mutant strains. Prphyra was successively cultivated in the laboratory chamber with optimized growth condition. Also, the radiation sensitivity of Porphyra was determined. To develop the mutant strain, irradiated Porphyra strains were screened for better growth and higher resistance against oxidative stress. The selected Porphyra was further cultivated in ocean site. Also, several genes from mutant Porphyra was heterologous expressed and studied for its dunctionality. This results can provide mutation technology of macroalgae and further contribute in the activation of fishery industry and national health enhancement.

  10. Accelerators for the advanced radiation technology project

    International Nuclear Information System (INIS)

    Maruyama, Michio

    1990-01-01

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  11. Development of Radiation Breeding Technology of Macroalgae

    International Nuclear Information System (INIS)

    Choi, Jongil; Park, J. H.; Song, B. S.; Kim, J. K.; Kim, J. H.; Lee, H. J.; Yang, H. Y.

    2013-01-01

    Macroalgae has been utilized as food material from long time ago, and recently newly recognized as functional materials and the source of bio-fuel. But, the study on the macroalgae is just beginning and the study on radiation effect and radiation breeding technology was not reported. In this study, the effect of radiation on the macroalgae Porphyra was investigated for the development of new mutant strains. Prphyra was successively cultivated in the laboratory chamber with optimized growth condition. Also, the radiation sensitivity of Porphyra was determined. To develop the mutant strain, irradiated Porphyra strains were screened for better growth and higher resistance against oxidative stress. The selected Porphyra was further cultivated in ocean site. Also, several genes from mutant Porphyra was heterologous expressed and studied for its dunctionality. This results can provide mutation technology of macroalgae and further contribute in the activation of fishery industry and national health enhancement

  12. Development of environmental radiation control technology

    International Nuclear Information System (INIS)

    Han, M. H.; Kim, E. H.; Keum, D. K.; Kang, M. J.; Jang, B. W.

    2010-04-01

    The objectives of the study are to development of an urban atmospheric dispersion model and data assimilation technique for improving the reliability, to develop the technology for assessing the radiation impact to biota and the surface water transport model, to develop the analytical techniques for the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites and to assess of the national environmental radiation impact and establish the optimum management bases of natural radiation. The obtained results might be used; for assessing the radiological effects due to and radiological incident in an urban area, for assessing radiation doses on biota for the environmental protection from ionizing radiation with the application of new concept of the ICP new recommendation, for analyzing the indicator radionuclides on decommissioning of nuclear facilities and nuclear waste disposal sites, and for providing the natural radionuclide database of Korea to international organizations such as UNSCEAR. It can be used for emphasizing relative nuclear safety

  13. Proceedings: 2003 Radiation Protection Technology Conference

    International Nuclear Information System (INIS)

    2004-01-01

    Health physics professionals within the nuclear industry are continually upgrading their programs with new methods and technologies. The Third Annual EPRI Radiation Protection Technology Conference facilitated this effort by communicating technical developments, program improvements, and experience throughout the nuclear power industry. When viewed from the perspective of shorter outages, diminishing numbers of contract RP technicians and demanding emergent work, this information flow is critical for the industry

  14. Team climate and attitudes toward information and communication technology among nurses on acute psychiatric wards.

    Science.gov (United States)

    Koivunen, Marita; Anttila, Minna; Kuosmanen, Lauri; Katajisto, Jouko; Välimäki, Maritta

    2015-01-01

    Objectives: To describe the association of team climate with attitudes toward information and communication technology among nursing staff working on acute psychiatric wards. Background: Implementation of ICT applications in nursing practice brings new operating models to work environments, which may affect experienced team climate on hospital wards. Method: Descriptive survey was used as a study design. Team climate was measured by the Finnish modification of the Team Climate Inventory, and attitudes toward ICT by Burkes' questionnaire. The nursing staff (N = 181, n = 146) on nine acute psychiatric wards participated in the study. Results: It is not self-evident that experienced team climate associates with attitudes toward ICT, but there are some positive relationships between perceived team climate and ICT attitudes. The study showed that nurses' motivation to use ICT had statistically significant connections with experienced team climate, participative safety (p = 0.021), support for innovation (p = 0.042) and task orientation (p = 0.042). Conclusion: The results suggest that asserting team climate and supporting innovative operations may lead to more positive attitudes toward ICT. It is, in particular, possible to influence nurses' motivation to use ICT. More attention should be paid to psychosocial factors such as group education and co-operation at work when ICT applications are implemented in nursing.

  15. Psychosomatic Medicine for Non-Psychiatric Residents: Video Education and Incorporation of Technology.

    Science.gov (United States)

    Saunders, J; Gopalan, P; Puri, N; Azzam, P N; Zhou, L; Ghinassi, F; Jain, A; Travis, M; Ryan, N D

    2015-12-01

    Psychiatric education for non-psychiatric residents varies between training programs, and may affect resident comfort with psychiatric topics. This study's goals were to identify non-psychiatric residents' comfort with psychiatric topics and to test the effectiveness of a video intervention. Residents in various departments were given a survey. They were asked to rank their comfort level with multiple psychiatric topics, answer questions about medical decision making capacity (MDMC), watch a 15-min video about MDMC, and answer a post-test section. In total, 91 Internal Medicine, General Surgery, and Obstetrics and Gynecology residents responded to the study. Of the 91 residents, 55 completed the pre- and post-test assessments. There was no significant difference in correct responses. Residents' comfort levels were assessed, and a significant improvement in comfort level with MDMC was found. This study highlights potential opportunities for psychiatric education, and suggests brief video interventions can increase resident physicians' comfort with a psychiatric topic.

  16. Application of radiation technology in vaccines development.

    Science.gov (United States)

    Seo, Ho Seong

    2015-07-01

    One of the earliest methods used in the manufacture of stable and safe vaccines is the use of chemical and physical treatments to produce inactivated forms of pathogens. Although these types of vaccines have been successful in eliciting specific humoral immune responses to pathogen-associated immunogens, there is a large demand for the development of fast, safe, and effective vaccine manufacturing strategies. Radiation sterilization has been used to develop a variety of vaccine types, because it can eradicate chemical contaminants and penetrate pathogens to destroy nucleic acids without damaging the pathogen surface antigens. Nevertheless, irradiated vaccines have not widely been used at an industrial level because of difficulties obtaining the necessary equipment. Recent successful clinical trials of irradiated vaccines against pathogens and tumors have led to a reevaluation of radiation technology as an alternative method to produce vaccines. In the present article, we review the challenges associated with creating irradiated vaccines and discuss potential strategies for developing vaccines using radiation technology.

  17. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  18. Isotopes and radiation technology - Indian scene

    International Nuclear Information System (INIS)

    Rao, S.M.

    1996-01-01

    India's isotope programme is today largely self-sustaining both in terms of availability of isotope products and the range of their applications in medicine, industry, hydrology, agriculture and research. Nuclear medicine is practised by over 200 medical institutions whereas 300 organisations offer radioimmunoassay service. Tracer technology, nucleonic gauging and isotope radiography are fairly well accepted by the Indian industry for troubleshooting, NDT and process control. There are three large radiation plants for sterilisation of medical products. Radiation chemical processing with both gamma and EB shows good promise. In agriculture, sixteen mutants of various crops have been produced using gamma-radiation and distributed for commercial cultivation. A strong programme of research on radiation preservation of food has finally resulted in the clearance of some irradiated foods by the Government of India. (author). 20 refs., 2 tabs

  19. Radiation safety assessment and development of environmental radiation monitoring technology

    CERN Document Server

    Choi, B H; Kim, S G

    2002-01-01

    The Periodic Safety Review(PSR) of the existing nuclear power plants is required every ten years according to the recently revised atomic energy acts. The PSR of Kori unit 1 and Wolsong unit 1 that have been operating more than ten years is ongoing to comply the regulations. This research project started to develop the techniques necessary for the PSR. The project developed the following four techniques at the first stage for the environmental assessment of the existing plants. 1) Establishment of the assessment technology for contamination and accumulation trends of radionuclides, 2) alarm point setting of environmental radiation monitoring system, 3) Development of Radiation Safety Evaluation Factor for Korean NPP, and 4) the evaluation of radiation monitoring system performance and set-up of alarm/warn set point. A dynamic compartment model to derive a relationship between the release rates of gas phase radionuclides and the concentrations in the environmental samples. The model was validated by comparing ...

  20. Open Source Radiation Hardened by Design Technology

    Science.gov (United States)

    Shuler, Robert

    2016-01-01

    The proposed technology allows use of the latest microcircuit technology with lowest power and fastest speed, with minimal delay and engineering costs, through new Radiation Hardened by Design (RHBD) techniques that do not require extensive process characterization, technique evaluation and re-design at each Moore's Law generation. The separation of critical node groups is explicitly parameterized so it can be increased as microcircuit technologies shrink. The technology will be open access to radiation tolerant circuit vendors. INNOVATION: This technology would enhance computation intensive applications such as autonomy, robotics, advanced sensor and tracking processes, as well as low power applications such as wireless sensor networks. OUTCOME / RESULTS: 1) Simulation analysis indicates feasibility. 2)Compact voting latch 65 nanometer test chip designed and submitted for fabrication -7/2016. INFUSION FOR SPACE / EARTH: This technology may be used in any digital integrated circuit in which a high level of resistance to Single Event Upsets is desired, and has the greatest benefit outside low earth orbit where cosmic rays are numerous.

  1. Optical Tracking Technology in Stereotactic Radiation Therapy

    International Nuclear Information System (INIS)

    Wagner, Thomas H.; Meeks, Sanford L.; Bova, Frank J.; Friedman, William A.; Willoughby, Twyla R.; Kupelian, Patrick A.; Tome, Wolfgang

    2007-01-01

    The last decade has seen the introduction of advanced technologies that have enabled much more precise application of therapeutic radiation. These relatively new technologies include multileaf collimators, 3-dimensional conformal radiotherapy planning, and intensity modulated radiotherapy in radiotherapy. Therapeutic dose distributions have become more conformal to volumes of disease, sometimes utilizing sharp dose gradients to deliver high doses to target volumes while sparing nearby radiosensitive structures. Thus, accurate patient positioning has become even more important, so that the treatment delivered to the patient matches the virtual treatment plan in the computer treatment planning system. Optical and image-guided radiation therapy systems offer the potential to improve the precision of patient treatment by providing a more robust fiducial system than is typically used in conventional radiotherapy. The ability to accurately position internal targets relative to the linac isocenter and to provide real-time patient tracking theoretically enables significant reductions in the amount of normal tissue irradiated. This report reviews the concepts, technology, and clinical applications of optical tracking systems currently in use for stereotactic radiation therapy. Applications of radiotherapy optical tracking technology to respiratory gating and the monitoring of implanted fiducial markers are also discussed

  2. Semiconductor radiation detectors technology and applications

    CERN Document Server

    2018-01-01

    The aim of this book is to educate the reader on radiation detectors, from sensor to read-out electronics to application. Relatively new detector materials, such as CdZTe and Cr compensated GaAs, are introduced, along with emerging applications of radiation detectors. This X-ray technology has practical applications in medical, industrial, and security applications. It identifies materials based on their molecular composition, not densities as the traditional transmission equipment does. With chapters written by an international selection of authors from both academia and industry, the book covers a wide range of topics on radiation detectors, which will satisfy the needs of both beginners and experts in the field.

  3. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1990-01-01

    The present report is prepared for planners of radiation processing of any material. Sources with cobalt-60 are treated marginally, because most probably, there will be no installation of technically meaningful activity in Poland before the year 2000. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV and accelerators of lower energy, below 2 MeV, of better energetical yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of twenty years of exploitation of the machine. One has to realize that from the 150 kV input power from the mains, only 5 kV of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, sometimes only a few percent, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of losses at the edges of the scanned area and in the spaces between boxes, and of losses during the dead time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical in case of objects of optimum type. At the first stage, that is of the conversion of electrical power into that of the low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating bremsstrahlung similar to gamma radiation. The advantages of these technologies, which make it possible to control the shape of the processed object are stressed. Ten parameters necessary for a proper calculation of technological yields of radiation processing are listed. Additional conditions which must be taken into account in the comparison of the cost of radiation processing with the cost of other technologies are also

  4. Applications of microwave radiation environmental remediation technologies

    International Nuclear Information System (INIS)

    Krause, T.R.; Helt, J.E.

    1993-01-01

    A growing number of environmental remediation technologies (e.g., drying, melting, or sintering) utilize microwave radiation as an integral part of the process. An increasing number of novel applications, such as sustaining low-temperature plasmas or enhancing chemical reactivity, are also being developed. An overview of such technologies being developed by the Department of Energy is presented. A specific example being developed at Argonne National Laboratory, microwave-induced plasma reactors for the destruction of volatile organic compounds, is discussed in more detail

  5. Megavoltage radiation therapy: Meeting the technological needs

    International Nuclear Information System (INIS)

    Van Dyk, J.

    2002-01-01

    Full text: In its simplest description, the purpose of radiation therapy is to hit the target and to miss all other parts of the patient. While there are multiple technological methods available for doing this, the actual radiation treatment needs to be considered in the broader context of the total radiation treatment process. This process contains multiple steps, each of which has an impact on the quality of the treatment and on the possible clinical outcome. One crucial step in this process is the determination of the location and extent of the disease relative to the adjacent normal tissues. This can be done in a variety of ways, ranging from simple clinical examination to the use of complex 3-D imaging, sometimes aided by contrast agents. As part of this localization process, it is very important that patient immobilization procedures be implemented to ensure that the same patient position will be used during both the planning and the daily treatment stages. With the knowledge of the location of the target and the critical tissues, decisions can be made about the appropriate beam arrangements to provide adequate tumour coverage while sparing the healthy tissues. This beam arrangement may have to be confirmed on a therapy simulator prior to actual implementation of the radiation treatment. In summary, the treatment process includes diagnosis, patient immobilization, target and normal tissue localization, beam selection, beam shaping, dose calculation, technique optimization, simulation, prescription, treatment verification and, finally, treatment. Dependent on the type of disease, it is not necessary that every patient undergoes all of the steps in the process; however, it is necessary that each step of the process used for a particular patient be carried out with the greatest accuracy. Uncertainties at any stage of the process will be carried through to subsequent stages and have an impact on clinical outcome. It is, therefore, important to recognize, when

  6. New environmental applications of radiation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1998-01-01

    The paper is a brief review of recent data on environmental applications of radiation technology obtained with participation of the author. It includes the results of the study on combined electron-beam and ozone treatment of municipal wastewater in the aerosol flow and electron-beam purification of water from heavy metals (lead, cadmium, mercury, chromium) by two methods (in the presence of formate as an OH radical scavenger or sorbents of inorganic and plant origins)

  7. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  8. Creation of new growth engine through proliferating radiation fusion technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo

    2008-01-01

    Radiation technology is being used for the decontamination of foods, the breeding of crops and flowers, the sterilization of medical devices, recycling and conservation of wastes and the development of advanced functional materials. The economical scales of radiational industries were higher than 148 billion $ in United States and 64.5 billion $ in Japan, but only 0.15 billion $ in Korea. To promote the radiation industry, the Korean government has legislated the general plans for the promotion of atomic energy and established the Advanced Radiation Technology Institute in Jeongeup. Radiation Fusion Technology (RFT) is an advanced technology which integrates Information Technology, Nano Technology, Bio Technology, Environmental Technology, Space Technology, based on Radiation Technology. RFT is developing highly value-added products and theses outcomes will be industrialized in RFT business valley

  9. Radiation protection in newer imaging technologies

    International Nuclear Information System (INIS)

    Rehani, M. M.

    2010-01-01

    Not even a week passes without a paper getting published in peer reviewed journals on radiation protection in newer imaging technologies that either did not exist 10 y ago or were not established for routine use. Computed tomography (CT) happens to be a common element in most of these technologies. Radiation protection is high on the agenda of manufacturers and researchers and that is becoming a driving force for users and international organisations. The media and thus the public have their own share in increasing the momentum. The slice war seems to be shifting to dose war. Manufacturers are now chasing the target of sub-mSv CT. The era of two digit mSv effective dose for a CT procedure is far from losing ground, although cardiac CT within 5 mSv seems possible. A few years ago the change in technology was faster than adoption of dose management but currently even the development of dose reduction techniques is faster than its adoption. There is dearth of large scale surveys of practice and lack of surveys with change in technology. (authors)

  10. Development of Food Preservation and Processing Technologies by Radiation Technology

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun

    2007-07-01

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  11. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun [and others

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  12. Development of Food Preservation and Processing Technologies by Radiation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Myung Woo; Lee, Ju Won; Kim, Jae Hun (and others)

    2007-07-15

    To secure national food resources, development of energy-saving food processing and preservation technologies, establishment of method on improvement of national health and safety by development of alternative techniques of chemicals and foundation of the production of hygienic food and public health related products by irradiation technology were studied. Results at current stage are following: As the first cooperative venture business technically invested by National Atomic Research Development Project, institute/company's [technology-invested technology foundation No. 1] cooperative venture, Sun-BioTech Ltd., was founded and stated its business. This suggested new model for commercialization and industrialization of the research product by nation-found institute. From the notice of newly approved product list about irradiated food, radiation health related legal approval on 7 food items was achieved from the Ministry of health and wellfare, the Korea Food and Drug Administration, and this contributed the foundation of enlargement of practical use of irradiated food. As one of the foundation project for activation of radiation application technology for the sanitation and secure preservation of special food, such as military meal service, food service for patient, and food for sports, and instant food, such as ready-to-eat/ready-to-cook food, the proposal for radiation application to the major military commander at the Ministry of National Defence and the Joint Chiefs of Staff was accepted for the direction of military supply development in mid-termed plan for the development of war supply. Especially, through the preliminary research and the development of foundation technology for the development of the Korean style space food and functional space food, space Kimch with very long shelf life was finally developed. The development of new item/products for food and life science by combining RT/BT, the development of technology for the elimination/reduction of

  13. Radiation technology for immobilization of bioactive materials

    International Nuclear Information System (INIS)

    1988-12-01

    Within the framework of the Agency's coordinated research programme on ''Application of Radiation Technology in Immobilization of Bioactive Materials'', the third and final research coordination meeting was held at Beijing University, Beijing, People's Republic of China, 15-18 June 1987. The present publication compiles all presentations made at the meeting. Fundamental processes for the immobilization of enzymes, antibodies, cells and drugs were developed and established using gamma radiation, electron beams and plasma discharge. Applications of various biofunctional components, immobilized by radiation techniques in different processes, were studied. A range of backbone polymers has been examined together with various monomers. Coupling procedures have been developed which are relevant to our particular requirements. Enzymes of various types and characteristics have been immobilized with considerable efficiency. The immobilized biocatalysts have been shown to possess significant activity and retention of activity on storage. There appears to be a high degree of specificity associated with the properties of the immobilised biocatalysts, their activity and the ease of their preparation. Novel additives which lower the total radiation dose in grafting have been discovered and their value in immobilization processes assessed. Potential applications include: medical (diagnostic, therapeutic), and industrial processes (fermentation, bioseparation, etc.). Refs, figs and tabs

  14. Recent developments in radiation field control technology

    International Nuclear Information System (INIS)

    Wood, C.J.

    1995-01-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses

  15. Recent developments in radiation field control technology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.J. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-03-01

    The U.S. nuclear power industry has been remarkably successful in reducing worker radiation exposures over the past ten years. There has been over a fourfold reduction in the person-rem incurred for each MW.year of electric power generated: from 1.8 in 1980, to only 0.39 person-rems in 1991 and 1992. Preliminary data for 1993 are even lower: approximately 0.37 person-rem.MW.year. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in ICRP 60 and there will be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts with be increased requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the industry goals for 1995. Reducing out-of-core radiation fields offer the best chance of continuing the downward trend in exposures. To assist utilities select the most economic technology for their specific plants, EPRI has published a manual capturing worldwide operating experience with radiation-field control techniques (TR-100265). No one method will suffice, but implementing suitable combinations from this collection will enable utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: outages are shorter, manpower requirements are reduced and work quality is improved. Despite the up front costs, the benefits over the following 1-3 years typically outweigh the expenses.

  16. Standardising antisocial personality disorder: the social shaping of a psychiatric technology.

    Science.gov (United States)

    Pickersgill, Martyn

    2012-05-01

    The Diagnostic and Statistical Manual of Mental Disorders (DSM) is one of the most influential and controversial terminological standards ever produced. As such, it continues to provide a valuable case study for sociologists of health and illness. In this article I take as my focus one particular DSM category: antisocial personality disorder (ASPD). The analysis charts the shifting understandings of personality disorders associated with antisocial behaviour in the DSM and in US psychiatry more broadly from 1950 to the present day. Memos, letters and minutes produced by the DSM-III committee and held in the American Psychiatric Association (APA) archives ground the discussion. Finally, the article explores more recent constructions of antisocial personality disorder and examines the anticipatory discourse pertaining to the rewriting of this category expected in the forthcoming DSM-5. In presenting an in-depth socio-historical narrative of the development - and potential future - of standards for pathological antisociality, this analysis casts new light on the ASPD construct. In particular, by considering it as a technology, I elaborate how processes of path dependency constrain innovation and how imaginaries of users and publics are implicated in the APA debates constitutive of this. © 2011 The Authors. Sociology of Health & Illness © 2011 Foundation for the Sociology of Health & Illness/Blackwell Publishing Ltd.

  17. Technological yields of sources for radiation processing

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1993-01-01

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author's technological expectations during the preparation of the linac project in the late '60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs

  18. Radiation effects in advanced microelectronics technologies

    Science.gov (United States)

    Johnston, A. H.

    1998-06-01

    The pace of device scaling has increased rapidly in recent years. Experimental CMOS devices have been produced with feature sizes below 0.1 /spl mu/m, demonstrating that devices with feature sizes between 0.1 and 0.25 /spl mu/m will likely be available in mainstream technologies after the year 2000. This paper discusses how the anticipated changes in device dimensions and design are likely to affect their radiation response in space environments. Traditional problems, such as total dose effects, SEU and latchup are discussed, along with new phenomena. The latter include hard errors from heavy ions (microdose and gate-rupture errors), and complex failure modes related to advanced circuit architecture. The main focus of the paper is on commercial devices, which are displacing hardened device technologies in many space applications. However, the impact of device scaling on hardened devices is also discussed.

  19. Radiation curing technology progress and its industrial applications in Japan

    International Nuclear Information System (INIS)

    Ukachi, Takashi

    2003-01-01

    Optics, electronics and display industries are now the driving forces for the Japanese radiation curing technology. The purpose of this paper is to overview the newly developed radiation curing technology in Japan, in particular, its industrial applications, and to present the market figures in radiation curing applications, which were surveyed by RadTech Japan in 2002 afresh. (author)

  20. The Puzzle of Neuroimaging and Psychiatric Diagnosis: Technology and Nosology in an Evolving Discipline.

    Science.gov (United States)

    Farah, Martha J; Gillihan, Seth J

    2012-10-01

    Brain imaging provides ever more sensitive measures of structure and function relevant to human psychology and has revealed correlates for virtually every psychiatric disorder. Yet it plays no accepted role in psychiatric diagnosis beyond ruling out medical factors such as tumors or traumatic brain injuries. Why is brain imaging not used in the diagnosis of primary psychiatric disorders, such as depression, bipolar disease, schizophrenia, and ADHD? The present article addresses this question. It reviews the state of the art in psychiatric imaging, including diagnostic and other applications, and explains the nonutility of diagnostic imaging in terms of aspects of both the current state of imaging and the current nature of psychiatric nosology. The likely future path by which imaging-based diagnoses will be incorporated into psychiatry is also discussed. By reviewing one well-known attempt to use SPECT-scanning in psychiatric diagnosis, the article examines a real-world practice that illustrates several related points: the appeal of the idea of image-assisted diagnosis for physicians, patients and families, despite a lack of proven effectiveness, and the mismatch between the categories and dimensions of current nosology and those suggested by imaging.

  1. Development of clean environment conservation technology by radiation

    International Nuclear Information System (INIS)

    Lee, Myunjoo; Kim, Tak Hyun; Jung, In Ha

    2012-04-01

    This report is aim to develop the technology for environmental conservation by radiation. It is consisted of two research parts. One is development of wastewater disinfection technology by radiation and the other is development of livestock waste treatment technology by radiation. For the development of wastewater disinfection technology disinfect ion process, technology for treatment of toxic organic chemicals and assessment of ecological toxicity, technology for treatment of endocrine disrupting chemicals and assessment of genetic safety were developed. For the development of livestock waste treatment technology, process for simultaneous removal of nutrients, technology for disinfection and quality enhancement of livestock waste compost, technology for reduction of composting periods, monitoring of toxic organic compounds, pretreatment technology for organic toxic chemicals and enhancement of biological treatment efficiencies were developed. Based on basic research, advanced livestock wastewater treatment process using radiation was established

  2. Basic radiation effects in nuclear power electronics technology

    International Nuclear Information System (INIS)

    Gover, J.E.; Srour, J.R.

    1985-05-01

    An overview is presented of the effects of radiation in microelectronics technology. The approach taken throughout these notes is to review microscopic phenomena associated with radiation effects and to show how these lead to macroscopic effects in semiconductor devices and integrated circuits. Bipolar integrated circuits technology is reviewed in Appendix A. Appendix B gives present and future applications of radiation-tolerant microelectronics in nuclear power applications as well as the radiation tolerance requirements of these applications

  3. Use of newer technologies with existing service for family reintegration of unknown psychiatric patients: A case series.

    Science.gov (United States)

    Gowda, Guru S; Telang, Ashay; Sharath, Chandra Reddy; Issac, Thomas Gregor; Haripriya, Chintala; Ramu, Praveen Shivalli; Math, Suresh Bada

    2017-10-29

    Homeless Mentally Ill (HMI) patients pose a challenge in treatment, management and rehabilitation services. HMI patients are often difficult to engage in treatment, and associated with relapse and rehospitalization, even after recovery. Family plays an important role in treatment engagement and care of the mentally ill person in India. Here, we report two unknown psychiatric patients who were reintegrated to their families using newer technologies with existing service. Newer technologies have helped in early identification of HMI families and reintegration into them. The early reintegration reduced the unnecessary detention of HMI patients inside the hospital after recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Information technology resource management in radiation oncology.

    Science.gov (United States)

    Siochi, R Alfredo; Balter, Peter; Bloch, Charles D; Bushe, Harry S; Mayo, Charles S; Curran, Bruce H; Feng, Wenzheng; Kagadis, George C; Kirby, Thomas H; Stern, Robin L

    2009-09-02

    The ever-increasing data demands in a radiation oncology (RO) clinic require medical physicists to have a clearer understanding of the information technology (IT) resource management issues. Clear lines of collaboration and communication among administrators, medical physicists, IT staff, equipment service engineers and vendors need to be established. In order to develop a better understanding of the clinical needs and responsibilities of these various groups, an overview of the role of IT in RO is provided. This is followed by a list of IT related tasks and a resource map. The skill set and knowledge required to implement these tasks are described for the various RO professionals. Finally, various models for assessing one's IT resource needs are described. The exposition of ideas in this white paper is intended to be broad, in order to raise the level of awareness of the RO community; the details behind these concepts will not be given here and are best left to future task group reports.

  5. Radiation detection technology assessment program (RADTAP)

    International Nuclear Information System (INIS)

    Smith, D.E.

    1998-01-01

    The U.S. Customs Service and the U.S. Department of Energy (DOE) conducted a technical and operational assessment of gamma ray radiation detection equipment during the period May 5-16, 1997 at a testing facility in North Carolina. The effort was entitled, ''Radiation Detection Technology Assessment Program (RADTAP)'', and was conducted for the purpose of assessing the applicability, sensitivity and robustness of a diverse suite of gamma ray detection and identification equipment for possible use by Customs and other law enforcement agencies. Thirteen companies entered 25 instruments into the assessment program. All detection equipment entered had to exhibit a minimum sensitivity of 20 micro-R per hour (background included) from a Cesium-137 point source. Isotope identifying spectrometers entered were man portable and operable at room temperature with read-out that could be interpreted by non-technical personnel. Radioactive sources used in the assessment included special nuclear material, industrial and health isotopes. Evaluators included Customs inspectors and technical experts from DOE and Customs. No conclusions or recommendations were issued based on the quantitative and qualitative test results, however, the results of the program provided law enforcement agencies with the necessary data to select equipment that best meets their operational needs and budgets. (author)

  6. Study on technology for minimizing radiation risk

    International Nuclear Information System (INIS)

    Lee, Jeong Ho; Kim, In Gyu; Kim, Jin Kyu; Lee, Kang Suk; Kim, Kug Chan; Chun, Ki Chung.

    1997-01-01

    Apoptosis, also called programmed cell death to discriminate it from necrosis, is characterized by : chromatin condensation, apoptotic body formation, fragmentation of DNA into oligonucleosome sized pieces, swelling and progressive cell degradation. We examined morphological and biochemical changes of T-lymphocytes following gamma irradiation exposure. The results are followings. 1) Murine lymphocytes have several characteristics : The irradiated cells undergo morphological and biochemical changes characteristic of apoptosis, causing growth delay. (0.01, 0.1, 1.0 Gy) 2) The onset of DNA fragmentation in cells occurs after one more cell divisions. 3) DNA fragmentation in cells occurs in all irradiated group (0.1, 1.0, 2.0, 4.0 Gy, 24 hours following gamma radiation exposure) 4) Apoptotic bodies were detected by confocal microscope with ease when compared with electron microscope. For the developing technology for minimizing radiation damage, the following experimental works have been done. 1) Establishment of experimental system for pre-screening of radioprotectants - Screening of protective substances using TSH bioindicator - Efficacy test of some radioprotective materials 2) TSH bioindicator system can make a scientific role in screening unknown materials for their possible radioprotective effect. (author). 42 refs., 3 tabs., 9 figs

  7. Study on technology for minimizing radiation risk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ho; Kim, In Gyu; Kim, Jin Kyu; Lee, Kang Suk; Kim, Kug Chan; Chun, Ki Chung

    1997-01-01

    Apoptosis, also called programmed cell death to discriminate it from necrosis, is characterized by : chromatin condensation, apoptotic body formation, fragmentation of DNA into oligonucleosome sized pieces, swelling and progressive cell degradation. We examined morphological and biochemical changes of T-lymphocytes following gamma irradiation exposure. The results are followings. (1) Murine lymphocytes have several characteristics : The irradiated cells undergo morphological and biochemical changes characteristic of apoptosis, causing growth delay. (0.01, 0.1, 1.0 Gy) (2) The onset of DNA fragmentation in cells occurs after one more cell divisions. (3) DNA fragmentation in cells occurs in all irradiated group (0.1, 1.0, 2.0, 4.0 Gy, 24 hours following gamma radiation exposure) (4) Apoptotic bodies were detected by confocal microscope with ease when compared with electron microscope. For the developing technology for minimizing radiation damage, the following experimental works have been done. (1) Establishment of experimental system for pre-screening of radioprotectants - Screening of protective substances using TSH bioindicator - Efficacy test of some radioprotective materials (2) TSH bioindicator system can make a scientific role in screening unknown materials for their possible radioprotective effect. (author). 42 refs., 3 tabs., 9 figs.

  8. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  9. Parameterization models for solar radiation and solar technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Samy A. [National Research Institute of Astronomy and Geophysics, Solar and Space Department, Marsed Street, Helwan, 11421 Cairo (Egypt)

    2008-08-15

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined. (author)

  10. Application of Java technology in radiation image processing

    International Nuclear Information System (INIS)

    Cheng Weifeng; Li Zheng; Chen Zhiqiang; Zhang Li; Gao Wenhuan

    2002-01-01

    The acquisition and processing of radiation image plays an important role in modern application of civil nuclear technology. The author analyzes the rationale of Java image processing technology which includes Java AWT, Java 2D and JAI. In order to demonstrate applicability of Java technology in field of image processing, examples of application of JAI technology in processing of radiation images of large container have been given

  11. Shape Morphing Adaptive Radiator Technology (SMART) for Variable Heat Rejection

    Science.gov (United States)

    Erickson, Lisa

    2016-01-01

    The proposed technology leverages the temperature dependent phase change of shape memory alloys (SMAs) to drive the shape of a flexible radiator panel. The opening/closing of the radiator panel, as a function of temperature, passively adapts the radiator's rate of heat rejection in response to a vehicle's needs.

  12. Applications of radiation technology and isotopes in industry

    Energy Technology Data Exchange (ETDEWEB)

    Machi, Sueo [International Atomic Energy Agency, Vienna (Austria)

    1994-12-31

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency`s programme for technology transfer - research contract programme, model projects and technical cooperation projects.

  13. Applications of radiation technology and isotopes in industry

    International Nuclear Information System (INIS)

    Sueo Machi

    1994-01-01

    This paper reports the current status of applications of radiation technology and radioisotopes in industries, environmental conservation and medical products. The topics discussed are radiation processing - features and advantages, radiation sources, polymeric products, radiation cross-linking and grafting of polymers, radiation curing of surface coating, new developments; sterilization of medical products, applications for environmental protection i.e. cleaning the flue gases, disinfection of sewage and its recycling; nucleonic control system (NCS); major mechanisms of implementation of the Agency's programme for technology transfer - research contract programme, model projects and technical cooperation projects

  14. Radiation tolerance of NPN bipolar technology with 30 GHz Ft

    International Nuclear Information System (INIS)

    Flament, O.; Synold, S.; Pontcharra, J. de; Niel, S.

    1999-01-01

    The ionizing dose and neutron radiation tolerance of Si QSA bipolar technology has been investigated. The transistors exhibit good radiation tolerance up to 100 krad and 5 10 13 n/cm 2 without any special fabrication steps to harden the technology to the studied effects. (authors)

  15. Technologically modified exposures to natural radiation. Annex C

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex deals with some examples of technologically modified exposures to natural radiation. Radiation exposures due to coal-fired power plants, geothermal energy production, exploitation of phosphate rock, aircraft travel, and consumer products are discussed. The present state of knowledge does not allow an accurate estimate of the collective effective dose equivalent from technologically modified exposures to natural radiation to be made. This annex has an extensive bibliography with at least 200 references.

  16. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  17. Environmental radiation monitoring technology: Capabilities and needs

    International Nuclear Information System (INIS)

    Hofstetter, K.J.

    1994-01-01

    Radiation monitoring in the Savannah River Site (SRS) environment is conducted by a combination of automated, remote sampling and/or analysis systems, and manual sampling operations. This program provides early detection of radionuclide releases, minimizes the consequences, and assesses the impact on the public. Instrumentation installed at the release points monitor the atmospheric and aqueous releases from SRS operations. Ground water and air monitoring stations are strategically located throughout the site for radionuclide migration studies. The environmental radiological monitoring program at SRS includes: fixed monitoring stations for atmospheric radionuclide concentrations, aqueous monitors for surface water measurements, mobile laboratory operations for real-time, in-field measurements, aerial scanning for wide area contamination surveillance, and hand-held instruments for radionuclide-specific measurements. Rigorous environmentnal sampling surveillance coupled with laboratory analyses provide confirmatory results for all in-field measurements. Gaps in the technologies and development projects at SRS to fill these deficiencies are discussed in the context of customer needs and regulatory requirements

  18. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  19. Application of radiation technology for industry and environmental protection

    International Nuclear Information System (INIS)

    Sueo Machi

    1996-01-01

    The world population today is 5.7 billion and increasing by 94 million per year. In order to meet the increasing consumption of food and energy due to the tremendous population growth, unproved technologies which are environmentally friendly, are indispensable. In this context. a number of advanced technologies have been brought about by the LISC of radiation and isotopes. This paper highlights radiation technology, applications in industry, environmental conservation, and agriculture

  20. Radiation hardness assurances categories for COTS technologies

    International Nuclear Information System (INIS)

    Hash, G.L.; Shaneyfelt, M.R.; Sexton, F.W.; Winokur, P.S.

    1997-01-01

    A comparison of the radiation tolerance of three commercial, and one radiation hardened SRAM is presented for four radiation environments. This work has shown the difficulty associated with strictly categorizing a device based solely on its radiation response, since its category depends on the specific radiation environment considered. For example, the 3.3-V Paradigm SRAM could be considered a radiation-tolerant device except for its SEU response. A more useful classification depends on the methods the manufacturer uses to ensure radiation hardness, i.e. whether specific design and process techniques have been used to harden the device. Finally, this work has shown that burned-in devices may fail functionally as much as 50% lower in total dose environments than non-burned-in devices. No burn-in effect was seen in dose-rate upset, latchup, or SEE environments. The user must ensure that total dose lot acceptance testing was performed on burned-in devices

  1. The advances in radiation processing technology and some suggestion

    International Nuclear Information System (INIS)

    Wu Jilan; Wei Genshuan; Ha Hongfei

    1992-01-01

    Radiation processing technology has been made great advances in the last decade especially in the developed countries. According to the conservative evaluation, the total sales of radiation processing products approached about 2-3 billion U.S. dollar in 1981, there after, the processing capacity at least doubles. Now, the intensities of 60 Co in use for radiation processing are (5.55-7.40) x 10 18 Bq and there are about 600 sets of electron accelerators for radiation processing. The total sales of radiation processing products are supposed to be over 10 billion U.S. dollar in 1989. However, there are only several fields commercialized. In great scale, such as radiation crosslinked heat shrinkable materials, radiation crosslinked electric cables and wires, and radiation sterilization of medical articles. In China, the radiation processing technology has been developed rapidly in the past years, but the processing capacity is still lower in comparing with developed countries. We suggest that much attention should be devoted to the training of the workers, technicians and managers. The basic theoretical and new technological researches are the keys for developing radiation processing technology at high speed in our country

  2. IAEA programme in the field of radiation technology

    International Nuclear Information System (INIS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-01-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e - /X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on 'Emerging Applications of Radiation Technology for the 21st Century' at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: 'Advances in Radiation Chemistry of Polymers' (Notre Dame, USA

  3. IAEA programme in the field of radiation technology

    Science.gov (United States)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad

    2005-07-01

    Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e-/X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on "Emerging Applications of Radiation Technology for the 21st Century" at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: "Advances in Radiation Chemistry of Polymers" (Notre Dame, USA

  4. Radiation cure technology used in inks and coatings

    International Nuclear Information System (INIS)

    Ravijst, J.-P.

    1995-01-01

    The radiation cure technology in inks and coatings by ultraviolet light (UV) and electron beam (EB) was introduced. The technology is the only one which meets the 3-E rules. An advantage of this technology is that a wide range of substrates can be printed such as paper, card, metal and even heat sensitive plastics

  5. Radiation treatment of materials - elaboration bases of radiation technology; Obrobka radiacyjna materialow - zasady opracowywania technologii

    Energy Technology Data Exchange (ETDEWEB)

    Panta, P P [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The basic rules in design of radiation technologies have been presented and discussed. The recommendations for achieving of assigned goal in respect of obliged regulations have been done and explained on the example of radiation technology of adhesive materials and glue production.

  6. Radiation technologies and techniques friendly for environment and men

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Walis, L.

    1995-01-01

    Development of radiation technologies and techniques in Poland has been shown. Especially thermoshrinkable olefins with shape memory, fast thermistors and radiation sterilization have been presented. Also the radiometric gages produced in the Institute of Nuclear Chemistry and Technology, Warsaw for air monitoring have been described. A broad group of radiotracer techniques being used for environmental study have been presented as well. Radiation technologies with electron beam use for flue gas purification, sewage sludge hygienization and food processing have been shown and their development has been discussed

  7. The use of computer assisted technology to enhance student psychiatric nurses learning during a practice placement.

    Science.gov (United States)

    Denny, Margaret; Higgins, Agnes

    2003-06-01

    Despite the available literature that identifies the value of integrating computer-assisted learning into the curriculum, psychiatric nurse education lags behind in this area of curriculum development. The purpose of this paper is to report on a pilot project involving the use of a computer assisted learning (CAL) interactive multimedia (IMM) package called 'Admissions,' as a self-directed learning tool with two-second year psychiatric nursing students. The students were on a practice placement in an Irish mental health service. The aim of using the multimedia resource was to augment the students' learning during their practice placement and enable them to re-examine the issue of psychosis from a multiplicity of perspectives. This paper provides a brief description of the interactive multimedia package, together with a discussion on the support offered to the students during its use. experiential taxonomy is used as a framework to guide the discussion on the learning and evaluation process used. Feedback from the students suggests that the CAL package is easy to use, informative and promoted independence and self-directed study.

  8. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.

    Science.gov (United States)

    Wesseling, Hendrik; Guest, Paul C; Lago, Santiago G; Bahn, Sabine

    2014-08-01

    Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.

  9. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  10. Use of radiation technologies in agriculture and medicine

    International Nuclear Information System (INIS)

    Petukhov, V.K.; Chekushin, A.I.

    1994-01-01

    The most important directions of radiation and radiation biological technologies in the agriculture and medicine are elucidated. Kazakstan have possibility for application radiation technologies. There is powerful irradiation plant on the base of WWR-K reactor such could use for medicine materials sterilization. Has been proposed gamma-radiation plant with following technical characteristics: sources activity - 100-120 Ku; effective energy of radiation - 0,6-0,7 MeV; gamma-radiation use coefficient - 35 %; irradiation dose rate - 30-40 R/c; nonuniform irradiation rate - 12 %. Processing tools have being situated to hermetically sealed cylindrical container (height - 2 m; diameter - 1,2 m) and then have being put down under water towards gamma-irradiators

  11. Evolution of radiation therapy: technology of today

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Mishra, Shagun

    2013-01-01

    The three well established arms of treatment are surgery, radiation therapy and chemotherapy. The management of cancer is multidisciplinary; Radiation Oncologists along with Surgical Oncologists and Medical Oncologists are responsible for cancer therapeutics. They all work in close collaboration with Pathologists and Radiologists for cancer diagnosis and staging and rely on Oncology Nurses, Physiotherapists, Occupational Therapists, Nutritionists and Social Workers for optimal treatment and rehabilitation of cancer patients. Therefore cancer management is a team work for getting the best results. Radiation therapy is one of the most effective methods of treating cancer

  12. The fundamentals of the radiation thermal technology for cement production

    International Nuclear Information System (INIS)

    Abramson, I.G.; Kapralova, R.M.; Nikiforov, Yu.V.; Egorov, G.B.; Vaisman, A.F.

    1995-01-01

    The fundamentals of principally new radiation thermal way of cement production are presented. The peculiarities of qualities and structure of clinker obtained by this way are given. The technical economic advantages of the new technology are shown

  13. Potential applications of radiation technology in meat industry

    International Nuclear Information System (INIS)

    Chawla, S.P.; Kanatt, S.R.; Rao, M.S.; Sharma, Arun

    2009-01-01

    Microbial load determines shelf-life and safety of meat products. Radiation technology is an effective tool in eliminating spoilage and pathogenic microbes in meat products. Radiation processing of meat can work in synergy with traditional preservation methods to enhance shelf-life and safety of meat products. (author)

  14. Fundamental Technology Development for Radiation Damage in Nuclear Materials

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kwon, J. H.; Kim, E. S. and others

    2005-04-01

    This project was performed to achieve technologies for the evaluation of radiation effects at materials irradiated at HANARO and nuclear power plants, to establish measurement equipment and software for the analysis of radiation defects and to set up facilities for the measurements of radiation damage with non-destructive methods. Major targets were 1) establishment of hot laboratories and remote handling facilities/ technologies for the radioactive material tests, 2) irradiation test for the simulation of nuclear power plant environment and measurement/calculation of physical radiation damage, 3) evaluation and analysis of nano-scale radiation damage, 4) evaluation of radiation embrittlement with ultrasonic resonance spectrum measurement and electromagnetic measurement and 5) basic research of radiation embrittlement and radiation damage mechanism. Through the performance of 3 years, preliminary basics were established for the application research to evaluation of irradiated materials of present nuclear power plants and GEN-IV systems. Particularly the results of SANS, PAS and TEM analyses were the first output in Korea. And computer simulations of radiation damage were tried for the first time in Korea. The technologies will be developed for the design of GEN-IV material

  15. The preliminary research for biosynthetic engineering by radiation fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Chang Hyun; Jung, U Hee; Park, Hae Ran [KAERI, Daejeon (Korea, Republic of)

    2012-01-15

    The purpose of this project is to elucidate the solution to the production of bioactive substance using biotransformation process from core technology of biosynthetic engineering by radiation fusion technology. And, this strategy will provide core technology for development of drugs as new concept and category. Research scopes and contents of project include 1) The development of mutant for biosynthetic engineering by radiation fusion technology 2) The development of host for biosynthetic engineering by radiation fusion technology 3) The preliminary study for biosynthetic engineering of isoflavone by radiation fusion technology. The results are as follows. Isoflavone compounds(daidzein, hydroxylated isoflavone) were analyzed by GC-MS. The study of radiation doses and p-NCA high-throughput screening for mutant development were elucidated. And, it was carried out the study of radiation doses for host development. Furthermore, the study of redox partner and construction of recombinant strain for region-specific hydroxylation(P450, redox partner). In addition, the biological effect of 6,7,4'-trihydroxyisoflavone as an anti-obesity agent was elucidated in this study.

  16. Radiation processing technology in the 21st century

    International Nuclear Information System (INIS)

    Miyuki Hagiwara

    1997-01-01

    The address discusses the following issue - towards the 21st century, we are required more and more to create innovative technologies to solve problems about environment, energy, natural resources, materials, health care, food and others which are the great concern to human beings. For the radiation processing technology to survive, it will be required to provide answers to those problems. The use of radiation of polymer modification will remain as an important field of the radiation application. Some other promising polymer processing can be cited as those which will grow in near future; for environment technology - polymeric fibers grafted with ion exchange residues to remove toxic metals for cleaning industrial waste water; For health care technology - crosslinked polyvinylalcohol hydrogel for wound dressing (irradiation of hydrogel); For high performance materials technology - less toxic crosslinked natural rubber latex (irradiation of emulsion), abrasion resistant crosslinked PTFE (irradiation at high temperature)

  17. Status and prospect of radiation processing technology in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Khairul Zaman Hj. Mohd Dahlan; Nahrul Khair Alang Md Rashid [Malaysian Institute for Nuclear Technology Research (MINT), Bangi, Selangor Darul Ehsan (Malaysia)

    2001-03-01

    Radiation processing technology in Malaysia is gaining acceptance by the local industry. The technology has proven to enhance the industrial efficiency, productivity and improve product quality and competitiveness. For many years, variety of radiation crosslinkable materials based on synthetic polymers have been produced either in the form of thermoplastic resins, polymer blends or composites. Today, effort is being focused towards producing environmentally friendly and biodegradable materials using natural polymers. The government of Malaysia through the Malaysian Institute for Nuclear Technology Research (MINT) has developed research program to utilize indigenous materials such as natural rubber, palm oil and polysaccharide. Radiation processing technology is used to process (crosslink/grafting/curing) the materials at a competitive cost. This technology can be applied in several industrial sectors such as automobile, aerospace, construction and healthcare. (author)

  18. Status and prospect of radiation processing technology in Malaysia

    International Nuclear Information System (INIS)

    Khairul Zaman Hj Mohd Dahlan; Nahrul Khair Alang Md Rashid

    2001-01-01

    Radiation processing technology in Malaysia is gaining acceptance by the local industry. The technology has proven to enhance the industrial efficiency, productivity and improve product quality and competitiveness. For many years, variety of radiation crosslinkable materials based on synthetic polymers have been produced either in the form of thermoplastic resins, polymer blends or composites. Today, effort is being focused towards producing environmentally friendly and biodegradable materials using natural polymers. The government of Malaysia through the Malaysian Institute for Nuclear Technology Research (MINT) has developed research program to utilize indigenous materials such as natural rubber, palm oil and polysaccharide. Radiation processing technology is used to process (crosslink/grafting/curing) the materials at a competitive cost. This technology can be applied in several industrial sectors such as automobile, aerospace, construction and healthcare. (author)

  19. Development of advanced natural polymer using radiation technology

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeon, Jun Pyo

    2012-01-01

    This project was performed to develop the environment-friendly and higher value-added materials using natural polymers derivatives from biotic-resources by radiation technology. To study for structural change of natural polymer by radiation, the effect of electron beam and Gamma ray into four kinds of plants such as Kenaf core, kenaf bast, ock and cornhusk was investigated. As results of analysis about structural change of natural polymer by radiation, efficiently separating process of Lignin was developed by improved decomposition of Lignin with increasing power of radiation. Environ-friendly separating process of Cellulose and Lignin using radiation and water-cook was developed without toxically chemical treatment. Papers were fabricated by cellulose and tensile strength of pulp fabricated by radiation was invested properties of pulp depending on power of radiation. High purity cellulose was fabricated by reduced chemical ratio between hemi-cellulose and Lignin with control of radiative power. Manufacturing process of natural paper highly containing cellulose content was developed using efficient separation of cellulose from ock tree, kenaf core and kenaf bast through radiation technique. Cellulose fiber was fabricated using separated cellulose by radiation through the drying and wetting spinning with methanol and water. Also nano-fiber with Lignin was made by electro-spinning with different ratio between PAN and Lignin. Effect of thermal treatment and carbonization of fabricated nano-fiber was invested. Carbon fiber with Lignin was applied to high value-added a secondary battery used as a cathode in half cell type. The secondary battery with carbon fiber with Lignin used as a cathode showed very efficient performance, which revealed capacity-preservation with 100% during 100 cycles. This project could significantly contribute to national competitiveness with radiation technology and Low-carbon and green-growth industrial technology, based on securement of

  20. Proceedings: Radiation Protection Technology Conference: Providence, RI, November 2001

    International Nuclear Information System (INIS)

    2002-01-01

    Health physics (HP) professionals within the nuclear industry are continually upgrading their respective programs with new methods and technologies. The move to shorter outages combined with a diminishing group of contract HP technicians and demanding emergent work makes such changes even more important. The EPRI Radiation Protection Technology Conference focused on a number of key health physics issues and developments

  1. Radiation effects in technologies of semiconductor materials and devises

    International Nuclear Information System (INIS)

    Korshunov, F.P.; Bogatyrev, Yu.V.; Lastovskij, S.B.; Marchenko, I.G.; Zhdanovich, N.E.

    2003-01-01

    In the paper were considered the physical basics and practical results of using of penetrating radiations in technologies of nuclear transmutation of semiconductor materials (Si, GaAs) as well as in production of semiconductor devices including high-power silicon diodes, thyristors and transistors. It is shown the high efficiency of radiation technology for increasing of electronic device speed, exclusion of technological operations such as gold or platinum diffusions, increase of quality, decrease of prime cost and increase of good-to-bad device ratio yield

  2. Shape Morphing Adaptive Radiator Technology (SMART) Updates to Techport Entry

    Science.gov (United States)

    Erickson, Lisa; Bertagne, Christopher; Hartl, Darren; Witcomb, John; Cognata, Thomas

    2017-01-01

    The Shape-Morphing Adaptive Radiator Technology (SMART) project builds off the FY16 research effort that developed a flexible composite radiator panel and demonstrated its ability to actuate from SMA's attached to it. The proposed FY17 Shape-Morphing Adaptive Radiator Technology (SMART) project's goal is to 1) develop a practical radiator design with shape memory alloys (SMAs) bonded to the radiator's panel, and 2) build a multi-panel radiator prototype for subsequent system level thermal vacuum tests. The morphing radiator employs SMA materials to passively change its shape to adapt its rate of heat rejection to vehicle requirements. Conceptually, the radiator panel has a naturally closed position (like a cylinder) in a cold environment. Whenever the radiator's temperature gradually rises, SMA's affixed to the face sheet will pull the face sheet open a commensurate amount - increasing the radiators view to space and causing it to reject more heat. In a vehicle, the radiator's variable heat rejection capabilities would reduce the number of additional heat rejection devices in a vehicle's thermal control system. This technology aims to help achieve the required maximum to minimum heat rejection ratio required for manned space vehicles to adopt a lighter, simpler, single loop thermal control architecture (ATCS). Single loop architectures are viewed as an attractive means to reduce mass and complexity over traditional dual-loop solutions. However, fluids generally considered safe enough to flow within crewed cabins (e.g. propylene glycol-water mixtures) have much higher freezing points and viscosities than those used in the external sides of dual loop ATCSs (e.g. Ammonia and HFE7000).

  3. Radiation technology enabled market access to Indian mango

    International Nuclear Information System (INIS)

    Sharma, Arun

    2009-01-01

    International trade in agricultural produce is subject to quarantine barriers imposed by importing countries to limit the entry of exotic pests and pathogens. Radiation technology provides an effective alternative to fumigants which are being gradually phased out. The technology has enabled market access to Indian mangoes in the US market after a gap of 18 years. The technology provides opportunity for export of other fruits and vegetables as well to countries like US, Australia and New Zealand. (author)

  4. Future Prospects: Ionization Radiation Processing Technology. Chapter 12

    International Nuclear Information System (INIS)

    Rida Tajau

    2017-01-01

    This final chapter concluded that the ionizing radiation processing technology was potentially used to develop new and advanced products. The new advanced products which been discussed was HBPUA, printing ink, PSA, hydrogel, bioplastic, SWA, CNT, RVNRL and others. With this new innovative technology, it will develop the country's economy and increase the productivity of manufacturing industry, medical, science and technology and also strenghten the social science field.

  5. Radiation technologies in metallurgy and machinery

    International Nuclear Information System (INIS)

    Meshkov, I.N.

    1990-01-01

    Applications of electron beam accelerators for technologies in metallurgy and machinery are discussed. Processes described are provided with special industrial accelerators, developed in the Institute of Nuclear Physics, Novosibirsk. (author)

  6. Emerging Radiation Health-Risk Mitigation Technologies

    International Nuclear Information System (INIS)

    Wilson, J.W.; Cucinotta, F.A.; Schimmerling, W.

    2004-01-01

    Past space missions beyond the confines of the Earth's protective magnetic field have been of short duration and protection from the effects of solar particle events was of primary concern. The extension of operational infrastructure beyond low-Earth orbit to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of Galactic Cosmic Rays (GCR). There are significant challenges in providing protection from the long-duration exposure to GCR: the human risks to the exposures are highly uncertain and safety requirements places unreasonable demands in supplying sufficient shielding materials in the design. A vigorous approach to future radiation health-risk mitigation requires a triage of techniques (using biological and technical factors) and reduction of the uncertainty in radiation risk models. The present paper discusses the triage of factors for risk mitigation with associated materials issues and engineering design methods

  7. Radioisotopes and radiation. Spin-off technologies

    International Nuclear Information System (INIS)

    Bujan, Alfonso

    2001-01-01

    A description is given of the isotope and radiation applications in Argentina. The applications of nuclear techniques in agriculture and animal sciences are reviewed as well as the applications in sedimentology and soil sciences. The use of the sterile insect technique for pest control in some regions of Argentina is described. A review is made of the applications of irradiation for sterilization and food preservation in the country as well as the use of irradiation for industrial processes

  8. New technologies to reduce pediatric radiation doses

    International Nuclear Information System (INIS)

    Bernhardt, Philipp; Lendl, Markus; Deinzer, Frank

    2006-01-01

    X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure. (orig.)

  9. Materials science and technology by synchrotron radiation

    International Nuclear Information System (INIS)

    Chikawa, J.

    1990-01-01

    In the present paper, features of the Photon Factory, a facility for synchrotron research installed at the National Laboratory for High Energy Physics in Japan, are outlined, and then the impact of the advent of synchrotron radiation is discussed in relation to its outcome during the past seven years. Prospects for future development of synchrotron radiation are also presented. The facility consists of an injector linac to accelerate electrons up to 2.5 GeV and a ring to store the accelerated electrons in a closed orbit. In the Photon Factory, a 400m-long linac has been constructed for use as injector for both the Photon Factory and the TRISTAN electron-positron collider. The storage ring is operated at the same electron energy of 2.5 GeV. The present report also describes some applications of synchrotron radiation, focusing on spectroscopy (X-ray fluorescence technique and time-resolved X-ray absorption spectroscopy), diffraction and scattering (surface structure studies and protein crystallography), and photo-chemical processing. (N.K.)

  10. The development of advanced robotics technology in high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs.

  11. The development of advanced robotics technology in high radiation environment

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Cho, Jaiwan; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Lee, Jong Min; Park, Jin Suk; Kim, Seung Ho; Kim, Byung Soo; Moon, Byung Soo.

    1997-07-01

    In the tele-operation technology using tele-presence in high radiation environment, stereo vision target tracking by centroid method, vergence control of stereo camera by moving vector method, stereo observing system by correlation method, horizontal moving axis stereo camera, and 3 dimensional information acquisition by stereo image is developed. Also, gesture image acquisition by computer vision and construction of virtual environment for remote work in nuclear power plant. In the development of intelligent control and monitoring technology for tele-robot in hazardous environment, the characteristics and principle of robot operation. And, robot end-effector tracking algorithm by centroid method and neural network method are developed for the observation and survey in hazardous environment. 3-dimensional information acquisition algorithm by structured light is developed. In the development of radiation hardened sensor technology, radiation-hardened camera module is designed and tested. And radiation characteristics of electric components is robot system is evaluated. Also 2-dimensional radiation monitoring system is developed. These advanced critical robot technology and telepresence techniques developed in this project can be applied to nozzle-dam installation /removal robot system, can be used to realize unmanned remotelization of nozzle-dam installation / removal task in steam generator of nuclear power plant, which can be contributed for people involved in extremely hazardous high radioactivity area to eliminate their exposure to radiation, enhance their task safety, and raise their working efficiency. (author). 75 refs., 21 tabs., 15 figs

  12. Transfer of radiation technology to developing countries

    Science.gov (United States)

    Markovic, Vitomir; Ridwan, Mohammad

    1993-10-01

    Transfer of technology is a complex process with many facets, options and constraints. While the concept is an important step in bringing industrialization process to agricultural based countries, it is clear, however, that a country will only benefit from a new technology if it addresses a real need, and if it can be absorbed and adapted to suit the existing cultural and technological base. International Atomic Energy Agency, as UN body, has a mandate to promote nuclear applicationsand assist Member States in transfer of technology for peaceful applications. This mandate has been pursued by many different mechanisms developed in the past years: technical assistance, coordinated research programmes, scientific and technical meetings, publications, etc. In all these activities the Agency is the organizer and initiator, but main contributions come from expert services from developed countries and, increasingly, from developing countries themselves. The technical cooperation among developing coutries more and more becomes part of different programmes. In particular, regional cooperation has been demonstrated as an effective instrument for transfer of technology from developed and among developing countries. Some examples of actual programmes are given.

  13. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1984-01-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technology or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented. (author)

  14. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre-commissioning benchmarking. Gamma

  15. Industrial Applications of radioisotopes and radiation technology and Agency's role

    International Nuclear Information System (INIS)

    Ramamoorthy, N.; Haji-Saeid, M.

    2004-01-01

    Full text: Applications of radioisotopes and radiation technology are contributing significantly in many areas of science and technology, industry and environment, towards sustainable development, improving the quality of life and cleaner and safer national industries. There are three major classes impacting industrial scale operations, namely, (a) radiation processing/treatment, (b) radiotracer and sealed source techniques to monitor industrial processes/columns/vessels and (c) industrial gamma radiography and tomography. Radiation processing applying gamma sources and electron accelerators for material treatment/modification is an established technology. There are over 160 gamma industrial irradiators and 1300 industrial electron accelerators in operation worldwide. Development of new materials, especially for health care and environment protection, and advanced products (for electronics, solar energy systems, biotechnology etc) are the main objectives of R and D activity in radiation processing technology. The International Atomic Energy Agency (IAEA, Agency) is involved in supporting both the development and transfer of radiation technology. Thanks to Agency's efforts, advanced radiation processing centres have been established in many Member States (MS), e.g. Malaysia, Egypt, Iran, Poland, Brazil, Hungary. Hydrogel dressing for wounds, radiation vulcanised latex, degraded natural polymer are examples of useful product outcomes. Demonstration of effective treatment of flue gas in pilot plant as well as industrial scale and industrial wastewater in pilot plant scale has shown promise for tackling industrial emissions/effluents using electron beam machines. Industrial radiotracer and gamma sealed source techniques are largely used for analyzing industrial process systems. Initially used as trouble-shooting measures, they play a vital role in process parameter optimization, improved productivity, on-line monitoring and could lead to even pre

  16. Web Technologies in Radiation Protection Training

    International Nuclear Information System (INIS)

    Marco Arboli, M.; Hernando Velasco, E.; Rodriguez Suarez, M; Gomez Ros, J. M.; Rodriguez, M.; Villaroel, R.

    2004-01-01

    This paper presents the major advances already done in the educational web site maintained on the CIEMAT server and accessible through the CSN web. This training project attempts to propose the use of a web site as the standardisation of radiation protection training programmes. The main objective of this project is to provide training material for course organisers, trainers and professionals, and to promote the exchange of expertise between workers involved in all activities using radiation sources. The web site is being developed to provide educational material based on a modular design and in Spanish. We present the initial results of this useful tool for practitioners. The user can choose to obtain the information included in the web site by downloading the complete course or by obtaining the individual modules stepwise. Task in each of the training modules has been designed to develop specific competence taking into account different target groups. Complete materials for trainers and trainees will be available in the web site, to ease courses performance. The project also aims to obtain necessary standardisation of the Rp knowledge provided to workers. (Author) 12 refs

  17. Some novel concepts in radiation processing technology applications

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2014-01-01

    Search for better materials and processes has been a part of the evolution of mankind and it still continues to be so as it is being realized that earth's resources are not everlasting and effect of rapid growth on environment may adversely affect the future development. Sustainable development is the only choice for today for long term survival. Better quality and high functional materials, made by superior technologies are being demanded by the society. Radiation processing technology has significantly contributed to meet the expectation of the people in providing superior products and processes while preserving the environment. Processes are being developed where resources are fully utilized with maximum advantages and little disturbance to the environment. More than 1500 electron beam accelerators and about 500 Gamma Irradiators are presently in use and many are being deployed for radiation processing of medical supplies, pharmaceuticals and herbal materials, treat effluents and preserve food and agricultural products and several industrial products. DAE has an ambitious plan to deploy radiation technology for societal benefits in India. In the presentations some interesting applications of Radiation Processing Technology will be discussed which includes (1) Radiation Processing of Cashew Apple fruit for bio-ethanol production (2) High Energy Battery separators (3) Plant Growth Promoters and (4) Tunable biodegradability. The discussion would reveal how a waste product like cashew apple can be converted to useful materials and advanced materials like HEB separators and Tunable Biodegradable films can be made using radiation technology. Use of radiation de-polymerized polysaccharides in some experiments have shown unexpected increase in agriculture output giving new concepts to increase the productivity. (author)

  18. Radiation Fusion Technology for Sewage Sterilization

    International Nuclear Information System (INIS)

    Lee, M. J.; Kim, T. H.; Ryu, S. H.; Jung, I. H.; Lee, O. M.; Kim, T. H.

    2011-01-01

    Environmental regulation for effluent of sewage and wastewater treatment plant is going to be reinforced in terms of ecology toxicity and number of E.coli from 2011. Besides, it has been known that UV technology is not enough to be a sterilization tool due to regrowth of E.coli even after treatment with UV. Therefore it needs a novel technology for both restriction of E.coli regrowth and treatment of toxic materials in order to meet the environmental regulation being enforced. Electron beam has unique capabilities on destruction of chemicals and sterilization of microbial. In this study, field study on destruction of antibiotics and endocrine disruptors, reduction ecological toxicity and E.Coli regrowth was carried out using by mobile electron beam accelerator. Experimental results showed that irradiation on effluent could effectively reduce not only ecology toxicity but regrowth of E.coli by destruction of chemicals and complete sterilization

  19. The status and prospects of radiation application technology in Korea

    International Nuclear Information System (INIS)

    Sung-Kee, Jo

    2010-01-01

    Full text : This article describes the Nuclear age in Korea which began in 1959 when Korea Atomic Energy Research Institute (KAERI) was first established. Since then, Korea became one of the leading countries in the world nuclear technology and industry. In Korea, 20 nuclear power plants are currently in operation, which produced 34.1% of total electricity in 2009. Furthermore, 8 nuclear power plants are under construction. Eventually, Korea succeeded in exporting nuclear power plant to United Arab Emirates and research reactor to Jordan in 2009. The nuclear application can be divided into two fields. The first one is nuclear power production, and the other is radiation application. Due to the governmental promotion policy, the research activity on radiation and RI application is greatly rising in Korea. Korea Atomic Energy Research Institute (KAERI) and Korea Institute of Radiological and Medical Sciences (KIRAMS) are two leading research institutes in this field. KAERI is conducting RI production and neutron research by using research reactor, and radiation application research such as radiation processing, biotechnological and agricultural application, and cyclotron application. KIRAMS is dedicated to the research on the medical application of radiation. Advanced Radiation Technology Institute (ARTI), constructed in 2006 as a sub organization of KAERI, is a major research institute for radiation application to material engineering, agriculture, biotechnology, environmental technology, and cyclotron beam application. ARTI is equipped with various radiation facilities such as Co-60 irradiation facility (490 kCi and 3 kCi), gamma phytotron, gamma cell, electron beam irradiator, ion implanter, and 30 MeV cyclotron. In material engineering field, new industrial and biomedical materials (carbon fiber filament, composite electrolyte, fuel cell membrane, hydrogels) are developed by radiation processing of polymer materials. In agricultural area, new plant varieties

  20. Single-flux-quantum circuit technology for superconducting radiation detectors

    International Nuclear Information System (INIS)

    Fujimaki, Akira; Onogi, Masashi; Matsumoto, Tomohiro; Tanaka, Masamitsu; Sekiya, Akito; Hayakawa, Hisao; Yorozu, Shinichi; Terai, Hirotaka; Yoshikawa, Nobuyuki

    2003-01-01

    We discuss the application of the single-flux-quantum (SFQ) logic circuits to multi superconducting radiation detectors system. The SFQ-based analog-to-digital converters (ADCs) have the advantage in current sensitivity, which can reach less than 10 nA in a well-tuned ADC. We have also developed the design technology of the SFQ circuits. We demonstrate high-speed operation of large-scale integrated circuits such as a 2x2 cross/bar switch, arithmetic logic unit, indicating that our present SFQ technology is applicable to the multi radiation detectors system. (author)

  1. Development of public health assurance technology by radiation

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Lim, Sang Yong; Yang, Jae Seung

    2007-07-01

    This project was performed to develop the radiation sterilization process of public health products and RT/BT fusion technology and to secure a detection and quarantine system of irradiated food. To establish the radiation sterilization of public health goods, current status of radiation sterilization of disposable medical equipment was investigated and the manufacturing process of disposable media for microbial cultivation were developed using a gamma sterilization. In addition, microbial contamination of disposable kitchen utensils was surveyed and pathogen-free organic compost was developed by radiation sterilization. The radiation responses of bacteria including Salmonella, Vibrio, E. coli, and D. radiodurans were analyzed by DNA chip and 2-D electrophoresis. To validate the safety of surviving bacteria after irradiation, the expressions of virulence genes of pathogenic bacteria were monitored using real-time PCR, and the growth of mycotoxin-producing funguses was studied after irradiation. And also, quantitative detection methods of irradiated and inactivated Salmonella using a real-time PCR and a immuno assay. To establish the quarantine and quality assurance of irradiated food and public health products, radiation technology was applied to the fermented foods, minimally processed food and dried vegetables. Radiation effects on insects was examined and the corresponding data base was constructed. We also collaborated on the preliminary test of international trade of sea food with USA or India. To establish the official detection method of irradiated food, physical, chemical and biological detection methods for irradiated food were verified. Finally, multiple range test of irradiated food was performed

  2. Development of public health assurance technology by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Lim, Sang Yong; Yang, Jae Seung (and others)

    2007-07-15

    This project was performed to develop the radiation sterilization process of public health products and RT/BT fusion technology and to secure a detection and quarantine system of irradiated food. To establish the radiation sterilization of public health goods, current status of radiation sterilization of disposable medical equipment was investigated and the manufacturing process of disposable media for microbial cultivation were developed using a gamma sterilization. In addition, microbial contamination of disposable kitchen utensils was surveyed and pathogen-free organic compost was developed by radiation sterilization. The radiation responses of bacteria including Salmonella, Vibrio, E. coli, and D. radiodurans were analyzed by DNA chip and 2-D electrophoresis. To validate the safety of surviving bacteria after irradiation, the expressions of virulence genes of pathogenic bacteria were monitored using real-time PCR, and the growth of mycotoxin-producing funguses was studied after irradiation. And also, quantitative detection methods of irradiated and inactivated Salmonella using a real-time PCR and a immuno assay. To establish the quarantine and quality assurance of irradiated food and public health products, radiation technology was applied to the fermented foods, minimally processed food and dried vegetables. Radiation effects on insects was examined and the corresponding data base was constructed. We also collaborated on the preliminary test of international trade of sea food with USA or India. To establish the official detection method of irradiated food, physical, chemical and biological detection methods for irradiated food were verified. Finally, multiple range test of irradiated food was performed.

  3. Development of modulators against degenerative aging using radiation fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Jo, S. K.; Park, H. R.; Jang, B. S.; Roh, C. H.; Eom, H. S.; Choi, N. H.; Seol, M. A.; Kim, S. H.; Choi, H. M.; Park, M. K.; Shin, H. J.; Ryu, D. K.; Oh, W. J.; Kim, S. H; Yee, S. T.

    2012-04-15

    1. Objectives Establishment of modelling of degenerative aging using radiation technology Development of aging modulators using radiation degenerative aging model 2. Project results Establishment of the modeling of degenerative aging using radiation technology - The systematic study on the comparison of radiation-induced degeneration and natural aging process in animals and cells confirmed the biological similarity between these two degeneration models - The effective biomarkers were selected for the modelling of degenerative aging using radiation (10 biomarkers for immune/hematopoiesis, 1 for oxidative stress, 6 for molecular signaling, 3 for lipid metabolism) - The optimal irradiation condition was established for the modelling of degerative aging (total 5Gy with fractionation by over 10 times, lapse of over 4 months) - The molecular mechanisms of radiation-induced degeneration were studied including chronic inflammation (lung), inflammation-related lipid metabolism disturbance, mitochondria biogenesis and dynamics - The radiation degenerative model was evaluated with previously known natural substances (resveratrol, EGCG, etc) Development of aging modulators using radiation degenerative aging model - After the screening of about 800 natural herb extracts, 5 effective substances were selected for aging modulation. - 3 candidate compositions were selected from 20 compositions made from effective substances by in vitro evaluation (WAH2, WAH6, WAH7) - 1 composition (WAH6) was selected as the best aging modulator by in vivo evaluation in radiation-induced aging models and degenerative disease models. 3. Expected benefits and plan of application The modelling of degenerative aging using radiation can facilitate the aging research by providing the useful cell/animal models for aging research A large economic benefits are expected by the commercialization of developed aging modulators (over 10 billion KW in 2015.

  4. Development of modulators against degenerative aging using radiation fusion technology

    International Nuclear Information System (INIS)

    Jo, S. K.; Park, H. R.; Jang, B. S.; Roh, C. H.; Eom, H. S.; Choi, N. H.; Seol, M. A.; Kim, S. H.; Choi, H. M.; Park, M. K.; Shin, H. J.; Ryu, D. K.; Oh, W. J.; Kim, S. H; Yee, S. T.

    2012-04-01

    1. Objectives Establishment of modelling of degenerative aging using radiation technology Development of aging modulators using radiation degenerative aging model 2. Project results Establishment of the modeling of degenerative aging using radiation technology - The systematic study on the comparison of radiation-induced degeneration and natural aging process in animals and cells confirmed the biological similarity between these two degeneration models - The effective biomarkers were selected for the modelling of degenerative aging using radiation (10 biomarkers for immune/hematopoiesis, 1 for oxidative stress, 6 for molecular signaling, 3 for lipid metabolism) - The optimal irradiation condition was established for the modelling of degerative aging (total 5Gy with fractionation by over 10 times, lapse of over 4 months) - The molecular mechanisms of radiation-induced degeneration were studied including chronic inflammation (lung), inflammation-related lipid metabolism disturbance, mitochondria biogenesis and dynamics - The radiation degenerative model was evaluated with previously known natural substances (resveratrol, EGCG, etc) Development of aging modulators using radiation degenerative aging model - After the screening of about 800 natural herb extracts, 5 effective substances were selected for aging modulation. - 3 candidate compositions were selected from 20 compositions made from effective substances by in vitro evaluation (WAH2, WAH6, WAH7) - 1 composition (WAH6) was selected as the best aging modulator by in vivo evaluation in radiation-induced aging models and degenerative disease models. 3. Expected benefits and plan of application The modelling of degenerative aging using radiation can facilitate the aging research by providing the useful cell/animal models for aging research A large economic benefits are expected by the commercialization of developed aging modulators (over 10 billion KW in 2015

  5. Radiation Tolerant Design with 0.18-micron CMOS Technology

    CERN Document Server

    Chen, Li; Durdle , Nelson G.

    This thesis discusse s th e issues r elated to the us e of enclosed-gate layou t trans isto rs and guard rings in a 0.18 μ m CMOS technology in order to im prove the radiation tolerance of ASICs. The thin gate oxides of subm icron technologies ar e inherently m ore radiation tole rant tha n the thick er oxides present in less advanced technologies. Using a commercial deep subm icron technology to bu ild up radiation-ha rdened circuits introduces several advantages com pared to a dedicated radiation-ha rd technology, such as speed, power, area, stability, and expense. Som e novel aspects related to the use of encl osed-gate layout transist ors are presented in this th esis. A m odel to calculate the aspect ratio is introduced and verified. Some im portant electrica l par ameters of the tran sistors such as threshold voltage, leakage current, subthreshold slope, and transconducta nce are studied before and afte...

  6. Radiation effects in semiconductors: technologies for hardened integrated circuits

    International Nuclear Information System (INIS)

    Charlot, J.M.

    1983-09-01

    Various technologies are used to manufacture integrated circuits for electronic systems. But for specific applications, including those with radiation environment, it is necessary to choose an appropriate technologie or to improve a specific one in order to reach a definite hardening level. The aim of this paper is to present the main effects induced by radiation (neutrons and gamma rays) into the basic semiconductor devices, to explain some physical degradation mechanisms and to propose solutions for hardened integrated circuit fabrication. The analysis involves essentially the monolithic structure of the integrated circuits and the isolation technology of active elements. In conclusion, the advantages of EPIC and SOS technologies are described and the potentialities of new technologies (GaAs and SOI) are presented

  7. Radiation technology for enhancing agriculture productivity

    International Nuclear Information System (INIS)

    D'Souza, S.F.

    2016-01-01

    Radiations and radioisotopes are used in agricultural research to develop improved crop varieties, to manage insect pests, monitor fate of pesticides, to study fertilizer and plant micronutrient uptake and to preserve agricultural produce. This is one of the important fields of peaceful applications of atomic energy for societal benefit. Department of Atomic Energy (DAE) has contributed significantly in this area especially in the development of new mutant crop varieties which are benefitting the farmers in enhancing their productivity. With an effective blend of induced mutagenesis and recombination breeding, 42 new crop varieties developed at Bhabha Atomic Research Centre (BARC) have been released and Gazette notified by the Ministry of Agriculture, Government of India for commercial cultivation. These include 21 in oilseeds (15-groundnut, 3 mustard , 2 soybean, 1 sunflower), 19 in pulses (8-mungbean, 5-urdbean, 5-pigeonpea, 1-cowpea) and one each in rice and jute. Some of the desirable traits which have been bred through induced mutations in these crops include higher yields, improved quality traits, early maturity and resistance to biotic and abiotic stress. Several of these varieties have high patronage from the farming community and are grown extensively across the country. Groundnut varieties have given record yields in farmer's fields. Pulses such as mung, urid and tur are popular among farmers in view of their disease resistance and suitability to rice fallow situations. Many of the breeding programmes in national/state systems have been utilizing BARC varieties as parental materials/donors and have developed several other improved varieties using them. (author)

  8. Dictionary of terms and definitions used in radiation protection technology

    International Nuclear Information System (INIS)

    1975-01-01

    The dictionary contains terms and definitions used in radiation protection technology. This document is developed by the Section of CMEA Secretariat on peaceful atomic energy application on the basis of materials provided by member states. The dictionary contains versions of terms and definitions in the languages of member states. Total number of terms is 94. (I.T.)

  9. Application of radiation technology to sewage sludge processing: A review

    International Nuclear Information System (INIS)

    Wang Jianlong; Wang Jiazhuo

    2007-01-01

    Sewage sludge is unwanted residual solid wastes generated in wastewater treatment and its management is one of the most critical environmental issues of today. The treatment and disposal of sludge contribute a considerable proportion of the cost for running a wastewater treatment plant. The increasing amount of swage sludge and more and more legislative regulation of its disposal have stimulated the need for developing new technologies to process sewage sludge efficiently and economically. One ideal consideration is to recycle it after proper treatment. Radiation technology is regarded to be a promising alternative for its high efficiency in pathogen inactivation, organic pollutants oxidation, odor nuisance elimination and some other characteristics enhancement, which will facilitate the down-stream process of sludge treatment and disposal. Here we present a brief review of application of radiation technology on sewage sludge processing. Some basic information of two currently available irradiation systems and fundamental radiation chemistry are introduced firstly; then the world-wide application of this promising technology is reviewed; various effects of radiation on sludge is discussed in detail; and some concluding remarks are given and some future directions are also proposed

  10. The Use of Telemedicine and Mobile Technology to Promote Population Health and Population Management for Psychiatric Disorders.

    Science.gov (United States)

    Turvey, Carolyn; Fortney, John

    2017-10-16

    This article discusses recent applications in telemedicine to promote the goals of population health and population management for people suffering psychiatric disorders. The use of telemedicine to promote collaborative care, self-monitoring and chronic disease management, and population screening has demonstrated broad applicability and effectiveness. Collaborative care using videoconferencing to facilitate mental health specialty consults has demonstrated effectiveness in the treatment of depression, PTSD, and also ADHD in pediatric populations. Mobile health is currently being harnessed to monitor patient symptom trajectories with the goal of using machine learning algorithms to predict illness relapse. Patient portals serve as a bridge between patients and providers. They provide an electronically secure shared space for providers and patients to collaborate and optimize care. To date, research has supported the effectiveness of telemedicine in promoting population health. Future endeavors should focus on developing the most effective clinical protocols for using these technologies to ensure long-term use and maximum effectiveness in reducing population burden of mental health.

  11. Technology development for evaluation of operational quantities in radiation protection

    International Nuclear Information System (INIS)

    Jang, Si Young; Lee, T. Y.; Kim, B. H.

    2003-03-01

    Korean government recently published a national regulation on the internal exposure monitoring and dose evaluation (internal dosimetry) based on the most recent ICRP recommendation 60 and subsequent publications, which supercede the former ICRP recommendation 26 and publication 30, on which the internal dosimetry practice in Korea had been based so far. Consequently, this project, according to the demand from both government and nuclear industry, had been launched to develop a user-friendly computer code on internal dosimetry adopting the most up to date ICRP biokinetic and dosimetric model to resolve the difficulties and problems faced to nuclear industry and to develop related technology. The reliability of this code, named as BiDAS, as a result of several benchmark calculations for self assurance appeared to be excellent comparing with the foreign computer code. This computer code is expected to be successfully utilized in nuclear industry and related fields in complying with the national regulation on internal dosimetry program started from late 2003. Reference low level gamma(γ) radiation field for calibration of environmental radiation(γ) monitor and reference neutron field for calibration of n monitoring equipment have been established and characterized. International cross comparison of these reference radiation fields have been performed and radiation response of various radiation monitoring instrument has been tested by using these reference radiation fields. A technology which can directly measure the radiation quality factor and tissue absorbed dose has been established to evaluate the neutron dose in terms of operational quantity in the unknown mixed n-γ radiation field. Spherical and cylindrical TEPC systems have been designed and manufactured and a portable TEPC system to measure the neutron quality and dose in the real work field has been developed and tested in accelerator laboratory

  12. Current status of the radiation technology and quality control for radiation processing in Latin America

    International Nuclear Information System (INIS)

    Miranda, Enrique Francisco Prietro

    2013-01-01

    The use of the radiation technology has gained acceptance in various regions of the world, where studies estimated that the installed capacity increases at a rate of 6 % per year and Latin America is part of this increase, due the advantages of this process when it is employed for the food preservation, sterilization of medical pharmaceutical material and to control the insect pests. This paper shows the art state of the application of Radiation Technology in Latin America, as well as the technological characteristics of the most gamma irradiation facilities and minor number the electron beam accelerator facilities, the types of irradiated products, state of the Quality Management System and the Dosimetric Systems used in the Radiation Processing Control in the Region. (author)

  13. Technological progress in radiation therapy for brain tumors

    LENUS (Irish Health Repository)

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  14. Role of BRIT in promoting radiation processing technology in India

    International Nuclear Information System (INIS)

    Bandi, L.N.

    2014-01-01

    Some of the major applications of radiation processing include: the sterilization of products such as medical devices to kill bacteria or in the case of food, hygienize the product; the treatment of export bulk commodities such as tropical fruits to extend shelf life by slowing the ripening process and inhibiting sprouting and to kill quarantine pests such as fruit flies. Radiation processing is a value addition process. Taking note of these benefits, Department of Atomic Energy, Government of India constituted Board of Radiation and Isotope Technology (BRIT) in March 1989 by carving it out from Bhabha Atomic Research Centre, Mumbai. The mandate given to BRIT was to extend commercial applications of radioisotopes and radiation in the areas of Health, Agriculture, Industry and Research without losing sight of societal obligations. So far Department of Atomic Energy has set up three demonstration plants, namely, Isomed, RPP, Vashi and Krushak for high, medium and low dose applications of radiation respectively. The safe and business like operation of these facilities amply demonstrated the embedded safety and commercial viability of this technology

  15. Radiation processing technology for industrial waste water treatment

    International Nuclear Information System (INIS)

    2011-01-01

    Radiation sterilization technology, cross-linked polymers and curing, food and environmental applications of the radiation is widely used for many years. At the same time, drinking water and wastewater treatment are the part of the radiation technology applications. For this purpose, drinking water and wastewater treatment plants in various countries has been established. In this project, gamma / electron beam radiation treatment is intended to be used for the treatment of alkaloid, textiles and polychlorinated biphenyls (PCBs) wastewater. In this regard, the chemical characterization of wastewater, the interaction with radiation, biological treatment and determination of toxicological properties are the laboratory studies milestones. After laboratory studies, the establishment of a pilot scale treatment plant has been planned. Within the framework of the project a series of dye used in textile industry were examined. Besides the irradiation, the changes in treatment efficiency were investigated by using of oxygen and hydrogen peroxide in conjunction with the irradiation. Same working methods were implemented in the wastewater treatment of Bolvadin Opium Alkaloid Factory as well. In addition to chemical analysis in this study, aerobic and anaerobic biological treatment process also have been applied. Standard reference materials has been used for the marine sediment study contaminated with polychlorinated biphenyls.

  16. Use of radiation processing technology gradually expands in industry

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    The use of radioisotopes and radiation is expanding in the fields of industries and medicine with a high potentiality of the application to environmental protection. The technology transfer on the use of isotopes and radiation is progressing in the framework of international cooperation. But the industry has maintained wait and see attitude on the commercialization of food irradiation. Such present features were the highlight in the 19th Japan Conference on Radiation and Radioisotopes held on November 14-16. 72 papers from 19 countries were presented and discussed in 13 sessions. The progress of accelerator technology has contributed to the expansion of radiation processing market. The importance of the application of isotopes and radiation to environmental protection has been gradually acknowledged, and the electron beam treatment of flue gas for acid rain abatement and the elimination of chlorinated ethylene from drinking water were discussed. Drastic change has not been seen in the climate of food irradiation, however there are several positive indicators which support the prediction of slow but steady progress in the commercialization of the process and the trade of irradiated foods. (K.I.)

  17. Radiation processing applications in the Czechoslovak water treatment technologies

    International Nuclear Information System (INIS)

    Vacek, K.; Pastuszek, F.; Sedlacek, M.

    1986-01-01

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone, or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation. (author)

  18. Radiation processing applications in the Czechoslovak water treatment technologies

    Science.gov (United States)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  19. Radiation therapy technology (radiation therapists) manpower needs 1992 comparison of radiation therapeutic technology education in Europe and the United States 1994

    International Nuclear Information System (INIS)

    Rominger, C. Jules; Owen, Jean; Thompson, Phyllis; Giordano, Patricia; Buck, Beverly; Hanks, Gerald

    1995-01-01

    The shortage of radiation therapists (radiation therapy technologists) has existed in the United States for many years. It now appears the supply may be matching the demand. This report analyzes the data from the most recent manpower study from ACR/ASTRO carried out in 1990 using the Patterns of Care Master Facility list. The report is a comparison of these figures with similar figures published in IJROBP in December, 1983. Between 1980 and 1990 the number of radiation therapists rose from 3096 to 5353, an increase of 72%. During this period of time, the number of radiation therapy machines increased 47%, and the number of patients being treated increased 30%. The total number of educational programs in radiation therapy technology increased from 101 in 1989 to 123 in 1993. The total enrollment in these programs grew from 806 in 1989 to 1591 in 1993. The number of first time examinees in radiation therapy technology by ARRT in 1983 was 387 and increased to 943 in 1994. It is apparent that as a result of the increase in the number of radiation therapy educational programs and the more effective recruitment into these program, the supply of graduating radiation therapists has reached the demand. The future needs for entry level radiation therapists should be based on current data as well as new Blue Book standards that are being developed

  20. Shelf stable intermediate moisture fruit cubes using radiation technology

    International Nuclear Information System (INIS)

    Mishra, Bibhuti B.; Saxena, Sudhanshu; Gautam, Satyendra; Chander, Ramesh; Sharma, Arun

    2009-01-01

    A process has been developed to prepare shelf stable ready-to-eat (RTE) intermediate moisture pineapple slices and papaya cubes using radiation technology. The combination of hurdles including osmotic dehydration, blanching, infrared drying, and gamma radiation dose of 1 kGy successfully reduced the microbial load to below detectable limit. The shelf life of the intermediate moisture pineapple slices and papaya cubes was found to be 40 days at ambient temperature (28 ± 2 deg C). The control samples spoiled within 6 days. The RTE intermediate moisture fruit products were found to have good texture, colour and sensory acceptability during this 40 days storage. (author)

  1. Some technologically enhanced exposures to natural radiation environment in India

    International Nuclear Information System (INIS)

    Lalit, B.Y.; Shukla, V.K.; Ramachandran, T.V.; Mishra, U.C.

    1982-01-01

    A summary of results of gamma spectrometric measurements of natural radioactivity in a number of coal and flyash samples from thermal power plants and phosphatic fertilizer samples collected from various fertilizer plants in India are presented. These constitute the sources of technologically enhanced exposures to natural radiation. A brief description of sampling and measurement procedures is given. The radiation doses to the population from coal burning for electricity generation have been calculated using the method outlined in UNSCEAR report of 1979 with corrections for local population density. The external radiation dose to the farmers has been calculated on the basis of usage of phosphatic fertilizers for rice, wheat, millets and sugarcane crops for the normal agricultural practices

  2. Conference Proceedings of RADTECH ASIA '99. Radiation Curing: the technology for the next millenium

    International Nuclear Information System (INIS)

    1999-01-01

    Radiation curing (i.e. ultraviolet radiation, electron beams, etc) technology were discussed. All aspects of this technology included equipment , applications, chemistry, performance characterization and measurement, market and economic, new breakthrough were discussed and presented in details

  3. Conference Proceedings of RADTECH ASIA '99. Radiation Curing: the technology for the next millenium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Radiation curing (i.e. ultraviolet radiation, electron beams, etc) technology were discussed. All aspects of this technology included equipment , applications, chemistry, performance characterization and measurement, market and economic, new breakthrough were discussed and presented in details.

  4. The strategic value of industrial radiation manufacturing and processing technologies

    International Nuclear Information System (INIS)

    Chappas, W.J.; Silverman, J.

    1993-01-01

    Planned and projected budget cuts over the next many years will reduce the number of Department of Defense (DoD) personnel and the diversity and quantity of their armaments and systems. Consequently, there is a requirement for the deployment of more effective defense equipment and their more efficient operation. Concomitant with this challenge is an opportunity for innovative technologies that can, at a lower cost, produce new, stronger, more durable materials-and do so with less environmental impact. Radiation processing offers this potential for (a) creating significant cost savings and performance advantages in a broad range of defense materials; (b) destroying and detoxifying dangerous chemicals, ordnance, and rocket propellants; (c) cleaning noxious gaseous effluents; and (d) purifying contaminated water. Radiation technology has the potential to immediately affect defense materials and, in the short and long terms, US industrial international competitiveness

  5. Development of Drugs and Technology for Radiation Theragnosis

    Directory of Open Access Journals (Sweden)

    Hwan-Jeong Jeong

    2016-06-01

    Full Text Available Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

  6. Radiation-beam technologies of structural materials treatment

    International Nuclear Information System (INIS)

    Kalin, B.A.

    2001-01-01

    Considered in the paper are the most advanced and prospective radiation-beam technologies (RBT) for treatment of structural materials, as applied to modifying the structural-phase state in the surface layers of half-finished products and articles with the purpose to improve their service properties. Ion-beam, plasma, and ion-plasma, as well as the technologies based on the use of concentrated fluxes of energy, generated by laser radiation, high-power pulsed electron and ion beams, and high-temperature pulsed plasma fluxes are analysed. As applied to improvement of the corrosion and erosion resistance, breaking strength, friction and wear resistance, and crack resistance, the directions of the choice and the use of RBT have been considered for changes of the surface layer state by applying covers and films, and by a change of the surface topography (relief), surface structure and defects, and the element composition and phase state of materials [ru

  7. Development of drugs and technology for radiation theragnosis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwan Jeong [Dept. of Nuclear Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Lee, Byung Chul [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Sungnam (Korea, Republic of); Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of); Kang, Keon Wook [Dept. of Nuclear Medicine and Cancer Research Institute, Seoul National University, Seoul (Korea, Republic of)

    2016-06-15

    Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

  8. Perspectives on micropole undulators in synchrotron radiation technology

    International Nuclear Information System (INIS)

    Tatchyn, R.; Csonka, P.; Toor, A.

    1989-01-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized

  9. Perspectives on micropole undulators in synchrotron radiation technology

    Science.gov (United States)

    Tatchyn, Roman; Csonka, Paul; Toor, Arthur

    1989-07-01

    Micropole undulators promise to advance synchrotron radiation (SR) technology in two distinct ways. The first is in the development of economical, low-energy storage rings, or linacs, as soft x-ray sources, and the second is in the opening up of gamma-ray spectral ranges on high-energy storage rings. In this paper the promise and current status of micropole undulator (MPU) technology are discussed, and a review of some practical obstacles to the implementation of MPU's on present-day storage rings is given. Some successful results of recent performance measurements of micropole undulators on the Lawrence Livermore National Laboratory linac are briefly summarized.

  10. Review of advanced catheter technologies in radiation oncology brachytherapy procedures

    OpenAIRE

    Zhou J; Zamdborg L; Sebastian E

    2015-01-01

    Jun Zhou,1,2 Leonid Zamdborg,1 Evelyn Sebastian1 1Department of Radiation Oncology, Beaumont Health System, 2Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA Abstract: The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy ...

  11. Methods of computer experiment in gamma-radiation technologies using new radiation sources

    CERN Document Server

    Bratchenko, M I; Rozhkov, V V

    2001-01-01

    Presented id the methodology of computer modeling application for physical substantiation of new irradiation technologies and irradiators design work flow. Modeling tasks for irradiation technologies are structured along with computerized methods of their solution and appropriate types of software. Comparative analysis of available packages for Monte-Carlo modeling of electromagnetic processes in media is done concerning their application to irradiation technologies problems. The results of codes approbation and preliminary data on gamma-radiation absorbed dose distributions for nuclides of conventional sources and prospective Europium-based gamma-sources are presented.

  12. The radiation accident at Institute for Energy Technology Sept. 1982

    International Nuclear Information System (INIS)

    Berteig, L.; Flatby, J.

    1983-01-01

    On September 2, 1982 a radiation accident with overexposure of one person happened at the gamma irradiation plant at Institute for Energy Technology, Kjeller, Norway. This person died from the radiation injury 13 days later. In the report reference is made to the work of different groups and bodies in connection with the accident. An analysis of the causes of the accident is given. For admittance control to the irradiation area there were generally two independent door interlock systems, one irradiation source position related and the other radiation related. The latter was dismantled for repair at the time of the accident. A micro-switch failure left the source in an ushielded position, initiated a green light on the control panel and released the interlock system of the door. According to working instructions a mobile radiation monitor should have been checked for proper function and carried by anyone entering the irradiation room. This seems not to have been carried out correctly. The conditions set forth by the Norwegian Institute of Radiation Hygiene for the restarting of the irradiation plant are presented. (RF)

  13. Technological challenges of third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Cornacchia, M.; Winick, H.

    1990-01-01

    New ''third generation'' synchrotron radiation research facilities are now in construction in France, Italy, Japan, Taiwan and the USA. Designs for such facilities are being developed in several other countries. Third generation facilities are based on storage rings with low electron beam emittance and space for many undulator magnets to produce radiation with extremely high brightness and coherent power. Photon beam from these rings will greatly extend present research capabilities and open up new opportunities in imaging, spectroscopy, structural and dynamic studies and other applications. The technological problems of the third generation of synchrotron radiation facilities are reviewed. These machines are designed to emit radiation of very high intensity, extreme brightness, very short pulses, and partial coherence. These performance goals put severe requirements on the quality of the electron or positron beams. Phenomena affecting the injection process and the beam lifetime are discussed. Gas desorption by synchrotron radiation and collective effects play an important role. Low emittance lattices are more sensitive to quadrupole movements and at the same time, in order not to lose the benefits of high brilliance, require tighter tolerances on the allowed movement of the photon beam source. We discuss some of the ways that should be considered to extend the performance capabilities of the facilities in the future. 14 refs., 1 fig

  14. Development of application technology of radiation-resistant microorganism

    International Nuclear Information System (INIS)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji

    2009-02-01

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products

  15. Development of application technology of radiation-resistant microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Ho; Lim, Sang Yong; Joe, Min Ho; Jung, Jin Woo; Jung, Sun Wook; Song, Du Sup; Choi, Young Ji [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-02-15

    The scope of the project is divided into of three parts; (i) to define the survival strategy of radiation-resistant microbes, especially Deinococcus (ii) acquisition of gene resources encoding the novel protein and related with the production of functional materials (iii) development of control technology against radiation-resistant microbes. To this aim, first, the whole transcriptional response of the D. radiodurans strain haboring pprI mutation, which plays an important role in radiation resistance, was analyzed by cDNA microarray. The anti-oxidant activity of the major carotenoid of D. radiodurans, deinoxanthin, was analyzed and the strain was constructed, in which the gene necessary for bio- synthesis of deinoxanthin is deleted. The response to cadmium of D. radiodurans was also investigated through cDNA microarray analysis. Radiogenic therapy, one of the cancer treatments, is designed to use radiation-inducible gene for the treatment. To develop the gene-transfer vehicle for radiogenic therapy, we have investigated the virulence mechanism of Salmonella, which is tumor-targeting bacteria and studied the synergistic effect of some anti-cancer agents on radiation treatment for cancer. Finally, we confirmed that irradiation could decompose a fungus toxin, patulin, into various harmless by-products.

  16. Radiation processing technology for preparation of fine shaped biomedical materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M.; Yoshida, M.; Asano, M. (Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment); Yamanaka, H. (Gunma Univ., Maebashi (Japan). School of Medicine)

    1992-06-01

    Radiation processing technology for the preparation of fine shaped biomedical materials was studied from the aspect of a development of the technology and its application. Electron beam irradiation technology was applied to the preparation of fine shaped biomedical materials such as thin polymer films in diagnosis, in which enzyme and antibody were used as a bioactive substance. Electron beam cast-polymerization and electron beam repeat surface-polymerization, that are surface irradiation techniques of homogeneous hydrophilic monomer solution containing enzymes made it possible to form the immobilized antibody films. In this technique, the films with various thicknesses (50-500 [mu]m) were obtained by regulating the electron beam energy. The thin polymer films immobilizing anti-[alpha]-fetoprotein were evaluated from the aspect of immunoagents for diagnosis of liver cancer. (Author).

  17. Radiation technology helps China’s industries make water cleaner

    International Nuclear Information System (INIS)

    Jawerth, Nicole

    2015-01-01

    China is pursuing the use of radiation technology as part of its wastewater treatment methods to further efforts to manage industrial waste in an environmentally friendly way. “Treating the water that comes from our industries is very important, so we have been doing this for a long time. Now we want to become better at making our water cleaner,” said Jianlong Wang, Vice-President of the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University in Beijing. “We are receiving a lot of support from the IAEA to use electron beam based technologies to help us get rid of various water pollutants that the other methods cannot do on their own.”

  18. [Technological innovations in radiation oncology require specific quality controls].

    Science.gov (United States)

    Lenaerts, E; Mathot, M

    2014-01-01

    During the last decade, the field of radiotherapy has benefited from major technological innovations and continuously improving treatment efficacy, comfort and safety of patients. This mainly concerns the imaging techniques that allow 4D CT scan recording the respiratory phases, on-board imaging on linear accelerators that ensure perfect positioning of the patient for treatment and irradiation techniques that reduce very significantly the duration of treatment sessions without compromising quality of the treatment plan, including IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc therapy). In this context of rapid technological change, it is the responsibility of medical physicists to regularly and precisely monitor the perfect functioning of new techniques to ensure patient safety. This requires the use of specific quality control equipment best suited to these new techniques. We will briefly describe the measurement system Delta4 used to control individualized treatment plan for each patient treated with VMAT technology.

  19. Gamma radiation influence on technological characteristics of wheat flour

    International Nuclear Information System (INIS)

    Teixeira, Christian A.H.M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L.d.

    2012-01-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it. - Highlights: ► We study the influence of gamma radiation on wheat flour and properties of breads. ► Falling number decreased with radiation remaining almost constant up to one month. ► Ionizing radiation may confer an increase in texture parameters, weight and height on the bread.

  20. Development of radiation fusion technology with food technology by the application of high dose irradiation

    International Nuclear Information System (INIS)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil

    2012-04-01

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  1. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-01

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  2. Development of Radiation Fusion Technology with Food Technology by the Application of High Dose Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Jae Hun; Choi, Jong Il

    2010-04-15

    This study was studied to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering were developed. Irradiation condition to destroy radiation resistant food borne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources were developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not were developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin were developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam were introduced. Results from this research project, the followings are expected. (1) Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. (2) Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of food borne outbreaks. (3) Build of SPS/TBT system against imported products and acceleration of domestic product export

  3. Development of radiation fusion technology with food technology by the application of high dose irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juwoon; Kim, Jaehun; Choi, Jongil; and others

    2012-04-15

    This study was performed to achieve stable food supply and food safety with radiation fusion technology as a preparation for food weaponization. Results at current stage are following: First, for the development of radiation and food engineering fusion technology using high dose irradiation, the effects of high dose irradiation on food components were evaluated. The combination treatment of irradiation with food engineering was developed. Irradiation condition to destroy radiation resistant foodborne bacteria were determined. Second, for the development of E-beam irradiation technology, the effects of radiation sources on food compounds, processing conditions, and food quality of final products were compared. Food processing conditions for agricultural/aquatic products with different radiation sources was developed and the domination of E-beam irradiation foods were determined. The physical marker for E-beam irradiated foods or not was developed. Third, for the fundamental researches to develop purposed foods to extreme environmental, ready-to-eat foods were developed using high dose irradiation. Food processing for export strategy foods such as process ginseng were developed. Food processing with irradiation to destroy mycotoxin and to inhibit production of mycotoxin was developed. Mathematical models to predict necessary irradiation doses and radiation sources were developed and validated. Through the fundamental researches, the legislation for irradiation approval on meat products, sea foods and dried sea foods, and use of E-beam was introduced. Results from this research project, the followings are expected. Improvement of customer acceptance and activation of irradiation technology by the use of various irradiation rays. Increase of indirect food productivity, and decrease of SOC and improvement of public health by prevention of foodborne outbreaks. Build of SPS/TBT system against imported products and acceleration of domestic product export. Systemized

  4. Radiation protection technology. Specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). 2. rev. ed.

    International Nuclear Information System (INIS)

    Rahn, Hans-Joachim

    2012-01-01

    The specific course for authorized radiation protection representatives according the qualification guidelines technology for the radiation protection regulations (StrlSchV) and X-ray regulation (RoeV). Covers the following issues: radiation protection - generally; licenses and notifications; scientific fundamentals; dosimetry, surveillance, control, documentation; technical radiation protection; radiation protection calculations.

  5. Knowledge Management in the Development and Use of Radiation Technologies

    International Nuclear Information System (INIS)

    Egorkin, A.V.; Kartashev, E.R.; Sumina, N.A.; Kheteev, M.V.

    2014-01-01

    Preservation and Transfer of Knowledge: Preservation of critical knowledge in institute takes place in three ways: - First, by digitization of scientific, technical, patent and design documentation. This work has already been done by more than 3,000 documents: technical reports, patents, articles and monographs of the Institute employees, periodic collections - works of the Institute ('''Radiation Technology'' and ''Problems of Atomic Science and Technology'', a series of ''Radiation Technology'' and ''Technical Physics and Automation''), scientific-technical and design documentation for virtually the entire period of the Institute activity. - Secondly, the knowledge and experience of individual specialists transferred to successors (in addition to the reports and publications in scientific and technical literature ), the most effectively – through working together on themes on research and development of methods and technical devices, by preparation of theses and dissertations. In such a way, Knowledge is transferred, for example, in the development in the Institute of gamma-therapeutic complex. - Third, one of the modern methods of preserving knowledge is to create a multimedia product, when expert, the carrier of knowledge, records the information on progress, successes and challenges in the work, methods of its overcoming, information on scientific and methodological and technical achievements throughout his creative life, the necessary data on scientific and technical reference books, which can later help followers to create new methods and devices. Such multimedia product was prepared in the institute on the base of the experience of the development of gamma irradiation installations, in particular for sterilization of medical products

  6. IAEA education and training programs in radiation technology

    International Nuclear Information System (INIS)

    Ma Zueteh

    1995-01-01

    In order to assist the promotion of the industrial application of isotopes and radiation in Southeast Asia and Pacific region, the regional IAEA/UNDP/RCA project was formed in 1982. Phase 1 was 1982-1986, Phase 2 was 1987-1991, and now it entered Phase 3, 1993-1997. 15 countries joined the project, and now the donor countries expanded to five or more including Japan, Australia, China, ROK and India. Radiation technology is one of the subprojects of the regional project, aiming at transferring this technology from developed countries to developing countries and promoting to industrialize this technology. For the purpose, technical personnel and their skill are essential, and IAEA supports and supplements the educational and training program in developing countries. Executive management seminar (EMS), national workshop (NW), regional training course (RTC) and national training courses (NTCs) are the main components of this education program. The contents of these components are explained, and the activities which were carried out so far under them are reported. (K.I.)

  7. Research of radiation technology in keeping pet feed fresh

    International Nuclear Information System (INIS)

    Lin Qin; Zhang Tongcheng; Liu Qingfang; Wang Chunlei

    2002-01-01

    Objective: To find a effective, simple, quick method of radiation keeping fresh technology. Method: To detect the number of bacterium colony and pathogen and D 10 in Raschide dog chews firstly, then calculate them with the formulate of S D = D 10 log N 0 /SAL. Result: The total number of bacterium colony and pathogen in Raschide dog chews, a kind of pet feed, were detected. The mean total number of colony forming units was 3980 every gram and G + bacilli predominant, cocci less. The D 10 value of G + bacilli was 1.51 KGy. Conclusion: According to the certain formula method, the product SAL can be kept at 10 -6 level with 14.50 KGy radiation dose

  8. Radiation shielding technology development for proton linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ouk; Lee, Y. O.; Cho, Y. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, M. H.; Sin, M. W.; Park, B. I. [Kyunghee Univ., Seoul (Korea, Republic of)] [and others

    2005-09-01

    This report was presented as an output of 2-year project of the first phase Proton Engineering Frontier Project(PEFP) on 'Radiation Shielding Technology Development for Proton Linear Accelerator' for 20/100 MeV accelerator beam line and facility. It describes a general design concept, provision and update of basic design data, and establishment of computer code system. It also includes results of conceptual and preliminary designs of beam line, beam dump and beam facilities as well as an analysis of air-activation inside the accelerator equipment. This report will guides the detailed shielding design and production of radiation safety analysis report scheduled in the second phase project.

  9. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P. [All-Russia Research Institute of Preservation Technology (Russian Federation); Egorkin, A. V.; Chasovskikh, A. V. [Research Institute of Technical Physics and Automation (Russian Federation); Pavlov, Yu. S., E-mail: rad05@bk.ru [Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences (Russian Federation); Prokopenko, A. V., E-mail: pav14@mail.ru [National Research Nuclear University (Moscow Engineering Physics Institute) (Russian Federation); Strokova, N. E. [Moscow State University (Russian Federation); Artem’ev, S. A. [Russian Research Institute of Baking Industry (Russian Federation); Polyakova, S. P. [Russian Research Institute of Confectionery Industry (Russian Federation)

    2016-12-15

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  10. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    International Nuclear Information System (INIS)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.; Kukhto, V. A.; Tarasyuk, V. T.; Filippovich, V. P.; Egorkin, A. V.; Chasovskikh, A. V.; Pavlov, Yu. S.; Prokopenko, A. V.; Strokova, N. E.; Artem’ev, S. A.; Polyakova, S. P.

    2016-01-01

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  11. Interprofessional, simulation-based technology-enhanced learning to improve physical health care in psychiatry: The recognition and assessment of medical problems in psychiatric settings course.

    Science.gov (United States)

    Akroyd, Mike; Jordan, Gary; Rowlands, Paul

    2016-06-01

    People with serious mental illness have reduced life expectancy compared with a control population, much of which is accounted for by significant physical comorbidity. Frontline clinical staff in mental health often lack confidence in recognition, assessment and management of such 'medical' problems. Simulation provides one way for staff to practise these skills in a safe setting. We produced a multidisciplinary simulation course around recognition and assessment of medical problems in psychiatric settings. We describe an audit of strategic and design aspects of the recognition and assessment of medical problems in psychiatric settings course, using the Department of Health's 'Framework for Technology Enhanced Learning' as our audit standards. At the same time as highlighting areas where recognition and assessment of medical problems in psychiatric settings adheres to these identified principles, such as the strategic underpinning of the approach, and the means by which information is collected, reviewed and shared, it also helps us to identify areas where we can improve. © The Author(s) 2014.

  12. Development and application of isotopes and radiation technology in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Djaloeis, A. [DDG, Batan, Jakarta (Indonesia)

    1997-10-01

    The National Atomic Energy Agency (BATAN) of the Republic of Indonesia is the highest agency in the country, charged amongst others with the development and application of Isotopes and Radiation Technology as a tool in the search for the optimal solution of various national development problems, such as those encountered in the fields of Agriculture, Livestock, health/medicine, Industry, Environment and Energy. The acquisition and development of the scientific and technical expertise, R and D facilities/instruments and infrastructure have been achieved primarily through bilateral and multilateral collaborative activities with domestic, foreign and international institutions. On the basis of the achieved R and D results, the acquired techniques have been progressively transferred to the end-users and applied in solving scientific-technical problems in the aforementioned fields. This paper gives a brief overview of the present status and future trend of activities in the development and applications of isotopes and radiation technology in Agriculture, Livestock and Industry in Indonesia. In the field of Agriculture the research activities are focussed on obtaining and disseminating new crop varieties with desired specific characteristics and on increasing soil fertilizer efficiency. These research results and those on livestock feed supplementation formula and disease prevention have been applied in helping farmers in various parts of Indonesia to increase their productivity. In industry, irradiation technology for food preservation and sterilization has been successfully transferred to the commercial companies. The same is also true for Non-Destructive Examination, Radioactive Tracer and Radiation Based Process Monitoring Techniques. Natural and radioactive isotopes have been widely used also in hydrology, sedimentology and geothermal studies. Highlights of the results are presented and discussed

  13. Development and application of isotopes and radiation technology in Indonesia

    International Nuclear Information System (INIS)

    Djaloeis, A.

    1997-01-01

    The National Atomic Energy Agency (BATAN) of the Republic of Indonesia is the highest agency in the country, charged amongst others with the development and application of Isotopes and Radiation Technology as a tool in the search for the optimal solution of various national development problems, such as those encountered in the fields of Agriculture, Livestock, health/medicine, Industry, Environment and Energy. The acquisition and development of the scientific and technical expertise, R and D facilities/instruments and infrastructure have been achieved primarily through bilateral and multilateral collaborative activities with domestic, foreign and international institutions. On the basis of the achieved R and D results, the acquired techniques have been progressively transferred to the end-users and applied in solving scientific-technical problems in the aforementioned fields. This paper gives a brief overview of the present status and future trend of activities in the development and applications of isotopes and radiation technology in Agriculture, Livestock and Industry in Indonesia. In the field of Agriculture the research activities are focussed on obtaining and disseminating new crop varieties with desired specific characteristics and on increasing soil fertilizer efficiency. These research results and those on livestock feed supplementation formula and disease prevention have been applied in helping farmers in various parts of Indonesia to increase their productivity. In industry, irradiation technology for food preservation and sterilization has been successfully transferred to the commercial companies. The same is also true for Non-Destructive Examination, Radioactive Tracer and Radiation Based Process Monitoring Techniques. Natural and radioactive isotopes have been widely used also in hydrology, sedimentology and geothermal studies. Highlights of the results are presented and discussed

  14. Application of laser cutting technology to high radiation environments

    International Nuclear Information System (INIS)

    Pauley, K.A.; Mitchell, M.R.; Saget, S.N.

    1996-01-01

    A 2 kW Nd:YAG laser system manufactured by the Lumonics Corporation will be used to cut various metals during the fall of 1996 as part of a United States Department of Energy (DOE)-funded technology demonstration at the Hanford Site. The laser cutting demonstration will focus on an evaluation of two issues as the technology applies to the decontamination and decommissioning (D ampersand D) of aging nuclear facilities. An assessment will be made as to the ability of laser end effectors to be operated using electromechanical remote manipulators and the ability of both end effector and fiber optics to withstand the damage created by a high radiation field. The laser cutting demonstration will be conducted in two phases. The first phase will be a non-radioactive test to ensure the ability of hot cell remote manipulators to use the laser end effector to successfully cut the types of materials and geometries found in the hot cell. The second phase will introduce the laser end effector and the associated fiber optic cable into the hot cell radiation environment. The testing in the hot cell will investigate the degradation of the optical portions of the end effector and transmission cable in the high radiation field. The objective of the demonstration is to assess the cutting efficiency and life limitations of a laser cutting system for radioactive D ampersand D operations. A successful demonstration will, therefore, allow the laser cutting technology to be integrated into the baseline planning for the D ampersand D of DOE facilities throughout the nation

  15. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  16. Pulsed electron accelerator for radiation technologies in the enviromental applications

    Science.gov (United States)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  17. Non-food radiation technology applications of food commodities

    International Nuclear Information System (INIS)

    Mastro, N.L. Del

    2004-01-01

    At present food irradiation is considered an effective, broad-spectrum, residue-free, mature technology. Expertise in irradiation processing exists in a network of centers around the world, some of them in developing countries like Brazil and Argentina South American region. The use of renewable resources coming from crops products is becoming attractive also for non-food applications. In this sense, a complete new approach of higher aggregated value of some commodities like soy and maize, for example, is as renewable resources to create functional polymers, mainly for innovative biodegradable packaging solutions. There is a need of innovative approaches to produce edible/biodegradable materials from natural polymeric macromolecules with adequate properties. Incipient researches pointed to the successful use of irradiation processing to obtain or modify different types of biodegradable/edible plastic materials. This new radiation technology application is particularly important for countries that are leading producers of soybean and other commodities. (Author)

  18. Non-food radiation technology applications of food commodities

    Energy Technology Data Exchange (ETDEWEB)

    Mastro, N.L. Del . [Center of Radiation Technology, Energy and Nuclear Research Institute (IPEN-CNEN/SP), Travessa R, 400 Cidade Universitaria, 05508-900 Sao Paulo (Brazil)

    2004-07-01

    At present food irradiation is considered an effective, broad-spectrum, residue-free, mature technology. Expertise in irradiation processing exists in a network of centers around the world, some of them in developing countries like Brazil and Argentina South American region. The use of renewable resources coming from crops products is becoming attractive also for non-food applications. In this sense, a complete new approach of higher aggregated value of some commodities like soy and maize, for example, is as renewable resources to create functional polymers, mainly for innovative biodegradable packaging solutions. There is a need of innovative approaches to produce edible/biodegradable materials from natural polymeric macromolecules with adequate properties. Incipient researches pointed to the successful use of irradiation processing to obtain or modify different types of biodegradable/edible plastic materials. This new radiation technology application is particularly important for countries that are leading producers of soybean and other commodities. (Author)

  19. New radiation technologies and methods for control of technological processes in metallurgy

    International Nuclear Information System (INIS)

    Zaykin, Yu.

    1996-01-01

    Radiation Technology of Metal and Ceramic Production with Enhanced Service Properties. Based on application of radiation technique in powder metallurgy the new technology for obtaining metals, alloys and ceramic materials with high service properties is worked out. Radiation processing of powder materials at the certain stage of the process leads to profound structure alterations at all further stages and eventually effects the properties of the resulting product. Theoretical calculation and experimental studies of electron-positron annihilation in powder-pressed samples showed that irradiation caused powder particles surface state changes favorable for further sintering and crystallization processes development. It is shown that irradiation of metal powders and powder-pressed samples by high energy electrons is technologically most efficient. The right choice of the type-and the mode of the radiation processing makes it possible to obtain metals, alloys and ceramic materials (Mo,Fe, W, Al, Ni, Cu, stainless steels, ceramics, etc.) with homogeneous structure and stable enhanced service properties. The project on radiation technology application to powder metallurgy represented by a group of authors was awarded with the diploma and the gold medal at the 22 International Exhibition of Inventions (Geneva, 1994). New Technologic Opportunities of the Chromium-Nickel Alloys Processing To obtain the required phase-structure state special methods of the chromium-nickel alloy processing for sensitive elastic devices production were worked out combining plastic deformation, thermal and radiation processing. It is shown that h-gbb phase transfer not observed before is possible in extremely non-equilibrium conditions under electron irradiation. It is established that the complex reaction of recrystallization and gb-phase deposition proceeds under electron irradiation at the room temperature when the certain threshold plastic deformation degree is reached that leads to the same

  20. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar trademark wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task

  1. Wireless remote radiation monitoring system (WRRMS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1998-12-01

    The Science Application International Corporation (SAIC) RadStar{trademark} wireless remote radiation monitoring system (WRRMS) is designed to provide real-time monitoring of the radiation dose to workers as they perform work in radiologically contaminated areas. WRRMS can also monitor dose rates in a room or area. The system uses radio-frequency communications to transmit dose readings from the wireless dosimeters worn by workers to a remote monitoring station that can be located out of the contaminated area. Each base station can monitor up to 16 workers simultaneously. The WRRMS can be preset to trigger both audible and visual alarms at certain dose rates. The alarms are provided to the worker as well as the base station operator. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their self-reading dosimeters (SRDs), which are typically used to monitor workers, more difficult. The base station is an IBM-compatible personal computer that updates and records information on individual workers every ten seconds. Although the equipment costs for this improved technology are higher than the SRDs (amortized at $2.54/hr versus $1.02/hr), total operational costs are actually less ($639/day versus $851/day). This is because the WRRMS requires fewer workers to be in the contaminated zone than the traditional (baseline) technology. There are also intangible benefits associated with improved worker safety and as low as reasonably achievable (ALARA) principles, making the WRRMS an attractive alternative to the baseline technology. The baseline technology measures only integrated dose and requires workers to check their own dosimeters manually during the task.

  2. Gamma radiation influence on technological characteristics of wheat flour

    Science.gov (United States)

    Teixeira, Christian A. H. M.; Inamura, Patricia Y.; Uehara, Vanessa B.; Mastro, Nelida L. d.

    2012-08-01

    This study aimed at determining the influence of gamma radiation on technological characteristics of wheat (Triticum sativum) flour and physical properties of pan breads made with this flour. The bread formulation included wheat flour, water, milk, salt, sugar, yeast and butter. The α-amylase activity of wheat flour irradiated with 1, 3 and 9 kGy in a Gammacell 220 (AECL), one day, five days and one month after irradiation was evaluated. Deformation force, height and weight of breads prepared with the irradiated flour were also determined. The enzymatic activity increased—reduction of falling number time—as radiation dose increased, their values being 397 s (0 kGy), 388 s (1 kGy), 343 s (3 kGy) and 293 s (9 kGy) respectively, remaining almost constant over the period of one month. Pan breads prepared with irradiated wheat flour showed increased weight. Texture analysis showed that bread made of irradiated flour presented an increase in maximum deformation force. The results indicate that wheat flour ionizing radiation processing may confer increased enzymatic activity on bread making and depending on the irradiation dose, an increase in weight, height and deformation force parameters of pan breads made of it.

  3. Synchrotron radiation generation: Technological considerations, feasibility of practical realization with available way in the Country

    International Nuclear Information System (INIS)

    Moreira, A.F.O.

    1983-01-01

    Technological aspects linked to the synchrotron radiation generation in laboratory are discussed. A feasibility study for the implantation of a machine for such a radiation in a laboratory in Brazil is also discussed. (L.C.) [pt

  4. The place of radiation processing in polymer technology

    International Nuclear Information System (INIS)

    Du Plessis, T.A.

    1978-01-01

    A number of polymerisation processes initiated through radiation are discussed, among others the impregnation of wood with a monomer to form wood-polymer composites; radiation crosslinking of cable insulation; radiation degradation; radiation grafting of wool and textiles; and radiation sterilization of medical and pharmaceutical equipment. The last-named process is briefly compared to steam and to ethylene oxide sterlization

  5. The development and current status of the technology of isotope and radiation in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhifu, Luo [Dept. of Isotope, China Inst. of Atomic Energy, Beijing, BJ (China)

    1998-10-01

    The research and application of the technology of isotopes and radiation have been reviewed. Since the setup of the China`s first nuclear reactor at China Institute of Nuclear Energy in 1958, the technology of isotopes and radiation has been developed significantly. A research and application system has formed a considerable state. The technology of isotopes and radiation has been taken into the fields of industry, agriculture, medicine, and scientific research. The main achievements are on radiopharmaceuticals, radiation source, radiation process, and radioactive tracers. (author)

  6. Nuclear and radiation technologies in Ukraine: opportunities, status and problems of implementation

    International Nuclear Information System (INIS)

    Gorbulyin, V.P.

    2011-01-01

    The collection contains research materials and information presented at the Scientific Conference 'Nuclear and radiation technologies in Ukraine' (September 17, 2009, Kyiv). The articles offered specific ways to address a number of issues relevant to nuclear energy, science, technology, medicine and related to the radiation and environmental safety, the use of radiation technologies in medicine, development of uranium and uranium processing industry, safety on factories of NFC, nuclear physical instrumentation, behaviour with radioactive wastes.

  7. Development of Acne therapeutic hydrogel patches by radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Younmook; Nho, Youngchang; Gwon, Huijeong; Park, Jongseok; Kim, Jinkyu; Kim, Yongsoo

    2012-04-15

    In this project, hydrogel patches containing herbal extracts mixture were developed by radiation technology for acne treatment. Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, is the cause of inflammatory acne. To find novel mediation for inflammation of P. acnes, we confirmed the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The water extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thumb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were mixed into biocompatible polymers and irradiated by using gamma-ray to prepare hydrogels. The hydrogels containing herbal extracts mixture initiated to decrease the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-{alpha}, IL-8, IL-1{beta} and IL-6, in experiment with human monocytic THP-1 cells treated with heat-killed P. acnes at 1 mg/ml of mixture concentration.

  8. Dosimetry practices at the Radiation Technology Centre (Ghana)

    International Nuclear Information System (INIS)

    Emi-Reynolds, G.; Banini, G.K.; Ennison, I.

    1997-01-01

    Dosimetry practices undertaken to support research and pilot scale gamma irradiation activities at the Radiation Technology Centre of the Ghana Atomic Energy Commission are presented. The Fricke dosemeter was used for calibrating the gamma field of the gammacell-220. The Fricke system and the gammacell-220 were then used to calibrate the ethanol chlorobenzene (ECB) dosemeter. The Fricke and ECB dosemeter systems have become routine dosemeters at the centre. Dosimetry work has covered a wide range of research specimens and pilot scale products to establish the relevant irradiation protocol and parameters for routine treatment. These include yams, pineapple explants, blood for feeding tsetseflies, cocoa bud wood and cassava sticks. Pilot scale dosimetry studies on maize, medical devices like intravenous infusion sets and surgical gauze have also been completed. The results and observations made on some of these products are reported. (author). 4 refs., 5 figs

  9. Development of Acne therapeutic hydrogel patches by radiation technology

    International Nuclear Information System (INIS)

    Lim, Younmook; Nho, Youngchang; Gwon, Huijeong; Park, Jongseok; Kim, Jinkyu; Kim, Yongsoo

    2012-04-01

    In this project, hydrogel patches containing herbal extracts mixture were developed by radiation technology for acne treatment. Propionibacterium acnes (P. acnes), one of the anaerobic bacterium, is the cause of inflammatory acne. To find novel mediation for inflammation of P. acnes, we confirmed the anti-bacterial and anti-inflammatory activities of several herbal extracts against P. acnes. The water extracts from five dried herbs, Phellodendron amurense Rupr., Paeonia lactiflora Pallas., Houttuynia cordata Thumb., Agrimonia pilosa Ledeb. and Glycyrrhiza uralensis Fisch., were mixed into biocompatible polymers and irradiated by using gamma-ray to prepare hydrogels. The hydrogels containing herbal extracts mixture initiated to decrease the growth of P. acnes and reduced the production of pro-inflammatory cytokines, TNF-α, IL-8, IL-1β and IL-6, in experiment with human monocytic THP-1 cells treated with heat-killed P. acnes at 1 mg/ml of mixture concentration

  10. Radiation disinfestation: A viable technology for developing countries

    International Nuclear Information System (INIS)

    Loaharanu, P.

    1985-01-01

    Increasing food production in many countries is often offset by spoilage losses that occur at different stages after harvesting, slaughtering, or catching. The situation becomes critical in developing countries as more food is needed to feed the ever-increasing population. One of the major problems of losses of food and agricultural products during storage is insect infestation. This paper reviews some insect infestation problems of valuable crops in developing countries such as cereals, pulses, dried fish and meat, fresh and dried fruits, coffee and cocoa beans, spices, and cured tobacco leaves. Present practices of chemical fumigation to eliminate insect problems in these crops give rise to concern from the points of view of both public health and occupational safety. Irradiation technology has been shown to be as effective as other insect disinfestation methods and could provide a viable alternative for this purpose. Insects do not develop resistance to physical techniques such as heat or irradiation as they do to chemical treatments. Applications of radiation for disinfestation of food and agricultural products of importance to developing countries are discussed. The economics of radiation disinfestation of cereals and pulses, dried fish, and fresh fruits are also discussed

  11. Development of sterilized porridge for patients by combined treatment of food technology with radiation technology

    International Nuclear Information System (INIS)

    Kim, Jaehun; Choi, Jongil; Song, Beomseok

    2010-09-01

    This research was conducted to develop patient foods of high quality using a radiation fusion technology with food processing. Radiation technique to increase calorie of porridge was established, and it was investigated that radiation effects on functional materials, which can could be added to increase functionality of patient foods. Moreover, sterilized semi-fluid meal (milk porridge) for patients with higher calorie was developed by a sterilization process by gamma irradiation, combined treatments to improve the sensory qualities, and fortification with various nutrients. Also, sensory survey on irradiated commercial patient foods was performed to find the problems and improvement points of the developed products. Optimal packaging material was selected by evaluation of effect of irradiation in packaging materials and a convenient package for consuming by patients was decided. Safety of the irradiated milk porridge was confirmed by in-vivo genotoxicological test, and its nutritional composition for patients was evaluated by nutritional analysis. Finally, the milk porridge was developed as liquid, dried, powdered, and pellet type products. This research may contribute to improve life quality of patients by supplement of various foods with high quality to immuno-compromised patients. Furthermore, economic profits and technological advances are expected by commercialization of the patient foods

  12. Development of sterilized porridge for patients by combined treatment of food technology with radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaehun; Choi, Jongil; Song, Beomseok; and others

    2010-09-15

    This research was conducted to develop patient foods of high quality using a radiation fusion technology with food processing. Radiation technique to increase calorie of porridge was established, and it was investigated that radiation effects on functional materials, which can could be added to increase functionality of patient foods. Moreover, sterilized semi-fluid meal (milk porridge) for patients with higher calorie was developed by a sterilization process by gamma irradiation, combined treatments to improve the sensory qualities, and fortification with various nutrients. Also, sensory survey on irradiated commercial patient foods was performed to find the problems and improvement points of the developed products. Optimal packaging material was selected by evaluation of effect of irradiation in packaging materials and a convenient package for consuming by patients was decided. Safety of the irradiated milk porridge was confirmed by in-vivo genotoxicological test, and its nutritional composition for patients was evaluated by nutritional analysis. Finally, the milk porridge was developed as liquid, dried, powdered, and pellet type products. This research may contribute to improve life quality of patients by supplement of various foods with high quality to immuno-compromised patients. Furthermore, economic profits and technological advances are expected by commercialization of the patient foods.

  13. Proceedings of national executive management seminar on surface finishing by radiation curing technology: radiation curing for better finishing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This book compiled the paper presented at this seminar. The papers discussed are 1. Incentives for investment in the manufacturing sector (in Malaysia) 2.Trends and prospect of surface finishing by radiation curing technology in Malaysia 3. Industrial application of radiation curing.

  14. Proceedings of national executive management seminar on surface finishing by radiation curing technology: radiation curing for better finishing

    International Nuclear Information System (INIS)

    1993-01-01

    This book compiled the paper presented at this seminar. The papers discussed are 1. Incentives for investment in the manufacturing sector (in Malaysia) 2.Trends and prospect of surface finishing by radiation curing technology in Malaysia 3. Industrial application of radiation curing

  15. The application of radiation technology in industrial processes

    International Nuclear Information System (INIS)

    Silvermann, J.

    1974-01-01

    The author makes a general survey of current applications for radiation processing such as sterilization of biological and medical supplies, crosslinking of polymers, production of durable press fabrics, radiation-cured coating, production of wood-plastic composites, radiation degradation and chemical synthesis. The adoption of radiation processing on large scale by Western Electric is presented. The trend in costs and the environmental problems has a profound effect on the future of radiation processing. (M.S.)

  16. The primordium of radiation technologies in medicine at Brazil

    International Nuclear Information System (INIS)

    Cuperschmid, Ethel M.; Campos, Tarcisio P.R.

    2005-01-01

    The repeating of the experiments of Wilhelm Konrad Roentgen in Brazil happened thanks to the initiative of physician' from Rio de Janeiro and Minas Gerais. The present article, research fruit and documental rising from the archive of the Center of Memory of the Medicine (UFMG), it verified how the scientific innovations reached the Brazilian medical society. One year after X-ray's discovery (1895), Dr. Francisco Pereira das Neves got to repeat the German scientist's experiments. Based on imported material, as tube of Crookes, tube Hittorf, Ruhmkorff's inductor and plate Lumiere, the first X-ray for clinical medicine started in September of 1896. In Minas Gerais, the pioneer was Dr. Jose Carlos Ferreira Pires that, in 1898, brought the X-ray's took to the city of Formiga, being the first X-ray's device of South America. The distance of the great world scientific centers and the inherent difficulties the obtaining technical publications and foreigner supplies were not barriers. Everything was still for being understanding: the time of exposition, the correct way of the reading the foils, X rays effects in human. Until the decade of 1960 x-ray's use was predominantly for diagnosis ends, as they attest Brazilian medical publications. Therapeutic aspects of the radiation have been addressed as a focus in Brazil only after 1963. The present article intends to discuss the paper in the introduction of new radiation technologies and to punctuate the qualitative jumps heading for therapeutic use of the radioactivity in Brazil, aiming external influences, pioneering and improvisations. (author)

  17. Repetitive nanosecond electron accelerators type URT-1 for radiation technology

    Science.gov (United States)

    Sokovnin, S. Yu.; Balezin, M. E.

    2018-03-01

    The electron accelerator URT-1М-300 for mobile installation was created for radiation disinfecting to correct drawbacks that were found the URT-1M electron accelerator operation (the accelerating voltage up to 1 МV, repetition rate up to 300 pps, electron beam size 400 × 100 mm, the pulse width about 100 ns). Accelerator configuration was changed that allowed to reduce significantly by 20% tank volume with oil where is placed the system of formation high-voltage pulses, thus the average power of the accelerator is increased by 6 times at the expense of increase in pulses repetition rate. Was created the system of the computerized monitoring parameters (output parameters and thermal mode) and remote control of the accelerator (charge voltage, pulse repetition rate), its elements and auxiliary systems (heat of the thyratron, vacuum system), the remote control panel is connected to the installation by the fiber-optical channel, what lightens the work for service personnel. For generating an electron beam up to 400 mm wide there are used metal- ceramic] and metal-dielectric cold cathodes of several emission elements (plates) with a non-uniform distribution of the electron beam current density on the output foil ± 15%. It was found that emission drop of both type of cathodes, during the operation at the high repetition rate (100 pps) is substantial at the beginning of the process, and then proceeds rather slowly that allows for continuous operation up to 40 h. Experiments showed that linear dependence of the voltage and a signal from the pin-diode remains within the range of the charge voltage 45-65 kV. Thus, voltage increases from 690 to 950 kV, and the signal from the pin-diode - from (2,8-4,6)*104 Gy/s. It allows to select electron energy quite precisely with consideration of the radiation technology requirements.

  18. Technology development for evaluation of operational quantities in radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang Lyul; Chang, S. Y.; Lee, L. T.; Kim, B. H.; Chung, K. K.; Lee, J. I.; Lim, G. S.; Kim, J. S.; Nam, Y. M.; Chang, J. K.; Kim, D. Y.; Yang, J. S

    2000-03-01

    A study on the fabrication of a new personal thermo-luminescence dosimeter, which can evaluate the personal dose equivalent H{sub p}(d), has been performed. Optimum conditions for fabrication of a LiF:Mg,Cu,Na,Si TL phosphor powder has been determined and a disc type TL pellet has been fabricated from this TL powder. Another type of CaSO{sub 4}:Dy,Mo TL material has been also fabricated. These two TL materials have shown greater TL sensitivity than the foreign-made commercial TL materials. Mono-energetic fluorescence X-ray from 8.6 keV to 75 keV for use in performance testing of the developed TLDs energy response have been constructed and evaluated for the performance of the purity, air kerma, beam uniformity and distribution, and scattered fraction of X-rays. Reference neutron field of a D{sub 2}O moderated {sup 252}Cf source was characterized and the irradiation system using {sup 226}Ra and {sup 137}Cs sources was installed to construct the environmental gamma reference radiation and the low-level gamma radiation. A capability of calibration and measurement of KAERI In Vivo counting system for transuranic elements in the lung has been evaluated through the participation in the overseas intercomparison study on the In Vivo radioactivity measurement. An improvement and advancement of KAERI lung counting technology have been made by the analysis off uncertainties from the assumption of uniform radioactivity distribution in the lung, experimental determination and comparing of detection efficiency with different lung sets, and mathematical efficiency calibration of In Vivo counting system. (author)

  19. Radiation curing--new technology of green industries facing 21st century

    International Nuclear Information System (INIS)

    Wang Jianguo; Teng Renrui

    2000-01-01

    The development of radiation curing was simply reviewed and the mechanism of UV curing and EB curing, the equipment and materials used in the radiation curing were also introduced. Compared with ordinary curing, the radiation curing has advantages of energy saving, high effectiveness and little pollution. It is a new technology of green industries facing the 21st century

  20. Overview of radiation effects on emerging non-volatile memory technologies

    Directory of Open Access Journals (Sweden)

    Fetahović Irfan S.

    2017-01-01

    Full Text Available In this paper we give an overview of radiation effects in emergent, non-volatile memory technologies. Investigations into radiation hardness of resistive random access memory, ferroelectric random access memory, magneto-resistive random access memory, and phase change memory are presented in cases where these memory devices were subjected to different types of radiation. The obtained results proved high radiation tolerance of studied devices making them good candidates for application in radiation-intensive environments. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 171007

  1. Update application and development of radiation sterilization technology on pharmacy eutical industry

    International Nuclear Information System (INIS)

    Zhao Yongfu; Nanjing Univ., Nanjing; Wang Changbao; Wang Chao

    2006-01-01

    Since 'Standard of Radiation Sterilization by 60 Co Irradiator on Chinese Medicine' has been cleared, radiation sterilization technology obtains the widespread application on pharmacy. In this paper, the newest application and development of this technology on pharmacy are introduced from several aspects, such as dose control, drugs packing, the influence of radiation on functional ingredients and so on. Aimed at the current problem of radiation sterilization on pharmacy of our country, concrete measure is proposed. And the application of radiation sterilization on health food, enzyme preparation and controlled-release capsule is specially introduced. (authors)

  2. A-State-of-the-Art Report on Application of Radiation Technology to Environmental Pollution Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Kwang; Lee, Myun Joo

    2004-06-15

    Radiation technology has been rapidly developed for decades and its applicability also enlarged to many fields such as environmental protection, medical care, manufacturing industry, agriculture, and bio technology. In this report, we focused on the present situation of the development of radiation facilities and state-of-the-art on application of radiation to environmental pollution control including purification of flue gas, waste water treatment, and recycling of biological waste. We especially discussed the radiation technology for environmental pollution control and described the capability of its application to the industrial plants in Korea.

  3. Overview Of Research And Development On Radiation Technology In Vietnam During The Period Of 2005 - 2007

    International Nuclear Information System (INIS)

    Tran Khac An; Nguyen Quoc Hien

    2008-01-01

    Radiation technology is increasingly applied in may countries including Vietnam. This paper reviews R and D works, manpower, irradiation facilities and service irradiation in the period of 2005-2007. The orientation of development for radiation technology in the country and international co-operation programs are also briefly discussed in this paper as well. (author)

  4. Technical Report on the Development of Novel Technology for Reducing the Toxicity of Mistletoe Lectin by using Radiation Fusion Technology

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Choi, Jong Il; Song, Beom Seok; Yoon, Yo Han; Jung, Pil Mun; Sung, Nak Yun

    2009-10-01

    The aim of this study was conducted to investigate the effect of irradiation on detoxification, structural change, and physiological change of Mistletoe lectin. Optimal irradiation dose was determined from the result of having maximum detoxification and remaining the immunological activity Irradiation technology could be effective method for detoxification of Mistletoe lectin containing the immunological activity. The results indicate the feasibility of novel technology for reduction of the toxicity of Mistletoe lectin by using radiation technology. Practical state though clinical test is needed to extend biomedicine field using radiation technology and improve of public health by the control of the disease that gradually increase every year

  5. Development of evaluation and performance verification technology for radiotherapy radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y.; Jang, S. Y.; Kim, B. H. and others

    2005-02-15

    No matter how much the importance is emphasized, the exact assessment of the absorbed doses administered to the patients to treat the various diseases such as lately soaring malignant tumors with the radiotherapy practices is the most important factor. In reality, several over-exposed patients from the radiotherapy practice become very serious social issues. Especially, the development of a technology to exactly assess the high doses and high energies (In general, dose administered to the patients with the radiotherapy practices are very huge doses, and they are about three times higher than the lethal doses) generated by the radiation generators and irradiation equipment is a competing issue to be promptly conducted. Over fifty medical centers in Korea operate the radiation generators and irradiation equipment for the radiotherapy practices. However, neither the legal and regulatory systems to implement a quality assurance program are sufficiently stipulated nor qualified personnel who could run a program to maintain the quality assurance and control of those generators and equipment for the radiotherapy practices in the medical facilities are sufficiently employed. To overcome the above deficiencies, a quality assurance program such as those developed in the technically advanced countries should be developed to exactly assess the doses administered to patients with the radiotherapy practices and develop the necessary procedures to maintain the continuing performance of the machine or equipment for the radiotherapy. The QA program and procedures should induce the fluent calibration of the machine or equipment with quality, and definitely establish the safety of patients in the radiotherapy practices. In this study, a methodology for the verification and evaluation of the radiotherapy doses is developed, and several accurate measurements, evaluations of the doses delivered to patients and verification of the performance of the therapy machine and equipment are

  6. Radiation protection perspectives in developing new medical technologies with ionizing radiations

    International Nuclear Information System (INIS)

    Arranz, L.

    1993-01-01

    The medical technical development with ionizing radiation is and will be followed by an effort to control and reduce their inherent risks and make it a safe tool that offers more exact diagnoses and more effective treatments. However, it is not foreseeable to achieve a decrease on the annual effective dose equivalent per capita due to medical irradiation (1.06 mSv in OECD countries), since the general population will go on increasing, and the same will happen to the elder population (with greater morbidity). The turn of the century will bring a time of major cost savings, but also a higher demand on the quality of life. The high cost technologies help the diagnostic and therapeutic procedures and therefore their use and spread are absolutely justified, according to health policy objectives. However, their diffusion should be spread out under efficiency and equity criteria. (author). 32 refs

  7. Development of Sensor Technology and Its Application for Nuclear Radiation Detection

    International Nuclear Information System (INIS)

    Hiskia

    2007-01-01

    Radiation is energy in the form of waves or moving subatomic particles. Radiation can be ionizing or nonionizing radiation, depending on its effect on atomic matter. Because radiation cannot be seen, felt, tasted, heard or smelled, even at lethal levels, radiations detection devices must be used to alert those exposed to radiation. The measurement of radioactivity in the environment is a regulatory requirement around sites where significant amounts of radioactive materials are used or stored. Recently, advent in microelectronics and material technology has enabled to produce small sensor or microsensor, sensitive, accurate, and integrated in a chip or substrate. Development of radiation sensor technology using thin/thick film and micromachining technique was described in this paper. Indonesian capabilities in radiation sensor research and development and opportunities for commercialization also given. (author)

  8. The Development of Sensor Technology and Application to Detect Nuclear Radiation

    International Nuclear Information System (INIS)

    Hiskia

    2007-01-01

    Radiation is energy in the form of waves or moving subatomic particles. Radiation can be ionizing or non-ionizing radiation, depending on its effect on atomic matter. Because radiation cannot be seen, felt, tasted, heard or smelled, even at lethal levels, radiations detection devices must be used to alert those exposed to radiation. The measurement of radioactivity in the environment is a regulatory requirement around sites where significant amounts of radioactive materials are used or stored. Recently, advent in microelectronics and material technology has enabled to produce small sensor or microsensor, sensitive, accurate, and integrated in a chip or substrate. Development of radiation sensor technology using thin/thick film and micromachining technique was described in this paper. Indonesian capabilities in radiation sensor research and development and opportunities for commercialization also given. (author)

  9. Nuclear technology in materials testing and radiation protection

    International Nuclear Information System (INIS)

    Neider, R.

    1975-01-01

    A report of the 1974 activities of the laboratories for physical and measuring technical fundamentals, radiation effects and radiation protection, application of radionuclides and testing of radioactive materials of the Bundesanstalt fuer Materialpruefung (BAM) is given. (RW/LH) [de

  10. Sampled data spectroscopy (SDS): A new technology for radiation instrumentation

    International Nuclear Information System (INIS)

    Odell, D.M.C.

    1992-01-01

    A new instrumentation architecture for radiation spectroscopy is in the early stages of development at Savannah River. Based upon the same digital sampling techniques used in sonar and radar, sampled data spectroscopy (SDS) has produced Na(I)/PMT spectra with resolution comparable to conventional PHA systems. This work has laid the foundation for extending SDS techniques to solid state detector applications as well. Two-dimensional SDS processes raw, unintegrated detector output pulses to produce both energy and shape information that is used to construct a conventional energy spectrum. System advantages include zero electronic deadtime to support very high count rates, elimination of pulse pile-up peaks, high noise immunity, and digital system stability and reliability. Small size and low power requirements make 2-D SDS anideal technology for portable instrumentation and remote monitoring applications. Applications of potential interest at Savannah River include on-the-spot spill analysis, real-time waste stream monitoring, and personnel and area monitoring below background levels. A three-dimensional sampled data architecture is also being developed. Relying on image analysis and enhancement techniques, 3-D SDS identifies spectral peaks without determining the energy of any individual detector pulses. These techniques also open up a new avenue of exploration for reducing or removing Compton effects from the spectra of single detector systems. The intended application for this technique is waste characterization where lower energy isotopes are often obscured by the Compton scattering from dominant isotopes such as Csl37

  11. Shielding technology for high energy radiation production facility

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Kim, Heon Il

    2004-06-01

    In order to develop shielding technology for high energy radiation production facility, references and data for high energy neutron shielding are searched and collected, and calculations to obtain the characteristics of neutron shield materials are performed. For the evaluation of characteristics of neutron shield material, it is chosen not only general shield materials such as concrete, polyethylene, etc., but also KAERI developed neutron shields of High Density PolyEthylene (HDPE) mixed with boron compound (B 2 O 3 , H 2 BO 3 , Borax). Neutron attenuation coefficients for these materials are obtained for later use in shielding design. The effect of source shape and source angular distribution on the shielding characteristics for several shield materials is examined. This effect can contribute to create shielding concept in case of no detail source information. It is also evaluated the effect of the arrangement of shield materials using current shield materials. With these results, conceptual shielding design for PET cyclotron is performed. The shielding composite using HDPE and concrete is selected to meet the target dose rate outside the composite, and the dose evaluation is performed by configuring the facility room conceptually. From the result, the proper shield configuration for this PET cyclotron is proposed

  12. External radiation levels in installations of nuclear technology center

    International Nuclear Information System (INIS)

    Maletta, Paulo Guilherme M.; Filipetto, Joao; Wakabayashi, Tetsuaki; Silva, Teogenes A. da

    2005-01-01

    The radiological protection is a basic activity of nuclear technology center so that can carry through its activities with security, having to be planned and executed with total effectiveness. One of the basic tools of the radiological protection is the adoption of monitoring programs, that have as objective generality to evaluate the radiological conditions of the workstation and to assure that these conditions are acceptable safe for the displayed individuals, either workers or members of the public, as established in the basic norms of radiological protection. The Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, first institution in Brazil, created in 1952 to entirely dedicate the related works to the nuclear area, to own 39 building, of which they are kept the Triga Reactor, Irradiation Gamma Laboratory, Reject Laboratory, Calibration Dosemeters Laboratory and others. In such installations, radioactive materials are produced, handled, processed and stored, being necessary the levels of external radiation ambient monitoring. As part of the radioprotection plan, monitoring 63 points on strategically located in the external areas to the building of CDTN, using characterized and calibrated thermoluminescence dosemeters. This work describes the dose distribution of the points, the doses evaluation procedure and the 4 results carried through between 2001 and 2004. The data demonstrate the attendance to the level of security established in the basic norm, what it contributed for the operation licensing of to the IBAMA. (author)

  13. Report on our activities to spread knowledge about radiation in Musashi Institute of Technology

    International Nuclear Information System (INIS)

    Okada, Yukiko

    2007-01-01

    In Musashi Institute of Technology, radiation knowledge spread activities are performed twice per year. One is 'the science experience classroom which children enjoy.' Another is 'the open school which studies atomic power'. The writer participated in the 'life and radiation' project as a WEN member, and has performed the radiation knowledge spread activities to a citizen. In this paper, these activities are introduced and the necessity and problem of radiation knowledge spread activities are considered. (author)

  14. Stereotactic Radiation Therapy for Liver Tumours. Technological evaluation report

    International Nuclear Information System (INIS)

    Zeghari-Squalli, Nadia

    2016-09-01

    The purpose of this report was to analyse the efficacy and safety data of Stereotactic Body Radiation Therapy (SBRT) in patients with inoperable primary (hepatocellular carcinoma (HCC) and metastatic liver tumors (LM), to define the indications and the place of SBRT in the therapeutic strategy with the aim of its inclusion in the CCAM (French National list of reimbursement). The key points that arose from this assessment are the following: - The results are preliminary and the literature is inconclusive about safety and efficacy; - There are no standardised guidelines for: the indications, the eligibility criteria, the treatment protocols or the place of SBRT in the therapeutic strategy; - SBRT is a technique that requires great rigorous radioprotection and quality assurance procedures; the professionals and National institutions concerned recommend that SBRT only be performed in centres with sufficient resources, specific expertise and an organisation which guarantees that the quality assurance procedures will be respected. Recommendations HAS believes it is premature to recommend SBRT for the routine treatment of liver tumors and its reimbursement by the National Health Insurance (Assurance Maladie). HAS recommends its use in the strict context of clinical research by centres with sufficient resources, specific expertise and an organisation which guarantees that the quality assurance procedures will be respected. The literature search strategy prioritized randomised comparative studies and systematic reviews; If these were not available then non-randomised controlled trials, prospective studies were to be used and finally retrospective studies and case series were to be used. The assessment of SRBT for liver tumors was based on the critical analysis of clinical data from: - Three prospective case series, five retrospective case series, four health technology evaluation reports and 11 good practice recommendations, for primary liver tumors (HCC) - One prospective

  15. Comparison of conventional technology and radiation technology. Final report for the period 1 June 1988 - 31 May 1989

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1989-01-01

    The project consisted of three parts in which comparison of conventional technology and radiation technology of composite materials was aimed, in the field of impregnated wood-plastics, wood fiber reinforced/filled plastics and UV and EB coated wood products. The report includes 4 papers presented at different meetings. Refs, figs and tabs

  16. Comparison of conventional technology and radiation technology. Final report for the period 1 June 1988 - 31 May 1989

    Energy Technology Data Exchange (ETDEWEB)

    Czvikovszky, T [Research Inst. for the Plastic Industry, Budapest (Hungary)

    1990-12-31

    The project consisted of three parts in which comparison of conventional technology and radiation technology of composite materials was aimed, in the field of impregnated wood-plastics, wood fiber reinforced/filled plastics and UV and EB coated wood products. The report includes 4 papers presented at different meetings. Refs, figs and tabs.

  17. Comprehensive Psychiatric Evaluation

    Science.gov (United States)

    ... Facts for Families Guide Facts for Families - Vietnamese Comprehensive Psychiatric Evaluation No. 52; Updated October 2017 Evaluation ... with serious emotional and behavioral problems need a comprehensive psychiatric evaluation. Comprehensive psychiatric evaluations usually require a ...

  18. Technological Advancements and Error Rates in Radiation Therapy Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Margalit, Danielle N., E-mail: dmargalit@partners.org [Harvard Radiation Oncology Program, Boston, MA (United States); Harvard Cancer Consortium and Brigham and Women' s Hospital/Dana Farber Cancer Institute, Boston, MA (United States); Chen, Yu-Hui; Catalano, Paul J.; Heckman, Kenneth; Vivenzio, Todd; Nissen, Kristopher; Wolfsberger, Luciant D.; Cormack, Robert A.; Mauch, Peter; Ng, Andrea K. [Harvard Cancer Consortium and Brigham and Women' s Hospital/Dana Farber Cancer Institute, Boston, MA (United States)

    2011-11-15

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique

  19. Technological Advancements and Error Rates in Radiation Therapy Delivery

    International Nuclear Information System (INIS)

    Margalit, Danielle N.; Chen, Yu-Hui; Catalano, Paul J.; Heckman, Kenneth; Vivenzio, Todd; Nissen, Kristopher; Wolfsberger, Luciant D.; Cormack, Robert A.; Mauch, Peter; Ng, Andrea K.

    2011-01-01

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)–conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women’s Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher’s exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01–0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08–0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique

  20. Development of system technology for radiation cancer therapy with the dexterous auto lesions tracking

    International Nuclear Information System (INIS)

    Kim, Seungho; Jeong, Kyungmin; Jung, Seungho; Lee, Namho

    2013-01-01

    The project objectives are to establish the fundamental core technologies for precise auto lesions tracking radiation cancer therapy and developing related system technology as well. Radiation cancer therapy apparatus should be domestically produced to reduce medical expenses, hence advanced technologies are suggested and developed to make cost down medical expenses and save expenditure for importing 10 million dollars/set from overseas. To achieve these targets, we have carried out reviewing of domestic and foreign technology trend. Based on review of state-of-the-art technology, radiation sensory system is studied. 3m high precise image processing technique and intelligent therapy planning software are developed. Also precedent study on the redundant robot for dexterous motion control system has been performed for developing of radiation cancel therapy robot system

  1. Current status of utilization of radioisotopes and radiation technology in Malaysia

    International Nuclear Information System (INIS)

    Ahmad Tajuddin Ali

    1985-01-01

    The utilization of isotope and radiation technology in Malaysia dates back to the early sixties. However it was confined to the field of medicine. Today, the use of this technology has widen up, covering the agricultural and industrial areas. The increasing use of the technology has prompted the government to establish the Nuclear Energy Unit whose one of its main functions is to ensure the safe application of radioisotopes and radiations. For this purpose, facilities for training, calibration, waste treatment, etc. were provided by this unit to cater the need of radioisotope and radiation users throughout the country. (author)

  2. Radiation Protection in the Application of Active Detection Technologies

    Science.gov (United States)

    2013-07-01

    BECKER, S.M. (2004). “Emergency communication and information issues in terrorism events involving radioactive materials,” Biosecur Bioterror. 2(3...National Council on Radiation Protection and Measurements. Considerations Regarding the Unintended Radiation Exposure of the Embryo, Fetus or Nursing

  3. IAEA Conference on Large Radiation Sources in Industry (Warsaw 1959): Which technologies of radiation processing survived and why?

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    1999-01-01

    The IAEA has organized in Warsaw an International Conference on Large Radiation Sources in Industry from 8 to 12 September 1959. Proceedings of the Conference have been published in two volumes of summary amount of 925 pages. This report presents analysis, which technologies presented at the Conference have survived and why. The analysis is interesting because already in the fifties practically full range of possibilities of radiation processing was explored, and partially implemented. Not many new technologies were presented at the next IAEA Conferences on the same theme. Already at the time of the Warsaw Conference an important role of economy of the technology has recognized. The present report selects the achievements of the Conference into two groups: the first concerns technologies which have not been implemented in the next decades and the second group which is the basis of highly profitable, unsubsidized commercial production. The criterion of belonging of the technology to the second group, is the value of the quotient of the cost of the ready, saleable product diminished by the cost of a raw material before processing, to the expense of radiation processing, being the sum of irradiation cost and such operations as transportation of the object to and from the irradiation facility. Low value of the quotient, as compared to successful technologies is prophesying badly as concerns the future of the commercial proposal. A special position among objects of radiation processing is occupied by radiation processing technologies direct towards the protection or improving of the environment. Market economy does not apply here and the implementation has to be subsidized. (author)

  4. Proceedings of workshop on surface finishing by radiation curing technology: radiation curing for better finishing

    International Nuclear Information System (INIS)

    1993-01-01

    This book compiled the paper presented at this workshop. The papers discussed are 1. Introduction to radiation curing, 2. Radiation sources -ultraviolet and electron beams, 3. UV/EB curing of surface coating - wood and nonwood substrates, 4. Development of EPOLA (epoxidised palm oil products acrylate) and its application, 5. Development of radiation-curable resin based natural rubber

  5. Proceedings of workshop on surface finishing by radiation curing technology: radiation curing for better finishing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This book compiled the paper presented at this workshop. The papers discussed are 1. Introduction to radiation curing, 2. Radiation sources -ultraviolet and electron beams, 3. UV/EB curing of surface coating - wood and nonwood substrates, 4. Development of EPOLA (epoxidised palm oil products acrylate) and its application, 5. Development of radiation-curable resin based natural rubber.

  6. Radiation

    International Nuclear Information System (INIS)

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  7. Radiation and life: Proceedings of the 8. Nuclear Science and Technology Conference (NST8)

    International Nuclear Information System (INIS)

    2001-06-01

    The 8th conference on nuclear science and technology was held on 21-22 June 2001 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestration tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed

  8. Radiation immune RAM semiconductor technology for the 80's. [Random Access Memory

    Science.gov (United States)

    Hanna, W. A.; Panagos, P.

    1983-01-01

    This paper presents current and short term future characteristics of RAM semiconductor technologies which were obtained by literature survey and discussions with cognizant Government and industry personnel. In particular, total ionizing dose tolerance and high energy particle susceptibility of the technologies are addressed. Technologies judged compatible with spacecraft applications are ranked to determine the best current and future technology for fast access (less than 60 ns), radiation tolerant RAM.

  9. Radiation and life: Proceedings of the 8. Nuclear Science and Technology Conference (NST8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The 8th conference on nuclear science and technology was held on 21-22 June 2001 in Bangkok. This conference contain paper on non-power applications of nuclear technology in medicine, agriculture and industry. These application include irradiation of food for des infestration tram technologies used in diagnosis and therapy and radiation chemistry important to industrial processes. Some technologies which evolved from the development of nuclear power industry are also discussed.

  10. Results of the activities of the Scientific and Technical Coordination Council for Radiation Technique and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Sille, A K [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow

    1977-03-01

    It is reported on the activities of the Scientific and Technical Coordination Council for Radiation Technique and Technology (STCC-RTT) of the CMEA Permanent Commission for the Peaceful Uses of Atomic Energy according to the programme 1971 to 1975. The STCC-RTT is concerned with technical applications such as radiation sterilization, food irradiation, radiation-induced chemical processes etc. The main tasks which have to be solved within the period from 1976 to 1980 are outlined.

  11. Technologies Enabling Custom Radiation-Hardened Component Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Two primary paths are available for the creation of a Rad-Hard ASIC. The first approach is to use a radiation hardened process such as existing Rad-Hard foundries....

  12. International symposium on radiation technology in emerging industrial applications. Book of extended synopses

    International Nuclear Information System (INIS)

    2000-11-01

    The book contains 116 extended synopses of the oral and poster presentations delivered at the symposium. They present advances in radiation processing technology including radiosterilization and radiolysis of toxic wastes; radiosterilization of food, cosmetics and medical supplies; radiation assisted synthesis of polymer materials; design of gamma irradiation devices and accelerators for electron beam processing. Each of the papers was indexed separately

  13. International symposium on radiation technology in emerging industrial applications. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    The book contains 116 extended synopses of the oral and poster presentations delivered at the symposium. They present advances in radiation processing technology including radiosterilization and radiolysis of toxic wastes; radiosterilization of food, cosmetics and medical supplies; radiation assisted synthesis of polymer materials; design of gamma irradiation devices and accelerators for electron beam processing. Each of the papers was indexed separately.

  14. Proceedings of the First Seminar on Radiation Safety Technology and Nuclear Biomedicine

    International Nuclear Information System (INIS)

    Suprihadi, Topo

    2003-01-01

    The First Seminar on Radiation Safety Technology and Nuclear Biomedicine was held on 10-11 April 2001 at the Center for Research and Development of Radiation Safety and Nuclear Biomedicine have presented 19 papers about upgrading manpower resources, researcher, investigator, manager, and user of nuclear facilities, to go out against free market era

  15. Proceedings of Scientific Meeting on Research and Development of Isotopes and Radiation Technology

    International Nuclear Information System (INIS)

    Hilmy, Nazly; Ismachin, Moch; Suhadi, F.

    2002-01-01

    Proceedings of Scientific Meeting On Research and Development of Isotopes and Radiation Technology has been presented On Nopember 6-7, 2000 this activity that was held by Centre for Research and Development of Isotopes and Radiation Technolgy. The Scientific meeting is an information exchange facility among Researcher Industrialist for using isotope Technology in Industry Environment, Health, Agriculture and Farming. The proceedings Consist of 3 articles from keynotes speaker and 54 articles from BATAN participants as well outside. The articles is indexing separately

  16. Planning and Programming of Education and Training Courses on the Radiation Fusion Technologies for Next Generations

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Nam, Y. M.; Choi, P. H.

    2009-06-01

    In order to program education and training courses on the radiation technologies and to have the WNU RT School to be held in Korea, this project was carried out. It was also done to make a strategy for running the programmed courses, and to build and knit a global network among radiation specialists such as international advisory board, domestic advisory board and steering committee. A plan for the WNU RT School in Korea was made under this project. Curricula in all subjects related to radiation technology and the lecture materials were prepared, which are essential for education and training courses on radiation technologies for next generations. Lecturers were selected among global CEOs and professionals in radiation industries and university professors and radiation specialists. In addition, a global network among radiation specialists such as international advisory board, domestic advisory board and steering committee was built and organized. As a model for the international education and training courses in RT field as well as the other fields, it can be used for making fundamentals of technology exports and promoting Korea's national image in science and technology

  17. Some progress on radiation chemistry of substances of biological interests and biological applications of radiation technology in China

    International Nuclear Information System (INIS)

    Wu Jilan; Fang Xingwang

    1995-01-01

    Studies in China on the detection method of irradiated food, mechanism of DNA damage induced by peroxidation, radiolysis of natural products and herbs are reviewed on the update open literature, and some progress on applications of radiation technology is summarized. (author)

  18. On-line radiation teaching materials using IT technology

    International Nuclear Information System (INIS)

    Inoue, Hiroyoshi

    2005-01-01

    We developed the on-line radiation teaching materials using the Internet, in order to provide the teaching support materials of atomic power and radiation educations in on-school study, as well as to create the complementary study system in off-school study. The themes of teaching materials were selected from requests by teachers. In the case of an elementary school, the teaching material 'an environmental problem and atomic power' was created as the aggregate of each content for study without boundary between subjects. The teaching material 'medical treatment and radiation' was created for junior high school students to raise the individual knowledge. In the case of a high school, the teaching material nucleus and radiation' was prepared to supplement the physical study of students. The on-line teaching materials were tried to 300 junior high school and high school students, 68% of students answered that the teaching material is effective to understand atomic power and radiation, though 17% answered they were not effective. Although there are problems to prepare IT learning equipments and learning follow-up system in the material, it is suggested that the on-line teaching materials will provide the novel learning system including debates for the study. This method has no limitation of time and place. (author)

  19. Atoms in industry: Radiation technology supports development [Foreword

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2015-01-01

    Cutting-edge industrial technologies underpin the success of strong economies, in developed and developing countries alike. Nuclear science and technology, in particular, can make a major contribution to economic growth and competitiveness, and have an important role to play in support of sustainable development. The IAEA helps to make nuclear science and technology available to enable countries to pursue wider development objectives in areas including human health, agriculture, natural resource management and environmental protection. This edition of the IAEA Bulletin highlights some of the ways in which the technology is being put to effective use in industry.

  20. Better health care: Ghana uses radiation technology to sterilize medical items

    International Nuclear Information System (INIS)

    Dixit, Aabha

    2015-01-01

    Infections acquired from improperly sterilized equipment are recognized as a major impediment to safe health care delivery, with consequences that are often deadly for patients. Radiation technology plays a major role in many countries in making medical equipment safer. “The use of nuclear applications, such as exposing medical items to gamma radiation, helps Ghana protect its people from avoidable sicknesses that can occur if items like syringes are not properly sterilized,” said Abraham Adu-Gyamfi, Manager of the Radiation Technology Centre of the Ghana Atomic Energy Commission’s Biotechnology and Nuclear Agriculture Research Institute in Accra.

  1. New use of radiation, application to biomass technology

    International Nuclear Information System (INIS)

    Kaetsu, Isao

    1982-01-01

    The author has carried out the research on the utilization of radiation in the saccharification of biomass, waste cellulose in particular, to glucose, and the fermentation of the obtained glucose to alcohol; and the results were found to be fruitful. The use of radiation for the pretreatment of cellulose materials and for the fixation of biological catalysts are described, with emphasis on the author's works. For the pretreatment, cellulose material is deteriorated by irradiation, to facilitate largely the subsequent pulverization. This promotes the saccharification. As the biological catalysts for cellulose saccharification, enzyme (cellulase) or its product fungi are used, and as the catalyst for glucose fermentation, yeast is used. By the fixation of the catalysts through radiation polymerization, the efficiency of the processes can be raised greatly by raising the respective activities. (J.P.N.)

  2. Paradigm of radiation-laser medical equipment and technology

    International Nuclear Information System (INIS)

    Kharchenko, V.P.; Skobelkin, O.K.; Trofimolv, N.N.; Makarova, G.V.; Pan'shin, G.A.; Ryabov, V.I.; Stranadko, E.F.; Shevelevich, O.S.

    1997-01-01

    New concepts on possibility of controlling biochemical reactions in biological tissues through simultaneous two-beam (roentgen or elementary particles flux and laser radiation) impact on biotissue are formulated on the basis of the quanta chemistry and chemical kinetics. It is shown that radiation-laser impact on pathological center makes it possible to realize principally new approach to treatment of oncological diseases of the main internal organs. Filamentous laser with lamp feedup, laser quantron where of is applicable for simultaneous excitation of laser radiation in the channel and transport by adjacent capillar filaments of elementary charged particles, is developed. The laser quantron is especially efficient as a feedup source for semiconductor light guides. 24 refs., 2 tabs

  3. Education in radiation and nuclear technology. Ready for the future?

    International Nuclear Information System (INIS)

    Schoenmuth, T.; Alt, S.; Wodarczack, F.; Heidrich, U.; Kratzsch, A.

    2013-01-01

    The revision of teaching strategies for the field of study 'Radiation and Nuclear Engineering' at the University of Applied Sciences Zittau/Goerlitz is an attractive design with excellent career opportunities to choose from. Thus, the students benefit not least from solid foundations of the general power engineering undergraduates. Additionally it should be noted that on one hand the current developments (e.g. regenerative power generation, power transmission system requirements and energy storage) are increasingly in demand. On the other hand the use of radiation and nuclear installations and facilities is essential - but this will respectively by social constraints currently not represented or shown as an attractive career field. (orig.)

  4. Advisory group meeting on new trends and developments in radiation technology

    International Nuclear Information System (INIS)

    1993-02-01

    High energy, ionizing radiation (gamma and electron beams) has been used by industry for many years and for different applications. Well established applications include: industrial sterilization of health care products (medical products and medicinals), radiation modification of plastics (crosslinking of wire and cable insulation, heat shrinkable materials, etc.) and radiation curing of adhesives and coatings on different substrates. The main purpose of the Advisory Group Meeting was to provide a forum for an exchange of information about the new developments in radiation technology, to review the status of these developments and to discuss potential for commercial applications. A further objective was to discuss the role of the International Atomic Energy Agency in promoting new technologies, research and transfer of technology to developing countries. The meeting was expected to prepare recommendations to the Agency for future activities and programmes in this field. Refs, figs and tabs

  5. Implications of scientific and technological developments for radiation protection in the next decade

    International Nuclear Information System (INIS)

    Johnson, J.R.; Stansbury, P.S.; Paretzke, H.

    1993-01-01

    There are scientific and technological developments taking place that will affect the understanding of the interaction of ionizing radiation with matter, the ability to measure the important parameters of ionizing radiation, and the ability to model radioactivity transport, both in the human body and in the environment. This paper focuses on emerging scientific and technological developments that will impact radiation protection in the next decade. Emerging scientific developments included in this paper are new methods and better analytic capabilities in epidemiology, a better understanding of the interactions between ionizing radiation and the various cellular components and more realistic models to describe the uptake, distribution, retention and excretion of radionuclides in humans. Technological developments include instruments to measure radioactivity in the humans and the environment, and better software to calculate doses from these previously measured quantities

  6. The application of radiation technology in the field of medical biomaterials

    International Nuclear Information System (INIS)

    Jin Huanyu; An Yan; Yin Hua

    2011-01-01

    The radiation technology has been applied extensively in the fields of biological engineering, tissue engineering, medical industry and so on. It also plays an important role in the sterilization and modification of biomaterials. This work reviews the development of irradiation technology and absorbed doses for the sterilization and modification of medical biomaterials. (authors)

  7. The application of ionising radiation in industrial wastewater treatment technology

    Energy Technology Data Exchange (ETDEWEB)

    Kos, L. [Inst. of Knitting Technology and Techniques, Lodz (Poland); Perkowski, J. [Inst. of Applied Radiation Chemistry, Technical Univ. of Lodz, Lodz (Poland); Ledakowicz, S. [Dept. of Bioprocess Engineering, Technical Univ. of Lodz, Lodz (Poland)

    2003-07-01

    An attempt was made to apply radiation techniques in the treatment of industrial wastewater from a dairy, brewery and sugar factory. For degradation of pollutants present in the wastewater, the following methods were used: irradiation, irradiation combined with aeration, ozonation, and combined irradiation and ozonation. For all three types of wastewater, the best method among these listed above appeared to be the method of irradiation combined with ozonation. Most degradable was the wastewater produced in sugar factories, and the least biodegradable appeared to be dairy wastewater. Depending on the dose of ozone and radiation, a maximum 60% reduction of COD was obtained. No effect of the wastewater aeration on its degradation by radiation was found. Changes in the content of mineral compounds were observed in none of the cases. The process of biological treatment of wastewater was carried out in a low-loaded, wetted bed. Pretreatment of the wastewater had no significant effect on the improvement of the biological step operation. Some effect was observed only in the case of the wastewater coming from a sugar factory. For medium concentrated wastewater from food industry, it is not economically justified to apply the pretreatment with the use of ionising radiation. (orig.)

  8. Development of materials for fuel cell application by radiation technology

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Junju; Lee, Gyoungja; Lee, Byung Cheol; Shin, Junhwa; Nho, Youngchang; Kang, Philhyun; Sohn, Joon Yong; Rang, Uhm Young

    2012-06-01

    The development of the single cell of SOFC with low operation temperature at and below 650 .deg. C(above 400 mW/cm 2 ) Ο The development of fabrication method for the single cell of solid oxide fuel cell (SOFC) by dip-coating of nanoparticles such as NiO, YSZ, Ag, and Ag/C, etc. Ο The optimization of the preparation and performance of SOFC by using nanoparticles. Ο The preparation of samples for SOFC with large dimension. The development of fluoropolymer-based fuel cell membranes with crosslinked structure by radiation grafting technique Ο The development of fuel cell membranes with low methanol permeability via the introduction of novel monomers (e. g. vinylbenzyl chloride and vinylether chloride) by radiation grafting technique Ο The development of hydrocarbon fuel cell membrane by radiation crosslinking technique Ο The structure analysis and the evaluations of the property, performance, and radiation effect of the prepared membranes Ο The optimization of the preparation and performance of DMFC fuel cell membrane via the structure-property analysis (power: above 130 mW/cm 2 /50 cm 2 at 5M methanol) Ο The preparation of samples for MEA stack assembly

  9. Feasibility of Jujube peeling using novel infrared radiation heating technology

    Science.gov (United States)

    Infrared (IR) radiation heating has a promising potential to be used as a sustainable and effective method to eliminate the use of water and chemicals in the jujube-peeling process and enhance the quality of peeled products. The objective of this study was to investigate the feasibility of use IR he...

  10. Irradiation technology Pt. 2. Research devices. Glossary on radiation technology. Besugarzastechnika 2. resz. Kiserleti berendezesek, sugartechnikai kislexikon

    Energy Technology Data Exchange (ETDEWEB)

    Foeldiak, G; Stenger, V

    1982-01-01

    It is a textbook and manual of a training course held at the Budapest Technical University for operators of irradiation devices. Calculation methods of radiation technology (estimation of activity variation, space dependence of dose rates, shielding, efficiency) are presented. Instructions for laboratory exercises (dose and dose rate measurements, sterilization by irradiation, handling of irradiation devices) involved in the course given. Two laboratory irradiation devices (RH-GAMMA-30, produced in the Soviet Union and the K-120-type semi-large scale device of the Isotope Institute of the Hungarian Academy of Sciences are described in detail. Handling instructions for the two devices and radiation protection regulations are given. A brief glossary in the field of radiation technology is added.

  11. Radiation and nuclear technologies in the Institute for Nuclear Research NAS of Ukraine

    International Nuclear Information System (INIS)

    Vishnevs'kij, Yi.M.; Gajdar, G.P.; Kovalenko, O.V.; Kovalyins'ka, T.V.; Kolomyijets', M.F.; Lips'ka, A.Yi.; Litovchenko, P.G.; Sakhno, V.Yi.; Shevel', V.M.

    2014-01-01

    The monograph describes some of the important developments of radiation and nuclear technology, made in INR NAS Ukraine. The first section describes radiation producing new materials and services using electrons with energies up to 5 MeV and Bremsstrahlung X-rays. We describe the original technology using ion emissions of the low and very low energies. In the second section the nuclear technologies, where ions, neutrons and other high-energy particles with energies are used, provide modification of the structure of matter nuclei in particular - radioactive isotopes for industrial and medical supplies and devices based on them.

  12. Current status and prospect of radiation technology for the safety and security of food

    International Nuclear Information System (INIS)

    Byun, Myung Woo

    2009-01-01

    Since 1960, radiation technology (RT), which had been known as the method eliminating the biologically hazardous factors of the products in the food, medical, pharmaceutical and cosmetic industries, was comprehensively investigated. The safety of food irradiation has been throughout evaluated with scientific experiments. Recently, RT has been associated with other high technologies such as biotechnology and nanotechnology, and resulted in the innovative products. Through these fusion technology with RT, the new items with high functionality and value will be shown. But, until now, consumers' acceptance on radiation is still the problem to be solved for further development. To make the consumer correctly understand RT, the benefits and defects of RT should be informed and there should be the legislated policy for the industrialization of RT by government. Therefore, this review will introduce the current status of food irradiation in the world, the safety and national agreements and the recent results from radiation fusion technology, and suggest the further work

  13. Anticipated development of radiation safety corresponding to utilization of nuclear technology in Vietnam

    International Nuclear Information System (INIS)

    Tran, Toan Ngoc; Le, Thiem Ngoc

    2010-01-01

    In the past, due to the limited application of radiation and radioisotope in the national economic branches, radiation safety was not paid much attention to in Vietnam. However, according to the Strategy for Peaceful Utilization of Atomic Energy up to 2020 approved by the Prime Minister on January 3, 2006 the application of radiation and radioisotopes as well as nuclear power in Vietnam is expected increasing strongly and widely, then radiation safety should be developed correspondingly. This paper presents the history of radiation protection, the current status and prospect of utilization of atomic energy and the anticipated development of the national radiation safety system to meet the demand of utilization of nuclear technology in Vietnam. (author)

  14. In vivo evaluation on organ degeneration using radiation technology

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Moon, C. J.; Kim, S. R.

    2010-05-01

    The purpose of this study is to investigate the effect of developed product on skin and reproductive system of animal due to irradiation via in vivo test, and finally acquire fundamental data for evaluation of protective materials on degenerative damages. - Evaluate the effect of candidate materials on UV-induced skin damages · Test the effect of candidate materials to protect the skin from photodamage, the gross and microscopic changes in the skin of hairless mice and materials-treated mice exposed chronically to UV - Evaluate the effect of developed product (HemoHIM) on radiation-induced reproductive system (female) damages - Evaluate the effect of developed product (HemoHIM) on chemical-induced reproductive system (female) damages - Evaluate the effect of developed product (HemoHIM) on radiation-induced reproductive system (male) damages - Evaluate the effect of developed product (HemoHIM) on chemical-induced reproductive system (male) damages

  15. Chemistry and technology of radiation processed composite materials

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1985-01-01

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting, e.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene. (author)

  16. Radiation effects in materials for accelerator-driven neutron technologies

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.; Daemen, L.L.; Ferguson, P.D.

    1997-01-01

    The materials exposed to the most damaging radiation environments in an SNS (spallation neutron source) are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. The major solid targets in operating SNS's and under consideration for the 1--5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the project target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  17. Radiation facilities and irradiation technology for food irradiation

    International Nuclear Information System (INIS)

    Sunaga, Hiromi

    2005-01-01

    Progress made during these 30 years in the field of radiation treatment of food is reviewed by describing features of the process including elementary processes, quality control of the products and the dosimetric techniques widely employed. The Co-60 gamma-ray irradiation facilities to be used for radiation-sterilization of medical supplies and food preservation are presented. For electron beam irradiation, accelerators for processing with the energy from 0.3 to 10 MeV are generally employed. The electron-guns, the method of acceleration such as rectification, types of acceleration as Cockcroft-Walton, dynamitron, or linear acceleration and X-ray producing facility, with various countermeasures for safety management, are briefly explained. The concepts of dose and traceability are given. The dosimeters including reference dosimeter and routine ones with validation are explained. (S. Ohno)

  18. Technologically enhanced natural radiation (TENR II). Proceedings of an international symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-02-01

    Natural radiation is ubiquitous. In recent decades, there has been a developing interest in fully documenting exposure of human beings to radiation of natural origin. Radiation experts have recognized that natural sources of radiation can cause exposure of members of the general public and workers to levels that warrant consideration of whether controls should be applied. The second International Symposium on Technologically Enhanced Natural Radiation (TENR II) was held in Rio de Janeiro from 12 to 17 September 1999. The objective of the symposium was to provide a forum for the international exchange of information on the scientific and technical aspects of those components of exposure to natural radiation that warrant consideration. These components were examined under the headings: the technological enhancement of natural radiation in mining and non-nuclear industries; radon indoors and outdoors; mobility and transfer of natural radionuclides; natural radiation and health effects; analytical techniques and methodologies; the remediation of contaminated sites; and regulatory and legal aspects. The symposium found that exposures to natural sources of radiation should be considered from the point of view of their amenability to control. This approach is reflected in the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) and the associated IAEA documents on occupational exposure and rehabilitation of contaminated lands. The concepts of exclusion and intervention are particularly relevant to the amenability to control of natural sources of radiation. Indeed, the BSS specify that any exposure whose magnitude is essentially unamenable to control through the requirements of the BSS is out of the scope of the BSS. The BSS further indicate that protective or remedial actions shall be undertaken whenever they are justified in terms of the benefit to be obtained. Following their deliberations, the

  19. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  20. New technologies for radiation-hardening analog to digital converters

    Science.gov (United States)

    Gauthier, M. K.

    1982-01-01

    Surveys of available Analog to Digital Converters (ADC) suitable for precision applications showed that none have the proper combination of accuracy and radiation hardness to meet space and/or strategic weapon requirements. A development program which will result in an ADC device which will serve a number of space and strategic applications. Emphasis was placed on approaches that could be integrated onto a single chip within three to five years.

  1. Putting synchrotron radiation to work for technology: Analytic methods

    International Nuclear Information System (INIS)

    1992-02-01

    This report contains viewgraphs on: Advanced Light Source; Ultra-ESCA: Advanced Capabilities of XPS with High-Brightness Synchrotron Radiation; High-Resolution (20 nm) XPS and XANES with the ALS; Photoelectron Spectroscopy in Industry: Current Capabilities, Needs, and Possible Roles for the ALS; Materials Analysis by Photoemission: Is This Practical at ALS?; Applications of Long-Wavelength X-Ray Fluorescence Spectrometry and X-Ray Powder Diffractometry

  2. New technologies for radiation-hardening analog to digital converters

    International Nuclear Information System (INIS)

    Gauthier, M.K.

    1982-12-01

    Surveys of available Analog to Digital Converters (ADC) suitable for precision applications showed that none have the proper combination of accuracy and radiation hardness to meet space and/or strategic weapon requirements. A development program which will result in an ADC device which will serve a number of space and strategic applications. Emphasis was placed on approaches that could be integrated onto a single chip within three to five years

  3. Radiation biological technology for preservation of agricultural products

    International Nuclear Information System (INIS)

    Kudryasheva, A.

    1988-01-01

    A study is reported on the food irradiation procedures experimented in the Moskow Institute for National Economy. The effect of gamma radiation on the quality, mass loss and storage life of fruits and vegetables is investigated. The combined effect of several biological and environmental factors on the microorganisms affecting foodstuffs are discussed. The influence of dose rate is illustrated quantitatively for different species of fruits and vegetables. 3 tabs., 6 refs

  4. Radiation technology for the development of improved crop varieties

    International Nuclear Information System (INIS)

    D'Souza, Stanislaus F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane. The desirable traits which have been bred through induced mutations include higher yield, grain quality, early maturity, disease and pest resistance, improved plant type and abiotic stress resistance

  5. Reducing radiation exposure in an electrophysiology lab with introduction of newer fluoroscopic technology

    Directory of Open Access Journals (Sweden)

    Munish Sharma

    2017-09-01

    Full Text Available The use of fluoroscopic devices exposes patients and operators to harmful effects of ionizing radiation in an electrophysiology (EP lab. We sought to know if the newer fluoroscopic technology (Allura Clarity installed in a hybrid EP helps to reduce prescribed radiation dose. We performed radiation dose analysis of 90 patients who underwent various procedures in the EP lab at a community teaching hospital after the introduction of newer fluoroscopic technology in June of 2016.Watchman device insertion, radiofrequency ablation procedures, permanent pacemaker (PPM/implantable cardioverter defibrillator (ICD placement and battery changes were included in the study to compare radiation exposure during different procedures performed commonly in an EP lab. In all cases of watchman device placement, radiofrequency ablation procedures, PPM/ICD placement and battery changes, there was a statistically significant difference (<0.05 in radiation dose exposure. Significant reduction in radiation exposure during various procedures performed in an EP lab was achieved with aid of newer fluoroscopic technology and better image detection technology.

  6. Radiation therapy for children: evolving technologies in the era of ALARA

    International Nuclear Information System (INIS)

    Kun, Larry E.; Beltran, Chris

    2009-01-01

    The evolution of ever more sophisticated oncologic imaging and technologies providing far more precise radiation therapy have combined to increase the utilization of sophisticated radiation therapy in childhood cancer. For a majority of children with common central nervous system, soft tissue, bone, and dysontogenic neoplasms, local irradiation is fundamental to successful multi-disciplinary management. Along with more precise target volume definition and radiation delivery, new technologies provide added certainty of patient positioning (electronic portal imaging, cone beam CT) and conformality of dose delivery (3-D conformal irradiation, intensity modulated radiation therapy, proton beam therapy). Each of the major areas of technology development are able to better confine the high-dose region to the intended target, but they are also associated with the potential for larger volumes of uninvolved tissues being exposed to low radiation doses. The latter issue plays a role in documented levels of secondary carcinogenesis, sometimes with greater anticipated incidence than that seen in conventional radiation therapy. Parameters related to carcinogenesis, such as dose-volume relationships and neutron contamination that accompanies high-energy photon irradiation and proton therapy, can be identified, sometimes modulated, and accepted as part of the clinical decision process in fine tuning radiation therapy in this more vulnerable age group. (orig.)

  7. Radiation dose reduction during transjugular intrahepatic portosystemic shunt implantation using a new imaging technology

    Energy Technology Data Exchange (ETDEWEB)

    Spink, C., E-mail: c.spink@uke.de [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany); Avanesov, M. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany); Schmidt, T. [Philips Healthcare, Hamburg (Germany); Grass, M. [Philips Research, Hamburg (Germany); Schoen, G. [Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany); Adam, G.; Bannas, P.; Koops, A. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg (Germany)

    2017-01-15

    Highlights: • The new imaging technology halved the radiation exposure. • DSA image quality observed was not decreased after technology upgrade. • Radiation time and contrast consumption not significantly increased using the new technology. - Abstract: Objective: To compare patient radiation dose in patients undergoing transjugular intrahepatic portosystemic shunt (TIPS) implantation before and after an imaging-processing technology upgrade. Methods: In our retrospective single-center-study, cumulative air kerma (AK), cumulative dose area product (DAP), total fluoroscopy time and contrast agent were collected from an age- and BMI-matched collective of 108 patients undergoing TIPS implantation. 54 procedures were performed before and 54 after the technology upgrade. Mean values were calculated and compared using two-tailed t-tests. Two blinded, independent readers assessed DSA image quality using a four-rank likert scale and the Wilcoxcon test. Results: The new technology demonstrated a significant reduction of 57% of mean DAP (402.8 vs. 173.3 Gycm{sup 2}, p < 0.001) and a significant reduction of 58% of mean AK (1.7 vs. 0.7 Gy, p < 0.001) compared to the precursor technology. Time of fluoroscopy (26.4 vs. 27.8 min, p = 0.45) and amount of contrast agent (109.4 vs. 114.9 ml, p = 0.62) did not differ significantly between the two groups. The DSA image quality of the new technology was not inferior (2.66 vs. 2.77, p = 0.56). Conclusions: In our study the new imaging technology halved radiation dose in patients undergoing TIPS maintaining sufficient image quality without a significant increase in radiation time or contrast consumption.

  8. A study on the radiation and environmental safety -Development of radiation protection and measurement technology-

    Energy Technology Data Exchange (ETDEWEB)

    Jang, See Yung; Lee, Tae Yung; Lee, Hyung Sub; Kim, Jan Ryul; Kim, Chang Kyung; Kim, Bong Hwan; Yoon, Kyung Soo; Jung, Kyung Kee; Jung, Duk Yun; Lee, Bong Jae; Chul, Yoon Suk; Lee, Kee Chang; Yoon, Yu Chang; Jung, Rae Ik; Lee, Sang Yoon; Han, Yung Dae; Kim, Jong Soo, I; Kim, Jong Soo, II; Suh, Kyung Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Jong Kyung [Han Yang Univ., Seoul (Korea, Republic of)

    1995-07-01

    Reference X- and neutron radiation fields have been established and evaluated to support the national radiation protection programme under which performance evaluation test for domestic personal dosimetry will be implemented by the ministerial ordinance 1992-15, and to provide a basic technical support in radiation protection dosimetry. Personal dose evaluation algorithm has been developed with the KAERI reference radiation fields which comply well with those in the new ANSI N13.11(1993) to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of whole body direct bioassay and the resulting internal doses has been also developed and evaluated to be equally excellent compared with those being used in foreign countries. A BOMAB phantom for precise WBC calibration has also designed, fabricated and test-evaluated. A principal method for estimating the cost for radiation protection which is important in performing a cost-benefit analysis for the radiation protection optimization study based on the ALARA principle has been preliminarily investigated and suggested. 49 figs, 67 tabs, 50 refs. (Author).

  9. Radiation processing of polymers and semiconductors at the Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Kaluska, I.

    2006-01-01

    R(and)D studies in the field of radiation technology in Poland are mostly concentrated at the Institute of Nuclear Chemistry and Technology (INCT). The results of the INCT works on polymer and semiconductor modification have been implemented in various branches of national economy, particularly in industry and medicine. Radiation technology for polymer modification was implemented in the middle of the 1970-ties. Among others, the processes of irradiation and heat shrinkable products expansion have been developed. The transfer of this technology to Polish industry was performed in the middle of the 1980-ties. The present study aims at the formulation of new PE composites better suited to new generation of heat shrinkable products, for example, a new generation of hot-melt adhesives has been developed to meet specific requirements of customers. Modified polypropylene was used for the production of medical devices sterilized by radiation, especially disposable syringes, to overcome the low radiation resistance of the basic material. Modified polypropylene (PP-M) has been formulated at the INCT to provide material suitable for medical application and radiation sterilization process. Modification of semiconductor devices by EB was applied on an industrial scale since 1978 when the INCT and the LAMINA semiconductor factory successfully adopted that technology to improve specific semiconductor devices. This activity is continued on commercial basis where the INCT facilities served to contract irradiation of certain semiconductor devices according to the manufacturing program of the Polish factory and customers from abroad. (author)

  10. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    International Nuclear Information System (INIS)

    Taranenko, L.; Janouch, F.; Owsiacki, L.

    2001-01-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date 'Program Supporting Y2K Readiness at Ukrainian NPPs' initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ('Improved Zirconium-Based Elements for Nuclear Reactors'), information technologies for nuclear industries ('Ukrainian Nuclear Data Bank in Slavutich'), and radiation health science ('Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers').

  11. Contributions to nuclear safety and radiation technologies in Ukraine by the Science and Technology Center in Ukraine (STCU)

    Energy Technology Data Exchange (ETDEWEB)

    Taranenko, L. E-mail: lyubov@stcu.kiev.ua; Janouch, F.; Owsiacki, L

    2001-06-01

    This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date 'Program Supporting Y2K Readiness at Ukrainian NPPs' initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ('Improved Zirconium-Based Elements for Nuclear Reactors'), information technologies for nuclear industries ('Ukrainian Nuclear Data Bank in Slavutich'), and radiation health science ('Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers')

  12. Familiality of Psychiatric Disorders and Risk of Postpartum Psychiatric Episodes

    DEFF Research Database (Denmark)

    Bauer, Anna E; Maegbaek, Merete L; Liu, Xiaoqin

    2018-01-01

    OBJECTIVE: Postpartum psychiatric disorders are common and morbid complications of pregnancy. The authors sought to evaluate how family history of psychiatric disorders is associated with postpartum psychiatric disorders in proband mothers with and without a prior psychiatric history by assessing...

  13. 'Catch them young strategy' for the ethical education on radiation technology: A concept of 7 'Es'

    International Nuclear Information System (INIS)

    Bhatia, A.L.

    2005-01-01

    It is the ethics which makes human to make the justifiable use of radiation; there are always two sides of coin; the benefits in the use of ionising radiation and radionuclide should weigh with the risk. Radiation technology has both, the advantages and disadvantages with certain shortcomings; however abandonment of any technology at this juncture may be threat to human civilization. There should always be a rapid evolving process in the development of technology-and so in radiation techniques for the sustenance of human welfare. Hence a ''strategy'' is intended to be proposed and formulated through this Conference; some in-depth and deep rooted engravings on the young minds are proposed which are going to be the part of an enlightened citizens and policy makers of tomorrow who could justifiably implement the right and better use of radiation technology. Thus nowhere it could be taken as the liberal use of double-edged sword. The proposed strategy in the presentation will emphasize on educational policy from light learning activities in the classroom to a short term and long-lasting impact for the young children through planned lessons which could make a mind-etching luminous part of their curriculum. Ethics is an engrave on the minds which are formed after prolonged exposure of stimuli to brain through receptor organs by various ways like by a regular 'dinner table chats', company chat on playground' and 'off-hour chat by teacher' or by self-experience. Radiation education leading to ethics certainly can not be by self-experiences - however the narration, pictures and movies on some of incidences like that of Hiroshima and Nagasaki should be very often and religiously given and shown to them world wide. An impressive and sugar-coated' informal ways of radiation education is needed. The principle of 7 Es i.e. how exposure to experiences, education, enrichment of knowledge, elimination of fear and engravings in mind lead to ethics for radiation which will give us

  14. Development of Modulators Against Degenerative Aging Using Radiation Fusion Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U.; Park, H. R.

    2010-04-15

    In this study, we selected final 20 biomarkers for the degenerative aging to develop radiation aging modeling, and validated a few of selected markers to utilize them in the screening of aging modulators. To select the biomarkers of the degenerative aging, 4 categories of aging-related markers (immune/hematopoiesis, oxidative damage, signaling molecule, lipid metabolism) were comparatively analyzed in irradiated and normally aged biosystems (cell lines or mice). In result, most of the biomarkers showed similar changes by irradiation and normal aging. Regarding the immune/hematopoiesis, the decline of immune cell functions (lymphocyte, NK cell) and Th1/Th2 imbalance, and decreased antigen-presenting of dendritic cells were observed and 10 biomarkers were selected in this category. mtDNA deletion was selected for the oxidative damage marker, 6 biomarkers including p21 and p-FOXO3a for signaling molecule biomarkers, and 3 biomarkers including the adipose tissue weight were selected for lipid metabolism. In addition, the various radiation application conditions by single/factionated irradiation and the periods after the irradiation were investigated for the optimal induction of changes of biomarker, which revealed that total 5Gy of 10 or more fractionated irradiations and 4 months or greather period were observed to be optimal. To found the basis for the screening of natural aging modulators, some selected aging biomarkers were validated by their inhibition by well-known natural agents (EGCG, HemoHIM, etc) in aged cell or mouse model. Additionally, by evaluating the reductive efficacy of 5 natural agents on the degeneration of skin and reproductive organs induced by radiation and chemicals (cyclophosphamide, etc), we established the base for the screening of degenerative diseases by various factors

  15. Development of Modulators Against Degenerative Aging Using Radiation Fusion Technology

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U.; Park, H. R.

    2010-04-01

    In this study, we selected final 20 biomarkers for the degenerative aging to develop radiation aging modeling, and validated a few of selected markers to utilize them in the screening of aging modulators. To select the biomarkers of the degenerative aging, 4 categories of aging-related markers (immune/hematopoiesis, oxidative damage, signaling molecule, lipid metabolism) were comparatively analyzed in irradiated and normally aged biosystems (cell lines or mice). In result, most of the biomarkers showed similar changes by irradiation and normal aging. Regarding the immune/hematopoiesis, the decline of immune cell functions (lymphocyte, NK cell) and Th1/Th2 imbalance, and decreased antigen-presenting of dendritic cells were observed and 10 biomarkers were selected in this category. mtDNA deletion was selected for the oxidative damage marker, 6 biomarkers including p21 and p-FOXO3a for signaling molecule biomarkers, and 3 biomarkers including the adipose tissue weight were selected for lipid metabolism. In addition, the various radiation application conditions by single/factionated irradiation and the periods after the irradiation were investigated for the optimal induction of changes of biomarker, which revealed that total 5Gy of 10 or more fractionated irradiations and 4 months or greather period were observed to be optimal. To found the basis for the screening of natural aging modulators, some selected aging biomarkers were validated by their inhibition by well-known natural agents (EGCG, HemoHIM, etc) in aged cell or mouse model. Additionally, by evaluating the reductive efficacy of 5 natural agents on the degeneration of skin and reproductive organs induced by radiation and chemicals (cyclophosphamide, etc), we established the base for the screening of degenerative diseases by various factors

  16. Radiation technology for sewage sludge treatment: The Argentine project

    International Nuclear Information System (INIS)

    Graino, J.G.

    2001-01-01

    Within the environmental applications of ionizing radiation, disinfection of wastewaters or sewage sludges is one of the most best known. Argentina based the project of a full scale irradiation plant on the gamma irradiation application, utilizing Argentine made Cobalt-60 sources. The design characteristics, process descriptions and costs are included. The research project developed information about the irradiation effects on the sludges with respect to plant performance. For the purpose of oxi-irradiation experiments, a lab-scale pool irradiator was constructed and is described. (author)

  17. New generation of compact electron accelerators for radiation technologies

    International Nuclear Information System (INIS)

    Auslender, V.L.; Balakin, V.E.; Kraynov, G.S.

    1995-01-01

    Compact electron accelerators with energy range 0.25-1.0 MeV and beam power up to 32 kw are described. The feeding high voltage is formed by converter (working frequency 20 khz), coreless step-up transformer and a set of rectifying sections. The rectifying multiplier circuit used in rectifying sections permits to reach voltage gradient along accelerator's axis up to 14 kV/cm. The accelerators with vertical and horizontal position are described. The accelerators can be produced together with local radiation shielding and various underbeam transportation systems for irradiation of different products. Such version can be installed in any room facing general requirements for electric equipment

  18. Conference on Engineering of Scintillation Materials and Radiation Technologies

    CERN Document Server

    Gektin, Alexander

    2017-01-01

    This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of  garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.

  19. Planning report for establishment of research infrastructure for national advanced radiation technology

    International Nuclear Information System (INIS)

    Kuk, Il Hyun; Byun, Myung Woo; Lee, Ju Woon

    2005-04-01

    Establishment of research infrastructure and assistant of industry renovation is needed to achieve technology level-up in the all industry areas including plant engineering, material engineering, polymers, nondestructive tests, radioisotope tracer application, environment engineering, medical science, agriculture, sterilization, sprouting, biotechnology and aerospace, which would be the core motivation of our future industry. Especially for early settlement of research environment for the new RT-specialized national institute, Advanced Radiation Technology Institute (ARTI) in Jeongup, Chonbuk, Korea is essential. For this purpose, an intensive system construction is demanded including: 1) Area of establishment of the system assisting radiation technology advancement: It is expected that radioisotope production for industrial or medical uses and activation of the related researches and training of experts by manufacture, installation, and operation of 30 MeV cyclotron. It also can be contributed in the promotion of national radiation related science and technology by establishment of a basic and advanced analysis system. 2) Area of establishment of training and education system of RT experts. 3) Area of establishment of a system for technological assistance for industry and industry-university-institute network. Contribution to balanced regional development and promotion of national RT-based science through establishment of RT industry cluster with Advanced Radiation Technology Institute (ARTi) at Jeongup as the center figure

  20. Radiation therapy patient education using VERT: combination of technology with human care.

    Science.gov (United States)

    Jimenez, Yobelli A; Lewis, Sarah J

    2018-05-13

    The Virtual Environment for Radiotherapy Training (VERT) system is a recently available tool for radiation therapy education. The majority of research regarding VERT-based education is focused on students, with a growing area of research being VERT's role in patient education. Because large differences in educational requirements exist between students and patients, focused resources and subsequent evaluations are necessary to provide solid justification for the unique benefits and challenges posed by VERT in a patient education context. This commentary article examines VERT's role in patient education, with a focus on salient visual features, VERT's ability to address some of the spatial challenges associated with RT patient education and how to combine technology with human care. © 2018 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  1. Development of radiation protection and measurement technology -A study on the radiation and environmental safety-

    International Nuclear Information System (INIS)

    Chang, Si Young; Seo, Kyeong Won; Yoon, Seok Cheol; Lee, Tae Yeong; Kim, Bong Hwan; Chung, Deok Yeon; Lee, Ki Chang; Kim, Jong Soo; Yoon, Yeo Chang; Kim, Jang Ryeol; Lee, Sang Yoon

    1994-07-01

    Reference radiation fields which can meet the national and international standard and criteria such as the ANSI N13.11 have been designed, produced and evaluated to maintain the national traceability and reliability of the radiation measurement and to provide precise calibration of the various radiation measuring instruments as well as standard irradiation of the personal dosimeters for the performance evaluation. Existing dose calculation algorithm has been improved to correctly evaluate the shallow dose from the β(Ti-204) + γ(Cs-137) mixed radiation exposure by applying the TLD response correction function newly derived in this study. A mathematical algorithm to calculate the internal dose from inhalation of the uranium isotopes has been developed on the basis of the ICRP-30 respiratory tract model. Detailed performance analysis of the KAERI lung counter has been carried out to participate in the intercomparison of lung dosimetry. A preliminary and basic study on the quantitative method of optimal dose reduction based on the ALARA concept has been performed to technically support and strengthen the national radiation protection infrastructure. (Author)

  2. Application of radiation technology to biomass conversion processes

    International Nuclear Information System (INIS)

    Castagnet, A.C.G.

    1984-01-01

    The work carried out at the Instituto de Pesquisas Energeticas e Nucleares (IPEN) is reported for the following research projects: wood powdering of pre-irradiated chips; effect of combining electron beam processing (EBP) with other pretreatments on the saccharification of lignocellulosic materials; radiation immobilization of enzymes. The EBP of eucalyptus chips at an average dose of 1.5 x 10 5 Gy allowed a reduction of the energy required to produce a given weight of wood particles smaller than 300 μm by a factor of five. Wood powder of this particle size proved to be an excellent fuel for suspension firing system and could be used as raw material to feed continuous hydrolytic processes. Conversion efficiencies of 25.8% and 53.4%, respectively, were obtained in the production of reducing sugar by enzymatic hydrolysis of eucalyptus wood and sugarcane bagasse when materials were previously irradiated at 10 5 Gy, pulverized at 50 mesh and impregnated with 2% NaOH solution. Immobilization of cellulase by radiation induced polymerization of hydroxy-ethyl-methacrylate(HEMA) was effective when made at - 78 0 C in the presence of silica gel adsorbents or polyethylene glycol. (Author) [pt

  3. In vivo evaluation on organ degeneration using radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ho; Moon, C. J.; Kim, S. R. [Chonnam National University, Gwangju (Korea, Republic of)

    2010-05-15

    The purpose of this study is to investigate the effect of developed product on skin and reproductive system of animal due to irradiation via in vivo test, and finally acquire fundamental data for evaluation of protective materials on degenerative damages. <1st year> - Evaluate the effect of candidate materials on UV-induced skin damages {center_dot} Test the effect of candidate materials to protect the skin from photodamage, the gross and microscopic changes in the skin of hairless mice and materials-treated mice exposed chronically to UV <2nd year> - Evaluate the effect of developed product (HemoHIM) on radiation-induced reproductive system (female) damages - Evaluate the effect of developed product (HemoHIM) on chemical-induced reproductive system (female) damages <3rd year> - Evaluate the effect of developed product (HemoHIM) on radiation-induced reproductive system (male) damages - Evaluate the effect of developed product (HemoHIM) on chemical-induced reproductive system (male) damages

  4. 0.25μm radiation tolerant technology for space applications

    International Nuclear Information System (INIS)

    Haddad, N.; Brady, F.; Scott, T.; Yoder, J.

    1999-01-01

    Lockheed Martin federal systems has developed a state-of-the-art radiation tolerant 0,25 μm CMOS capability that is compatible with commercial foundries as well as radiation hardened fabrication. A technology test chip was designed, fabricated and evaluated for performance, power and radiation hardness in order to validate the methodology and evaluate the technology. Testing results show that -) the active transistor threshold shift is negligible for 0.25 μm CMOS, -) the hardened STI (shallow trench isolation) can support Mega-rad applications, and -) the holding voltage is well beyond the operating voltage of 2.5 V. This technology is intended to support high density, high performance and low power space applications

  5. Survey of advanced radiation technologies used at designated cancer care hospitals in Japan

    International Nuclear Information System (INIS)

    Shikama, Naoto; Tsujino, Kayoko; Nakamura, Katsumasa; Ishikura, Satoshi

    2014-01-01

    Our survey assessed the use of advanced radiotherapy technologies at the designated cancer care hospitals in Japan, and we identified several issues to be addressed. We collected the data of 397 designated cancer care hospitals, including information on staffing in the department of radiation oncology (e.g. radiation oncologists, medical physicists and radiation therapists), the number of linear accelerators and the implementation of advanced radiotherapy technologies from the Center for Cancer Control and Information Services of the National Cancer Center, Japan. Only 53% prefectural designated cancer care hospitals and 16% regional designated cancer care hospitals have implemented intensity-modulated radiotherapy for head and neck cancers, and 62% prefectural designated cancer care hospitals and 23% regional designated cancer care hospitals use intensity-modulated radiotherapy for prostate cancer. Seventy-four percent prefectural designated cancer care hospitals and 40% regional designated cancer care hospitals employ stereotactic body radiotherapy for lung cancer. Our multivariate analysis of prefectural designated cancer care hospitals which satisfy the institute's qualifications for advanced technologies revealed the number of radiation oncologists (P=0.01) and that of radiation therapists (P=0.003) were significantly correlated with the implementation of intensity-modulated radiotherapy for prostate cancer, and the number of radiation oncologists (P=0.02) was correlated with the implementation of stereotactic body radiotherapy. There was a trend to correlate the number of medical physicists with the implementation of stereotactic body radiotherapy (P=0.07). Only 175 (51%) regional designated cancer care hospitals satisfy the institute's qualification of stereotactic body radiotherapy and 76 (22%) satisfy that of intensity-modulated radiotherapy. Seventeen percent prefectural designated cancer care hospitals and 13% regional designated cancer care hospitals

  6. Status Report of National Radiation Fusion Technology R and D

    International Nuclear Information System (INIS)

    Lee, Young Cheol; Woo, Byun Myung; Koo, Hwang Duk

    2007-07-01

    Although RT Industry now occupy the high portion of world market size, about $500 billions, it would be expanded steeply to U$1,100 billions in 2010, and U$4 trillions in 2030 when using PV (present value) methodology. But domestic RT industry is the level of 'the dawn stage'. Recently, individual government department begins to perceive the importance of RT industry. In order to promote Domestic RT technology and industry as a growth dynamic of next generation of 21 century, - Intensive R and D investment policy driven by the Ministry of Science and Technology - In the side of efficient allocation of resources, centralizing in national professional research institute and bringing to effect is desirable

  7. Comparison of curricula in radiation technology in the field of radiotherapy in selected European Union countries

    International Nuclear Information System (INIS)

    Janaszczyk, A.; Bogusz-Czerniewicz, M.

    2011-01-01

    Background: Radiation technology is a discipline of medical science which deals with diagnostics, imaging and radiotherapy, that is treatment by ionizing radiation. Aim: To present and compare the existing curricula of radiation technology in selected EU countries. Materials and methods: The research work done for the purpose of the comparative analysis was based on the methods of diagnostic test and document analysis. Results: The comparison of curricula in selected countries, namely Austria, France, the Netherlands and Poland, showed that admission criteria to radiation technology courses are varied and depend on regulations of respective Ministries of Health. The most restrictive conditions, including written tests in biology, chemistry and physics, and psychometric test, are those in France. Contents of basic and specialist subject groups are very similar in all the countries. The difference is in the number of ECT points assigned to particular subjects and the number of course hours offered. The longest practical training is provided in the Netherlands and the shortest one in Poland. The duration of studies in the Netherlands is 4 years, while in Poland it is 3 years. Austria is the only country to offer extra practical training in quality management. Conclusion: Graduates in the compared EU countries have similar level of qualifications in the fields of operation of radiological equipment, radiotherapy, nuclear medicine, foreign language and specialist terminology in the field of medical and physical sciences, general knowledge of medical and physical sciences, and detailed knowledge of radiation technology. (authors)

  8. Radiation chemical technology of industrial polymer reagents development

    International Nuclear Information System (INIS)

    Kudaibergenov, S.; Nurkeeva, Z.; Mun, G.; Sigitov, V.; Maltzeva, R.; Petukhov, V.; Tchekushin, A.

    1996-01-01

    The goal of this project is to develop the technology of producing of polymeric reagents from the raw materials of Kazakstan for application in medicine, agriculture, enhanced oil recovery and ecology. To achieve the objectives the next technological lines or operations (Blocks) should be realized: 1. Rectification column and distilling apparatus for purification of monomers and solvents including analytical equipment to control the quality of the final product; 2. Irradiation of reaction mixture by either gamma-irradiation source Co-60; 3. Purification of polymer reagents; 4. Producing of commercial products. It is supposed that the power irradiation devices for producing of hydrogels will be mounted on the research atomic reactor of the Almaty Branch of the Institute of Atomic Energy of the National Nuclear Center. There are high qualification personal which has much experience in radioactive materials operating. Irradiation technologies will provide the low cost of hydrogels, approximately 250-300 US$ per 1 ton. Expected results. One can expect that the realization of this project allows to produce hydrogels in industrial scale to cover partly the requirements of medicine, agriculture, oil industry and ecology

  9. Overcoming the fear of radiation: the key to the golden age of nuclear technology

    International Nuclear Information System (INIS)

    Cuttler, J.M.

    1996-01-01

    Canadian nuclear technology is threatened by radiophobia. It stems from the misuse of the linear dose-response model to label radiation as a carcinogen and to predict the number of excess fatal cancers to be expected from exposures to low-level radiation. Ironically, the actual response seems to be a beneficial effect due to the stimulation of the defense mechanisms that deal with both spontaneous and externally-induced cell damage. The scientific community should act to discourage improper use of the linear model and to inform Canadians of the safety of low-level radiation, to safeguard our nuclear heritage. (author)

  10. Technologies pioneered by LHC. Superconducting magnet and radiation-tolerant tracking detector

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Unno, Yoshinobu

    2007-01-01

    In the LHC project of proton-proton collisions exploring the energy frontier, superconducting magnets and radiation-tolerant tracking detector play fundamental roles as key technologies. The superconducting magnets contribute to bending and focusing particle beam by using high magnetic field created with the NbTi superconductor cooled to the superfluid temperature of He (1.9 K). In order to overcome the unprecedented radiation damage and to capture the particles emerging with high energy and high density, the large area and highly radiation-tolerant silicon semiconductor tracking detector has been developed for the LHC experiment. (author)

  11. Technology transfer on radiation processing of natural polymer in Japan

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2007-01-01

    Carboxymethyl cellulose (CMC) crosslinked at paste-like condition forms hydrogel. The hydrogel was applied as a coolant to keep flesh of vegetables and fish at low temperature. Shochu (Japanese liquor of 25% alcohol content) residue produced by fermentation of rice and sweet potato was rapidly converted to animal feed by water absorption of CMC dry gel. Poly(lactic acid) crosslinked by irradiation in the presence of triallyl isocyanurate, TAIC was soaked in plasticizer to give softness. A maximum of 60 wt% plasticizer was incorporated in PLA resin and flexible PLA sheet was obtained. Growth of flowers was accelerated when sprayed with radiation degraded alginate shipment schedule of the flowers was advanced to one week. (author)

  12. Development of multifunctional radiation monitoring instrument based on PLC technology

    International Nuclear Information System (INIS)

    Li Ziqiang; Zhu Yuye; Zhuang Min

    2007-01-01

    This eight-channel multifunctional Radiation Monitoring Instrument is developed by making use of the built-in high-speed counters and the powerful instruction system of the SIEMES SIMATICS S7 series Programmable Logic Controllers (PLC) to record and process the pulse signal output by the detectors. The instrument with functions, such as analog and digital display, digital storage of digital data, pulse signal generator, network communication, can connect various types of pulse detectors. The initial process can be translated between Graduation Apparatus method and Formula method. the logicality of the high-dosage warning system is processed itself. The signal output will drive the alarm lights and bell directly. This paper mainly describes the configuration, programming and feature of the instrument. (authors)

  13. Radiation Testing, Characterization and Qualification Challenges for Modern Microelectronics and Photonics Devices and Technologies

    Science.gov (United States)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    At GOMAC 2007, we discussed a selection of the challenges for radiation testing of modern semiconductor devices focusing on state-of-the-art memory technologies. This included FLASH non-volatile memories (NVMs) and synchronous dynamic random access memories (SDRAMs). In this presentation, we extend this discussion in device packaging and complexity as well as single event upset (SEU) mechanisms using several technology areas as examples including: system-on-a-chip (SOC) devices and photonic or fiber optic systems. The underlying goal is intended to provoke thought for understanding the limitations and interpretation of radiation testing results.

  14. The fourth UNDP/RCA/IAEA/meeting of national co-ordinators for radiation technology. Report

    International Nuclear Information System (INIS)

    1996-01-01

    The objectives of the Meeting were to provide information for the Terminal Report of the joint UNDP/RCA/IAEA project RAS/92/073 and to look into future activities under the Radiation Technology project. The main achievements of this Meeting are: The Meeting reviewed the implementation of all radiation technology sub-projects and agreed that all of them were successful but not yet equally developed among RCA Member States. The Meeting recommended to have three projects carried out in the form of Co-ordinated Research Programs and requested the IAEA to find new ways to implement the organized in RCA Member States to carry these CRPs out. Figs, tabs

  15. Ionizing radiations in aseptic bottling: a comparison between technologies and safety requirements [beverages

    International Nuclear Information System (INIS)

    Bottani, E.; Rizzo, R.; Vignali, G.

    2006-01-01

    Ionizing radiations, commonly adopted in the medical field, are recently experiencing a wide diffusion in industrials applications. One of the most widespread uses of ionizing radiations refers to foodstuffs and packaging sterilization. In the aseptic bottling area, the application of this technology on polymeric caps is quickly developing. In such application, sterilization could be obtained with beta-rays, generated by an electron beam, or with gamma-rays, emitted by a radioactive source. After a brief explanation of physical properties of ionizing radiations, the aim of this paper is to discuss the use of radiations in aseptic bottling. Based on results available in literature, radiations effects on treated materials are discussed, as well as safety requirements aiming at reducing risks related to radiation exposure. Finally, sterilization plants with gamma and beta radiation are compared, with the aim of examining functioning principles and management complexity. As a result of the comparison between the two technologies, the electron beam (beta-rays) adoption for caps sterilization process proves to be preferable [it

  16. ROC Analysis for Evaluation of Radiation Biodosimetry Technologies

    International Nuclear Information System (INIS)

    Williams, Benjamin B.; Swartz, Harold M.; Flood, Ann Barry; Demidenko, Eugene

    2016-01-01

    Receiver operating characteristic (ROC) analysis is a fundamental tool used for the evaluation and comparison of diagnostic systems that provides estimates of the combinations of sensitivity and specificity that can be achieved with a given technique. Along with critical considerations of practical limitations, such as throughput and time to availability of results, ROC analyses can be applied to provide meaningful assessments and comparisons of available biodosimetry methods. Accordingly, guidance from the Food and Drug Administration to evaluate biodosimetry devices recommends using ROC analysis. However, the existing literature for the numerous biodosimetry methods that have been developed to address the needs for triage either do not contain ROC analyses or present ROC analyses where the dose distributions of the study samples are not representative of the populations to be screened. The use of non-representative sample populations can result in a significant spectrum bias, where estimated performance metrics do not accurately characterize the true performance under real-world conditions. Particularly, in scenarios where a large group of people is screened because they were potentially exposed in a large-scale radiation event, directly measured population data do not exist. However, a number of complex simulations have been performed and reported in the literature that provide estimates of the required dose distributions. Based on these simulations and reported data about the output and uncertainties of biodosimetry assays, we illustrate how ROC curves can be generated that incorporate a realistic representative sample. A technique to generate ROC curves for biodosimetry data is presented along with representative ROC curves, summary statistics and discussion based on published data for triage-ready electron paramagnetic resonance in vivo tooth dosimetry, the dicentric chromosome assay and quantitative polymerase chain reaction assay. We argue that this

  17. Healing wounds - radiation processing technology for hydrogel dressing

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2009-01-01

    Uses of hydrogels are known and have several applications in medical field. Drug delivery devices, contact lenses, wound dressing, artificial cartilage's or membranes, vascular prosthesis, gel coated catheters etc., are some of the examples. Due to direct relevance to human health, scientists have been continuously exploring these systems. Generally, hydro (water) gels contain 30-90% of water entrapped in a three dimensional network structure of a hydrophilic polymer. The large water content makes them highly bio-compatible and therefore preferred for use as biomaterials. Some of the hydrophilic polymers used in these applications include poly (vinyl pyrrolidone), poly (ethylene oxide), poly (vinyl alcohol) and poly (acrylic acid ). Depending upon the nature of application, the size of these hydrogel can vary from nanometers (nanogels, injectable hydrogels) to centimeters to meters (wound dressing, fire blankets, drug delivery devices and implants). BARC hydrogel dressings have been so far used for treating burns, leprosy ulcers, animal bites, diabetic foot ulcers, herpes, fresh scars, bullet injuries, boils, pimples, sun burns, abrasion, surgical wounds of breast cancer, as bolus for radiation therapy in cancer etc. The use of gels have shown excellent result in diabetic ulcers which definitely provides an alternate to expensive biotech products and relief to expanding population of diabetics in India. Its application and some of the examples are shown in the paper. Other hydrogel based products which are under development in the authors laboratory are radiation processed silver nano-particle hydrogels to treat infected wounds and fire blankets for whole body coverage for protection from fire for defense personnel and fire service people

  18. Review of radiation effects on ReRAM devices and technology

    Science.gov (United States)

    Gonzalez-Velo, Yago; Barnaby, Hugh J.; Kozicki, Michael N.

    2017-08-01

    A review of the ionizing radiation effects on resistive random access memory (ReRAM) technology and devices is presented in this article. The review focuses on vertical devices exhibiting bipolar resistance switching, devices that have already exhibited interesting properties and characteristics for memory applications and, in particular, for non-volatile memory applications. Non-volatile memories are important devices for any type of electronic and embedded system, as they are for space applications. In such applications, specific environmental issues related to the existence of cosmic rays and Van Allen radiation belts around the Earth contribute to specific failure mechanisms related to the energy deposition induced by such ionizing radiation. Such effects are important in non-volatile memory as the current leading technology, i.e. flash-based technology, is sensitive to the total ionizing dose (TID) and single-event effects. New technologies such as ReRAM, if competing with or complementing the existing non-volatile area of memories from the point of view of performance, also have to exhibit great reliability for use in radiation environments such as space. This has driven research on the radiation effects of such ReRAM technology, on both the conductive-bridge RAM as well as the valence-change memories, or OxRAM variants of the technology. Initial characterizations of ReRAM technology showed a high degree of resilience to TID, developing researchers’ interest in characterizing such resilience as well as investigating the cause of such behavior. The state of the art of such research is reviewed in this article.

  19. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gunja, Ateka; Pandey, Yagya [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Xie, Hui [Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL (United States); Faculty of Health Sciences, Simon Fraser University, Burnaby, BC (Canada); Wolska, Beata M. [Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL (United States); Shroff, Adhir R.; Ardati, Amer K. [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States); Vidovich, Mladen I., E-mail: miv@uic.edu [Department of Veterans Affairs, Jesse Brown VA Medical Center, Chicago, IL (United States); Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL (United States)

    2017-04-15

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm{sup 2}). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm{sup 2} ± 74.0 vs. 41.9 mGy cm{sup 2} ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image

  20. Image noise reduction technology reduces radiation in a radial-first cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Gunja, Ateka; Pandey, Yagya; Xie, Hui; Wolska, Beata M.; Shroff, Adhir R.; Ardati, Amer K.; Vidovich, Mladen I.

    2017-01-01

    Background: Transradial coronary angiography (TRA) has been associated with increased radiation doses. We hypothesized that contemporary image noise reduction technology would reduce radiation doses in the cardiac catheterization laboratory in a typical clinical setting. Methods and results: We performed a single-center, retrospective analysis of 400 consecutive patients who underwent diagnostic and interventional cardiac catheterizations in a predominantly TRA laboratory with traditional fluoroscopy (N = 200) and a new image noise reduction fluoroscopy system (N = 200). The primary endpoint was radiation dose (mGy cm"2). Secondary endpoints were contrast dose, fluoroscopy times, number of cineangiograms, and radiation dose by operator between the two study periods. Radiation was reduced by 44.7% between the old and new cardiac catheterization laboratory (75.8 mGy cm"2 ± 74.0 vs. 41.9 mGy cm"2 ± 40.7, p < 0.0001). Radiation was reduced for both diagnostic procedures (45.9%, p < 0.0001) and interventional procedures (37.7%, p < 0.0001). There was no statistically significant difference in radiation dose between individual operators (p = 0.84). In multivariate analysis, radiation dose remained significantly decreased with the use of the new system (p < 0.0001) and was associated with weight (p < 0.0001), previous coronary artery bypass grafting (p < 0.0007) and greater than 3 stents used (p < 0.0004). TRA was used in 90% of all cases in both periods. Compared with a transfemoral approach (TFA), TRA was not associated with higher radiation doses (p = 0.20). Conclusions: Image noise reduction technology significantly reduces radiation dose in a contemporary radial-first cardiac catheterization clinical practice. - Highlights: • Radial arterial access has been associated with higher doses compared to femoral access. • In a radial-first cardiac catheterization laboratory (90% radial) we examined radiation doses reduction with a contemporary image-noise compared to

  1. The Impact of Advanced Technologies on Treatment Deviations in Radiation Treatment Delivery

    International Nuclear Information System (INIS)

    Marks, Lawrence B.; Light, Kim L.; Hubbs, Jessica L.; Georgas, Debra L.; Jones, Ellen L.; Wright, Melanie C.; Willett, Christopher G.; Yin Fangfang

    2007-01-01

    Purpose: To assess the impact of new technologies on deviation rates in radiation therapy (RT). Methods and Materials: Treatment delivery deviations in RT were prospectively monitored during a time of technology upgrade. In January 2003, our department had three accelerators, none with 'modern' technologies (e.g., without multileaf collimators [MLC]). In 2003 to 2004, we upgraded to five new accelerators, four with MLC, and associated advanced capabilities. The deviation rates among patients treated on 'high-technology' versus 'low-technology' machines (defined as those with vs. without MLC) were compared over time using the two-tailed Fisher's exact test. Results: In 2003, there was no significant difference between the deviation rate in the 'high-technology' versus 'low-technology' groups (0.16% vs. 0.11%, p = 0.45). In 2005 to 2006, the deviation rate for the 'high-technology' groups was lower than the 'low-technology' (0.083% vs. 0.21%, p = 0.009). This difference was caused by a decline in deviations on the 'high-technology' machines over time (p = 0.053), as well as an unexpected trend toward an increase in deviations over time on the 'low-technology' machines (p = 0.15). Conclusions: Advances in RT delivery systems appear to reduce the rate of treatment deviations. Deviation rates on 'high-technology' machines with MLC decline over time, suggesting a learning curve after the introduction of new technologies. Associated with the adoption of 'high-technology' was an unexpected increase in the deviation rate with 'low-technology' approaches, which may reflect an over-reliance on tools inherent to 'high-technology' machines. With the introduction of new technologies, continued diligence is needed to ensure that staff remain proficient with 'low-technology' approaches

  2. Using tablet technology in operational radiation safety applications.

    Science.gov (United States)

    Phillips, Andrew; Linsley, Mark; Houser, Mike

    2013-11-01

    Tablet computers have become a mainstream product in today's personal, educational, and business worlds. These tablets offer computing power, storage, and a wide range of available products to meet nearly every user need. To take advantage of this new computing technology, a system was developed for the Apple iPad (Apple Inc. 1 Infinite Loop Cupertino, CA 95014) to perform health and safety inspections in the field using editable PDFs and saving them to a database while keeping the process easy and paperless.

  3. Innovation Priorities in Nuclear and Radiation Technologies in Russia. View from Skolkovo

    International Nuclear Information System (INIS)

    Fertman, A.; Kovalevich, D.; Turtikov, V.; Zaytseva, N.

    2012-01-01

    The direction for the modernization and technological development of 'Nuclear Technologies' sector of the Russian economy comprises a group of scientific and engineering subjects (atomic engineering, technologies on the basis of radiation, change of properties of materials, radiation resistant microelectronics, etc.), and serves as the foundation of one of the most high-tech industries. The innovative development of nuclear technologies is an integral condition for the strengthening (and in some directions of conquering) a country's position as a global technological leader and preservation of defensive capability of the nation. For this reason, nuclear technologies became one of the priority areas for the activity of the Skolkovo Center. The wide opportunities offered by the application of nuclear technologies were already clear at the deployment stage of the 'Nuclear Project - 1'. In 1958, at the 2nd International conference on the peaceful use of nuclear energy in Geneva, the USSR presented more than 200 reports and communiques in all civil use of atomic energy directions.One of the major results of the development of the nuclear branch have become the developments in the sphere of control of radiation and magnetic fields (radiation technologies). This group of technologies have actively developed in collaboration with design and manufacturing of different types of equipment, including accelerators, neutron generators, lasers, HF-systems, detectors of particles and radiation, microscopes and telescopes, microwave microelectronics, etc. Today these technologies and equipment are used in a variety of other (non-power and not military) markets - and the list of these markets grows constantly. Among the fastest growing ones, we can list the markets of nuclear medicine, sterilization and disinfection, safety and non-destructive testing, ecology and water processing, extraction and the processing of minerals. Historically, the development of nuclear technologies

  4. New technologies, virtual reality and multimedia, in Radiation Protection training

    International Nuclear Information System (INIS)

    Felipe, A.; Sanchez-Mayoral, M. L.; Lamela, B.; Merino, A.; Sarti, F.

    2003-01-01

    Iberdrola Ingenieria y Consultoria (Iberinco) has developed some computer applications based in New Technologies, Virtual Reality and Multimedia, with the aim to optimise the formation and training of professionally exposed workers as well as to inform the public. The use of the new technologies could be an important help for the workers training. Virtual Reality Projects developed by Iberinco are: a) CIPRES: Interactive Calculations of Radiological Protection in a Simulation Environmental and, b) ACEWO: Workers Control Access to Nuclear Power Plants, virtual Reality could be directly applicable to several aspects related with Radiological Protection Training, for example. An application that workers could used to learn the main aspects of Radiological Protection related with: a) Physical concepts, b) Regulations, c) Use of protective clothing, d) Access into and exit out controlled areas, e) ALARA criterion. An examples is the project ACEWO. A training program based on Virtual Reality systems with simulations of procedures in which the operators could receive high doses. In this way, the operation time and dose could be minimised according to the ALARA criterion owing to the ability of repeating the exercise, or the work, as many times as be necessary, like project CIPRES. Iberinco has been developed an educational CD multimedia on nuclear energy and the protection measures foreseen in the emergency plans for the Spanish Civil Protection Agency, with the aim of being distributed to all the schools placed near a nuclear power plant. (Author) 4 refs

  5. Degradation of bipolar and Bicmos technologies by ionizing radiations: quality assurance implication for the space industry

    International Nuclear Information System (INIS)

    Bornora, L.

    1998-01-01

    Reproducing the increased degradation of bipolar/BICMOS technologies due to low dose rates of ionizing radiations remains a still unsolved problem. Several experimental approaches, involving factors like temperature or components and circuits polarization, have been explored. Thanks to the results obtained, the principles of an adaptation of the present day test methods could have been proposed. Technological analyses of components complete this work and allow to better understand the phenomena involved and to improve the search for solutions. (J.S.)

  6. Perspectives of radiological protection facing the development of new medical technologies with ionizing radiations

    International Nuclear Information System (INIS)

    Arranz, L.

    1993-01-01

    The development of medical technologies with ionizing radiations is always showing a parallel effort on risks control. These technologies are a safe tool for accurate diagnosis and the elaboration of effective treatments. However it is not foreseen to achieve a decrease of the equivalent effective annual dose person due to medical irradiation (1.06 m Sv for OECD countries), because of the population growing and aging

  7. Application of radiation technology in healthcare: cancer treatment

    International Nuclear Information System (INIS)

    Shrivastava, S.K.

    2016-01-01

    Radiotherapy is a standard treatment used as part of the multimodality treatment of several cancers. It is frequently employed in the role of primary and adjuvant therapy for cancers. Historically, RT planning was guided by fluoroscopic or X-ray imaging that provided two dimensional data to determine areas to be treated by using bony landmarks. Limited soft tissue delineation was sometimes possible, for example, by instilling contrast into the bowel and bladder. Definitive/Radical Chemoradiation in cancers significantly improved the local control and survival even in locally advanced cases, but at the cost of increased toxicity due to combined modality of treatment. For the past few years, there was increasing focus on attempts to reduce normal tissue toxicity especially in pelvic tumors. This concept leads to a major transition in radiotherapy techniques; from classical 2-dimensional approach to 3-dimensional high precision approach. These radiation techniques, involve various steps and each step plays a pivotal role in their successful implementation. The delivery technique is a critical part of the success of radiotherapy for these patients. Careful consideration of the related factors involved and critical assessment of the techniques available are fundamental to good and effective practice. Number of linear accelerators are growing rapidly in India especially in private centres, however there is need to keep same pace in government institutions

  8. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    Science.gov (United States)

    Karim, M. K. A.; Hashim, S.; Bradley, D. A.; Bahruddin, N. A.; Ang, W. C.; Salehhon, N.

    2016-03-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques.

  9. Assessment of knowledge and awareness among radiology personnel regarding current computed tomography technology and radiation dose

    International Nuclear Information System (INIS)

    Karim, M K A; Hashim, S; Bahruddin, N A; Ang, W C; Salehhon, N; Bradley, D A

    2016-01-01

    In this paper, we evaluate the level of knowledge and awareness among 120 radiology personnel working in 7 public hospitals in Johor, Malaysia, concerning Computed Tomography (CT) technology and radiation doses based on a set of questionnaires. Subjects were divided into two groups (Medical profession (Med, n=32) and Allied health profession (AH, n=88). The questionnaires are addressed: (1) demographic data (2) relative radiation dose and (3) knowledge of current CT technology. One-third of respondents from both groups were able to estimate relative radiation dose for routine CT examinations. 68% of the allied health profession personnel knew of the Malaysia regulations entitled ‘Basic Safety Standard (BSS) 2010’, although notably 80% of them had previously attended a radiation protection course. No significant difference (p < 0.05) in mean scores of CT technology knowledge detected between the two groups, with the medical professions producing a mean score of (26.7 ± 2.7) and the allied health professions a mean score of (25.2 ± 4.3). This study points to considerable variation among the respondents concerning their understanding of knowledge and awareness of risks of radiation and CT optimization techniques. (paper)

  10. Technology Development for Radiation Dose Measurement and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Hwan; Chang, S. Y.; Lee, T. Y. (and others)

    2007-06-15

    The correction factors essential for the operation of In-Vivo counting system were produced and implemented into a field operation for the improvement of accuracy in measurement of the radioactivity inside a human body. The BiDAS2007 code which calculate an internal dose was developed by upgrading the former code prepared in the previous stage of this project. The method of using the multibioassy data, the maximum likelihood function and the Bayesian statistics were established to an internal dose based on the measurement data of radioactivity, intakes and retention of radioactivity in a human body and it can improve the accuracy in estimation of the intakes of radioactivity and the committed effective dose equivalent. In order to solve the problem of low detection efficiency of the conventional Bonner Sphere (BS) to a high energy neutron, the extended BS's were manufactured and the technique for neutron field spectrometry was established. The fast neutron and gamma spectrometry system with a BC501A scintillation detector was also prepared. Several neutron fluence spectra at several nuclear facilities were measured and collected by using the extended BS. The spectrum weighted responses of some neutron monitoring instruments were also derived by using these spectra and the detector response functions. A high efficient TL material for the neutron personal dosimeter was developed. It solved the main problem of low thermal stability and high residual dose of the commercial TLDs and has the sensitivity to neutron and to gamma radiation with 40 and 10 times higher respectively than them.

  11. Progress report on nuclear science and technology in China (Vol.1). Proceedings of academic annual meeting of China Nuclear Society in 2009, No.8--radiation research and radiation technology

    International Nuclear Information System (INIS)

    2010-11-01

    Progress report on nuclear science and technology in China (Vol. 1) includes 889 articles which are communicated on the first national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the eighth one, the content is about radiation study, radiation technology, isotope and nuclear agriculture

  12. International symposium on radiation technology for conservation of the environment. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This document includes extended synopses of 54 presentations given at the International Symposium on Radiation Technology for the conservation of the Environment held in Zakopane (near Cracow), Poland, 8-12 September 1997. Each presentation is separately indexed. Refs, figs, tabs.

  13. International symposium on radiation technology for conservation of the environment. Extended synopses

    International Nuclear Information System (INIS)

    1997-09-01

    This document includes extended synopses of 54 presentations given at the International Symposium on Radiation Technology for the conservation of the Environment held in Zakopane near Cracow), Poland, 8-12 September 1997. Each presentation is separately indexed. Refs, figs, tabs

  14. Micro-Mini & Nano-Dosimetry & Innovative Technologies in Radiation Therapy (MMND&ITRO2016)

    Science.gov (United States)

    2017-01-01

    The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end-to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation

  15. Novel technologies using radiation and somatic embryogenesis for Kenaf improvement

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Siti Mariam Mohd Nahar; Siti Hajar Mohd Nahar; Abdul Rahim Harun; Azhar Mohamad; Sobri Hussein

    2010-01-01

    Full text: Kenaf (Hibiscus cannabinus L.) is a plant in the Malvaceae family, similar to roselle (Hibiscus sabdariffa), cotton (Gossypium hirsutum L.) and okra (Abelmoschus esculentus), holds a promising potential in the Malaysian bio composite industry. Its long fibres are suitable in the process of making a number of products such as pulp and paper, fibre and particle boards, as well as fibre reinforced plastic components and chemical absorbent. Most varieties of kenaf are photo period sensitive and vegetative growth increases until the daylight period becomes less than 12 h 30 min. flowering is then initiated and the vegetative growth rate declines. At present, most of the varieties planted by the farmers produced very low yield, between 3-5 tons/ha. The aim of this research proposal is to study the potential of using nuclear technique with the use radiation in combination with biotechnology to induce genetic variability in kenaf using somatic embryogenesis. Since mutation is a single cell event, irradiation of cell cultures such as somatic embryos will induce high rate of mutation for selection of desired traits. One of the main objectives of the project was to establish an efficient and productive regeneration system for intact plants from somatic embryos obtained from the original mother plant varieties: G4, V36 dan G393. Once regeneration protocol has been optimized, somatic embryos were irradiated using both acute (high dose rate) and chronic (lower dose rate) gamma irradiation with effective doses (2-3 doses). It takes between 4-5 months to reach maximum height of 4-6 meters from seed propagated plants before they can be harvested. With the use of in vitro mutagenesis, screening and selection of new mutant lines with traits of interest can be achieved within a short period of time (3-5 years). Field evaluations were carried out in collaboration with National Kenaf and Tobacco Board (NKTB) and Kelantan Biotech Corporation Sdn. Bhd. targeted for desired

  16. Radiation-Induced Graft Polymerization: Gamma Radiation and Electron Beam Technology for Materials Development

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Cabalar, Patrick Jay; Lopez, Girlie Eunice; Abad, Lucille V.

    2015-01-01

    The formation of functional hybrid materials by attaching polymer chains with advantageous tailored properties to the surface of a base polymer with desirable bulk character is an attractive application of graft copolymerization. Radiation-induced graft polymerization (RIGP) has been a popular approach for surface modification of polymers because of its merits over conventional chemical processes. RIGP, which proceeds primarily via free radical polymerization process, has the advantages such as simplicity, low cost, control over process and adjustment of the materials composition and structure. RIGP can be performed using either electron beam or gamma radiation and it can be applied to both synthetic and natural polymers. These merits make RIGP a popular research topic worldwide. Moreover, the materials synthesized and produced via RIGP has found applications, and were proposed to produce continuous impact, in the fields of medicine, agriculture, pollution remediation, rare earth and valuable metals recovery, fuel cell membrane synthesis and catalysis to name a few. From 2012 our group has performed electron beam and gamma radiation-induced graft polymerization of various monomers onto polymers of natural and synthetic origins (e.g. monomers - glycidyl methacrylate, styrene, acrylonitrile, N,N-dimethylaminoethyl methacrylate; base polymers – polyethylene/polypropylene nonwoven fabric, polypropylene nonwoven fabric pineapple fibers, cellulose nonwoven fabric microcrystalline cellulose). We tested these grafted materials for heavy metals (Pb, Ni, Cu) and organic molecule removal from aqueous solutions and E. coli activity (using reversible addition fragmentation chain transfer RAFT mediated grafting). The results clearly showed the success of materials modified via FIGP in these applications. Currently, we are studying the applications of grafted materials on treatment of waste waters from tanning industry, value addition to abaca nonwoven fabrics cell sheet

  17. The key network communication technology in large radiation image cooperative process system

    International Nuclear Information System (INIS)

    Li Zheng; Kang Kejun; Gao Wenhuan; Wang Jingjin

    1998-01-01

    Large container inspection system (LCIS) based on radiation imaging technology is a powerful tool for the customs to check the contents inside a large container without opening it. An image distributed network system is composed of operation manager station, image acquisition station, environment control station, inspection processing station, check-in station, check-out station, database station by using advanced network technology. Mass data, such as container image data, container general information, manifest scanning data, commands and status, must be on-line transferred between different stations. Advanced network communication technology is presented

  18. A survey of clinical performance skills requirements in medical radiation technology

    International Nuclear Information System (INIS)

    Rowntree, P.A.; Veitch, J.D.

    1993-01-01

    This paper outlines the reasons behind carry out a study of clinical performance skills requirements and the method being used to gather data. It describes the changes which have occurred in radiographer education in Queensland, the broader impact brought about by changes in professional body requirements and the development of a Competency based Standards Document for the profession. The paper provides examples of the survey design and layout being developed for distribution to third year students in the Medical Imaging Technology major of the Bachelor of Applied Science (Medical Radiation Technology) Queensland University of Technology, graduates and clinical departments in Queensland. 1 tab., 1 fig

  19. The present status and perspectives on the development of radiation chemistry and technology in Poland

    International Nuclear Information System (INIS)

    Kroh, J.; Rosiak, J.; Wolszczak, M.; Bobrowski, K.; Chmielewski, A. G.; Zimek, Z.; Forys, M.; Kalecinski, J.

    2001-01-01

    Having in mind the world research trends in the field of radiation chemistry and technology, the development of this domain in Poland has been discussed in this report. The condition of apparatus and man power at the Polish scientific institutions and academic centers acting in the above mentioned scientific and technological area has been analyzed. It has been shown that the basic research achievements of national institutions are placing them among the most advanced foreign centers. As to the implemented technological elaborations it may be said that is one of the few high-tech fields in which Poland can compete with the most advanced centers in the world. (author)

  20. Radiation source states on-line supervision system design and implementation based on RFID technology

    International Nuclear Information System (INIS)

    Yang Binhua; Ling Qiu; Yin Guoli; Yang Kun; Wan Xueping; Wang Kan

    2011-01-01

    It puts forward radiation source states on-line monitoring resolution based on RFID technology. Firstly, the system uses RFID in real-time transmission of the radiation dose rate, and monitors the radiation source states and dose rate of the surrounding environment on-line. Then it adopts regional wireless networking mode to construct enterprise level monitoring network, which resolves long-distance wiring problems. And then it uses GPRS wireless to transport the real-time data to the monitoring center and the government supervision department, By adopting randomly dynamic cording in display update every day, it strengthens the supervision of the radiation source. At last this system has been successful applied to a thickness gauge project, which verifies the feasibility and practicality is good. (authors)

  1. The development and current status of the technology of isotope and radiation in China

    Energy Technology Data Exchange (ETDEWEB)

    Jinrong, Z. [China Institute of Atomic Energy, Beijing, (China). Department of Isotopes

    1997-10-01

    The research and applications of isotope technology and radiation sources in China are presented. Many effort were directed towards production of radiopharmaceuticals, radiation sources, radiation treatment and radioactive tracers. Reactor and accelerator produced radioisotopes contributed to and will further accelerate the development of nuclear medicine in China. Recently, much attention has been paid on tumor therapy mainly with radiolabelled monoclonal antibody, radiolabelled microsphere and colloid, bone-seeking agents, and radiolabelled Octreotide. Radioimmunoassay has been widely used with many convenient kits available. There are above 30 radioimmunoassay kit produces and more than 60 radioimmunoassay centers. Recently the advance is mainly in solid-phase separation process and in radioimmunoassay method, including some nonradioactive immunoassay methods, such as enzyme immunoassay, fluorescence immunoassay, and chemiluminescence immunoassay. Kits for enzyme immunoassay have been put into clinical use. Various radiation sources are produced for medical purposes and for use in nuclear power stations 4 refs., 8 tabs.

  2. The development and current status of the technology of isotope and radiation in China

    International Nuclear Information System (INIS)

    Jinrong, Z.

    1997-01-01

    The research and applications of isotope technology and radiation sources in China are presented. Many effort were directed towards production of radiopharmaceuticals, radiation sources, radiation treatment and radioactive tracers. Reactor and accelerator produced radioisotopes contributed to and will further accelerate the development of nuclear medicine in China. Recently, much attention has been paid on tumor therapy mainly with radiolabelled monoclonal antibody, radiolabelled microsphere and colloid, bone-seeking agents, and radiolabelled Octreotide. Radioimmunoassay has been widely used with many convenient kits available. There are above 30 radioimmunoassay kit produces and more than 60 radioimmunoassay centers. Recently the advance is mainly in solid-phase separation process and in radioimmunoassay method, including some nonradioactive immunoassay methods, such as enzyme immunoassay, fluorescence immunoassay, and chemiluminescence immunoassay. Kits for enzyme immunoassay have been put into clinical use. Various radiation sources are produced for medical purposes and for use in nuclear power stations

  3. History of International Workshop on Mini-Micro- and Nano- Dosimetry (MMND) and Innovation Technologies in Radiation Oncology (ITRO)

    Science.gov (United States)

    Rosenfeld, Anatoly B.; Zaider, Marco; Yamada, Josh; Zelefsky, Michael J.

    2017-01-01

    The biannual MMND (former MMD) - IPCT workshops was founded in collaboration between the Centre for Medical Radiation Physics, University of Wollongong and the Memorial Sloan Kettering Cancer Center (MSKCC) in 2001 and has become an important international multidisciplinary forum for the discussion of advanced quality assurance (QA) dosimetry technology for radiation therapy and space science, as well as advanced technologies for clinical cancer treatment.

  4. A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology

    CERN Multimedia

    2002-01-01

    % RD-9 A Demonstrator Analog Signal Processing Circuit in a Radiation Hard SOI-CMOS Technology \\\\ \\\\Radiation hardened SOI-CMOS (Silicon-On-Insulator, Complementary Metal-Oxide- \\linebreak Semiconductor planar microelectronic circuit technology) was a likely candidate technology for mixed analog-digital signal processing electronics in experiments at the future high luminosity hadron colliders. We have studied the analog characteristics of circuit designs realized in the Thomson TCS radiation hard technologies HSOI3-HD. The feature size of this technology was 1.2 $\\mu$m. We have irradiated several devices up to 25~Mrad and 3.10$^{14}$ neutrons cm$^{-2}$. Gain, noise characteristics and speed have been measured. Irradiation introduces a degradation which in the interesting bandwidth of 0.01~MHz~-~1~MHz is less than 40\\%. \\\\ \\\\Some specific SOI phenomena have been studied in detail, like the influence on the noise spectrum of series resistence in the thin silicon film that constitutes the body of the transistor...

  5. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-01-01

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution

  6. POTENTIAL AND FUTURE TRENDS ON INDUSTRIAL RADIATION PROCESSING TECHNOLOGY APPLICATION IN EMERGING COUNTRY - BRAZIL

    Energy Technology Data Exchange (ETDEWEB)

    Sampa, M.H.O.; Omi, N.M.; Rela, C.S.; Tsai, D.

    2004-10-06

    Brazil started the use of radiation technology in the seventies on crosslinking polyethylene for insulation of wire and electronic cables and sterilization of medical care devices. The present status of industrial applications of radiation shows that the use of this technology is increasing according to the economical development and the necessity to become the products manufactured in the local industries competitive in quality and price for internal and external market. The on going development activities in this area are concentrated on polymers processing (materials modification), foodstuff treatment and environmental protection. The development, the promotion and the technical support to consolidate this technology to the local industries is the main attribution of Institute for Energetic and Nuclear Research-IPEN, a governmental Institution.

  7. Characterization and radiation studies of diode test structures in LFoundry CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Daas, Michael; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2016-07-01

    In order to prepare for the High Luminosity upgrade of the LHC, all subdetector systems of the ATLAS experiment will be upgraded. In preparation for this process, different possibilities for new radiation-hard and cost-efficient silicon sensor technologies to be used as part of hybrid pixel detectors in the ATLAS inner tracker are being investigated. One promising way to optimize the cost-efficiency of silicon-based pixel detectors is to use commercially available CMOS technologies such as the 150 nm process by LFoundry. In this talk, several CMOS pixel test structures, such as simple diodes and small pixel arrays, that were manufactured in this technology are characterized regarding general performance and radiation hardness and compared to each other as well as to the current ATLAS pixel detector.

  8. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-10-03

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of

  9. Technology Assessment and Roadmap for the Emergency Radiation Dose Assessment Program

    International Nuclear Information System (INIS)

    Turteltaub, K W; Hartman-Siantar, C; Easterly, C; Blakely, W

    2005-01-01

    A Joint Interagency Working Group (JIWG) under the auspices of the Department of Homeland Security Office of Research and Development conducted a technology assessment of emergency radiological dose assessment capabilities as part of the overall need for rapid emergency medical response in the event of a radiological terrorist event in the United States. The goal of the evaluation is to identify gaps and recommend general research and development needs to better prepare the Country for mitigating the effects of such an event. Given the capabilities and roles for responding to a radiological event extend across many agencies, a consensus of gaps and suggested development plans was a major goal of this evaluation and road-mapping effort. The working group consisted of experts representing the Departments of Homeland Security, Health and Human Services (Centers for Disease Control and the National Institutes of Health), Food and Drug Administration, Department of Defense and the Department of Energy's National Laboratories (see appendix A for participants). The specific goals of this Technology Assessment and Roadmap were to: (1) Describe the general context for deployment of emergency radiation dose assessment tools following terrorist use of a radiological or nuclear device; (2) Assess current and emerging dose assessment technologies; and (3) Put forward a consensus high-level technology roadmap for interagency research and development in this area. This report provides a summary of the consensus of needs, gaps and recommendations for a research program in the area of radiation dosimetry for early response, followed by a summary of the technologies available and on the near-term horizon. We then present a roadmap for a research program to bring present and emerging near-term technologies to bear on the gaps in radiation dose assessment and triage. Finally we present detailed supporting discussion on the nature of the threats we considered, the status of technology

  10. Radiation technology for conservation of the environment. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1998-06-01

    In September 1997 the IAEA held an International Symposium in Zakopane, Poland, on the applications of radiation technology in conservation of environment. The symposium attended 110 participants representing 38 Member States. The objective was to review the status of current developments and applications of radiation processing in the control of environment pollution and to discuss future developments. The scientific programme covered a wide range of different applications of radiation technology, such as purification of exhaust gases, decontamination of wastewater from industrial and municipal sources, sewage sludge treatment, disinfection and detoxication of solid waste, recycling and the treatment of plastic and solid waste. The document contains full presentations. The symposium (56 papers) was held in 10 sessions as follows: Purification of Exhaust Gases (8 papers); Radiation Chemistry and the Environment (5 papers); Purification and Decontamination of Water (10 papers); Sewage Sludge Treatment (6 papers); Biomedical Applications (5 papers); Recycling and Treatment of Plastic and Solid Wastes (4 papers); Facilities (4 papers); Quality Assurance, Quality Control (4 papers); Transfer of Technology through Technical Co-Operation (5 papers); Curing, Cross-Linking and Grafting (5 papers). A separate abstract and indexing were provided for each paper

  11. Radiation technology for conservation of the environment. Proceedings of a symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-06-01

    In September 1997 the IAEA held an International Symposium in Zakopane, Poland, on the applications of radiation technology in conservation of environment. The symposium attended 110 participants representing 38 Member States. The objective was to review the status of current developments and applications of radiation processing in the control of environment pollution and to discuss future developments. The scientific programme covered a wide range of different applications of radiation technology, such as purification of exhaust gases, decontamination of wastewater from industrial and municipal sources, sewage sludge treatment, disinfection and detoxication of solid waste, recycling and the treatment of plastic and solid waste. The document contains full presentations. The symposium (56 papers) was held in 10 sessions as follows: Purification of Exhaust Gases (8 papers); Radiation Chemistry and the Environment (5 papers); Purification and Decontamination of Water (10 papers); Sewage Sludge Treatment (6 papers); Biomedical Applications (5 papers); Recycling and Treatment of Plastic and Solid Wastes (4 papers); Facilities (4 papers); Quality Assurance, Quality Control (4 papers); Transfer of Technology through Technical Co-Operation (5 papers); Curing, Cross-Linking and Grafting (5 papers). A separate abstract and indexing were provided for each paper Refs, figs, tabs

  12. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Saeid, M. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, A-1400 Vienna (Austria)], E-mail: M.Haji-Saeid@iaea.org; Sampa, M.H.; Ramamoorthy, N. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, A-1400 Vienna (Austria); Gueven, O. [Hacettepe University, Department of Chemistry, Ankara (Turkey); Chmielewski, A.G. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)

    2007-12-15

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  13. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    International Nuclear Information System (INIS)

    Haji-Saeid, M.; Sampa, M.H.; Ramamoorthy, N.; Gueven, O.; Chmielewski, A.G.

    2007-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information

  14. Reducing Radiation Dose in Coronary Angiography and Angioplasty Using Image Noise Reduction Technology.

    Science.gov (United States)

    Kastrati, Mirlind; Langenbrink, Lukas; Piatkowski, Michal; Michaelsen, Jochen; Reimann, Doris; Hoffmann, Rainer

    2016-08-01

    This study sought to quantitatively evaluate the reduction of radiation dose in coronary angiography and angioplasty with the use of image noise reduction technology in a routine clinical setting. Radiation dose data from consecutive 605 coronary procedures (397 consecutive coronary angiograms and 208 consecutive coronary interventions) performed from October 2014 to April 2015 on a coronary angiography system with noise reduction technology (Allura Clarity IQ) were collected. For comparison, radiation dose data from consecutive 695 coronary procedures (435 coronary angiograms and 260 coronary interventions) performed on a conventional coronary angiography system from October 2013 to April 2014 were evaluated. Patient radiation dosage was evaluated based on the cumulative dose area product. Operators and operator practice did not change between the 2 evaluated periods. Patient characteristics were collected to evaluate similarity of patient groups. Image quality was evaluated on a 5-grade scale in 30 patients of each group. There were no significant differences between the 2 evaluated groups in gender, age, weight, and fluoroscopy time (6.8 ± 6.1 vs 6.9 ± 6.3 minutes, not significant). The dose area product was reduced from 3195 ± 2359 to 983 ± 972 cGycm(2) (65%, p technology. Image quality was graded as similar between the evaluated systems (4.0 ± 0.7 vs 4.2 ± 0.6, not significant). In conclusion, a new x-ray technology with image noise reduction algorithm provides a substantial reduction in radiation exposure without the need to prolong the procedure or fluoroscopy time. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Radiation visualization in virtual reality: A comparison of flat and topographic map types, presented on four different display technologies

    International Nuclear Information System (INIS)

    Nystad, Espen; Sebok, Angelia

    2005-08-01

    HWR-734 describes an experiment performed to compare different types of VR display technologies and their effects on learning. In the study, two different ways of presenting radiation information were compared. One was a flat radiation map with different colours for different levels of radiation. The other was a topographic map, where radiation levels were distinguished both by colour and by the elevation of the map. The efficiency of the maps for learning radiation information, and subjective preferences was assessed. The results indicated that the maps were each suited for different kinds of use. It is recommended to follow up this study with further investigation of radiation map efficiency. (Author)

  16. Radioactivity levels in Indian coal and some technologically enhanced exposure to natural radiation environment of India

    International Nuclear Information System (INIS)

    Ramachandran, T.V.; Mishra, U.C.

    1988-01-01

    The summary of results of gamma-spectrometric measurements of natural radioactivity levels in coal from mines, coal, fly-ash, slag and soil samples from thermal power plants in India are presented. These constitute the sources of technologic ally enhanced exposures to natural radiation. Brief description of sampling and measurement procedure is given. Radiation dose to the population from coal fired power plants for electricity generation have been calculated using the model developed by UNSCEAR and ORNL reports with correction for local population density. (author). 13 refs., 7 tabs., 8 figs

  17. Methods and technologies for creation of register for exposed to radiation population

    International Nuclear Information System (INIS)

    Apsalikov, K.; Madieva, M.; Gusev, B.; Chajzunusova, N.; Isadilova, M.; Bejsenova, Sh.; Argembaeva, R.

    2005-01-01

    For the last 60 years, some huge radioecological accidents and catastrophes have taken place, connected with nuclear weapon use in war, nuclear weapon tests on the nuclear test sites of Nevada, Semipalatinsk, Loob-Nor and the disturbance of the technological cycle at the enterprises of atomic industry and NPP. The scientific-technical program is being carried out at the Scientific research Institute of Radiation medicine and Ecology. The one of the its major task is to create the Scientific Automated Medical Register for the Kazakhstan population exposed to radiation. The aim of this program is a long-term automated personnel registering of population exposed to radiation in consequences of on nuclear testing on the Semipalatinsk Test Site, evolution of health condition and its changes, prediction for taken optimal decisions upon minimization of post-radiation consequences. Thus, main tendencies of Register creation are registration of the extent and characteristics of concrete man-caused factor (including radioactive), the number and age-sexual peculiarities of the risk group, medical information according to qualitative and quantitative parameters of different nosological forms of radiation induced diseases, and the duration of stay of definite patient under risk. After formatting of effective equivalent doses the information allows not only containing radiation risk, but also working out medical-social activities, directed to decrease the risk up to the level of average Republican standards. (author)

  18. Analysis of methodology for designing education and training model for professional development in the field of radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kon Wuk; Lee, Jae Hun; Park, Tai Jin; Song, Myung Jae [Korean Association for Radiation Application, Seoul (Korea, Republic of)

    2015-02-15

    The domestic Radiation Technology is integrated into and utilized in various areas and is closely related to the industrial growth in Korea. The domestic use of radiation and RI (Radioisotope) increases in quantity every year, however the level of technology is poor when compared to other developed countries. Manpower training is essential for the development of Radiation Technology. Therefore, this study aimed to propose a methodology for designing systemic education and training model in the field of measurement and analysis of radiation. A survey was conducted to design education and training model and the training program for measurement and analysis of radiation was developed based on the survey results. The education and training program designed in this study will be utilized as a model for evaluating the professional development and effective recruitment of the professional workforce, and can be further applied to other radiation-related fields.

  19. Analysis of methodology for designing education and training model for professional development in the field of radiation technology

    International Nuclear Information System (INIS)

    Kim, Kon Wuk; Lee, Jae Hun; Park, Tai Jin; Song, Myung Jae

    2015-01-01

    The domestic Radiation Technology is integrated into and utilized in various areas and is closely related to the industrial growth in Korea. The domestic use of radiation and RI (Radioisotope) increases in quantity every year, however the level of technology is poor when compared to other developed countries. Manpower training is essential for the development of Radiation Technology. Therefore, this study aimed to propose a methodology for designing systemic education and training model in the field of measurement and analysis of radiation. A survey was conducted to design education and training model and the training program for measurement and analysis of radiation was developed based on the survey results. The education and training program designed in this study will be utilized as a model for evaluating the professional development and effective recruitment of the professional workforce, and can be further applied to other radiation-related fields

  20. Radiation

    International Nuclear Information System (INIS)

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  1. Development of Radiation Fusion Technology for the Ruptured Ligament Reconstruction with a Porcine Xenograft

    International Nuclear Information System (INIS)

    Kim, Jaehun; Kim, Jaekyung; Park, Jongheum

    2013-08-01

    This project was accomplished to develop the radiation fusion technology for production of bioitransplant materials (tendon/ligament) which have high bio-suitability, resulting in import replacement and improved industrial competency and public health. The major results of this project are development of the technology to remove immunogen, which repressing immune rejection, response, development of cross-linking technology to improve physical properties, development of the technology to improve safety and remove pathogenic sources, evaluation of tissue suitability and reconstruction through short/long term animal experiment, and development of materials for customized preclinical use. From the results, we can expect the replacement of import and establishment of export base by development of hetero-tissues, establishment of safe supply and improvement of public health for high demand of biotissue product because of low birth rate, aging society, and industralization

  2. Rise of radiation protection: science, medicine and technology in society, 1896--1935

    International Nuclear Information System (INIS)

    Serwer, D.P.

    1976-12-01

    The history of radiation protection before World War II is treated as a case study of interactions between science, medicine, and technology. The fundamental concerns include the following: are how medical and technical decisions with social impacts are made under conditions of uncertainty; how social pressures are brought to bear on the development of science, medicine, and technology; what it means for medicine or technology to be scientific; why professional groups seek international cooperation; and the roles various professionals and organizations play in controlling the harmful side effects of science, medicine, and technology. These questions are addressed in the specific context of protection from the biological effects of x-rays and radium in medical use

  3. Rise of radiation protection: science, medicine and technology in society, 1896--1935

    Energy Technology Data Exchange (ETDEWEB)

    Serwer, D.P.

    1976-12-01

    The history of radiation protection before World War II is treated as a case study of interactions between science, medicine, and technology. The fundamental concerns include the following: are how medical and technical decisions with social impacts are made under conditions of uncertainty; how social pressures are brought to bear on the development of science, medicine, and technology; what it means for medicine or technology to be scientific; why professional groups seek international cooperation; and the roles various professionals and organizations play in controlling the harmful side effects of science, medicine, and technology. These questions are addressed in the specific context of protection from the biological effects of x-rays and radium in medical use.

  4. Remote and continuous gamma spectrometry for environmental radiation protection: state of the art technology and perspectives

    International Nuclear Information System (INIS)

    Van Put, Ph.; Lellis, C.; Debauche, A.; Lacroix, J-P.

    2004-01-01

    The instruments technologies for radiological protection of the environment have been considerably enhanced since the last 20 years. From very simple warning bells in the early 80s, the instruments have been sophisticated nowadays to a degree where their performances can be compared to the performances achieved in low level laboratories. This presentation will briefly overview the evolution of these instruments by comparing their technology, their methodology and their performances. Next, it will present the concepts of the state of the art technology in the field of continuous monitoring of the environment. A discussion will follow on the performances and the limitations of this technology. Finally, the presentation will highlight the future perspective of developments by taking into account recent progress in the field of radiation detectors, telecommunication and computer sciences among others. (authors)

  5. A comprehensive psychiatric service

    DEFF Research Database (Denmark)

    Wang, A G

    1984-01-01

    A comprehensive psychiatric service was established in 1969 in the Faroe Islands. This service was created as a department of a general hospital. The spheres covered by this department, operating in the midst of the community were: acute and chronic patients, a liaison-psychiatric service...

  6. Development of optical thin film technology for lasers and synchrotron radiation

    International Nuclear Information System (INIS)

    Apparao, K.V.S.R.; Bagchi, T.C.; Sahoo, N.K.

    1985-01-01

    Dielectric multilayer optical thin film devices play an important role not only in the working of lasers but also in different front line research activities using high power lasers and high intensity synchrotron radiation sources. Facilities are set up recently in the Spectroscopy Division to develop the optical thin film design and fabrication technologies indigeneously. Using the facilities thin film devices for different laser applications working in the wavelength range from 300 nm to 1064 nm were developed. Different technical aspects involved in the technology development are briefly described. (author)

  7. Basic radiation knowledge for school education course. Nuclear technology seminar 2014 (Contract program)

    International Nuclear Information System (INIS)

    Watanabe, Yoko; Arai, Nobuyoshi; Sawada, Makoto; Kanaizuka, Seiichi; Shimada, Mayuka; Ishikawa, Tomomi; Nakamura, Kazuyuki

    2015-11-01

    Japan Atomic Energy Agency has conducted Nuclear Technology Seminar for Asian countries which plan to introduce nuclear power plant in future, in order to increase the number of engineers and specialists in nuclear related field. The Nuclear Technology Seminar on the Basic Radiation Knowledge for School Education Course was launched in 2012 due to increased recognition of the dissemination of the basic knowledge of radiation in public and education sectors as an important issue in the aftermath of the Fukushima Daiichi Nuclear Power Station Accident in 2011. It was the third time to conduct this course and fifteen trainees from eight Asian countries participated in 2014. In response to the requests of past participants, a new exercise 'Joint experiment with high school students' was introduced from 2014 to provide an international learning experience for the course participants and the local Japanese students by jointly conducting radiation related exercises. A new learning material was also developed in 2014 to help participants to study the basics of radiation in English. All the course activities including the details of preparatory process and course evaluation were described in this report. (author)

  8. Ionizing radiation effect on different types of flours used in bakery technology

    International Nuclear Information System (INIS)

    Teixeira, Christian Alexandre Heinz Melsheimer

    2011-01-01

    In this work, an evaluation of the changes caused by ionizing radiation in different types and quantities of products rich in starch (wheat flour, cassava, rye, whole wheat, green banana pulp and maize) on rheological, technological, physical and texture characteristics was studied. The samples were irradiated in a 60 Co source with doses up to 10kGy, and dose rate about 2kGy/h. It was studied the force and the extensibility of strong and weak wheat flours and the rheological behavior was observed for one, five and thirty days after irradiation. The technological characteristic studied for up to 1 month after irradiation, was the enzymatic activity of the irradiated, weak and strong flours. The physical characteristics: height, weight and moisture loss and texture of loaves made with a partial replacement (30%) of wheat flour by different irradiated flours was established. The results showed that with the increase of radiation dose there was an increase of enzymatic activity, especially for higher doses (9kGy). These results corroborate for the understanding that there would be no need of addition of enzymatic improvers for the bread confection. The height, weight, and loss of moisture from the products developed with different substitutions of flours used in the formulations, showed different behaviors. With an increasing of the radiation dose applied, there was an increase in the height of the loaves, as well as a reduced loss of moisture on the products developed with substitution of 30% of the wheat flour with irradiated wheat flour and pulp of green banana flour. From a technological standpoint, the enzymatic activity was not adversely affected by radiation. Considering the characteristics studied, the dose of 9kGy would be recommended seeking the production of loaves. Although the irradiation process is generally applied in the preservation of hygienic quality of food products, its use on different kinds of flours used in bread production may induce some

  9. Role of radiation technology in preservation of food and agricultural commodities

    International Nuclear Information System (INIS)

    Rajput, Sanjay

    2016-01-01

    Several technological benefits can be achieved by gamma radiation processing of agricultural commodities and food include: inhibition of sprouting in tubers, bulbs and rhizomes; disinfestation of insect pests in stored products; disinfestation of quarantine pests in fresh produce; delay in ripening and senescence in fruits and vegetables; destruction of microbes responsible for spoilage of food; elimination of parasites and pathogens of public health importance in food

  10. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Min, B. T.; Kang, H. Y.; Kim, B. H.; Park, J. H.; Seo, H. S.

    2000-12-01

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between α, βrays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between β ray and material, shielding for β ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared

  11. The analysis on the basic technology and radiation induced voltaic mechanism for nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, B. O.; Min, B. T.; Kang, H. Y.; Kim, B. H.; Park, J. H.; Seo, H. S

    2000-12-01

    Present study is for nuclear battery technology directly converting radiation energy to electricity among various nuclear energy, and it is anticipated that an interest in direct conversion of nuclear energy into electricity shall be increased as the conversion efficiency enhances. The battery should promise cheap, reliable power from a package small and light enough to be mobile, and with energy density great enough for use as a space based power supply. Various radiation-electricity conversion mechanism so far have been reported since G.J. Moseley reported the operation of a high-voltage nuclear battery using radium. The most important conversion mechanisms are RTG (Radioisotope Thermoelectric Generator) converting the heat produced from radioisotope to electricity using the temperature difference, and NRG (Nuclear Resonance Generator) using free electrons from the collision between {alpha}, {beta}rays and copper coil. It is well known that RTG and NRG mechanisms are most practical way because their efficiencies high. The basic technology on radiation-electricity conversion mechanism, interaction mechanism between {beta} ray and material, shielding for {beta} ray, and technical backgrounds and a state of the art for RTG and NRG technologies, are analyzed in this report. Basic data on the conceptual design for the prototype of nuclear battery are prepared.

  12. Virtual reality technology used to estimate radiation doses in nuclear installations

    International Nuclear Information System (INIS)

    Augusto, Silas Cordeiro

    2008-03-01

    The physical integrity of people when walking in places subjected to radiation can be preserved by following some rules. Among these rules are safe limits of radiation level, proximity of radiation sources, time of exposition to radiation sources, and a combination of these factors. In this way, previous training and simulations of operation proceedings to be executed in places subjected to radiation help to better prepare the course in such places, minimizing the absorbed dose. On the other hand, virtual reality is a technology applicable in several areas, enabling the training and simulation of real places and hypothetical scenarios, with a good level of realism, but without danger if compared to the same activities in the real world. As a virtual environment does not presents any health risks, it is possible to train workers beforehand to several operation or maintenance scenarios. In this virtual environment, the dose tax distribution can be visualized, and the dose absorbed by the worker, represented and simulated in the virtual environment by a virtual character (avatar) can be shown. Therefore, the tasks to be done can be better planned, evaluating the workers actions and the performance so to reduce failures and health risks. Finally, this work presents a tool to build and navigate in virtual environments, enabling the training of activities in nuclear facilities. To that end is proposed a methodology to modify and adapt a free game engine. (author)

  13. Qualitative dosimetric system for radiation processing. Technology for pilot scale preparation

    International Nuclear Information System (INIS)

    Moraru, R.

    1998-01-01

    Good manufacturing practice for radiation processing requires a very strictly tracking of the processed products. A method of labelling and identification of the irradiated and nonirradiated products is required. The qualitative dosimetric system provides a fast method for monitoring the product flow. Such dosimeters are attached on each product box, usually as labels, and offer a YES/NO information about the passing of products through the radiation field. Usually, this information consists in a change of colour. The qualitative dosimetric system that we realised is based on the degradation of polyvinylchloride (PVC) under radiation field. An amount of hydrochloric acid is released in this reaction. A pH indicator, included in the system, changes its colour at different absorbed dose. The changes of colour happened in a certain pH interval called turning range. We used as pH indicator the RED CONGO colorant with turning range of pH = 3 to 5 (from blue to red). A schematic view of the qualitative dosimeter is given. The initial colour is red and it continuously changes to brown, at 1 kGy absorbed dose, and to blue-green, for 5-100 kGy. The main features of this qualitative dosimetric system are: - Quick and easy to read information about product passing through radiation field; - Absorbed dose range, 1-300 kGy; - Independence of absorbed dose rate in the interval 5-100 kGy/h; - Stability, 3 year in the dark and 1 year in sun light; - Good reproducibility. The preparation technology consists in the following steps: 1. Preparation of the solutions: a) PVC in cyclohexanone solution b) RED CONGO in water solution; 2. Preparation of the system support consisting in dropping the PVC solution on adhesive labels; 3. Sample preparation consists in dropping the colorant solution on the system support; 4. Batch trial tests. The trial test was performed at IETI 10000 irradiation plant belonging to IFIN-HH and the reference absorbed dose was determined by Fricke dosimetry. The

  14. The Role of IAEA in Coordinating Research and Transferring Technology in Radiation Chemistry and Processing of Polymers

    International Nuclear Information System (INIS)

    Haji Saeid, M.

    2006-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through Technical Cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The CRP brings together typically 10 - 15 groups of participants to share and complement core competencies and work on specific areas of development needed to benefit from an emerging radiation technique and its applications. The technical cooperation (TC) programme helps Member States realize their development priorities through the application of appropriate radiation technology. TC builds national capacities through training, expert advice and delivery of equipment. The impact of the IAEA's efforts is visible by the progress noticeable in adoption of radiation technology and/or growth in the range of activities in several MS in different regions. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. A number of technical cooperation projects have been implemented in this field to strengthen the capability of developing Member States and to create awareness in the industries about the technical

  15. Studies on Development of Space Kimchi Using Radiation Fusion Technology with Food Technology

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun; Song, Beom Seok; Park, Jin Kyu; Park, Jae Nam

    2007-04-01

    Kimchi is Korean traditional fermented vegetable, it was known to one of health food through the world 5 sorts and to one of culture bequest of 100 kinds. In this study, it was conducted to development of Korean space food. Object of the study is development of food processed technology for long term storage and stability of supply at severe environment such as space, desert, deep sea. Irradiation technology is cold sterilization method, and it is able to fusion with the other food manufacturing and additives using method. Therefore, this study can offer to basic information for development of Korean space food. Side by side, it was expected that preceding results were able to wide utilization extension such as export of cured fermentation food. This study was conducted to evaluate the combined effects of additives (A), N2-packaging (N 2 ), mild heating at 60 .deg. C (HT) and gamma irradiation of 25 kGy (IR) at frozen state (F) on the shelf stability and quality of Kimchi during storage at 35 .deg. C for 30 days. Briefly, combination treatment of heat and irradiation was considered as the effective method to improve the shelf-stability of Kimchi. However, sensory quality was decreased. After all, irradiation was conducted at Kimchi samples for quality maintenance after gas exchange packaging method such as N 2 -packaging, quick freezing(-70 .deg. C). Therefore, the combination treatment was effected to insurance of shelf-life and satisfaction of quality. But other methods needed for inhibition deterioration of texture. Calcium lactate and vitamin C were added at Kimchi for prevention of softening, oleoresin paprika and artificial Kimchi flavor were added for improvement of sensory quality decreased by severe sterilization

  16. Studies on Development of Space Kimchi Using Radiation Fusion Technology with Food Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Byun, Myung Woo; Kim, Jae Hun; Song, Beom Seok; Park, Jin Kyu; Park, Jae Nam

    2007-04-15

    Kimchi is Korean traditional fermented vegetable, it was known to one of health food through the world 5 sorts and to one of culture bequest of 100 kinds. In this study, it was conducted to development of Korean space food. Object of the study is development of food processed technology for long term storage and stability of supply at severe environment such as space, desert, deep sea. Irradiation technology is cold sterilization method, and it is able to fusion with the other food manufacturing and additives using method. Therefore, this study can offer to basic information for development of Korean space food. Side by side, it was expected that preceding results were able to wide utilization extension such as export of cured fermentation food. This study was conducted to evaluate the combined effects of additives (A), N2-packaging (N{sub 2}), mild heating at 60 .deg. C (HT) and gamma irradiation of 25 kGy (IR) at frozen state (F) on the shelf stability and quality of Kimchi during storage at 35 .deg. C for 30 days. Briefly, combination treatment of heat and irradiation was considered as the effective method to improve the shelf-stability of Kimchi. However, sensory quality was decreased. After all, irradiation was conducted at Kimchi samples for quality maintenance after gas exchange packaging method such as N{sub 2}-packaging, quick freezing(-70 .deg. C). Therefore, the combination treatment was effected to insurance of shelf-life and satisfaction of quality. But other methods needed for inhibition deterioration of texture. Calcium lactate and vitamin C were added at Kimchi for prevention of softening, oleoresin paprika and artificial Kimchi flavor were added for improvement of sensory quality decreased by severe sterilization.

  17. Oxytocin and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Gokce Nur Say

    2016-06-01

    Full Text Available Oxytocin is a neuropeptide that plays critical role in mother-infant bonding, pair bonding and prosocial behaviors. Several neuropsychiatric disorders such as autism, schizophrenia, affective disorders, anxiety disorders, attention deficit/hyperactivity disorder, alcohol/substance addiction, aggression, suicide, eating disorders and personality disorders show abnormalities of oxytocin system. These findings have given rise to the studies searching therapeutic use of oxytocin for psychi-atric disorders. The studies of oxytocin interventions in psychiatric disorders yielded potentially promising findings. This paper reviews the role of oxytocin in emotions, behavior and its effects in psychiatric disorders. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 102-113

  18. Radiation protection knowledge transfer according to the state of science and technology; Vermittlung von Fachwissen zum Strahlenschutz auf dem neuesten Stand von Wissenschaft und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Strilek, Ralf

    2015-07-01

    The 19th summer school of radiation protection took place in 2015 in Berlin. The main topics were effects and hazards of ionizing radiation, trends and legal regulations in radiation protection, dosimetry and measuring techniques, radiation exposure in nuclear medicine, radiation exposure in industry, radiation exposure in the nuclear technology - final disposal and dismantling problems Several case studies covered the issues accident management, personal and environmental dosimetry, skin contamination, modern techniques in medicine, radiation protection for radiography.

  19. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  20. Assessment of new radiation oncology technology and treatments in radiation oncology the ANROTAT project and collection of IMRT specific data

    International Nuclear Information System (INIS)

    Haworth, A.; Corry, J.; Kron, T.; Duchesne, G.; Ng, M.; Burmeister, B.

    2010-01-01

    Full text: Medical physicists (MP) are familiar with assessing new radiation oncology technology and treatments ( ROT A T) for their own departments but are not usually involved in providing advice to government for funding these technologies. This paper describes the role of the MP within the Commonwealth Government Department of Health and Aging initiative to develop a generic framework for assessment of ROTAT and the collection of data to support Med care Benefits Scheme (MBS) funding of IMRT. The clinical trials group TROG is developing a generic framework for the assessment of NROTAT. This will be tested and data collected to support applications for MBS funding of IMRT and IGRT. The tumour sites of nasopharynx, post-prostatectomy and anal canal have been selected to represent sites that are commonly, occasionally and rarely treated with IMRT respectively. Site selection for data collection will represent a broad range of clinical practices. Data quality is assured through TROG QA procedures and will include dosimetry audits. The final report will assess the clinical efficacy, cost effectiveness and safety of IMRT compared to 3DCRT. Existing clinical trial protocols form the basis for data collection and surrogate endpoints are being developed. Key publications have been identified that correlate specific dose-volume histogram parameters with clinical end-points, recognising limitations of these data in the 1MRT setting. Engagement of MPs within this project will help ensure collection of high quality data that ultimately aims to secure appropriate funding to ensure our patients receive best clinical care. (author)

  1. 6. Seminar of the IIE-ININ-IMP on technological specialties. Topic 10: industrial applications of radiation and control

    International Nuclear Information System (INIS)

    1992-01-01

    The document includes 7 papers presented at the 6. Seminar of the IIE-ININ-IMP (Mexico) on technological specialties in the field of industrial applications of radiation and control. (Topic 10). A separate abstract was prepared for each paper

  2. Current technological clinical practice in breast radiotherapy; results of a survey in EORTC-Radiation Oncology Group affiliated institutions

    NARCIS (Netherlands)

    van der Laan, Hans Paul; Hurkmans, Coen W; Kuten, Abraham; Westenberg, Helen A

    PURPOSE: To evaluate the current technological clinical practice of radiation therapy of the breast in institutions participating in the EORTC-Radiation Oncology Group (EORTC-ROG). MATERIALS AND METHODS: A survey was conducted between August 2008 and January 2009 on behalf of the Breast Working

  3. Psychiatric genetics in South Africa: cutting a rough diamond ...

    African Journals Online (AJOL)

    Psychiatric disorders place a considerable healthcare burden on South African society. Incorporating genetic technologies into future treatment plans offers a potential mechanism to reduce this burden. This review focuses on psychiatric genetic research that has been performed in South African populations with regards to ...

  4. Hyperthyroidism and psychiatric morbidity

    DEFF Research Database (Denmark)

    Brandt, Frans; Thvilum, Marianne; Pedersen, Dorthe Almind

    2014-01-01

    Thyroid hormones are essential for the normal development of the fetal brain, while hyperthyroidism in adults is associated with mood symptoms and reduced quality of life. We aimed to investigate the association and temporal relation between hyperthyroidism and psychiatric morbidity.......Thyroid hormones are essential for the normal development of the fetal brain, while hyperthyroidism in adults is associated with mood symptoms and reduced quality of life. We aimed to investigate the association and temporal relation between hyperthyroidism and psychiatric morbidity....

  5. The radiation accident at Institute for Energy Technology Sept. 1982. Some technical considerations

    International Nuclear Information System (INIS)

    Berteig, L.; Flatby, J.

    1985-01-01

    On September 2, 1982 a radiation accident with overexposure of one person happened at the gamma irradiation plant at Institute for Energy Technology, Kjeller, Norway. This person died from the radiation injury 13 days later. In the report reference is made to the work of different groups and bodies in connection with the accident. An analysis of the causes of the accident is given. For admittance control to the irradiation area there were generally two independent door interlock systems, one irradiation source position related and the other radiation related. The latter was dismantled for repair at the time of the accident. A micro-switch failure left the source in an unshielded position, initiated a green light on the control panel and released the interlock system of the door. According to working instructions a mobile radiation monitor should have been checked for proper function and carried by anyone entering the irradiation room. This seems not to have been carried out correctly. The conditions set forth for the restarting of the irradiation plant are presented. (orig./HP)

  6. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    Science.gov (United States)

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  7. Radiation oncology - Linking technology and biology in the treatment of cancer

    International Nuclear Information System (INIS)

    Coleman, C. Norman

    2002-01-01

    Technical advances in radiation oncology including CT-simulation, 3D-conformal and intensity-modulated radiation therapy (IMRT) delivery techniques, and brachytherapy have allowed greater treatment precision and dose escalation. The ability to intensify treatment requires the identification of the critical targets within the treatment field, recognizing the unique biology of tumor, stroma and normal tissue. Precision is technology based while accuracy is biologically based. Therefore, the intensity of IMRT will undoubtedly mean an increase in both irradiation dose and the use of biological agents, the latter considered in the broadest sense. Radiation oncology has the potential and the opportunity to provide major contributions to the linkage between molecular and functional imaging, molecular profiling and novel therapeutics for the emerging molecular targets for cancer treatment. This process of 'credentialing' of molecular targets will require multi disciplinary imaging teams, clinicians and basic scientists. Future advances will depend on the appropriate integration of biology into the training of residents, continuing post graduate education, participation in innovative clinical research and commitment to the support of basic research as an essential component of the practice of radiation oncology

  8. Psychiatric morbidity in prisoners

    Science.gov (United States)

    Kumar, Vinod; Daria, Usha

    2013-01-01

    Background: Prisoners are having high percentage of psychiatric disorders. Majority of studies done so far on prisoners are from Western countries and very limited studies from India. Aim: Study socio-demographic profile of prisoners of a central jail and to find out current prevalence of psychiatric disorders in them. Materials and Methods: 118 prisoners were selected by random sampling and interviewed to obtain socio-demographic data and assessed on Indian Psychiatric Interview Schedule (IPIS) with additional required questions to diagnose psychiatric disorders in prisoners. Results: Mean age of prisoners was 33.7 years with 97.5% males, 57.6% from rural areas and 65.3% were married. Average education in studied years was 6.6 years and 50.8% were unskilled workers. 47.4% were murderers while 20.3% of drugs related crimes. 47.5% were convicted and history of criminal behavior in family was in 32.2% prisoners. Current prevalence of psychiatric disorders was 33%. Psychotic, depressive, and anxiety disorders were seen in 6.7%, 16.1%, and 8.5% prisoners respectively. 58.8% had history of drug abuse/dependence prior to imprisonment. Conclusion: One prison of Hadoti region of Rajasthan is full of people with mental-health problems who collectively generate significant levels of unmet psychiatric treatment need. Prisons are detrimental to mental-health. Beginning of reforms is the immediate need. PMID:24459308

  9. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites

  10. Position-sensitive radiation monitoring (surface contamination monitor). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The Shonka Research Associates, Inc. Position-Sensitive Radiation Monitor both detects surface radiation and prepares electronic survey map/survey report of surveyed area automatically. The electronically recorded map can be downloaded to a personal computer for review and a map/report can be generated for inclusion in work packages. Switching from beta-gamma detection to alpha detection is relatively simple and entails moving a switch position to alpha and adjusting the voltage level to an alpha detection level. No field calibration is required when switching from beta-gamma to alpha detection. The system can be used for free-release surveys because it meets the federal detection level sensitivity limits requires for surface survey instrumentation. This technology is superior to traditionally-used floor contamination monitor (FCM) and hand-held survey instrumentation because it can precisely register locations of radioactivity and accurately correlate contamination levels to specific locations. Additionally, it can collect and store continuous radiological data in database format, which can be used to produce real-time imagery as well as automated graphics of survey data. Its flexible design can accommodate a variety of detectors. The cost of the innovative technology is 13% to 57% lower than traditional methods. This technology is suited for radiological surveys of flat surfaces at US Department of Energy (DOE) nuclear facility decontamination and decommissioning (D and D) sites or similar public or commercial sites.

  11. Technology development of p-type microstrip detectors with radiation hard p-spray isolation

    International Nuclear Information System (INIS)

    Pellegrini, G.; Fleta, C.; Campabadal, F.; Diez, S.; Lozano, M.; Rafi, J.M.; Ullan, M.

    2006-01-01

    A technology for the fabrication of p-type microstrip silicon radiation detectors using p-spray implant isolation has been developed at CNM-IMB. The p-spray isolation has been optimized in order to withstand a gamma irradiation dose up to 50 Mrad (Si), which represents the ionization radiation dose expected in the middle region of the SCT-Atlas detector of the future Super-LHC during 10 years of operation. The best technological options for the p-spray implant were found by using a simulation software package and dedicated calibration runs. Using the optimized technology, detectors have been fabricated in the Clean Room facility of CNM-IMB, and characterized by reverse current and capacitance measurements before and after irradiation. The average full depletion voltage measured on the non-irradiated detectors was V FD =41±3 V, while the leakage current density for the microstrip devices at V FD +20 V was 400 nA/cm 2

  12. The radiation accident at the Institute for Energy Technology, Kjeller, Norway, September 2, 1982

    International Nuclear Information System (INIS)

    Flatby, J.; Henriksten, T.; Hoest, H.

    1983-01-01

    On 2 September 1982 a radiation accident with overexposure of one person happened at the gamma irradiation plant at Institute for Energy Technology, Kjeller, Norway. This person died from the radiation injury 13 days later. When the personal film dosimeter was developed, blackening beyond measuring range was found. The main part of the report describes dosimetric methods based on electron spin resonance and thermoluminescence that were applied on things worn by the deceased during the accident. The dosimetric results are presented in the report along with a short description of the irradiation plant, the accident and the following medical treatment. The estimated whole-body dose was supposed to be 22.5 +- 2 Gy. (RF)

  13. Operation of commercially-based microcomputer technology in a space radiation environment

    Science.gov (United States)

    Yelverton, J. N.

    This paper focuses on detection and recovery techniques that should enable the reliable operation of commercially-based microprocessor technology in the harsh radiation environment of space and at high altitudes. This approach is especially significant in light of the current shift in emphasis (due to cost) from space hardened Class-S parts qualification to a more direct use of commercial parts. The method should offset some of the concern that the newer high density state-of-the-art RISC and CISC microprocessors can be used in future space applications. Also, commercial aviation, should benefit, since radiation induced transients are a new issue arising from the increased quantities of microcomputers used in aircraft avionics.

  14. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y. [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry.

  15. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y.

    2010-08-01

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry

  16. Technological yields of sources for radiation processing; Wydajnosci technologiczne zrodel do obrobki radiacyjnej

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, Z.P. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1993-12-31

    The present report is prepared for planners of radiation processing of any material. Calculations are focused on accelerators of electrons, divided into two groups: versatile linacs of energy up to 13 MeV, and accelerators of lower energy, below 2 MeV, of better energy yield but of limited applications. The calculations are connected with the confrontation of the author`s technological expectations during the preparation of the linac project in the late `60s, with the results of 25 years of exploitation of the machine. One has to realize that from the 200 kW input power from the mains, only 5 kW of bent and scanned beam is recovered on the conveyor. That power is only partially used for radiation induced phenomena, because of the demanded homogeneity of the dose, of the mode of packing of the object and its shape, of edges of the scanned area and in the spaces between boxes, and of loses during the idle time due to the tuning of the machine and dosimetric operations. The use of lower energy accelerators may be more economical than that of linacs in case of objects of specific type. At the first stage already, that is of the conversion of electrical power into that of low energy electron beam, the yield is 2-3 times better than in the case of linacs. Attention has been paid to the technological aspects of electron beam conversion into the more penetrating Bremsstrahlung similar to gamma radiation. The advantages of technologies, which make possible a control of the shape of the processed object are stressed. Special attention is focused to the relation between the yield of processing and the ratio between the maximum to the minimum dose in the object under the irradiation. (author). 14 refs, 14 figs.

  17. Basis for the evaluation of economic benefits from using modules for the development of radiation technology

    International Nuclear Information System (INIS)

    Kodyukov, V.M.; Purtova, M.I.; Smirnova, Z.M.; Semenova, T.D.

    1976-01-01

    A method is discussed for calculating the economic effect obtained by introduction of a designing principle involving standardized units and blocks of various radiation equipment. The method was based on a comparison of the technological and economic factors that could be obtained by using the said principle with similar factors not involving the aggregate principle (used previously in designing various instruments and installations). The formulae are sited for estimating the economy involved in designing and manufacturing aggregated complexes (AC) of the subsystems involved in an aggregated system of instrument making (ASIM) and for evaluating the additional economic effect resulting from reduced AC development time

  18. The application of computer and automatic technology in dose measurement of neutron radiation

    International Nuclear Information System (INIS)

    Zhou Yu; Li Chenglin; Luo Yisheng; Guo Yong; Chen Di; Xiaojiang

    1999-01-01

    Generally the dose measurement of neutron radiation requires three electrometers, two bias, three workers in the same time. To improve the accuracy and efficiency of measurement, a Model 6517A electrometer that accommodate Model 6521 scanner cards and a portable computer are used to make up of a automatic measurement system. Corresponding software is developed and used to control it. Because of the application of computer and automatic technology, this system can not only measure dose rate automatically, but also make data's calculating, saving, querying, printing and comparing ease

  19. Application of freezing and radiation technology on shelf-life of formed minced pork

    International Nuclear Information System (INIS)

    Todorovic, M.; Kustudic, M.

    1994-01-01

    The microflora of frozen, minced, formed pork was investigated with the aim to estimate the shelf-life of this product. The isolated microflora from frozen meat was identified by classical and up-to-date methods. The API 50 CHB system was applied for the Bacillus strains, whereas API 20A and enzymatic quick method API RAPID ID 32A was used for the Clostridium strains. Biochemical capabilities reading-out and identifications were performed on ATB instruments on the computer charts. The flavourings (pepper) were pretreated by radiation technology in the preventive purposes

  20. Analysis of technologies and experiences for reducing occupational radiation dose and study for applying to regulations

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyun; Park, Moon Soo; Lee, Un Jang; Song, Jae Hyuk; Kim, Byeong Soo; Kim, Chong Uk [Seoul National Univ., Seoul (Korea, Republic of)

    2003-01-15

    To reduce Occupational Radiation Dose (ORD) effectively and enhance the radiological safety, the comprehensive assessment of the experiences to reduce ORD should be made by regulatory body as well as utilities. Hence, the objective of this study is to assess the experiences for reducing ORD from the regulatory viewpoint. With the research objective, the followings are performed in this research; analysis of occupational dose trends at domestic and foreign NPPs, identification of the effective technologies for reducing ORD, examination of the effects of the technologies for reducing ORD, derivation of the regulatory means for implementing he research results. From this study, the regulatory means for effective reduction of ORD are derived. Hence, the results can be utilized as a basic materials for ALARA requirements.

  1. Innovative nuclear technologies based on radiation induced surface activation (RISA). 1. The project overview

    International Nuclear Information System (INIS)

    Fujisawa, Kyosuke; Morooka, Shinichi; Hishida, Mamoru

    2004-01-01

    This research of the Innovative nuclear technologies based on Radiation Induced Surface Activation (RISA) is due to start from 2003 and to be ended to 2006, and performed fund by Ministry of Economy, Trade and Industry (METI) Japan. One of the innovative technologies is to develop a high performance corrosion-proof film to prevent the surface of reactor internals from stress corrosion cracking (SCC), the other one is to develop the film for improving the heat transfer performance a high performance of the nuclear fuel rod. Both of these properties are derived under gamma ray irradiation by the RISA effect. This paper reports about the summary of this subsidy enterprise by METI. (author)

  2. Radiation technology in finishing process improves health, safety and environment (HSE) in the furniture manufacturing industry

    International Nuclear Information System (INIS)

    Ahmad Shakri Mat Seman

    1999-01-01

    In furniture manufacturing, processes like cross cutting, molding, planning, shaping, turning, assembling and finishing are involved. The most significant types of negative impact of these processes are such as dust emission, noise, hazardous work, health risk, emission of organic solvent, toxic chemicals emission and chemical waste. In the finishing process, a number of negative effects that will cause health, safety and environmental (HSE) performance. This article highlights the environmental problems in the furniture finishing processes and how the radiation technology can reduce these negative impacts. The drawbacks that hamper the manufacturers from adopting this technology are also discussed. The objective of the paper is to create the awareness among the industrialist and consumers on the HSE hazardous in furniture finishing and steps can be taken to improve

  3. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  4. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  5. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz

    2017-01-01

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  6. Proceedings of a Scientific Meeting on Research and Development of Isotopes and Radiation Technology. 1999/2000

    International Nuclear Information System (INIS)

    Suhadi, F.; Ismachin, Moch; Manurung, Simon

    2000-01-01

    Proceedings of scientific meeting on research and Development of Isotopes and Radiation Technology has been presented on Feb 23-24 2000. This activity for a routine activity that was held by Centre for Research and Development of Isotopes and Radiation Technology to disseminate research and development results of BATAN activity. The Scientific meeting is an information exchange facility among researcher manager and industrialist for using isotope technology in industry efficiency. The proceeding consist of 6 article from keynotes' speaker and 39 articles from BATAN participant as well as outside. The articles is indexing separately

  7. Psychiatric Aspects of Infertility

    Directory of Open Access Journals (Sweden)

    Hacer Sezgin

    2014-06-01

    Full Text Available Infertility can be defined as a crisis with cultural, religious, and class related aspects, which coexists with medical, psychiatric, psychological, and social problems. Relation between psychiatric and psychological factors stem from a mutual interaction of both. Family is an important institution in maintaining human existence and raising individuals in line with society's expectations. Fertility and reproduction are seen as universal functions unique to women with raising children as the expected result of the family institution. Incidence of infertility has increased recently and can become a life crisis for a couple. Even though not being able to have a child affects both sexes emotionally, women feel greater amounts of stress, pressure, anxiety, and depression.Consequences of infertility arise from short and long-term devastating effects on both individual's physical and mental health, and marital system. Many studies focus on infertility related psychological and psychiatric disorders (depression, anxiety, grief, marital conflict, gender differences, relation between the causes of infertility and psychopathology, the effects of psychiatric evaluation and intervention -when necessaryon the course of infertility treatment, pregnancy rates, and childbirth. The most important underlying causes of high levels of stress and anxiety that infertile women experience are the loss of maternity, reproduction, sense of self, and genetic continuity. In this review article is to investigate the relationship between medically unexplained symptoms and psychiatric symptoms. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(2.000: 165-185

  8. Indoor radiation mapping using the Laser Assisted Ranging and Data System (LARADS). Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facilities require characterization and documentation of the results as part of planning and decision-making for decontamination and decommissioning (D and D) projects and to release areas that have been cleaned up. Conducting radiation surveys of indoor and outdoor surfaces and generating accurate survey reports is an important component of the D and D program. The Laser Assisted Ranging and Data System (LARADS) is a characterization technology that provides real-time data on the location and concentration levels of radiological contamination. The system can be utilized with a number of available detection instruments and can be integrated with existing data analysis and mapping software technologies to generate superior quality survey data reports. This innovative technology is competitive with baseline technologies in terms of cost and survey times, but is much more flexible and provides more useful reports. The system also has the capability of electronically logging survey data, making it easy to store and retrieve. Such data are scientifically derived and not subject to interpretation. The LARADS is an extremely attractive alternative to manually generated survey data reports

  9. Radiation effects in materials for accelerator-driven neutron technologies. Revision

    International Nuclear Information System (INIS)

    Wechsler, M.S.; Lin, C.; Sommer, W.F.

    1997-01-01

    Accelerator-driven neutron technologies use spallation neutron sources (SNS's) in which high-energy protons bombard a heavy-element target and spallation neutrons are produced. The materials exposed to the most damaging radiation environments in an SNS are those in the path of the incident proton beam. This includes target and window materials. These materials will experience damage from the incident protons and the spallation neutrons. In addition, some materials will be damaged by the spallation neutrons alone. The principal materials of interest for SNS's are discussed elsewhere. The target should consist of one or more heavy elements, so as to increase the number of neutrons produced per incident proton. A liquid metal target (e.g., Pb, Bi, Pb-Bi, Pb-Mg, and Hg) has the advantage of eliminating the effects of radiation damage on the target material itself, but concerns over corrosion problems and the influence of transmutants remain. The major solid targets in operating SNS's and under consideration for the 1-5 MW SNS's are W, U, and Pb. Tungsten is the target material at LANSCE, and is the projected target material for an upgraded LANSCE target that is presently being designed. It is also the projected target material for the tritium producing SNS under design at LANL. In this paper, the authors present the results of spallation radiation damage calculations (displacement and He production) for tungsten

  10. A study on radiation technological degradation of organic chloride wastewater--exemplified by TCE and PCE.

    Science.gov (United States)

    Huang, Sheng-Kai; Hsieh, Ling-Ling; Chen, Chia-Chieh; Lee, Po-Hsiu; Hsieh, Bor-Tsung

    2009-01-01

    This paper describes the potential of using gamma radiation technology to degrade trichloroethylene (TCE) and perchloroethylene (PCE) wastewater. The experimental method is divided into two parts: (1) using the gamma-ray to irradiate the TCE and PCE solution, the dose-rate is 10Gy/minute, the irradiation dosage is 0-2.5kGy and (2) self-making the UV irradiation system, the tube specification is 254nm and 6W, and turning on 8 tubes at the same time to make the irradiation. The efficiency of degradation ratio for gamma-ray is better than UV in the range of 0.1-250ppm; for example, as for the concentration of 0.1ppm, when TCE is degraded to D(90) and T(90), the gamma-ray only needed 46.7Gy and took about 4.67 minutes, but UV needed to take about 28.1 minutes. The dose-concentration equations of TCE and PCE are: TCE: y=44.58+8.832x, R(2)=0.999; and PCE: y=81.33+12.81x, R(2)=0.997. We verified that the radiation technology is able to effectively degrade the organic chlorine wastewater without yielding the secondary pollution, and the TCE and PCE that degraded by using gamma-ray will be reached US-EPA and Taiwan Effluent Standard (5ppb).

  11. A study on radiation technological degradation of organic chloride wastewater-Exemplified by TCE and PCE

    International Nuclear Information System (INIS)

    Huang, S.-K.; Hsieh, L.-L.; Chen, C.-C.; Lee, P.-H.; Hsieh, B.-T.

    2009-01-01

    This paper describes the potential of using gamma radiation technology to degrade trichloroethylene (TCE) and perchloroethylene (PCE) wastewater. The experimental method is divided into two parts: (1) using the γ-ray to irradiate the TCE and PCE solution, the dose-rate is 10 Gy/minute, the irradiation dosage is 0-2.5 kGy and (2) self-making the UV irradiation system, the tube specification is 254 nm and 6 W, and turning on 8 tubes at the same time to make the irradiation. The efficiency of degradation ratio for γ-ray is better than UV in the range of 0.1-250 ppm; for example, as for the concentration of 0.1 ppm, when TCE is degraded to D 90 and T 90 , the γ-ray only needed 46.7 Gy and took about 4.67 minutes, but UV needed to take about 28.1 minutes. The dose-concentration equations of TCE and PCE are: TCE: y=44.58+8.832x, R 2 =0.999; and PCE: y=81.33+12.81x, R 2 =0.997. We verified that the radiation technology is able to effectively degrade the organic chlorine wastewater without yielding the secondary pollution, and the TCE and PCE that degraded by using γ-ray will be reached US-EPA and Taiwan Effluent Standard (5 ppb).

  12. A study on radiation technological degradation of organic chloride wastewater-Exemplified by TCE and PCE

    Energy Technology Data Exchange (ETDEWEB)

    Huang, S.-K.; Hsieh, L.-L. [Institute of Radiological Science, Central Taiwan University of Science and Technology, No. 11, Buzih Lane, Beitun District, Taichung City 40601, Taiwan (China); Chen, C.-C. [Isotope Application Division, Institute of Nuclear Energy Research, Taiwan (China); Lee, P.-H. [Institute of Radiological Science, Central Taiwan University of Science and Technology, No. 11, Buzih Lane, Beitun District, Taichung City 40601, Taiwan (China); Hsieh, B.-T. [Institute of Radiological Science, Central Taiwan University of Science and Technology, No. 11, Buzih Lane, Beitun District, Taichung City 40601, Taiwan (China)], E-mail: bthsieh@ctust.edu.tw

    2009-07-15

    This paper describes the potential of using gamma radiation technology to degrade trichloroethylene (TCE) and perchloroethylene (PCE) wastewater. The experimental method is divided into two parts: (1) using the {gamma}-ray to irradiate the TCE and PCE solution, the dose-rate is 10 Gy/minute, the irradiation dosage is 0-2.5 kGy and (2) self-making the UV irradiation system, the tube specification is 254 nm and 6 W, and turning on 8 tubes at the same time to make the irradiation. The efficiency of degradation ratio for {gamma}-ray is better than UV in the range of 0.1-250 ppm; for example, as for the concentration of 0.1 ppm, when TCE is degraded to D{sub 90} and T{sub 90}, the {gamma}-ray only needed 46.7 Gy and took about 4.67 minutes, but UV needed to take about 28.1 minutes. The dose-concentration equations of TCE and PCE are: TCE: y=44.58+8.832x, R{sup 2}=0.999; and PCE: y=81.33+12.81x, R{sup 2}=0.997. We verified that the radiation technology is able to effectively degrade the organic chlorine wastewater without yielding the secondary pollution, and the TCE and PCE that degraded by using {gamma}-ray will be reached US-EPA and Taiwan Effluent Standard (5 ppb)

  13. Radiative forcing associated with particulate carbon emissions resulting from the use of mercury control technology.

    Science.gov (United States)

    Lin, Guangxing; Penner, Joyce E; Clack, Herek L

    2014-09-02

    Injection of powdered activated carbon (PAC) adsorbents into the flue gas of coal fired power plants with electrostatic precipitators (ESPs) is the most mature technology to control mercury emissions for coal combustion. However, the PAC itself can penetrate ESPs to emit into the atmosphere. These emitted PACs have similar size and optical properties to submicron black carbon (BC) and thus could increase BC radiative forcing unintentionally. The present paper estimates, for the first time, the potential emission of PAC together with their climate forcing. The global average maximum potential emissions of PAC is 98.4 Gg/yr for the year 2030, arising from the assumed adoption of the maximum potential PAC injection technology, the minimum collection efficiency, and the maximum PAC injection rate. These emissions cause a global warming of 2.10 mW m(-2) at the top of atmosphere and a cooling of -2.96 mW m(-2) at the surface. This warming represents about 2% of the warming that is caused by BC from direct fossil fuel burning and 0.86% of the warming associated with CO2 emissions from coal burning in power plants. Its warming is 8 times more efficient than the emitted CO2 as measured by the 20-year-integrated radiative forcing per unit of carbon input (the 20-year Global Warming Potential).

  14. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines.

    Science.gov (United States)

    Fredericks, Ilse N; du Toit, Maret; Krügel, Maricel

    2011-05-01

    Since sulphur dioxide (SO(2)) is associated with health risks, the wine industry endeavours to reduce SO(2) levels in wines with new innovative techniques. The aim of this study was, therefore, to investigate the efficacy of ultraviolet radiation (UV)-C (254 nm) as an alternative technology to inactivate microorganisms in grape juices and wines. A pilot-scale UV-C technology (SurePure, South Africa) consisting of an UV-C germicidal lamp (100 W output; 30 W UV-C output) was used to apply UV-C dosages ranging from 0 to 3672 J l(-1), at a constant flow rate of 4000 l h(-1) (Re > 7500). Yeasts, lactic and acetic acid bacteria were singly and co-inoculated into 20 l batches of Chenin blanc juice, Shiraz juice, Chardonnay wine and Pinotage wine, respectively. A dosage of 3672 J l(-1), resulted in an average log(10) microbial reduction of 4.97 and 4.89 in Chardonnay and Pinotage, respectively. In Chenin blanc and Shiraz juice, an average log(10) reduction of 4.48 and 4.25 was obtained, respectively. UV-C efficacy may be influenced by liquid properties such as colour and turbidity. These results had clearly indicated significant (p radiation may stabilize grape juice and wine microbiologically in conjunction with reduced SO(2) levels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. New technology development for radiation dose measurement and evaluation based on the operational quantity

    International Nuclear Information System (INIS)

    Kim, Jang Lyul; Kim, B. H.; Lee, J. I.; Lim, K. S.; Song, M. Y.; Joo, G. S.; Kim, S. I.; Chang, I. S.

    2012-04-01

    · Development of optically stimulated luminescence (OSL) technique for multi-purpose radiation dosimetry - Development of a semi-automatic type OSL measurement system · Number of sample holders: 10 ea · Development of a built-in type reference radiation irradiation system using 50 kV-1 mA X-rays of the maximum dose rate of 230 mGy/s - Development of an automatic diameter control system and crystal growth system for making a new OSL material: LiMgF 3 : X, LiAlO 2 : C - Development of a procedure of retrospective accident dosimetry · Establishment of Practical Technology for Internal Dose Assessment - Development of the technology to the internal dose assessment for an injection of radionuclides and intercomparison on the evaluation results of the committed effective dose between the estimators of Korea · Construction of workplace monitoring technique by quantification of neutron fields - Preparation of the neutron spectra DB of various neutron fields and production of those dosimetric data: 29 kinds of neutron fields using a thermal neutron irradiator, a proton accelerator and a neutron generator - Neutron monitoring procedure at workplace using neutron fluence spectra

  16. The main steps on implementation of radiation processing technology - portuguese experience

    International Nuclear Information System (INIS)

    Luisa Botelho, M.

    2010-11-01

    The development of applications of ionizing radiation for Industrial purposes in Portugal began near of 1982 with the support of IAEA under the program of Cooperation and Technical Assistance - project POR/8/002. The IAEA program of Cooperation and Technical Assistance permitted that POR/08/002 took place between 1983 up to 1988. The collaboration of the International Experts and the personnel of National Laboratory of Industrial Engineering and Technology, nowadays Nuclear and Technologic Institute (ITN), allowed the construction of a Co-60 irradiation plant, designed by Tecnabexport (Russia). This facility is located in the ITN campus in Sacavem, Portugal. The main parameters studied prior to the implementation (sitting, design, construction, commissioning, operation, maintenance and foreseen decommission) were planned and executed according with the Portuguese legislation which is based on the International rules (IAEA Safety series) and Directive EURATOM 836/80, nowadays EURATOM 1493/93. A study of the geological stability of the site for future placement of the irradiation facility was done preceding the construction. The facility was constructed under Portuguese responsibility but designed and loaded with Co-60 by the Russian business rganization: Technabexport between 1987 and 1988. The whole process was supervised and approved by the ITN's Nuclear Protection and Safety Department. The Cobalt-60 irradiation facility was initially named GammaPi and later on Radiation Technologies Unit (UTR) and its management was under ITN's authority until 2003. Once established a quality system for the gamma facility, the following phase is to develop, validate and control the sterilization/disinfection process. In this step, a multidisciplinary approach and a continuous dialog with product managers and personnel must be taken into consideration in the experimental design for the correct and effective establishment of irradiation process. The knowledge of product's elements

  17. Planning research on the next strategical project through the trend analysis on radiation fusion technology, industry and policy

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Choi, Jae Hak; Kim, Tak Hyun

    2013-01-01

    Ο The planning research for establish a detailed implementation strategy to serve as small, but a strong institution leading national radiation research and resolving the pending issues related to using radiation - Now is a time when it needs a implementation strategy to achieve it's unique mission as the sole radiation-specialized research institute leading to promote the radiation industry. Ο The main background of this study is to build the planning of a new paradigm for research and development to cope with the changing domestic and international environment for sustainable growth - As the domestic regional radiation field is getting more competitive and the cooperative group expands, it needs to adapt to the global trend such as technology convergence and acceleration etc.. - The need for establish basic database to make a new strategy in order to narrow the technology gap in the radiation fusion technology comparing to the developed country and cope with emerging country's advancement in technology Ο The use to build basic database to spearhead the project and set aside a budget effectively - It's to be used as a reference to set aside a budget through planning strategy industry field to forecast the industrial demand and variation of the future policy and create blue ocean and niche markets

  18. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    International Nuclear Information System (INIS)

    Hahn, S; Jaffray, D; Chetty, I; Benedict, S

    2014-01-01

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  19. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, S [University of Pennsylvania, Philadelphia, PA (United States); Jaffray, D [Princess Margaret Hospital, Toronto, ON (Canada); Chetty, I [Henry Ford Health System, Detroit, MI (United States); Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States)

    2014-06-15

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  20. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  1. Development of Space Life Supporting System Using Radiation Technology (Top Brand Project)

    International Nuclear Information System (INIS)

    Lee, Ju Woon; Kim, Jae Hun; Song, Beom Seok; Choi, Jong Il; Yoon, Yo Han; Park, Jin Kyu; Park, Jae Nam; Han, In Jun; Lee, Yoon Jong

    2010-08-01

    To simulate the space environment of microgravity and expose to space radiation, Hindlimb Suspension Model was established in Gamma Phytotron. Hindlimb suspended group exposed to irradiation, non-suspended group not exposed to irradiation, and non-suspended group exposed to irradiation were experimented for 2 weeks at the dose rate of 3.2 mSV/day. The results showed that muscle weight was decreased by suspension. To develop the countermeasure to physiological changes in space environment, the peptides from soy beam was selected to evaluate the effect with the space environment simulation model. Suing the microscopic and fluorescent images, the growth of microorganisms were detected. The species were identified based on primer-targeted gene sequence analysis. Also, the radiation resistance of species was defined. To research on sustainable nutritional supply and improvement of human physiology in space environment, four kinds of new Korean space foods (Bulgogi, Bibimbap, Seaweed soup, and Mulberry beverage) were developed using the irradiation technology and certified as space foods by the Russian Institute of Biomedical Problems. The contract on joint research of MARS-500 between KAERI and IBMP was made. In the experiment, crews for expedition to Mars will eat Korean space foods (Bulgogi, Bibimbap, Seaweed soup, Mulberry beverage, Kimchi, Sujeonggwa) for 120 days, then their immunity will be examined and compared with it on the ground. The developed technology and know-how could be spun out to the various fields, such as aircraft, automobile, military, information and communication, bio technologies. Moreover, the results obtained from this research can be used for the further development for military use or special food area such as foods for patient

  2. Report of research and investigation committee for infrared radiation heating technology. Sekigai hosha kanetsu gijutsu kenkyu chosa iinkai hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M. (Fukuyama Univ., Hiroshima (Japan). Faculty of Engineering)

    1994-07-01

    The committee was established in July 1990 for research and investigation of infrared (IR) heating technology and finished its activity in March 1993. This report describes the committee members and the results of research and investigation. (1) Application of IR radiation (sensing): the research and investigation results were reported on the following items; the recognition of letters and patterns on cultural properties by IR radiation, the passive sensor (detecting the IR radiated from the object without emitting from the sensor), the IR image system, and the diagnosis of outer wail of buildings. (2) The following were researched on the IR radiation source and IR emitting material; multi-functional heating element having far infrared radiation function and deodorant function, the emissivity of far IR radiation, and the evaluation of the functions by the difference in emissivity. (3) The IR heating technology was described on the following: drying the persimmon using far IR radiation, the present situation of research on IR heating done by foreign power supply companies, and the feature and the application of far IR heater. In addition to these, the following were also reported; (4) measurement of IR radiation and (5) effect of living body and organism.

  3. Technological physics and special materials: wood-plastic composites obtained by radiation polymerization

    International Nuclear Information System (INIS)

    Peteu, Gh.; Iliescu, V.

    1995-01-01

    General estimates and references are made in connection with the role of technological physics in obtaining materials with specific features. The first part of the paper presents the modification of weak wood essences as well as technological processes at bench-scale and semi industrial scale of wood-plastic composites, under various irradiation conditions. Two technological installations for the fabrication of wood-plastic composites on both scales with technical and practical specifications of their performances are presented. Experimental data for different wood-plastic composite systems using some local wood essences in combination with several polymer and copolymer systems are given. Impregnation and polymerization levels are mentioned for every specific system. The radiation dose rate and integrated dose are given for every experimental polymerization system. The features of the wood-plastic composites are compared with the initial wood essences. Finally, a few technical and economic assessments of wood-plastic composites and their implications in the domestic economy are presented. (author)

  4. Proceedings of the national seminar and awareness programme on applications of radioisotopes and radiation technology in industry and health care

    International Nuclear Information System (INIS)

    Durairaj, S.; Madan, V. K.

    2012-01-01

    The National Seminar and Awareness Program on Applications of Radioisotopes and Radiation Technology in Industry and Health care is an important national event to learn about the challenges in the development and proliferation of application of radioisotopes and radiation technologies, and in appreciation of the role of these technologies to the benefit of public at large. This program endeavors to disseminate knowledge about lesser known and widely applied technologies and send the right message to the people for their greater acceptance. Applications of radioisotopes and radiation technology in industry such as oil, gas, chemical, petrochemical, steel, mining, paper, mineral and automobile and health care such as non-invasive diagnosis and treatment of a range of important and common conditions like cancer and cardiovascular diseases and radiation processed polymer containing hydrogel for use for bum dressing, and medical and agricultural products sterilization, have seen a significant growth in our country in the last fifty years. The indigenous capacity for the development and utilization of these technologies must be further strengthened. Papers relevant to INIS are indexed separately

  5. Aggression in Psychiatric Wards

    DEFF Research Database (Denmark)

    Hvidhjelm, Jacob; Sestoft, Dorte; Skovgaard, Lene Theil

    2016-01-01

    Health care workers are often exposed to violence and aggression in psychiatric settings. Short-term risk assessments, such as the Brøset Violence Checklist (BVC), are strong predictors of such aggression and may enable staff to take preventive measures against aggression. This study evaluated...

  6. [Psychiatric treatment sentences.

    DEFF Research Database (Denmark)

    Stevens, Hanne; Nordentoft, Merete; Agerbo, Esben

    2010-01-01

    INTRODUCTION: Previous Danish studies of the increasing number of sentences to psychiatric treatment (SPT) have compared prevalent populations of persons undergoing treatment with incident measures of reported crimes. Examining the period 1990-2006, we studied incident sentences, taking the type...

  7. Eponymous Psychiatric Syndromes Revisited.

    Science.gov (United States)

    Naguy, Ahmed

    2018-02-22

    This report provides an anthology of psychiatric eponyms. Clinically, many of these described syndromes represent valid diagnostic constructs and may accommodate the atypical cases that defy the official diagnostic designation in the current classificatory systems in psychiatry. © Copyright 2018 Physicians Postgraduate Press, Inc.

  8. Psychiatric Advance Directives: Getting Started

    Science.gov (United States)

    ... News Legal Issues Search for: About PADs A psychiatric advance directive (PAD) is a legal document that ... decisions during a mental health crisis. Getting Started Psychiatric advance directives (PADs) are relatively new legal instruments ...

  9. Developing an integrated design model incorporating technology philosophy for the design of healthcare environments : a case analysis of facilities for psychogeriatric and psychiatric care in The Netherlands

    NARCIS (Netherlands)

    van Hoof, J.; Verkerk, M.J.

    The design of healthcare facilities is a complex and dynamic process, which involves many stakeholders each with their own set of needs. In the context of healthcare facilities, this complexity exists at the intersection of technology and society because the very design of these buildings forces us

  10. Radiation hardness tests with a demonstrator preamplifier circuit manufactured in silicon on sapphire (SOS) VLSI technology

    International Nuclear Information System (INIS)

    Bingefors, N.; Ekeloef, T.; Eriksson, C.; Paulsson, M.; Moerk, G.; Sjoelund, A.

    1992-01-01

    Samples of the preamplifier circuit, as well as of separate n and p channel transistors of the type contained in the circuit, were irradiated with gammas from a 60 Co source up to an integrated dose of 3 Mrad (30 kGy). The VLSI manufacturing technology used is the SOS4 process of ABB Hafo. A first analysis of the tests shows that the performance of the amplifier remains practically unaffected by the radiation for total doses up to 1 Mrad. At higher doses up to 3 Mrad the circuit amplification factor decreases by a factor between 4 and 5 whereas the output noise level remains unchanged. It is argued that it may be possible to reduce the decrease in amplification factor in future by optimizing the amplifier circuit design further. (orig.)

  11. Radiation tolerance study of a commercial 65 nm CMOS technology for high energy physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Lili, E-mail: lili03.ding@gmail.com [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); State Key Laboratory of Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an (China); Gerardin, Simone [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); Bagatin, Marta [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); Bisello, Dario [Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy); Mattiazzo, Serena [Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova (Italy); Paccagnella, Alessandro [Department of Information Engineering, Padova University, Via Gradenigo 6/B, 35131 Padova (Italy); INFN, Padova, Via Marzolo 8, 35131 Padova (Italy)

    2016-09-21

    This paper reports the radiation tolerance study of a commercial 65 nm technology, which is a strong candidate for the Large Hadron Collider applications. After exposure to 3 MeV protons till 1 Grad dose, the 65 nm CMOS transistors, especially the pMOSFETs, showed severe long-term degradation mainly in the saturation drain currents. There were some differences between the degradation levels in the nMOSFETs and the pMOSFETs, which were likely attributed to the positive charges trapped in the gate spacers. After exposure to heavy ions till multiple strikes, the pMOSFETs did not show any sudden loss of drain currents, the degradations in the characteristics were negligible.

  12. Epitaxy - a new technology for fabrication of advanced silicon radiation detectors

    International Nuclear Information System (INIS)

    Kemmer, J.; Wiest, F.; Pahlke, A.; Boslau, O.; Goldstrass, P.; Eggert, T.; Schindler, M.; Eisele, I.

    2005-01-01

    Twenty five years after the introduction of the planar process to the fabrication of silicon radiation detectors a new technology, which replaces the ion implantation doping by silicon epitaxy is presented. The power of this new technique is demonstrated by fabrication of silicon drift detectors (SDDs), whereby both the n-type and p-type implants are replaced by n-type and p-type epi-layers. The very first SDDs ever produced with this technique show energy resolutions of 150 eV for 55 Fe at -35 deg C. The area of the detectors is 10 mm 2 and the thickness 300 μm. The high potential of epitaxy for future detectors with integrated complex electronics is described

  13. Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology

    Science.gov (United States)

    Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.

    2014-08-01

    The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.

  14. Radiation technology for preservation and hygienization of food and agricultural commodities

    International Nuclear Information System (INIS)

    Hajare, Sachin N.

    2017-01-01

    Growing population demands more food for consumption. Given that the agricultural land is shrinking day by day in urban as well as rural areas, we are left with no choice but to preserve the produce in whatever way we can. In this scenario, gamma irradiation or exposure of foods or food products to high energy rays is a very effective technology in long term preservation of these products. Food Irradiation is an established and effective processing methodology that involves controlled application of energy from ionizing radiations in an irradiation chamber shielded by thick concrete walls using radioisotopes (Cobalt-60 and Caesium-137), electron beam (up to 10 MeV) and X-rays (up to 5 MeV). Presently it is being practiced in more than 60 countries for various applications. Radiation processing can achieve insect disinfestation of stored products, inhibition of sprouting in tubers, bulbs and rhizomes, delay in fruit ripening, destruction of microbes responsible for food spoilage and elimination of pathogens and parasites of public health importance

  15. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com [Department of Electronics Engineering, Rajasthan Technical University, Kota (India)

    2016-03-09

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done on CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.

  16. Effect of electromagnetic radiations on neurodegenerative diseases- technological revolution as a curse in disguise.

    Science.gov (United States)

    Hasan, Gulam M; Sheikh, Ishfaq A; Karim, Sajjad; Haque, Absarul; Kamal, Mohammad A; Chaudhary, Adeel G; Azhar, Essam; Mirza, Zeenat

    2014-01-01

    In the present developed world, all of us are flooded with electromagnetic radiations (EMR) emanating from generation and transmission of electricity, domestic appliances and industrial equipments, to telecommunications and broadcasting. We have been exposed to EMR for last many decades; however their recent steady increase from artificial sources has been reported as millions of antennas and satellites irradiate the global population round the clock, year round. Needless to say, these are so integral to modern life that interaction with them on a daily basis is seemingly inevitable; hence, the EMR exposure load has increased to a point where their health effects are becoming a major concern. Delicate and sensitive electrical system of human body is affected by consistent penetration of electromagnetic frequencies causing DNA breakages and chromosomal aberrations. Technological innovations came with Pandora's Box of hazardous consequences including neurodegenerative disorders, hearing disabilities, diabetes, congenital abnormalities, infertility, cardiovascular diseases and cancer to name few, all on a sharp rise. Electromagnetic non-ionizing radiations pose considerable health threat with prolonged exposure. Mobile phones are usually held near to the brain and manifest progressive structural or functional alterations in neurons leading to neurodegenerative diseases and neuronal death. This has provoked awareness among both the general public and scientific community and international bodies acknowledge that further systematic research is needed. The aim of the present review was to have an insight in whether and how cumulative electro-magnetic field exposure is a risk factor for neurodegenerative disorders.

  17. A snapshot of radiation therapy techniques and technology in Queensland: An aid to mapping undergraduate curriculum

    International Nuclear Information System (INIS)

    Bridge, Pete; Carmichael, Mary-Ann; Brady, Carole; Dry, Allison

    2013-01-01

    Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories. This information was combined into aggregate anonymized data. All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. The Snapshot method proved to be a feasible and efficient method of gathering useful data to inform curriculum matching. Frequency of IMRT use in Queensland matches or possibly exceeds that indicated in the literature. It is recommended that future repetition of the study be undertaken in order to monitor trends in referral patterns and new technology implementation

  18. A snapshot of radiation therapy techniques and technology in Queensland: An aid to mapping undergraduate curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Pete; Carmichael, Mary-Ann [School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, 4001 (Australia); Brady, Carole [Radiation Oncology Mater Centre, Raymond Terrace, South Brisbane, Queensland, 4101 (Australia); Dry, Allison [Cancer Care Services Royal Brisbane Women' s Hospital Herston, Brisbane, Queensland, 4029 (Australia); School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, 4001 (Australia)

    2013-03-15

    Undergraduate students studying the Bachelor of Radiation Therapy at Queensland University of Technology (QUT) attend clinical placements in a number of department sites across Queensland. To ensure that the curriculum prepares students for the most common treatments and current techniques in use in these departments, a curriculum matching exercise was performed. A cross-sectional census was performed on a pre-determined “Snapshot” date in 2012. This was undertaken by the clinical education staff in each department who used a standardized proforma to count the number of patients as well as prescription, equipment, and technique data for a list of tumour site categories. This information was combined into aggregate anonymized data. All 12 Queensland radiation therapy clinical sites participated in the Snapshot data collection exercise to produce a comprehensive overview of clinical practice on the chosen day. A total of 59 different tumour sites were treated on the chosen day and as expected the most common treatment sites were prostate and breast, comprising 46% of patients treated. Data analysis also indicated that intensity-modulated radiotherapy (IMRT) use is relatively high with 19.6% of patients receiving IMRT treatment on the chosen day. Both IMRT and image-guided radiotherapy (IGRT) indications matched recommendations from the evidence. The Snapshot method proved to be a feasible and efficient method of gathering useful data to inform curriculum matching. Frequency of IMRT use in Queensland matches or possibly exceeds that indicated in the literature. It is recommended that future repetition of the study be undertaken in order to monitor trends in referral patterns and new technology implementation.

  19. Laser-induced radiation microbeam technology and simultaneous real-time fluorescence imaging in live cells.

    Science.gov (United States)

    Botchway, Stanley W; Reynolds, Pamela; Parker, Anthony W; O'Neill, Peter

    2012-01-01

    The use of nano- and microbeam techniques to induce and identify subcellular localized energy deposition within a region of a living cell provides a means to investigate the effects of low radiation doses. Particularly within the nucleus where the propagation and processing of deoxyribonucleic acid (DNA) damage (and repair) in both targeted and nontargeted cells, the latter being able to study cell-cell (bystander) effects. We have pioneered a near infrared (NIR) femtosecond laser microbeam to mimic ionizing radiation through multiphoton absorption within a 3D femtoliter volume of a highly focused Gaussian laser beam. The novel optical microbeam mimics both complex ionizing and UV-radiation-type cell damage including double strand breaks (DSBs). Using the microbeam technology, we have been able to investigate the formation of DNA DSB and subsequent recruitment of repair proteins to the submicrometer size site of damage introduced in viable cells. The use of a phosphorylated H2AX (γ-H2AX a marker for DSBs, visualized by immunofluorescent staining) and real-time imaging of fluorescently labeling proteins, the dynamics of recruitment of repair proteins in viable mammalian cells can be observed. Here we show the recruitment of ATM, p53 binding protein 1 (53BP1), and RAD51, an integral protein of the homologous recombination process in the DNA repair pathway and Ku-80-GFP involved in the nonhomologous end joining (NHEJ) pathway as exemplar repair process to show differences in the repair kinetics of DNA DSBs. The laser NIR multiphoton microbeam technology shows persistent DSBs at later times post laser irradiation which are indicative of DSBs arising at replication presumably from UV photoproducts or clustered damage containing single strand breaks (SSBs) that are also observed. Effects of the cell cycle may also be investigated in real time. Postirradiation and fixed cells studies show that in G1 cells a fraction of multiphoton laser-induced DSBs is persistent for >6h

  20. ISD technology: a strategy for reduction of low-dose radiation exposure in human beings

    International Nuclear Information System (INIS)

    Hernandez, D.A.; Larsen, K.; Fertel, D.

    2000-01-01

    The primary purpose of this project is to refocus the current national health care debate. It is the first attempt to provide scientists, health care providers, health care policy makers, politicians, health care payers and public health advocates with a method to improve health care and cut costs through decision-making strategies based primarily on medical standards and secondarily on fiscal considerations. The method for decision-making described in this paper proves more cost-effective and medically sound than current practices. Illness Specific Diagnostic (ISD) tables are introduced as a method to reduce inappropriate use of ionizing radiation in medicine. The use of ISD tables destroys the myth of a single medical standard of care and focuses on the diagnostician as the individual most capable of diagnosing disease(s) in human beings. Additionally, ionizing radiation has been used routinely under the guise that the resulting benefits outweigh the risks involved in a procedure. This dubious tradition is questioned in this document. Attention is drawn to the inappropriate amount of radiation patients receive when ionizing diagnostic tests are performed with marginal or no diagnostic benefit. The results of a pilot study are presented that explicate the reduction of needless radiation to patients and associated reduction of costs that becomes possible in the presence of appropriate scientific medical standards. Ultimately, quality medicine is indeed the most cost-effective medicine possible. The current practice by which the United States Congress issues laws aimed at dictating quality medicine is both desperate and dangerous. Politicians and legislators would be wise to focus their efforts on methodologies that establish standards of care in a scientific manner that does not interfere with medical practice. ISD technology is precisely such a scientific method. It establishes the standard of medical care at the facility from which the ISD tables are generated

  1. Societal applications of isotope/radiation technology in industry and hydrology

    International Nuclear Information System (INIS)

    Singh, Gurusharan

    2012-01-01

    Besides generation of electricity from nuclear fuels, one of the objectives of the Atomic Energy Programme in India is development and promotion of applications of radioisotopes and radiation technology in all major fields of human endeavor. The applications of isotopes both as stable and as radioactive and electronic radiation sources is increasing at a rapid pace in all major fields of human endeavor. These applications expanded greatly when it became possible to produce a variety of radioisotopes artificially in nuclear reactors and by bombardment of the targets with high energy particles. With the recent developments in the supporting technologies such as compact electronics, high resolution detectors, fast computers, small reliable neutron tubes, dedicated computer modeling codes and better data interpretation, one can now satisfy the longstanding demand for immediate, accurate and detailed information about the test specimen. As a result of the radioisotope programme, the country has a strong infrastructure in various fields including applications in industry. One major area of industrial applications of radioisotopes is their use as sealed radioactive sources and as radioactive tracers for troubleshooting, process control and process vessel design modification. These applications are mostly online, nondestructive and noninvasive. Radioisotope techniques can perform many tasks better, easier, quicker, relatively simply, cost effectively than alternative methods and have no substitutes in many applications, and are used extensively in all areas of industry, research, medicine and agriculture. Sealed source techniques of radioisotope applications provide valuable, non destructive and noninvasive insight to the process and plant problems. These are either supplementary to or more convenient than tracer techniques. These applications do not require much preparation time and hence can be carried out at short notice. The use of these techniques is growing steadily

  2. An X window based graphics user interface for radiation information processing system developed with object-oriented programming technology

    International Nuclear Information System (INIS)

    Gao Wenhuan; Fu Changqing; Kang Kejun

    1993-01-01

    X Window is a network-oriented and network transparent windowing system, and now dominant in the Unix domain. The object-oriented programming technology can be used to change the extensibility of a software system remarkably. An introduction to graphics user interface is given. And how to develop a graphics user interface for radiation information processing system with object-oriented programming technology, which is based on X Window and independent of application is described briefly

  3. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    Energy Technology Data Exchange (ETDEWEB)

    Guthoff, Moritz

    2017-02-11

    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A dedicated pixelated luminosity detector measures coincidences in several three-layer telescopes of silicon pixel detectors to arrive at a luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point. The upgraded fast beam conditions monitor measures the particle flux using 24 two-pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background. A new beam-halo monitor at larger radius exploits Cherenkov light produced by relativistic charged particles in fuzed quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules with high bandwidth digitizers developed in both VME and microTCA standards for per bunch beam measurements and gain monitoring. All new and upgraded sub-detectors have been taking data from the first day of LHC operation in April 2015. Results on their commissioning and essential characteristics using data since the start-up of LHC will be presented.

  4. [Tinnitus and psychiatric comorbidities].

    Science.gov (United States)

    Goebel, G

    2015-04-01

    Tinnitus is an auditory phantom phenomenon characterized by the sensation of sounds without objectively identifiable sound sources. To date, its causes are not well understood. The perceived severity of tinnitus correlates more closely to psychological and general health factors than to audiometric parameters. Together with limbic structures in the ventral striatum, the prefrontal cortex forms an internal "noise cancelling system", which normally helps to block out unpleasant sounds, including the tinnitus signal. If this pathway is compromised, chronic tinnitus results. Patients with chronic tinnitus show increased functional connectivity in corticolimbic pathways. Psychiatric comorbidities are common in patients who seek help for tinnitus or hyperacusis. Clinicians need valid screening tools in order to identify patients with psychiatric disorders and to tailor treatment in a multidisciplinary setting.

  5. The psychiatric interview

    DEFF Research Database (Denmark)

    Frederiksen, Julie Elisabeth Nordgaard; Sass, Louis A; Parnas, Josef

    2012-01-01

    interview. We address the ontological status of pathological experience, the notions of symptom, sign, prototype and Gestalt, and the necessary second-person processes which are involved in converting the patient's experience (originally lived in the first-person perspective) into an "objective" (third......There is a glaring gap in the psychiatric literature concerning the nature of psychiatric symptoms and signs, and a corresponding lack of epistemological discussion of psycho-diagnostic interviewing. Contemporary clinical neuroscience heavily relies on the use of fully structured interviews...... person), actionable format, used for classification, treatment, and research. Our central thesis is that psychiatry targets the phenomena of consciousness, which, unlike somatic symptoms and signs, cannot be grasped on the analogy with material thing-like objects. We claim that in order to perform...

  6. Culture and psychiatric diagnosis.

    Science.gov (United States)

    Lewis-Fernández, Roberto; Aggarwal, Neil Krishan

    2013-01-01

    Since the publication of DSM-IV in 1994, neurobiologists and anthropologists have criticized the rigidity of its diagnostic criteria that appear to exclude whole classes of alternate illness presentations, as well as the lack of attention in contemporary psychiatric nosology to the role of contextual factors in the emergence and characteristics of psychopathology. Experts in culture and mental health have responded to these criticisms by revising the very process of diagnosis for DSM-5. Specifically, the DSM-5 Cultural Issues Subgroup has recommended that concepts of culture be included more prominently in several areas: an introductory chapter on Cultural Aspects of Psychiatric Diagnosis - composed of a conceptual introduction, a revised Outline for Cultural Formulation, a Cultural Formulation Interview that operationalizes this Outline, and a glossary on cultural concepts of distress - as well as material directly related to culture that is incorporated into the description of each disorder. This chapter surveys these recommendations to demonstrate how culture and context interact with psychiatric diagnosis at multiple levels. A greater appreciation of the interplay between culture, context, and biology can help clinicians improve diagnostic and treatment planning. Copyright © 2013 APA*

  7. Design and characterization of radiation resistant integrated circuits for the LHC particle detectors using deep sub-micron CMOS technologies

    International Nuclear Information System (INIS)

    Anelli, Giovanni Maria

    2000-01-01

    The electronic circuits associated with the particle detectors of the CERN Large Hadron Collider (LHC) have to work in a highly radioactive environment. This work proposes a methodology allowing the design of radiation resistant integrated circuits using the commercial sub-micron CMOS technology. This method uses the intrinsic radiation resistance of ultra-thin grid oxides, the technology of enclosed layout transistors (ELT), and the protection rings to avoid the radio-induced creation of leakage currents. In order to check the radiation tolerance level, several test structures have been designed and tested with different radiation sources. These tests have permitted to study the physical phenomena responsible for the damages induced by the radiations and the possible remedies. Then, the particular characteristics of ELT transistors and their influence on the design of complex integrated circuits has been explored. The modeling of the W/L ratio, the asymmetries (for instance in the output conductance) and the performance of ELT couplings have never been studied yet. The noise performance of the 0.25 μ CMOS technology, used in the design of several integrated circuits of the LHC detectors, has been characterized before and after irradiation. Finally, two integrated circuits designed using the proposed method are presented. The first one is an analogic memory and the other is a circuit used for the reading of the signals of one of the LHC detectors. Both circuits were irradiated and have endured very high doses practically without any sign of performance degradation. (J.S.)

  8. Perspectives and problems of application of the effects of ionizing radiation in water treatment technology in Czechoslovakia

    International Nuclear Information System (INIS)

    Vacek, K.

    1978-01-01

    Investigations of the possibilities of the utilization of physico-chemical and biological effects of ionizing radiation in water treatment technology has been carried out in Czechoslovakia since 1976. In the area of water sources the radiation recovery of wells clogged with Fe(III) hydroxyoxides as a result of activity of some microorganism begins to be used. Other possible methods of the application of ionizing radiation as increase of disinfection efficiency of chlorination during irradiation, radiation deodorization and discoloration of drinking water are not utilized for economic reasons. In the area of waste water the radiation destruction of solution of some dyestuffs in the presence of charcoal was investigated. This process is complicated and cannot compete with current technologies. Radiation hygienization of sewage sludge with their perspective utilization as fertilizers was also investigated. At present a part of sewage sludge is agrotechnically used, yet with various restrictions. Technical and economic analysis showed that hygienization using electron accelerators would be very desirable as soon as renewed hygienic regulations of sludge depositions become valid. (Auth.)

  9. Report on identification of federal radiation issues: To the Federal Coordinating Council for Science, Engineering and Technology

    International Nuclear Information System (INIS)

    1986-03-01

    The Committee on Interagency Radiation Research and Policy Coordination (CIRRPC) was established on April 9, 1984 by the Office of Science and Technology Policy (OSTP) under the authority of the Federal Coordinating Council for Science, Engineering and Technology (FCCSET). It is chaired by OSTP. CIRRPC membership consists of those agencies having specific responsibilities or interest in radiation research and/or policy. CIRRPC has two elements: The Committee itself, consisting of subcabinet and senior policy level representatives, and a Science Panel, consisting of senior radiation scientists from the respective member agencies. The structure and membership of CIRRPC is shown in Figure 2. It was decided at the inception of CIRRPC to identify the radiation issues of concern to the Federal agencies, Congress, and professional societies faced with radiation policy or scientific issues. It was felt that a current list of national radiation issues should be assembled so that CIRRPC could concentrate on these issues and the dividends from CIRRPC's resources could be maximized at the earliest possible time. These issues are listed

  10. The 16 MeV - microtron at the Institute for Physics and Technology of Radiation Devices and its application

    International Nuclear Information System (INIS)

    Catana, D.; Panaitescu, I.; Axinescu, S.; Minea, R.

    1992-01-01

    The 17-orbit microtron at the Institute for Physics and Technology of Radiation Devices, Bucharest is described. The energy of electrons is 11 MeV in the first accelerating mode and 16 MeV in the second accelerating mode with a pulse beam power of about 400 Kw and a duty ratio of 10 -3 . (Author)

  11. 46{sup th} Annual meeting on nuclear technology (AMNT 2015). Key Topic / Enhanced safety and operation excellence / Radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Erik [AREVA GmbH, Erlangen (Germany). Radiation Protection; Bohnsted, Angelika [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Safety Research for Nuclear Waste Management, Radiation Protection

    2015-10-15

    Summary report on the Focus Session 'Radiation Protection' of the 46{sup th} Annual Conference on Nuclear Technology (AMNT 2015) held in Berlin, 5 to 7 May 2015. Other Sessions of AMNT 2015 have been covered in atw 7 and 8 (2015) and will be covered in further issues of atw.

  12. Micro-Mini and Nano-Dosimetry and Innovative Technologies in Radiation Therapy (MMND and ITRO2016)

    International Nuclear Information System (INIS)

    2017-01-01

    The biennial MMND (formerly MMD) - IPCT workshops, founded in collaboration with Memorial Sloan Kettering Cancer Center (MSKCC) in 2001, has become an important international multidisciplinary forum for the discussion of advanced dosimetric technology for radiation therapy quality assurance (QA) and space science, as well as advanced technologies for prostate cancer treatment. In more recent years, the interests of participants and the scope of the workshops have extended far beyond prostate cancer treatment alone to include all aspects of radiation therapy, radiation science and technology. We therefore decided to change the name in 2016 to Innovative Technologies in Radiation Oncology (ITRO). MMND ITRO 2016 was held on 26-31 January, 2016 at the beautiful Wrest Point Hotel in Hobart, Tasmania and attracted an outstanding international faculty and nearly 200 delegates from 18 countries (http://mmnditro2016.com/) The MMND 2016 program continued to cover advanced medical physics aspects of IMRT, IGRT, VMAT, SBRT, MRI LINAC, innovative brachytherapy, and synchrotron MRT. The demand for sophisticated real time and high temporal and spatial resolution (down to the submillimetre scale) dosimetry methods and instrumentation for end–to-end QA for these radiotherapy technologies is increasing. Special attention was paid to the contribution of advanced imaging and the application of nanoscience to the recent improvements in imaging and radiotherapy. The last decade has seen great progress in charged particle therapy technology which has spread throughout the world and attracted strong current interest in Australia. This demands a better understanding of the fundamental aspects of ion interactions with biological tissue and the relative biological effectiveness (RBE) of protons and heavy ions. The further development of computational and experimental micro-and nano-dosimetry for ions has important application in radiobiology based treatment planning and space radiation

  13. Contribution to the study of ionizing radiation effects on bipolar technologies: application to the hardening of integrated circuits

    International Nuclear Information System (INIS)

    Briand, R.

    2001-01-01

    The use of analog integrated circuits in radiation environments raises the problem of their behaviour with respect to the different effects induced by particles and radiations. The first chapter of this thesis presents the origins of radiations and the different topologies of bipolar transistors. The effects of ionizing radiations on bipolar components, like cumulative dose, dose rates, and single events, are detailed in three distinct chapters with the same scientifical approach. The simulation of the physical degradation phenomena of the components allows to establish original electrical models coming from the understanding of the induced mechanisms. These models are used to evaluate the degradations occurring in linear analogic circuits. Common and original hardening methods are presented, some of which are applied to bipolar integrated circuit technologies. Finally, experimental laser beam test techniques are presented, which are used to reproduce the dose rate and the single events. (J.S.)

  14. Optimization of radiation protection by optimizing technology of CASTOR-Cask loading

    International Nuclear Information System (INIS)

    Lorenz, Bernd; Dreesen, Konrad; Hoffmann, Dietrich

    2008-01-01

    Full text: Germany Optimization of Protection is one of the basic principles of the ICRP System of Radiation Protection. Often this principle is misunderstood and people try to achieve minimal doses irrespective of the amount of manpower or money they have to afford to reach this aim. The better way of optimization is to optimize the technology or the practise which is the cause of radiation exposure and at the same time reduce the dose uptake. Three measures have been used for this purpose in the management of spent fuel in Germany in preparation for the dry storage in CASTOR-Casks. The casks have to be loaded with the spent fuel in the pond of the power plant. After the loading the cask has to be dewatered and dried. The remaining humidity has to be checked with respect to a given maximum residual humidity to avoid corrosion during the long-term storage. Initially a measuring device using the dew point mirror method was used. The mirror was often polluted and needed recalibration. This led to a large variety of measuring times, the time period needed for the above mentioned three steps ranged from 55 to 120 hours. Thus the work could not be reliably planned. To solve this problem we now use a pressure-rise method to measure the humidity within the cask. The time needed is now nearly equal and reliable for all cask loadings and considerably lower than using the dew point method. Thereby the dose uptake of the cask handling staff could be reduced to 2.5 man mSv on average in comparison to the former collective dose of 4 to 5 man mSv. A second step for reducing the dose of the staff is the introduction of remotely controlled valves for the drying process, the humidity measurement and the subsequent filling with Helium. The valves are located at the lid of the cask where a remarkable dose rate could be. The equipment for the remote valve handling has been successfully tested. In the same line is a third measure: to record the process data by computer. The supervising

  15. Radiations

    International Nuclear Information System (INIS)

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  16. Food safety and quality through radiation technology: its implications to national security

    Energy Technology Data Exchange (ETDEWEB)

    Lanuza, Luvimina G.

    2012-08-15

    The increasing consumption of ready-to-eat meals necessitates a review of its quality and safety. Food irradiation is a technology that would allow the food product to be free from pathogenic organisms while maintaining its fresh-like taste and appearance. The paper evaluated the effectiveness of food irradiation in maintaining the quality and safety of ready-to-eat meals using the three criteria: microbiological, nutritional and acceptability. Chicken adobo was chosen as a representative ready-to-eat meat. Primary data was collected through experimental and non-experimental methods using irradiated and non-irradiated chicken adobo. Irradiation was carried out at the Multipurpose Irradiation Facility of the Philippine Nuclear Research Institute using a radiation dose of 4 kGy at an irradiation temperature of 29.9-32.1 degree centigrade. Experimental data were gathered through laboratory analyses. Nutritional analyses (protein and Vitamin B{sub 1}) as well as microbiological analyses (E. Coli) were conducted at Day 1, Day 7 and Day 15 stored at -4 degree centigrade after irradiation. The non-experimental data were gathered by means of acceptability questionnaires which made use of a modified Likert scale of 1 to 4. This made the respondents rate the food attributes (color, odor, flavor, texture, juiciness) and overall acceptability during the sensory evaluation of both Sample A (irradiated) and Sample B (non-irradiated). There were two sets of respondents, the professional and non-professional sector. The laboratory-scale study revealed that the application of gamma irradiation of a dose of 4 kGy at an irradiation temperature range of 29.9 to 32.1 degree centigrade to packed ready-to-eat chicken adobo was found to be an effective treatment for eliminating the E.coli pathogen even up to Day 15 stored at -4 degree centigrade after irradiation. The protein and Vitamin B{sub 1} contents of the food sample were not significantly affected and results of the acceptability

  17. Food safety and quality through radiation technology: its implications to national security

    International Nuclear Information System (INIS)

    Lanuza, Luvimina G.

    2012-08-01

    The increasing consumption of ready-to-eat meals necessitates a review of its quality and safety. Food irradiation is a technology that would allow the food product to be free from pathogenic organisms while maintaining its fresh-like taste and appearance. The paper evaluated the effectiveness of food irradiation in maintaining the quality and safety of ready-to-eat meals using the three criteria: microbiological, nutritional and acceptability. Chicken adobo was chosen as a representative ready-to-eat meat. Primary data was collected through experimental and non-experimental methods using irradiated and non-irradiated chicken adobo. Irradiation was carried out at the Multipurpose Irradiation Facility of the Philippine Nuclear Research Institute using a radiation dose of 4 kGy at an irradiation temperature of 29.9-32.1 degree centigrade. Experimental data were gathered through laboratory analyses. Nutritional analyses (protein and Vitamin B 1 ) as well as microbiological analyses (E. Coli) were conducted at Day 1, Day 7 and Day 15 stored at -4 degree centigrade after irradiation. The non-experimental data were gathered by means of acceptability questionnaires which made use of a modified Likert scale of 1 to 4. This made the respondents rate the food attributes (color, odor, flavor, texture, juiciness) and overall acceptability during the sensory evaluation of both Sample A (irradiated) and Sample B (non-irradiated). There were two sets of respondents, the professional and non-professional sector. The laboratory-scale study revealed that the application of gamma irradiation of a dose of 4 kGy at an irradiation temperature range of 29.9 to 32.1 degree centigrade to packed ready-to-eat chicken adobo was found to be an effective treatment for eliminating the E.coli pathogen even up to Day 15 stored at -4 degree centigrade after irradiation. The protein and Vitamin B 1 contents of the food sample were not significantly affected and results of the acceptability tests

  18. Virtual Reality, Telemedicine, Web and Data Processing Innovations in Medical and Psychiatric Education and Clinical Care

    Science.gov (United States)

    Hilty, Donald M.; Alverson, Dale C.; Alpert, Jonathan E.; Tong, Lowell; Sagduyu, Kemal; Boland, Robert J.; Mostaghimi, Arash; Leamon, Martin L.; Fidler, Don; Yellowlees, Peter M.

    2006-01-01

    Objective: This article highlights technology innovations in psychiatric and medical education, including applications from other fields. Method: The authors review the literature and poll educators and informatics faculty for novel programs relevant to psychiatric education. Results: The introduction of new technologies requires skill at…

  19. Radiation

    International Nuclear Information System (INIS)

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  20. Investigating Degradation Mechanisms in 130 nm and 90 nm Commercial CMOS Technologies Under Extreme Radiation Conditions

    Science.gov (United States)

    Ratti, Lodovico; Gaioni, Luigi; Manghisoni, Massimo; Traversi, Gianluca; Pantano, Devis

    2008-08-01

    The purpose of this paper is to study the mechanisms underlying performance degradation in 130 nm and 90 nm commercial CMOS technologies exposed to high doses of ionizing radiation. The investigation has been mainly focused on their noise properties in view of applications to the design of low-noise, low-power analog circuits to be operated in harsh environment. Experimental data support the hypothesis that charge trapping in shallow trench isolation (STI), besides degrading the static characteristics of interdigitated NMOS transistors, also affects their noise performances in a substantial fashion. The model discussed in this paper, presented in a previous work focused on CMOS devices irradiated with a 10 Mrad(SiO2) gamma -ray dose, has been applied here also to transistors exposed to much higher (up to 100 Mrad(SiO2 )) doses of X-rays. Such a model is able to account for the extent of the observed noise degradation as a function of the device polarity, dimensions and operating point.

  1. A large dynamic range radiation-tolerant analog memory in a quarter- micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2001-01-01

    An analog memory prototype containing 8*128 cells has been designed in a commercial quarter-micron CMOS process. The aim of this work is to investigate the possibility of designing large dynamic range mixed-mode switched capacitor circuits for high-energy physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant. The memory cells employ gate-oxide capacitors for storage, permitting a very high density. A voltage write-voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (the power supply voltage V/sub DD/ is equal to 2.5 V), with a linearity of almost 8 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is +or-0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after 1...

  2. A large dynamic range radiation tolerant analog memory in a quarter micron CMOS technology

    CERN Document Server

    Anelli, G; Rivetti, A

    2000-01-01

    A 8*128 cell analog memory prototype has been designed in a commercial 0.25 jam CMOS process. The aim of this work was to investigate the possibility of designing large dynamic range mixed- mode switched capacitor circuits for High-Energy Physics (HEP) applications in deep submicron CMOS technologies. Special layout techniques have been used to make the circuit radiation tolerant left bracket 1 right bracket . The memory cells employ gate-oxide capacitors for storage, allowing for a very high density. A voltage write - voltage read architecture has been chosen to minimize the sensitivity to absolute capacitor values. The measured input voltage range is 2.3 V (V//D//D = 2.5 V), with a linearity of at least 7.5 bits over 2 V. The dynamic range is more than 11 bits. The pedestal variation is plus or minus 0.5 mV peak-to-peak. The noise measured, which is dominated by the noise of the measurement setup, is around 0.8 mV rms. The characteristics of the memory have been measured before irradiation and after lOMrd (...

  3. New technologies applied to radiation protection training: Rp course for technical qualified expert

    International Nuclear Information System (INIS)

    Llorente Herranz, Cristina; Rodriguez, M.; Marco Arboli, Marisa

    2008-01-01

    This paper shows the development and results of the first Course for technical qualified expert in radiation protection (RP) using the advantages of Communication and Information Technologies (CITs). This project in modality b-learning has born as a result of the RP specialised course demand, the necessity of working-private life balance and working-training time combination as well as the geographic widespread of those interested. The methodology selected has been b-learning (blended learning), which consists of a mixture of e-learning plus face-to-face learning. The RP course for technical qualified RP expert has been designed for 10 weeks using online learning methodology and 2 days of face-to-face learning in a radioactive facility to take account practical sessions and the final knowledge evaluation. A multidisciplinary team of experts has elaborated the RP programme and the docent material, following national normative. The material consists of: a) Multimedia material with theoretical content to be visualised online; b) Additional material to be un-load or printed; c) Practical exercises within multimedia content; d) Practical online and face-to-face sessions. (author)

  4. Earth Radiation Imbalance from a Constellation of 66 Iridium Satellites: Technological Aspects

    Science.gov (United States)

    Wiscombe, W.; Chiu, C. J-Y.

    2012-01-01

    Iridium Communications Inc. is launching a new generation of polar orbiting communication satellites in 2015-2017. Iridium will provide a hosted payload bay on each of the 66 satellites (plus 6 in-space spares). This offers the potential for a paradigm shift in the way we measure Earth radiation imbalance from space, as well as massive cost savings. Because the constellation provides 24/7 global coverage, there is no need to account for diurnal cycle via extrapolations from uncalibrated narrowband geostationary imagers. And the spares can be rolled over to view the Sun and deep space, then transfer their calibration to the other members of the constellation during the frequent cross-overs. In part using simulations of the constellation viewing realistic Earth scenes, this presentation will address the technological aspects of such a constellation: (1) the calibration strategy; (2) the highly-accurate and stable radiometers for measuring outgoing flux; and (3) the GRACE-inspired algorithms for representing the outgoing flux field in spherical harmonics and thus achieving rv500-km spatial resolution and two-hour temporal resolution.

  5. Synchrotron radiation, a powerful tool in research and technological development. Basic principles

    International Nuclear Information System (INIS)

    Jimenez M, J.

    2001-01-01

    The basic principles of synchrotron radiation emission in electron accelerators are presented. The main characteristics of synchrotron radiation, together with the physical principles that describe its interaction with different materials are also discussed. Different areas in which the development of synchrotron radiation has made a major impact are given. (Author)

  6. Educational advertising of the public about the use of radiation sources in technology, research and medicine

    International Nuclear Information System (INIS)

    Stolar, A.

    2009-01-01

    At the latest since Tschernobyl the use of radiation sources and ionizing radiation is due to missing knowledge of the public not affected by popularity but rather by fear. But the question is, whether it would be necessary on the part of the radiation users, not to conceal or mythologise the use, but to emphasize on educational advertising. (orig.)

  7. The gamma-ray radiation preservation technology for files and books

    International Nuclear Information System (INIS)

    Fan Chengfa; Tian Kaizen; Zhang Yunlu; Gan Saohan; Wang Zhengfu; Xiang Jiafang

    1988-01-01

    In this paper, a radiation appliance using CO-60 Gamma-ray to preserve the files and books is introduced. The lump and transport radiation techniques for processing files and books with this radiation appliance is described. The cost of preserving files and books with this method has been estimated. Comparison of this method with other processing techniques has been taken. (author)

  8. Update on scribe–cleave–passivate (SCP) slim edge technology for silicon sensors: Automated processing and radiation resistance

    Energy Technology Data Exchange (ETDEWEB)

    Fadeyev, V., E-mail: fadeyev@ucsc.edu [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Ely, S.; Galloway, Z.; Ngo, J.; Parker, C.; Sadrozinski, H.F.-W. [Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Christophersen, M.; Phlips, B.F. [U.S. Naval Research Laboratory, Code 7654, 4555 Overlook Avenue, Southwest Washington, DC 20375 (United States); Pellegrini, G.; Rafi, J.M.; Quirion, D. [Instituto de Microelectrónica de Barcelona, IMB-CNM-CSIC, Bellaterra, Barcelona (Spain); Dalla Betta, G.-F. [INFN and University of Trento, Via Sommarive, 14, 38123 Povo di Trento (Italy); Boscardin, M. [Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Povo di Trento (Italy); Casse, G. [Department of Physics, University of Liverpool, O. Lodge Laboratory, Oxford Street, Liverpool L69 7ZE (United Kingdom); Gorelov, I.; Hoeferkamp, M.; Metcalfe, J.; Seidel, S. [Department of Physics and Astronomy, University of New Mexico, MSC 07 4220, 1919 Lomas Boulevard NE, Albuquerque, NM 87131 (United States); Gaubas, E.; Ceponis, T. [Institute of Applied Research, Vilnius University, Sauletekio 9, LT-10222 Vilnius (Lithuania); and others

    2014-11-21

    We pursue scribe–cleave–passivate (SCP) technology for making “slim edge” sensors. The goal is to reduce the inactive region at the periphery of the devices while maintaining their performance. In this paper we report on two aspects of the current efforts. The first one involves fabrication options for mass production. We describe the automated cleaving tests and a simplified version of SCP post-processing of n-type devices. Another aspect is the radiation resistance of the passivation. We report on the radiation tests of n- and p-type devices with protons and neutrons.

  9. Contribution of modern medical imaging technology to radiation health effects in exposed populations

    International Nuclear Information System (INIS)

    Fabrikant, J.I.

    1980-11-01

    The introduction of technically-advanced imaging systems in medicine carries with it potential health hazards, particularly from ionizing and nonionizing radiation exposure of human populations. This paper will discuss what we know and what we do not know about the health effects of low-level radiation, how the risks of radiation-induced health effects may be estimated, the sources of the scientific data, the dose-response models used, the uncertainties which limit precision of estimation of excess health risks from low-level radiation, and what the implications might be for radiation protection in medicine and public health policy

  10. Current External Beam Radiation Therapy Quality Assurance Guidance: Does It Meet the Challenges of Emerging Image-Guided Technologies?

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Liu, Chihray; Li, Jonathan G.

    2008-01-01

    The traditional prescriptive quality assurance (QA) programs that attempt to ensure the safety and reliability of traditional external beam radiation therapy are limited in their applicability to such advanced radiation therapy techniques as three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, inverse treatment planning, stereotactic radiosurgery/radiotherapy, and image-guided radiation therapy. The conventional QA paradigm, illustrated by the American Association of Physicists in Medicine Radiation Therapy Committee Task Group 40 (TG-40) report, consists of developing a consensus menu of tests and device performance specifications from a generic process model that is assumed to apply to all clinical applications of the device. The complexity, variation in practice patterns, and level of automation of high-technology radiotherapy renders this 'one-size-fits-all' prescriptive QA paradigm ineffective or cost prohibitive if the high-probability error pathways of all possible clinical applications of the device are to be covered. The current approaches to developing comprehensive prescriptive QA protocols can be prohibitively time consuming and cost ineffective and may sometimes fail to adequately safeguard patients. It therefore is important to evaluate more formal error mitigation and process analysis methods of industrial engineering to more optimally focus available QA resources on process components that have a significant likelihood of compromising patient safety or treatment outcomes

  11. Structural defects in monocrystalline silicon: from radiation ones to growing and technological

    International Nuclear Information System (INIS)

    Gerasimenko, N.N.; Pavlyuchenko, M.N.; Dzhamanbalin, K.K.

    2001-01-01

    The systematical review of properties and conditions of radiation structures in monocrystalline silicon including own defects (elementary and complex, disordered fields) as well as defect-impurity formations is presented. The most typical examples of principle effects influence of known defects on radiation-induced processes (phase transformations, diffusion and heteration and others are considered. Experimental facts and models of silicon radiation amorphization have been analyzed in comparison of state of the radiation amorphization radiation problem of metals and alloys. The up-to-date status of the problem of the radiation defects physics are discussed, including end-of-range -, n+-, rod-like- defects. The phenomenon self-organization in crystals with defects has been considered. The examples of directed using radiation defects merged in independent trend - defects engineering - are given

  12. Progress report of the Radiation Technology and Industrial Applications Section, Isotope Group for the period ending August 1977

    International Nuclear Information System (INIS)

    Naik, A.D.; Roy, A.N.; Majali, A.B.

    1977-01-01

    The activities of the Radiation Technology and Industrial Applications Section of the Bhabha Atomic Research Centre, Bombay, for the period ending August 1977 are reported. Major highlights are: (1) completion of studies and design engineering for an economic scale cobalt-60 based irradiator for the radiation sterilisation of medical products, (2) taking up the work of setting up the cobalt-60 irradiation facilities for sources up to 300,000 Ci level, (3) development of radiation processed wood-polymer composite and practical demonstration of its superiority for application in industries - a cobalt-60 facility specifically for this purpose is being installed, (4) development of a commercially viable design of a smoke alarm system based on radioisotopes and (5) production and supply of irradiation units such as gamma chambers, radiography cameras, etc. (M.G.B.)

  13. Layout techniques to enhance the radiation tolerance of standard CMOS technologies demonstrated on a pixel detector readout chip

    CERN Document Server

    Snoeys, W; Burns, M; Campbell, M; Cantatore, E; Carrer, N; Casagrande, L; Cavagnoli, A; Dachs, C; Di Liberto, S; Formenti, F; Giraldo, A; Heijne, Erik H M; Jarron, Pierre; Letheren, M F; Marchioro, A; Martinengo, P; Meddi, F; Mikulec, B; Morando, M; Morel, M; Noah, E; Paccagnella, A; Ropotar, I; Saladino, S; Sansen, Willy; Santopietro, F; Scarlassara, F; Segato, G F; Signe, P M; Soramel, F; Vannucci, Luigi; Vleugels, K

    2000-01-01

    A new pixel readout prototype has been developed at CERN for high- energy physics applications. This full mixed mode circuit has been implemented in a commercial 0.5 mu m CMOS technology. Its radiation tolerance has been enhanced by designing all NMOS transistors in enclosed geometry and introducing guardrings wherever necessary. The technique is explained and its effectiveness demonstrated on various irradiation measurements on individual transistors and on the prototype. Circuit performance started to degrade only after a total dose of 600 krad-1.7 Mrad depending on the type of radiation. 10 keV X-rays, /sup 60/Co gamma-rays, 6.5 MeV protons, and minimum ionizing particles were used. Implications of this layout approach on the circuit design and perspectives for even deeper submicron technologies are discussed. (20 refs).

  14. Radiation chemical technology for production of polymeric hydrogels for medical purposes

    International Nuclear Information System (INIS)

    Mun, G.A.; Nurkeeva, Z.S.; Akhmetkalieva, G.; Sergaziev, A.D.; Petukhov, V.K.; Lyssukhin, S.N.; Chakrov, P.V.

    2003-01-01

    Full text: Polymeric hydrogels are water-swelling cross-linked hydrophilic polymers with ability to store reversibly great amount of water (more than 1000 g of water per 1 g of dry polymer). At present they found a lot of different applications in highly developed countries in science and industry. The set of unique physicochemical and biomedical properties (regulated sorption ability in respect to water and biological liquids, biocompatibility, soft tissue state, permeability in respect to small and big molecules, non-toxicity, etc.) allows their application in medicine. According to the clinical data there are no materials that can compete with hydrogels in development of endo-prostheses of soft-tissues in surgery, contact lenses for eyesight correction, hemo-compatible materials, novel for treatment of wounds and burns, targeted drug delivery systems. Polymeric hydrogels today practically substitute the traditional hydrophobic bases (Vaseline, lanolin) in technology of drug forms for development of ointments and dressings, containing natural and synthetic physiologically active substances. The advantages of hydrogels in comparison with hydrophobic analogues are obvious due to the drainage effect, homogenous distribution of drugs, better contact with wound, painless removing by water washing. The polymeric hydrogels are not produced in Kazakhstan in spite of the big source of raw materials. The aim of the present work is the development of radiation-chemical technology and development of polymeric biomedical hydrogels production based on raw materials of Kazakhstan. The novel types of polymeric hydrogel materials are developed by the authors of the report based on vinyl ethers of glycols, which produced in 'Alash Ltd.' (Temirtau). The great fundamental information content has been obtained about these monomers and polymers including direct quantitative data of their structure formation mechanism and physicochemical properties. These data served as a basis for

  15. Migraine and its psychiatric comorbidities.

    Science.gov (United States)

    Minen, Mia Tova; Begasse De Dhaem, Olivia; Kroon Van Diest, Ashley; Powers, Scott; Schwedt, Todd J; Lipton, Richard; Silbersweig, David

    2016-07-01

    Migraine is a highly prevalent and disabling neurological disorder associated with a wide range of psychiatric comorbidities. In this manuscript, we provide an overview of the link between migraine and several comorbid psychiatric disorders, including depression, anxiety and post-traumatic stress disorder. We present data on psychiatric risk factors for migraine chronification. We discuss the evidence, theories and methods, such as brain functional imaging, to explain the pathophysiological links between migraine and psychiatric disorders. Finally, we provide an overview of the treatment considerations for treating migraine with psychiatric comorbidities. In conclusion, a review of the literature demonstrates the wide variety of psychiatric comorbidities with migraine. However, more research is needed to elucidate the neurocircuitry underlying the association between migraine and the comorbid psychiatric conditions and to determine the most effective treatment for migraine with psychiatric comorbidity. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. College Students with Psychiatric Disabilities

    Science.gov (United States)

    Singh, Delar K.

    2011-01-01

    This paper focuses on college students with psychiatric disabilities. It defines and discusses various psychiatric conditions such as mood disorders, anxiety disorders, eating disorders, and personality disorders. It concludes with accommodations that a college professor can make to help these students succeed in higher education. (Contains 1…

  17. Psychiatric comorbidity : fact or artifact?

    NARCIS (Netherlands)

    van Loo, Hanna; Romeijn, Johannes

    The frequent occurrence of comorbidity has brought about an extensive theoretical debate in psychiatry. Why are the rates of psychiatric comorbidity so high and what are their implications for the ontological and epistemological status of comorbid psychiatric diseases? Current explanations focus

  18. Development of bunchy top virus resistant banana cv lakatan in vitro culture and radiation technology

    International Nuclear Information System (INIS)

    Estrella, J.D.; Caymo, L.S.; Dizon, T.O.; Dela Cruz, F. Jr; Damasco, O.P.

    2002-01-01

    Bunchy to virus (BTV) is the most destructive virus disease of banana in the Philippines. Incorporation of resistance to this virus disease by conventional hybridization is not possible due to male and female sterility of most commercial banana cultivars. In vitro culture coupled with radiation technology can be used to develop BTV resistance in banana cv. Lakatan. The sensitivity of banana shot tip explants to gamma irradiation was determined by subjecting the shoot tips to varying doses (5, 10, 20, 25, 30, 40, 60, 80 and 100 Gy) of irradiation. The LD sub 50 for banana shoot tips determined by 50% reduction in growth and shoot proliferation, was observed to around 20-25 Gy. Bulk irradiation of shoot tip explants was conducted using 20-25 Gy. Irradiated cultures were multiplied for 3-5 cycles and plants regenerated were potted out and screened for BTV resistance. A total of 3,447 irradiated plants regenerated from the radiosensitivity experiment (1,847 plants) and bulk irradiation of 20/25 Gy (1,600 plants) were screened for BTV resistance in the greenhouse using artificial BTV inoculation using the aphid vector Pentalonia nigronervosa. One hundred eighteen plants or 3.4% (118/3,447) of the artificially irradiated plants showed seedling resistance after 4-7 months of evaluation. These plants were planted in the field and were subjected to natural BTV infection. To date, 85 (out of the 118) putative seedling resistant plants continuously expressed BTV resistance in the field after more than 10 months of evaluation. The absence of BTV infection in 39 putative resistant plants was confirmed by ELISA test. Suckers from selected putative resistance plants will be collected, propagated and evaluated for the second cycle stability of BTV resistance and detailed characterization of important horticultural traits

  19. EU Outer Borders and Radiation - An Urgent Need for Standardization, New Detector Technologies and Education Harmonization

    International Nuclear Information System (INIS)

    Prlic, Ivica; Suric Mihic, Marija; Kosmina, Domagoj; Shaw, Peter; Hajdinjak, Mladen; Cerovac, Zdravko; Bozina, Zeljko

    2014-01-01

    It appears that new IAEA transport regulations are s tarting to bite - as now there is a definite requirement for assessments of all relevant radio-nuclides in n on-equilibrium mixes': It is heard that several shipments that were either delayed significantly or rejected all together in ports in the EU. Things like synthetic rutile, zirconia, copper concentrates, and so on... Devise a NORM Passport for NORM shipments : including a text description of the material and photographs, radionuclide content plus some radiological data (dose rates, gamma spectrum and maybe also something on trigger levels for border monitoring alarms). Produce a guidance booklet for border control authorities. The two suggestions are connected, and Ii is suggested that they form a single project of how to equip the EU border contort facilities. Denial of shipment due to border alarms is an issue that affects industry- that is why it is hoped that they would be interested in being involved. Clearly it is needed to address world-wide transport (i.e. because that's where most of the NORM comes from). The whole EU outer border customs protocol is th be added to above mentioned monitoring of NORM. The new radiation technologies are used to fulfill the security issues (like stowaways, smuggling, ilicit trafficking etc..). All above mentioned forces us to standardize the customs protocols, to upgrade the education of involved workers and fo harmonize the issue throughout the EU. Croatia is a front point in the moment because of the very long and 'soft' outer EU border. (authors)

  20. TECHNOLOGY OF RADIATION MONITORING: TRACERS-INDICATORS OF DANGEROUS NATURAL AND TECHNOGENIC PHENOMENA

    Directory of Open Access Journals (Sweden)

    V. S. Yakovleva

    2016-11-01

    Full Text Available The analysis of results of experimental investigation concerning the influence of natural and technogenic events on radioactive gas and aerosols dynamics as well as structure and dynamics of different types of ionizing radiation in soil and ground atmosphere was performed. The results of the analysis were used to carry out of classification of revealed radiation tracersindicators of dangerous natural and technogenic phenomena. The algorithm of monitoring of optimum set of radiation tracers-indicators, which are measured simultaneously, of dangerous phenomena was developed. This algorithm uses the “2+1” rule for determining the optimum set of radiation tracers-indicators.

  1. E-Alerts: Nuclear science and technology (radiation shielding, protection, and safety). E-mail newsletter

    International Nuclear Information System (INIS)

    1999-01-01

    Topics include: Shielding design, nuclear radiation transport properties of materials, decontamination; Container design and transportation requirements for radioactive materials; and Fallout shelters

  2. On the awareness of radiation protection. A questionnaire survey of junior college students of radiological technology

    International Nuclear Information System (INIS)

    Kayamori, Ryo; Togashi, Atsuhiko; Yamazaki, Yoshihiro; Inakoshi, Hideki

    2002-01-01

    A questionnaire survey on the awareness of radiation protection was conducted to improve our curriculum of radiation protection education, which seems to be important for the safe administrative control systems and handling techniques of radiation. A total of 426 students answered our questionnaire during the period of 1994 to 1999. They were 80 first-year, 114 second-year and 232 third-year students. The facility values of 4 questions on the influence of radiation to a human body were 50.2%, 30.3%, 28.9% and 7.0%. There was no statistically significant difference among different age groups. The facility values of 3 questions on the dose limitation of occupation exposure were 50.5% (on the effective dose equivalent), 36.4% (on the tissue dose equivalent to skin), and 40.9% (on the crystalline lens). On safe handling of radiation, only 35.7% of students correctly answered that they use a plastic board to protect themselves from β-ray, while 77.0% correctly answered the question on the decontamination method of radioactive substance from the skin. The results show the students' lack of knowledge on radiation protection. Those involved in basic science education and radiation protection education, therefore, need to clarify their teaching content and offer explicit explanations on the proper dose of radiation, effects to exposure dose, interaction between different materials and radiation. (author)

  3. Development of technology for biological dosimetry -A study on the radiation and environmental safety-

    International Nuclear Information System (INIS)

    Lee, Kang Suk; Cheon, Ki Jeong; Kim, Kook Chan; Kim, Jin Kyu; Kim, Sang Bok; Kim, In Kyu; Park, Hyo Kook

    1994-07-01

    α-amylase showed a significant increase in its activity when exposed to radiation of 0.1 Gy. However it had no relationship with radiation dose. Enzyme activities in liver tissue showed similar changes to those in serum. Among others, changes in acid phosphatase activity were highly related to radiation dose. Of acute phase proteins in serum, CRP, ceruloplasmin and haptoglobin positively responded to radiation while albumin did negatively. ELISA proved to be an efficient method to detect changes in serum protein level. Finally the measurements of changes in APRs using ELISA could provide an useful tools for biological dosimetry. (Author)

  4. Alcohol Abuse and Other Psychiatric Disorders

    Science.gov (United States)

    ... Psychiatric Disorders Other Substance Abuse HIV/AIDS Other Psychiatric Disorders In the current Diagnostic and Statistical Manual ... and other substance use disorders are defined as psychiatric disorders. Many individuals who misuse alcohol also abuse ...

  5. Utilization of information communication technology (ICT) - Based training / learning for capacity building in radiation protection framework

    International Nuclear Information System (INIS)

    Oluyemi, I.O.D.

    2008-01-01

    Full text: Radiation protection is the science of protecting people and the environment from the harmful effects of ionizing radiation, which includes both particle radiation and high energy electromagnetic radiation. It includes occupational radiation protection, which is the protection of workers; medical radiation protection, which is the protection of patients; and public radiation protection, which is about protection of individual members of the public, and of the population as a whole. ICT has made possible the development of e-learning and several Virtual Learning Environments (VLEs) which can support a wide range of capacity building requirements, ranging from under-graduate and post-graduate programmes, continuing professional development courses, right through to short subject specific and research courses, thereby eliminating the problems of conventional forms of training / learning, some of which are: limited access, cost effectiveness and language / cultural barriers. This paper focuses on the utilization of these ICT-based training / learning for capacity building in radiation protection framework and concludes with suggestions on implementation strategies. (author)

  6. Radiation survey of mobile and wireless technology masts in public places in Kaduna metropolis Nigeria

    International Nuclear Information System (INIS)

    Onoh, N. I.; Ogbanje, G. O.; Jonah, S. A.

    2014-01-01

    Work was done to measure radiation exposure of the populace in Kaduna metropolis from radiation emitted from global satellite communication masts. Base stations were surveyed in residential, school and office areas. Parameters sampled include the electric field strength, magnetic field strength, power density and ionizing radiation dose rate of the 20 surveyed masts belonging to four service providers. The instruments deployed include the Rf- EMF strength meter Model 480836 used to measure the first three parameters and Radiation Monitor Radex RD 1503 used to determine the forth parameter. The result obtained in this work was compared with the limits set by international regulatory bodies. Our result shows that electromagnetic and ionizing radiation exposures from the surveyed masts are far below the standard limits. Based on this, the population in Kaduna metropolis is not subjected to any adverse health effects from the Global System of Mobile Communication/Universal Mobile Telecommunication System masts at the moment.

  7. The role of medical physicists in developing a generic research framework for the assessment of new radiation oncology technology and treatments in radiation oncology

    International Nuclear Information System (INIS)

    Grand, M.M.; Amin, R.; Cornes, D.A.; Duchesne, G.; Haworth, A.; Kron, T.; Burmeister, B.

    2010-01-01

    Full text: TROG Cancer Research has secured funding from the Australian Government Department of Health and Ageing to develop and pilot an evaluation framework for new radiation oncology technologies and treatments. Four site specific projects will be undertaken to test the framework including IMRT for nasopharynx, anal canal and post-prostatectomy and IGRT for prostate fiducial markers. Multidisciplinary Expert Groups that include medical physicists, have been appointed for each site specific project. Each project will collect data from at least ten treatment centres who have been credentialed. The Framework will have the capacity to gather information to substantiate the clinical efficacy and cost effectiveness of new technologies and treatments in radiation oncology. The framework will be tested by gathering data to evaluate the superiority of IMRT and lGRT over other treatments and economic analysis will examine the potential trade-off between efficiency and the clinical gains to a patient. It is anticipated that the outcome of this research will inform future funding decisions. The involvement of medical physicists has been central to development of the framework, protocol development and the credentialing process. (author)

  8. Radiation-hard Active Pixel Sensors for HL-LHC Detector Upgrades based on HV-CMOS Technology

    International Nuclear Information System (INIS)

    Miucci, A; Gonzalez-Sevilla, S; Ferrere, D; Iacobucci, G; Rosa, A La; Muenstermann, D; Gonella, L; Hemperek, T; Hügging, F; Krüger, H; Obermann, T; Wermes, N; Garcia-Sciveres, M; Backhaus, M; Capeans, M; Feigl, S; Nessi, M; Pernegger, H; Ristic, B; George, M

    2014-01-01

    Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region. A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself. The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature. A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout. In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown

  9. Psychiatric morbidity in perimenopausal women

    Directory of Open Access Journals (Sweden)

    Biswajit L Jagtap

    2016-01-01

    Full Text Available Background: Women in the perimenopausal period are reported to be vulnerable to psychiatric disorders. Aim: To assess the psychiatric morbidity in perimenopausal women aged 45–55 years. Materials and Methods: This cross-sectional, observational, hospital-based study was conducted at the Department of Psychiatry in a tertiary care hospital attached to a medical college. The study sample consisted of consecutive women in perimenopause as diagnosed by a gynecologist and written informed consent for inclusion in the study. Women with a previous history of psychiatric illnesses, with a major medical illness, or who had undergone surgical menopause were excluded from the study. All women were evaluated with a brief questionnaire for collecting demographic and clinical information and the Mini International Neuropsychiatric Interview for assessing psychiatric disorders. Results: Of the 108 women in perimenopause included in the study, 31% had depressive disorder, 7% had anxiety, while 5% had depressive disorder with anxiety features. Psychiatric morbidity was significantly more in women having lesser education, from rural background, with a history of psychiatric illness in the family, a later age of menarche, and in the late stage of perimenopause. Conclusions: Women in the perimenopause affected by psychiatric morbidity were most commonly diagnosed with depression. As perimenopause is a time of vulnerability in women, attention to signs and symptoms of depression may be required so that they may lead a more productive life.

  10. Understanding migraine and psychiatric comorbidity.

    Science.gov (United States)

    Seng, Elizabeth K; Seng, Cynthia D

    2016-06-01

    This article describes recent trends in our understanding of the role of psychiatric disorders in the experience and treatment of migraine, and the role of migraine in the experience and treatment of psychiatric disorders. Although the majority of studies evaluating psychiatric comorbidity in migraine have focused on depression, anxiety, and bipolar disorders are highly associated with migraine and relevant for prognosis and treatment planning. Comorbid psychiatric disorders may be associated with poorer treatment response for some acute pharmacotherapies; however, people with comorbid migraine and mood or anxiety disorders can achieve large responses to preventive pharmacologic and behavioral therapies. Emerging research is developing and evaluating behavioral treatments designed to manage cooccurring migraine and mood or anxiety disorders. Stigma related to psychiatric disorders has been well characterized, and could exacerbate extant migraine-related stigma. Anxiety and mood disorders are prevalent in people with migraine, although not ubiquitous. Psychiatric comorbidity is associated with greater migraine symptoms and disability; however, people with comorbid depression or anxiety are amenable to preventive migraine treatment. Research regarding migraine treatment strategies optimized for people with comorbid psychiatric disorders is critical to advancing care and reducing stigma for this important subpopulation of people with migraine.

  11. physical, chemical, technological and biological properties of some mutant oil seeds induced by gamma radiation

    International Nuclear Information System (INIS)

    Ali, H.G.M.

    2003-01-01

    The present study has been undertaken to evaluated sesame, sunflower and safflower seeds induced by gamma rays, as plant breeding unit, plant research department, radioisotope application division, nuclear research center, atomic energy authority Inshas. the obtained results indicate the following : chemical composition of mutant seeds: the radiation mutation caused a significant increase in both oil and ash content total carbohydrates showed a significant decreased in sesame seeds. radiation mutation induced significant increase in oil and protein content of sunflower and safflower seeds. while the total carbohydrate showed a significant decrease. physiochemical properties of oils extracted mutant seeds: the radiation mutation had no real effect on the refractive index and A.V of oils extracted from control and mutant sesame, sunflower and safflower seeds. while it caused a slight increase in red color and P.V. of sesame oil, the thiobarbituric acid (TBA) value of mutant sesame oil was not alter upon radiation mutation, but it induced a slight decrease in TBA of mutant sunflower and safflower oils. the unsaponifiable matter percentage of oils extracted from mutant sesame, sunflower and safflower seeds were slightly increased by radiation mutation .radiation mutation of seeds had no real effect on the total SFA and USFA of sesame oil. however, radiation mutation induced a remarkable changes in fatty acid profiles of sunflower and safflower oil as total SFA decreased, while USFA increased. Uric acid was only detected in oil extracted from mutant sunflower seeds

  12. Utilization of technology relevant to radiation and isotope in the archaeological research

    International Nuclear Information System (INIS)

    Matsuoka, Nobuaki; Kawamura, Hidehisa

    2005-01-01

    Many kinds of scientific technology have been used in the archaeological research. Especially the methodologies relevant to radiation and isotope have contributed to archaeology, giving a lot of scientific information. Among these methodologies, the radiocarbon dating, proposed by Willard Libby, has the greatest contribution since 1950. In Japan some scientists introduced this dating method immediately after Libby's proposal. As the result, the start of the Jomon period, in which the rope pattern was applied for decoration of earthenware, was reconsidered to be about 10,000 years ago. Yoshimasa Takashima mastered this technique and did the dendrochronological study at University of Washington, Seattle, from 1960 to 1961. After that he started the radiocarbon dating in Kyushu University, Fukuoka. First he employed the proportional gas counter to measure 14 C, requiring the complicated and time-consuming preparation of sample. When he restarted the radio-carbon dating with the authors in 1994 at Kyushu Environmental Evaluation Association (KEEA), he adopted the liquid scintillation counting method combined with the benzene synthesis from sample. Because this method is so convenient, many laboratories have adopted it as the conventional method in Japan. Since 1994, almost 100 samples have been treated every year in KEEA by this method. However this requires considerably much amount of sample, for example 20g in the case of wood. So that, in case of only small amount of sample can be obtained or a valuable sample is subjected to measurement, this method cannot be applicable. To resolve this problem, the accelerator mass spectrometer (AMS) has been used widely. In this method the atoms of 14 C are counted directly, getting the high sensitivity and requiring very small amount of sample (order of mg). Recently, in KEEA, the radiocarbon dating using AMS was started under the cooperation with Center for Applied Isotope Studies (CAIS), University of Georgia. Another work of

  13. The cerebellum and psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Joseph ePhillips

    2015-05-01

    Full Text Available The cerebellum has been considered for a long time to play a role solely in motor coordination. However, studies over the past two decades have shown that the cerebellum also plays a key role in many motor, cognitive, and emotional processes. In addition, studies have also shown that the cerebellum is implicated in many psychiatric disorders including attention deficit hyperactivity disorder, autism spectrum disorders, schizophrenia, bipolar disorder, major depressive disorder and anxiety disorders. In this review, we discuss existing studies reporting cerebellar dysfunction in various psychiatric disorders. We will also discuss future directions for studies linking the cerebellum to psychiatric disorders.

  14. Psychiatric disorders in myasthenia gravis

    Directory of Open Access Journals (Sweden)

    Mariana Inés Ybarra

    2011-04-01

    Full Text Available OBJECTIVE: To investigate the prevalence of psychiatric disorders in patients with myasthenia gravis (MG. METHOD: Forty-one patients with MG answered to a structured psychiatric interview (MINI-Plus. RESULTS: Eleven (26.1% patients were diagnosed with a depressive disorder and 19 (46.3% were diagnosed with an anxiety disorder. Patients with dysthymia were older (p=0.029 and had longer disease duration (p=0.006. Patients with social phobia also had longer disease duration (p=0.039. CONCLUSION: Psychiatric disorders in MG are common, especially depressive and anxiety disorders.

  15. Care systematization in psychiatric nursing within the psychiatric reform context.

    Science.gov (United States)

    Hirdes, A; Kantorski, L P

    2002-02-01

    The aim of this study was to approach care systematization in psychiatric nursing in two psychiatric disorder patients who attended 'Nossa Casa', São Lourenço do Sul, RS, Brazil. Nossa Casa services psychiatric patients in the community, focussing on: (i) permanence in their environment, allowing patients to remain close to their families and social spheres; (ii) integral attendance to meet individual needs; (iii) respecting individual differences; (iv) rehabilitation practices; and (v) social reinsertion. Concepts and assumptions of the psychiatric reform and the Irving's nursing process were used as theoretical-methodological references to elaborate this systematization. A therapeutic project for the psychiatric patient was elaborated, in accordance with the interdisciplinary proposal accepted by Nossa Casa. Interdisciplinary team intervention, guided by a previously discussed common orientation and defined through an individualized therapeutic project, allowed for an effective process of psychosocial rehabilitation. The authors concluded that a therapeutic project based on the mentioned premises leads to consistent, comprehensive, dialectical and ethical assistance in mental health, thereby reinstating the citizenship of psychiatric patients.

  16. Laboratory for Calibration of Gamma Radiation Measurement Instruments (LabCal) of Institute of Chemical, Biological, Radiological and Nuclear Defense (IDQBRN) from Brazilian Army Technology Center (CTEx)

    International Nuclear Information System (INIS)

    Amorim, Aneuri de; Balthar, Mario Cesar V.; Santos, Avelino; Vilela, Paulo Ricardo T. de; Oliveira, Luciano Santa Rita; Penha, Paulo Eduardo C. de Oliveira; Gonzaga, Roberto Neves; Andrade, Edson Ramos de; Oliveira, Celio Jorge Vasques de; Fagundes, Luiz Cesar S.

    2016-01-01

    This paper describes the calibration laboratory deployment steps (LABCAL) gamma ionizing radiation measuring instruments in the Army Technology Center, CTEx. Initially the calibration of radiation monitors will be held in the dosimetric quantity air kerma and operational quantity ambient dose equivalent H*(d). The LABCAL / CTEx has not yet authorized by CASEC / CNEN. This laboratory aims to calibrate the ionizing radiation instruments used by the Brazilian Army. (author)

  17. Radiation protection program by the National Directorate of Nuclear Technology of Uruguay

    International Nuclear Information System (INIS)

    Lopez Salaberry, M.

    2002-12-01

    The present work offers to the user of ionizing radiation sources in public and private institutions a basic and synthesized guide of radiological protection indicating obligations and rights that the personnel acquires to carry out functions in these facilities

  18. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between conventional disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (author)

  19. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between 'conventional' disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (orig.) [de

  20. Design of compact system with wide electron beam for radiation technologies

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Simonov, K.G.; Pirozhenko, V.M.

    2001-01-01

    Design of a compact system for radiation processing of products and materials has been developed. The system provides two modes of irradiation, i.e. irradiation of continuously moving tapes and fixed samples. The irradiation is performed in a hermetically sealed chamber filled by nitrogen. This ecologically pure system includes the radiation protection,autonomous water cooling system and automated PC-control. It can be placed in any production or clinical room