WorldWideScience

Sample records for psma-targeted small molecules

  1. Influence of androgen deprivation therapy on the uptake of PSMA-targeted agents: Emerging opportunities challenges

    Energy Technology Data Exchange (ETDEWEB)

    Bakht, Martin K.; Oh, So Won; Youn, Hye Won; Cheon, Gi Jeong; Kwak, Cheol; Kang, Keon Wook [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-09-15

    Prostate-specific membrane antigen (PSMA) is an attractive target for both diagnosis and therapy because of its high expression in the vast majority of prostate cancers. Development of small molecules for targeting PSMA is important for molecular imaging and radionuclide therapy of prostate cancer. Recent evidence implies that androgen-deprivation therapy increase PSMA-ligand uptake in some cases. The reported upregulations in PSMA-ligand uptake after exposure to second-generation antiandrogens such as enzalutamide and abiraterone might disturb PSMA-targeted imaging for staging and response monitoring of patients undergoing treatment with antiandrogen-based drugs. On the other hand, second-generation antiandrogens are emerging as potential endoradio-/chemosensitizers. Therefore, the enhancement of the therapeutic efficiency of PSMA-targeted theranostic methods can be listed as a new capability of antiandrogens. In this manuscript, we will present what is currently known about the mechanism of increasing PSMA uptake following exposure to antiandrogens. In addition, we will discuss whether these above-mentioned antiandrogens could play the role of endoradio-/chemosensitizers in combination with the well-established PSMA-targeted methods for pre-targeting of prostate cancer.

  2. Current status and future perspectives of PSMA-targeted therapy in Europe: opportunity knocks

    Energy Technology Data Exchange (ETDEWEB)

    Pfestroff, A.; Luster, M. [University Hospital Marburg, Department of Nuclear Medicine, Marburg (Germany); Jilg, C.A. [University Hospital Freiburg, Department of Urology, Freiburg (Germany); Olbert, P.J. [University Hospital Marburg, Department of Urology, Marburg (Germany); Ohlmann, C.H. [Saarland University Hospital, Department of Urology, Homburg/Saar (Germany); Lassmann, M. [University Hospital Wuerzburg, Department of Nuclear Medicine, Wuerzburg (Germany); Maecke, H.R. [University Hospital Freiburg, Department of Nuclear Medicine and Radiopharmacy, Freiburg (Germany); Ezziddin, S. [Saarland University Hospital, Department of Nuclear Medicine, Homburg/Saar (Germany); Bodei, L. [European Institute of Oncology, Department of Nuclear Medicine, Milan (Italy); Collaboration: on behalf of the Radionuclide Therapy Committee of the European Association of Nuclear Medicine

    2015-12-15

    {sup 177}Lu-based PSMA-targeted therapy appears to be a promising treatment for advanced PCA. However, lessons should be learned from PRRT of neuroendocrine tumours, which was referred to as a ''promising'' tool for 15 years before the advent of evidence-based comparative studies. This experience strongly suggests that the communities involved with PSMA-targeted therapy, namely nuclear medicine, urology, radiochemistry, and medical physics, should capitalize without delay on the great opportunity to conduct well-designed prospective studies. Doing so should advance this modality from the proof-of principle stage to the potential standard-of-Care-stage. From our perspective, crucial components of this process are: - Harmonization of therapy protocols - Implementation of a patient selection algorithm into clinical routine - Standardization of toxicity assessment - Establishment of standardized dosimetry protocols to assess safety and efficacy - Transfer of expertise in PSMA therapy throughout Europe - Regulatory approval of {sup 177}Lu-PSMA-targeted compounds.

  3. Prostate Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0595 TITLE: Prostate-Specific Membrane Antigen (PSMA) Targeted Bio-orthogonal Therapy for Metastatic Prostate Cancer ... Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0595 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Dmitri Artemov, Ph.D. 5e...excellent targeting of PSMA- expressing prostate cancer cells both in vitro and in vivo. We investigated details of the mAb and therapeutic complexes

  4. PSMA-targeted theranostic nanoplex for prostate cancer therapy.

    Science.gov (United States)

    Chen, Zhihang; Penet, Marie-France; Nimmagadda, Sridhar; Li, Cong; Banerjee, Sangeeta R; Winnard, Paul T; Artemov, Dmitri; Glunde, Kristine; Pomper, Martin G; Bhujwalla, Zaver M

    2012-09-25

    Theranostic imaging, where diagnosis is combined with therapy, is particularly suitable for a disease that is as complex as cancer, especially now that genomic and proteomic profiling can provide an extensive "fingerprint" of each tumor. With such information, theranostic agents can be designed to personalize treatment and minimize damage to normal tissue. Here we have developed a nanoplex platform for theranostic imaging of prostate cancer (PCa). In these proof-of-principle studies, a therapeutic nanoplex containing multimodal imaging reporters was targeted to prostate-specific membrane antigen (PSMA), which is expressed on the cell surface of castrate-resistant PCa. The nanoplex was designed to deliver small interfering RNA (siRNA) along with a prodrug enzyme to PSMA-expressing tumors. Each component of the nanoplex was carefully selected to evaluate its diagnostic aspect of PSMA imaging and its therapeutic aspects of siRNA-mediated down-regulation of a target gene and the conversion of a prodrug to cytotoxic drug, using noninvasive multimodality imaging. Studies performed using two variants of human PC3-PCa cells and tumors, one with high PSMA expression level and another with negligible expression levels, demonstrated PSMA-specific uptake. In addition, down-regulation of the selected siRNA target, choline kinase (Chk), and the conversion of the nontoxic prodrug 5-fluorocytosine (5-FC) to cytotoxic 5-fluorouracil (5-FU) were also demonstrated with noninvasive imaging. The nanoplex was well-tolerated and did not induce liver or kidney toxicity or a significant immune response. The nanoplex platform described can be easily modified and applied to different cancers, receptors, and pathways to achieve theranostic imaging, as a single agent or in combination with other treatment modalities.

  5. Pharmacokinetic and Biodistribution Assessment of a Near Infrared-Labeled PSMA-Specific Small Molecule in Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Joy L. Kovar

    2014-01-01

    Full Text Available Prostate cancer is the most frequently diagnosed cancer in men and often requires surgery. Use of near infrared (NIR technologies to perform image-guided surgery may improve accurate delineation of tumor margins. To facilitate preclinical testing of such outcomes, here we developed and characterized a PSMA-targeted small molecule, YC-27. IRDye 800CW was conjugated to YC-27 or an anti-PSMA antibody used for reference. Human 22Rv1, PC3M-LN4, and/or LNCaP prostate tumor cells were exposed to the labeled compounds. In vivo targeting and clearance properties were determined in tumor-bearing mice. Organs and tumors were excised and imaged to assess probe localization. YC-27 exhibited a dose dependent increase in signal upon binding. Binding specificity and internalization were visualized by microscopy. In vitro and in vivo blocking studies confirmed YC-27 specificity. In vivo, YC-27 showed good tumor delineation and tissue contrast at doses as low as 0.25 nmole. YC-27 was cleared via the kidneys but bound the proximal tubules of the renal cortex and epididymis. Since PSMA is also broadly expressed on the neovasculature of most tumors, we expect YC-27 will have clinical utility for image-guided surgery and tumor resections.

  6. Small-molecule arginase inhibitors.

    Science.gov (United States)

    Ivanenkov, Yan A; Chufarova, Nina V

    2014-01-01

    Arginase is an enzyme that metabolizes L-arginine to L-ornithine and urea. In addition to its fundamental role in the hepatic ornithine cycle, it also influences the immune systems in humans and mice. Arginase participates in many inflammatory disorders by decreasing the synthesis of nitric oxide and inducing fibrosis and tissue regeneration. L-arginine deficiency, which is modulated by myeloid cell arginase, suppresses T-cell immune response. This mechanism plays a fundamental role in inflammation-associated immunosuppression. Pathogens can synthesize their own arginase to elude immune reaction. Small-molecule arginase inhibitors are currently described as promising therapeutics for the treatment of several diseases, including allergic asthma, inflammatory bowel disease, ulcerative colitis, cardiovascular diseases (atherosclerosis and hypertension), diseases associated with pathogens (e.g., Helicobacter pylori, Trypanosoma cruzi, Leishmania, Mycobacterium tuberculosis and Salmonella), cancer and induced or spontaneous immune disorders. This article summarizes recent patents in the area of arginase inhibitors and discusses their properties.

  7. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Small Molecule Immunosensing Using Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    John Mitchell

    2010-08-01

    Full Text Available Surface plasmon resonance (SPR biosensors utilize refractive index changes to sensitively detect mass changes at noble metal sensor surface interfaces. As such, they have been extensively applied to immunoassays of large molecules, where their high mass and use of sandwich immunoassay formats can result in excellent sensitivity. Small molecule immunosensing using SPR is more challenging. It requires antibodies or high-mass or noble metal labels to provide the required signal for ultrasensitive assays. Also, it can suffer from steric hindrance between the small antigen and large antibodies. However, new studies are increasingly meeting these and other challenges to offer highly sensitive small molecule immunosensor technologies through careful consideration of sensor interface design and signal enhancement. This review examines the application of SPR transduction technologies to small molecule immunoassays directed to different classes of small molecule antigens, including the steroid hormones, toxins, drugs and explosives residues. Also considered are the matrix effects resulting from measurement in chemically complex samples, the construction of stable sensor surfaces and the development of multiplexed assays capable of detecting several compounds at once. Assay design approaches are discussed and related to the sensitivities obtained.

  9. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  10. RNA as a small molecule druggable target.

    Science.gov (United States)

    Rizvi, Noreen F; Smith, Graham F

    2017-12-01

    Small molecule drugs have readily been developed against many proteins in the human proteome, but RNA has remained an elusive target for drug discovery. Increasingly, we see that RNA, and to a lesser extent DNA elements, show a persistent tertiary structure responsible for many diverse and complex cellular functions. In this digest, we have summarized recent advances in screening approaches for RNA targets and outlined the discovery of novel, drug-like small molecules against RNA targets from various classes and therapeutic areas. The link of structure, function, and small-molecule Druggability validates now for the first time that RNA can be the targets of therapeutic agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Small-molecule AT2 receptor agonists

    DEFF Research Database (Denmark)

    Hallberg, Mathias; Sumners, Colin; Steckelings, U Muscha

    2017-01-01

    The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist...

  12. Small Molecule Subgraph Detector (SMSD toolkit

    Directory of Open Access Journals (Sweden)

    Rahman Syed

    2009-08-01

    Full Text Available Abstract Background Finding one small molecule (query in a large target library is a challenging task in computational chemistry. Although several heuristic approaches are available using fragment-based chemical similarity searches, they fail to identify exact atom-bond equivalence between the query and target molecules and thus cannot be applied to complex chemical similarity searches, such as searching a complete or partial metabolic pathway. In this paper we present a new Maximum Common Subgraph (MCS tool: SMSD (Small Molecule Subgraph Detector to overcome the issues with current heuristic approaches to small molecule similarity searches. The MCS search implemented in SMSD incorporates chemical knowledge (atom type match with bond sensitive and insensitive information while searching molecular similarity. We also propose a novel method by which solutions obtained by each MCS run can be ranked using chemical filters such as stereochemistry, bond energy, etc. Results In order to benchmark and test the tool, we performed a 50,000 pair-wise comparison between KEGG ligands and PDB HET Group atoms. In both cases the SMSD was shown to be more efficient than the widely used MCS module implemented in the Chemistry Development Kit (CDK in generating MCS solutions from our test cases. Conclusion Presently this tool can be applied to various areas of bioinformatics and chemo-informatics for finding exhaustive MCS matches. For example, it can be used to analyse metabolic networks by mapping the atoms between reactants and products involved in reactions. It can also be used to detect the MCS/substructure searches in small molecules reported by metabolome experiments, as well as in the screening of drug-like compounds with similar substructures. Thus, we present a robust tool that can be used for multiple applications, including the discovery of new drug molecules. This tool is freely available on http://www.ebi.ac.uk/thornton-srv/software/SMSD/

  13. Repeated PSMA-targeting radioligand therapy of metastatic prostate cancer with {sup 131}I-MIP-1095

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Oromieh, Ali; Haberkorn, Uwe [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center, Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Zechmann, Christian; Mier, Walter; Spohn, Fabian; Debus, Nils; Kratochwil, Clemens [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); Armor, Thomas [Progenics Pharmaceuticals, Inc., New York, NY (United States); Holland-Letz, Tim [German Cancer Research Center, Department of Biostatistics, Heidelberg (Germany); Babich, John [Weill Cornell Medicine, Division of Radiopharmaceutical Sciences, Department of Radiology, New York, NY (United States); Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY (United States); Weill Cornell Medicine, Meyer Cancer Center, New York, NY (United States)

    2017-06-15

    Prostate-specific membrane antigen (PSMA)-targeting radioligand therapy (RLT) was introduced in 2011. The first report described the antitumor and side effects of a single dose. The aim of this analysis was to evaluate toxicity and antitumor activity after single and repetitive therapies. Thirty-four men with metastatic castration-resistant prostate cancer received PSMA-RLT with {sup 131}I-MIP-1095. Twenty-three patients received a second, and three patients a third dose, timed at PSA progression after an initial response to the preceding therapy. The applied doses were separated in three groups: <3.5, 3.5-5.0 and >5.0 GBq. Antitumor and side-effects were analyzed by blood samples and other clinical data. Follow-up was conducted for up to 5 years. The best therapeutic effect was achieved by the first therapy. A PSA decline of ≥50% was achieved in 70.6% of the patients. The second and third therapies were significantly less effective. There was neither an association between the applied activity and PSA response or the time-to-progression. Hematologic toxicities were less prevalent but presented in a higher percentage of patients with increasing number of therapies. After hematologic toxicities, xerostomia was the second most frequent side effect and presented more often and with higher intensity after the second or third therapy. The first dose of RLT with {sup 131}I-MIP-1095 presented with low side effects and could significantly reduce the tumor burden in a majority of patients. The second and third therapies were less effective and presented with more frequent and more intense side effects, especially hematologic toxicities and xerostomia. (orig.)

  14. Radiation dosimetry and first therapy results with a {sup 124}I/{sup 131}I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zechmann, Christian M.; Afshar-Oromieh, Ali; Mier, Walter [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Armor, Tom; Joyal, John [Molecular Insight Pharmaceuticals, Boston, MA (United States); Stubbs, James B. [Radiation Dosimetry Systems RDS, Inc., Apharetta, GA (United States); Hadaschik, Boris [University Hospital Heidelberg, Department of Urology, Heidelberg (Germany); Kopka, Klaus [Division Radiopharmaceutical Chemistry, DKFZ, Heidelberg (Germany); Debus, Juergen [University Hospital Heidelberg, Department of Radiation Oncology, Heidelberg (Germany); Babich, John W. [Molecular Insight Pharmaceuticals, Boston, MA (United States); Cornell University, Division of Radiopharmacy, Department of Radiology, New York, NY (United States); Haberkorn, Uwe [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Clinical Cooperation Unit Nuclear Medicine, DKFZ, Heidelberg (Germany)

    2014-07-15

    Since the prostate-specific membrane antigen (PSMA) is frequently over-expressed in prostate cancer (PCa) several PSMA-targeting molecules are under development to detect and treat metastatic castration resistant prostate cancer (mCRPC). We investigated the tissue kinetics of a small molecule inhibitor of PSMA ((S)-2-(3-((S)-1-carboxy-5-(3-(4-[{sup 124}I]iodophenyl)ureido)pentyl)ureido) pentan edioicacid; MIP-1095) using PET/CT to estimate radiation dosimetry for the potential therapeutic use of {sup 131}I-MIP-1095 in men with mCRPC. We also report preliminary safety and efficacy of the first 28 consecutive patients treated under a compassionate-use protocol with a single cycle of {sup 131}I-MIP-1095. Sixteen patients with known prostate cancer underwent PET/CT imaging after i.v. administration of {sup 124}I-MIP-1095 (mean activity: 67.4 MBq). Each patient was scanned using PET/CT up to five times at 1, 4, 24, 48 and 72 h post injection. Volumes of interest were defined for tumor lesions and normal organs at each time point followed by dose calculations using the OLINDA/EXM software. Twenty-eight men with mCRPC were treated with a single cycle of {sup 131}I-MIP-1095 (mean activity: 4.8 GBq, range 2 to 7.2 GBq) and followed for safety and efficacy. Baseline and follow up examinations included a complete blood count, liver and kidney function tests, and measurement of serum PSA. I-124-MIP-1095 PET/CT images showed excellent tumor uptake and moderate uptake in liver, proximal intestine and within a few hours post-injection also in the kidneys. High uptake values were observed only in salivary and lacrimal glands. Dosimetry estimates for I-131-MIP-1095 revealed that the highest absorbed doses were delivered to the salivary glands (3.8 mSv/MBq), liver (1.7 mSv/MBq) and kidneys (1.4 mSv/MBq). The absorbed dose calculated for the red marrow was 0.37 mSv/MBq. PSA values decreased by >50 % in 60.7 % of the men treated. Of men with bone pain, 84.6 % showed complete or

  15. Small molecule-guided thermoresponsive supramolecular assemblies

    KAUST Repository

    Rancatore, Benjamin J.

    2012-10-23

    Small organic molecules with strong intermolecular interactions have a wide range of desirable optical and electronic properties and rich phase behaviors. Incorporating them into block copolymer (BCP)-based supramolecules opens new routes to generate functional responsive materials. Using oligothiophene- containing supramolecules, we present systematic studies of critical thermodynamic parameters and kinetic pathway that govern the coassemblies of BCP and strongly interacting small molecules. A number of potentially useful morphologies for optoelectronic materials, including a nanoscopic network of oligothiophene and nanoscopic crystalline lamellae, were obtained by varying the assembly pathway. Hierarchical coassemblies of oligothiophene and BCP, rather than macrophase separation, can be obtained. Crystallization of the oligothiophene not only induces chain stretching of the BCP block the oligothiophene is hydrogen bonded to but also changes the conformation of the other BCP coil block. This leads to an over 70% change in the BCP periodicity (e.g., from 31 to 53 nm) as the oligothiophene changes from a melt to a crystalline state, which provides access to a large BCP periodicity using fairly low molecular weight BCP. The present studies have demonstrated the experimental feasibility of generating thermoresponsive materials that convert heat into mechanical energy. Incorporating strongly interacting small molecules into BCP supramolecules effectively increases the BCP periodicity and may also open new opportunities to tailor their optical properties without the need for high molecular weight BCP. © 2012 American Chemical Society.

  16. Small Molecules in the Treatment of Psoriasis.

    Science.gov (United States)

    Torres, Tiago; Filipe, Paulo

    2015-08-01

    Preclinical Research Psoriasis is an inflammatory systemic skin disease that affects various parts of the body requiring long-term management due to its chronic nature. Available treatment options include topical, systemic or biological therapies, which have long-term limitations associated to toxicity, tolerability and risk for adverse effects requiring its intermittent use and close monitoring. Small molecules modulate proinflammatory cytokines, selectively inhibit signaling pathways and showing potential to treat inflammatory diseases in patients not responding to conventional treatments. Presently, small molecules available are phosphodiesterase 4 inhibitors or Janus kinase inhibitors. Other small molecules under development for psoriasis include fumaric acid esters, amygdalin analogs, protein kinase C inhibitors, mitogen-activated protein kinase inhibitors, spleen protein kinase inhibitors, other tyrosine kinase inhibitors, sphingosine 1-phosphate receptor agonists, and A3 adenosine receptor agonists. These new treatment options represent important advances in the development of specific drugs to respond to the goals of treatment and improve patient quality of life. © 2015 Wiley Periodicals, Inc.

  17. Small polaron hopping transport along DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Triberis, G P [University of Athens, Physics Department, Solid State Section, Panepistimiopolis, GR-15784 Zografos, Athens (Greece); Simserides, C [University of Athens, Physics Department, Solid State Section, Panepistimiopolis, GR-15784 Zografos, Athens (Greece); Leibniz Institute for Neurobiology, Special Laboratory for Non-Invasive Brain Imaging, Brenneckestrasse 6, D-39118 Magdeburg (Germany); Karavolas, V C [University of Athens, Physics Department, Solid State Section, Panepistimiopolis, GR-15784 Zografos, Athens (Greece)

    2005-05-04

    We present a small polaron hopping model for interpreting the strong temperature (T) dependence of the electrical conductivity, {sigma}, observed at high (h) temperatures along DNA molecules. The model takes into account the one-dimensional character of the system and the presence of disorder in the DNA double helix. Percolation-theoretical considerations lead to analytical expressions for the high temperature multiphonon-assisted small polaron hopping conductivity, the hopping distance and their temperature dependence. The experimental data for lambda phage DNA ({lambda}-DNA) and poly(dA)-poly(dT) DNA follow nicely the theoretically predicted behaviour (ln{sigma}{sup h}{proportional_to}T{sup -2/3}). Moreover, our model leads to realistic values of the maximum hopping distances, supporting the idea of multiphonon-assisted hopping of small polarons between next nearest neighbours of the DNA molecular 'wire'. The low temperature case is also investigated.

  18. Designing a small molecule erythropoietin mimetic.

    Science.gov (United States)

    Guarnieri, Frank

    2015-01-01

    Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year drug and as the first biologic created with recombinant technology it launched the biotech industry. For many years intense research was focused on creating a small molecule orally available EPO mimetic. The Robert Wood Johnson (RWJ) group seemed to definitively establish that only large peptides with a minimum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand binding and activation from mutagenesis experiments, were probably not really that important. My fundamental hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor meet, (c) small molecules can be created that have high potency for this site that will be competitive with EPO and thus can displace the protein-protein interaction, (d) small symmetric molecules will stabilize the symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of

  19. Small molecules: the missing link in the central dogma.

    Science.gov (United States)

    Schreiber, Stuart L

    2005-07-01

    Small molecules have critical roles at all levels of biological complexity and yet remain orphans of the central dogma. Chemical biologists, working with small molecules, expand our understanding of these central elements of life.

  20. Recent advances in developing small molecules targeting RNA.

    Science.gov (United States)

    Guan, Lirui; Disney, Matthew D

    2012-01-20

    RNAs are underexploited targets for small molecule drugs or chemical probes of function. This may be due, in part, to a fundamental lack of understanding of the types of small molecules that bind RNA specifically and the types of RNA motifs that specifically bind small molecules. In this review, we describe recent advances in the development and design of small molecules that bind to RNA and modulate function that aim to fill this void.

  1. Dual anticoagulant/antiplatelet persulfated small molecules.

    Science.gov (United States)

    Correia-da-Silva, Marta; Sousa, Emília; Duarte, Bárbara; Marques, Franklim; Cunha-Ribeiro, Luís M; Pinto, Madalena M M

    2011-06-01

    A new series of persulfated compounds was synthesized and assayed for in vitro anticoagulant and antiplatelet activities, which may be useful in the treatment of both venous and arterial thrombosis. Persulfation of polyphenolic components of wine, coumarins and other structurally diverse small molecules was achieved with triethylamine-sulphur trioxide adduct. The derivatives were highly effective in increasing the APTT, being trans-resveratrol 3-ß-D-glucopyranoside persulfate (15) the most potent (APTT2=1.5×10(-4) M), and were able to completely block the clotting process at the highest concentration. Compound 15 showed good stability in human plasma and anticoagulation effects in whole blood. trans-Resveratrol 3-ß-D-glucopyranoside persulfate (15) and a series of polysulfated oligoflavonoids (1-4) also exhibited antiplatelet activity by inhibition of arachidonic acid and ADP-induced platelet aggregation. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Small-Molecule Inhibitors of Urea Transporters

    Science.gov (United States)

    Verkman, Alan S.; Esteva-Font, Cristina; Cil, Onur; Anderson, Marc O.; Li, Fei; Li, Min; Lei, Tianluo; Ren, Huiwen; Yang, Baoxue

    2015-01-01

    Urea transporter (UT) proteins, which include isoforms of UT-A in kidney tubule epithelia and UT-B in vasa recta endothelia and erythrocytes, facilitate urinary concentrating function. Inhibitors of urea transporter function have potential clinical applications as sodium-sparing diuretics, or ‘urearetics,’ in edema from different etiologies, such as congestive heart failure and cirrhosis, as well as in syndrome of inappropriate antidiuretic hormone (SIADH). High-throughput screening of drug-like small molecules has identified UT-A and UT-B inhibitors with nanomolar potency. Inhibitors have been identified with different UT-A versus UT-B selectivity profiles and putative binding sites on UT proteins. Studies in rodent models support the utility of UT inhibitors in reducing urinary concentration, though testing in clinically relevant animal models of edema has not yet been done. PMID:25298345

  3. Two-Photon Small Molecule Enzymatic Probes.

    Science.gov (United States)

    Qian, Linghui; Li, Lin; Yao, Shao Q

    2016-04-19

    Enzymes are essential for life, especially in the development of disease and on drug effects, but as we cannot yet directly observe the inside interactions and only partially observe biochemical outcomes, tools "translating" these processes into readable information are essential for better understanding of enzymes as well as for developing effective tools to fight against diseases. Therefore, sensitive small molecule probes suitable for direct in vivo monitoring of enzyme activities are ultimately desirable. For fulfilling this desire, two-photon small molecule enzymatic probes (TSMEPs) producing amplified fluorescent signals based on enzymatic conversion with better photophysical properties and deeper penetration in intact tissues and whole animals have been developed and demonstrated to be powerful in addressing the issues described above. Nonetheless, currently available TSMEPs only cover a small portion of enzymes despite the distinct advantages of two-photon fluorescence microscopy. In this Account, we would like to share design principles for TSMEPs as potential indicators of certain pathology-related biomarkers together with their applications in disease models to inspire more elegant work to be done in this area. Highlights will be addressed on how to equip two-photon fluorescent probes with features amenable for direct assessment of enzyme activities in complex pathological environments. We give three recent examples from our laboratory and collaborations in which TSMEPs are applied to visualize the distribution and activity of enzymes at cellular and organism levels. The first example shows that we could distinguish endogenous phosphatase activity in different organelles; the second illustrates that TSMEP is suitable for specific and sensitive detection of a potential Parkinson's disease marker (monoamine oxidase B) in a variety of biological systems from cells to patient samples, and the third identifies that TSMEPs can be applied to other enzyme

  4. Database of small molecule thermochemistry for combustion.

    Science.gov (United States)

    Goldsmith, C Franklin; Magoon, Gregory R; Green, William H

    2012-09-13

    High-accuracy ab initio thermochemistry is presented for 219 small molecules relevant in combustion chemistry, including many radical, biradical, and triplet species. These values are critical for accurate kinetic modeling. The RQCISD(T)/cc-PV∞QZ//B3LYP/6-311++G(d,p) method was used to compute the electronic energies. A bond additivity correction for this method has been developed to remove systematic errors in the enthalpy calculations, using the Active Thermochemical Tables as reference values. On the basis of comparison with the benchmark data, the 3σ uncertainty in the standard-state heat of formation is 0.9 kcal/mol, or within chemical accuracy. An uncertainty analysis is presented for the entropy and heat capacity. In many cases, the present values are the most accurate and comprehensive numbers available. The present work is compared to several published databases. In some cases, there are large discrepancies and errors in published databases; the present work helps to resolve these problems.

  5. Database of Small Molecule Thermochemistry for Combustion

    KAUST Repository

    Goldsmith, C. Franklin

    2012-09-13

    High-accuracy ab initio thermochemistry is presented for 219 small molecules relevant in combustion chemistry, including many radical, biradical, and triplet species. These values are critical for accurate kinetic modeling. The RQCISD(T)/cc-PV∞QZ//B3LYP/6-311++G(d,p) method was used to compute the electronic energies. A bond additivity correction for this method has been developed to remove systematic errors in the enthalpy calculations, using the Active Thermochemical Tables as reference values. On the basis of comparison with the benchmark data, the 3σ uncertainty in the standard-state heat of formation is 0.9 kcal/mol, or within chemical accuracy. An uncertainty analysis is presented for the entropy and heat capacity. In many cases, the present values are the most accurate and comprehensive numbers available. The present work is compared to several published databases. In some cases, there are large discrepancies and errors in published databases; the present work helps to resolve these problems. © 2012 American Chemical Society.

  6. Nitrogenase: a general hydrogenator of small molecules.

    Science.gov (United States)

    Dance, Ian

    2013-12-04

    Nitrogenase naturally converts N2 to NH3, but it also hydrogenates a variety of small molecules, in many cases requiring multiple electrons plus protons for each catalytic cycle. A general mechanism, arising from many density functional calculations and simulations, is proposed to account for all of these reactions. Protons, supplied serially in conjunction with electrons to the active site FeMo-co (a CFe7MoS9 (homocitrate) cluster), generate H atoms that migrate over and populate two S and two Fe atoms in the reaction domain. The mechanistic paradigm is conceptually straightforward: substrate (on Fe) and H atoms (on S and Fe) are bound contiguously in the reaction zone, and H atoms transfer (probably with some quantum tunneling) to the substrate to form product. Details and justifications of the mechanisms for N2 and other key substrates are summarised, and the unusual structure of FeMo-co as a general hydrogenation catalyst is rationalised. Testing experiments are suggested.

  7. Covalent small-molecule-RNA complex formation enables cellular profiling of small-molecule-RNA interactions.

    Science.gov (United States)

    Guan, Lirui; Disney, Matthew D

    2013-09-16

    Won't let you go! A strategy is described to design small molecules that react with their cellular RNA targets. This approach not only improves the activity of compounds targeting RNA in cell culture by a factor of about 2500 but also enables cell-wide profiling of its RNA targets. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    Science.gov (United States)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  9. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  10. Small molecule chemical probes of microRNA function.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Vummidi, Balayeshwanth R; Disney, Matthew D

    2015-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that control protein expression. Aberrant miRNA expression has been linked to various human diseases, and thus miRNAs have been explored as diagnostic markers and therapeutic targets. Although it is challenging to target RNA with small molecules in general, there have been successful campaigns that have identified small molecule modulators of miRNA function by targeting various pathways. For example, small molecules that modulate transcription and target nuclease processing sites in miRNA precursors have been identified. Herein, we describe challenges in developing chemical probes that target miRNAs and highlight aspects of miRNA cellular biology elucidated by using small molecule chemical probes. We expect that this area will expand dramatically in the near future as progress is made in understanding small molecule recognition of RNA. Copyright © 2014. Published by Elsevier Ltd.

  11. X-ray characterization of solid small molecule organic materials

    Science.gov (United States)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  12. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  13. Small Talk: Children's Everyday `Molecule' Ideas

    Science.gov (United States)

    Jakab, Cheryl

    2013-08-01

    This paper reports on 6-11-year-old children's `sayings and doings' (Harré 2002) as they explore molecule artefacts in dialectical-interactive teaching interviews (Fleer, Cultural Studies of Science Education 3:781-786, 2008; Hedegaard et al. 2008). This sociocultural study was designed to explore children's everyday awareness of and meaning-making with cultural molecular artefacts. Our everyday world is populated with an ever increasing range of molecular or nanoworld words, symbols, images, and games. What do children today say about these artefacts that are used to represent molecular world entities? What are the material and social resources that can influence a child's everyday and developing scientific ideas about `molecules'? How do children interact with these cognitive tools when given expert assistance? What meaning-making is afforded when children are socially and materially assisted in using molecular tools in early chemical and nanoworld thinking? Tool-dependent discursive studies show that provision of cultural artefacts can assist and direct developmental thinking across many domains of science (Schoultz et al., Human Development 44:103-118, 2001; Siegal 2008). Young children's use of molecular artefacts as cognitive tools has not received much attention to date (Jakab 2009a, b). This study shows 6-11-year-old children expressing everyday ideas of molecular artefacts and raising their own questions about the artefacts. They are seen beginning to domesticate (Erneling 2010) the words, symbols, and images to their own purposes when given the opportunity to interact with such artefacts in supported activity. Discursive analysis supports the notion that using `molecules' as cultural tools can help young children to begin `putting on molecular spectacles' (Kind 2004). Playing with an interactive game (ICT) is shown to be particularly helpful in assisting children's early meaning-making with representations of molecules, atoms, and their chemical symbols.

  14. Highly parallel translation of DNA sequences into small molecules.

    Directory of Open Access Journals (Sweden)

    Rebecca M Weisinger

    Full Text Available A large body of in vitro evolution work establishes the utility of biopolymer libraries comprising 10(10 to 10(15 distinct molecules for the discovery of nanomolar-affinity ligands to proteins. Small-molecule libraries of comparable complexity will likely provide nanomolar-affinity small-molecule ligands. Unlike biopolymers, small molecules can offer the advantages of cell permeability, low immunogenicity, metabolic stability, rapid diffusion and inexpensive mass production. It is thought that such desirable in vivo behavior is correlated with the physical properties of small molecules, specifically a limited number of hydrogen bond donors and acceptors, a defined range of hydrophobicity, and most importantly, molecular weights less than 500 Daltons. Creating a collection of 10(10 to 10(15 small molecules that meet these criteria requires the use of hundreds to thousands of diversity elements per step in a combinatorial synthesis of three to five steps. With this goal in mind, we have reported a set of mesofluidic devices that enable DNA-programmed combinatorial chemistry in a highly parallel 384-well plate format. Here, we demonstrate that these devices can translate DNA genes encoding 384 diversity elements per coding position into corresponding small-molecule gene products. This robust and efficient procedure yields small molecule-DNA conjugates suitable for in vitro evolution experiments.

  15. Sorption of small molecules in polymeric media

    Science.gov (United States)

    Camboni, Federico; Sokolov, Igor M.

    2016-12-01

    We discuss the sorption of penetrant molecules from the gas phase by a polymeric medium within a model which is very close in spirit to the dual sorption mode model: the penetrant molecules are partly dissolved within the polymeric matrix, partly fill the preexisting voids. The only difference with the initial dual sorption mode situation is the assumption that the two populations of molecules are in equilibrium with each other. Applying basic thermodynamics principles we obtain the dependence of the penetrant concentration on the pressure in the gas phase and find that this is expressed via the Lambert W-function, a different functional form than the one proposed by dual sorption mode model. The Lambert-like isotherms appear universally at low and moderate pressures and originate from the assumption that the internal energy in a polymer-penetrant-void ternary mixture is (in the lowest order) a bilinear form in the concentrations of the three components. Fitting the existing data shows that in the domain of parameters where the dual sorption mode model is typically applied, the Lambert function, which describes the same behavior as the one proposed by the gas-polymer matrix model, fits the data equally well.

  16. Flavonoids – Small Molecules, High Hopes

    Directory of Open Access Journals (Sweden)

    Sandu Mariana

    2017-07-01

    Full Text Available This brief review takes a look at flavonoids, a wide class of polyphenols, which are regarded as plant secondary metabolites. Their roles in plants are diverse and little understood. They can act as growth hormone modulators, phytoalexins, they offer UV protection, contribute to pollen viability and can function as signaling molecules in establishing symbiotic relationships. Flavonoids were also found to have a range of beneficial effects for the human body. Their anticancer, antioxidant, anti-inflammatory and cardioprotective activity, as well as their antibacterial, antiviral and antihelmintic properties make them promising candidates for the design of new drugs.

  17. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Science.gov (United States)

    Ruscito, Annamaria; DeRosa, Maria

    2016-05-01

    Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  18. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Annamaria eRuscito

    2016-05-01

    Full Text Available Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012 notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  19. Mapping the Small Molecule Interactome by Mass Spectrometry.

    Science.gov (United States)

    Flaxman, Hope A; Woo, Christina M

    2018-01-16

    Mapping small molecule interactions throughout the proteome provides the critical structural basis for functional analysis of their impact on biochemistry. However, translation of mass spectrometry-based proteomics methods to directly profile the interaction between a small molecule and the whole proteome is challenging because of the substoichiometric nature of many interactions, the diversity of covalent and noncovalent interactions involved, and the subsequent computational complexity associated with their spectral assignment. Recent advances in chemical proteomics have begun fill this gap to provide a structural basis for the breadth of small molecule-protein interactions in the whole proteome. Innovations enabling direct characterization of the small molecule interactome include faster, more sensitive instrumentation coupled to chemical conjugation, enrichment, and labeling methods that facilitate detection and assignment. These methods have started to measure molecular interaction hotspots due to inherent differences in local amino acid reactivity and binding affinity throughout the proteome. Measurement of the small molecule interactome is producing structural insights and methods for probing and engineering protein biochemistry. Direct structural characterization of the small molecule interactome is a rapidly emerging area pushing new frontiers in biochemistry at the interface of small molecules and the proteome.

  20. Plasmin Regulation through Allosteric, Sulfated, Small Molecules

    Directory of Open Access Journals (Sweden)

    Rami A. Al-Horani

    2015-01-01

    Full Text Available Plasmin, a key serine protease, plays a major role in clot lysis and extracellular matrix remodeling. Heparin, a natural polydisperse sulfated glycosaminoglycan, is known to allosterically modulate plasmin activity. No small allosteric inhibitor of plasmin has been discovered to date. We screened an in-house library of 55 sulfated, small glycosaminoglycan mimetics based on nine distinct scaffolds and varying number and positions of sulfate groups to discover several promising hits. Of these, a pentasulfated flavonoid-quinazolinone dimer 32 was found to be the most potent sulfated small inhibitor of plasmin (IC50 = 45 μM, efficacy = 100%. Michaelis-Menten kinetic studies revealed an allosteric inhibition of plasmin by these inhibitors. Studies also indicated that the most potent inhibitors are selective for plasmin over thrombin and factor Xa, two serine proteases in coagulation cascade. Interestingly, different inhibitors exhibited different levels of efficacy (40%–100%, an observation alluding to the unique advantage offered by an allosteric process. Overall, our work presents the first small, synthetic allosteric plasmin inhibitors for further rational design.

  1. Mechanochemical synthesis of small organic molecules

    Directory of Open Access Journals (Sweden)

    Tapas Kumar Achar

    2017-09-01

    Full Text Available With the growing interest in renewable energy and global warming, it is important to minimize the usage of hazardous chemicals in both academic and industrial research, elimination of waste, and possibly recycle them to obtain better results in greener fashion. The studies under the area of mechanochemistry which cover the grinding chemistry to ball milling, sonication, etc. are certainly of interest to the researchers working on the development of green methodologies. In this review, a collection of examples on recent developments in organic bond formation reactions like carbon–carbon (C–C, carbon–nitrogen (C–N, carbon–oxygen (C–O, carbon–halogen (C–X, etc. is documented. Mechanochemical syntheses of heterocyclic rings, multicomponent reactions and organometallic molecules including their catalytic applications are also highlighted.

  2. Defining RNA-Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D

    2017-03-22

    RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.

  3. Global analysis of small molecule binding to related protein targets.

    Directory of Open Access Journals (Sweden)

    Felix A Kruger

    2012-01-01

    Full Text Available We report on the integration of pharmacological data and homology information for a large scale analysis of small molecule binding to related targets. Differences in small molecule binding have been assessed for curated pairs of human to rat orthologs and also for recently diverged human paralogs. Our analysis shows that in general, small molecule binding is conserved for pairs of human to rat orthologs. Using statistical tests, we identified a small number of cases where small molecule binding is different between human and rat, some of which had previously been reported in the literature. Knowledge of species specific pharmacology can be advantageous for drug discovery, where rats are frequently used as a model system. For human paralogs, we demonstrate a global correlation between sequence identity and the binding of small molecules with equivalent affinity. Our findings provide an initial general model relating small molecule binding and sequence divergence, containing the foundations for a general model to anticipate and predict within-target-family selectivity.

  4. A Prospective Method to Guide Small Molecule Drug Design

    Science.gov (United States)

    Johnson, Alan T.

    2015-01-01

    At present, small molecule drug design follows a retrospective path when considering what analogs are to be made around a current hit or lead molecule with the focus often on identifying a compound with higher intrinsic potency. What this approach overlooks is the simultaneous need to also improve the physicochemical (PC) and pharmacokinetic (PK)…

  5. Enzymatic Glycosylation of Small Molecules : Challenging Substrates Require Tailored Catalysts

    NARCIS (Netherlands)

    Desmet, Tom; Soetaert, Wim; Bojarova, Pavla; Kren, Vladimir; Dijkhuizen, Lubbert; Eastwick-Field, Vanessa; Schiller, Alexander; Křen, Vladimir

    Glycosylation can significantly improve the physicochemical and biological properties of small molecules like vitamins, antibiotics, flavors, and fragrances. The chemical synthesis of glycosides is, however, far from trivial and involves multistep routes that generate lots of waste. In this review,

  6. Hydrogen. A small molecule with large impact

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, H.; Ruthardt, K.; Mathiak, J.; Roosen, C. [Uhde GmbH, Dortmund (Germany)

    2010-12-30

    The first section of the presentation will provide general information about hydrogen including physical data, natural abundance, production and consumption figures. This will be followed by detailed information about current industrial production routes for hydrogen. Main on-purpose production for hydrogen is by classical steam reforming (SR) of natural gas. A brief overview of most important steps in stream reforming is given including reforming section, CO conversion and gas purification. Also the use of heavier than methane feedstocks and refinery off-gases is discussed. Alternative routes for hydrogen production or production of synthesis gas are autothermal reforming (ATR) or partial oxidation (POX). Pros and Cons for each specific technology are given and discussed. Gasification, especially gasification of renewable feedstocks, is a further possibility to produce hydrogen or synthesis gas. New developments and current commercial processes are presented. Hydrogen from electrolysis plants has only a small share on the hydrogen production slate, but in some cases this hydrogen is a suitable feedstock for niche applications with future potential. Finally, production of hydrogen by solar power as a new route is discussed. The final section focuses on the use of hydrogen. Classical applications are hydrogenation reactions in refineries, like HDS, HDN, hydrocracking and hydrofinishing. But, with an increased demand for liquid fuels for transportation or power supply, hydrogen becomes a key player in future as an energy source. Use of hydrogen in synthesis gas for the production of liquid fuels via Fischer-Tropsch synthesis or coal liquefaction is discussed as well as use of pure hydrogen in fuel cells. Additional, new application for biomass-derived feedstocks are discussed. (orig.)

  7. HUMAN MICROBIOTA. Small molecules from the human microbiota.

    Science.gov (United States)

    Donia, Mohamed S; Fischbach, Michael A

    2015-07-24

    Developments in the use of genomics to guide natural product discovery and a recent emphasis on understanding the molecular mechanisms of microbiota-host interactions have converged on the discovery of small molecules from the human microbiome. Here, we review what is known about small molecules produced by the human microbiota. Numerous molecules representing each of the major metabolite classes have been found that have a variety of biological activities, including immune modulation and antibiosis. We discuss technologies that will affect how microbiota-derived molecules are discovered in the future and consider the challenges inherent in finding specific molecules that are critical for driving microbe-host and microbe-microbe interactions and understanding their biological relevance. Copyright © 2015, American Association for the Advancement of Science.

  8. Strategy to discover diverse optimal molecules in the small molecule universe.

    Science.gov (United States)

    Rupakheti, Chetan; Virshup, Aaron; Yang, Weitao; Beratan, David N

    2015-03-23

    The small molecule universe (SMU) is defined as a set of over 10(60) synthetically feasible organic molecules with molecular weight less than ∼500 Da. Exhaustive enumerations and evaluation of all SMU molecules for the purpose of discovering favorable structures is impossible. We take a stochastic approach and extend the ACSESS framework ( Virshup et al. J. Am. Chem. Soc. 2013 , 135 , 7296 - 7303 ) to develop diversity oriented molecular libraries that can generate a set of compounds that is representative of the small molecule universe and that also biases the library toward favorable physical property values. We show that the approach is efficient compared to exhaustive enumeration and to existing evolutionary algorithms for generating such libraries by testing in the NKp fitness landscape model and in the fully enumerated GDB-9 chemical universe containing 3 × 10(5) molecules.

  9. Small molecule alteration of RNA sequence in cells and animals.

    Science.gov (United States)

    Guan, Lirui; Luo, Yiling; Ja, William W; Disney, Matthew D

    2017-10-18

    RNA regulation and maintenance are critical for proper cell function. Small molecules that specifically alter RNA sequence would be exceptionally useful as probes of RNA structure and function or as potential therapeutics. Here, we demonstrate a photochemical approach for altering the trinucleotide expanded repeat causative of myotonic muscular dystrophy type 1 (DM1), r(CUG)exp. The small molecule, 2H-4-Ru, binds to r(CUG)exp and converts guanosine residues to 8-oxo-7,8-dihydroguanosine upon photochemical irradiation. We demonstrate targeted modification upon irradiation in cell culture and in Drosophila larvae provided a diet containing 2H-4-Ru. Our results highlight a general chemical biology approach for altering RNA sequence in vivo by using small molecules and photochemistry. Furthermore, these studies show that addition of 8-oxo-G lesions into RNA 3' untranslated regions does not affect its steady state levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Small-molecule control of protein function through Staudinger reduction

    Science.gov (United States)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  11. Small-molecule pheromones and hormones controlling nematode development.

    Science.gov (United States)

    Butcher, Rebecca A

    2017-05-17

    The existence of small-molecule signals that influence development in Caenorhabditis elegans has been known for several decades, but only in recent years have the chemical structures of several of these signals been established. The identification of these signals has enabled connections to be made between these small molecules and fundamental signaling pathways in C. elegans that influence not only development but also metabolism, fertility, and lifespan. Spurred by these important discoveries and aided by recent advances in comparative metabolomics and NMR spectroscopy, the field of nematode chemistry has the potential to expand dramatically in the coming years. This Perspective will focus on small-molecule pheromones and hormones that influence developmental events in the nematode life cycle (ascarosides, dafachronic acids, and nemamides), will cover more recent work regarding the biosynthesis of these signals, and will explore how the discovery of these signals is transforming our understanding of nematode development and physiology.

  12. Chemisorption and Reactions of Small Molecules on Small Gold Particles

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Bond

    2012-02-01

    Full Text Available The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorption of the reactants, the latter depending on the electronic structure of the gold atoms constituting the active centre. Examination of the changes to the utilisation of electrons as particle size is decreased points to loss of metallic character at about 3 nm, as energy bands are replaced by levels, and a band gap appears. Detailed consideration of the Arrhenius parameters (E and ln A for CO oxidation points clearly to a step-change in activity at the point where metallic character is lost, as opposed to there being a monotonic dependence of rate on a physical property such as the fraction of atoms at corners or edges of particles. The deplorable scarcity of kinetic information on other reactions makes extension of this analysis difficult, but non-metallic behaviour is an unavoidable property of very small gold particles, and therefore cannot be ignored when seeking to explain their exceptional activity.

  13. Development of novel small molecules for imaging and drug release

    Science.gov (United States)

    Cao, Yanting

    Small organic molecules, including small molecule based fluorescent probes, small molecule based drugs or prodrugs, and smart multifunctional fluorescent drug delivery systems play important roles in biological research, drug discovery, and clinical practices. Despite the significant progress made in these fields, the development of novel and diverse small molecules is needed to meet various demands for research and clinical applications. My Ph.D study focuses on the development of novel functional molecules for recognition, imaging and drug release. In the first part, a turn-on fluorescent probe is developed for the detection of intracellular adenosine-5'-triphosphate (ATP) levels based on multiplexing recognitions. Considering the unique and complicated structure of ATP molecules, a fluorescent probe has been implemented with improved sensitivity and selectivity due to two synergistic binding recognitions by incorporating of 2, 2'-dipicolylamine (Dpa)-Zn(II) for targeting of phospho anions and phenylboronic acid group for cis-diol moiety. The novel probe is able to detect intracellular ATP levels in SH-SY5Y cells. Meanwhile, the advantages of multiplexing recognition design concept have been demonstrated using two control molecules. In the second part, a prodrug system is developed to deliver multiple drugs within one small molecule entity. The prodrug is designed by using 1-(2-nitrophenyl)ethyl (NPE) as phototrigger, and biphenol biquaternary ammonium as the prodrug. With controlled photo activation, both DNA cross-linking agents mechlorethamine and o-quinone methide are delivered and released at the preferred site, leading to efficient DNA cross-links formation and cell death. The prodrug shows negligible cytotoxicity towards normal skin cells (Hekn cells) with and without UV activation, but displays potent activity towards cancer cells (HeLa cells) upon UV activation. The multiple drug release system may hold a great potential for practical application. In the

  14. Theoretical methods for small-molecule ro-vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lodi, Lorenzo; Tennyson, Jonathan, E-mail: j.tennyson@ucl.ac.u [University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT (United Kingdom)

    2010-07-14

    The solution of the first principle equations of quantum mechanics provides an increasingly accurate and predictive approach for solving problems involving atoms and small molecules. A general introduction to the methods used for the ab initio calculation of rotational-vibrational spectra of small molecules is presented, with a strong focus on triatomic systems. The use of multi-reference electronic structure methods to compute molecular potential-energy and dipole-moment surfaces is discussed. Issues related to the construction of such surfaces and the inclusion of corrections due to relativistic and non-Born-Oppenheimer effects are reviewed. The derivation of exact, internal-coordinate nuclear-motion-effective Hamiltonians and their solution using a discrete-variable representation are discussed. Sample results for the water molecules are used throughout the tutorial to illustrate the theoretical and numerical issues in such calculations. (phd tutorial)

  15. Seeking small molecules for singlet fission: a heteroatom substitution strategy.

    Science.gov (United States)

    Zeng, Tao; Ananth, Nandini; Hoffmann, Roald

    2014-09-10

    We design theoretically small molecule candidates for singlet fission chromophores, aiming to achieve a balance between sufficient diradical character and kinetic persistence. We develop a perturbation strategy based on the captodative effect to introduce diradical character into small π-systems. Specifically, this can be accomplished by replacing pairs of not necessarily adjacent C atoms with isoelectronic and isosteric pairs of B and N atoms. Three rules of thumb emerge from our studies to aid further design: (i) Lewis structures provide insight into likely diradical character; (ii) formal radical centers of the diradical must be well-separated; (iii) stabilization of radical centers by a donor (N) and an acceptor (B) is essential. Following the rules, we propose candidate molecules. Employing reliable multireference calculations for excited states, we identify three likely candidate molecules for SF chromophores. These include a benzene, a napthalene, and an azulene, where four C atoms are replaced by a pair of B and a pair of N atoms.

  16. Toward inkjet printing of small molecule organic light emitting diodes

    NARCIS (Netherlands)

    Gorter, H.; Coenen, M.J.J.; Slaats, M.W.L.; Ren, M.; Lu, W.; Kuijpers, C.J.; Groen, W.A.

    2013-01-01

    Thermal evaporation is the current standard for the manufacture of small molecule organic light emitting diodes (smOLEDs), but it requires vacuum process, complicated shadow masks and is inefficient in material utilization, resulting in high cost of ownership. As an alternative, wet solution

  17. RNA targeting by small molecules: Binding of protoberberine ...

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... RNA structures. J. Biosci. 37 539–552] DOI 10.1007/s12038-012-9217-3. 1. Introduction. Elucidation of the interaction of small molecules with nucleic acid has been an active area of interest in many laboratories around the world for a long time. In such studies. DNA has gained prominence over RNA due to ...

  18. Design of a small molecule against an oncogenic noncoding RNA.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Cameron, Michael D; Haga, Christopher L; Rosenberg, Laura H; Lafitte, Marie; Duckett, Derek R; Phinney, Donald G; Disney, Matthew D

    2016-05-24

    The design of precision, preclinical therapeutics from sequence is difficult, but advances in this area, particularly those focused on rational design, could quickly transform the sequence of disease-causing gene products into lead modalities. Herein, we describe the use of Inforna, a computational approach that enables the rational design of small molecules targeting RNA to quickly provide a potent modulator of oncogenic microRNA-96 (miR-96). We mined the secondary structure of primary microRNA-96 (pri-miR-96) hairpin precursor against a database of RNA motif-small molecule interactions, which identified modules that bound RNA motifs nearby and in the Drosha processing site. Precise linking of these modules together provided Targaprimir-96 (3), which selectively modulates miR-96 production in cancer cells and triggers apoptosis. Importantly, the compound is ineffective on healthy breast cells, and exogenous overexpression of pri-miR-96 reduced compound potency in breast cancer cells. Chemical Cross-Linking and Isolation by Pull-Down (Chem-CLIP), a small-molecule RNA target validation approach, shows that 3 directly engages pri-miR-96 in breast cancer cells. In vivo, 3 has a favorable pharmacokinetic profile and decreases tumor burden in a mouse model of triple-negative breast cancer. Thus, rational design can quickly produce precision, in vivo bioactive lead small molecules against hard-to-treat cancers by targeting oncogenic noncoding RNAs, advancing a disease-to-gene-to-drug paradigm.

  19. RNA targeting by small molecules: Binding of protoberberine ...

    Indian Academy of Sciences (India)

    For this purpose, a basic understanding of the molecular aspects of the interaction of small molecules with various RNA structures is essential. Alkaloids are a group of natural products with potential therapeutic utility, and very recently, their interaction with many RNA structures have been reported. Especially noteworthy are ...

  20. NMR structural studies of protein-small molecule interactions

    NARCIS (Netherlands)

    Shah, Dipen M.

    2014-01-01

    The research presented in the thesis describes the development and implementation of solution based NMR methods that provide 3D structural information on the protein-small molecule complexes. These methods can be critical for structure based drug design and can be readily applied in the early stages

  1. Caenorhabditis elegans chemical biology: lessons from small molecules

    Science.gov (United States)

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  2. Unraveling plant hormone signaling through the use of small molecules

    Directory of Open Access Journals (Sweden)

    Adeline eRigal

    2014-07-01

    Full Text Available Plants have acquired the capacity to grow continuously and adjust their morphology in response to endogenous and external signals, leading to a high architectural plasticity. The dynamic and differential distribution of phytohormones is an essential factor in these developmental changes. Phytohormone perception is a fast but complex process modulating specific developmental reprogramming. In recent years, chemical genomics or the use of small molecules to modulate target protein function has emerged as a powerful strategy to study complex biological processes in plants such as hormone signaling. Small molecules can be applied in a conditional, dose-dependent and reversible manner, with the advantage of circumventing the limitations of lethality and functional redundancy inherent to traditional mutant screens. High-throughput screening of diverse chemical libraries has led to the identification of bioactive molecules able to induce plant hormone-related phenotypes. Characterization of the cognate targets and pathways of those molecules has allowed the identification of novel regulatory components, providing new insights into the molecular mechanisms of plant hormone signaling. An extensive structure-activity relationship (SAR analysis of the natural phytohormones, their designed synthetic analogues and newly identified bioactive molecules has led to the determination of the structural requirements essential for their bioactivity. In this review, we will summarize the so far identified small molecules and their structural variants targeting specific phytohormone signaling pathways. We will highlight how the SAR analyses have enabled better interrogation of the molecular mechanisms of phytohormone responses. Finally, we will discuss how labeled/tagged hormone analogues can be exploited, as compelling tools to better understand hormone signaling and transport mechanisms.

  3. The 68Ga/177Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUVmax values and absorbed dose estimates.

    Science.gov (United States)

    Scarpa, Lorenza; Buxbaum, Sabine; Kendler, Dorota; Fink, Katharina; Bektic, Jasmin; Gruber, Leonhard; Decristoforo, Clemens; Uprimny, Christian; Lukas, Peter; Horninger, Wolfgang; Virgolini, Irene

    2017-05-01

    A targeted theragnostic approach based on increased expression of prostate-specific membrane antigen (PSMA) on PC cells is an attractive treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). Ten consecutive mCRPC patients were selected for 177Lu-PSMA617 therapy on the basis of PSMA-targeted 68Ga-PSMA-HBED-CC PET/CT diagnosis showing extensive and progressive tumour load. Following dosimetry along with the first therapy cycle restaging (68Ga-PSMA-HBED-CC and 18F-NaF PET/CT) was performed after 2 and 3 therapy cycles (each 6.1 ± 0.3 GBq, range 5.4-6.5 GBq) given intravenously over 30 minutes, 9 ± 1 weeks apart. PET/CT scans were compared to 177Lu-PSMA617 24-hour whole-body scans and contrast-enhanced dual-phase CT. Detailed comparison of SUVmax values and absorbed tumour doses was performed. 177Lu-PSMA617 dosimetry indicated high tumour doses for skeletal (3.4 ± 1.9 Gy/GBq; range 1.1-7.2 Gy/GBq), lymph node (2.6 ± 0.4 Gy/GBq; range 2.3-2.9 Gy/GBq) as well as liver (2.4 ± 0.8 Gy/GBq; range 1.7-3.3 Gy/GBq) metastases whereas the dose for tissues/organs was acceptable in all patients for an intention-to-treat activity of 18 ± 0.3 GBq. Three patients showed partial remission, three mixed response, one stable and three progressive disease. Decreased 177Lu-PSMA617 and 68Ga-PSMA-HBED-CC uptake (mean SUVmax values 20.2 before and 15.0 after 2 cycles and 11.5 after 3 cycles, p < 0.05) was found in 41/54 skeletal lesions, 12/13 lymph node metastases, 3/5 visceral metastases and 4/4 primary PC lesions. Due to substantial individual variance, dosimetry is mandatory for a patient-specific approach following 177Lu-PSMA617 therapy. Higher activities and/or shorter treatment intervals should be applied in a larger prospective study.

  4. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  5. RNA enzymes with two small-molecule substrates.

    Science.gov (United States)

    Huang, F; Yang, Z; Yarus, M

    1998-11-01

    The 'RNA world' hypothesis posits ancient organisms employing versatile catalysis by RNAs. In particular, such a metabolism would have required RNA catalysts that join small molecules. Such anabolic reactions now occur very widely, for example in phospholipid, terpene, amino acid and nucleotide synthetic pathways in modern organisms. Present RNA systems, however, do not perform such reactions using substrates that do not base pair. Here we ask whether this lack is a methodological artifact due to the practice of selection-amplification, or a fundamental property of active sites reconstructed within RNA structures. Three rationally modified RNA enzymes, Iso6-G, Iso6-2G and Iso63G, catalyze the formation of (5'-->5') polyphosphate-linked oligonucleotides in trans. One of these, Iso6-G RNA, has a specific substrate site for a guanosine triphosphate, GTP, dGTP or ddGTP, and one nonspecific substrate site for a terminal-phosphate-containing small molecule. This ribozyme catalyzes multiple turnovers, proceeding at a constant rate. Guanosine specificity is probably not attributable to Watson-Crick base pairing. Ribozymes can readily bind multiple small-molecule substrates simultaneously and catalyze reactions that build up larger products, apparently independent of substrate-RNA Watson-Crick base pairing. RNA enzymes therefore parallel proteins, which often overcome the entropic difficulties of positioning multiple small substrates for catalysis of anabolic reactions. These results support the idea of a complex ancestral metabolism based on RNA catalysis.

  6. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  7. Self-Assembly of Small Molecules for Organic Photovoltaic Applications

    Science.gov (United States)

    Aytun, Taner

    Organic photovoltaic (OPV) solar cells aim to provide efficient, flexible and lightweight photovoltaics (PV) with simple processing and low-cost. Advances in device optimization, structural and molecular design, as well as mechanistic understanding have helped increase device efficiency and performance. Within the framework of active layer optimization, systematically improving bulk heterojunction (BHJ) morphology could improve the power conversion efficiency of OPVs. However, most strategies aimed at improving morphology focus on annealing methods or the use of solvent additives. Rational approaches in supramolecular self-assembly can potentially offer additional control over the morphology of BHJ active layers and lead to improved power conversion efficiencies. In Chapter 2, the author explores the effect of molecular shape on the assembly of electron donating small molecules, and its ensuing effect on OPV performance. Two tripodal 'star-shaped' donor molecules with diketopyrrolopyrrole (DPP) side chains were used to generate solution-processed BHJ OPVs. It was found that the tripod molecules neither aggregate in solution nor form crystalline domains in thin films when a branched alkyl solubilizing group is used. On the other hand, linear alkyl chains promote the formation of one-dimensional (1D) nanowires and crystalline domains as well. This work demonstrated that the one-dimensional assembly of donor molecules enhances the performance of the corresponding solution-processed OPVs by 50%. This is attributed to the reduction of trap states in the 1D nanowires, resulting in a significant increase in the fill factor of the devices. In Chapter 3, experiments are described in which the electron donor is a hairpin-shaped molecule containing a trans-1,2-diamidocyclohexane core and two DPP conjugated segments, and a fullerene derivative as the electron acceptor. Self-assembly of the donor molecule is driven by the synergistic interaction between hydrogen bonds and pi

  8. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    Science.gov (United States)

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries.

  9. Carbon nanotubes for delivery of small molecule drugs.

    Science.gov (United States)

    Wong, Bin Sheng; Yoong, Sia Lee; Jagusiak, Anna; Panczyk, Tomasz; Ho, Han Kiat; Ang, Wee Han; Pastorin, Giorgia

    2013-12-01

    In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs. © 2013.

  10. Small molecule probes for plant cell wall polysaccharide imaging

    Directory of Open Access Journals (Sweden)

    Ian eWallace

    2012-05-01

    Full Text Available Plant cell walls are composed of interlinked polymer networks consisting of cellulose, hemicelluloses, pectins, proteins, and lignin. The ordered deposition of these components is a dynamic process that critically affects the development and differentiation of plant cells. However, our understanding of cell wall synthesis and remodeling, as well as the diverse cell wall architectures that result from these processes, has been limited by a lack of suitable chemical probes that are compatible with live-cell imaging. In this review, we summarize the currently available molecular toolbox of probes for cell wall polysaccharide imaging in plants, with particular emphasis on recent advances in small molecule-based fluorescent probes. We also discuss the potential for further development of small molecule probes for the analysis of cell wall architecture and dynamics.

  11. Generation of small molecules to interfere with regulated necrosis.

    Science.gov (United States)

    Degterev, Alexei; Linkermann, Andreas

    2016-06-01

    Interference with regulated necrosis for clinical purposes carries broad therapeutic relevance and, if successfully achieved, has a potential to revolutionize everyday clinical routine. Necrosis was interpreted as something that no clinician might ever be able to prevent due to the unregulated nature of this form of cell death. However, given our growing understanding of the existence of regulated forms of necrosis and the roles of key enzymes of these pathways, e.g., kinases, peroxidases, etc., the possibility emerges to identify efficient and selective small molecule inhibitors of pathologic necrosis. Here, we review the published literature on small molecule inhibition of regulated necrosis and provide an outlook on how combination therapy may be most effective in treatment of necrosis-associated clinical situations like stroke, myocardial infarction, sepsis, cancer and solid organ transplantation.

  12. Small molecule screening identifies targetable zebrafish pigmentation pathways

    DEFF Research Database (Denmark)

    Colanesi, Sarah; Taylor, Kerrie L; Temperley, Nicholas D

    2012-01-01

    and investigate the effects of a few of these compounds in further detail. We identified and confirmed 57 compounds that altered pigment cell patterning, number, survival, or differentiation. Additional tissue targets and toxicity of small molecules are also discussed. Given that the majority of cell types......Small molecules complement genetic mutants and can be used to probe pigment cell biology by inhibiting specific proteins or pathways. Here, we present the results of a screen of active compounds for those that affect the processes of melanocyte and iridophore development in zebrafish......, including pigment cells, are conserved between zebrafish and other vertebrates, we present these chemicals as molecular tools to study developmental processes of pigment cells in living animals and emphasize the value of zebrafish as an in vivo system for testing the on- and off-target activities...

  13. MolAlign: an algorithm for aligning multiple small molecules.

    Science.gov (United States)

    Chan, Shek Ling

    2017-06-01

    In small molecule drug discovery projects, the receptor structure is not always available. In such cases it is enormously useful to be able to align known ligands in the way they bind in the receptor. Here we shall present an algorithm for the alignment of multiple small molecule ligands. This algorithm takes pre-generated conformers as input, and proposes aligned assemblies of the ligands. The algorithm consists of two stages: the first stage is to perform alignments for each pair of ligands, the second stage makes use of the results from the first stage to build up multiple ligand alignment assemblies using a novel iterative procedure. The scoring functions are improved versions of the one mentioned in our previous work. We have compared our results with some recent publications. While an exact comparison is impossible, it is clear that our algorithm is fast and produces very competitive results.

  14. Enhanced Vibrational Spectroscopies as Tools for Small Molecule Biosensing

    Directory of Open Access Journals (Sweden)

    Souhir Boujday

    2015-08-01

    Full Text Available In this short summary we summarize some of the latest developments in vibrational spectroscopic tools applied for the sensing of (small molecules and biomolecules in a label-free mode of operation. We first introduce various concepts for the enhancement of InfraRed spectroscopic techniques, including the principles of Attenuated Total Reflection InfraRed (ATR-IR, (phase-modulated InfraRed Reflection Absorption Spectroscopy (IRRAS/PM-IRRAS, and Surface Enhanced Infrared Reflection Absorption Spectroscopy (SEIRAS. Particular attention is put on the use of novel nanostructured substrates that allow for the excitation of propagating and localized surface plasmon modes aimed at operating additional enhancement mechanisms. This is then be complemented by the description of the latest development in Surface- and Tip-Enhanced Raman Spectroscopies, again with an emphasis on the detection of small molecules or bioanalytes.

  15. Recent developments in small molecule therapies for renal cell carcinoma.

    Science.gov (United States)

    Song, Minsoo

    2017-12-15

    Renal cell carcinoma (RCC) is the most common type of kidney cancer in adults and is known to be the 10th most common type of cancer in the world. Most of the currently available RCC drugs are tyrosine kinase inhibitors (TKIs). However, combination therapies of TKIs and immune checkpoint inhibitors such as programmed cell death protein 1 (PD-1) and programmed cell death protein 1 ligand 1 (PD-L1) inhibitors are the focus of most of the final stage clinical trials. Meanwhile, other small molecule therapies for RCC that target indoleamine-2,3-dioxygenase (IDO1), glutaminase, C-X-C chemokine receptor 4 (CXCR4), and transglutaminase 2 (TG2) are emerging as the next generation of therapeutics. In this review, these three major streams for the development of small molecule drugs for RCC are described. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Small-Molecule Targets in Immuno-Oncology.

    Science.gov (United States)

    Dhanak, Dashyant; Edwards, James P; Nguyen, Ancho; Tummino, Peter J

    2017-09-21

    Advances in understanding the role and molecular mechanisms underlying immune surveillance and control of (pre)malignancies is revolutionizing clinical practice in the treatment of cancer. Presently, multiple biologic drugs targeting the immune checkpoint proteins PD(L)1 or CTLA4 have been approved and/or are in advanced stages of clinical development for many cancers. In addition, combination therapy with these agents and other immunomodulators is being intensively explored with the aim of improving primary response rates or prolonging overall survival. The effectiveness of cancer immunotherapy with biologics is spurring research in alternate approaches including small-molecule-mediated targeting of intracellular pathways modulating the innate and adaptive immune response. This focus of this review is on some of the key intracellular pathways where the development of a small-molecule therapeutic is attractive, tractable, and potentially synergistic with extracellular biologic-mediated immune checkpoint blockade. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    Science.gov (United States)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  18. Coacervate delivery systems for proteins and small molecule drugs

    OpenAIRE

    Johnson, Noah R; Wang, Yadong

    2014-01-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including Elastin-like peptides for delivery of anti-cancer therapeutics,Heparin-based coacervates with synthetic polycations for controlled growth factor delivery,Carboxymethyl chitosan aggregates for oral drug delivery,Mussel adhesive protein and hyaluronic acid coacervates.

  19. Small molecules enable highly efficient neuronal conversion of human fibroblasts.

    Science.gov (United States)

    Ladewig, Julia; Mertens, Jerome; Kesavan, Jaideep; Doerr, Jonas; Poppe, Daniel; Glaue, Finnja; Herms, Stefan; Wernet, Peter; Kögler, Gesine; Müller, Franz-Josef; Koch, Philipp; Brüstle, Oliver

    2012-06-01

    Forced expression of proneural transcription factors has been shown to direct neuronal conversion of fibroblasts. Because neurons are postmitotic, conversion efficiencies are an important parameter for this process. We present a minimalist approach combining two-factor neuronal programming with small molecule-based inhibition of glycogen synthase kinase-3β and SMAD signaling, which converts postnatal human fibroblasts into functional neuron-like cells with yields up to >200% and neuronal purities up to >80%.

  20. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  1. Small-molecule inhibition of inflammatory β-cell death

    DEFF Research Database (Denmark)

    Lundh, Morten; Scully, S S; Mandrup-Poulsen, T

    2013-01-01

    With the worldwide increase in diabetes prevalence there is a pressing unmet need for novel antidiabetic therapies. Insufficient insulin production due to impaired β-cell function and apoptotic reduction of β-cell mass is a common denominator in the pathogenesis of diabetes. Current treatments...... are directed at improving insulin sensitivity, and stimulating insulin secretion or replacing the hormone, but do not target progressive apoptotic β-cell loss. Here we review the current development of small-molecule inhibitors designed to rescue β-cells from apoptosis. Several distinct classes of small...

  2. Small molecule regulation of normal and leukemic stem cells.

    Science.gov (United States)

    Fares, Iman; Rivest-Khan, Laura; Cohen, Sandra; Sauvageau, Guy

    2015-07-01

    Hematopoietic stem and progenitor cell (HSPC) transplantation is frequently used in the treatment of hematological diseases. The outcome of the procedure is strongly influenced by the quantity of injected cells, especially if low cell numbers are infused as frequently encountered with cord blood transplants. Ex-vivo expansion of cord blood HSPCs would increase cell numbers, thus accelerating engraftment and reducing infectious complications and transplant-related mortality. In addition, expansion would maximize accessibility to better HLA-matched units, further improving patients' outcome. Similarly, in-vitro maintenance or expansion of leukemic stem cells (LSCs) would enable research into the much awaited targeted therapies that spare normal hematopoietic stem cells (HSCs). Here, we review recent findings on small molecules (excluding biologicals) regulating the activity of normal and leukemic stem cells and provide insights into basic science and clinical implications. High-throughput screening of small molecules active on primary hematopoietic cells has led to the identification of two potent series of chemical compounds, best exemplified by StemRegenin1 and UM171, that both expand HSPCs. Current data suggest that the aryl hydrocarbon receptor antagonist StemRegenin1 is most active on primitive normal hematopoietic progenitors and LSCs and that UM171 expands long-term normal HSCs. Small molecules are clinically useful and powerful tools for expanding HSPCs. They are also of potential value for dissecting the still elusive regulatory networks that govern self-renewal of human HSCs.

  3. Examining small molecule: HIV RNA interactions using arrayed imaging reflectometry

    Science.gov (United States)

    Chaimayo, Wanaruk; Miller, Benjamin L.

    2014-03-01

    Human Immunodeficiency Virus (HIV) has been the subject of intense research for more than three decades as it causes an uncurable disease: Acquired Immunodeficiency Syndrome, AIDS. In the pursuit of a medical treatment, RNAtargeted small molecules are emerging as promising targets. In order to understand the binding kinetics of small molecules and HIV RNA, association (ka) and dissociation (kd) kinetic constants must be obtained, ideally for a large number of sequences to assess selectivity. We have developed Aqueous Array Imaged Reflectometry (Aq-AIR) to address this challenge. Using a simple light interference phenomenon, Aq-AIR provides real-time high-throughput multiplex capabilities to detect binding of targets to surface-immobilized probes in a label-free microarray format. The second generation of Aq-AIR consisting of high-sensitivity CCD camera and 12-μL flow cell was fabricated. The system performance was assessed by real-time detection of MBNL1-(CUG)10 and neomycin B - HIV RNA bindings. The results establish this second-generation Aq-AIR to be able to examine small molecules binding to RNA sequences specific to HIV.

  4. Urea transporter proteins as targets for small-molecule diuretics.

    Science.gov (United States)

    Esteva-Font, Cristina; Anderson, Marc O; Verkman, Alan S

    2015-02-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.

  5. Reprogramming with Small Molecules instead of Exogenous Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tongxiang Lin

    2015-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs could be employed in the creation of patient-specific stem cells, which could subsequently be used in various basic and clinical applications. However, current iPSC methodologies present significant hidden risks with respect to genetic mutations and abnormal expression which are a barrier in realizing the full potential of iPSCs. A chemical approach is thought to be a promising strategy for safety and efficiency of iPSC generation. Many small molecules have been identified that can be used in place of exogenous transcription factors and significantly improve iPSC reprogramming efficiency and quality. Recent studies have shown that the use of small molecules results in the generation of chemically induced pluripotent stem cells from mouse embryonic fibroblast cells. These studies might lead to new areas of stem cell research and medical applications, not only human iPSC by chemicals alone, but also safe generation of somatic stem cells for cell based clinical trials and other researches. In this paper, we have reviewed the recent advances in small molecule approaches for the generation of iPSCs.

  6. Small molecule inhibitors target the tissue transglutaminase and fibronectin interaction.

    Directory of Open Access Journals (Sweden)

    Bakhtiyor Yakubov

    Full Text Available Tissue transglutaminase (TG2 mediates protein crosslinking through generation of ε-(γ-glutamyl lysine isopeptide bonds and promotes cell adhesion through interaction with fibronectin (FN and integrins. Cell adhesion to the peritoneal matrix regulated by TG2 facilitates ovarian cancer dissemination. Therefore, disruption of the TG2-FN complex by small molecules may inhibit cell adhesion and metastasis. A novel high throughput screening (HTS assay based on AlphaLISA™ technology was developed to measure the formation of a complex between His-TG2 and the biotinylated FN fragment that binds TG2 and to discover small molecules that inhibit this protein-protein interaction. Several hits were identified from 10,000 compounds screened. The top candidates selected based on >70% inhibition of the TG2/FN complex formation were confirmed by using ELISA and bioassays measuring cell adhesion, migration, invasion, and proliferation. In conclusion, the AlphaLISA bead format assay measuring the TG2-FN interaction is robust and suitable for HTS of small molecules. One compound identified from the screen (TG53 potently inhibited ovarian cancer cell adhesion to FN, cell migration, and invasion and could be further developed as a potential inhibitor for ovarian cancer dissemination.

  7. Reciprocal carbonyl-carbonyl interactions in small molecules and proteins.

    Science.gov (United States)

    Rahim, Abdur; Saha, Pinaki; Jha, Kunal Kumar; Sukumar, Nagamani; Sarma, Bani Kanta

    2017-07-19

    Carbonyl-carbonyl n→π* interactions where a lone pair (n) of the oxygen atom of a carbonyl group is delocalized over the π* orbital of a nearby carbonyl group have attracted a lot of attention in recent years due to their ability to affect the 3D structure of small molecules, polyesters, peptides, and proteins. In this paper, we report the discovery of a "reciprocal" carbonyl-carbonyl interaction with substantial back and forth n→π* and π→π* electron delocalization between neighboring carbonyl groups. We have carried out experimental studies, analyses of crystallographic databases and theoretical calculations to show the presence of this interaction in both small molecules and proteins. In proteins, these interactions are primarily found in polyproline II (PPII) helices. As PPII are the most abundant secondary structures in unfolded proteins, we propose that these local interactions may have implications in protein folding.Carbonyl-carbonyl π* non covalent interactions affect the structure and stability of small molecules and proteins. Here, the authors carry out experimental studies, analyses of crystallographic databases and theoretical calculations to describe an additional type of carbonyl-carbonyl interaction.

  8. TSH Receptor Signaling Abrogation by a Novel Small Molecule.

    Science.gov (United States)

    Latif, Rauf; Realubit, Ronald B; Karan, Charles; Mezei, Mihaly; Davies, Terry F

    2016-01-01

    Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves' disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3-0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin - a post receptor activator of adenylyl cyclase - confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has the

  9. Ligand.Info small-molecule Meta-Database.

    Science.gov (United States)

    von Grotthuss, Marcin; Koczyk, Grzegorz; Pas, Jakub; Wyrwicz, Lucjan S; Rychlewski, Leszek

    2004-12-01

    Ligand.Info is a compilation of various publicly available databases of small molecules. The total size of the Meta-Database is over 1 million entries. The compound records contain calculated three-dimensional coordinates and sometimes information about biological activity. Some molecules have information about FDA drug approving status or about anti-HIV activity. Meta-Database can be downloaded from the http://Ligand.Info web page. The database can also be screened using a Java-based tool. The tool can interactively cluster sets of molecules on the user side and automatically download similar molecules from the server. The application requires the Java Runtime Environment 1.4 or higher, which can be automatically downloaded from Sun Microsystems or Apple Computer and installed during the first use of Ligand.Info on desktop systems, which support Java (Ms Windows, Mac OS, Solaris, and Linux). The Ligand.Info Meta-Database can be used for virtual high-throughput screening of new potential drugs. Presented examples showed that using a known antiviral drug as query the system was able to find others antiviral drugs and inhibitors.

  10. A new class of pluripotent stem cell cytotoxic small molecules.

    Directory of Open Access Journals (Sweden)

    Mark Richards

    Full Text Available A major concern in Pluripotent Stem Cell (PSC-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo.

  11. Mapping small molecule binding data to structural domains.

    Science.gov (United States)

    Kruger, Felix A; Rostom, Raghd; Overington, John P

    2012-01-01

    Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a grouping of activity classes

  12. Spectra and dynamics of small molecules Alexander von Humboldt lectures

    CERN Document Server

    Field, Robert W

    2015-01-01

    These seven lectures are intended to serve as an introduction for beginning graduate students to the spectra of small molecules. The author succeeds in illustrating the concepts by using language and metaphors that capture and elegantly convey simple insights into dynamics that lie beyond archival molecular constants. The lectures can simultaneously be viewed as a collection of interlocking special topics that have fascinated the author and his students over the years. Though neither a textbook nor a scholarly monograph, the book provides an illuminating perspective that will benefit students and researchers alike.

  13. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  14. DNase I footprinting of small molecule binding sites on DNA.

    Science.gov (United States)

    Bailly, Christian; Kluza, Jérôme; Martin, Christopher; Ellis, Thomas; Waring, Michael J

    2005-01-01

    Nuclease footprinting techniques were initially developed to investigate protein-deoxyribonucleic acid (DNA) interactions but these tools of molecular biology have also become instrumental for probing sequence-selective binding of small molecules to DNA. Here, the method is described and technical details are given for performing deoxyribonuclease (DNase) I footprinting with DNA-binding drugs. An example is presented where DNase I is used (as well as DNase II and micrococcal nuclease) to probe the patterns of sequence-selective recognition of DNA by the anticancer antibiotic actinomycin D. DNase I is a convenient endonuclease for detecting and locating the position of actinomycin-binding sites within GC-rich sequences.

  15. Patented small molecule inhibitors in the ubiquitin proteasome system

    Directory of Open Access Journals (Sweden)

    Colland Frédéric

    2007-11-01

    Full Text Available Abstract Deregulation of the ubiquitin proteasome system (UPS has been implicated in the pathogenesis of many human diseases, including cancer and neurodegenerative disorders. The recent approval of the proteasome inhibitor Velcade® (bortezomib for the treatment of multiple myeloma and mantle cell lymphoma establishes this system as a valid target for cancer treatment. We review here new patented proteasome inhibitors and patented small molecule inhibitors targeting more specific UPS components, such as E3 ubiquitin ligases and deubiquitylating enzymes. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  16. [Review on anxiolytic effect of natural small-molecule phenols].

    Science.gov (United States)

    Wang, Xiao-Hong; Zhang, Chan-Xi; Li, Gui-Yun; Huang, Jian-Mei; Zhai, Hai-Feng

    2017-04-01

    Phenolic compounds have multiple bioactivities, such as anti-oxidant, anti-tumor, anti-bacterial, and anti-inflammatory activities. Recent literatures have demonstrated that flavonoids have a significant anti-anxiety effect on the central nervous system. In addition, studies showed that flavonoids acted as pro-drugs, which were transformed into smaller phenols through intestinal microflora. The small phenolic metabolites were crucial for the anxiolytic effects of these flavonoids, indicating that natural small-molecule phenols(NSMP) generally have anxiolytic activities. In this paper, the supporting evidences (before June 2016) from SciFinder database have been summarized. Furthermore, NSMPs were classified according to chemical structures; their anxiolytic effects, mechanisms, and the structure-activity relationships were also discussed. Copyright© by the Chinese Pharmaceutical Association.

  17. Small-Molecule Inhibitors of the Type III Secretion System

    Directory of Open Access Journals (Sweden)

    Lingling Gu

    2015-09-01

    Full Text Available Drug-resistant pathogens have presented increasing challenges to the discovery and development of new antibacterial agents. The type III secretion system (T3SS, existing in bacterial chromosomes or plasmids, is one of the most complicated protein secretion systems. T3SSs of animal and plant pathogens possess many highly conserved main structural components comprised of about 20 proteins. Many Gram-negative bacteria carry T3SS as a major virulence determinant, and using the T3SS, the bacteria secrete and inject effector proteins into target host cells, triggering disease symptoms. Therefore, T3SS has emerged as an attractive target for antimicrobial therapeutics. In recent years, many T3SS-targeting small-molecule inhibitors have been discovered; these inhibitors prevent the bacteria from injecting effector proteins and from causing pathophysiology in host cells. Targeting the virulence of Gram-negative pathogens, rather than their survival, is an innovative and promising approach that may greatly reduce selection pressures on pathogens to develop drug-resistant mutations. This article summarizes recent progress in the search for promising small-molecule T3SS inhibitors that target the secretion and translocation of bacterial effector proteins.

  18. Conjugates of Small Molecule Drugs with Antibodies and Other Proteins

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2014-01-01

    Full Text Available Conjugates of small molecule drugs with antibodies (ADCs and with other proteins (protein-drug conjugates, PDC are used as a new class of targeted therapeutics combining the specificity of monoclonal antibodies (mAbs and other proteins with potent cytotoxic activity of small molecule drugs for the treatment of cancer and other diseases. A(PDCs have three major components, antibody (targeting protein, linker and payload, the cytotoxic drug. Recently, advances in identifying targets, selecting highly specific mAbs of preferred isotypes, optimizing linker technology and improving chemical methods for conjugation have led to the approval of two ADCs by Food and Drug Administration (FDA and more than 30 ADCs in advanced clinical development. However, the complex and heterogeneous nature of A(PDCs often cause poor solubility, instability, aggregation and eventually unwanted toxicity. This article reviews the main components of A(PDCs, and discusses the choices for drugs, linkers and conjugation methods currently used. Future work will need to focus on developments and strategies for overcoming such major problems associated with the A(PDCs.

  19. Organic small molecule semiconducting chromophores for use in organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Gregory C.; Hoven, Corey V.; Nguyen, Thuc-Quyen

    2018-02-13

    Small organic molecule semi-conducting chromophores containing a pyridalthiadiazole, pyridaloxadiazole, or pyridaltriazole core structure are disclosed. Such compounds can be used in organic heterojunction devices, such as organic small molecule solar cells and transistors.

  20. Waved graphene: Unique structure for the adsorption of small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Hui, E-mail: huipan@umac.mo

    2017-03-01

    We propose waved graphenes for the strong adsorption of molecules and investigate their potential applications. We find that the physical adsorption of molecules on waved graphene is greatly enhanced by compression. At optimal compression, the physical adsorption energies of H{sub 2}, N{sub 2}, NO, and CO are increased by 6–9 times, and that for O{sub 2} is more than 2 times. We show that the energy for their chemical adsorption on waved graphene decreases dramatically with the increment of compression. The energy of dissociation of H{sub 2} on flat graphene is 1.63 eV and reduced to 0.06 eV (96% reduction) on waved graphene at a compression of 50%, respectively. The energy for chemical adsorption of O{sub 2} on waved graphenes is extremely reduced from 0.98 eV to −0.57 eV as with compression increasing from 0 to 50%, indicating the transition of endothermic chemical adsorption to exothermic. We further show that the electronic properties of waved graphenes are modified, leading to the change of electrical characters. We see that the waved graphenes may find applications in gas storage, sensor and catalyst because of enhanced physical and chemical adsorption and the induced change of electronic properties. - Highlights: • Adsorption of small molecules on waved graphene is greatly enhanced. • Strong physical adsorption in the trough of waved graphene can be achieved by tuning the curvature. • Chemical adsorption is on the crest of waved graphene. • Exothermic dissociation of H2 and O2 can be realized on waved graphene under high compression. • Wave graphene can be candidates as catalysts and gas storage/sensor.

  1. Small molecule inhibitors of HCV replication from Pomegranate

    Science.gov (United States)

    Reddy, B. Uma; Mullick, Ranajoy; Kumar, Anuj; Sudha, Govindarajan; Srinivasan, Narayanaswamy; Das, Saumitra

    2014-06-01

    Hepatitis C virus (HCV) is the causative agent of end-stage liver disease. Recent advances in the last decade in anti HCV treatment strategies have dramatically increased the viral clearance rate. However, several limitations are still associated, which warrant a great need of novel, safe and selective drugs against HCV infection. Towards this objective, we explored highly potent and selective small molecule inhibitors, the ellagitannins, from the crude extract of Pomegranate (Punica granatum) fruit peel. The pure compounds, punicalagin, punicalin, and ellagic acid isolated from the extract specifically blocked the HCV NS3/4A protease activity in vitro. Structural analysis using computational approach also showed that ligand molecules interact with the catalytic and substrate binding residues of NS3/4A protease, leading to inhibition of the enzyme activity. Further, punicalagin and punicalin significantly reduced the HCV replication in cell culture system. More importantly, these compounds are well tolerated ex vivo and`no observed adverse effect level' (NOAEL) was established upto an acute dose of 5000 mg/kg in BALB/c mice. Additionally, pharmacokinetics study showed that the compounds are bioavailable. Taken together, our study provides a proof-of-concept approach for the potential use of antiviral and non-toxic principle ellagitannins from pomegranate in prevention and control of HCV induced complications.

  2. HDX-MS guided drug discovery: small molecules and biopharmaceuticals.

    Science.gov (United States)

    Marciano, David P; Dharmarajan, Venkatasubramanian; Griffin, Patrick R

    2014-10-01

    Hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS or DXMS) has emerged as an important tool for the development of small molecule therapeutics and biopharmaceuticals. Central to these advances have been improvements to automated HDX-MS platforms and software that allow for the rapid acquisition and processing of experimental data. Correlating the HDX-MS profile of large numbers of ligands with their functional outputs has enabled the development of structure activity relationships (SAR) and delineation of ligand classes based on functional selectivity. HDX-MS has also been applied to address many of the unique challenges posed by the continued emergence of biopharmaceuticals. Here we review the latest applications of HDX-MS to drug discovery, recent advances in technology and software, and provide perspective on future outlook. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Branched terthiophenes in organic electronics: from small molecules to polymers.

    Science.gov (United States)

    Scheuble, Martin; Goll, Miriam; Ludwigs, Sabine

    2015-01-01

    A zoo of chemical structures is accessible when the branched unit 2,2':3',2″-terthiophene (3T) is included both in structurally well-defined small molecules and polymer-like architectures. The first part of this review article highlights literature on all-thiophene based branched oligomers including dendrimers as well as combinations of 3T-units with functional moieties for light-harvesting systems. Motivated by the perfectly branched macromolecular dendrimers both electropolymerization as well as chemical approaches are presented as methods for the preparation of branched polythiophenes with different branching densities. Structure-function relationships between the molecular architecture and optical and electronic properties are discussed throughout the article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Selective small-molecule inhibition of an RNA structural element

    Energy Technology Data Exchange (ETDEWEB)

    Howe, John A.; Wang, Hao; Fischmann, Thierry O.; Balibar, Carl J.; Xiao, Li; Galgoci, Andrew M.; Malinverni, Juliana C.; Mayhood, Todd; Villafania, Artjohn; Nahvi, Ali; Murgolo, Nicholas; Barbieri, Christopher M.; Mann, Paul A.; Carr, Donna; Xia, Ellen; Zuck, Paul; Riley, Dan; Painter, Ronald E.; Walker, Scott S.; Sherborne, Brad; de Jesus, Reynalda; Pan, Weidong; Plotkin, Michael A.; Wu, Jin; Rindgen, Diane; Cummings, John; Garlisi, Charles G.; Zhang, Rumin; Sheth, Payal R.; Gill, Charles J.; Tang, Haifeng; Roemer , Terry (Merck)

    2015-09-30

    Riboswitches are non-coding RNA structures located in messenger RNAs that bind endogenous ligands, such as a specific metabolite or ion, to regulate gene expression. As such, riboswitches serve as a novel, yet largely unexploited, class of emerging drug targets. Demonstrating this potential, however, has proven difficult and is restricted to structurally similar antimetabolites and semi-synthetic analogues of their cognate ligand, thus greatly restricting the chemical space and selectivity sought for such inhibitors. Here we report the discovery and characterization of ribocil, a highly selective chemical modulator of bacterial riboflavin riboswitches, which was identified in a phenotypic screen and acts as a structurally distinct synthetic mimic of the natural ligand, flavin mononucleotide, to repress riboswitch-mediated ribB gene expression and inhibit bacterial cell growth. Our findings indicate that non-coding RNA structural elements may be more broadly targeted by synthetic small molecules than previously expected.

  5. Small-molecule modulators of PXR and CAR

    Science.gov (United States)

    Chai, Sergio C.; Cherian, Milu T.; Wang, Yue-Ming; Chen, Taosheng

    2016-01-01

    Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. PMID:26921498

  6. Small molecule mediated proliferation of primary retinal pigment epithelial cells.

    Science.gov (United States)

    Swoboda, Jonathan G; Elliott, Jimmy; Deshmukh, Vishal; de Lichtervelde, Lorenzo; Shen, Weijun; Tremblay, Matthew S; Peters, Eric C; Cho, Charles Y; Lu, Bin; Girman, Sergej; Wang, Shaomei; Schultz, Peter G

    2013-07-19

    Retinal pigment epithelial (RPE) cells form a monolayer adjacent to the retina and play a critical role in the visual light cycle. Degeneration of RPE cells results in retinal disorders such as age-related macular degeneration. Cell transplant strategies have potential therapeutic value for such disorders; however, risks associated with an inadequate supply of donor cells limit their therapeutic success. The identification of factors that proliferate RPE cells ex vivo could provide a renewable source of cells for transplantation. Here, we report that a small molecule (WS3) can reversibly proliferate primary RPE cells isolated from fetal and adult human donors. Following withdrawal of WS3, RPE cells differentiate into a functional monolayer, as exhibited by their expression of mature RPE genes and phagocytosis of photoreceptor outer segments. Furthermore, chemically expanded RPE cells preserve vision when transplanted into dystrophic Royal College of Surgeons (RCS) rats, a well-established model of retinal degeneration.

  7. Coacervate delivery systems for proteins and small molecule drugs.

    Science.gov (United States)

    Johnson, Noah R; Wang, Yadong

    2014-12-01

    Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including: i) elastin-like peptides for delivery of anticancer therapeutics; ii) heparin-based coacervates with synthetic polycations for controlled growth factor delivery; iii) carboxymethyl chitosan aggregates for oral drug delivery; iv) Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future.

  8. A novel small molecule inhibitor of hepatitis C virus entry.

    Directory of Open Access Journals (Sweden)

    Carl J Baldick

    Full Text Available Small molecule inhibitors of hepatitis C virus (HCV are being developed to complement or replace treatments with pegylated interferons and ribavirin, which have poor response rates and significant side effects. Resistance to these inhibitors emerges rapidly in the clinic, suggesting that successful therapy will involve combination therapy with multiple inhibitors of different targets. The entry process of HCV into hepatocytes represents another series of potential targets for therapeutic intervention, involving viral structural proteins that have not been extensively explored due to experimental limitations. To discover HCV entry inhibitors, we utilized HCV pseudoparticles (HCVpp incorporating E1-E2 envelope proteins from a genotype 1b clinical isolate. Screening of a small molecule library identified a potent HCV-specific triazine inhibitor, EI-1. A series of HCVpp with E1-E2 sequences from various HCV isolates was used to show activity against all genotype 1a and 1b HCVpp tested, with median EC50 values of 0.134 and 0.027 µM, respectively. Time-of-addition experiments demonstrated a block in HCVpp entry, downstream of initial attachment to the cell surface, and prior to or concomitant with bafilomycin inhibition of endosomal acidification. EI-1 was equally active against cell-culture adapted HCV (HCVcc, blocking both cell-free entry and cell-to-cell transmission of virus. HCVcc with high-level resistance to EI-1 was selected by sequential passage in the presence of inhibitor, and resistance was shown to be conferred by changes to residue 719 in the carboxy-terminal transmembrane anchor region of E2, implicating this envelope protein in EI-1 susceptibility. Combinations of EI-1 with interferon, or inhibitors of NS3 or NS5A, resulted in additive to synergistic activity. These results suggest that inhibitors of HCV entry could be added to replication inhibitors and interferons already in development.

  9. Targeting Th17 Cells with Small Molecules and Small Interference RNA

    Directory of Open Access Journals (Sweden)

    Hui Lin

    2015-01-01

    Full Text Available T helper 17 (Th17 cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL- 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA and Crohn’s disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4+ T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage.

  10. Novel Small Molecule Inhibitors of Cancer Stem Cell Signaling Pathways.

    Science.gov (United States)

    Abetov, Danysh; Mustapova, Zhanar; Saliev, Timur; Bulanin, Denis; Batyrbekov, Kanat; Gilman, Charles P

    2015-12-01

    The main aim of oncologists worldwide is to understand and then intervene in the primary tumor initiation and propagation mechanisms. This is essential to allow targeted elimination of cancer cells without altering normal mitotic cells. Currently, there are two main rival theories describing the process of tumorigenesis. According to the Stochastic Model, potentially any cell, once defunct, is capable of initiating carcinogenesis. Alternatively the Cancer Stem Cell (CSC) Model posits that only a small fraction of undifferentiated tumor cells are capable of triggering carcinogenesis. Like healthy stem cells, CSCs are also characterized by a capacity for self-renewal and the ability to generate differentiated progeny, possibly mediating treatment resistance, thus leading to tumor recurrence and metastasis. Moreover, molecular signaling profiles are similar between CSCs and normal stem cells, including Wnt, Notch and Hedgehog pathways. Therefore, development of novel chemotherapeutic agents and proteins (e.g., enzymes and antibodies) specifically targeting CSCs are attractive pharmaceutical candidates. This article describes small molecule inhibitors of stem cell pathways Wnt, Notch and Hedgehog, and their recent chemotherapy clinical trials.

  11. Near-Infrared Lasing from Small-Molecule Organic Hemispheres.

    Science.gov (United States)

    Wang, Xuedong; Liao, Qing; Li, Hui; Bai, Shuming; Wu, Yishi; Lu, Xiaomei; Hu, Huaiyuan; Shi, Qiang; Fu, Hongbing

    2015-07-29

    Near-infrared (NIR) lasers are key components for applications, such as telecommunication, spectroscopy, display, and biomedical tissue imaging. Inorganic III-V semiconductor (GaAs) NIR lasers have achieved great successes but require expensive and sophisticated device fabrication techniques. Organic semiconductors exhibit chemically tunable optoelectronic properties together with self-assembling features that are well suitable for low-temperature solution processing. Major blocks in realizing NIR organic lasing include low stimulated emission of narrow-bandgap molecules due to fast nonradiative decay and exciton-exciton annihilation, which is considered as a main loss channel of population inversion for organic lasers under high carrier densities. Here we designed and synthesized the small organic molecule (E)-3-(4-(di-p-tolylamino)phenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one (DPHP) with amphiphilic nature, which elaborately self-assembles into micrometer-sized hemispheres that simultaneously serves as the NIR emission medium with a photoluminescence quantum efficiency of ∼15.2%, and the high-Q (∼1.4 × 10(3)) whispering gallery mode microcavity. Moreover, the radiative rate of DPHP hemispheres is enhanced up to ∼1.98 × 10(9) s(-1) on account of the exciton-vibrational coupling in the solid state with the J-type molecular-coupling component, and meanwhile the exciton-exciton annihilation process is eliminated. As a result, NIR lasing with a low threshold of ∼610 nJ/cm(2) is achieved in the single DPHP hemisphere at room temperature. Our demonstration is a major step toward incorporating the organic coherent light sources into the compact optoelectronic devices at NIR wavelengths.

  12. High performance photovoltaic applications using solution-processed small molecules.

    Science.gov (United States)

    Chen, Yongsheng; Wan, Xiangjian; Long, Guankui

    2013-11-19

    Energy remains a critical issue for the survival and prosperity of humancivilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nuclear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages including high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we

  13. Synthetic small molecules as machines: a chemistry perspective

    Indian Academy of Sciences (India)

    PGhosh

    2017-07-01

    Jul 1, 2017 ... 1953: Mechanical Bonds in Molecules. Mid-20th century: Chemists were trying to build molecular chains in which ring-shaped molecules were linked together. The dream: To create mechanical bonds, where molecules are interlocked without the atoms interacting directly with each other. Frisch, H. L. ...

  14. Potential of small-molecule fungal metabolites in antiviral chemotherapy.

    Science.gov (United States)

    Roy, Biswajit G

    2017-08-01

    Various viral diseases, such as acquired immunodeficiency syndrome, influenza, and hepatitis, have emerged as leading causes of human death worldwide. Scientific endeavor since invention of DNA-dependent RNA polymerase of pox virus in 1967 resulted in better understanding of virus replication and development of various novel therapeutic strategies. Despite considerable advancement in every facet of drug discovery process, development of commercially viable, safe, and effective drugs for these viruses still remains a big challenge. Decades of intense research yielded a handful of natural and synthetic therapeutic options. But emergence of new viruses and drug-resistant viral strains had made new drug development process a never-ending battle. Small-molecule fungal metabolites due to their vast diversity, stereochemical complexity, and preapproved biocompatibility always remain an attractive source for new drug discovery. Though, exploration of therapeutic importance of fungal metabolites has started early with discovery of penicillin, recent prediction asserted that only a small percentage (5-10%) of fungal species have been identified and much less have been scientifically investigated. Therefore, exploration of new fungal metabolites, their bioassay, and subsequent mechanistic study bears huge importance in new drug discovery endeavors. Though no fungal metabolites so far approved for antiviral treatment, many of these exhibited high potential against various viral diseases. This review comprehensively discussed about antiviral activities of fungal metabolites of diverse origin against some important viral diseases. This also highlighted the mechanistic details of inhibition of viral replication along with structure-activity relationship of some common and important classes of fungal metabolites.

  15. Reaction dynamics of small molecules at metal surfaces

    CERN Document Server

    Samson, P A

    1999-01-01

    directed angular distributions suggest the influence of a trapping mechanism, recombining molecules scattering through a molecularly adsorbed state, with a transition state of large d sub N sub N responsible for the product vibrational excitation. Although N sub 2 dissociation on Fe(100) forms a simple overlayer structure, on Fe(110), molecular chemisorption does not occur at or above room temperature and the sticking is extremely small (approx 10 sup - sup 6 to 10 sup - sup 7). Activated nitrogen bombardment can be used to prepare a 'surface nitride' with a structure related to the geometry of bulk Fe sub 4 N. Scanning tunnelling microscopy yields atomic scale features that cannot be explained by simple overlayers. It is proposed that the uppermost iron layer reconstructs to generate quasi-octahedral sites between the top two layers, with sub-surface nitrogen in these sites forming a model for the 'surface nitride' structure. The dissociation-desorption dynamics of D sub 2 upon the Sn/Pt(111) surface alloy a...

  16. Roseobacticides: small molecule modulators of an algal-bacterial symbiosis.

    Science.gov (United States)

    Seyedsayamdost, Mohammad R; Carr, Gavin; Kolter, Roberto; Clardy, Jon

    2011-11-16

    Marine bacteria and microalgae engage in dynamic symbioses mediated by small molecules. A recent study of Phaeobacter gallaeciensis, a member of the large roseobacter clade of α-proteobacteria, and Emiliania huxleyi, a prominent member of the microphytoplankton found in large algal blooms, revealed that an algal senescence signal produced by E. huxleyi elicits the production of novel algaecides, the roseobacticides, from the bacterial symbiont. In this report, the generality of these findings are examined by expanding the number of potential elicitors. This expansion led to the identification of nine new members of the roseobacticide family, rare bacterial troponoids, which provide insights into both their biological roles and their biosynthesis. The qualitative and quantitative changes in the levels of roseobacticides induced by the additional elicitors and the elicitors' varied efficiencies support the concept of host-targeted roseobacticide production. Structures of the new family members arise from variable substituents at the C3 and C7 positions of the roseobacticide core as the diversifying elements and suggest that the roseobacticides result from modifications and combinations of aromatic amino acids. Together these studies support a model in which algal senescence converts a mutualistic bacterial symbiont into an opportunistic parasite of its hosts.

  17. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, Nicholas D. [Department; Dudnik, Alexander S. [Department; Harutyunyan, Boris [Department; Aldrich, Thomas J. [Department; Leonardi, Matthew J. [Department; Manley, Eric F. [Department; Chemical; Butler, Melanie R. [Department; Harschneck, Tobias [Department; Ratner, Mark A. [Department; Chen, Lin X. [Department; Chemical; Bedzyk, Michael J. [Department; Department; Melkonyan, Ferdinand S. [Department; Facchetti, Antonio [Department; Chang, Robert P. H. [Department; Marks, Tobin J. [Department; Department

    2017-06-14

    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the two SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.

  18. Small-Molecule Screening Identifies Modulators of Aquaporin-2 Trafficking

    Science.gov (United States)

    Bogum, Jana; Faust, Dörte; Zühlke, Kerstin; Eichhorst, Jenny; Moutty, Marie C.; Furkert, Jens; Eldahshan, Adeeb; Neuenschwander, Martin; von Kries, Jens Peter; Wiesner, Burkhard; Trimpert, Christiane; Deen, Peter M.T.; Valenti, Giovanna; Rosenthal, Walter

    2013-01-01

    In the principal cells of the renal collecting duct, arginine vasopressin (AVP) stimulates the synthesis of cAMP, leading to signaling events that culminate in the phosphorylation of aquaporin-2 water channels and their redistribution from intracellular domains to the plasma membrane via vesicular trafficking. The molecular mechanisms that control aquaporin-2 trafficking and the consequent water reabsorption, however, are not completely understood. Here, we used a cell-based assay and automated immunofluorescence microscopy to screen 17,700 small molecules for inhibitors of the cAMP-dependent redistribution of aquaporin-2. This approach identified 17 inhibitors, including 4-acetyldiphyllin, a selective blocker of vacuolar H+-ATPase that increases the pH of intracellular vesicles and causes accumulation of aquaporin-2 in the Golgi compartment. Although 4-acetyldiphyllin did not inhibit forskolin-induced increases in cAMP formation and downstream activation of protein kinase A (PKA), it did prevent cAMP/PKA-dependent phosphorylation at serine 256 of aquaporin-2, which triggers the redistribution to the plasma membrane. It did not, however, prevent cAMP-induced changes to the phosphorylation status at serines 261 or 269. Last, we identified the fungicide fluconazole as an inhibitor of cAMP-mediated redistribution of aquaporin-2, but its target in this pathway remains unknown. In conclusion, our screening approach provides a method to begin dissecting molecular mechanisms underlying AVP-mediated water reabsorption, evidenced by our identification of 4-acetyldiphyllin as a modulator of aquaporin-2 trafficking. PMID:23559583

  19. Small-Molecule Inhibitors of the SOX18 Transcription Factor.

    Science.gov (United States)

    Fontaine, Frank; Overman, Jeroen; Moustaqil, Mehdi; Mamidyala, Sreeman; Salim, Angela; Narasimhan, Kamesh; Prokoph, Nina; Robertson, Avril A B; Lua, Linda; Alexandrov, Kirill; Koopman, Peter; Capon, Robert J; Sierecki, Emma; Gambin, Yann; Jauch, Ralf; Cooper, Matthew A; Zuegg, Johannes; Francois, Mathias

    2017-03-16

    Pharmacological modulation of transcription factors (TFs) has only met little success over the past four decades. This is mostly due to standard drug discovery approaches centered on blocking protein/DNA binding or interfering with post-translational modifications. Recent advances in the field of TF biology have revealed a central role of protein-protein interaction in their mode of action. In an attempt to modulate the activity of SOX18 TF, a known regulator of vascular growth in development and disease, we screened a marine extract library for potential small-molecule inhibitors. We identified two compounds, which inspired a series of synthetic SOX18 inhibitors, able to interfere with the SOX18 HMG DNA-binding domain, and to disrupt HMG-dependent protein-protein interaction with RBPJ. These compounds also perturbed SOX18 transcriptional activity in a cell-based reporter gene system. This approach may prove useful in developing a new class of anti-angiogenic compounds based on the inhibition of TF activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A Superimposition Method for Small Ligand Molecules: Implementation and Application

    OpenAIRE

    Homeyer, Alexander von

    2007-01-01

    The aim of the present work was to extend an already available method for the superimposition of three-dimensional models of molecules by implementing new features. The flexible alignment of molecules assists in the detection of similarities between compounds. The determination of similarities between molecules plays an important role in drug design. The three-dimensional maximum common substructure (3D-MCSS) of compounds is an adequate similarity measurement. The 3D-MCSS represent the spatia...

  1. Design, synthesis, and evaluation of bioactive small molecules.

    Science.gov (United States)

    Hua, Duy H

    2013-02-01

    Collaborative research projects between chemists, biologists, and medical scientists have inevitably produced many useful drugs, biosensors, and medical instrumentation. Organic chemistry lies at the heart of drug discovery and development. The current range of organic synthetic methodologies allows for the construction of unlimited libraries of small organic molecules for drug screening. In translational research projects, we have focused on the discovery of lead compounds for three major diseases: Alzheimer's disease (AD), breast cancer, and viral infections. In the AD project, we have taken a rational-design approach and synthesized a new class of tricyclic pyrone (TP) compounds that preserve memory and motor functions in amyloid precursor protein (APP)/presenilin-1 (PS1) mice. TPs could protect neuronal death through several possible mechanisms, including their ability to inhibit the formation of both intraneuronal and extracellular amyloid β (Aβ) aggregates, to increase cholesterol efflux, to restore axonal trafficking, and to enhance long-term potentiation (LTP) and restored LTP following treatment with Aβ oligomers. We have also synthesized a new class of gap-junction enhancers, based on substituted quinolines, that possess potent inhibitory activities against breast-cancer cells in vitro and in vivo. Although various antiviral drugs are available, the emergence of viral resistance to existing antiviral drugs and various understudied viral infections, such as norovirus and rotavirus, emphasizes the demand for the development of new antiviral agents against such infections and others. Our laboratories have undertaken these projects for the discovery of new antiviral inhibitors. The discussion of these aforementioned projects may shed light on the future development of drug candidates in the fields of AD, cancer, and viral infections. Copyright © 2013 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors

    Science.gov (United States)

    Lloyd, David J.; St Jean, David J.; Kurzeja, Robert J. M.; Wahl, Robert C.; Michelsen, Klaus; Cupples, Rod; Chen, Michelle; Wu, John; Sivits, Glenn; Helmering, Joan; Komorowski, Renée; Ashton, Kate S.; Pennington, Lewis D.; Fotsch, Christopher; Vazir, Mukta; Chen, Kui; Chmait, Samer; Zhang, Jiandong; Liu, Longbin; Norman, Mark H.; Andrews, Kristin L.; Bartberger, Michael D.; van, Gwyneth; Galbreath, Elizabeth J.; Vonderfecht, Steven L.; Wang, Minghan; Jordan, Steven R.; Véniant, Murielle M.; Hale, Clarence

    2013-12-01

    Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.

  3. Small molecule screen for candidate antimalarials targeting Plasmodium Kinesin-5.

    Science.gov (United States)

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J

    2014-06-06

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable "next generation" target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are "druggable." One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Small Molecule Screen for Candidate Antimalarials Targeting Plasmodium Kinesin-5*

    Science.gov (United States)

    Liu, Liqiong; Richard, Jessica; Kim, Sunyoung; Wojcik, Edward J.

    2014-01-01

    Plasmodium falciparum and vivax are responsible for the majority of malaria infections worldwide, resulting in over a million deaths annually. Malaria parasites now show measured resistance to all currently utilized drugs. Novel antimalarial drugs are urgently needed. The Plasmodium Kinesin-5 mechanoenzyme is a suitable “next generation” target. Discovered via small molecule screen experiments, the human Kinesin-5 has multiple allosteric sites that are “druggable.” One site in particular, unique in its sequence divergence across all homologs in the superfamily and even within the same family, exhibits exquisite drug specificity. We propose that Plasmodium Kinesin-5 shares this allosteric site and likewise can be targeted to uncover inhibitors with high specificity. To test this idea, we performed a screen for inhibitors selective for Plasmodium Kinesin-5 ATPase activity in parallel with human Kinesin-5. Our screen of nearly 2000 compounds successfully identified compounds that selectively inhibit both P. vivax and falciparum Kinesin-5 motor domains but, as anticipated, do not impact human Kinesin-5 activity. Of note is a candidate drug that did not biochemically compete with the ATP substrate for the conserved active site or disrupt the microtubule-binding site. Together, our experiments identified MMV666693 as a selective allosteric inhibitor of Plasmodium Kinesin-5; this is the first identified protein target for the Medicines of Malaria Venture validated collection of parasite proliferation inhibitors. This work demonstrates that chemical screens against human kinesins are adaptable to homologs in disease organisms and, as such, extendable to strategies to combat infectious disease. PMID:24737313

  5. Adsorption of small gas molecules on B 36 nanocluster

    Indian Academy of Sciences (India)

    The thermodynamic data showed that the B36 cluster is a good adsorbent only for CO, O2 and NO molecules. The calculated energies of adsorption of N2, H2 O and H2 on the B36 cluster were positive values. CO molecule is adsorbed via the carbon atom more effectively, while the nitrogen atom of NO is adsorbed better ...

  6. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset | Office of Cancer Genomics

    Science.gov (United States)

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset.

  7. Small Molecule Inhibitors of ERG and ETV1 in Prostate Cancer

    Science.gov (United States)

    2016-06-01

    Award Number: W81XWH-12-1-0399 TITLE: Small Molecule Inhibitors of ERG and ETV1 in Prostate Cancer PRINCIPAL INVESTIGATOR: Colm Morrissey...REPORT DATE June 2016 2. REPORT TYPE Final 3. DATES COVERED 1Sep2012 - 31Mar2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Small Molecule Inhibitors...utilizing xenograft models to test the hypothesis that targeting a member of the ETS transcription factor family with small molecules such as YK-4-279

  8. Ambient roll-to-roll fabrication of flexible solar cells based on small molecules

    DEFF Research Database (Denmark)

    Lin, Yuze; Dam, Henrik Friis; Andersen, Thomas Rieks

    2013-01-01

    All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells.......All solution-processed roll-to-roll flexible solar cells based on a starshaped small molecule donor and PCBMacceptor were fabricated by slot-die coating, as the first successful example reported for small molecule roll-to-roll flexible solar cells....

  9. Biased small-molecule ligands for selective inhibition of HIV-1 cell entry via CCR5

    DEFF Research Database (Denmark)

    Berg, Christian; Spiess, Katja; von Lüttichau, Hans Rudolf

    2016-01-01

    Since the discovery of HIV's use of CCR5 as the primary coreceptor in fusion, the focus on developing small-molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small-molecule CCR5 agonists as HIV-1......, the efficacy switch mutation (Leu203Phe) - converting small-molecule antagonists/inverse agonists to full agonists biased toward G-protein activation - uncovered that also small-molecule agonists can function as direct HIV-1 cell entry inhibitors. Importantly, no agonist-induced receptor internalization...

  10. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization

    Directory of Open Access Journals (Sweden)

    Sun Yinghua

    2006-10-01

    Full Text Available Abstract Background Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS externalization. Results In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to unipolar pulses, which perturb membrane phospholipid order, tracked with FM1-43 fluorescence, only at the anode side of the cell, bipolar pulses redistribute phospholipids at both the anode and cathode poles, consistent with migration of the anionic PS head group in the transmembrane field. In addition, we demonstrate that, as predicted by the membrane charging hypothesis, a train of shorter pulses requires higher fields to produce phospholipid scrambling comparable to that produced by a time-equivalent train of longer pulses (for a given applied field, 30, 4 ns pulses produce a weaker response than 4, 30 ns pulses. Finally, we show that influx of YO-PRO-1, a fluorescent dye used to detect early apoptosis and activation of the purinergic P2X7 receptor channels, is observed after exposure of Jurkat T lymphoblasts to sufficiently large numbers of pulses, suggesting that membrane poration occurs even with nanosecond pulses when the electric field is high enough. Propidium iodide entry, a traditional indicator of electroporation, occurs with even higher pulse counts. Conclusion Megavolt-per-meter electric pulses as short as 3 ns alter the structure of the plasma membrane and permeabilize the cell to small molecules. The dose

  11. Small-Molecule Compounds Exhibiting Target-Mediated Drug Disposition (TMDD): A Minireview.

    Science.gov (United States)

    An, Guohua

    2017-02-01

    Nonlinearities are commonplace in pharmacokinetics, and 1 special source is the saturable binding of the drug to a high-affinity, low-capacity target, a phenomenon known as target-mediated drug disposition (TMDD). Compared with large-molecule compounds undergoing TMDD, which has been well recognized due to its high prevalence, TMDD in small-molecule compounds is more counterintuitive and has not been well appreciated. With more and more potent small-molecule drugs acting on highly specific targets being developed as well as increasingly sensitive analytical techniques becoming available, many small-molecule compounds have recently been reported to have nonlinear pharmacokinetics imparted by TMDD. To expand our current knowledge of TMDD in small-molecule compounds and increase the awareness of this clinically important phenomenon, this minireview provides an overview of the small-molecule compounds that demonstrate nonlinear pharmacokinetics imparted by TMDD. The present review also summarizes the general features of TMDD in small-molecule compounds and highlights the differences between TMDD in small-molecule compounds and large-molecule compounds. © 2016, The American College of Clinical Pharmacology.

  12. Adsorption of small gas molecules on B36 nanocluster

    Indian Academy of Sciences (India)

    while the nitrogen atom of NO is adsorbed better than the oxygen atom. Also, when NO and O2 are adsorbed synchronously via both atoms, they dissociate. The edge boron atoms of the B36 cluster showed more reactivity than the inner atoms. Keywords. B36 cluster; Adsorption; Density functional theory; Gas molecules. 1.

  13. A small molecule approach to engineering vascularized tissue

    NARCIS (Netherlands)

    Doorn, J.; Fernandes, H.A.M.; Le, B.Q.; van de Peppel, J.; van Leeuwen, J.P.T.M.; de Vries, M.R.; Aref, Z.; Quax, P.H.A.; Myklebost, O.; Saris, Daniël B.F.; van Blitterswijk, Clemens; de Boer, Jan

    2013-01-01

    The repertoire of growth factors determines the biological engagement of human mesenchymal stromal cells (hMSCs) in processes such as immunomodulation and tissue repair. Hypoxia is a strong modulator of the secretome and well known stimuli to increase the secretion of pro-angiogenic molecules. In

  14. Small molecules intercept Notch signaling and the early secretory pathway

    NARCIS (Netherlands)

    Krämer, A.; Mentrup, T.; Kleizen, B.|info:eu-repo/dai/nl/276867793; Rivera-Milla, E.; Reichenbach, D.; Enzensperger, C.; Nohl, R.; Täuscher, E.; Görls, H.; Ploubidou, A.; Englert, C.; Werz, O.; Arndt, H.-D.; Kaether, C.

    2013-01-01

    Notch signaling has a pivotal role in numerous cell-fate decisions, and its aberrant activity leads to developmental disorders and cancer. To identify molecules that influence Notch signaling, we screened nearly 17,000 compounds using automated microscopy to monitor the trafficking and processing of

  15. Small-molecule compounds exhibiting target-mediated drug disposition - A case example of ABT-384.

    Science.gov (United States)

    An, Guohua; Liu, Wei; Dutta, Sandeep

    2015-10-01

    Nonlinearities are frequently encountered in pharmacokinetics, and they can occur when 1 or more processes of absorption, distribution, metabolism, and excretion are saturable. One special source of nonlinearity that has been noticed recently is the saturable binding of the drug to a high-affinity-low-capacity target, a phenomenon known as target-mediated drug disposition (TMDD). Although TMDD can occur in both small-molecule compounds and large-molecule compounds, the latter has received much more attention because of its high prevalence. With the development of more potent small-molecule drugs acting on highly specific targets and the availability of increasingly sensitive analytical techniques, small-molecule compounds exhibiting TMDD have been increasingly reported in the past several years. ABT-384 is a small-molecule drug candidate that exhibited significant nonlinear pharmacokinetics, potentially imparted by TMDD, in a first-in-human clinical trial conducted in healthy volunteers. Compared with published small-molecule compounds exhibiting TMDD, ABT-384 pharmacokinetic characteristics are more consistent with TMDD. To expand current knowledge of TMDD of small-molecule compounds and increase awareness of this interesting and clinically important phenomenon, in this review the general features of small-molecule compounds exhibiting TMDD are highlighted, with ABT-384 provided as an example. © 2015, The American College of Clinical Pharmacology.

  16. PSMA-Targeted Nano-Conjugates as Dual-Modality (MRI/PET) Imaging Probes for the Non-Invasive Detection of Prostate Cancer

    Science.gov (United States)

    2009-10-01

    instructions, searching existing data sources , gathering and maintaining the data needed, and completing and reviewing this collection of information. Send...conveniently tunable surface for the presentation of multiple functional molecules. Given the versatility of this nanoplatform and the intrinsic...HCl) were prepared. To 500 L of each standard Fe3+ solution, 100 L of 0.1 M H2O2 and 400 L of 0.26 M KSCN were added. The colorimetric reaction was

  17. Transferable Atomic Multipole Machine Learning Models for Small Organic Molecules.

    Science.gov (United States)

    Bereau, Tristan; Andrienko, Denis; von Lilienfeld, O Anatole

    2015-07-14

    Accurate representation of the molecular electrostatic potential, which is often expanded in distributed multipole moments, is crucial for an efficient evaluation of intermolecular interactions. Here we introduce a machine learning model for multipole coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The model is trained on quantum-chemical results for atoms in varying chemical environments drawn from thousands of organic molecules. Multipoles in systems with neutral, cationic, and anionic molecular charge states are treated with individual models. The models' predictive accuracy and applicability are illustrated by evaluating intermolecular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene crystal.

  18. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    Science.gov (United States)

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling.

    Science.gov (United States)

    Wagner, Bridget K; Clemons, Paul A

    2009-12-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe-discovery and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of 'virtual' profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe-discovery and drug-discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections.

  20. Targeting DNA methylation with small molecules: what's next?

    Science.gov (United States)

    Erdmann, Alexandre; Halby, Ludovic; Fahy, Jacques; Arimondo, Paola B

    2015-03-26

    DNA methylation is a mammalian epigenetic mark that is involved in defining where and when genes are expressed, both in normal cells and in the context of diseases. Like other epigenetic marks, it is reversible and can be modulated by chemical agents. Because it plays an important role in cancer by silencing certain genes, such as tumor suppressor genes, and by reactivating other regions, such as repeated elements, it is a promising therapeutic target. Two compounds are already approved to treat hematological cancers. Many efforts have been carried out to discover new molecules that are able to efficiently inhibit DNA methylation in cancer cells. We will briefly overview the foremost of these efforts by focusing on what we have learned to this point on non-nucleoside inhibitors and on what we consider to be the features of an ideal inhibitor.

  1. Predictive Power of Different Types of Experimental Restraints in Small Molecule Docking: A Review.

    Science.gov (United States)

    Fu, Darwin Y; Meiler, Jens

    2018-01-18

    Incorporating experimental restraints is a powerful method of increasing accuracy in computational protein small molecule docking simulations. Different algorithms integrate distinct forms of biochemical data during the docking and/or scoring stages. These so-called hybrid methods make use of receptor-based information such as nuclear magnetic resonance (NMR) restraints or small molecule-based information such as structure-activity relationships (SARs). A third class of methods directly interrogates contacts between the protein receptor and the small molecule. This work reviews the current state of using such restraints in docking simulations, evaluates their feasibility across broad systems, and identifies potential areas of algorithm development.

  2. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target.

    Science.gov (United States)

    Ruscito, Annamaria; McConnell, Erin M; Koudrina, Anna; Velu, Ranganathan; Mattice, Christopher; Hunt, Vernon; McKeague, Maureen; DeRosa, Maria C

    2017-12-14

    Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Calculation of hyperfine structure constants of small molecules using ...

    Indian Academy of Sciences (India)

    The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...

  4. Chemical and electrochemical oxidation of small organic molecules

    Science.gov (United States)

    Smart, Marshall C.

    Direct oxidation fuel cells using proton-exchange membrane electrolytes have long been recognized as being an attractive mode of power generation. The current work addresses the electro-oxidation characteristics of a number of potential fuels on Pt-based electrodes which can be used in direct oxidation fuel cells, including hydrocarbons and oxygenated molecules, such as alcohols, formates, ethers, and acetals. Promising alternative fuels which were identified, such as trimethoxymethane and dimethoxymethane, were then investigated in liquid-feed PEM-based fuel cells. In addition to investigating the nature of the anodic electro-oxidation of organic fuels, effort was also devoted to developing novel polymer electrolyte membranes which have low permeability to organic molecules, such as methanol. This research was initiated with the expectation of reducing the extent of fuel crossover from the anode to the cathode in the liquid-feed design fuel cell which results in lower fuel efficiency and performance. Other work involving efforts to improve the performance of direct oxidation fuel cell includes research focused upon improving the kinetics of oxygen reduction. There is continued interest in the identification of new, safe, non-toxic, and inexpensive reagents which can be used in the oxidation of organic compounds. Urea-hydrogen peroxide (UHP), a hydrogen bonded adduct, has been shown to serve as a valuable source of hydrogen peroxide in a range of reactions. UHP has been shown to be ideal for the monohydroxylation of aromatics, including toluene, ethylbenzene, p-xylene, m-xylene, and mesitylene, as well as benzene, in the presence of trifluoromethanesulfonic acid. It was also found that aniline was converted to a mixture containing primarily azobenzene, azoxybenzene and nitrobenzene when reacted with UHP in glacial acetic acid. A number of aniline derivatives have been investigated and it was observed that the corresponding azoxybenzene derivatives could be

  5. Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules

    Science.gov (United States)

    Veetil, Aneesh T.; Chakraborty, Kasturi; Xiao, Kangni; Minter, Myles R.; Sisodia, Sangram S.; Krishnan, Yamuna

    2017-12-01

    Achieving triggered release of small molecules with spatial and temporal precision at designated cells within an organism remains a challenge. By combining a cell-targetable, icosahedral DNA-nanocapsule loaded with photoresponsive polymers, we show cytosolic delivery of small molecules with the spatial resolution of single endosomes in specific cells in Caenorhabditis elegans. Our technology can report on the extent of small molecules released after photoactivation as well as pinpoint the location at which uncaging of the molecules occurred. We apply this technology to release dehydroepiandrosterone (DHEA), a neurosteroid that promotes neurogenesis and neuron survival, and determined the timescale of neuronal activation by DHEA, using light-induced release of DHEA from targeted DNA nanocapsules. Importantly, sequestration inside the DNA capsule prevents photocaged DHEA from activating neurons prematurely. Our methodology can in principle be generalized to diverse neurostimulatory molecules.

  6. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2016-03-01

    Full Text Available Small-molecule microarray (SMM is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  7. Matrix Infrared Spectroscopic and Computational Investigations of Novel Small Uranium Containing Molecules - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Lester

    2014-10-17

    Direct reactions of f-element uranium, thorium and lanthanide metal atoms were investigated with small molecules. These metal atoms were generated by laser ablation and mixed with the reagent molecules then condensed with noble gases at 4K. The products were analyzed by absorption of infrared light to measure vibrational frequencies which were confirmed by quantum chemical calculations. We have learned more about the reactivity of uranium atoms with common molecules, which will aid in the develolpment of further applications of uranium.

  8. Potent small molecule Hedgehog agonists induce VEGF expression in vitro.

    Science.gov (United States)

    Seifert, Katrin; Büttner, Anita; Rigol, Stephan; Eilert, Nicole; Wandel, Elke; Giannis, Athanassios

    2012-11-01

    Here, we describe the synthesis, SAR studies as well as biological investigations of the known Hedgehog signaling agonist SAG and a small library of its analogues. The SAG and its derivatives were analyzed for their potency to activate the expression of the Hh target gene Gli1 in a reporter gene assay. By analyzing SAR important molecular descriptors for Gli1 activation have been identified. SAG as well as compound 10c proven to be potent activators of VEGF expression in cultivated dermal fibroblasts. Importantly and in contrast to SAG, derivative 10c displayed no toxicity in concentrations up to 250 μm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Carbohydrate Recognition by Boronolectins, Small Molecules, and Lectins

    Science.gov (United States)

    Jin, Shan; Cheng, Yunfeng; Reid, Suazette; Li, Minyong; Wang, Binghe

    2009-01-01

    Carbohydrates are known to mediate a large number of biological and pathological events. Small and macromolecules capable of carbohydrate recognition have great potentials as research tools, diagnostics, vectors for targeted delivery of therapeutic and imaging agents, and therapeutic agents. However, this potential is far from being realized. One key issue is the difficulty in the development of “binders” capable of specific recognition of carbohydrates of biological relevance. This review discusses systematically the general approaches that are available in developing carbohydrate sensors and “binders/receptors,” and their applications. The focus is on discoveries during the last five years. PMID:19291708

  10. Analytical techniques for small molecule solid phase synthesis.

    Science.gov (United States)

    Scicinski, Jan J; Congreveb, Miles S; Kay, Corinne; Ley, Steven V

    2002-12-01

    Although resin-based chemistry offers many practical advantages over conventional solution phase for the synthesis of combinatorial libraries, effective monitoring of reactions conducted on the support remains a challenge. A number of techniques have been developed to enable the analysis of solid phase organic synthesis either by monitoring the resin-bound species directly or by the analysis of small quantities of material cleaved from the support. This review outlines some of the principles of the various techniques for the analysis of intermediates and products obtained from solid-phase chemistry.

  11. Adsorption of small gas molecules on pure and Al-doped graphene ...

    Indian Academy of Sciences (India)

    The interaction of small gas molecules (CCl 4 , CH 4 , NH 3 , CO 2 , N 2 , CO, NO 2 CCl 2 F 2 , SO 2 , CF 4 , H 2 ) on pure and aluminium-doped graphene were investigated by using the density functional theory to explore their potential applications as sensors. It has been found that all gas molecules show much stronger ...

  12. Characteristics of product recalls of biopharmaceuticals and small-molecule drugs in the USA.

    Science.gov (United States)

    Ebbers, Hans C; de Tienda, Nina Fuentes; Hoefnagel, Marcel C; Nibbeling, Ria; Mantel-Teeuwisse, Aukje K

    2016-04-01

    Compared with chemically synthesized small-molecule drugs, the manufacturing process of biopharmaceuticals is more complex. Unexpected changes to product characteristics following manufacturing changes have given rise to calls for robust systems to monitor the postauthorization safety of biopharmaceuticals. We compared quality-related product recalls in the USA of biopharmaceuticals and of small molecules. Although the reasons for recalls for biopharmaceuticals differed from those for small molecules, adverse events were rarely reported. The relative contribution of recalls that could cause serious adverse health consequences was not greater for biopharmaceuticals than for small molecules. Therefore, these data do not give rise to concerns that biopharmaceuticals are more frequently associated with unexpected safety concerns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characteristics of product recalls of biopharmaceuticals and small-molecule drugs in the USA

    NARCIS (Netherlands)

    Ebbers, Hans C|info:eu-repo/dai/nl/314838473; Tienda, Nina Fuentes de; Hoefnagel, Marcel C; Nibbeling, Ria; Mantel-Teeuwisse, Aukje K|info:eu-repo/dai/nl/266775098

    Compared with chemically synthesized small-molecule drugs, the manufacturing process of biopharmaceuticals is more complex. Unexpected changes to product characteristics following manufacturing changes have given rise to calls for robust systems to monitor the postauthorization safety of

  14. Methods to enable the design of bioactive small molecules targeting RNA.

    Science.gov (United States)

    Disney, Matthew D; Yildirim, Ilyas; Childs-Disney, Jessica L

    2014-02-21

    RNA is an immensely important target for small molecule therapeutics or chemical probes of function. However, methods that identify, annotate, and optimize RNA-small molecule interactions that could enable the design of compounds that modulate RNA function are in their infancies. This review describes recent approaches that have been developed to understand and optimize RNA motif-small molecule interactions, including structure-activity relationships through sequencing (StARTS), quantitative structure-activity relationships (QSAR), chemical similarity searching, structure-based design and docking, and molecular dynamics (MD) simulations. Case studies described include the design of small molecules targeting RNA expansions, the bacterial A-site, viral RNAs, and telomerase RNA. These approaches can be combined to afford a synergistic method to exploit the myriad of RNA targets in the transcriptome.

  15. A Capture-SELEX Strategy for Multiplexed Selection of RNA Aptamers Against Small Molecules

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Doessing, Holger B.; Long, Katherine S.

    2018-01-01

    In vitro selection of aptamers that recognize small organic molecules has proven difficult, in part due to the challenge of immobilizing small molecules on solid supports for SELEX (Systematic Evolution of Ligands by Exponential Enrichment). This study describes the implementation of RNA Capture......-SELEX, a selection strategy that uses an RNA library to yield ligand-responsive RNA aptamers targeting small organic molecules in solution. To demonstrate the power of this method we selected several aptamers with specificity towards either the natural sweetener rebaudioside A or the food-coloring agent carminic...... acid. In addition, Bio-layer interferometry is used to screen clonal libraries of aptamer candidates and is used to interrogate aptamer affinity. The RNA-based Capture-SELEX strategy described here simplifies selection of RNA aptamers against small molecules by avoiding ligand immobilization, while...

  16. Polymer-in-salt like conduction behavior of small-molecule electrolytes.

    Science.gov (United States)

    Wang, Hongxia; Wang, Zhaoxiang; Xue, Bofei; Meng, Qingbo; Huang, Xuejie; Chen, Liquan

    2004-10-07

    Abnormal salt content dependence of conductivity is observed in solid electrolytes exclusively composed of small molecules of 3-hydroxypropionitrile (HPN) and lithium iodide (LiI) induced by reinforced hydrogen bonding and formation of ionic clusters at high salt content.

  17. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    National Research Council Canada - National Science Library

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures...

  18. Non-Collinearity in Small Magnetic Cobalt-Benzene Molecules

    CERN Document Server

    González, J W; Delgado, F; Aguilera-Granja, F; Ayuela, A

    2016-01-01

    Cobalt clusters covered with benzene in the form of rice-ball structures have recently been synthesized using laser ablation. Here, we investigate the types of magnetic order such clusters have, and whether they retain any magnetic order at all. We use different density functional theory (DFT) methods to study the experimentally relevant three cobalt atoms surrounded by benzene rings. We found that the benzene rings induce a ground state with non-collinear magnetization, with the magnetic moments localized on the cobalt centers and lying on the plane formed by the three cobalt atoms. This is surprising because nanostructures and small clusters based on pure cobalt typically have a predominantly ferromagnetic order, and additional organic ligands such as benzene tend to remove the magnetization. We analyze the magnetism of such a cluster using an anisotropic Heisenberg model where the involved parameters are obtained by a comparison with the DFT results. Moreover, we propose electron paramagnetic resonance as ...

  19. Small molecules as tracers in atmospheric secondary organic aerosol

    Science.gov (United States)

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  20. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.

    Science.gov (United States)

    Seashore-Ludlow, Brinton; Rees, Matthew G; Cheah, Jaime H; Cokol, Murat; Price, Edmund V; Coletti, Matthew E; Jones, Victor; Bodycombe, Nicole E; Soule, Christian K; Gould, Joshua; Alexander, Benjamin; Li, Ava; Montgomery, Philip; Wawer, Mathias J; Kuru, Nurdan; Kotz, Joanne D; Hon, C Suk-Yee; Munoz, Benito; Liefeld, Ted; Dančík, Vlado; Bittker, Joshua A; Palmer, Michelle; Bradner, James E; Shamji, Alykhan F; Clemons, Paul A; Schreiber, Stuart L

    2015-11-01

    Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS-mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses. ©2015 American Association for Cancer Research.

  1. Identification of small molecule inhibitors of cytokinesis and single cell wound repair

    Science.gov (United States)

    Clark, Andrew G.; Sider, Jenny R.; Verbrugghe, Koen; Fenteany, Gabriel; von Dassow, George; Bement, William M.

    2013-01-01

    Screening of small molecule libraries offers the potential to identify compounds that inhibit specific biological processes and, ultimately, to identify macromolecules that are important players in such processes. To date, however, most screens of small molecule libraries have focused on identification of compounds that inhibit known proteins or particular steps in a given process, and have emphasized automated primary screens. Here we have used “low tech” in vivo primary screens to identify small molecules that inhibit both cytokinesis and single cell wound repair, two complex cellular processes that possess many common features. The “diversity set”, an ordered array of 1990 compounds available from the National Cancer Institute, was screened in parallel to identify compounds that inhibit cytokinesis in D. excentricus (sand dollar) embryos and single cell wound repair in X. laevis (frog) oocytes. Two small molecules were thus identified: Sph1 and Sph2. Sph1 reduces Rho activation in wound repair and suppresses formation of the spindle midzone during cytokinesis. Sph2 also reduces Rho activation in wound repair and may inhibit cytokinesis by blocking membrane fusion. The results identify two small molecules of interest for analysis of wound repair and cytokinesis, reveal that these processes are more similar than often realized and reveal the potential power of low tech screens of small molecule libraries for analysis of complex cellular processes. PMID:23125193

  2. Small molecule HIV entry inhibitors: Part II. Attachment and fusion inhibitors: 2004-2010.

    Science.gov (United States)

    Singh, Inder Pal; Chauthe, Siddheshwar Kisan

    2011-03-01

    The first US FDA approved HIV entry inhibitor drug Enfuvirdine belongs to the fusion inhibitor category. Earlier efforts in this area were focused on peptides and monoclonal antibodies; recently, the focus has shifted towards the development of small molecule HIV attachment and fusion inhibitors. They can be used for prophylactic purposes and also hold potential for the development of HIV microbicides. In a previous paper ('Small molecule HIV entry inhibitors: Part I'), we reviewed patents and patent applications for small molecule chemokine receptor antagonists from major pharmaceutical companies. In this paper, the development of small molecule HIV attachment and fusion inhibitors is discussed in detail. It covers patents and patent applications for small molecule HIV attachment and fusion inhibitors published between 2004 and 2010 and related literature with a focus on recent developments based on lead generation and lead modification. To augment the potency of currently available antiretroviral drug combinations and to fight drug-resistant virus variants, more effective drugs which target additional steps in the viral replication cycle are urgently needed. HIV attachment and fusion processes are such targets. Inhibitors of these targets will provide additional options for the treatment of HIV drug-resistant strains. Small molecule HIV attachment inhibitors such as BMS-378806 and analogs from Bristol Myers Squibb, N-aryl piperidine derivatives from Propharmacon, and NBD-556 and NBD-557 from New York Blood Center may have potential as vaginal microbicidal agents and can be an economical alternative to monoclonal antibodies.

  3. Target Identification Using Cell Permeable and Cleavable Chloroalkane Derivatized Small Molecules.

    Science.gov (United States)

    Mendez-Johnson, Jacqui L; Daniels, Danette L; Urh, Marjeta; Friedman Ohana, Rachel

    2017-01-01

    An important aspect for gaining functional insight into the activity of small molecules revealed through phenotypic screening is the identification of their interacting proteins. Yet, isolating and validating these interacting proteins remains difficult. Here, we present a new approach utilizing a chloroalkane (CA) moiety capture handle, which can be chemically attached to small molecules to isolate their respective protein targets. Derivatization of small molecules with the CA moiety has been shown to not significantly impact their cell permeability or potency, allowing for phenotypic validation of the derivatized small molecule prior to capture. The retention of cell permeability also allows for treatment of live cells with the derivatized small molecule and the CA moiety enables rapid covalent capture onto HaloTag coated magnetic beads. Additionally, several options are available for the elution of interacting proteins, including chemical cleavage of the CA moiety, competitive elution using excess unmodified small molecule, or sodium dodecyl sulfate (SDS) elution. These features taken together yield a highly robust and efficient process for target identification, including capture of weak or low abundance interactors.

  4. 2016 White Paper on recent issues in bioanalysis: focus on biomarker assay validation (BAV) (Part 1 - small molecules, peptides and small molecule biomarkers by LCMS).

    Science.gov (United States)

    Yang, Eric; Welink, Jan; Cape, Stephanie; Woolf, Eric; Sydor, Jens; James, Christopher; Goykhman, Dina; Arnold, Mark; Addock, Neil; Bauer, Ronald; Buonarati, Michael; Ciccimaro, Eugene; Dodda, Raj; Evans, Christopher; Garofolo, Fabio; Hughes, Nicola; Islam, Rafiq; Nehls, Corey; Wilson, Amanda; Briscoe, Chad; Bustard, Mark; Coppola, Laura; Croft, Stephanie; Drexler, Dieter; Ferrari, Luca; Fraier, Daniela; Jenkins, Rand; Kadavil, John; King, Lloyd; Li, Wenkui; Lima Santos, Gustavo Mendes; Musuku, Adrien; Ramanathan, Ragu; Saito, Yoshiro; Savoie, Natasha; Summerfield, Scott; Sun, Rachel; Tampal, Nilufer; Vinter, Steve; Wakelin-Smith, Jason; Yue, Qin

    2016-10-07

    The 2016 10(th) Workshop on Recent Issues in Bioanalysis (10(th) WRIB) took place in Orlando, Florida with participation of close to 700 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - A Full Immersion Week of Bioanalysis including Biomarkers and Immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid LBA/LCMS, and LBA approaches, with the focus on biomarkers and immunogenicity. This 2016 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. This white paper is published in 3 parts due to length. This part (Part 1) discusses the recommendations for small molecules, peptides and small molecule biomarkers by LCMS. Part 2 (Hybrid LBA/LCMS and regulatory inputs from major global health authorities) and Part 3 (large molecule bioanalysis using LBA, biomarkers and immunogenicity) will be published in the Bioanalysis journal, issue 23.

  5. Integration of {beta}-carotene molecules in small liposomes

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, Atanaska; Popova, Antoaneta, E-mail: andreeva@phys.uni-sofia.b

    2010-11-01

    The most typical feature of carotenoids is the long polyene chain with conjugated double bonds suggesting that they can serve as conductors of electrons, acting as 'molecular wires', important elements in the molecular electronic devices. Carotenoids are essential components of photosynthetic systems, performing different functions as light harvesting, photoprotection and electron transfer. They act also as natural antioxidants. In addition they perform structural role stabilizing the three-dimensional organization of photosynthetic membranes. Carotenoids contribute to the stability of the lipid phase, preserving the membrane integrity under potentially harmful environmental conditions. Carotenoids can be easily integrated into model membranes, facilitating the investigation of their functional roles. In carotenoid-egg phosphatidylcholine (EPC) liposomes ss-carotene is randomly distributed in the hydrocarbon interior of the bilayer, without any preferred, well defined orientation and retains a substantial degree of mobility. Here we investigate the degree of integration of ss-carotene in small unilamellar EPC liposomes and the changes in ss-carotene absorption and Raman spectra due to the lipid-pigment interaction. All observed changes in ss-carotene absorption and Raman spectra may be regarded as a result of the lipid-pigment interactions leading to the polyene geometry distortion and increasing of the environment heterogenety in the liposomes as compared to the solutions.

  6. Combinatorics of feedback in cellular uptake and metabolism of small molecules.

    Science.gov (United States)

    Krishna, Sandeep; Semsey, Szabolcs; Sneppen, Kim

    2007-12-26

    We analyze the connection between structure and function for regulatory motifs associated with cellular uptake and usage of small molecules. Based on the boolean logic of the feedback we suggest four classes: the socialist, consumer, fashion, and collector motifs. We find that the socialist motif is good for homeostasis of a useful but potentially poisonous molecule, whereas the consumer motif is optimal for nutrition molecules. Accordingly, examples of these motifs are found in, respectively, the iron homeostasis system in various organisms and in the uptake of sugar molecules in bacteria. The remaining two motifs have no obvious analogs in small molecule regulation, but we illustrate their behavior using analogies to fashion and obesity. These extreme motifs could inspire construction of synthetic systems that exhibit bistable, history-dependent states, and homeostasis of flux (rather than concentration).

  7. In vivo, in vitro and in silico methods for small molecule transfer across the BBB.

    Science.gov (United States)

    Mensch, Jurgen; Oyarzabal, Julen; Mackie, Claire; Augustijns, Patrick

    2009-12-01

    The inability of molecules to permeate the BBB is a significant source of attrition in Central Nervous System (CNS) drug discovery. Given the increasing medical drivers for new and improved CNS drugs, small molecule transfer across the BBB is attracting a heightened awareness within pharmaceutical industry and medical fields. In order to assess the potential for small CNS molecules to permeate the BBB, a variety of methods and models, from in silico to in vivo going through in vitro models are developed as predictive tools in drug discovery. This review gives a comprehensive overview of different approaches currently considered in drug discovery to circumvent the lack of small molecule transfer through the BBB, together with their inherent advantages and disadvantages. Particularly, special attention is drawn to in silico models, with a detailed and contemporary point of view on prediction tools and guidelines for rational design. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  8. SEC-TID: A Label-Free Method for Small-Molecule Target Identification.

    Science.gov (United States)

    Salcius, Michael; Bauer, Andras J; Hao, Qin; Li, Shu; Tutter, Antonin; Raphael, Jacob; Jahnke, Wolfgang; Rondeau, Jean-Michel; Bourgier, Emmanuelle; Tallarico, John; Michaud, Gregory A

    2014-07-01

    Bioactive small molecules are an invaluable source of therapeutics and chemical probes for exploring biological pathways. Yet, significant hurdles in drug discovery often come from lacking a comprehensive view of the target(s) for both early tool molecules and even late-stage drugs. To address this challenge, a method is provided that allows for assessing the interactions of small molecules with thousands of targets without any need to modify the small molecule of interest or attach any component to a surface. We describe size-exclusion chromatography for target identification (SEC-TID), a method for accurately and reproducibly detecting ligand-macromolecular interactions for small molecules targeting nucleic acid and several protein classes. We report the use of SEC-TID, with a library consisting of approximately 1000 purified proteins derived from the protein databank (PDB), to identify the efficacy targets tankyrase 1 and 2 for the Wnt inhibitor XAV939. In addition, we report novel interactions for the tumor-vascular disrupting agent vadimezan/ASA404 (interacting with farnesyl pyrophosphate synthase) and the diuretic mefruside (interacting with carbonic anhydrase XIII). We believe this method can dramatically enhance our understanding of the mechanism of action and potential liabilities for small molecules in drug discovery pipelines through comprehensive profiling of candidate druggable targets. © 2014 Society for Laboratory Automation and Screening.

  9. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC Expression.

    Science.gov (United States)

    Felsenstein, Kenneth M; Saunders, Lindsey B; Simmons, John K; Leon, Elena; Calabrese, David R; Zhang, Shuling; Michalowski, Aleksandra; Gareiss, Peter; Mock, Beverly A; Schneekloth, John S

    2016-01-15

    The transcription factor MYC plays a pivotal role in cancer initiation, progression, and maintenance. However, it has proven difficult to develop small molecule inhibitors of MYC. One attractive route to pharmacological inhibition of MYC has been the prevention of its expression through small molecule-mediated stabilization of the G-quadruplex (G4) present in its promoter. Although molecules that bind globally to quadruplex DNA and influence gene expression are well-known, the identification of new chemical scaffolds that selectively modulate G4-driven genes remains a challenge. Here, we report an approach for the identification of G4-binding small molecules using small molecule microarrays (SMMs). We use the SMM screening platform to identify a novel G4-binding small molecule that inhibits MYC expression in cell models, with minimal impact on the expression of other G4-associated genes. Surface plasmon resonance (SPR) and thermal melt assays demonstrated that this molecule binds reversibly to the MYC G4 with single digit micromolar affinity, and with weaker or no measurable binding to other G4s. Biochemical and cell-based assays demonstrated that the compound effectively silenced MYC transcription and translation via a G4-dependent mechanism of action. The compound induced G1 arrest and was selectively toxic to MYC-driven cancer cell lines containing the G4 in the promoter but had minimal effects in peripheral blood mononucleocytes or a cell line lacking the G4 in its MYC promoter. As a measure of selectivity, gene expression analysis and qPCR experiments demonstrated that MYC and several MYC target genes were downregulated upon treatment with this compound, while the expression of several other G4-driven genes was not affected. In addition to providing a novel chemical scaffold that modulates MYC expression through G4 binding, this work suggests that the SMM screening approach may be broadly useful as an approach for the identification of new G4-binding small

  10. Mimicking Intermolecular Interactions of Tight Protein-Protein Complexes for Small-Molecule Antagonists.

    Science.gov (United States)

    Xu, David; Bum-Erdene, Khuchtumur; Si, Yubing; Zhou, Donghui; Ghozayel, Mona K; Meroueh, Samy O

    2017-11-08

    Tight protein-protein interactions (Kd 1000 Å2 ) are highly challenging to disrupt with small molecules. Historically, the design of small molecules to inhibit protein-protein interactions has focused on mimicking the position of interface protein ligand side chains. Here, we explore mimicry of the pairwise intermolecular interactions of the native protein ligand with residues of the protein receptor to enrich commercial libraries for small-molecule inhibitors of tight protein-protein interactions. We use the high-affinity interaction (Kd =1 nm) between the urokinase receptor (uPAR) and its ligand urokinase (uPA) to test our methods. We introduce three methods for rank-ordering small molecules docked to uPAR: 1) a new fingerprint approach that represents uPA's pairwise interaction energies with uPAR residues; 2) a pharmacophore approach to identify small molecules that mimic the position of uPA interface residues; and 3) a combined fingerprint and pharmacophore approach. Our work led to small molecules with novel chemotypes that inhibited a tight uPAR⋅uPA protein-protein interaction with single-digit micromolar IC50 values. We also report the extensive work that identified several of the hits as either lacking stability, thiol reactive, or redox active. This work suggests that mimicking the binding profile of the native ligand and the position of interface residues can be an effective strategy to enrich commercial libraries for small-molecule inhibitors of tight protein-protein interactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The {sup 68}Ga/{sup 177}Lu theragnostic concept in PSMA targeting of castration-resistant prostate cancer: correlation of SUV{sub max} values and absorbed dose estimates

    Energy Technology Data Exchange (ETDEWEB)

    Scarpa, Lorenza; Buxbaum, Sabine; Kendler, Dorota; Decristoforo, Clemens; Uprimny, Christian; Virgolini, Irene [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Fink, Katharina [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Medical University of Innsbruck, Department of Radiotherapy / Radiation Oncology, Innsbruck (Austria); Bektic, Jasmin; Horninger, Wolfgang [Medical University of Innsbruck, Department of Urology, Innsbruck (Austria); Gruber, Leonhard [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Lukas, Peter [Medical University of Innsbruck, Department of Radiotherapy / Radiation Oncology, Innsbruck (Austria)

    2017-05-15

    A targeted theragnostic approach based on increased expression of prostate-specific membrane antigen (PSMA) on PC cells is an attractive treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). Ten consecutive mCRPC patients were selected for {sup 177}Lu-PSMA617 therapy on the basis of PSMA-targeted {sup 68}Ga-PSMA-HBED-CC PET/CT diagnosis showing extensive and progressive tumour load. Following dosimetry along with the first therapy cycle restaging ({sup 68}Ga-PSMA-HBED-CC and {sup 18}F-NaF PET/CT) was performed after 2 and 3 therapy cycles (each 6.1 ± 0.3 GBq, range 5.4-6.5 GBq) given intravenously over 30 minutes, 9 ± 1 weeks apart. PET/CT scans were compared to {sup 177}Lu-PSMA617 24-hour whole-body scans and contrast-enhanced dual-phase CT. Detailed comparison of SUVmax values and absorbed tumour doses was performed. {sup 177}Lu-PSMA617 dosimetry indicated high tumour doses for skeletal (3.4 ± 1.9 Gy/GBq; range 1.1-7.2 Gy/GBq), lymph node (2.6 ± 0.4 Gy/GBq; range 2.3-2.9 Gy/GBq) as well as liver (2.4 ± 0.8 Gy/GBq; range 1.7-3.3 Gy/GBq) metastases whereas the dose for tissues/organs was acceptable in all patients for an intention-to-treat activity of 18 ± 0.3 GBq. Three patients showed partial remission, three mixed response, one stable and three progressive disease. Decreased {sup 177}Lu-PSMA617 and {sup 68}Ga-PSMA-HBED-CC uptake (mean SUVmax values 20.2 before and 15.0 after 2 cycles and 11.5 after 3 cycles, p < 0.05) was found in 41/54 skeletal lesions, 12/13 lymph node metastases, 3/5 visceral metastases and 4/4 primary PC lesions. Due to substantial individual variance, dosimetry is mandatory for a patient-specific approach following {sup 177}Lu-PSMA617 therapy. Higher activities and/or shorter treatment intervals should be applied in a larger prospective study. (orig.)

  12. Efficient Isothermal Titration Calorimetry Technique Identifies Direct Interaction of Small Molecule Inhibitors with the Target Protein.

    Science.gov (United States)

    Gal, Maayan; Bloch, Itai; Shechter, Nelia; Romanenko, Olga; Shir, Ofer M

    2016-01-01

    Protein-protein interactions (PPI) play a critical role in regulating many cellular processes. Finding novel PPI inhibitors that interfere with specific binding of two proteins is considered a great challenge, mainly due to the complexity involved in characterizing multi-molecular systems and limited understanding of the physical principles governing PPIs. Here we show that the combination of virtual screening techniques, which are capable of filtering a large library of potential small molecule inhibitors, and a unique secondary screening by isothermal titration calorimetry, a label-free method capable of observing direct interactions, is an efficient tool for finding such an inhibitor. In this study we applied this strategy in a search for a small molecule capable of interfering with the interaction of the tumor-suppressor p53 and the E3-ligase MDM2. We virtually screened a library of 15 million small molecules that were filtered to a final set of 80 virtual hits. Our in vitro experimental assay, designed to validate the activity of mixtures of compounds by isothermal titration calorimetry, was used to identify an active molecule against MDM2. At the end of the process the small molecule (4S,7R)-4-(4-chlorophenyl)-5-hydroxy-2,7-dimethyl-N-(6-methylpyridin-2-yl)-4,6,7,8 tetrahydrIoquinoline-3-carboxamide was found to bind MDM2 with a dissociation constant of ~2 µM. Following the identification of this single bioactive compound, spectroscopic measurements were used to further characterize the interaction of the small molecule with the target protein. 2D NMR spectroscopy was used to map the binding region of the small molecule, and fluorescence polarization measurement confirmed that it indeed competes with p53.

  13. Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors.

    Science.gov (United States)

    Bucher, Tabitha; Kartvelishvily, Elena; Kolodkin-Gal, Ilana

    2016-10-09

    This work assesses different methodologies to study the impact of small molecule biofilm inhibitors, such as D-amino acids, on the development and resilience of Bacillus subtilis biofilms. First, methods are presented that select for small molecule inhibitors with biofilm-specific targets in order to separate the effect of the small molecule inhibitors on planktonic growth from their effect on biofilm formation. Next, we focus on how inoculation conditions affect the sensitivity of multicellular, floating B. subtilis cultures to small molecule inhibitors. The results suggest that discrepancies in the reported effects of such inhibitors such as D-amino acids are due to inconsistent pre-culture conditions. Furthermore, a recently developed protocol is described for evaluating the contribution of small molecule treatments towards biofilm resistance to antibacterial substances. Lastly, scanning electron microscopy (SEM) techniques are presented to analyze the three-dimensional spatial arrangement of cells and their surrounding extracellular matrix in a B. subtilis biofilm. SEM facilitates insight into the three-dimensional biofilm architecture and the matrix texture. A combination of the methods described here can greatly assist the study of biofilm development in the presence and absence of biofilm inhibitors, and shed light on the mechanism of action of these inhibitors.

  14. Small Molecule Supplements Improve Cultured Megakaryocyte Polyploidization by Modulating Multiple Cell Cycle Regulators

    Directory of Open Access Journals (Sweden)

    Xiaojing Zou

    2017-01-01

    Full Text Available Platelets (PLTs are produced by megakaryocytes (MKs that completed differentiation and endomitosis. Endomitosis is an important process in which the cell replicates its DNA without cytokinesis and develops highly polyploid MK. In this study, to gain a better PLTs production, four small molecules (Rho-Rock inhibitor (RRI, nicotinamide (NIC, Src inhibitor (SI, and Aurora B inhibitor (ABI and their combinations were surveyed as MK culture supplements for promoting polyploidization. Three leukemia cell lines as well as primary mononuclear cells were chosen in the function and mechanism studies of the small molecules. In an optimal culture method, cells were treated with different small molecules and their combinations. The impact of the small molecules on megakaryocytic surface marker expression, polyploidy, proliferation, and apoptosis was examined for the best MK polyploidization supplement. The elaborate analysis confirmed that the combination of SI and RRI together with our MK induction system might result in efficient ploidy promotion. Our experiments demonstrated that, besides direct downregulation on the expression of cytoskeleton protein actin, SI and RRI could significantly enhance the level of cyclins through the suppression of p53 and p21. The verified small molecule combination might be further used in the in vitro PLT manufacture and clinical applications.

  15. Small-molecule affinity chromatography coupled mass spectrometry for drug target deconvolution.

    Science.gov (United States)

    Saxena, Chaitanya; Higgs, Richard E; Zhen, Eugene; Hale, John E

    2009-07-01

    Current drug discovery organizations have renewed interest in phenotypic/function based screening for the identification of novel small-molecule drug candidates. Phenotypic screening faces the challenge of deconvoluting the identity of molecular targets of small-molecules through which they exert their biological effect. The identity of the target is crucial for understanding the mechanism of drug action, rational drug design, interpretation of any toxicological findings and patient stratification. Several methods are available to deconvolute the targets of small-molecules. This review describes successful examples, limitations and advances of drug target deconvolution using small-molecule affinity chromatography coupled mass spectrometry based methods. A brief discussion of other target deconvolution methods is also presented for comparative appreciation of mass spectrometry based methods. The use of small-molecule affinity chromatography coupled mass spectrometry based methods is gaining popularity as a technique for target identification. Mass spectrometry based methods provide fast, reliable and high-content information on the target. They can be used with relatively intact biological systems to develop a system-wide understanding of the drug-target interaction.

  16. Identification and biological activities of a new antiangiogenic small molecule that suppresses mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hyun; Park, Ju Yeol; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} YCG063 was screened as a new angiogenesis inhibitor which suppresses mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library. {yields} The compound inhibited in vitro and in vivo angiogenesis in a dose-dependent manner. {yields} This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions. -- Abstract: Mitochondrial reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In particular, high levels of mitochondrial ROS in hypoxic cells regulate many angiogenesis-related diseases, including cancer and ischemic disorders. Here we report a new angiogenesis inhibitor, YCG063, which suppressed mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library with an ArrayScan HCS reader. YCG063 suppressed mitochondrial ROS generation under a hypoxic condition in a dose-dependent manner, leading to the inhibition of in vitro angiogenic tube formation and chemoinvasion as well as in vivo angiogenesis of the chorioallantoic membrane (CAM) at non-toxic doses. In addition, YCG063 decreased the expression levels of HIF-1{alpha} and its target gene, VEGF. Collectively, a new antiangiogenic small molecule that suppresses mitochondrial ROS was identified. This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions.

  17. Harnessing impaired energy metabolism in cancer cell: small molecule- mediated ways to regulate tumorigenesis.

    Science.gov (United States)

    Govardhan, K Shroff; Ramyasri, Kuna; Kethora, Dirsipam; Ravishekar, Yalagala; Prasenjit, Mitra

    2011-03-01

    Altered cellular metabolism is a hallmark of tumorigenesis. Described first in 1924 by Otto Warburg, a cancer cell undergoes complete metabolic reprogramming to attain nutrient self-sufficiency for proliferation and survival. Interplay between diverse signalling cascades confers this metabolic advantage. In this review we focus on signalling molecules that regulate this altered metabolic paradigm in a cancer cell with emphasis on small molecule mediated intervention for attenuation of growth and progression of tumor.

  18. Adsorption of small gas molecules on pure and Al-doped graphene ...

    Indian Academy of Sciences (India)

    2017-10-03

    Oct 3, 2017 ... Abstract. The interaction of small gas molecules (CCl4, CH4, NH3, CO2, N2, CO, NO2, CCl2F2, SO2, CF4, H2) on pure and aluminium-doped graphene were investigated by using the density functional theory to explore their potential applications as sensors. It has been found that all gas molecules show ...

  19. Precise small-molecule recognition of a toxic CUG RNA repeat expansion.

    Science.gov (United States)

    Rzuczek, Suzanne G; Colgan, Lesley A; Nakai, Yoshio; Cameron, Michael D; Furling, Denis; Yasuda, Ryohei; Disney, Matthew D

    2017-02-01

    Excluding the ribosome and riboswitches, developing small molecules that selectively target RNA is a longstanding problem in chemical biology. A typical cellular RNA is difficult to target because it has little tertiary, but abundant secondary structure. We designed allele-selective compounds that target such an RNA, the toxic noncoding repeat expansion (r(CUG)exp) that causes myotonic dystrophy type 1 (DM1). We developed several strategies to generate allele-selective small molecules, including non-covalent binding, covalent binding, cleavage and on-site probe synthesis. Covalent binding and cleavage enabled target profiling in cells derived from individuals with DM1, showing precise recognition of r(CUG)exp. In the on-site probe synthesis approach, small molecules bound adjacent sites in r(CUG)exp and reacted to afford picomolar inhibitors via a proximity-based click reaction only in DM1-affected cells. We expanded this approach to image r(CUG)exp in its natural context.

  20. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola

    2018-01-29

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  1. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics.

    Science.gov (United States)

    Maschinot, C A; Pace, J R; Hadden, M K

    2015-01-01

    The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds.

  2. Working with small molecules: rules-of-thumb of "drug likeness".

    Science.gov (United States)

    Zhang, Ming-Qiang

    2012-01-01

    Based on analyses of existing small organic drug molecules, a set of "rules-of-thumb" have been devised to assess the likeness of a small molecule under study to those existing drugs in terms of physicochemical and topological properties. These rules can be used to estimate the likelihood of a small molecule to possess the desired efficacy, pharmacokinetic/pharmacodynamic properties, and toxicity profiles to eventually become a drug, and therefore, whether it justifies further experimental work and development. These rules are particularly useful when selecting a chemical starting point for a given project or choosing a chemical series to focus when multiple series are available. Caution should be paid, however, not to overly rely on these rules for decision-making, since these rules are restricted by knowledge of existing drugs. Novel chemotypes and/or targets may be exceptions.

  3. Recent progress in the development of small-molecule glucagon receptor antagonists.

    Science.gov (United States)

    Sammons, Matthew F; Lee, Esther C Y

    2015-10-01

    The endocrine hormone glucagon stimulates hepatic glucose output via its action at the glucagon receptor (GCGr) in the liver. In the diabetic state, dysregulation of glucagon secretion contributes to abnormally elevated hepatic glucose output. The inhibition of glucagon-induced hepatic glucose output via antagonism of the GCGr using small-molecule ligands is a promising mechanism for improving glycemic control in the diabetic state. Clinical data evaluating the therapeutic potential of small-molecule GCGr antagonists is currently emerging. Recently disclosed clinical data demonstrates the potential efficacy and possible therapeutic limitations of small-molecule GCGr antagonists. Recent pre-clinical work on the development of GCGr antagonists is also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing

    KAUST Repository

    Rancatore, Benjamin J.

    2016-01-21

    © 2016 American Chemical Society. Small molecules (SMs) with unique optical or electronic properties provide an opportunity to incorporate functionality into block copolymer (BCP)-based supramolecules. However, the assembly of supramolecules based on these highly crystalline molecules differs from their less crystalline counterparts. Here, two families of organic semiconductor SMs are investigated, where the composition of the crystalline core, the location (side- vs end-functionalization) of the alkyl solubilizing groups, and the constitution (branched vs linear) of the alkyl groups are varied. With these SMs, we present a systematic study of how the phase behavior of the SMs affects the overall assembly of these organic semiconductor-based supramolecules. The incorporation of SMs has a large effect on the interfacial curvature, the supramolecular periodicity, and the overall supramolecular morphology. The crystal packing of the SM within the supramolecule does not necessarily lead to the assembly of the comb block within the BCP microdomains, as is normally observed for alkyl-containing supramolecules. An unusual lamellar morphology with a wavy interface between the microdomains is observed due to changes in the packing structure of the small molecule within BCP microdomains. Since the supramolecular approach is modular and small molecules can be readily switched out, present studies provide useful guidance toward access supramolecular assemblies over several length scales using optically active and semiconducting small molecules.

  5. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering

    Directory of Open Access Journals (Sweden)

    Laura Pandolfi

    2016-01-01

    Full Text Available Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan–gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.

  6. Small-molecule agonists for the glucagon-like peptide 1 receptor

    DEFF Research Database (Denmark)

    Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min

    2007-01-01

    The peptide hormone glucagon-like peptide (GLP)-1 has important actions resulting in glucose lowering along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP-1 has to be administered by injection. Only a few small-molecule agonists to peptide hormone receptors have been...... described and none in the B family of the G protein coupled receptors to which the GLP-1 receptor belongs. We have discovered a series of small molecules known as ago-allosteric modulators selective for the human GLP-1 receptor. These compounds act as both allosteric activators of the receptor...

  7. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas Eiland; Clausen, Mads Hartvig

    2016-01-01

    Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function, and ther......Small-molecule kinase inhibitors (SMKIs), 28 of which are approved by the US Food and Drug Administration (FDA), have been actively pursued as promising targeted therapeutics. Here, we assess the key structural and physicochemical properties, target selectivity and mechanism of function...

  8. Blu-ray based optomagnetic aptasensor for detection of small molecules

    DEFF Research Database (Denmark)

    Yang, Jaeyoung; Donolato, Marco; Pinto, Alessandro

    2016-01-01

    This paper describes an aptamer-based optomagnetic biosensor for detection of a small molecule based on target binding-induced inhibition of magnetic nanoparticle (MNP) clustering. For the detection of a target small molecule, two mutually exclusive binding reactions (aptamer-target binding...... and aptamer-DNA linker hybridization) are designed. An aptamer specific to the target and a DNA linker complementary to a part of the aptamer sequence are immobilized onto separate MNPs. Hybridization of the DNA linker and the aptamer induces formation of MNP clusters. The target-to-aptamer binding on MNPs...

  9. UPAR targeted molecular imaging of cancers with small molecule-based probes.

    Science.gov (United States)

    Ding, Feng; Chen, Seng; Zhang, Wanshu; Tu, Yufeng; Sun, Yao

    2017-10-15

    Molecular imaging can allow the non-invasive characterization and measurement of biological and biochemical processes at the molecular and cellular levels in living subjects. The imaging of specific molecular targets that are associated with cancers could allow for the earlier diagnosis and better treatment of diseases. Small molecule-based probes play prominent roles in biomedical research and have high clinical translation ability. Here, with an emphasis on small molecule-based probes, we review some recent developments in biomarkers, imaging techniques and multimodal imaging in molecular imaging and highlight the successful applications for molecular imaging of cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Kinase-Independent Small-Molecule Inhibition of JAK-STAT Signaling

    OpenAIRE

    Chou, Danny Hung-Chieh; Vetere, Amedeo; Choudhary, Amit; Scully, Stephen S.; Schenone, Monica; Tang, Alicia; Gomez, Rachel; Burns, Sean M.; Lundh, Morten; Vital, Tamara; Comer, Eamon; Faloon, Patrick W.; Dančík, Vlado; Ciarlo, Christie; Paulk, Joshiawa

    2015-01-01

    Phenotypic cell-based screening is a powerful approach to small-molecule discovery, but a major challenge of this strategy lies in determining the intracellular target and mechanism of action (MoA) for validated hits. Here, we show that the small-molecule BRD0476, a novel suppressor of pancreatic β-cell apoptosis, inhibits interferon-gamma (IFN-γ)-induced Janus kinase 2 (JAK2) and signal transducer and activation of transcription 1 (STAT1) signaling to promote β-cell survival. However, unlike...

  11. UP-scaling of inverted small molecule based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Madsen, Morten

    Organic solar cells (OSC), in spite of being a promising technology, still face challenges regarding large-scale fabrication. Although efficiencies of up to 12 % has been reached for small molecule OSC, their performance, both in terms of device efficiency and stability, is significantly reduced...... during up-scaling processes. The work presented here is focused on an approach towards up-scaling of small molecule based OSC with inverted device configuration. Bilayer OSC from Tetraphenyldibenzoperiflanthene (DBP) and Fullerenes (C70), as electron donor and acceptor respectively, with cell area...

  12. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer

    DEFF Research Database (Denmark)

    Chang, Joan; Lucas, Morghan C; Leonte, Lidia Elena

    2017-01-01

    Lysyl Oxidase-like 2 (LOXL2), a member of the lysyl oxidase family of amine oxidases is known to be important in normal tissue development and homeostasis, as well as the onset and progression of solid tumors. Here we tested the anti-tumor properties of two generations of novel small molecule LOXL2...... a greater effect and also led to a lower overall metastatic burden in the lung and liver. Our data provides the first evidence to support a role for LOXL2 specific small molecule inhibitors as a potential therapy in breast cancer....

  13. Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential

    DEFF Research Database (Denmark)

    Trojel-Hansen, Christina; Erichsen, Kamille Dumong; Christensen, Mette Knak

    2011-01-01

    the upregulation of specific transporters. Deprivation of intracellular amino acids or block of amino acid uptake has been shown to be cytotoxic to many established human cancer cell lines in vitro and in human cancer xenograft models. RESULTS: In this paper, we provide evidence that the two small molecule...... and orally. CONCLUSION: In conclusion, these small molecules, built on a 1,3-dihydroindole-2-one scaffold, elicit strong anti-proliferative and cytotoxic activity, and importantly, a strong anti-tumorigenicity is observed in in vivo xenograft models of human breast, ovary, prostate and pancreatic cancers...

  14. Photophysical properties of novel small acceptor molecules and their application in hybrid small-molecular/polymeric organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Inal, Sahika; Castellani, Mauro; Neher, Dieter [Universitaet Potsdam, Institut fuer Physik und Astronomie, Potsdam-Golm (Germany); Sellinger, Alan [Institute of Materials Research and Engineering, Singapore (Singapore)

    2009-07-01

    Recent experimental investigations revealed that the photovoltaic properties of our devices are related to the balance between recombination and field-induced dissociation of interfacial excited states such as exciplexes or geminate polaron pairs. This balance was shown to be affected by the nanomorphology at the heterojunction. We have analyzed the photophysical properties of a new materials couple comprising an electron-donating PPV copolymer and a vinazene-based small molecule acceptor. Steady state and time-resolved photoluminescence (PL) spectroscopy in solution and in the solid state showed the formation of excimers within the acceptor. The associated long-range diffusion promise efficient energy harvesting at the heterojunction. On the other hand, blends of the PPV-derivative and the small molecule revealed strong exciplex formation. Therefore, bilayered hybrid small-molecular/polymeric solar cells have been fabricated by consequently spin-coating the macromolecular donor and the small molecule acceptor from two different solvents. The bilayer architecture limits recombination processes enabling high FFs of around 44% and a technologically important open circuit voltage of 1Volt.

  15. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates.

    Science.gov (United States)

    Gong, Hai H; Ihle, Nathan; Jones, Michael T; Kelly, Kathleen; Kott, Laila; Raglione, Thomas; Whitlock, Scott; Zhang, Qunying; Zheng, Jie

    2018-01-04

    Antibody-drug conjugates (ADCs) are an emerging class of biopharmaceuticals. As such, there are no specific guidelines addressing impurity limits and qualification requirements. The current ICH guidelines on impurities, Q3A (Impurities in New Drug Substances), Q3B (Impurities in New Drug Products), and Q6B (Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products) do not adequately address how to assess small molecule impurities in ADCs. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) formed an impurities working group (IWG) to discuss this issue. This white paper presents a strategy for evaluating the impact of small molecule impurities in ADCs. This strategy suggests a science-based approach that can be applied to the design of control systems for ADC therapeutics. The key principles that form the basis for this strategy include the significant difference in molecular weights between small molecule impurities and the ADC, the conjugation potential of the small molecule impurities, and the typical dosing concentrations and dosing schedule. The result is that exposure to small impurities in ADCs is so low as to often pose little or no significant safety risk.

  16. Identification of a Small Molecule that Increases Hemoglobin Oxygen Affinity and Reduces SS Erythrocyte Sickling

    Science.gov (United States)

    2015-01-01

    Small molecules that increase the oxygen affinity of human hemoglobin may reduce sickling of red blood cells in patients with sickle cell disease. We screened 38 700 compounds using small molecule microarrays and identified 427 molecules that bind to hemoglobin. We developed a high-throughput assay for evaluating the ability of the 427 small molecules to modulate the oxygen affinity of hemoglobin. We identified a novel allosteric effector of hemoglobin, di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide (TD-1). TD-1 induced a greater increase in oxygen affinity of human hemoglobin in solution and in red blood cells than did 5-hydroxymethyl-2-furfural (5-HMF), N-ethylmaleimide (NEM), or diformamidine disulfide. The three-dimensional structure of hemoglobin complexed with TD-1 revealed that monomeric units of TD-1 bound covalently to β-Cys93 and β-Cys112, as well as noncovalently to the central water cavity of the hemoglobin tetramer. The binding of TD-1 to hemoglobin stabilized the relaxed state (R3-state) of hemoglobin. TD-1 increased the oxygen affinity of sickle hemoglobin and inhibited in vitro hypoxia-induced sickling of red blood cells in patients with sickle cell disease without causing hemolysis. Our study indicates that TD-1 represents a novel lead molecule for the treatment of patients with sickle cell disease. PMID:25061917

  17. Phenotypic Screen Identifies a Small Molecule Modulating ERK2 and Promoting Stem Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Chang Yin

    2017-10-01

    Full Text Available Stem cells display a fundamentally different mechanism of proliferation control when compared to somatic cells. Uncovering these mechanisms would maximize the impact in drug discovery with a higher translational applicability. The unbiased approach used in phenotype-based drug discovery (PDD programs can offer a unique opportunity to identify such novel biological phenomenon. Here, we describe an integrated phenotypic screening approach, employing a combination of in vitro and in vivo PDD models to identify a small molecule increasing stem cell proliferation. We demonstrate that a combination of both in vitro and in vivo screening models improves hit identification and reproducibility of effects across various PDD models. Using cell viability and colony size phenotype measurement we characterize the structure activity relationship of the lead molecule, and identify that the small molecule inhibits phosphorylation of ERK2 and promotes stem cell proliferation. This study demonstrates a PDD approach that employs combinatorial models to identify compounds promoting stem cell proliferation.

  18. Small Molecule Drug Discovery at the Glucagon-Like Peptide-1 Receptor

    Directory of Open Access Journals (Sweden)

    Francis S. Willard

    2012-01-01

    Full Text Available The therapeutic success of peptide glucagon-like peptide-1 (GLP-1 receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small molecule GLP-1 receptor agonists. Although the GLP-1 receptor is a member of the structurally complex class B1 family of GPCRs, in recent years, a diverse array of orthosteric and allosteric nonpeptide ligands has been reported. These compounds include antagonists, agonists, and positive allosteric modulators with intrinsic efficacy. In this paper, a comprehensive review of currently disclosed small molecule GLP-1 receptor ligands is presented. In addition, examples of “ligand bias” and “probe dependency” for the GLP-1 receptor are discussed; these emerging concepts may influence further optimization of known molecules or persuade designs of expanded screening strategies to identify novel chemical starting points for GLP-1 receptor drug discovery.

  19. Transcriptional analysis of antiviral small molecule therapeutics as agonists of the RLR pathway

    Directory of Open Access Journals (Sweden)

    R.R. Green

    2016-03-01

    Full Text Available The recognition of pathogen associated molecular patterns (PAMPs by pattern recognition receptors (PRR during viral infection initiates the induction of antiviral signaling pathways, including activation of the Interferon Regulator Factor 3 (IRF3. We identified small molecule compounds that activate IRF3 through MAVS, thereby inhibiting infection by viruses of the families Flaviviridae (West Nile virus, dengue virus and hepatitis C virus, Filoviridae (Ebola virus, Orthomyxoviridae (influenza A virus, Arenaviridae (Lassa virus and Paramyxoviridae (respiratory syncytial virus, Nipah virus (1. In this study, we tested a lead compound along with medicinal chemistry-derived analogs to compare the gene transcriptional profiles induced by these molecules to that of other known MAVS-dependent IRF3 agonists. Transcriptional analysis of these small molecules revealed the induction of specific antiviral genes and identified a novel module of host driven immune regulated genes that suppress infection of a range of RNA viruses. Microarray data can be found in Gene Expression Omnibus (GSE74047.

  20. Computational Analysis and Predictive Cheminformatics Modeling of Small Molecule Inhibitors of Epigenetic Modifiers.

    Directory of Open Access Journals (Sweden)

    Salma Jamal

    Full Text Available The dynamic and differential regulation and expression of genes is majorly governed by the complex interactions of a subset of biomolecules in the cell operating at multiple levels starting from genome organisation to protein post-translational regulation. The regulatory layer contributed by the epigenetic layer has been one of the favourite areas of interest recently. This layer of regulation as we know today largely comprises of DNA modifications, histone modifications and noncoding RNA regulation and the interplay between each of these major components. Epigenetic regulation has been recently shown to be central to development of a number of disease processes. The availability of datasets of high-throughput screens for molecules for biological properties offer a new opportunity to develop computational methodologies which would enable in-silico screening of large molecular libraries.In the present study, we have used data from high throughput screens for the inhibitors of epigenetic modifiers. Computational predictive models were constructed based on the molecular descriptors. Machine learning algorithms for supervised training, Naive Bayes and Random Forest, were used to generate predictive models for the small molecule inhibitors of histone methyl-transferases and demethylases. Random forest, with the accuracy of 80%, was identified as the most accurate classifier. Further we complemented the study with substructure search approach filtering out the probable pharmacophores from the active molecules leading to drug molecules.We show that effective use of appropriate computational algorithms could be used to learn molecular and structural correlates of biological activities of small molecules. The computational models developed could be potentially used to screen and identify potential new biological activities of molecules from large molecular libraries and prioritise them for in-depth biological assays. To the best of our knowledge, this is

  1. Design of a bioactive small molecule that targets r(AUUCU) repeats in spinocerebellar ataxia 10.

    Science.gov (United States)

    Yang, Wang-Yong; Gao, Rui; Southern, Mark; Sarkar, Partha S; Disney, Matthew D

    2016-06-01

    RNA is an important target for chemical probes of function and lead therapeutics; however, it is difficult to target with small molecules. One approach to tackle this problem is to identify compounds that target RNA structures and utilize them to multivalently target RNA. Here we show that small molecules can be identified to selectively bind RNA base pairs by probing a library of RNA-focused small molecules. A small molecule that selectively binds AU base pairs informed design of a dimeric compound (2AU-2) that targets the pathogenic RNA, expanded r(AUUCU) repeats, that causes spinocerebellar ataxia type 10 (SCA10) in patient-derived cells. Indeed, 2AU-2 (50 nM) ameliorates various aspects of SCA10 pathology including improvement of mitochondrial dysfunction, reduced activation of caspase 3, and reduction of nuclear foci. These studies provide a first-in-class chemical probe to study SCA10 RNA toxicity and potentially define broadly applicable compounds targeting RNA AU base pairs in cells.

  2. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    Science.gov (United States)

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example. Copyright © 2016. Published by Elsevier Ltd.

  3. A semantic web ontology for small molecules and their biological targets.

    Science.gov (United States)

    Choi, Jooyoung; Davis, Melissa J; Newman, Andrew F; Ragan, Mark A

    2010-05-24

    A wide range of data on sequences, structures, pathways, and networks of genes and gene products is available for hypothesis testing and discovery in biological and biomedical research. However, data describing the physical, chemical, and biological properties of small molecules have not been well-integrated with these resources. Semantically rich representations of chemical data, combined with Semantic Web technologies, have the potential to enable the integration of small molecule and biomolecular data resources, expanding the scope and power of biomedical and pharmacological research. We employed the Semantic Web technologies Resource Description Framework (RDF) and Web Ontology Language (OWL) to generate a Small Molecule Ontology (SMO) that represents concepts and provides unique identifiers for biologically relevant properties of small molecules and their interactions with biomolecules, such as proteins. We instanced SMO using data from three public data sources, i.e., DrugBank, PubChem and UniProt, and converted to RDF triples. Evaluation of SMO by use of predetermined competency questions implemented as SPARQL queries demonstrated that data from chemical and biomolecular data sources were effectively represented and that useful knowledge can be extracted. These results illustrate the potential of Semantic Web technologies in chemical, biological, and pharmacological research and in drug discovery.

  4. A Reaction Database for Small Molecule Pharmaceutical Processes Integrated with Process Information

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Anantpinijwatna, Amata; Woodley, John

    2017-01-01

    This article describes the development of a reaction database with the objective to collect data for multiphase reactions involved in small molecule pharmaceutical processes with a search engine to retrieve necessary data in investigations of reaction-separation schemes, such as the role of organ...

  5. Self-assembly of small-molecule fumaramides allows transmembrane chloride channel formation.

    Science.gov (United States)

    Roy, Arundhati; Gautam, Amitosh; Malla, Javid Ahmad; Sarkar, Sohini; Mukherjee, Arnab; Talukdar, Pinaki

    2018-02-20

    This study reports the formation of self-assembled transmembrane anion channels by small-molecule fumaramides. Such artificial ion channel formation was confirmed by ion transport across liposomes and by planar bilayer conductance measurements. The geometry-optimized model of the channel and Cl - ion selectivity within the channel lumen was also illustrated.

  6. DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins.

    Science.gov (United States)

    Tan, Kuan Pern; Varadarajan, Raghavan; Madhusudhan, M S

    2011-07-01

    Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein-protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery.

  7. Small-molecule-hosting nanocomposite films with multiple bacteria-triggered responses

    NARCIS (Netherlands)

    Pavlukhina, Svetlana; Zhuk, Iryna; Mentbayeva, Almagul; Rautenberg, Emily; Chang, Wei; Yu, Xiaojun; van de Belt-Gritter, Betsy; Busscher, Henk J.; van der Mei, Henny C.; Sukhishvili, Svetlana A.

    We report pH/bacteria-responsive nanocomposite coatings with multiple mechanisms of antibacterial protection that include the permanent retention of antimicrobials, bacteria-triggered release of antibiotics and bacteria-induced film swelling. A novel small-molecule-hosting film was constructed using

  8. Comparative analyses of a small molecule/enzyme interaction by multiple users of Biacore technology

    NARCIS (Netherlands)

    Cannon, M.J.; Papalia, G.A.; Navratilova, I.; Fisher, R.J.; Roberts, L.R.; Worthy, K.M.; Stephen, A.G.; Marchesini, G.R.; Collins, E.J.; Casper, D.; Qiu, H.; Satpaev, D.; Liparoto, S.F.; Rice, D.A.; Gorshkova, I.; Darling, R.J.; Bennett, D.B.; Sekar, M.; Hommema, E.; Liang, A.M.; Day, E.S.; Inman, J.; Karlicek, S.H.; Ullrich, S.J.; Hodges, D.; Chu, T.; Sullivan, E.; Simpson, J.; Rafique, A.; Luginbühl, B.; Nyholm Westin, S.; Bynum, M.; Cachia, P.; Li, Y.J.; Kao, D.; Neurauter, A.; Wong, M.

    2004-01-01

    To gauge the experimental variability associated with Biacore analysis, 36 different investigators analyzed a small molecule/enzyme interaction under similar conditions. Acetazolamide (222 g/mol) binding to carbonic anhydrase II (CAII; 30,000 Da) was chosen as a model system. Both reagents were

  9. Comment on "A small-molecule antivirulence agent for treating Clostridium difficile infection".

    Science.gov (United States)

    Beilhartz, Greg L; Tam, John; Zhang, Zhifen; Melnyk, Roman A

    2016-12-21

    New insights into the mechanism of action of ebselen, a small-molecule antivirulence agent that reduces disease pathology in a mouse model of Clostridium difficile infection, suggest a different molecular target may be responsible for its efficacy. Copyright © 2016, American Association for the Advancement of Science.

  10. Small molecules as therapy for uveitis: a selected perspective of new and developing agents.

    Science.gov (United States)

    Pleyer, Uwe; Algharably, Engi Abdel-Hady; Feist, Eugen; Kreutz, Reinhold

    2017-09-01

    Intraocular inflammation (uveitis) remains a significant burden of legal blindness. Because of its immune mediated and chronic recurrent nature, common therapy includes corticosteroids, disease-modifying anti-rheumatic drugs and more recently biologics as immune modulatory agents. The purpose of this article is to identify the role of new treatment approaches focusing on small molecules as therapeutic option in uveitis. Areas covered: A MEDLINE database search was conducted through February 2017 using the terms 'uveitis' and 'small molecule'. To provide ongoing and future perspectives in treatment options, also clinical trials as registered at ClinicalTrials.gov were included. Both, results from experimental as well as clinical research in this field were included. Since this field is rapidly evolving, a selection of promising agents had to be made. Expert opinion: Small molecules may interfere at different steps of the inflammatory cascade and appear as an interesting option in the treatment algorithm of uveitis. Because of their highly targeted molecular effects and their favorable bioavailability with the potential of topical application small molecules hold great promise. Nevertheless, a careful evaluation of these agents has to be made, since current experience is almost exclusively based on experimental uveitis models and few registered trials.

  11. A blend of small molecules regulates both mating and development in Caenorhabditis elegans

    Science.gov (United States)

    In many organisms, population density sensing and sexual attraction rely on small molecule-based signaling systems. In the nematode Caenorhabditis elegans, population density is monitored via specific glycosides of the dideoxysugar ascarylose that promote entry into an alternate larval stage, the no...

  12. Small molecule inhibition of protein depalmitoylation as a new approach towards downregulation of oncogenic Ras signalling

    NARCIS (Netherlands)

    Dekker, Frank J.; Hedberg, Christian

    2011-01-01

    The H- and N-Ras GTPases are prominent examples of proteins, whose localizations and signalling capacities are regulated by reversible palmitoylations and depalmitoylations. Recently, the novel small molecule inhibitor palmostatin B has been described to inhibit Ras depalmitoylation and to revert

  13. Small molecule absorption by PDMS in the context of drug response bioassays

    NARCIS (Netherlands)

    van Meer, B.J.; de Vries, H.; Firth, K.S.A.; van Weerd, Jasper; Tertoolen, L.G.J.; Karperien, Hermanus Bernardus Johannes; Jonkheijm, Pascal; Denning, C.; IJzerman, A.P.; Mummery, Christine Lindsay

    2017-01-01

    The polymer polydimethylsiloxane (PDMS) is widely used to build microfluidic devices compatible with cell culture. Whilst convenient in manufacture, PDMS has the disadvantage that it can absorb small molecules such as drugs. In microfluidic devices like "Organs-on-Chip", designed to examine cell

  14. Small-molecule azomethines : Organic photovoltaics via Schiff base condensation chemistry

    NARCIS (Netherlands)

    Petrus, M.L.; Bouwer, R.K.M.; Lafont, U.; Athanasopoulos, S.; Greenham, N.C.; Dingemans, T.J.

    2014-01-01

    Conjugated small-molecule azomethines for photovoltaic applications were prepared via Schiff base condensation chemistry. Bulk heterojunction (BHJ) devices exhibit efficiencies of 1.2% with MoOx as the hole-transporting layer. The versatility and simplicity of the chemistry is illustrated by

  15. Discovery of a quorum sensing modulator pharmacophore by 3D small-molecule microarray screening

    DEFF Research Database (Denmark)

    Marsden, David M; Nicholson, Rebecca L; Skindersoe, Mette E

    2010-01-01

    The screening of large arrays of drug-like small-molecules was traditionally a time consuming and resource intensive task. New methodology developed within our laboratories provides an attractive low cost, 3D microarray-assisted screening platform that could be used to rapidly assay thousands of ...

  16. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer

    DEFF Research Database (Denmark)

    Chang, Joan; Lucas, Morghan C; Leonte, Lidia Elena

    2017-01-01

    Lysyl Oxidase-like 2 (LOXL2), a member of the lysyl oxidase family of amine oxidases is known to be important in normal tissue development and homeostasis, as well as the onset and progression of solid tumors. Here we tested the anti-tumor properties of two generations of novel small molecule LOXL2...

  17. Gold Nanoparticles Surface Plasmon Resonance Enhanced Signal for the Detection of Small Molecules on Split-Aptamer Microarrays (Small Molecules Detection from Split-Aptamers

    Directory of Open Access Journals (Sweden)

    Feriel Melaine

    2015-02-01

    Full Text Available The detection of small molecules by biosensors remains a challenge for diagnostics in many areas like pharmacology, environment or homeland security. The main difficulty comes from both the low molecular weight and low concentrations of most targets, which generally requires an indirect detection with an amplification or a sandwich procedure. In this study, we combine both strategies as the amplification of Surface Plasmon Resonance imaging (SPRi signal is obtained by the use of gold nanoparticles and the sequence engineering of split-aptamers, short oligonucleotides strands with strong affinity towards small targets, allows for a sandwich structure. Combining those two strategies, we obtained state-of-the-art results in the limit of detection (LOD = 50 nM with the model target adenosine. Furthermore, the SPRi detection led on aptamer microarrays paves the way for potential multi-target detections thanks to the multi-probe imaging approach.

  18. Targeting Innate Immunity for Antiviral Therapy through Small Molecule Agonists of the RLR Pathway

    Science.gov (United States)

    Pattabhi, Sowmya; Wilkins, Courtney R.; Dong, Ran; Knoll, Megan L.; Posakony, Jeffrey; Kaiser, Shari; Mire, Chad E.; Wang, Myra L.; Ireton, Renee C.; Geisbert, Thomas W.; Bedard, Kristin M.; Iadonato, Shawn P.

    2015-01-01

    ABSTRACT The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can

  19. Evaluation of EML4-ALK Fusion Proteins in Non–Small Cell Lung Cancer Using Small Molecule Inhibitors

    Directory of Open Access Journals (Sweden)

    Yongjun Li

    2011-01-01

    Full Text Available The echinoderm microtubule–associated protein-like 4–anaplastic lymphoma kinase (EML4-ALK fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non–small cell lung cancer and is mu-tually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non–small cell lung cancer (NSCLC. We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mech-anism of EML4-ALK inhibition by a small molecule inhibitor.

  20. Small Molecule Modulator of p53 Signaling Pathway: Application for Radiosensitizing or Radioprotection Agents

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sang Taek; Cho, Mun Ju; Gwak, Jung Sug; Ryu, Min Jung [PharmacoGenomics Research Center, Inje University, Busan (Korea, Republic of); Song, Jie Young; Yun, Yeon Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    The tumor suppressor p53 is key molecule to protect the cell against genotoxic stress and..the most frequently mutated..protein..in cancer cells. Lack of functional p53..is accompanied by high rate of genomic instability, rapid tumor progression, resistance to anticancer therapy, and increased angiogenesis. In response to DNA damage, p53 protein rapidly accumulated through attenuated proteolysis and is also activated as transcription factor. Activated p53 up-regulates target genes involved in cell cycle arrest and/or apoptosis and then lead to suppression of malignant transformation and the maintenance of genomic integrity. Chemical genetics is a new technology to uncover the signaling networks that regulated biological phenotype using exogenous reagents such as small molecules. Analogous to classical forward genetic screens in model organism, this approach makes use of high throughput, phenotypic assay to identify small molecules that disrupt gene product function in a way that alters a phenotype of interest. Recently, interesting small molecules were identified from cell based high throughput screening and its target protein or mechanism of action were identified by various methods including affinity chromatography, protein array profiling, mRNA or phage display, transcription profiling, and RNA interference.

  1. "Missing Tooth" Multidomain Peptide Nanofibers for Delivery of Small Molecule Drugs.

    Science.gov (United States)

    Li, I-Che; Moore, Amanda N; Hartgerink, Jeffrey D

    2016-06-13

    The clinical administration of many small molecule hydrophobic drugs is challenged by the insolubility of these drugs under physiological conditions. Because of this, the development of biocompatible scaffolds capable of effectively delivering hydrophobic drug molecules is of particular interest. Multidomain peptides (MDPs) provide biocompatible hydrogel scaffolds that are injectable and space-conforming, allowing for in situ delivery of a variety of drugs. Here we demonstrate that through manipulation of peptide primary sequence, a molecular cavity can be incorporated into the hydrophobic core of these peptide nanofibers allowing for encapsulation and delivery of small molecule drugs with poor water solubility. Using SN-38, daunorubicin, diflunisal, etodolac, levofloxacin, and norfloxacin, we demonstrate drug encapsulation and release from multidomain peptide fibers. Steady-state fluorescence and drug release studies show that hydrogels loaded with SN-38, diflunisal, and etodolac exhibit prolonged drug release profiles due to intrafibrillar drug encapsulation. This study establishes multidomain peptides as promising carriers for localized in situ delivery of small molecule drugs with poor water solubility.

  2. Design and synthesis of small molecule agonists of EphA2 receptor.

    Science.gov (United States)

    Petty, Aaron; Idippily, Nethrie; Bobba, Viharika; Geldenhuys, Werner J; Zhong, Bo; Su, Bin; Wang, Bingcheng

    2018-01-01

    Ligand-independent activation of EphA2 receptor kinase promotes cancer metastasis and invasion. Activating EphA2 receptor tyrosine kinase with small molecule agonist is a novel strategy to treat EphA2 overexpressing cancer. In this study, we performed a lead optimization of a small molecule Doxazosin that was identified as an EphA2 receptor agonist. 33 new analogs were developed and evaluated; a structure-activity relationship was summarized based on the EphA2 activation of these derivatives. Two new derivative compounds 24 and 27 showed much improved activity compared to Doxazosin. Compound 24 possesses a bulky amide moiety, and compound 27 has a dimeric structure that is very different to the parental compound. Compound 27 with a twelve-carbon linker of the dimer activated the kinase and induced receptor internalization and cell death with the best potency. Another dimer with a six-carbon linker has significantly reduced potency compared to the dimer with a longer linker, suggesting that the length of the linker is critical for the activity of the dimeric agonist. To explore the receptor binding characteristics of the new molecules, we applied a docking study to examine how the small molecule binds to the EphA2 receptor. The results reveal that compounds 24 and 27 form more hydrogen bonds to EphA2 than Doxazosin, suggesting that they may have higher binding affinity to the receptor. Published by Elsevier Masson SAS.

  3. Optimized Distributed Feedback Dye Laser Sensor for Real-Time Monitoring of Small Molecule Diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron; Dufva, Martin

    2014-01-01

    Nanoimprinted distributed feedback dye laser sensors featuring multilayer slab waveguides are presented. A simple yet precise analytical model is used to optimize the lasers in order to give highest sensitivity and it is found that the thickness of a high index TiO2 top layer is the most important...... parameter for optimization. Using such laser sensors in an imaging spectroscopy setup, real-time label-free monitoring of sugar molecule diffusion in water is demonstrated. This method could potentially pave the way towards the analysis of small molecule diffusion in various media, e.g. protein signaling...

  4. Alkyne-tag Raman imaging of bio-active small molecules in live cells

    Science.gov (United States)

    Ando, Jun; Palonpon, Almar F.; Yamakoshi, Hiroyuki; Dodo, Kosuke; Kawata, Satoshi; Sodeoka, Mikiko; Fujita, Katsumasa

    2015-12-01

    Raman microscopy is useful for molecular imaging and analysis of biological specimens. Here, we used alkyne containing a carbon-carbon triple bond as a Raman tag for observing small molecules in live cells. Alkyne tags can maintain original properties of target molecules with providing high chemical specificity owing to its distinct peak in a Raman-silent window of biomolecules. For demonstrations, alkyne-tagged thymidine and coenzyme Q analogue in live cells were visualized with high-spatial resolution. We extended the application of alkyne-tag imaging to visualize cell organelles and specific lipid components in artificial monolayer membranes.

  5. Lateral Flow Aptasensor for Small Molecule Targets Exploiting Adsorption and Desorption Interactions on Gold Nanoparticles.

    Science.gov (United States)

    Alsager, Omar A; Kumar, Shalen; Hodgkiss, Justin M

    2017-07-18

    A lateral flow assay (LFA) can provide a rapid and cost-effective means to detect targets in situ; however, existing LFA formats (predominantly sandwich assays) are not suitable for small molecule targets. We present a new LFA design that probes the dissociation of aptamers from the surface of gold nanoparticles upon recognition of small targets. The target-induced removal of aptamer molecules from the surface of the colored particles results in the particles being captured on a test line comprised of the protein bovine serum albumin immobilized on nitrocellulose. On the other hand, in the absence of target, aptamer coated particles are protected from capture on the test line and are instead captured at a control line comprised of the protein lysozyme. This protein is strongly positively charged under measurement conditions and therefore captures all gold nanoparticles regardless of the presence of aptamers. The effectiveness and operation mechanism of this simply fabricated sensor was demonstrated by using a previously reported 35-mer aptamer for a small molecule, 17β-estradiol. The sensor exhibited nanomolar level of detection, excellent selectivity against potential interfering molecules, and robust operation in natural river water samples. The simplicity and performance of the sensor platform renders it applicable to a wide range of other aptamers targeting small molecules, as we demonstrated with a novel bisphenol A aptamer. Additionally, we show that our LFA design is not confined to the specific proteins used as test and control lines, provided that their charge is appropriate to modulate the interaction with aptamer-coated or bare nanoparticles.

  6. A geometry-based simulation of the hydration of ions and small molecules

    CERN Document Server

    Plumridge, T H

    2001-01-01

    software has been tested with a set of twenty widely varying solutes and has produced results which generally agree with experimental data for structure makers and breakers, and also agrees well with traditional techniques such as molecular dynamics and Monte Carlo techniques. The behaviour of solutes in water is of universal significance, but still not fully understood. This thesis provides details of a new computer simulation technique used to investigate the hydration of ions and small molecules. In contrast to conventional techniques such as molecular dynamics, this is a purely geometric method involving no forcefield or energy terms. Molecules of interest are modelled using crystallographic data to ensure that the structures are accurate. Water molecules are added randomly at any hydrogen bonding site in chains. At each addition the chain is rotated through all available space testing for the possibility of ring formation. The constraints used by the program to decide whether a ring should be conserved, ...

  7. Molecular locks and keys: the role of small molecules in phytohormone research

    Directory of Open Access Journals (Sweden)

    Sandra eFonseca

    2014-12-01

    Full Text Available Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signalling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signalling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function.Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signalling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated responses. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds.

  8. Activation of the stress proteome as a mechanism for small molecule therapeutics.

    Science.gov (United States)

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D

    2012-10-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.

  9. Small-Molecule Inhibitor Leads of Ribosome-Inactivating Proteins Developed Using the Doorstop Approach

    Science.gov (United States)

    Pang, Yuan-Ping; Park, Jewn Giew; Wang, Shaohua; Vummenthala, Anuradha; Mishra, Rajesh K.; McLaughlin, John E.; Di, Rong; Kahn, Jennifer Nielsen; Tumer, Nilgun E.; Janosi, Laszlo; Davis, Jon; Millard, Charles B.

    2011-01-01

    Ribosome-inactivating proteins (RIPs) are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL), thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2), produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2) from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays. PMID:21455295

  10. Small-molecule inhibitor leads of ribosome-inactivating proteins developed using the doorstop approach.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    2011-03-01

    Full Text Available Ribosome-inactivating proteins (RIPs are toxic because they bind to 28S rRNA and depurinate a specific adenine residue from the α-sarcin/ricin loop (SRL, thereby inhibiting protein synthesis. Shiga-like toxins (Stx1 and Stx2, produced by Escherichia coli, are RIPs that cause outbreaks of foodborne diseases with significant morbidity and mortality. Ricin, produced by the castor bean plant, is another RIP lethal to mammals. Currently, no US Food and Drug Administration-approved vaccines nor therapeutics exist to protect against ricin, Shiga-like toxins, or other RIPs. Development of effective small-molecule RIP inhibitors as therapeutics is challenging because strong electrostatic interactions at the RIP•SRL interface make drug-like molecules ineffective in competing with the rRNA for binding to RIPs. Herein, we report small molecules that show up to 20% cell protection against ricin or Stx2 at a drug concentration of 300 nM. These molecules were discovered using the doorstop approach, a new approach to protein•polynucleotide inhibitors that identifies small molecules as doorstops to prevent an active-site residue of an RIP (e.g., Tyr80 of ricin or Tyr77 of Stx2 from adopting an active conformation thereby blocking the function of the protein rather than contenders in the competition for binding to the RIP. This work offers promising leads for developing RIP therapeutics. The results suggest that the doorstop approach might also be applicable in the development of other protein•polynucleotide inhibitors as antiviral agents such as inhibitors of the Z-DNA binding proteins in poxviruses. This work also calls for careful chemical and biological characterization of drug leads obtained from chemical screens to avoid the identification of irrelevant chemical structures and to avoid the interference caused by direct interactions between the chemicals being screened and the luciferase reporter used in screening assays.

  11. When "small" terms matter: Coupled interference features in the transport properties of cross-conjugated molecules.

    Science.gov (United States)

    Solomon, Gemma C; Bergfield, Justin P; Stafford, Charles A; Ratner, Mark A

    2011-01-01

    Quantum interference effects offer opportunities to tune the electronic and thermoelectric response of a quantum-scale device over orders of magnitude. Here we focus on single-molecule devices, in which interference features may be strongly affected by both chemical and electronic modifications to the system. Although not always desirable, such a susceptibility offers insight into the importance of "small" terms, such as through-space coupling and many-body charge-charge correlations. Here we investigate the effect of these small terms using different Hamiltonian models with Hückel, gDFTB and many-body theory to calculate the transport through several single-molecule junctions, finding that terms that are generally thought to only slightly perturb the transport instead produce significant qualitative changes in the transport properties. In particular, we show that coupling of multiple interference features in cross-conjugated molecules by through-space coupling will lead to splitting of the features, as can correlation effects. The degeneracy of multiple interference features in cross-conjugated molecules appears to be significantly more sensitive to perturbations than those observed in equivalent cyclic systems and this needs to be considered if such supernodes are required for molecular thermoelectric devices.

  12. Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules.

    Science.gov (United States)

    Pan, Shih-Jung; Tapley, Asa; Adamson, John; Little, Tessa; Urbanowski, Michael; Cohen, Keira; Pym, Alexander; Almeida, Deepak; Dorasamy, Afton; Layre, Emilie; Young, David C; Singh, Ravesh; Patel, Vinod B; Wallengren, Kristina; Ndung'u, Thumbi; Wilson, Douglas; Moody, D Branch; Bishai, William

    2015-12-01

    Improved biomarkers are needed for tuberculosis. To develop tests based on products secreted by tubercle bacilli that are strictly associated with viability, we evaluated 3 bacterial-derived, species-specific, small molecules as biomarkers: 2 mycobactin siderophores and tuberculosinyladenosine. Using liquid chromatography-tandem mass spectrometry, we demonstrated the presence of 1 or both mycobactins and/or tuberculosinyladenosine in serum and whole lung tissues from infected mice and sputum, cerebrospinal fluid (CSF), or lymph nodes from infected patients but not uninfected controls. Detection of the target molecules distinguished host infection status in 100% of mice with both serum and lung as the target sample. In human subjects, we evaluated detection of the bacterial small molecules (BSMs) in multiple body compartments in 3 patient cohorts corresponding to different forms of tuberculosis. We detected at least 1 of the 3 molecules in 90%, 71%, and 40% of tuberculosis patients' sputum, CSF, and lymph node samples, respectively. In paucibacillary forms of human tuberculosis, which are difficult to diagnose even with culture, detection of 1 or more BSM was rapid and compared favorably to polymerase chain reaction-based detection. Secreted BSMs, detectable in serum, warrant further investigation as a means for diagnosis and therapeutic monitoring in patients with tuberculosis. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation

    Science.gov (United States)

    Plate, Lars; Cooley, Christina B; Chen, John J; Paxman, Ryan J; Gallagher, Ciara M; Madoux, Franck; Genereux, Joseph C; Dobbs, Wesley; Garza, Dan; Spicer, Timothy P; Scampavia, Louis; Brown, Steven J; Rosen, Hugh; Powers, Evan T; Walter, Peter; Hodder, Peter; Wiseman, R Luke; Kelly, Jeffery W

    2016-01-01

    Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. The ER reprogramming afforded by our molecules requires activation of endogenous ATF6 and occurs independent of global ER stress. Furthermore, our molecules phenocopy the ability of genetic ATF6 activation to selectively reduce secretion and extracellular aggregation of amyloidogenic proteins. These results show that small molecule-dependent ER reprogramming, achieved through preferential activation of the ATF6 transcriptional program, is a promising strategy to ameliorate imbalances in ER function associated with degenerative protein aggregation diseases. DOI: http://dx.doi.org/10.7554/eLife.15550.001 PMID:27435961

  14. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor.

    Science.gov (United States)

    Wu, Chia-Yung; Roybal, Kole T; Puchner, Elias M; Onuffer, James; Lim, Wendell A

    2015-10-16

    There is growing interest in using engineered cells as therapeutic agents. For example, synthetic chimeric antigen receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, these engineered T cells can exhibit excessive activity that is difficult to control and can cause severe toxicity. We designed "ON-switch" CARs that enable small-molecule control over T cell therapeutic functions while still retaining antigen specificity. In these split receptors, antigen-binding and intracellular signaling components assemble only in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate cell-autonomous recognition and user control. Copyright © 2015, American Association for the Advancement of Science.

  15. Approaches to Validate and Manipulate RNA Targets with Small Molecules in Cells.

    Science.gov (United States)

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-01-01

    RNA has become an increasingly important target for therapeutic interventions and for chemical probes that dissect and manipulate its cellular function. Emerging targets include human RNAs that have been shown to directly cause cancer, metabolic disorders, and genetic disease. In this review, we describe various routes to obtain bioactive compounds that target RNA, with a particular emphasis on the development of small molecules. We use these cases to describe approaches that are being developed for target validation, which include target-directed cleavage, classic pull-down experiments, and covalent cross-linking. Thus, tools are available to design small molecules to target RNA and to identify the cellular RNAs that are their targets.

  16. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Feng Gao

    2016-08-01

    Full Text Available Characterization of the chemical environment, movement, trafficking and interactions of proteins in live cells is essential to understanding their functions. Labeling protein with functional molecules is a widely used approach in protein research to elucidate the protein location and functions both in vitro and in live cells or in vivo. A peptide or a protein tag fused to the protein of interest and provides the opportunities for an attachment of small molecule probes or other fluorophore to image the dynamics of protein localization. Here we reviewed the recent development of no-wash small molecular probes for photoactive yellow protein (PYP-tag, by the means of utilizing a quenching mechanism based on the intramolecular interactions, or an environmental-sensitive fluorophore. Several fluorogenic probes have been developed, with fast labeling kinetics and cell permeability. This technology allows quick live-cell imaging of cell-surface and intracellular proteins without a wash-out procedure.

  17. Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor.

    Science.gov (United States)

    Glasgow, Jeff E; Asensio, Michael A; Jakobson, Christopher M; Francis, Matthew B; Tullman-Ercek, Danielle

    2015-09-18

    Nature uses protein compartmentalization to great effect for control over enzymatic pathways, and the strategy has great promise for synthetic biology. In particular, encapsulation in nanometer-sized containers to create nanoreactors has the potential to elicit interesting, unexplored effects resulting from deviations from well-understood bulk processes. Self-assembled protein shells for encapsulation are especially desirable for their uniform structures and ease of perturbation through genetic mutation. Here, we use the MS2 capsid, a well-defined porous 27 nm protein shell, as an enzymatic nanoreactor to explore pore-structure effects on substrate and product flux during the catalyzed reaction. Our results suggest that the shell can influence the enzymatic reaction based on charge repulsion between small molecules and point mutations around the pore structure. These findings also lend support to the hypothesis that protein compartments modulate the transport of small molecules and thus influence metabolic reactions and catalysis in vitro.

  18. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency.

    Science.gov (United States)

    Liu, Yongsheng; Chen, Chun-Chao; Hong, Ziruo; Gao, Jing; Yang, Yang Michael; Zhou, Huanping; Dou, Letian; Li, Gang; Yang, Yang

    2013-11-28

    A two-dimensional conjugated small molecule (SMPV1) was designed and synthesized for high performance solution-processed organic solar cells. This study explores the photovoltaic properties of this molecule as a donor, with a fullerene derivative as an acceptor, using solution processing in single junction and double junction tandem solar cells. The single junction solar cells based on SMPV1 exhibited a certified power conversion efficiency of 8.02% under AM 1.5 G irradiation (100 mW cm(-2)). A homo-tandem solar cell based on SMPV1 was constructed with a novel interlayer (or tunnel junction) consisting of bilayer conjugated polyelectrolyte, demonstrating an unprecedented PCE of 10.1%. These results strongly suggest solution-processed small molecular materials are excellent candidates for organic solar cells.

  19. Using RosettaLigand for small molecule docking into comparative models.

    Directory of Open Access Journals (Sweden)

    Kristian W Kaufmann

    Full Text Available Computational small molecule docking into comparative models of proteins is widely used to query protein function and in the development of small molecule therapeutics. We benchmark RosettaLigand docking into comparative models for nine proteins built during CASP8 that contain ligands. We supplement the study with 21 additional protein/ligand complexes to cover a wider space of chemotypes. During a full docking run in 21 of the 30 cases, RosettaLigand successfully found a native-like binding mode among the top ten scoring binding modes. From the benchmark cases we find that careful template selection based on ligand occupancy provides the best chance of success while overall sequence identity between template and target do not appear to improve results. We also find that binding energy normalized by atom number is often less than -0.4 in native-like binding modes.

  20. Structure-Based DNA-Targeting Strategies with Small Molecule Ligands for Drug Discovery

    Science.gov (United States)

    Sheng, Jia; Gan, Jianhua; Huang, Zhen

    2014-01-01

    Nucleic acids are the molecular targets of many clinical anticancer drugs. However, compared with proteins, nucleic acids have traditionally attracted much less attention as drug targets in structure-based drug design, partially because limited structural information of nucleic acids complexed with potential drugs is available. Over the past several years, enormous progresses in nucleic acid crystallization, heavy-atom derivatization, phasing, and structural biology have been made. Many complicated nucleic acid structures have been determined, providing new insights into the molecular functions and interactions of nucleic acids, especially DNAs complexed with small molecule ligands. Thus, opportunities have been created to further discover nucleic acid-targeting drugs for disease treatments. This review focuses on the structure studies of DNAs complexed with small molecule ligands for discovering lead compounds, drug candidates, and/or therapeutics. PMID:23633219

  1. Identification of small molecule inhibitors of phosphatidylinositol 3-kinase and autophagy

    DEFF Research Database (Denmark)

    Farkas, Thomas; Daugaard, Mads; Jaattela, Marja

    2011-01-01

    ) as a direct target of KU55933 and Gö6976. Importantly, and in contrast to the currently available inhibitors of autophagosome formation (e.g. 3-methyladenine), none of the three compounds inhibited the cell survival promoting class I phosphoinositide 3-kinase-Akt signaling at the concentrations required...... by the lack of specific small molecule inhibitors. Thus, we screened two small molecule kinase inhibitor libraries for inhibitors of rapamycin-induced autophagic flux. The three most potent inhibitors identified conferred profound inhibition of autophagic flux by inhibiting the formation of autophagosomes....... Notably, the autophagy inhibitory effects of all three compounds were independent of their established kinase targets, i.e. ataxia telangiectasia mutated for KU55933, protein kinase C for Gö6976, and Janus kinase 3 for Jak3 inhibitor VI. Instead, we identified phosphatidylinositol 3-kinase (PtdIns3K...

  2. Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts

    Science.gov (United States)

    Knowles, Robert R.; Jacobsen, Eric N.

    2010-01-01

    Catalysis by neutral, organic, small molecules capable of binding and activating substrates solely via noncovalent interactions—particularly H-bonding—has emerged as an important approach in organocatalysis. The mechanisms by which such small molecule catalysts induce high enantioselectivity may be quite different from those used by catalysts that rely on covalent interactions with substrates. Attractive noncovalent interactions are weaker, less distance dependent, less directional, and more affected by entropy than covalent interactions. However, the conformational constraint required for high stereoinduction may be achieved, in principle, if multiple noncovalent attractive interactions are operating in concert. This perspective will outline some recent efforts to elucidate the cooperative mechanisms responsible for stereoinduction in highly enantioselective reactions promoted by noncovalent catalysts. PMID:20956302

  3. Luminescent zinc metal-organic framework (ZIF-90) for sensing metal ions, anions and small molecules.

    Science.gov (United States)

    Liu, Chang; Yan, Bing

    2015-09-26

    We synthesize a zinc zeolite-type metal-organic framework, the zeolitic imidazolate framework (ZIF-90), which exhibits an intense blue luminescence excited under visible light. Luminescent studies indicate that ZIF-90 could be an efficient multifunctional fluorescence material for high sensitivity metal ions, anions and organic small molecules, especially for Cd(2+), Cu(2+), CrO4(2-) and acetone. The luminescence intensity of ZIF-90 increases with the concentration of Cd(2+) and decreases proportionally with the concentration of Cu(2+), while the same quenched experimental phenomena appear in the sensing of CrO4(2-). With the increase of the amount of acetone, the luminescence intensity decreases gradually in the emulsions of ZIF-90. The mechanism of the sensing properties is studied in detail as well. This study shows that ZIF-90 could be a useful luminescent sensor for metal ions, anions and organic small molecules.

  4. Quantitative Limits on Small Molecule Transport via the Electropermeome - Measuring and Modeling Single Nanosecond Perturbations.

    Science.gov (United States)

    Sözer, Esin B; Levine, Zachary A; Vernier, P Thomas

    2017-03-03

    The detailed molecular mechanisms underlying the permeabilization of cell membranes by pulsed electric fields (electroporation) remain obscure despite decades of investigative effort. To advance beyond descriptive schematics to the development of robust, predictive models, empirical parameters in existing models must be replaced with physics- and biology-based terms anchored in experimental observations. We report here absolute values for the uptake of YO-PRO-1, a small-molecule fluorescent indicator of membrane integrity, into cells after a single electric pulse lasting only 6 ns. We correlate these measured values, based on fluorescence microphotometry of hundreds of individual cells, with a diffusion-based geometric analysis of pore-mediated transport and with molecular simulations of transport across electropores in a phospholipid bilayer. The results challenge the "drift and diffusion through a pore" model that dominates conventional explanatory schemes for the electroporative transfer of small molecules into cells and point to the necessity for a more complex model.

  5. Immobilization of small molecules and proteins by radio-derivatized polystyrene.

    Science.gov (United States)

    Varga, J M; Fritsch, P

    1990-06-01

    When molded polystyrene (PS) products (e.g., microtiter plates) or latex particles are irradiated with high-energy (1-10 Mrads) gamma rays in the presence of nonpolymerizable small molecules such as aromatic amines, some of these molecules incorporate into PS, which leads to the formation of radio-derivatized PS (RDPS). Two classes of RDPS can be identified regarding their ability for immobilization of biologically important molecules: 1) reactive RDPS that are able to form covalent bonds with molecules such as proteins without the help of cross-linkers, and 2) functionalized RDPS that can be used for the immobilization of molecules with activators (e.g., carbodiimides) or cross-linkers. The method can be used for the production of low-noise supports for binding assays. Most of the RDPS can be produced without impairment of the optical quality of PS, making derivatized microtiter plates suitable for colorimetric assays. The principle can be applied for the preparation of affinity sorbents, e.g., for high-performance affinity chromatography and for the immobilization of enzymes using latex PS particles.

  6. The moving boundaries in starting materials: from small molecules to biopharma and ATMPs

    OpenAIRE

    D'Hondt, Matthias; Bracke, Nathalie; De Spiegeleer, Bart

    2014-01-01

    Several guidelines (e.g. ICH) define starting materials for a medicinal drug substance. While a consensus approach for defining the starting material in the synthesis of small molecule API is currently more or less being agreed upon due to the straightforward production process and well characterized API structure, this is not so as the drug nature complicates, e.g. biopharma and Advanced Therapy Medicinal Products (ATMPs). Although some general guidelines are present, Regulatory Authorities ...

  7. Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit.

    Science.gov (United States)

    Costales, Matthew G; Haga, Christopher L; Velagapudi, Sai Pradeep; Childs-Disney, Jessica L; Phinney, Donald G; Disney, Matthew D

    2017-03-08

    A hypoxic state is critical to the metastatic and invasive characteristics of cancer. Numerous pathways play critical roles in cancer maintenance, many of which include noncoding RNAs such as microRNA (miR)-210 that regulates hypoxia inducible factors (HIFs). Herein, we describe the identification of a small molecule named Targapremir-210 that binds to the Dicer site of the miR-210 hairpin precursor. This interaction inhibits production of the mature miRNA, derepresses glycerol-3-phosphate dehydrogenase 1-like enzyme (GPD1L), a hypoxia-associated protein negatively regulated by miR-210, decreases HIF-1α, and triggers apoptosis of triple negative breast cancer cells only under hypoxic conditions. Further, Targapremir-210 inhibits tumorigenesis in a mouse xenograft model of hypoxic triple negative breast cancer. Many factors govern molecular recognition of biological targets by small molecules. For protein, chemoproteomics and activity-based protein profiling are invaluable tools to study small molecule target engagement and selectivity in cells. Such approaches are lacking for RNA, leaving a void in the understanding of its druggability. We applied Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP) to study the cellular selectivity and the on- and off-targets of Targapremir-210. Targapremir-210 selectively recognizes the miR-210 precursor and can differentially recognize RNAs in cells that have the same target motif but have different expression levels, revealing this important feature for selectively drugging RNAs for the first time. These studies show that small molecules can be rapidly designed to selectively target RNAs and affect cellular responses to environmental conditions, resulting in favorable benefits against cancer. Further, they help define rules for identifying druggable targets in the transcriptome.

  8. Nonlinear Transport in Organic Thin Film Transistors with Soluble Small Molecule Semiconductor.

    Science.gov (United States)

    Kim, Hyeok; Song, Dong-Seok; Kwon, Jin-Hyuk; Jung, Ji-Hoon; Kim, Do-Kyung; Kim, SeonMin; Kang, In Man; Park, Jonghoo; Tae, Heung-Sik; Battaglini, Nicolas; Lang, Philippe; Horowitz, Gilles; Bae, Jin-Hyuk

    2016-03-01

    Nonlinear transport is intensively explained through Poole-Frenkel (PF) transport mechanism in organic thin film transistors with solution-processed small molecules, which is, 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. We outline a detailed electrical study that identifies the source to drain field dependent mobility. Devices with diverse channel lengths enable the extensive exhibition of field dependent mobility due to thermal activation of carriers among traps.

  9. Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.

    Science.gov (United States)

    Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V

    2017-05-01

    The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    OpenAIRE

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular f...

  11. Plasmonic Aptamer-Gold Nanoparticle Sensors for Small Molecule Fingerprint Identification

    Science.gov (United States)

    2014-08-01

    identification. This work opens the door to using these Apt-AuNPs in point of care diagnostics applications where fast sensors with easy to read outputs are...clustering of the different datasets for qualitative and quantitative identification. This work opens the door to using these Apt-AuNPs in point of care...This work opens the door to utilize the plasmonic response of Apt-AuNPs to design fast cross-reactive sensors for small molecules. We envisioned

  12. Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen.

    OpenAIRE

    Anthony Arnoldo; Jasna Curak; Saranya Kittanakom; Igor Chevelev; Vincent T Lee; Mehdi Sahebol-Amri; Becky Koscik; Lana Ljuma; Peter J Roy; Antonio Bedalov; Guri Giaever; Corey Nislow; A Rod Merrill; Stephen Lory; Igor Stagljar

    2008-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibi...

  13. Treatment of Endocrine-Resistant Breast Cancer with a Small Molecule c-Myc Inhibitor

    Science.gov (United States)

    2016-08-01

    myeloid leukemia [21-23]. Based on our results, we tested whether JQ1 can suppress ERα expression. As shown in Figure 2G, treatment of MCF7 cells with...al. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML...tamoxifen, bromodomain, resistance 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON

  14. High temperature electrical conductivity due to small polaron hopping motion in DNA molecules

    Energy Technology Data Exchange (ETDEWEB)

    Triberis, G P [University of Athens, Physics Department, Solid State Section, Panepistimiopolis, 15784 Zografos, Athens (Greece); Karavolas, V C [University of Athens, Physics Department, Solid State Section, Panepistimiopolis, 15784 Zografos, Athens (Greece); Simserides, C D [University of Athens, Physics Department, Solid State Section, Panepistimiopolis, 15784 Zografos, Athens (Greece); Leibniz Institute for Neurobiology, Special Lab for Non-Invasing Brain Imaging, Brenneckestr. 6, D-39118 Magdeburg (Germany)

    2005-01-01

    We present a small polaron hopping model to interpret the high-temperature electrical conductivity measured along the DNA molecules. The model takes into account the one-dimensional character of the system and the presence of disorder in the DNA double helix. The experimental data for the lambda phage DNA ({lambda}-DNA) and the poly(dA)-poly(dT) DNA follow nicely the theoretically predicted behavior leading to realistic values of the maximum hopping distances supporting the idea of multiphonon-assisted hopping of small polarons between next nearest neighbors of the DNA molecular 'wire'.

  15. Sequence-based design of bioactive small molecules that target precursor microRNAs.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Gallo, Steven M; Disney, Matthew D

    2014-04-01

    Oligonucleotides are designed to target RNA using base pairing rules, but they can be hampered by poor cellular delivery and nonspecific stimulation of the immune system. Small molecules are preferred as lead drugs or probes but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA hairpin precursors, and it identified bioactive small molecules that inhibit biogenesis by binding nuclease-processing sites (44% hit rate). Among 27 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Markedly, microRNA profiling shows that 1 only affects microRNA-96 biogenesis and is at least as selective as an oligonucleotide.

  16. Advances in treating psoriasis in the elderly with small molecule inhibitors.

    Science.gov (United States)

    Cline, Abigail; Cardwell, Leah A; Feldman, Steven R

    2017-12-01

    Due to the chronic nature of psoriasis, the population of elderly psoriasis patients is increasing. However, many elderly psoriatic patients are not adequately treated because management is challenging as a result of comorbidities, polypharmacy, and progressive impairment of organ systems. Physicians may hesitate to use systemic or biologic agents in elderly psoriasis patients because of an increased risk of adverse events in this patient population. Small molecule medications are emerging as promising options for elderly patients with psoriasis and other inflammatory conditions. Areas covered: Here we review the efficacy, safety and tolerability of small molecule inhibitors apremilast, tofacitinib, ruxolitinib, baricitinib, and peficitinib in the treatment of psoriasis, with focus on their use in the elderly population. Expert opinion: Although small molecule inhibitors demonstrate efficacy in elderly patients with psoriasis, they will require larger head-to-head studies and post-marketing registries to evaluate their effectiveness and safety in specific patient populations. Apremilast, ruxolitinib, and peficitinib are effective agents with favorable side effect profiles; however, physicians should exercise caution when prescribing tofacitinib or baricitinib in elderly populations due to adverse events. The high cost of these drugs in the U.S. is likely to limit their use.

  17. Nonpeptide-Based Small-Molecule Probe for Fluorogenic and Chromogenic Detection of Chymotrypsin.

    Science.gov (United States)

    Wu, Lei; Yang, Shu-Hou; Xiong, Hao; Yang, Jia-Qian; Guo, Jun; Yang, Wen-Chao; Yang, Guang-Fu

    2017-03-21

    We report herein a nonpeptide-based small-molecule probe for fluorogenic and chromogenic detection of chymotrypsin, as well as the primary application for this probe. This probe was rationally designed by mimicking the peptide substrate and optimized by adjusting the recognition group. The refined probe 2 exhibits good specificity toward chymotrypsin, producing about 25-fold higher enhancement in both the fluorescence intensity and absorbance upon the catalysis by chymotrypsin. Compared with the most widely used peptide substrate (AMC-FPAA-Suc) of chymotrypsin, probe 2 shows about 5-fold higher binding affinity and comparable catalytical efficiency against chymotrypsin. Furthermore, it was successfully applied for the inhibitor characterization. To the best of our knowledge, probe 2 is the first nonpeptide-based small-molecule probe for chymotrypsin, with the advantages of simple structure and high sensitivity compared to the widely used peptide-based substrates. This small-molecule probe is expected to be a useful molecular tool for drug discovery and chymotrypsin-related disease diagnosis.

  18. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery.

    Science.gov (United States)

    Chen, Kaihang; Ling, Yunzhi; Cao, Cong; Li, Xiaoyun; Chen, Xiao; Wang, Xiaoying

    2016-12-01

    This work reported chitosan derivatives (CSD)/reduced graphene oxide (rGO) blending with alginate to prepare hydrogel beads for small-molecule drug delivery for the first time. At the beginning, graphene oxide (GO) was successfully reduced using diverse CSD as reducing and stabilizing agents via facile heating. Then the obtained CSD/rGO was blended with alginate and crosslinked into hydrogel beads in CaCl2 solution. Finally, the beads were systematically evaluated as novel vehicles for pH-responsive small-molecule drug delivery. The optimal CSD/rGO/alginate beads showed a high drug-loading efficiency of 82.8% on small-molecule fluorescein sodium (FL), outstanding sustainable release of 71.6% upon 150h at a physiological pH and quick-release of 82.4% drug content at 20h in an acidic medium. Additionally, the cytotoxicity assay result suggested that the CSD/rGO/alginate beads showed negligible cytotoxicity to hepatic stellate cell lines, opening up possibilities for safe and efficient drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Small-molecule hydrophobic tagging-induced degradation of HaloTag fusion proteins.

    Science.gov (United States)

    Neklesa, Taavi K; Tae, Hyun Seop; Schneekloth, Ashley R; Stulberg, Michael J; Corson, Timothy W; Sundberg, Thomas B; Raina, Kanak; Holley, Scott A; Crews, Craig M

    2011-07-03

    The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules to bind a bacterial dehalogenase (the HaloTag protein) and present a hydrophobic group on its surface. Hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated and transmembrane HaloTag fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting Hras1(G12V)-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small-molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models.

  20. Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins

    Science.gov (United States)

    Neklesa, Taavi K.; Tae, Hyun Seop; Schneekloth, Ashley R.; Stulberg, Michael J.; Corson, Timothy W.; Sundberg, Thomas B.; Raina, Kanak; Holley, Scott A.; Crews, Craig M.

    2011-01-01

    The ability to regulate any protein of interest in living systems with small molecules remains a challenge. We hypothesized that appending a hydrophobic moiety to the surface of a protein would mimic the partially denatured state of the protein, thus engaging the cellular quality control machinery to induce its proteasomal degradation. We designed and synthesized bifunctional small molecules that bind a bacterial dehalogenase (HaloTag protein) and present a hydrophobic group on its surface. Remarkably, hydrophobic tagging of the HaloTag protein with an adamantyl moiety induced the degradation of cytosolic, isoprenylated, and transmembrane fusion proteins in cell culture. We demonstrated the in vivo utility of hydrophobic tagging by degrading proteins expressed in zebrafish embryos and by inhibiting RasG12V-driven tumor progression in mice. Therefore, hydrophobic tagging of HaloTag fusion proteins affords small molecule control over any protein of interest, making it an ideal system for validating potential drug targets in disease models. PMID:21725302

  1. Structure-Based Discovery of Small Molecule Inhibitors of Cariogenic Virulence.

    Science.gov (United States)

    Zhang, Qiong; Nijampatnam, Bhavitavya; Hua, Zhang; Nguyen, Thao; Zou, Jing; Cai, Xia; Michalek, Suzanne M; Velu, Sadanandan E; Wu, Hui

    2017-07-20

    Streptococcus mutans employs a key virulence factor, three glucosyltransferase (GtfBCD) enzymes to establish cariogenic biofilms. Therefore, the inhibition of GtfBCD would provide anti-virulence therapeutics. Here a small molecule library of 500,000 small molecule compounds was screened in silico against the available crystal structure of the GtfC catalytic domain. Based on the predicted binding affinities and drug-like properties, small molecules were selected and evaluated for their ability to reduce S. mutans biofilms, as well as inhibit the activity of Gtfs. The most potent inhibitor was further characterized for Gtf binding using OctetRed instrument, which yielded low micromolar KD against GtfB and nanomolar KD against GtfC, demonstrating selectivity towards GtfC. Additionally, the lead compound did not affect the overall growth of S. mutans and commensal oral bacteria, and selectively inhibit the biofilm formation by S. mutans, indicative of its selectivity and non-bactericidal nature. The lead compound also effectively reduced cariogenicity in vivo in a rat model of dental caries. An analog that docked poorly in the GtfC catalytic domain failed to inhibit the activity of Gtfs and S. mutans biofilms, signifying the specificity of the lead compound. This report illustrates the validity and potential of structure-based design of anti-S. mutans virulence inhibitors.

  2. Kinase-Independent Small-Molecule Inhibition of JAK-STAT Signaling.

    Science.gov (United States)

    Chou, Danny Hung-Chieh; Vetere, Amedeo; Choudhary, Amit; Scully, Stephen S; Schenone, Monica; Tang, Alicia; Gomez, Rachel; Burns, Sean M; Lundh, Morten; Vital, Tamara; Comer, Eamon; Faloon, Patrick W; Dančík, Vlado; Ciarlo, Christie; Paulk, Joshiawa; Dai, Mingji; Reddy, Clark; Sun, Hanshi; Young, Matthew; Donato, Nicholas; Jaffe, Jacob; Clemons, Paul A; Palmer, Michelle; Carr, Steven A; Schreiber, Stuart L; Wagner, Bridget K

    2015-06-24

    Phenotypic cell-based screening is a powerful approach to small-molecule discovery, but a major challenge of this strategy lies in determining the intracellular target and mechanism of action (MoA) for validated hits. Here, we show that the small-molecule BRD0476, a novel suppressor of pancreatic β-cell apoptosis, inhibits interferon-gamma (IFN-γ)-induced Janus kinase 2 (JAK2) and signal transducer and activation of transcription 1 (STAT1) signaling to promote β-cell survival. However, unlike common JAK-STAT pathway inhibitors, BRD0476 inhibits JAK-STAT signaling without suppressing the kinase activity of any JAK. Rather, we identified the deubiquitinase ubiquitin-specific peptidase 9X (USP9X) as an intracellular target, using a quantitative proteomic analysis in rat β cells. RNAi-mediated and CRISPR/Cas9 knockdown mimicked the effects of BRD0476, and reverse chemical genetics using a known inhibitor of USP9X blocked JAK-STAT signaling without suppressing JAK activity. Site-directed mutagenesis of a putative ubiquitination site on JAK2 mitigated BRD0476 activity, suggesting a competition between phosphorylation and ubiquitination to explain small-molecule MoA. These results demonstrate that phenotypic screening, followed by comprehensive MoA efforts, can provide novel mechanistic insights into ostensibly well-understood cell signaling pathways. Furthermore, these results uncover USP9X as a potential target for regulating JAK2 activity in cellular inflammation.

  3. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells.

    Science.gov (United States)

    Lange, Christian; Mix, Eilhard; Frahm, Jana; Glass, Anne; Müller, Jana; Schmitt, Oliver; Schmöle, Anne-Caroline; Klemm, Kristin; Ortinau, Stefanie; Hübner, Rayk; Frech, Moritz J; Wree, Andreas; Rolfs, Arndt

    2011-01-13

    Human neural progenitor cells provide a source for cell replacement therapy to treat neurodegenerative diseases. Therefore, there is great interest in mechanisms and tools to direct the fate of multipotent progenitor cells during their differentiation to increase the yield of a desired cell type. We tested small molecule inhibitors of glycogen synthase kinase-3 (GSK-3) for their functionality and their influence on neurogenesis using the human neural progenitor cell line ReNcell VM. Here we report the enhancement of neurogenesis of human neural progenitor cells by treatment with GSK-3 inhibitors. We tested different small molecule inhibitors of GSK-3 i.e. LiCl, sodium-valproate, kenpaullone, indirubin-3-monoxime and SB-216763 for their ability to inhibit GSK-3 in human neural progenitor cells. The highest in situ GSK-3 inhibitory effect of the drugs was found for kenpaullone and SB-216763. Accordingly, kenpaullone and SB-216763 were the only drugs tested in this study to stimulate the Wnt/β-catenin pathway that is antagonized by GSK-3. Analysis of human neural progenitor differentiation revealed an augmentation of neurogenesis by SB-216763 and kenpaullone, without changing cell cycle exit or cell survival. Small molecule inhibitors of GSK-3 enhance neurogenesis of human neural progenitor cells and may be used to direct the differentiation of neural stem and progenitor cells in therapeutic applications. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Terry W. Moody

    2017-07-01

    Full Text Available While peptide antagonists for the gastrin-releasing peptide receptor (BB2R, neuromedin B receptor (BB1R, and bombesin (BB receptor subtype-3 (BRS-3 exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM. AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  5. Recent advances in the discovery of small molecule c-Met Kinase inhibitors.

    Science.gov (United States)

    Parikh, Palak K; Ghate, Manjunath D

    2018-01-01

    c-Met is a prototype member of a subfamily of heterodimeric receptor tyrosine kinases (RTKs) and is the receptor for hepatocyte growth factor (HGF). Binding of HGF to its receptor c-Met, initiates a wide range of cellular signalling, including those involved in proliferation, motility, migration and invasion. Importantly, dysregulated HGF/c-Met signalling is a driving factor for numerous malignancies and promotes tumour growth, invasion, dissemination and/or angiogenesis. Dysregulated HGF/c-Met signalling has also been associated with poor clinical outcomes and resistance acquisition to some approved targeted therapies. Thus, c-Met kinase has emerged as a promising target for cancer drug development. Different therapeutic approaches targeting the HGF/c-Met signalling pathway are under development for targeted cancer therapy, among which small molecule inhibitors of c-Met kinase constitute the largest effort within the pharmaceutical industry. The review is an effort to summarize recent advancements in medicinal chemistry development of small molecule c-Met kinase inhibitors as potential anti-cancer agents which would certainly help future researchers to bring further developments in the discovery of small molecule c-Met kinase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Small-Molecule Inhibitors Targeting DNA Repair and DNA Repair Deficiency in Research and Cancer Therapy.

    Science.gov (United States)

    Hengel, Sarah R; Spies, M Ashley; Spies, Maria

    2017-09-21

    To maintain stable genomes and to avoid cancer and aging, cells need to repair a multitude of deleterious DNA lesions, which arise constantly in every cell. Processes that support genome integrity in normal cells, however, allow cancer cells to develop resistance to radiation and DNA-damaging chemotherapeutics. Chemical inhibition of the key DNA repair proteins and pharmacologically induced synthetic lethality have become instrumental in both dissecting the complex DNA repair networks and as promising anticancer agents. The difficulty in capitalizing on synthetically lethal interactions in cancer cells is that many potential targets do not possess well-defined small-molecule binding determinates. In this review, we discuss several successful campaigns to identify and leverage small-molecule inhibitors of the DNA repair proteins, from PARP1, a paradigm case for clinically successful small-molecule inhibitors, to coveted new targets, such as RAD51 recombinase, RAD52 DNA repair protein, MRE11 nuclease, and WRN DNA helicase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Identification and characterization of small molecule inhibitors of a PHD finger§

    Science.gov (United States)

    Wagner, Elise K.; Nath, Nidhi; Flemming, Rod; Feltenberger, John B.; Denu, John M.

    2012-01-01

    A number of histone-binding domains are implicated in cancer through improper binding of chromatin. In a clinically reported case of acute myeloid leukemia (AML), a genetic fusion protein between nucleoporin 98 and the third plant homeodomain (PHD) finger of JARID1A drives an oncogenic transcriptional program that is dependent on histone binding by the PHD finger. By exploiting the requirement for chromatin binding in oncogenesis, therapeutics targeting histone readers may represent a new paradigm in drug development. In this study, we developed a novel small molecule screening strategy that utilizes HaloTag technology to identify several small molecules that disrupt binding of the JARID1A PHD finger to histone peptides. Small molecule inhibitors were validated biochemically through affinity pull downs, fluorescence polarization, and histone reader specificity studies. One compound was modified through medicinal chemistry to improve its potency while retaining histone reader selectivity. Molecular modeling and site-directed mutagenesis of JARID1A PHD3 provided insights into the biochemical basis of competitive inhibition. PMID:22994852

  8. Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs.

    Science.gov (United States)

    Disney, Matthew D; Winkelsas, Audrey M; Velagapudi, Sai Pradeep; Southern, Mark; Fallahi, Mohammad; Childs-Disney, Jessica L

    2016-06-17

    The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif-small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif-small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif-small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.

  9. Repression of Salmonella host cell invasion by aromatic small molecules from the human fecal metabolome.

    Science.gov (United States)

    Peixoto, Rafael J M; Alves, Eduardo S; Wang, Melody; Ferreira, Rosana B R; Granato, Alessandra; Han, Jun; Gill, Hira; Jacobson, Kevan; Lobo, Leandro A; Domingues, Regina M C P; Borchers, Christoph H; Davies, Julian E; Finlay, B Brett; Antunes, L Caetano M

    2017-07-28

    The human microbiome is a collection of microorganisms that inhabit every surface of the body that is exposed to the environment, generally coexisting peacefully with their host. These microbes have important functions such as the production of vitamins, maturation of the immune system and protection against pathogens. We have previously shown that a small-molecule extract from the human fecal microbiome has a strong repressive effect on Salmonella enterica serovar Typhimurium host cell invasion by modulating the expression of genes involved in this process. Here, we describe the characterization of this biological activity. Using a series of purification methods, we obtained fractions with biological activity and characterized them by mass spectrometry. These experiments revealed an abundance of aromatic compounds in the bioactive fraction. Selected compounds were obtained from commercial sources and tested with respect to their ability to repress the expression of hilA, the gene encoding the master regulator of invasion genes in Salmonella We found that the aromatic compound 3,4-dimethylbenzoic acid acts as a strong inhibitor of hilA expression as well as invasion of cultured host cells by Salmonella Future studies should reveal the molecular details of this phenomenon, such as the signaling cascades involved in sensing this bioactive molecule.Importance Microbes constantly sense and adapt to their environment. Often, this is achieved through the production and sensing of small extracellular molecules. The human body is colonized by complex communities of microbes, and, given their biological and chemical diversity, these ecosystems represent a platform where the production and sensing of molecules occurs. In previous work, we showed that small molecules produced by microbes from the human gut can significantly impair the virulence of the enteric pathogen Salmonella enterica Here, we describe a specific compound from the human gut that produces this same effect

  10. Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells

    Science.gov (United States)

    Deng, Dan; Zhang, Yajie; Zhang, Jianqi; Wang, Zaiyu; Zhu, Lingyun; Fang, Jin; Xia, Benzheng; Wang, Zhen; Lu, Kun; Ma, Wei; Wei, Zhixiang

    2016-12-01

    Solution-processable small molecules for organic solar cells have attracted intense attention for their advantages of definite molecular structures compared with their polymer counterparts. However, the device efficiencies based on small molecules are still lower than those of polymers, especially for inverted devices, the highest efficiency of which is inverted device performance, and an average power conversion efficiency of 11.08% is achieved for a two-fluorine atom substituted molecule.

  11. Synthesis and characterization of new electron-withdrawing moiety thieno[2,3-c]pyrrole-4,6-dione-based molecules for small molecule solar cells

    DEFF Research Database (Denmark)

    Fu, Lei; Pan, Hongbin; Larsen-Olsen, Thue Trofod

    2013-01-01

    –π–donor–π–acceptor type end-capped with thieno[2,3-c]pyrrole-4,6-dione (TPD) units for small molecule solar cells have been prepared through coupling of dithienosilole and TPD units bridged with thienylene and bithienylene. They are soluble in common organic solvents and show an interesting absorption. These small...

  12. Recovery of small dye molecules from aqueous solutions using charged ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiuwen; Zhao, Yiru [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Moutinho, Jennifer [Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States); Shao, Jiahui, E-mail: jhshao@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zydney, Andrew L. [Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); He, Yiliang [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2015-03-02

    Highlights: • Dye retention was greatest with the most negatively charged dye molecule. • Higher rejection was observed in low ionic strength solutions. • The membrane with longer spacer arm length had higher rejection coefficient, consistent with its greater negative charge. • Results were consistent with model calculations based on partitioning of a charged sphere into a charged cylindrical pore. • UF membranes can effectively recover small dye molecules at low pressures under appropriate solution conditions. - Abstract: Recovery of reactive dyes from effluent streams is a growing environmental challenge. In this study, various charged regenerated cellulose (RC) ultrafiltration (UF) membranes were prepared and tested for removal of three model reactive dyes (reactive red ED-2B, reactive brilliant yellow K-6G, and reactive brilliant blue KN-R). Data were obtained with charged UF membranes having different spacer arm lengths between the base cellulose and the charge functionality. The effects of charge density of the dye molecules, ionic strength of the feed solution, spacer arm length of charged membranes and filtrate flux were studied. Results indicated that dye retention was greatest with the most negatively charged dye molecule. Higher rejection was also observed in low ionic strength solutions. Results were consistent with model calculations based on the partitioning of a charged sphere into a charged cylindrical pore. The membranes with longer spacer arm length had higher rejection coefficients, consistent with the greater negative charge on these membranes. This study confirms that charged UF membranes can effectively recover small reactive dye molecules at low pressures (below 100 kPa) under appropriate solution conditions due to the strong electrostatic repulsion from the membrane pores.

  13. Identification of Neutrophil Exocytosis Inhibitors (Nexinhibs), Small Molecule Inhibitors of Neutrophil Exocytosis and Inflammation

    Science.gov (United States)

    Johnson, Jennifer L.; Ramadass, Mahalakshmi; He, Jing; Brown, Steven J.; Zhang, Jinzhong; Abgaryan, Lusine; Biris, Nikolaos; Gavathiotis, Evripidis; Rosen, Hugh; Catz, Sergio D.

    2016-01-01

    Neutrophils constitute the first line of cellular defense in response to bacterial and fungal infections and rely on granular proteins to kill microorganisms, but uncontrolled secretion of neutrophil cargos is injurious to the host and should be closely regulated. Thus, increased plasma levels of neutrophil secretory proteins, including myeloperoxidase and elastase, are associated with tissue damage and are hallmarks of systemic inflammation. Here, we describe a novel high-throughput screening approach to identify small molecule inhibitors of the interaction between the small GTPase Rab27a and its effector JFC1, two central regulators of neutrophil exocytosis. Using this assay, we have identified small molecule inhibitors of Rab27a-JFC1 binding that were also active in cell-based neutrophil-specific exocytosis assays, demonstrating the druggability of Rab GTPases and their effectors. These compounds, named Nexinhibs (neutrophil exocytosis inhibitors), inhibit exocytosis of azurophilic granules in human neutrophils without affecting other important innate immune responses, including phagocytosis and neutrophil extracellular trap production. Furthermore, the compounds are reversible and potent inhibitors of the extracellular production of superoxide anion by preventing the up-regulation of the granule membrane-associated subunit of the NADPH oxidase at the plasma membrane. Nexinhibs also inhibit the up-regulation of activation signature molecules, including the adhesion molecules CD11b and CD66b. Importantly, by using a mouse model of endotoxin-induced systemic inflammation, we show that these inhibitors have significant activity in vivo manifested by decreased plasma levels of neutrophil secretory proteins and significantly decreased tissue infiltration by inflammatory neutrophils. Altogether, our data present the first neutrophil exocytosis-specific inhibitor with in vivo anti-inflammatory activity, supporting its potential use as an inhibitor of systemic

  14. Semisynthetic bioluminescent sensor proteins for direct detection of antibodies and small molecules in solution.

    Science.gov (United States)

    Arts, Remco; Ludwig, Susann Katrina Julie; van Gerven, Benice C B; Magdalena Estirado, Eva; Milroy, Lech-Gustav; Merkx, Maarten

    2017-10-17

    Single-step immunoassays that can be performed directly in solution are ideally suited for point-of-care diagnostics. Our group recently developed a new platform of bioluminescent sensor proteins (LUMABS; LUMinescent AntiBody Sensor) that allow antibody detection in blood plasma. Thus far, LUMABS has been limited to the detection of antibodies recognizing natural peptide epitopes. Here, we report the development of semisynthetic LUMABS sensors that recognize non-peptide epitopes. The non-natural amino acid para-azidophenylalanine was introduced at the position of the original antibody-recognition sites as a chemical handle to enable site-specific conjugation of synthetic epitope molecules coupled to a dibenzocylcooctyne moiety via strain-promoted click chemistry. The approach was successfully demonstrated by developing semisynthetic LUMABS sensors for antibodies targeting the small molecules dinitrophenol and creati-nine (DNP-LUMABS and CR-LUMABS) with affinities of 5.8 pM and 1.3 nM, respectively. An important application of these semisynthetic LUMABS is the detection of small molecules using a competition assay format, which is demonstrated here for the detection of creatinine. Using a preassembled complex of CR-LUMABS and an anti-creatinine antibody, the detection of high micromolar concentrations of creatinine was possible both in buffer and 1:1 diluted blood plasma. The use of semisynthetic LUMABS sensors significantly expands the range of antibody targets and enables the application of LUMABS sensors for the ratiometric bioluminescent detection of small molecules using a competitive immunoassay format.

  15. Early-Late Heterobimetallic Complexes Linked by Phosphinoamide Ligands. Tuning Redox Potentials and Small Molecule Activation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christine M. [Brandeis Univ., Waltham, MA (United States)

    2015-08-01

    Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, with the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in

  16. Rational Design of Small Molecules Targeting Oncogenic Noncoding RNAs from Sequence.

    Science.gov (United States)

    Disney, Matthew D; Angelbello, Alicia J

    2016-12-20

    The discovery of RNA catalysis in the 1980s and the dissemination of the human genome sequence at the start of this century inspired investigations of the regulatory roles of noncoding RNAs in biology. In fact, the Encyclopedia of DNA Elements (ENCODE) project has shown that only 1-2% of the human genome encodes protein, yet 75% is transcribed into RNA. Functional studies both preceding and following the ENCODE project have shown that these noncoding RNAs have important roles in regulating gene expression, developmental timing, and other critical functions. RNA's diverse roles are often a consequence of the various folds that it adopts. The single-stranded nature of the biopolymer enables it to adopt intramolecular folds with noncanonical pairings to lower its free energy. These folds can be scaffolds to bind proteins or to form frameworks to interact with other RNAs. Not surprisingly, dysregulation of certain noncoding RNAs has been shown to be causative of disease. Given this as the background, it is easy to see why it would be useful to develop methods that target RNA and manipulate its biology in rational and predictable ways. The antisense approach has afforded strategies to target RNAs via Watson-Crick base pairing and has typically focused on targeting partially unstructured regions of RNA. Small molecule strategies to target RNA would be desirable not only because compounds could be lead optimized via medicinal chemistry but also because structured regions within an RNA of interest could be targeted to directly interfere with RNA folds that contribute to disease. Additionally, small molecules have historically been the most successful drug candidates. Until recently, the ability to design small molecules that target non-ribosomal RNAs has been elusive, creating the perception that they are "undruggable". In this Account, approaches to demystify targeting RNA with small molecules are described. Rather than bulk screening for compounds that bind to singular

  17. On the Third Order Optical Non-linearities of Small Organic Molecules: Investigation, Analysis and Optimization

    Science.gov (United States)

    La Porta, Philip Robert

    Organic materials, with highly delocalized electron systems, fast response times, compact size and relative ease of customization have ushered in a new generation of molecular designs for high optical non-linearities. Our aim in this work was to investigate the third-order optical polarizabilities of several families of small organic molecules, providing insights into molecular design for third-order optical non-linearities. To begin, two distinct families of molecules were examined. Experiments on one group of molecules supported claims that end groups of molecules have no effect on the strength of third-order non-linearities. Experimental results from the other, helped demonstrate the effect of pi-conjugation as well as provide a new design pathway for third-order non-linear optics. Next, two related families of organic molecules were examined. Both have systematically increasing conjugation length, but one has carbon-carbon (C-C) double bond spacers (Donor-Acceptor Substituted Oligoenes), and the other has C-C triple bond ( Donor-Acceptor Substituted Oligo ynes) spacers. We showed that the DASOe's follow trends established both in previous experiments and theoretical calculations while the DASOy's, due to molecular instabilities, fail to perform as expected beyond a spacer length of three. We also investigated a new molecular design that supports the claim that triple-bond spaced chromophores (like the DASOy series) can be extended beyond a length of three spacers and still yield strong third-order polarizabilities. This new molecular design was shown to be stable up to a spacer length of five bonds and has the highest value of third-order polarizability [40+/-10x10-48m5/V2 ] found in this work. Also, several of these molecules have third-order polarizability values very close to the fundamental limit and high nonlinearities per unit mass.

  18. Single molecule high-throughput footprinting of small and large DNA ligands.

    Science.gov (United States)

    Manosas, Maria; Camunas-Soler, Joan; Croquette, Vincent; Ritort, Felix

    2017-08-21

    Most DNA processes are governed by molecular interactions that take place in a sequence-specific manner. Determining the sequence selectivity of DNA ligands is still a challenge, particularly for small drugs where labeling or sequencing methods do not perform well. Here, we present a fast and accurate method based on parallelized single molecule magnetic tweezers to detect the sequence selectivity and characterize the thermodynamics and kinetics of binding in a single assay. Mechanical manipulation of DNA hairpins with an engineered sequence is used to detect ligand binding as blocking events during DNA unzipping, allowing determination of ligand selectivity both for small drugs and large proteins with nearly base-pair resolution in an unbiased fashion. The assay allows investigation of subtle details such as the effect of flanking sequences or binding cooperativity. Unzipping assays on hairpin substrates with an optimized flat free energy landscape containing all binding motifs allows determination of the ligand mechanical footprint, recognition site, and binding orientation.Mapping the sequence specificity of DNA ligands remains a challenge, particularly for small drugs. Here the authors develop a parallelized single molecule magnetic tweezers approach using engineered DNA hairpins that can detect sequence selectivity, thermodynamics and kinetics of binding for small drugs and large proteins.

  19. Metal-organic frameworks with functional pores for recognition of small molecules.

    Science.gov (United States)

    Chen, Banglin; Xiang, Shengchang; Qian, Guodong

    2010-08-17

    Molecular recognition, an important process in biological and chemical systems, governs the diverse functions of a variety of enzymes and unique properties of some synthetic receptors. Because molecular recognition is based on weak interactions between receptors and substrates, the design and assembly of synthetic receptors to mimic biological systems and the development of novel materials to discriminate different substrates for selective recognition of specific molecules has proved challenging. The extensive research on synthetic receptors for molecular recognition, particularly on noncovalent complexes self-assembled by hydrogen bonding and metal-organic coordination, has revealed some underlying principles. In particular, these studies have demonstrated that the shapes of the supramolecular receptors play significant roles in their specific and selective recognition of substrates: receptors can offer concave surfaces that complement their convex targets. This Account describes our research to develop a synthetic molecular recognition platform using porous metal-organic frameworks (MOFs). These materials contain functional pores to direct their specific and unique recognition of small molecules through several types of interactions: van der Waals interactions of the framework surface with the substrate, metal-substrate interactions, and hydrogen bonding of the framework surface with the substrate. These materials have potential applications for gas storage, separation, and sensing. We demonstrate a simple strategy to construct a primitive cubic net of interpenetrated microporous MOFs from the self-assembly of the paddle-wheel clusters M(2)(CO(2))(4) (M = Cu(2+), Zn(2+), and Co(2+)) with two types of organic dicarboxylic acid and pillar bidentate linkers. This efficient method allows us to rationally tune the micropores to size-exclusively sort different small gas molecules, leading to the highly selective separation and purification of gases. By optimizing the

  20. First-principles study of the small molecule adsorption on the InSe monolayer

    Science.gov (United States)

    Ma, Dongwei; Ju, Weiwei; Tang, Yanan; Chen, Yue

    2017-12-01

    Based on first-principles calculations, we have studied the stability and the structural and electronic properties of the indium selenide (InSe) monolayers with the adsorbed small molecules, including CO, H2O, NH3, N2, NO2, NO, and O2. It is found that all the molecules are physisorbed on the InSe monolayer surface and act as electron acceptors for the InSe, except NH3 which is found to be an electron donor. Furthermore, for most of the molecules studied, the adsorption cannot induce obvious changes in the band structures near the Fermi level compared with those of the pristine InSe monolayer. However, it is noted that the adsorbed InSe monolayers have new in-gap states induced by the open-shell molecules (NO2, NO, and O2), which may trigger some new effects on the optical properties of the materials. Our theoretical findings suggest that two-dimensional InSe nanomaterials hold great promise for fabricating gas sensors based on a physisorption-based charge transfer mechanism.

  1. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    Science.gov (United States)

    Greenberger, Joel S.; Clump, David; Kagan, Valerian; Bayir, Hülya; Lazo, John S.; Wipf, Peter; Li, Song; Gao, Xiang; Epperly, Michael W.

    2011-01-01

    Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development. PMID:22655254

  2. Strategies for Discovery of Small Molecule Radiation Protectors and Radiation Mitigators

    Directory of Open Access Journals (Sweden)

    Joel S Greenberger

    2012-01-01

    Full Text Available Mitochondrial targeted radiation damage protectors (delivered prior to irradiation and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome have been a recent focus in drug discovery for 1 normal tissue radiation protection during fractionated radiotherapy, and 2 radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new irradiation dose modifying molecules to protect normal tissue includes: clonagenic radiation survival curves; assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development.

  3. Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix.

    Science.gov (United States)

    Zhou, Dan; Guo, Shuai; Zhang, Mo; Liu, Yujie; Chen, Tianjing; Li, Zhili

    2017-04-15

    With the development of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI), molecular interrogation of tissue sections over a wide mass range has become feasible, but small molecule analysis is still far from being fully reached due to the limited sensitivity and matrix interference. Herein, graphene oxide (GO) is used as a MALDI matrix to image small molecules in tissues in negative ion mode. Finally, 212 of molecules including 190 of lipids and 22 of low molecular weight metabolites were detected and spatially visualized in mouse brain tissue sections without the interference of matrix ions/clusters, and the structures of 69 of the lipids were confirmed by using in situ tandem mass spectrometry. A further application of GO matrix could reveal distinct spatio-molecular signatures in viable and necrotic tumor regions derived from a mouse breast cancer tissue. In addition, GO as a MALDI matrix has exhibited a better performance in MSI of lipids relative to N-(1-naphthyl) ethylenediamine dihydrochloride and 9-aminoacridine. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity.

    Science.gov (United States)

    Childs-Disney, Jessica L; Yildirim, Ilyas; Park, HaJeung; Lohman, Jeremy R; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C; Disney, Matthew D

    2014-02-21

    Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)(exp)) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5'CCUG/3'GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG) repeats refined to 2.35 Å. Structural analysis of the three 5'CCUG/3'GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond, while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na(+) and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5'CCUG/3'GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops.

  5. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra.

    Science.gov (United States)

    Glauber, Kristine M; Dana, Catherine E; Park, Steve S; Colby, David A; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A Richard; Steele, Robert E

    2013-12-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes.

  6. Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae.

    Science.gov (United States)

    Suzuki, Takeshi; España, María Urizarna; Nunes, Maria Andreia; Zhurov, Vladimir; Dermauw, Wannes; Osakabe, Masahiro; Van Leeuwen, Thomas; Grbic, Miodrag; Grbic, Vojislava

    2017-01-01

    The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites.

  7. A study of small molecule ingress into planar and cylindrical materials using ion beam analysis

    CERN Document Server

    Smith, R W

    2001-01-01

    mechanisms that take place, and where relevant diffusion coefficients have been obtained using either a semi-infinite medium Fickian planar diffusion model or a cylindrical Fickian diffusion model. Ion beam analysis techniques have been developed to allow profiling of small molecules diffused into materials at depths ranging from 10 sup - sup 7 to 10 sup - sup 1 m. A model DPS/PS/DPS triple-layer film and D( sup 3 He,p) sup 4 He nuclear reaction analysis was used to test the applicability of a novel data processing program - the IBA DataFurnace - to nuclear reaction data. The same reaction and program were used to depth profile the diffusion of heavy water into cellophane. A scanning sup 3 He micro-beam technique was developed to profile the diffusion of small molecules into both planar and cylindrical materials. The materials were exposed to liquids containing deuterium labelled molecules. A cross-section was exposed by cutting the material perpendicular to the surface and this was bombarded by a scanning su...

  8. Chemically Aware Model Builder (camb): an R package for property and bioactivity modelling of small molecules.

    Science.gov (United States)

    Murrell, Daniel S; Cortes-Ciriano, Isidro; van Westen, Gerard J P; Stott, Ian P; Bender, Andreas; Malliavin, Thérèse E; Glen, Robert C

    2015-01-01

    In silico predictive models have proved to be valuable for the optimisation of compound potency, selectivity and safety profiles in the drug discovery process. camb is an R package that provides an environment for the rapid generation of quantitative Structure-Property and Structure-Activity models for small molecules (including QSAR, QSPR, QSAM, PCM) and is aimed at both advanced and beginner R users. camb's capabilities include the standardisation of chemical structure representation, computation of 905 one-dimensional and 14 fingerprint type descriptors for small molecules, 8 types of amino acid descriptors, 13 whole protein sequence descriptors, filtering methods for feature selection, generation of predictive models (using an interface to the R package caret), as well as techniques to create model ensembles using techniques from the R package caretEnsemble). Results can be visualised through high-quality, customisable plots (R package ggplot2). Overall, camb constitutes an open-source framework to perform the following steps: (1) compound standardisation, (2) molecular and protein descriptor calculation, (3) descriptor pre-processing and model training, visualisation and validation, and (4) bioactivity/property prediction for new molecules. camb aims to speed model generation, in order to provide reproducibility and tests of robustness. QSPR and proteochemometric case studies are included which demonstrate camb's application.Graphical abstractFrom compounds and data to models: a complete model building workflow in one package.

  9. Protocols for the delivery of small molecules to the two-spotted spider mite, Tetranychus urticae.

    Directory of Open Access Journals (Sweden)

    Takeshi Suzuki

    Full Text Available The two-spotted spider mite, Tetranychus urticae, is a chelicerate herbivore with an extremely wide host range and an extraordinary ability to develop pesticide resistance. Due to its responsiveness to natural and synthetic xenobiotics, the spider mite is becoming a prime pest herbivore model for studies of the evolution of host range, plant-herbivore interactions and mechanisms of xenobiotic resistance. The spider mite genome has been sequenced and its transcriptional responses to developmental and various biotic and abiotic cues have been documented. However, to identify biological and evolutionary roles of T. urticae genes and proteins, it is necessary to develop methods for the efficient manipulation of mite gene function or protein activity. Here, we describe protocols developed for the delivery of small molecules into spider mites. Starting with mite maintenance and the preparation of the experimental mite populations of developmentally synchronized larvae and adults, we describe 3 methods for delivery of small molecules including artificial diet, leaf coating, and soaking. The presented results define critical steps in these methods and demonstrate that they can successfully deliver tracer dyes into mites. Described protocols provide guidelines for high-throughput setups for delivery of experimental compounds that could be used in reverse genetics platforms to modulate gene expression or protein activity, or for screens focused on discovery of new molecules for mite control. In addition, described protocols could be adapted for other Tetranychidae and related species of economic importance such as Varroa, dust and poultry mites.

  10. A Review of Stapled Peptides and Small Molecules to Inhibit Protein-Protein Interactions in Cancer.

    Science.gov (United States)

    Iyer, Vidhya V

    2016-01-01

    Disruption of binding of two or more molecules to a protein surface is a common basis of inhibition of many biological activities. Smallmolecule inhibitors, antibodies, proteins, and peptidomimetics have been examined as ways to antagonize receptor activity. The peptide α-helix plays a crucial role in the function of many proteins. Hence, much effort has been invested in mimicking α-helices at the binding interface of two proteins to competitively inhibit their interactions. Peptide stapling involves choosing two amino acids on the same face of a native peptide sequence for substitution with non-native amino acids whose side chains can be "stapled" together. The focus of this review is to survey the prevalence in literature of stapled peptides and small-molecule antagonists of interactions of selected mammalian cancer targets, such as β-catenin, BH3-only members of the Bcl-2 family of proteins, eIF4E/G, estrogen receptor complexes, EZH2, Mdm2, Notch, p110α, and survivin. The increasing interest in protein targets currently considered to be "undruggable" with greater selectivity for existing targets, with the goal of overcoming the omnipresent problem of resistance, could be served well by utilizing information about protein-protein interactions to develop both small-molecule and stapled peptide inhibitors.

  11. Structure based discovery of small molecules to regulate the activity of human insulin degrading enzyme.

    Directory of Open Access Journals (Sweden)

    Bilal Çakir

    Full Text Available BACKGROUND: Insulin-degrading enzyme (IDE is an allosteric Zn(+2 metalloprotease involved in the degradation of many peptides including amyloid-β, and insulin that play key roles in Alzheimer's disease (AD and type 2 diabetes mellitus (T2DM, respectively. Therefore, the use of therapeutic agents that regulate the activity of IDE would be a viable approach towards generating pharmaceutical treatments for these diseases. Crystal structure of IDE revealed that N-terminal has an exosite which is ∼30 Å away from the catalytic region and serves as a regulation site by orientation of the substrates of IDE to the catalytic site. It is possible to find small molecules that bind to the exosite of IDE and enhance its proteolytic activity towards different substrates. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we applied structure based drug design method combined with experimental methods to discover four novel molecules that enhance the activity of human IDE. The novel compounds, designated as D3, D4, D6, and D10 enhanced IDE mediated proteolysis of substrate V, insulin and amyloid-β, while enhanced degradation profiles were obtained towards substrate V and insulin in the presence of D10 only. CONCLUSION/SIGNIFICANCE: This paper describes the first examples of a computer-aided discovery of IDE regulators, showing that in vitro and in vivo activation of this important enzyme with small molecules is possible.

  12. Benzodichalcogenophene-diketopyrrolopyrrole small molecules as donors for efficient solution processable solar cells

    Science.gov (United States)

    Fan, Ling; Chen, Guohui; Jiang, Lihui; Yuan, Jun; Zou, Yingping

    2017-08-01

    Three small molecules named BDTDPP, TBFDPP and BDFDPP are designed and synthesized with alkoxy-substituted benzodichalcogenophene derivatives as donor unit while diketopyrrolopyrrole unit as acceptor unit, the investigation results show that all three small molecular materials possess favorable solubility, excellent thermal stability, broad absorption spectra and suitable electrochemical energy level. The bulk heterojunction devices based on these three small molecular materials show the power conversion efficiencies up to 3.19%, 2.82% and 2.81%, respectively. When adding 0.3% (v/v) 1,8-diiodooctane as additives, the power conversion efficiencies were further improved to 3.95%, 3.72% and 3.41%, respectively. The investigations show that all three benzodichalcogenophene-diketopyrrolopyrrole derivatives have great potential in the design of high performance optoelectronic materials.

  13. Chemical annotation of small and peptide-like molecules at the Protein Data Bank

    Science.gov (United States)

    Young, Jasmine Y.; Feng, Zukang; Dimitropoulos, Dimitris; Sala, Raul; Westbrook, John; Zhuravleva, Marina; Shao, Chenghua; Quesada, Martha; Peisach, Ezra; Berman, Helen M.

    2013-01-01

    Over the past decade, the number of polymers and their complexes with small molecules in the Protein Data Bank archive (PDB) has continued to increase significantly. To support scientific advancements and ensure the best quality and completeness of the data files over the next 10 years and beyond, the Worldwide PDB partnership that manages the PDB archive is developing a new deposition and annotation system. This system focuses on efficient data capture across all supported experimental methods. The new deposition and annotation system is composed of four major modules that together support all of the processing requirements for a PDB entry. In this article, we describe one such module called the Chemical Component Annotation Tool. This tool uses information from both the Chemical Component Dictionary and Biologically Interesting molecule Reference Dictionary to aid in annotation. Benchmark studies have shown that the Chemical Component Annotation Tool provides significant improvements in processing efficiency and data quality. Database URL: http://wwpdb.org PMID:24291661

  14. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    Science.gov (United States)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  15. Small-molecule stabilization of the p53 - 14-3-3 protein-protein interaction.

    Science.gov (United States)

    Doveston, Richard G; Kuusk, Ave; Andrei, Sebastian A; Leysen, Seppe; Cao, Qing; Castaldi, Maria P; Hendricks, Adam; Brunsveld, Luc; Chen, Hongming; Boyd, Helen; Ottmann, Christian

    2017-08-01

    14-3-3 proteins are positive regulators of the tumor suppressor p53, the mutation of which is implicated in many human cancers. Current strategies for targeting of p53 involve restoration of wild-type function or inhibition of the interaction with MDM2, its key negative regulator. Despite the efficacy of these strategies, the alternate approach of stabilizing the interaction of p53 with positive regulators and, thus, enhancing tumor suppressor activity, has not been explored. Here, we report the first example of small-molecule stabilization of the 14-3-3 - p53 protein-protein interaction (PPI) and demonstrate the potential of this approach as a therapeutic modality. We also observed a disconnect between biophysical and crystallographic data in the presence of a stabilizing molecule, which is unusual in 14-3-3 PPIs. © 2017 Federation of European Biochemical Societies.

  16. Computational study of small molecule binding for both tethered and free conditions.

    Science.gov (United States)

    Ytreberg, F Marty

    2010-04-29

    Using a calix[4]arene-benzene complex as a test system, we compare the potential of mean force for when the calix[4]arene is tethered versus free. When the complex is in vacuum, our results show that the difference between tethered and free is primarily due to the entropic contribution to the potential of mean force resulting in a significant binding free energy difference of 6.6 kJ/mol. By contrast, when the complex is in water, our results suggest that there is no appreciable difference between tethered and free. This study elucidates the roles of entropy and enthalpy for this small molecule system and emphasizes the point that tethering the receptor has the potential to dramatically impact the binding properties. These findings should be taken into consideration when using calixarene molecules in nanosensor design.

  17. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    Science.gov (United States)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst - de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders. PMID:25620325

  18. Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism.

    Science.gov (United States)

    Silvian, Laura F; Friedman, Jessica E; Strauch, Kathy; Cachero, Teresa G; Day, Eric S; Qian, Fang; Cunningham, Brian; Fung, Amy; Sun, Lihong; Shipps, Gerald W; Su, Lihe; Zheng, Zhongli; Kumaravel, Gnanasambandam; Whitty, Adrian

    2011-06-17

    BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC(50) = 25 μM and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.

  19. Small Molecule Inhibition of the TNF Family Cytokine CD40 Ligand Through a Subunit Fracture Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    L Silvian; J Friedman; K Strauch; T Cachero; E Day; F Qian; B Cunningham; A Fung; L Sun; et al.

    2011-12-31

    BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC{sub 50} = 25 {mu}M and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.

  20. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kalle, Arunasree M., E-mail: arunasreemk@ilsresearch.org [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Mallika, A. [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Badiger, Jayasree [HKE' s Smt. V.G. College for Women, Aiwan-E-Shahi Area, Gulbarga, KA 585 102 (India); Alinakhi [Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, AP 500 046 (India); Talukdar, Pinaki [Department of Chemistry, Indian Institute of Science Education and Research, First Floor, Central Tower, Sai Trinity Building Garware Circle, Sutarwadi, PashanPune, Maharashtra 411 021 (India); Sachchidanand [Lupin Research Park, 46/47, A, Village Nande, Taluka Mulshi, Dist. Pune 411 042 (India)

    2010-10-08

    Research highlights: {yields} Novel small molecule SIRT1 inhibitor better than sirtinol. {yields} IC{sub 50} 500 nM. {yields} Specific tumor cytotoxicity towards breast cancer cells. {yields} Restoration of H3K9 acetylation levels to baseline when co-treated with SIRT1 activator (Activator X) and inhibitor (ILS-JGB-1741). -- Abstract: Overexpression of SIRT1, a NAD{sup +}-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC{sub 50} of 1, 10 and 0.5 {mu}M, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.

  1. Tumor Targeting of Polymeric Nanoparticles Conjugated with Peptides, Saccharides, and Small Molecules for Anticancer Drugs.

    Science.gov (United States)

    Bayram, Banu; Özgür, Aykut; Tutar, Lütfi; Tutar, Yusuf

    2017-06-07

    Targeting drugs or pharmaceutical compounds to tumor site increases cancer treatment efficiency and therapeutic outcome. Nanoparticles are unique delivery systems for site-targeting within an organism. Many novel technologies have been established in drug research and development area. Nanotechnology now offers nanometer size polymeric nanoparticles and these particles direct drugs to their targets, protect drugs against degradation, and release the drug in a controlled manner. Modification of nanoparticle surface by molecules leads to prolonged retention and accumulation in the target area of the organism. Current efforts of designing polymeric nanoparticles include drug activation in the target area, controlled drug release at the site upon stimulation, and increased drug loading capacity of drug polymer conjugates. Recent progress in molecular mechanism elucidation of cancer cell and rising research in nanoparticle designs may provide efficient cancer treatment modality and innovative nanoparticle designs in the near future. Recent years have seen many developments in the field of innovative peptide based drug nanoparticles. Although none of them approved to be used in clinic yet, peptides are promising structures due to their simple and non-antigenic nature. Biodegrable materials are also preferred materials in drug delivery. Polysaccharide-based micelle systems improve hydrophobic drug and protein delivery. Ease of saccharide structure modification improves pharmacokinetic and pharmacodynamic properties of drug molecules as well as their delivery to a specific site in a controlled manner and sustained rate. Small molecules, especially drugs, conjugated to nanoparticles and several nanoparticles of this type are in the clinical trials and at the market. This review provides recent developments of polymeric nanoparticles conjugated with peptides, saccharides, and small molecules in cancer theraphy. Copyright© Bentham Science Publishers; For any queries, please

  2. ChemNet: A Transferable and Generalizable Deep Neural Network for Small-Molecule Property Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B.; Siegel, Charles M.; Vishnu, Abhinav; Hodas, Nathan O.

    2017-12-08

    With access to large datasets, deep neural networks through representation learning have been able to identify patterns from raw data, achieving human-level accuracy in image and speech recognition tasks. However, in chemistry, availability of large standardized and labelled datasets is scarce, and with a multitude of chemical properties of interest, chemical data is inherently small and fragmented. In this work, we explore transfer learning techniques in conjunction with the existing Chemception CNN model, to create a transferable and generalizable deep neural network for small-molecule property prediction. Our latest model, ChemNet learns in a semi-supervised manner from inexpensive labels computed from the ChEMBL database. When fine-tuned to the Tox21, HIV and FreeSolv dataset, which are 3 separate chemical tasks that ChemNet was not originally trained on, we demonstrate that ChemNet exceeds the performance of existing Chemception models, contemporary MLP models that trains on molecular fingerprints, and it matches the performance of the ConvGraph algorithm, the current state-of-the-art. Furthermore, as ChemNet has been pre-trained on a large diverse chemical database, it can be used as a universal “plug-and-play” deep neural network, which accelerates the deployment of deep neural networks for the prediction of novel small-molecule chemical properties.

  3. Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives.

    Science.gov (United States)

    Park, Miso; Cella, Lakshmi N; Chen, Wilfred; Myung, Nosang V; Mulchandani, Ashok

    2010-12-15

    In recent years, there has been a growing focus on use of one-dimensional (1-D) nanostructures, such as carbon nanotubes and nanowires, as transducer elements for label-free chemiresistive/field-effect transistor biosensors as they provide label-free and high sensitivity detection. While research to-date has elucidated the power of carbon nanotubes- and other 1-D nanostructure-based field effect transistors immunosensors for large charged macromolecules such as proteins and viruses, their application to small uncharged or charged molecules has not been demonstrated. In this paper we report a single-walled carbon nanotubes (SWNTs)-based chemiresistive immunosensor for label-free, rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT), a small molecule. The newly developed immunosensor employed a displacement mode/format in which SWNTs network forming conduction channel of the sensor was first modified with trinitrophenyl (TNP), an analog of TNT, and then ligated with the anti-TNP single chain antibody. Upon exposure to TNT or its derivatives the bound antibodies were displaced producing a large change, several folds higher than the noise, in the resistance/conductance of SWNTs giving excellent limit of detection, sensitivity and selectivity. The sensor detected between 0.5 ppb and 5000 ppb TNT with good selectivity to other nitroaromatic explosives and demonstrated good accuracy for monitoring TNT in untreated environmental water matrix. We believe this new displacement format can be easily generalized to other one-dimensional nanostructure-based chemiresistive immuno/affinity-sensors for detecting small and/or uncharged molecules of interest in environmental monitoring and health care. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Selectivity by small-molecule inhibitors of protein interactions can be driven by protein surface fluctuations.

    Directory of Open Access Journals (Sweden)

    David K Johnson

    2015-02-01

    Full Text Available Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these "distinct" pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions.

  5. Multiscale Molecular Simulation of Solution Processing of SMDPPEH: PCBM Small-Molecule Organic Solar Cells.

    Science.gov (United States)

    Lee, Cheng-Kuang; Pao, Chun-Wei

    2016-08-17

    Solution-processed small-molecule organic solar cells are a promising renewable energy source because of their low production cost, mechanical flexibility, and light weight relative to their pure inorganic counterparts. In this work, we developed a coarse-grained (CG) Gay-Berne ellipsoid molecular simulation model based on atomistic trajectories from all-atom molecular dynamics simulations of smaller system sizes to systematically study the nanomorphology of the SMDPPEH/PCBM/solvent ternary blend during solution processing, including the blade-coating process by applying external shear to the solution. With the significantly reduced overall system degrees of freedom and computational acceleration from GPU, we were able to go well beyond the limitation of conventional all-atom molecular simulations with a system size on the order of hundreds of nanometers with mesoscale molecular detail. Our simulations indicate that, similar to polymer solar cells, the optimal blending ratio in small-molecule organic solar cells must provide the highest specific interfacial area for efficient exciton dissociation, while retaining balanced hole/electron transport pathway percolation. We also reveal that blade-coating processes have a significant impact on nanomorphology. For given donor/acceptor blending ratios, applying an external shear force can effectively promote donor/acceptor phase segregation and stacking in the SMDPPEH domains. The present study demonstrated the capability of an ellipsoid-based coarse-grained model for studying the nanomorphology evolution of small-molecule organic solar cells during solution processing/blade-coating and provided links between fabrication protocols and device nanomorphologies.

  6. Nanomaterial based electrochemical sensors for in vitro detection of small molecule metabolites.

    Science.gov (United States)

    Xiao, Fei; Wang, Lu; Duan, Hongwei

    2016-01-01

    Small molecule metabolites secreted by pathological processes can act as molecular biomarkers for clinical diagnosis. In vitro detection of the metabolites such as glucose and reactive oxygen species is of great significance for precise screening, monitoring and prognosis of metabolic disorders and relevant diseases such as cancer, and has been under intense research and development in clinical chemistry and molecular diagnostics. In this review, we summarize recent developments in nanomaterial based electrochemical (bio)sensors for in vitro detection of glucose and reactive oxygen species and the progress in utilizing lightweight and flexible electrodes and micro/nanoscale electrodes for flexible and miniaturized sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Bifunctional Pt-Si Alloys for Small Organic Molecule Electro-oxidation

    DEFF Research Database (Denmark)

    Permyakova, Anastasia Aleksandrovna; Suntivich, Jin; Han, Binghong

    Designing highly active catalysts for electro-oxidation of small organic molecules can help to reduce the anodic overpotential for more efficient utilization of hydrocarbon fuels. The challenge in developing more active electrocatalysts for electro-oxidation reactions is to satisfy the stringent...... bifunctional requirement, which demands both adsorption and water oxidation sites. In this contribution, we explore the possibility of using Pt-Si alloys to fulfill this bifunctional requirement. Silicon, a highly oxophillic element, is alloyed into Pt as a site for water oxidation, while Pt serves as a CO...

  8. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting

    KAUST Repository

    Pérez, Louis A.

    2013-09-04

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Use of PKA-mediated phenotypes for genetic and small-molecule screens in Schizosaccharomyces pombe.

    Science.gov (United States)

    de Medeiros, Ana Santos; Magee, Alexander; Nelson, Kyle; Friedberg, Liora; Trocka, Karolina; Hoffman, Charles S

    2013-12-01

    PKA (protein kinase A) in the fission yeast Schizosaccharomyces pombe controls transcription of genes involved in metabolism, cell growth and sexual development. In the present review, we discuss phenotypes associated with either high or low PKA activity in the context of how they can be used to carry out genetic or small-molecule screens that affect components of the PKA pathway. Although our recent research has focused on the study of heterologously expressed cyclic nucleotide PDEs (phosphodiesterases), these same methods can be used to target other S. pombe proteins or their functionally equivalent orthologues that act in the PKA pathway.

  10. Introduction: MicroRNAs in human reproduction: small molecules with crucial regulatory roles.

    Science.gov (United States)

    Imbar, Tal; Galliano, Daniela; Pellicer, Antonio; Laufer, Neri

    2014-06-01

    MicroRNAs constitute a large family of approximately 21-nucleotide-long, noncoding RNAs. They emerged more than 20 years ago as key posttranscriptional regulators of gene expression. The regulatory role of these small RNA molecules has recently begun to be explored in the human reproductive system. In this issue's Views and Reviews, the authors present the current knowledge regarding the involvement of microRNAs in several aspects of human reproduction and discuss its future implications for clinical practice. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Live Cell Imaging of Mitochondrial Autophagy with a Novel Fluorescent Small Molecule.

    Science.gov (United States)

    Iwashita, Hidefumi; Torii, Satoru; Nagahora, Noriyoshi; Ishiyama, Munetaka; Shioji, Kosei; Sasamoto, Kazumi; Shimizu, Shigeomi; Okuma, Kentaro

    2017-10-20

    There has been a growing interest in mitophagy, mitochondria-selective autophagy, which plays an essential role in maintaining intracellular homeostasis. We have developed a small-molecule fluorescent probe, Mtphagy Dye, for visualizing mitophagy, which was readily synthesized from a known perylene derivative, perylene-3,4-dicarboxylic anhydride. Mtphagy Dye has suitable fluorescent properties for detecting mitochondrial acidification during mitophagy in the long-wavelength region that does not damage mitochondria. Using Mtphagy Dye, we were able to visualize mitophagy with both cases of Parkin-dependent and -independent HeLa cells.

  12. Dual Function Additives: A Small Molecule Crosslinker for Enhanced Efficiency and Stability in Organic Solar Cells

    KAUST Repository

    Rumer, Joseph W.

    2015-02-01

    A bis-azide-based small molecule crosslinker is synthesized and evaluated as both a stabilizing and efficiency-boosting additive in bulk heterojunction organic photovoltaic cells. Activated by a noninvasive and scalable solution processing technique, polymer:fullerene blends exhibit improved thermal stability with suppressed polymer skin formation at the cathode and frustrated fullerene aggregation on ageing, with initial efficiency increased from 6% to 7%. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Combination of Small Molecule Microarray and Confocal Microscopy Techniques for Live Cell Staining Fluorescent Dye Discovery

    Directory of Open Access Journals (Sweden)

    Attila Bokros

    2013-08-01

    Full Text Available Discovering new fluorochromes is significantly advanced by high-throughput screening (HTS methods. In the present study a combination of small molecule microarray (SMM prescreening and confocal laser scanning microscopy (CLSM was developed in order to discover novel cell staining fluorescent dyes. Compounds with high native fluorescence were selected from a 14,585-member library and further tested on living cells under the microscope. Eleven compartment-specific, cell-permeable (or plasma membrane-targeted fluorochromes were identified. Their cytotoxicity was tested and found that between 1–10 micromolar range, they were non-toxic even during long-term incubations.

  14. Towards Development of Small Molecule Lipid II Inhibitors as Novel Antibiotics

    OpenAIRE

    Chauhan, Jamal; Cardinale, Steven; Fang, Lei; Huang, Jing; Kwasny, Steven M.; Pennington, M. Ross; Basi, Kelly; diTargiani, Robert; Capacio, Benedict R.; MacKerell, Alexander D.; Opperman, Timothy J.; Fletcher, Steven; Leeuw, Erik P.H. De

    2016-01-01

    Recently we described a novel di-benzene-pyrylium-indolene (BAS00127538) inhibitor of Lipid II. BAS00127538 (1-Methyl-2,4-diphenyl-6-((1E,3E)-3-(1,3,3-trimethylindolin-2-ylidene)prop-1-en-1-yl)pyryl-1-ium) tetrafluoroborate is the first small molecule Lipid II inhibitor and is structurally distinct from natural agents that bind Lipid II, such as vancomycin. Here, we describe the synthesis and biological evaluation of 50 new analogs of BAS00127538 designed to explore the structure-activity rel...

  15. A Bifurcated Proteoglycan Binding Small Molecule Carrier for siRNA Delivery

    Science.gov (United States)

    Gooding, Matt; Adigbli, Derick; Edith Chan, A W; Melander, Roberta J; MacRobert, Alexander J; Selwood, David L

    2014-01-01

    A wider application of siRNA- and miRNA- based therapeutics is restricted by the currently available delivery systems. We have designed a new type of small molecule carrier (SMoC) system for siRNA modeled to interact with cell surface proteoglycans. This bifurcated SMoC has similar affinity for the model proteoglycan heparin to an equivalent polyarginine peptide and exhibits significant mRNA knockdown of protein levels comparable to lipofectamine and the previously reported linear SMoC. PMID:24472581

  16. Structural insight into inactivation of plasminogen activator inhibitor-1 by a small-molecule antagonist

    DEFF Research Database (Denmark)

    Lin, Zhonghui; Jensen, Jan Kristian; Hong, Zebin

    2013-01-01

    Plasminogen activator inhibitor-1 (PAI-1), a serpin, is the physiological inhibitor of tissue-type and urokinase-type plasminogen activators and thus also an inhibitor of fibrinolysis and tissue remodeling. It is a potential therapeutic target in many pathological conditions, including thrombosis...... of PAI-1 into a substrate for its target proteases and the subsequent slow conversion of PAI-1 into an irreversibly inactivated form. Our work provides structural clues to an understanding of PAI-1 inactivation by small-molecule antagonists and an important step toward the design of drugs targeting PAI-1....

  17. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly

    KAUST Repository

    Lee, Olivia P.

    2011-10-21

    Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by π-π interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules.

    Science.gov (United States)

    Lee, Min Hee; Kim, Jong Seung; Sessler, Jonathan L

    2015-07-07

    Quantitative determination of specific analytes is essential for a variety of applications ranging from life sciences to environmental monitoring. Optical sensing allows non-invasive measurements within biological milieus, parallel monitoring of multiple samples, and less invasive imaging. Among the optical sensing methods currently being explored, ratiometric fluorescence sensing has received particular attention as a technique with the potential to provide precise and quantitative analyses. Among its advantages are high sensitivity and inherent reliability, which reflect the self-calibration provided by monitoring two (or more) emissions. A wide variety of ratiometric sensing probes using small fluorescent molecules have been developed for sensing, imaging, and biomedical applications. In this research highlight, we provide an overview of the design principles underlying small fluorescent probes that have been applied to the ratiometric detection of various analytes, including cations, anions, and biomolecules in solution and in biological samples. This highlight is designed to be illustrative, not comprehensive.

  19. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  20. Advanced Applications of Vibrational Circular Dichroism: from Small Chiral Molecules to Fibrils

    Science.gov (United States)

    Dukor, Rina K.

    2017-06-01

    Vibrational Circular Dichroism (VCD), first discovered in the early 1970s, and commercialized in the late 1990's, is finally coming of age! No longer a curiosity of the few selected academic groups, it is now used by all major pharmaceutical companies, regulatory agencies, government labs and academic institutions. The main application for the technology has been determination of absolute configuration of small pharmaceutical molecules. In more recent years, this has extended to more complicated molecules such as natural products with many chiral centers and conformational flexibility. Other applications include determination of enantiomeric purity, chiral polymers, and characterization of other biological molecules such as proteins, carohydrates and nucleic acids. One of the most fascinating discoveries in the VCD field has been been unusual enhancement in intensity for proteins that form fibrils. We have demonstrated sensitivity of VCD to in situ solution-phase probe of the process of fibrillogenesis and subsequent development that currently can only be studied in detail with dried samples by such techniques as scanning electron microscopy or atomic force microscopy. We have further shown that several different proteins, that in their native state have different secondary structures, have a very similar unique signature of mature fibrils. In this presentation, we will discuss fundamentals of VCD, demonstrate a few examples of different applications and showcase the sensitivity to structure of fibrils, including new results on micro-sampling.

  1. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies.

    Science.gov (United States)

    Borisa, Ankit C; Bhatt, Hardik G

    2017-11-10

    Aurora kinase belongs to serine/threonine kinase family which controls cell division. Therapeutic inhibition of Aurora kinase showed great promise as probable anticancer regime because of its important role during cell division. Here, in this review, we have carried out exhaustive study of various synthetic molecules reported as Aurora kinase inhibitors and developed as lead molecule at various stages of clinical trials from its discovery in 1995 to till date. We reported details of small molecules, specifically inhibiting all 3 types of Aurora kinases, which includes extensive literature search in various database like various scientific journals, patents, scifinder and PubMed database, internet resources, books, etc. IC50 values of tumor growth inhibition, in-vitro and in-vivo activity along with clinical trial data. Here, we took efforts to describe essence of Aurora kinase and its inhibition which could be used to develop anti-mitotic drug for the treatment of cancer. In conclusion, we also discuss future perspectives for development of novel inhibitors and their scope in drug development process. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Role of defects in the adsorption of small molecules on single-layer hexagonal boron nitride

    Science.gov (United States)

    Jiang, Tao; Rawal, Takat B.; Le, Duy; Rahman, Talat S.

    In this work, we have investigated the adsorption of small molecules (CO, CO2, H2) on single-layer hexagonal boron nitride (h-BN) with point defects employing ab initio density functional theory (DFT) with incorporation of non-local van der Waals functional. We find that N vacancy (VN) and N substituted by B (BN) facilitate the adsorption of CO and CO2 molecules on h-BN. CO molecularly chemisorbs on h-BN with these defects with adsorption energy of -1.01 eV and -2.56 eV, whereas CO2 molecularly chemisorbs with adsorption energy of -1.66 eV and -0.094 eV. In contrast H2 does not chemisorb on these defects. We will analyze the geometric and electronic structure of these systems to establish the rationale for the differences in behavior for these adsorbates. We will also present results of the phonon dispersion of the systems, and discuss the vibrational modes of those adsorbed molecules. These results provide atomistic understanding of the physical processes involved in, occurring at the reaction sites, the conversion of synthetic gases into higher alcohols as observed in recent experiments. Work supported in part by NSF Grant CHE-1465105.

  3. Small molecule and peptide-mediated inhibition of Epstein-Barr virus nuclear antigen 1 dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Young; Song, Kyung-A [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kieff, Elliott [Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States); Kang, Myung-Soo, E-mail: mkang@skku.edu [Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Department of Medicine, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Evidence that targeting EBNA1 dimer, an EBV onco-antigen, can be achievable. Black-Right-Pointing-Pointer A small molecule and a peptide as EBNA1 dimerization inhibitors identified. Black-Right-Pointing-Pointer Both inhibitors associated with EBNA1 and blocked EBNA1 DNA binding activity. Black-Right-Pointing-Pointer Also, prevented its dimerization, and repressed viral gene transcription. -- Abstract: Latent Epstein-Barr virus (EBV) infection is associated with human B cell lymphomas and certain carcinomas. EBV episome persistence, replication, and gene expression are dependent on EBV-encoded nuclear antigen 1 (EBNA1)'s DNA binding domain (DBD)/dimerization domain (DD)-mediated sequence-specific DNA binding activity. Homodimerization of EBNA1 is essential for EBNA1 DNA binding and transactivation. In this study, we characterized a novel small molecule EBNA1 inhibitor EiK1, screened from the previous high throughput screening (HTS). The EiK1 compound specifically inhibited the EBNA1-dependent, OriP-enhanced transcription, but not EBNA1-independent transcription. A Surface Plasmon Resonance Biacore assay revealed that EiK1 associates with EBNA1 amino acid 459-607 DBD/DD. Consistent with the SPR data, in vitro gel shift assays showed that EiK1 suppressed the activity of EBNA1 binding to the cognate familial repeats (FR) sequence, but not control RBP-J{kappa} binding to the J{kappa} site. Subsequently, a cross-linker-mediated in vitro multimerization assay and EBNA1 homodimerization-dependent yeast two-hybrid assay showed that EiK1 significantly inhibited EBNA1 dimerization. In an attempt to identify more highly specific peptide inhibitors, small peptides encompassing the EBNA1 DBD/DD were screened for inhibition of EBNA1 DBD-mediated DNA binding function. The small peptide P85, covering EBNA1 a.a. 560-574, significantly blocked EBNA1 DNA binding activity in vitro, prevented dimerization in vitro and in vivo, associated

  4. Deposition of low sheet resistance indium tin oxide directly onto functional small molecules

    KAUST Repository

    Franklin, Joseph B.

    2014-11-01

    © 2014 Elsevier B.V. All rights reserved. We outline a methodology for depositing tin-doped indium oxide (ITO) directly onto semiconducting organic small molecule films for use as a transparent conducting oxide top-electrode. ITO films were grown using pulsed laser deposition onto copper(II)phthalocyanine (CuPc):buckminsterfullerene (C60) coated substrates. The ITO was deposited at a substrate temperature of 150 °C over a wide range of background oxygen pressures (Pd) (0.67-10 Pa). Deposition at 0.67 ≤ Pd ≤ 4.7 Pa led to delamination of the organic films owing to damage induced by the high energy ablated particles, at intermediate 4.7 ≤ Pd < 6.7 Pa pressures macroscopic cracking is observed in the ITO. Increasing Pd further, ≥ 6.7 Pa, supports the deposition of continuous, polycrystalline and highly transparent ITO films without damage to the CuPc:C60. The free carrier concentration of ITO is strongly influenced by Pd; hence growth at > 6.7 Pa induces a significant decrease in conductivity; with a minimum sheet resistance (Rs) of 145 /□ achieved for 300 nm thick ITO films. To reduce the Rs a multi-pressure deposition was implemented, resulting in the formation of polycrystalline, highly transparent ITO with an Rs of - 20/□ whilst maintaining the inherent functionality and integrity of the small molecule substrate.

  5. Small Molecules Present in the Cerebrospinal Fluid Metabolome Influence Superoxide Dismutase 1 Aggregation

    Directory of Open Access Journals (Sweden)

    Isabel Cardoso

    2013-09-01

    Full Text Available Superoxide dismutase 1 (SOD1 aggregation is one of the pathological markers of amyotrophic lateral sclerosis (ALS, a fatal neurodegenerative disorder. The underlying molecular grounds of SOD1 pathologic aggregation remains obscure as mutations alone are not exclusively the cause for the formation of protein inclusions. Thus, other components in the cell environment likely play a key role in triggering SOD1 toxic aggregation in ALS. Recently, it was found that ALS patients present a specific altered metabolomic profile in the cerebrospinal fluid (CSF where SOD1 is also present and potentially interacts with metabolites. Here we have investigated how some of these small molecules affect apoSOD1 structure and aggregation propensity. Our results show that as co-solvents, the tested small molecules do not affect apoSOD1 thermal stability but do influence its tertiary interactions and dynamics, as evidenced by combined biophysical analysis and proteolytic susceptibility. Moreover, these compounds influence apoSOD1 aggregation, decreasing nucleation time and promoting the formation of larger and less soluble aggregates, and in some cases polymeric assemblies apparently composed by spherical species resembling the soluble native protein. We conclude that some components of the ALS metabolome that shape the chemical environment in the CSF may influence apoSOD1 conformers and aggregation.

  6. The Subcellular Distribution of Small Molecules: from Pharmacokinetics to Synthetic Biology

    Science.gov (United States)

    Zheng, Nan; Tsai, Hobart Ng; Zhang, Xinyuan; Rosania, Gus R.

    2011-01-01

    The systemic pharmacokinetics and pharmacodynamics of small molecules are determined by subcellular transport phenomena. Although approaches used to study the subcellular distribution of small molecules have gradually evolved over the past several decades, experimental analysis and prediction of cellular pharmacokinetics remains a challenge. In this article, we surveyed the progress of subcellular distribution research since the 1960s, with a focus on the advantages, disadvantages and limitations of the various experimental techniques. Critical review of the existing body of knowledge pointed to many opportunities to advance the rational design of organelle-targeted chemical agents. These opportunities include: 1) development of quantitative, nonfluorescence-based, whole cell methods and techniques to measure the subcellular distribution of chemical agents in multiple compartments; 2) exploratory experimentation with nonspecific transport probes that have not been enriched with putative, organelle-targeting features; 3) elaboration of hypothesis-driven, mechanistic and modeling-based approaches to guide experiments aimed at elucidating subcellular distribution and transport; and 4) introduction of revolutionary conceptual approaches borrowed from the field of synthetic biology combined with cutting edge experimental strategies. In our laboratory, state-of-the-art subcellular transport studies are now being aimed at understanding the formation of new intracellular membrane structures in response to drug therapy, exploring the function of drug-membrane complexes as intracellular drug depots, and synthesizing new organelles with extraordinary physical and chemical properties. PMID:21805990

  7. Peptides and small molecules of the plant-pathogen apoplastic arena

    Directory of Open Access Journals (Sweden)

    Glenn Adam Mott

    2014-11-01

    Full Text Available Plants reside within an environment rich in potential pathogens. Survival in the presence of such threats requires both effective perception of, and appropriate responses to, pathogenic attack. While plants lack an adaptive immune system, they have a highly developed and responsive innate immune system able to detect and inhibit the growth of the vast majority of potential pathogens. Many of the critical interactions that characterize the relationship between plants and pathogens are played out in the intercellular apoplastic space. The initial perception of pathogen invasion is often achieved through specific plant receptor-like kinases that recognize conserved molecular patterns presented by the pathogen or respond to the molecular debris caused by cellular damage. The perception of either microbial or damage signals by these receptors initiates a response that includes the production of peptides and small molecules to enhance cellular integrity and inhibit pathogen growth. In this review, we discuss the roles of apoplastic peptides and small molecules in modulating plant-pathogen interactions.

  8. Inhibition of Non-ATG Translational Events in Cells via Covalent Small Molecules Targeting RNA.

    Science.gov (United States)

    Yang, Wang-Yong; Wilson, Henry D; Velagapudi, Sai Pradeep; Disney, Matthew D

    2015-04-29

    One major class of disease-causing RNAs is expanded repeating transcripts. These RNAs cause diseases via multiple mechanisms, including: (i) gain-of-function, in which repeating RNAs bind and sequester proteins involved in RNA biogenesis and (ii) repeat associated non-ATG (RAN) translation, in which repeating transcripts are translated into toxic proteins without use of a canonical, AUG, start codon. Herein, we develop and study chemical probes that bind and react with an expanded r(CGG) repeat (r(CGG)(exp)) present in a 5' untranslated region that causes fragile X-associated tremor/ataxia syndrome (FXTAS). Reactive compounds bind to r(CGG)(exp) in cellulo as shown with Chem-CLIP-Map, an approach to map small molecule binding sites within RNAs in cells. Compounds also potently improve FXTAS-associated pre-mRNA splicing and RAN translational defects, while not affecting translation of the downstream open reading frame. In contrast, oligonucleotides affect both RAN and canonical translation when they bind to r(CGG)(exp), which is mechanistically traced to a decrease in polysome loading. Thus, designer small molecules that react with RNA targets can be used to profile the RNAs to which they bind in cells, including identification of binding sites, and can modulate several aspects of RNA-mediated disease pathology in a manner that may be more beneficial than oligonucleotides.

  9. Targeting the r(CGG) repeats that cause FXTAS with modularly assembled small molecules and oligonucleotides.

    Science.gov (United States)

    Tran, Tuan; Childs-Disney, Jessica L; Liu, Biao; Guan, Lirui; Rzuczek, Suzanne; Disney, Matthew D

    2014-04-18

    We designed small molecules that bind the structure of the RNA that causes fragile X-associated tremor ataxia syndrome (FXTAS), an incurable neuromuscular disease. FXTAS is caused by an expanded r(CGG) repeat (r(CGG)(exp)) that inactivates a protein regulator of alternative pre-mRNA splicing. Our designed compounds modulate r(CGG)(exp) toxicity in cellular models of FXTAS, and pull-down experiments confirm that they bind r(CGG)(exp) in vivo. Importantly, compound binding does not affect translation of the downstream open reading frame (ORF). We compared molecular recognition properties of our optimal compound to oligonucleotides. Studies show that r(CGG)(exp)'s self-structure is a significant energetic barrier for oligonucleotide binding. A fully modified 2'-OMethyl phosphorothioate is incapable of completely reversing an FXTAS-associated splicing defect and inhibits translation of the downstream ORF, which could have deleterious effects. Taken together, these studies suggest that a small molecule that recognizes structure may be more well suited for targeting highly structured RNAs that require strand invasion by a complementary oligonucleotide.

  10. Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors.

    Science.gov (United States)

    Lippmann, Ethan Scott; Estevez-Silva, Maria Carolina; Ashton, Randolph Scott

    2014-04-01

    The embryonic neuroepithelium gives rise to the entire central nervous system in vivo, making it an important tissue for developmental studies and a prospective cell source for regenerative applications. Current protocols for deriving homogenous neuroepithelial cultures from human pluripotent stem cells (hPSCs) consist of either embryoid body-mediated neuralization followed by a manual isolation step or adherent differentiation using small molecule inhibitors. Here, we report that hPSCs maintained under chemically defined, feeder-independent, and xeno-free conditions can be directly differentiated into pure neuroepithelial cultures ([mt]90% Pax6(+)/N-cadherin(+) with widespread rosette formation) within 6 days under adherent conditions, without small molecule inhibitors, and using only minimalistic medium consisting of Dulbecco's modified Eagle's medium/F-12, sodium bicarbonate, selenium, ascorbic acid, transferrin, and insulin (i.e., E6 medium). Furthermore, we provide evidence that the defined culture conditions enable this high level of neural conversion in contrast to hPSCs maintained on mouse embryonic fibroblasts (MEFs). In addition, hPSCs previously maintained on MEFs could be rapidly converted to a neural compliant state upon transfer to these defined conditions while still maintaining their ability to generate all three germ layers. Overall, this fully defined and scalable protocol should be broadly useful for generating therapeutic neural cells for regenerative applications. © 2013 AlphaMed Press.

  11. Small molecule organic semiconductors on the move: promises for future solar energy technology.

    Science.gov (United States)

    Mishra, Amaresh; Bäuerle, Peter

    2012-02-27

    This article is written from an organic chemist's point of view and provides an up-to-date review about organic solar cells based on small molecules or oligomers as absorbers and in detail deals with devices that incorporate planar-heterojunctions (PHJ) and bulk heterojunctions (BHJ) between a donor (p-type semiconductor) and an acceptor (n-type semiconductor) material. The article pays particular attention to the design and development of molecular materials and their performance in corresponding devices. In recent years, a substantial amount of both, academic and industrial research, has been directed towards organic solar cells, in an effort to develop new materials and to improve their tunability, processability, power conversion efficiency, and stability. On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade. Approaches to enhancing the efficiency of organic solar cells are analyzed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    KAUST Repository

    Collis, Gavin E.

    2015-12-22

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  13. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungwook; Connelly, Stephen; Reixach, Natàlia; Wilson, Ian A.; Kelly, Jeffery W. (Scripps)

    2010-02-19

    A small molecule that could bind selectively to and then react chemoselectively with a non-enzyme protein in a complex biological fluid, such as blood, could have numerous practical applications. Herein, we report a family of designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin in preference to more than 4,000 other human plasma proteins. They react chemoselectively with only one of eight lysine {epsilon}-amino groups within transthyretin. The crystal structure confirms the expected binding orientation of the stilbene substructure and the anticipated conjugating amide bond. These covalent transthyretin kinetic stabilizers exhibit superior amyloid inhibition potency compared to their noncovalent counterparts, and they prevent cytotoxicity associated with amyloidogenesis. Though there are a few prodrugs that, upon metabolic activation, react with a cysteine residue inactivating a specific non-enzyme, we are unaware of designed small molecules that react with one lysine {epsilon}-amine within a specific non-enzyme protein in a complex biological fluid.

  14. Attenuation of Zinc Finger Nuclease Toxicity by Small-Molecule Regulation of Protein Levels

    Science.gov (United States)

    Pruett-Miller, Shondra M.; Reading, David W.; Porter, Shaina N.; Porteus, Matthew H.

    2009-01-01

    Zinc finger nucleases (ZFNs) have been used successfully to create genome-specific double-strand breaks and thereby stimulate gene targeting by several thousand fold. ZFNs are chimeric proteins composed of a specific DNA-binding domain linked to a non-specific DNA-cleavage domain. By changing key residues in the recognition helix of the specific DNA-binding domain, one can alter the ZFN binding specificity and thereby change the sequence to which a ZFN pair is being targeted. For these and other reasons, ZFNs are being pursued as reagents for genome modification, including use in gene therapy. In order for ZFNs to reach their full potential, it is important to attenuate the cytotoxic effects currently associated with many ZFNs. Here, we evaluate two potential strategies for reducing toxicity by regulating protein levels. Both strategies involve creating ZFNs with shortened half-lives and then regulating protein level with small molecules. First, we destabilize ZFNs by linking a ubiquitin moiety to the N-terminus and regulate ZFN levels using a proteasome inhibitor. Second, we destabilize ZFNs by linking a modified destabilizing FKBP12 domain to the N-terminus and regulate ZFN levels by using a small molecule that blocks the destabilization effect of the N-terminal domain. We show that by regulating protein levels, we can maintain high rates of ZFN-mediated gene targeting while reducing ZFN toxicity. PMID:19214211

  15. In situ click chemistry: from small molecule discovery to synthetic antibodies

    Science.gov (United States)

    Agnew, Heather D.; Lai, Bert; Lee, Su Seong; Lim, Jaehong; Nag, Arundhati; Pitram, Suresh; Rohde, Rosemary; Heath, James R.

    2013-01-01

    Advances in the fields of proteomics, molecular imaging, and therapeutics are closely linked to the availability of affinity reagents that selectively recognize their biological targets. Here we present a review of Iterative Peptide In Situ Click Chemistry (IPISC), a novel screening technology for designing peptide multiligands with high affinity and specificity. This technology builds upon in situ click chemistry, a kinetic target-guided synthesis approach where the protein target catalyzes the conjugation of two small molecules, typically through the azide–alkyne Huisgen cycloaddition. Integrating this methodology with solid phase peptide libraries enables the assembly of linear and branched peptide multiligands we refer to as Protein Catalyzed Capture Agents (PCC Agents). The resulting structures can be thought of as analogous to the antigen recognition site of antibodies and serve as antibody replacements in biochemical and cell-based applications. In this review, we discuss the recent progress in ligand design through IPISC and related approaches, focusing on the improvements in affinity and specificity as multiligands are assembled by target-catalyzed peptide conjugation. We compare the IPISC process to small molecule in situ click chemistry with particular emphasis on the advantages and technical challenges of constructing antibody-like PCC Agents. PMID:22836343

  16. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    Full Text Available The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  17. Stimulation of host immune defenses by a small molecule protects C. elegans from bacterial infection.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda; Kirienko, Natalia V; Larkins-Ford, Jonah; Conery, Annie L; Ausubel, Frederick M

    2012-01-01

    The nematode Caenorhabditis elegans offers currently untapped potential for carrying out high-throughput, live-animal screens of low molecular weight compound libraries to identify molecules that target a variety of cellular processes. We previously used a bacterial infection assay in C. elegans to identify 119 compounds that affect host-microbe interactions among 37,214 tested. Here we show that one of these small molecules, RPW-24, protects C. elegans from bacterial infection by stimulating the host immune response of the nematode. Using transcriptome profiling, epistasis pathway analyses with C. elegans mutants, and an RNAi screen, we show that RPW-24 promotes resistance to Pseudomonas aeruginosa infection by inducing the transcription of a remarkably small number of C. elegans genes (∼1.3% of all genes) in a manner that partially depends on the evolutionarily-conserved p38 MAP kinase pathway and the transcription factor ATF-7. These data show that the immunostimulatory activity of RPW-24 is required for its efficacy and define a novel C. elegans-based strategy to identify compounds with activity against antibiotic-resistant bacterial pathogens.

  18. Protein phosphorylation and signal transduction modulation: chemistry perspectives for small-molecule drug discovery.

    Science.gov (United States)

    Sawyer, T K; Shakespeare, W C; Wang, Y; Sundaramoorthi, R; Huang, W-S; Metcalf, C A; Thomas, M; Lawrence, B M; Rozamus, L; Noehre, J; Zhu, X; Narula, S; Bohacek, R S; Weigele, M; Dalgarno, D C

    2005-05-01

    Protein phosphorylation has been exploited by Nature in profound ways to control various aspects of cell proliferation, differentiation, metabolism, survival, motility and gene transcription. Cellular signal transduction pathways involve protein kinases, protein phosphatases, and phosphoprotein-interacting domain (e.g., SH2, PTB, WW, FHA, 14-3-3) containing cellular proteins to provide multidimensional, dynamic and reversible regulation of many biological activities. Knowledge of cellular signal transduction pathways has led to the identification of promising therapeutic targets amongst these superfamilies of enzymes and adapter proteins which have been linked to various cancers as well as inflammatory, immune, metabolic and bone diseases. This review focuses on protein kinase, protein phosphatase and phosphoprotein-interacting cellular protein therapeutic targets with an emphasis on small-molecule drug discovery from a chemistry perspective. Noteworthy studies related to molecular genetics, signal transduction pathways, structural biology, and drug design for several of these therapeutic targets are highlighted. Some exemplary proof-of-concept lead compounds, clinical candidates and/or breakthrough medicines are further detailed to illustrate achievements as well as challenges in the generation, optimization and development of small-molecule inhibitors of protein kinases, protein phosphatases or phosphoprotein-interacting domain containing cellular proteins.

  19. Isothermal chemical denaturation to determine binding affinity of small molecules to G-protein coupled receptors.

    Science.gov (United States)

    Ross, Patrick; Weihofen, Wilhelm; Siu, Fai; Xie, Amy; Katakia, Hetal; Wright, S Kirk; Hunt, Ian; Brown, Richard K; Freire, Ernesto

    2015-03-15

    The determination of accurate binding affinities is critical in drug discovery and development. Several techniques are available for characterizing the binding of small molecules to soluble proteins. The situation is different for integral membrane proteins. Isothermal chemical denaturation has been shown to be a valuable biophysical method to determine, in a direct and label-free fashion, the binding of ligands to soluble proteins. In this study, the application of isothermal chemical denaturation was applied to an integral membrane protein, the A2a G-protein coupled receptor. Binding affinities for a set of 19 small molecule agonists/antagonists of the A2a receptor were determined and found to be in agreement with data from surface plasmon resonance and radioligand binding assays previously reported in the literature. Therefore, isothermal chemical denaturation expands the available toolkit of biophysical techniques to characterize and study ligand binding to integral membrane proteins, specifically G-protein coupled receptors in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Pluripotent stem cells derived from mouse primordial germ cells by small molecule compounds.

    Science.gov (United States)

    Kimura, Tohru; Kaga, Yoshiaki; Sekita, Yoichi; Fujikawa, Keita; Nakatani, Tsunetoshi; Odamoto, Mika; Funaki, Soichiro; Ikawa, Masahito; Abe, Kuniya; Nakano, Toru

    2015-01-01

    Primordial germ cells (PGCs) can give rise to pluripotent stem cells known as embryonic germ cells (EGCs) when cultured with basic fibroblast growth factor (bFGF), stem cell factor (SCF), and leukemia inhibitory factor. Somatic cells can give rise to induced pluripotent stem cells (iPSCs) by introduction of the reprogramming transcription factors Oct4, Sox2, and Klf4. The effects of Sox2 and Klf4 on somatic cell reprogramming can be reproduced using the small molecule compounds, transforming growth factor-β receptor (TGFβR) inhibitor and Kempaullone, respectively. Here we examined the effects of TGFβR inhibitor and Kempaullone on EGC derivation from PGCs. Treatment of PGCs with TGFβR inhibitor and/or Kempaullone generated pluripotent stem cells under standard embryonic stem cell (ESC) culture conditions without bFGF and SCF, which we termed induced EGCs (iEGCs). The derivation efficiency of iEGCs was dependent on the differentiation stage and sex. DNA methylation levels of imprinted genes in iEGCs were reduced, with the exception of the H19 gene. The promoters of genes involved in germline development were generally hypomethylated in PGCs, but three germline genes showed comparable DNA methylation levels among iEGs, ESCs, and iPSCs. These results show that PGCs can be reprogrammed into pluripotent state using small molecule compounds, and that DNA methylation of these germline genes is not maintained in iEGCs. © 2014 AlphaMed Press.

  1. Identification of potential small molecule binding pockets on Rho family GTPases.

    Directory of Open Access Journals (Sweden)

    Juan Manuel Ortiz-Sanchez

    Full Text Available Rho GTPases are conformational switches that control a wide variety of signaling pathways critical for eukaryotic cell development and proliferation. They represent attractive targets for drug design as their aberrant function and deregulated activity is associated with many human diseases including cancer. Extensive high-resolution structures (>100 and recent mutagenesis studies have laid the foundation for the design of new structure-based chemotherapeutic strategies. Although the inhibition of Rho signaling with drug-like compounds is an active area of current research, very little attention has been devoted to directly inhibiting Rho by targeting potential allosteric non-nucleotide binding sites. By avoiding the nucleotide binding site, compounds may minimize the potential for undesirable off-target interactions with other ubiquitous GTP and ATP binding proteins. Here we describe the application of molecular dynamics simulations, principal component analysis, sequence conservation analysis, and ensemble small-molecule fragment mapping to provide an extensive mapping of potential small-molecule binding pockets on Rho family members. Characterized sites include novel pockets in the vicinity of the conformationaly responsive switch regions as well as distal sites that appear to be related to the conformations of the nucleotide binding region. Furthermore the use of accelerated molecular dynamics simulation, an advanced sampling method that extends the accessible time-scale of conventional simulations, is found to enhance the characterization of novel binding sites when conformational changes are important for the protein mechanism.

  2. Identification of small-molecule inhibitors of the ribonuclease H2 enzyme.

    Science.gov (United States)

    White, Rachel; Saxty, Barbara; Large, Jonathan; Kettleborough, Catherine A; Jackson, Andrew P

    2013-06-01

    Ribonuclease H2 (RNase H2) is a nuclease that specifically hydrolyzes RNA residues in RNA-DNA hybrids. Mutations in the RNase H2 enzyme complex have been identified in the genetic disorder Aicardi-Goutières syndrome (AGS), which has similarities to the autoimmune disease systemic lupus eryrthrematosis (SLE). The RNase H2 enzyme has also been recently implicated as a key genome surveillance enzyme. Therefore, small-molecule modulators of RNase H2 activity may have utility in therapeutics and as tools to investigate the cellular functions of RNase H2. A fluorescent quench assay, measuring cleavage of an RNA-DNA duplex substrate by recombinant RNase H2, was developed into a high-throughput format and used to screen a 48 560 compound library. A hit validation strategy was subsequently employed, leading to the identification of two novel inhibitor compounds with in vitro nanomolar range inhibition of RNase H2 activity and >100-fold selectivity compared with RNase H type 1. These compounds are the first small-molecule inhibitors of RNase H2 to be reported. They and their derivatives should provide the basis for the development of tool compounds investigating the cellular functions of the RNase H2 enzyme, and, potentially, for pharmacological manipulation of nucleic acid-mediated immune responses.

  3. Observed bromodomain flexibility reveals histone peptide- and small molecule ligand-compatible forms of ATAD2.

    Science.gov (United States)

    Poncet-Montange, Guillaume; Zhan, Yanai; Bardenhagen, Jennifer P; Petrocchi, Alessia; Leo, Elisabetta; Shi, Xi; Lee, Gilbert R; Leonard, Paul G; Geck Do, Mary K; Cardozo, Mario G; Andersen, Jannik N; Palmer, Wylie S; Jones, Philip; Ladbury, John E

    2015-03-01

    Preventing histone recognition by bromodomains emerges as an attractive therapeutic approach in cancer. Overexpression of ATAD2 (ATPase family AAA domain-containing 2 isoform A) in cancer cells is associated with poor prognosis making the bromodomain of ATAD2 a promising epigenetic therapeutic target. In the development of an in vitro assay and identification of small molecule ligands, we conducted structure-guided studies which revealed a conformationally flexible ATAD2 bromodomain. Structural studies on apo-, peptide-and small molecule-ATAD2 complexes (by co-crystallization) revealed that the bromodomain adopts a 'closed', histone-compatible conformation and a more 'open' ligand-compatible conformation of the binding site respectively. An unexpected conformational change of the conserved asparagine residue plays an important role in driving the peptide-binding conformation remodelling. We also identified dimethylisoxazole-containing ligands as ATAD2 binders which aided in the validation of the in vitro screen and in the analysis of these conformational studies.

  4. Interplay between efficiency and device architecture for small molecule organic solar cells.

    Science.gov (United States)

    Williams, Graeme; Sutty, Sibi; Aziz, Hany

    2014-06-21

    Small molecule organic solar cells (OSCs) have experienced a resurgence of interest over their polymer solar cell counterparts, owing to their improved batch-to-batch (thus, cell-to-cell) reliability. In this systematic study on OSC device architecture, we investigate five different small molecule OSC structures, including the simple planar heterojunction (PHJ) and bulk heterojunction (BHJ), as well as several planar-mixed structures. The different OSC structures are studied over a wide range of donor:acceptor mixing concentrations to gain a comprehensive understanding of their charge transport behavior. Transient photocurrent decay measurements provide crucial information regarding the interplay between charge sweep-out and charge recombination, and ultimately hint toward space charge effects in planar-mixed structures. Results show that the BHJ/acceptor architecture, comprising a BHJ layer with high C60 acceptor content, generates OSCs with the highest performance by balancing charge generation with charge collection. The performance of other device architectures is largely limited by hole transport, with associated hole accumulation and space charge effects.

  5. A HaloTag-based small molecule microarray screening methodology with increased sensitivity and multiplex capabilities.

    Science.gov (United States)

    Noblin, Devin J; Page, Charlotte M; Tae, Hyun Seop; Gareiss, Peter C; Schneekloth, John S; Crews, Craig M

    2012-12-21

    Small Molecule Microarrays (SMMs) represent a general platform for screening small molecule-protein interactions independent of functional inhibition of target proteins. In an effort to increase the scope and utility of SMMs, we have modified the SMM screening methodology to increase assay sensitivity and facilitate multiplex screening. Fusing target proteins to the HaloTag protein allows us to covalently prelabel fusion proteins with fluorophores, leading to increased assay sensitivity and an ability to conduct multiplex screens. We use the interaction between FKBP12 and two ligands, rapamycin and ARIAD's "bump" ligand, to show that the HaloTag-based SMM screening methodology significantly increases assay sensitivity. Additionally, using wild type FKBP12 and the FKBP12 F36V mutant, we show that prelabeling various protein isoforms with different fluorophores allows us to conduct multiplex screens and identify ligands to a specific isoform. Finally, we show this multiplex screening technique is capable of identifying ligands selective for a specific PTP1B isoform using a 20,000 compound screening deck.

  6. Global transformation of OBOC combinatorial peptide libraries into OBOC polyamine and small molecule libraries.

    Science.gov (United States)

    Kappel, Joseph C; Fan, Yi C; Lam, Kit S

    2008-01-01

    In "one-bead-one-compound" (OBOC) combinatorial chemistry, a compound-bead library with hundreds of thousands to millions of diversities can be rapidly generated such that each bead displays only one chemical entity. The highly efficient "libraries-from-libraries" approach involves the global transformation of a peptide library into many small molecule solution-phase mixture libraries, but this approach has never been successfully applied to OBOC libraries. Here we report a novel approach that allows us to combine these two enabling technologies to efficiently generate OBOC encoded small molecule bead libraries. By using a topologically segregated bilayer bead and a "ladder-synthesis" method, we can prepare peptide libraries with the peptide on the bead surface and a series of peptide ladders in the bead interior. Various global transformation reactions can then be employed to transform the starting peptide library into a variety of peptidomimetic libraries. During the transformation reactions, the peptide ladders in the bead interior are also transformed in a predictable manner. As a result, individual compound bead can be decoded by analyzing the hydrogen fluoride-released encoding tags with matrix-assisted laser desorption ionization Fourier transform mass spectrometry. Using this novel approach, a random encoded dipeptide library was prepared and subsequently transformed into polyamine and poly- N-acetylamine sublibraries. Random beads isolated from these sublibraries were reliably decoded.

  7. The Anabaena sensory rhodopsin transducer defines a novel superfamily of prokaryotic small-molecule binding domains

    Directory of Open Access Journals (Sweden)

    De Souza Robson F

    2009-08-01

    Full Text Available Abstract The Anabaena sensory rhodopsin transducer (ASRT is a small protein that has been claimed to function as a signaling molecule downstream of the cyanobacterial sensory rhodopsin. However, orthologs of ASRT have been detected in several bacteria that lack rhodopsin, raising questions about the generality of this function. Using sequence profile searches we show that ASRT defines a novel superfamily of β-sandwich fold domains. Through contextual inference based on domain architectures and predicted operons and structural analysis we present strong evidence that these domains bind small molecules, most probably sugars. We propose that the intracellular versions like ASRT probably participate as sensors that regulate a diverse range of sugar metabolism operons or even the light sensory behavior in Anabaena by binding sugars or related metabolites. We also show that one of the extracellular versions define a predicted sugar-binding structure in a novel cell-surface lipoprotein found across actinobacteria, including several pathogens such as Tropheryma, Actinomyces and Thermobifida. The analysis of this superfamily also provides new data to investigate the evolution of carbohydrate binding modes in β-sandwich domains with very different topologies. Reviewers: This article was reviewed by M. Madan Babu and Mark A. Ragan.

  8. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    2017-03-01

    Full Text Available Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP, to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.

  9. A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors.

    Science.gov (United States)

    Schwendeman, Andrew R; Shaham, Shai

    2016-01-01

    Programmed cell death is a ubiquitous process in metazoan development. Apoptosis, one cell death form, has been studied extensively. However, mutations inactivating key mammalian apoptosis regulators do not block most developmental cell culling, suggesting that other cell death pathways are likely important. Recent work in the nematode Caenorhabditis elegans identified a non-apoptotic cell death form mediating the demise of the male-specific linker cell. This cell death process (LCD, linker cell-type death) is morphologically conserved, and its molecular effectors also mediate axon degeneration in mammals and Drosophila. To develop reagents to manipulate LCD, we established a simple high-throughput screening protocol for interrogating the effects of small molecules on C. elegans linker cell death in vivo. From 23,797 compounds assayed, 11 reproducibly block linker cell death onset. Of these, five induce animal lethality, and six promote a reversible developmental delay. These results provide proof-of principle validation of our screening protocol, demonstrate that developmental progression is required for linker cell death, and suggest that larger scale screens may identify LCD-specific small-molecule regulators that target the LCD execution machinery.

  10. Modulating polyplex-mediated gene transfection by small-molecule regulators of autophagy.

    Science.gov (United States)

    Zhong, Xiao; Panus, David; Ji, Weihang; Wang, Chun

    2015-03-02

    Nonviral gene transfection mediated by cationic polymer/DNA polyplexes often imposes stress and toxicity to cells. To better understand the relationship between cellular stress responses and polyplex-mediated transfection, polyplex-induced early autophagy in mouse fibroblasts was characterized and the impact of autophagy modulation on transgene expression evaluated. Transmission electron microscopy revealed the formation of double-membraned autophagosome in the cytoplasm of polyplex-transfected cells. Immunofluorescence staining and microscopy revealed intracellular LC3 punctation that was characteristic of early autophagy activation. Elevated expression of autophagosome-associated LC3 II protein was also detected by Western blot. When cells were treated with small-molecule modulators of autophagy, polyplex-mediated gene transfection efficiency was significantly affected. 3-Methyladenine (3-MA), an early autophagy inhibitor, reduced transfection efficiency, whereas rapamycin, an autophagy inducer, enhanced transgene expression. Importantly, the observed functional impact on gene transfection by autophagy modulation was decoupled from that of other modes of cellular stress response (apoptosis/necrosis). Treatment of cells by 3-MA or rapamycin did not affect the level of intracellular reactive oxygen species (ROS) but did decrease or increase, respectively, nuclear localization of polyplex-delivered plasmid DNA. These findings suggest new possibilities of enhancing polyplex-mediated gene delivery by codelivery of small-molecule regulators of autophagy.

  11. A novel small molecule that selectively inhibits glioblastoma cells expressing EGFRvIII

    Directory of Open Access Journals (Sweden)

    Oberlies Nicholas H

    2007-04-01

    Full Text Available Abstract Background Mutations of the epidermal growth factor receptor (EGFR are a possible molecular target for cancer therapy. EGFR is frequently amplified in glioblastomas and 30 to 40% of glioblastomas also express the deletion mutation EGFRvIII. This frequent oncogenic mutation provides an opportunity for identifying new anti-glioblastoma therapies. In this study, we sought small molecule inhibitors specific for cancer cells expressing EGFRvIII, using isogenic parental cells without EGFRvIII as a control. Results A screen of the NCI small molecule diversity set identified one compound, NSC-154829, which consistently inhibited growth of different human glioblastoma cells expressing EGFRvIII, but permitted normal growth of matched control cells. NSC-154829 had no previously established medicinal use, but has a purine-like structural component. Further experiments showed this compound increased apoptosis in cells with EGFRvIII, and moderately affected the expression of p21, independent of any changes in p53 levels or in Akt phosphorylation. Conclusion These initial results suggest that NSC-154829 or a closely related structure might be further investigated for its potential as an anti-glioblastoma drug, although its precise molecular mechanism is still undefined.

  12. UCSF Small Molecule Discovery Center: innovation, collaboration and chemical biology in the Bay Area.

    Science.gov (United States)

    Arkin, Michelle R; Ang, Kenny K H; Chen, Steven; Davies, Julia; Merron, Connie; Tang, Yinyan; Wilson, Christopher G M; Renslo, Adam R

    2014-05-01

    The Small Molecule Discovery Center (SMDC) at the University of California, San Francisco, works collaboratively with the scientific community to solve challenging problems in chemical biology and drug discovery. The SMDC includes a high throughput screening facility, medicinal chemistry, and research labs focused on fundamental problems in biochemistry and targeted drug delivery. Here, we outline our HTS program and provide examples of chemical tools developed through SMDC collaborations. We have an active research program in developing quantitative cell-based screens for primary cells and whole organisms; here, we describe whole-organism screens to find drugs against parasites that cause neglected tropical diseases. We are also very interested in target-based approaches for so-called "undruggable", protein classes and fragment-based lead discovery. This expertise has led to several pharmaceutical collaborations; additionally, the SMDC works with start-up companies to enable their early-stage research. The SMDC, located in the biotech-focused Mission Bay neighborhood in San Francisco, is a hub for innovative small-molecule discovery research at UCSF.

  13. CASMI—The Small Molecule Identification Process from a Birmingham Perspective

    Directory of Open Access Journals (Sweden)

    Warwick B. Dunn

    2013-05-01

    Full Text Available The Critical Assessment of Small Molecule Identification (CASMI contest was developed to provide a systematic comparative evaluation of strategies applied for the annotation and identification of small molecules. The authors participated in eleven challenges in both category 1 (to deduce a molecular formula and category 2 (to deduce a molecular structure related to high resolution LC-MS data. For category 1 challenges, the PUTMEDID_LCMS workflows provided the correct molecular formula in nine challenges; the two incorrect submissions were related to a larger mass error in experimental data than expected or the absence of the correct molecular formula in a reference file applied in the PUTMEDID_LCMS workflows. For category 2 challenges, MetFrag was applied to construct in silico fragmentation data and compare with experimentally-derived MS/MS data. The submissions for three challenges were correct, and for eight challenges, the submissions were not correct; some submissions showed similarity to the correct structures, while others showed no similarity. The low number of correct submissions for category 2 was a result of applying the assumption that all chemicals were derived from biological samples and highlights the importance of knowing the origin of biological or chemical samples studied and the metabolites expected to be present to define the correct chemical space to search in annotation processes.

  14. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.

    Science.gov (United States)

    Lin, Yu Hsuan; Pratt, Matthew R

    2014-04-14

    One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Towards Development of Small Molecule Lipid II Inhibitors as Novel Antibiotics.

    Science.gov (United States)

    Chauhan, Jamal; Cardinale, Steven; Fang, Lei; Huang, Jing; Kwasny, Steven M; Pennington, M Ross; Basi, Kelly; diTargiani, Robert; Capacio, Benedict R; MacKerell, Alexander D; Opperman, Timothy J; Fletcher, Steven; de Leeuw, Erik P H

    2016-01-01

    Recently we described a novel di-benzene-pyrylium-indolene (BAS00127538) inhibitor of Lipid II. BAS00127538 (1-Methyl-2,4-diphenyl-6-((1E,3E)-3-(1,3,3-trimethylindolin-2-ylidene)prop-1-en-1-yl)pyryl-1-ium) tetrafluoroborate is the first small molecule Lipid II inhibitor and is structurally distinct from natural agents that bind Lipid II, such as vancomycin. Here, we describe the synthesis and biological evaluation of 50 new analogs of BAS00127538 designed to explore the structure-activity relationships of the scaffold. The results of this study indicate an activity map of the scaffold, identifying regions that are critical to cytotoxicity, Lipid II binding and range of anti-bacterial action. One compound, 6jc48-1, showed significantly enhanced drug-like properties compared to BAS00127538. 6jc48-1 has reduced cytotoxicity, while retaining specific Lipid II binding and activity against Enterococcus spp. in vitro and in vivo. Further, this compound showed a markedly improved pharmacokinetic profile with a half-life of over 13 hours upon intravenous and oral administration and was stable in plasma. These results suggest that scaffolds like that of 6jc48-1 can be developed into small molecule antibiotic drugs that target Lipid II.

  16. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  17. Allele-specific behavior of molecular networks: understanding small-molecule drug response in yeast.

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    Full Text Available The study of systems genetics is changing the way the genetic and molecular basis of phenotypic variation, such as disease susceptibility and drug response, is being analyzed. Moreover, systems genetics aids in the translation of insights from systems biology into genetics. The use of systems genetics enables greater attention to be focused on the potential impact of genetic perturbations on the molecular states of networks that in turn affects complex traits. In this study, we developed models to detect allele-specific perturbations on interactions, in which a genetic locus with alternative alleles exerted a differing influence on an interaction. We utilized the models to investigate the dynamic behavior of an integrated molecular network undergoing genetic perturbations in yeast. Our results revealed the complexity of regulatory relationships between genetic loci and networks, in which different genetic loci perturb specific network modules. In addition, significant within-module functional coherence was found. We then used the network perturbation model to elucidate the underlying molecular mechanisms of individual differences in response to 100 diverse small molecule drugs. As a result, we identified sub-networks in the integrated network that responded to variations in DNA associated with response to diverse compounds and were significantly enriched for known drug targets. Literature mining results provided strong independent evidence for the effectiveness of these genetic perturbing networks in the elucidation of small-molecule responses in yeast.

  18. Characterization of the Hole Transport and Electrical Properties in the Small-Molecule Organic Semiconductors

    Science.gov (United States)

    Wang, L. G.; Zhu, J. J.; Liu, X. L.; Cheng, L. F.

    2017-10-01

    In this paper, we investigate the hole transport and electrical properties in a small-molecule organic material N, N'-bis(1-naphthyl)- N, N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB), which is frequently used in organic light-emitting diodes. It is shown that the thickness-dependent current density versus voltage ( J- V) characteristics of sandwich-type NPB-based hole-only devices cannot be described well using the conventional mobility model without carrier density or electric field dependence. However, a consistent and excellent description of the thickness-dependent and temperature-dependent J- V characteristics of NPB hole-only devices can be obtained with a single set of parameters by using our recently introduced improved model that take into account the temperature, carrier density, and electric field dependence of the mobility. For the small-molecule organic semiconductor studied, we find that the width of the Gaussian distribution of density of states σ and the lattice constant a are similar to the values reported for conjugated polymers. Furthermore, we show that the boundary carrier density has an important effect on the J- V characteristics. Both the maximum of carrier density and the minimum of electric field appear near the interface of NPB hole-only devices.

  19. Quantifying and predicting the promiscuity and isoform specificity of small-molecule cytochrome P450 inhibitors.

    Science.gov (United States)

    Nath, Abhinav; Zientek, Michael A; Burke, Benjamin J; Jiang, Ying; Atkins, William M

    2010-12-01

    Drug promiscuity (i.e., inhibition of multiple enzymes by a single compound) is increasingly recognized as an important pharmacological consideration in the drug development process. However, systematic studies of functional or physicochemical characteristics that correlate with drug promiscuity are handicapped by the lack of a good way of quantifying promiscuity. In this article, we present a new entropy-based index of drug promiscuity. We apply this index to two high-throughput data sets describing inhibition of cytochrome P450 isoforms by small-molecule drugs and drug candidates, and we demonstrate how drug promiscuity or specificity can be quantified. For these drug-metabolizing enzymes, we find that there is essentially no correlation between a drug's potency and specificity. We also present an index to quantify the susceptibilities of different enzymes to inhibition by diverse substrates. Finally, we use partial least-squares regression to successfully predict isoform specificity and promiscuity of small molecules, using a set of fingerprint-based descriptors.

  20. Antibacterial small molecules targeting the conserved TOPRIM domain of DNA gyrase.

    Directory of Open Access Journals (Sweden)

    Scott S Walker

    Full Text Available To combat the threat of antibiotic-resistant Gram-negative bacteria, novel agents that circumvent established resistance mechanisms are urgently needed. Our approach was to focus first on identifying bioactive small molecules followed by chemical lead prioritization and target identification. Within this annotated library of bioactives, we identified a small molecule with activity against efflux-deficient Escherichia coli and other sensitized Gram-negatives. Further studies suggested that this compound inhibited DNA replication and selection for resistance identified mutations in a subunit of E. coli DNA gyrase, a type II topoisomerase. Our initial compound demonstrated weak inhibition of DNA gyrase activity while optimized compounds demonstrated significantly improved inhibition of E. coli and Pseudomonas aeruginosa DNA gyrase and caused cleaved complex stabilization, a hallmark of certain bactericidal DNA gyrase inhibitors. Amino acid substitutions conferring resistance to this new class of DNA gyrase inhibitors reside exclusively in the TOPRIM domain of GyrB and are not associated with resistance to the fluoroquinolones, suggesting a novel binding site for a gyrase inhibitor.

  1. Effects of small-molecule amyloid modulators on a Drosophila model of Parkinson's disease.

    Science.gov (United States)

    Pokrzywa, Małgorzata; Pawełek, Katarzyna; Kucia, Weronika Elżbieta; Sarbak, Szymon; Chorell, Erik; Almqvist, Fredrik; Wittung-Stafshede, Pernilla

    2017-01-01

    Alpha-synuclein (aS) amyloid formation is involved in Parkinson's disease (PD); therefore, small molecules that target aS and affect its aggregation are of interest as future drug candidates. We recently reported modified ring-fused 2-pyridones that modulate aS amyloid formation in vitro. Here, we describe the effects of such molecules on behavioral parameters of a Drosophila model of PD (i.e., flies expressing human aS), using a new approach (implemented in a commercially available FlyTracker system) to quantify fly mobility. FlyTracker allows for automated analysis of walking and climbing locomotor behavior, as it collects large sequences of data over time in an unbiased manner. We found that the molecules per se have no toxic or kinetic effects on normal flies. Feeding aS-expressing flies with the amyloid-promoting molecule FN075, remarkably, resulted in increased fly mobility at early time points; however, this effect switched to reduced mobility at later time points, and flies had shorter life spans than controls. In contrast, an amyloid inhibitor increased both fly kinetics and life span. In agreement with increased aS amyloid formation, the FN075-fed flies had less soluble aS, and in vitro aS-FN075 interactions stimulated aS amyloid formation. In addition to a new quantitative approach to probe mobility (available in FlyTracker), our results imply that aS regulates brain activity such that initial removal (here, by FN075-triggered assembly of aS) allows for increased fly mobility.

  2. Small molecule modulation of HH-GLI signaling: current leads, trials and tribulations.

    Science.gov (United States)

    Mas, Christophe; Ruiz i Altaba, Ariel

    2010-09-01

    Many human sporadic cancers have been recently shown to require the activity of the Hedgehog-GLI pathway for sustained growth. The survival and expansion of cancer stem cells is also HH-GLI dependent. Here we review the advances on the modulation of HH-GLI signaling by small molecules. We focus on both natural compounds and synthetic molecules that target upstream pathway components, mostly SMOOTHENED, and those that target the last steps of the pathway, the GLI transcription factors. In this review we have sought to provide some bases for useful comparisons, listing original assays used and sources to facilitate comparisons of IC50 values. This area is a rapidly expanding field where biology, medicine and chemistry intersect, both in academia and industry. We also highlight current clinical trials, with positive results in early stages. While we have tried to be exhaustive regarding the molecules, not all data is in the public domain yet. Indeed, we have opted to avoid listing chemical structures but these can be easily found in the references given. Finally, we are hopeful that the best molecules will soon reach the patients but caution about the lack of investment on compounds that lack tight IP positions. While the market in developed nations is expected to compensate the investment and risk of making HH-GLI modulators, other sources or plans must be available for developing nations and poor patient populations. The promise of curing cancer recalls the once revered dream of El Dorado, which taught us that not everything that GLI-tters is gold. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Identification of novel small molecule TGF-β antagonists using structure-based drug design

    Science.gov (United States)

    Wang, Hao; Sessions, Richard B.; Prime, Stephen S.; Shoemark, Deborah K.; Allen, Shelley J.; Hong, Wei; Narayanan, Sathya; Paterson, Ian C.

    2013-04-01

    Aberrant transforming growth factor-β (TGF-β) signalling has been associated with a number of disease pathologies, such as the development of fibrosis in the heart, lung and liver, cardiovascular disease and cancer, hence the TGF-β pathway represents a promising target for a variety of diseases. However, highly specific ways to inhibit TGF-β signalling need to be developed to prevent cross-talk with related receptors and minimise unwanted side effects. We have used used virtual screening and molecular docking to identify small molecule inhibitors of TGF-β binding to TßRII. The crystal structure of TGF-β3 in complex with the extracellular domain of the type II TGF-β receptor was taken as a starting point for molecular docking and we developed a structure-based pharmacophore model to identify compounds that competitively inhibit the binding of TGF-β to TβRII and antogonize TGF-β signalling. We have experimentally tested 67 molecules suggested by in silico screening and similarity searching for their ability to inhibit TGF-β signalling in TGF-β-dependent luciferase assays in vitro and the molecule with the strongest inhibition had an IC50 of 18 μM. These compounds were selected to bind to the SS1 subsite (composed of F30, C31, D32, I50, T51 S52, I53, C54 and E55) of TßRII and all share the general property of being aromatic and fairly flat. Molecular dynamics simulations confirmed that this was the most likely binding mode. The computational methods used and the hits identified in this study provide an excellent guide to medicinal chemistry efforts to design tighter binding molecules to disrupt the TGF-β/TßRII interaction.

  4. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2014-03-01

    Full Text Available Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the marrow of NMRI mice were extracted, culture-expanded, and characterized. Micro-mass culture was then established for chondrogenic differentiation (control group. The cultures of MSC in chondrogenic medium supplemented with 0.01, 0.05, 0.1, and 1 µM BIO were taken as the experimental groups. Cartilage differentiation was examined by both histological sections and real-time PCR for Sox9, aggrecan, and collagen II at different time points. Moreover, the involvement of the Wnt pathway was investigated. Results: Based on histological sections, there was seemingly more intense metachromatic matrix produced in the cultures with 0.01 µM BIO. In this experimental group, cartilage-specific genes tended to be upregulated at day 14 compared to day 21 of the control group, indicating the accelerating effect of BIO on cartilage differentiation. Overall, there was statistically a significant increase (P=0.01 in the expression level of cartilage-specific genes in cultures with 0.01 µM BIO (enhancing effects. These upregulations appeared to be mediated through the Wnt pathway evident from the significant upregulation of T-cell factor and beta-catenin molecules (P=0.01. Conclusion: Taken together, BIO at 0.01 µM could accelerate and enhance in vitro chondrogenesis of mouse marrow-derived MSCs. Please cite this article as: Baghaban Eslaminejad MR, Fallah N. Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis. Iran J Med Sci. 2014;39(2:107-116.

  5. JAK/STAT inhibitors and other small molecule cytokine antagonists for the treatment of allergic disease.

    Science.gov (United States)

    Howell, Michael D; Fitzsimons, Carolyn; Smith, Paul

    2018-02-14

    To provide an overview of janus kinase (JAK), chemoattractant receptor-homologous molecule expressed on T-helper 2 cells (CRTH2), and phosphodiesterase 4 (PDE4) inhibitors in allergic disorders. PubMed literature review. Articles included in this review discuss the emerging mechanism of action of small molecule inhibitors and their utilization in atopic dermatitis (AD), asthma, and allergic rhinitis (AR). Allergic diseases represent a spectrum of diseases including AD, asthma, and AR. For decades, these diseases have been primarily characterized by increased Th2 signaling and downstream inflammation. In recent years, additional research has identified disease phenotypes and subsets of patients with non-Th2 mediated inflammation. The increasing heterogeneity of disease has prompted investigators to move away from wide-ranging treatment approaches with immunosuppressive agents such as corticosteroids to consider more targeted immunomodulatory approaches focused on specific pathways. In the past decade, inhibitors targeting JAK signaling, PDE4, and CRTH2 have been explored for their potential activity in models of allergic disease and therapeutic benefit in clinical trials. Interestingly, while JAK inhibitors provide an opportunity to interfere with cytokine signaling and could be beneficial in a broad range of allergic diseases, current clinical trials are focused on the treatment of AD. Conversely, both PDE4 and CRTH2 inhibitors have been evaluated in a spectrum of allergic diseases. This review summarizes the varying degrees of success that these small molecules have demonstrated across allergic diseases. Emerging therapies currently in development may provide more consistent benefit to patients with allergic diseases by specifically targeting inflammatory pathways important for disease pathogenesis. Copyright © 2018. Published by Elsevier Inc.

  6. Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus.

    Science.gov (United States)

    Swoboda, Jonathan G; Meredith, Timothy C; Campbell, Jennifer; Brown, Stephanie; Suzuki, Takashi; Bollenbach, Tobias; Malhowski, Amy J; Kishony, Roy; Gilmore, Michael S; Walker, Suzanne

    2009-10-16

    Both Gram-positive and Gram-negative bacteria contain bactoprenol-dependent biosynthetic pathways expressing non-essential cell surface polysaccharides that function as virulence factors. Although these polymers are not required for bacterial viability in vitro, genes in many of the biosynthetic pathways are conditionally essential: they cannot be deleted except in strains incapable of initiating polymer synthesis. We report a cell-based, pathway-specific strategy to screen for small molecule inhibitors of conditionally essential enzymes. The screen identifies molecules that prevent the growth of a wildtype bacterial strain but do not affect the growth of a mutant strain incapable of initiating polymer synthesis. We have applied this approach to discover inhibitors of wall teichoic acid (WTA) biosynthesis in Staphylococcus aureus. WTAs are anionic cell surface polysaccharides required for host colonization that have been suggested as targets for new antimicrobials. We have identified a small molecule, 7-chloro-N,N-diethyl-3-(phenylsulfonyl)-[1,2,3]triazolo[1,5-a]quinolin-5-amine (1835F03), that inhibits the growth of a panel of S. aureus strains (MIC = 1-3 microg mL(-1)), including clinical methicillin-resistant S. aureus (MRSA) isolates. Using a combination of biochemistry and genetics, we have identified the molecular target as TarG, the transmembrane component of the ABC transporter that exports WTAs to the cell surface. We also show that preventing the completion of WTA biosynthesis once it has been initiated triggers growth arrest. The discovery of 1835F03 validates our chemical genetics strategy for identifying inhibitors of conditionally essential enzymes, and the strategy should be applicable to many other bactoprenol-dependent biosynthetic pathways in the pursuit of novel antibacterials and probes of bacterial stress responses.

  7. Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Carrie L. Shaffer

    2016-04-01

    Full Text Available Bacteria utilize complex type IV secretion systems (T4SSs to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85 that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs.

  8. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    Science.gov (United States)

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  9. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid.

    Science.gov (United States)

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php. © The Author(s) 2016. Published by Oxford University Press.

  10. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

  11. A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.

    Science.gov (United States)

    Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang

    2017-11-01

    Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evolution toward small molecule inhibitor resistance affects native enzyme function and stability, generating acarbose-insensitive cyclodextrin glucanotransferase variants

    NARCIS (Netherlands)

    Kelly, Ronan M.; Leemhuis, Hans; Gatjen, Linda; Dijkhuizen, Lubbert; Gätjen, Linda

    2008-01-01

    Small molecule inhibitors play an essential role in the selective inhibition of enzymes associated with human infection and metabolic disorders. Targeted enzymes may evolve toward inhibitor resistance through selective incorporation of mutations. Acquisition of insensitivity may, however, result in

  13. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo

    Science.gov (United States)

    Ye, Deju; Shuhendler, Adam J.; Cui, Lina; Tong, Ling; Tee, Sui Seng; Tikhomirov, Grigory; Felsher, Dean W.; Rao, Jianghong

    2014-06-01

    Directed self-assembly of small molecules in living systems could enable a myriad of applications in biology and medicine, and already this has been used widely to synthesize supramolecules and nano/microstructures in solution and in living cells. However, controlling the self-assembly of synthetic small molecules in living animals is challenging because of the complex and dynamic in vivo physiological environment. Here we employ an optimized first-order bioorthogonal cyclization reaction to control the self-assembly of a fluorescent small molecule, and demonstrate its in vivo applicability by imaging caspase-3/7 activity in human tumour xenograft mouse models of chemotherapy. The fluorescent nanoparticles assembled in situ were imaged successfully in both apoptotic cells and tumour tissues using three-dimensional structured illumination microscopy. This strategy combines the advantages offered by small molecules with those of nanomaterials and should find widespread use for non-invasive imaging of enzyme activity in vivo.

  14. Quantum superposition of the state discrete spectrum of mathematical correlation molecule for small samples of biometric data

    Directory of Open Access Journals (Sweden)

    Vladimir I. Volchikhin

    2017-06-01

    Full Text Available Introduction: The study promotes to decrease a number of errors of calculating the correlation coefficient in small test samples. Materials and Methods: We used simulation tool for the distribution functions of the density values of the correlation coefficient in small samples. A method for quantization of the data, allows obtaining a discrete spectrum states of one of the varieties of correlation functional. This allows us to consider the proposed structure as a mathematical correlation molecule, described by some analogue continuous-quantum Schrödinger equation. Results: The chi-squared Pearson’s molecule on small samples allows enhancing power of classical chi-squared test to 20 times. A mathematical correlation molecule described in the article has similar properties. It allows in the future reducing calculation errors of the classical correlation coefficients in small samples. Discussion and Conclusions: The authors suggest that there are infinitely many mathematical molecules are similar in their properties to the actual physical molecules. Schrödinger equations are not unique, their analogues can be constructed for each mathematical molecule. You can expect a mathematical synthesis of molecules for a large number of known statistical tests and statistical moments. All this should make it possible to reduce calculation errors due to quantum effects that occur in small test samples.

  15. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis.

    Science.gov (United States)

    Chen, Yiping; Xianyu, Yunlei; Jiang, Xingyu

    2017-02-21

    As one of the major tools for and by chemical science, biochemical analysis is becoming increasingly important in fields like clinical diagnosis, food safety, environmental monitoring, and the development of chemistry and biochemistry. The advancement of nanotechnology boosts the development of analytical chemistry, particularly the nanoparticle (NP)-based approaches for biochemical assays. Functional NPs can greatly improve the performance of biochemical analysis because they can accelerate signal transduction, enhance the signal intensity, and enable convenient signal readout due to their unique physical and chemical properties. Surface chemistry is a widely used tool to functionalize NPs, and the strategy for surface modification is of great significance to the application of NP-mediated biochemical assays. Surface chemistry not only affects the quality of NPs (stability, monodispersity, and biocompatibility) but also provides functional groups (-COO-, -NH3+, -CHO, and so on) or charges that can be exploited for bioconjugation or ligand exchange. Surface chemistry also dictates the sensitivity and specificity of the NP-mediated biochemical assays, since it is vital to the orientation, accessibility, and bioactivity of the functionalized ligands on the NPs. In this Account, we will focus on surface chemistry for functionalization of gold nanoparticles (AuNPs) with small organic molecules for biochemical analysis. Compared to other NPs, AuNPs have many merits including controllable synthesis, easy surface modification and high molar absorption coefficient, making them ideal probes for biochemical assays. Small-molecule functionalized AuNPs are widely employed to develop sensors for biochemical analysis, considering that small molecules, such as amino acids and sulfhydryl compounds, are more easily and controllably bioconjugated to the surface of AuNPs than biomacromolecules due to their less complex structure and steric hindrance. The orientation and accessibility

  16. Targeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.

    Science.gov (United States)

    Okuhira, Keiichiro; Shoda, Takuji; Omura, Risa; Ohoka, Nobumichi; Hattori, Takayuki; Shibata, Norihito; Demizu, Yosuke; Sugihara, Ryo; Ichino, Asato; Kawahara, Haruka; Itoh, Yukihiro; Ishikawa, Minoru; Hashimoto, Yuichi; Kurihara, Masaaki; Itoh, Susumu; Saito, Hiroyuki; Naito, Mikihiko

    2017-03-01

    Development of novel small molecules that selectively degrade pathogenic proteins would provide an important advance in targeted therapy. Recently, we have devised a series of hybrid small molecules named SNIPER (specific and nongenetic IAP-dependent protein ERaser) that induces the degradation of target proteins via the ubiquitin-proteasome system. To understand the localization of proteins that can be targeted by this protein knockdown technology, we examined whether SNIPER molecules are able to induce degradation of cellular retinoic acid binding protein II (CRABP-II) proteins localized in subcellular compartments of cells. CRABP-II is genetically fused with subcellular localization signals, and they are expressed in the cells. SNIPER(CRABP) with different IAP-ligands, SNIPER(CRABP)-4 with bestatin and SNIPER(CRABP)-11 with MV1 compound, induce the proteasomal degradation of wild-type (WT), cytosolic, nuclear, and membrane-localized CRABP-II proteins, whereas only SNIPER(CRABP)-11 displayed degradation activity toward the mitochondrial CRABP-II protein. The small interfering RNA-mediated silencing of cIAP1 expression attenuated the knockdown activity of SNIPER(CRABP) against WT and cytosolic CRABP-II proteins, indicating that cIAP1 is the E3 ligase responsible for degradation of these proteins. Against membrane-localized CRABP-II protein, cIAP1 is also a primary E3 ligase in the cells, but another E3 ligase distinct from cIAP2 and X-linked inhibitor of apoptosis protein (XIAP) could also be involved in the SNIPER(CRABP)-11-induced degradation. However, for the degradation of nuclear and mitochondrial CRABP-II proteins, E3 ligases other than cIAP1, cIAP2, and XIAP play a role in the SNIPER-mediated protein knockdown. These results indicate that SNIPER can target cytosolic, nuclear, membrane-localized, and mitochondrial proteins for degradation, but the responsible E3 ligase is different, depending on the localization of the target protein. Copyright © 2017 by

  17. Fabrication of Ln-MOFs with color-tunable photoluminescence and sensing for small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengyan; Shan, Liang; Fan, Yong; Jia, Jia; Xu, Jianing, E-mail: xujn@jlu.edu.cn; Wang, Li, E-mail: lwang99@jlu.edu.cn

    2017-01-15

    Three isomorphic lanthanide metal-organic frameworks (Ln-MOFs) [LnL(H{sub 2}O){sub 2}]·2H{sub 2}O (Ln=Tb for 1, Eu for 2, Gd for 3) have been constructed from flexible organic ligand 4-(2-carboxyphenoxy)benzene-1,3-dioic acid (H{sub 3}L). They exhibit two-dimensional (2D) layered structure with the rhombus windows along the b axis. This network can be described as a shubnikov plane net with Schäfli symbol of (4{sup 3}){sub 2}(4{sup 6}.6{sup 6}.8{sup 3}). Solid state luminescent studies indicate that 1 and 2 show the characteristic red, and green emissions of the corresponding Ln{sup 3+} ions, respectively, while 3 exhibits blue emission arising from the organic ligand. Then by adjusting the relative amounts of different luminescent components into the well-defined host framework, a series of new co-doped Ln-MOF, Tb{sub 1−x}Eu{sub x}L (4) (x refers to the molar ratios of Eu{sup 3+} and Tb{sup 3+}), with tunable luminescence have been fabricated. The luminescent color of 4 can be tuned from green to red due to the energy transfer from the Tb{sup 3+} to Eu{sup 3+} ions by changing the doping concentration of the Eu{sup 3+} ions. In addition, 2 exhibits good stability in different solvents and excellent fluorescence sensing for small molecules, especially for CH{sub 3}CN and nitrobenzene. - Graphical abstract: A series of isomorphic 2D layered Ln-MOFs have been constructed from flexible tricarboxylic ligand, showing tunable luminescence and excellent fluorescence sensing for small molecules, respectively. - Highlights: • Three isomorphic 2D layered Ln-MOFs were constructed by flexible tricarboxylic acid. • A series of Eu{sup 3+}/Tb{sup 3+} doped Ln-MOF 4 were fabricated and showed tunable luminescence. • Ln-MOF 2 exhibited excellent fluorescence sensing for small molecules.

  18. Differentiation of endometrial stem cells into motor neurons by the use of purmorphamin small molecule

    Directory of Open Access Journals (Sweden)

    Homa Mohseni Kouchesfahani

    2017-03-01

    Full Text Available Background: Small molecule Purmorphamin (PMA is the agonist of smoothened protein in Sonic hedgehog (Shh signaling pathway. Effect of purmorphamin small molecule on differentiation of mesenchymal cells into bone tissue has been studied previously. Use of Shh causes progression of neural differentiation, and the differentiated cells express specific neural markers. Neurofilament (NF and acetylcholine esterase (Chat are specific markers of motor neurons and their expression in differentiated cells indicates their conversion into motor neurons. The aim of this study was to evaluate the ability of PMA to differentiate the human endometrial stem cells (hEnSCs into motor neurons. Methods: This analytical study was done in Tehran University of Medical Sciences laboratory on September of 2015. In this study hEnSCs were enzymatically extracted from endometrial tissue. After third passages, the flow cytometry was done for mesenchymal stem cells markers. The mesenchymal stem cells were divided into control and differentiated groups. FBS 10%+DMEM/F12 was added to the culture medium of control group and the differentiating group was treated with differentiating medium containing N2, PMA, DMEM/F12, FBS, B27, IBMX, 2ME, FGF2, RA, BDNF. After 21 days immunocytochemistry (ICC test was done for the expression of NF and Chat proteins and Real-time PCR analysis for expression of neural markers such as NF, Chat, Nestin and GFAP (as glial marker at mRNA level. Results: The flow cytometry analysis showed that hEnSCs were positive for mesenchymal markers CD90, CD105 and CD146 and negative for endothelial marker CD31, and hematopoietic marker CD34. The immunocytochemistry and Real time-PCR results showed that the cells treated with PMA expressed motor neuron markers of NF and Chat. Conclusion: According to the results of this study, it can be concluded that small molecule PMA has the potency to induce the differentiation of hEnSCs into neural cells, specifically motor

  19. Molecular modeling of the inhibition of protein-protein interactions with small molecules: The IL2-IL2Rα case

    Science.gov (United States)

    Pieraccini, Stefano; De Gonda, Riccardo; Sironi, Maurizio

    2011-12-01

    Developing drug like molecules targeting protein-protein interactions is one of the main goals of current medicinal chemistry. To drive the design process it is fundamental to locate those sites on the protein-protein contact surface that are more critical for protein binding, which are the most eligible targets to affect the protein complex formation. In this work we show how computational alanine scanning can be used to identify such critical sites and evaluate their interactions with small molecules designed to inhibit the complex formation. Complex of protein IL2 with IL2Rα and with some small molecule inhibitors are used as an example.

  20. A small azide-modified thiazole-based reporter molecule for fluorescence and mass spectrometric detection

    Directory of Open Access Journals (Sweden)

    Stefanie Wolfram

    2014-10-01

    Full Text Available Molecular probes are widely used tools in chemical biology that allow tracing of bioactive metabolites and selective labeling of proteins and other biomacromolecules. A common structural motif for such probes consists of a reporter that can be attached by copper(I-catalyzed 1,2,3-triazole formation between terminal alkynes and azides to a reactive headgroup. Here we introduce the synthesis and application of the new thiazole-based, azide-tagged reporter 4-(3-azidopropoxy-5-(4-bromophenyl-2-(pyridin-2-ylthiazole for fluorescence, UV and mass spectrometry (MS detection. This small fluorescent reporter bears a bromine functionalization facilitating the automated data mining of electrospray ionization MS runs by monitoring for its characteristic isotope signature. We demonstrate the universal utility of the reporter for the detection of an alkyne-modified small molecule by LC–MS and for the visualization of a model protein by in-gel fluorescence. The novel probe advantageously compares with commercially available azide-modified fluorophores and a brominated one. The ease of synthesis, small size, stability, and the universal detection possibilities make it an ideal reporter for activity-based protein profiling and functional metabolic profiling.

  1. A small azide-modified thiazole-based reporter molecule for fluorescence and mass spectrometric detection.

    Science.gov (United States)

    Wolfram, Stefanie; Würfel, Hendryk; Habenicht, Stefanie H; Lembke, Christine; Richter, Phillipp; Birckner, Eckhard; Beckert, Rainer; Pohnert, Georg

    2014-01-01

    Molecular probes are widely used tools in chemical biology that allow tracing of bioactive metabolites and selective labeling of proteins and other biomacromolecules. A common structural motif for such probes consists of a reporter that can be attached by copper(I)-catalyzed 1,2,3-triazole formation between terminal alkynes and azides to a reactive headgroup. Here we introduce the synthesis and application of the new thiazole-based, azide-tagged reporter 4-(3-azidopropoxy)-5-(4-bromophenyl)-2-(pyridin-2-yl)thiazole for fluorescence, UV and mass spectrometry (MS) detection. This small fluorescent reporter bears a bromine functionalization facilitating the automated data mining of electrospray ionization MS runs by monitoring for its characteristic isotope signature. We demonstrate the universal utility of the reporter for the detection of an alkyne-modified small molecule by LC-MS and for the visualization of a model protein by in-gel fluorescence. The novel probe advantageously compares with commercially available azide-modified fluorophores and a brominated one. The ease of synthesis, small size, stability, and the universal detection possibilities make it an ideal reporter for activity-based protein profiling and functional metabolic profiling.

  2. Dependence of photoacoustic signal generation characteristics on fluorescence quantum yields of small organic molecule based contrast agents

    Science.gov (United States)

    Hirasawa, Takeshi; Iwatate, Ryu J.; Kamiya, Mako; Okawa, Shinpei; Urano, Yasuteru; Ishihara, Miya

    2017-03-01

    Photoacoustic (PA) imaging is advantageous in contrast agent imaging because of high spatial resolution at depth more than several millimeter inside biological tissues. To detect small tumors specifically, we are developing small organic molecule-based activatable PA probe with mechanism similar to that of the enzyme-activatable fluorescence probe that have successfully used for rapid fluorescence imaging of small tumors. The probe can be imaged also by fluorescence imaging and the fluorescence image can be merged onto the PA images. To extend the imaging depth by increasing PA signal intensity, PA probe that produce PA signals efficiently is required. To select small organic molecules suitable for PA probe, we synthesized small-organic molecule-based contrast agents with various absorption spectra and fluorescence quantum yields and then we exhaustively evaluated their PA signal generation characteristics including PA signal generation efficiencies. To analyze PA signal generation efficiencies precisely, the absolute values of PA signal pressures produced from aqueous solutions of the contrast agents were measured by P(VDF-TrFE) piezoelectric film acoustic sensor. As a result, small organic molecule with low fluorescence quantum yield produced PA signals efficiently. Thus, as opposed to fluorescence probes, PA probes should have low fluorescence quantum yields. By considering the result and other characteristics including excitation wavelengths, we could single out the small organic molecule suitable for PA probe. We synthesized the new activatable PA probe with low fluorescence quantum yield and excitation wavelength longer than 600 nm and its specificity was examined in in vitro experiment.

  3. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Morgan A Wambaugh

    2017-06-01

    Full Text Available Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M. O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT. We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional

  4. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Science.gov (United States)

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that

  5. Elucidating turnover pathways of bioactive small molecules by isotopomer analysis: the persistent organic pollutant DDT.

    Directory of Open Access Journals (Sweden)

    Ina Ehlers

    Full Text Available The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenylethane is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenylethyl]benzene as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science.

  6. Elucidating turnover pathways of bioactive small molecules by isotopomer analysis: the persistent organic pollutant DDT.

    Science.gov (United States)

    Ehlers, Ina; Betson, Tatiana R; Vetter, Walter; Schleucher, Jürgen

    2014-01-01

    The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science.

  7. Elucidating Turnover Pathways of Bioactive Small Molecules by Isotopomer Analysis: The Persistent Organic Pollutant DDT

    Science.gov (United States)

    Ehlers, Ina; Betson, Tatiana R.; Vetter, Walter; Schleucher, Jürgen

    2014-01-01

    The persistent organic pollutant DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) is still indispensable in the fight against malaria, although DDT and related compounds pose toxicological hazards. Technical DDT contains the dichloro congener DDD (1-chloro-4-[2,2-dichloro-1-(4-chlorophenyl)ethyl]benzene) as by-product, but DDD is also formed by reductive degradation of DDT in the environment. To differentiate between DDD formation pathways, we applied deuterium NMR spectroscopy to measure intramolecular deuterium distributions (2H isotopomer abundances) of DDT and DDD. DDD formed in the technical DDT synthesis was strongly deuterium-enriched at one intramolecular position, which we traced back to 2H/1H fractionation of a chlorination step in the technical synthesis. In contrast, DDD formed by reductive degradation was strongly depleted at the same position, which was due to the incorporation of 2H-depleted hydride equivalents during reductive degradation. Thus, intramolecular isotope distributions give mechanistic information on reaction pathways, and explain a puzzling difference in the whole-molecule 2H/1H ratio between DDT and DDD. In general, our results highlight that intramolecular isotope distributions are essential to interpret whole-molecule isotope ratios. Intramolecular isotope information allows distinguishing pathways of DDD formation, which is important to identify polluters or to assess DDT turnover in the environment. Because intramolecular isotope data directly reflect isotope fractionation of individual chemical reactions, they are broadly applicable to elucidate transformation pathways of small bioactive molecules in chemistry, physiology and environmental science. PMID:25350380

  8. Discovery of novel small molecule modulators of Clavibacter michiganensis subsp. michiganensis

    Directory of Open Access Journals (Sweden)

    Xiulan eXu

    2015-10-01

    Full Text Available Clavibacter michiganensis subsp. michiganensis (Cmm is a Gram-positive seed-transmitted bacterial phytopathogen responsible for substantial economic losses by adversely affecting tomato production worldwide. A high-throughput, cell-based screen was adapted to identify novel small molecule growth inhibitors to serve as leads for future bactericide development. A library of 4,182 compounds known to be bioactive against Saccharomyces cerevisiae was selected for primary screening against Cmm wild-type strain C290 for whole-cell growth inhibition. Four hundred sixty-eight molecules (11.2% hit rate were identified as bacteriocidal or bacteriostatic against Cmm at 200 M. Seventy-seven candidates were selected based on Golden Triangle analyses for secondary screening. Secondary screens showed that several of these candidates were strain-selective. Several compounds were inhibitory to multiple Cmm strains as well as Bacillus subtilis, but not Pseudomonas fluorescens, Mitsuaria sp., Lysobacter enzymogenes, Lactobacillus rhamnosus, Bifidobacter animalis, or Escherichia coli. Most of the compounds were not phytotoxic and did not show overt host toxicity. Using a novel 96-well bioluminescent Cmm seedling infection assay, we assessed effects of selected compounds on pathogen infection. The 12 most potent novel molecules were identified by compiling the scores from all secondary screens combined with the reduction of pathogen infection in planta. When tested for ability to develop resistance to the top-12 compounds, no resistant Cmm were recovered, suggesting that the discovered compounds are unlikely to induce resistance. In conclusion, here we report top-12 compounds that provide chemical scaffolds for future Cmm-specific bactericide development.

  9. Small Molecule Targeting of a MicroRNA Associated with Hepatocellular Carcinoma.

    Science.gov (United States)

    Childs-Disney, Jessica L; Disney, Matthew D

    2016-02-19

    Development of precision therapeutics is of immense interest, particularly as applied to the treatment of cancer. By analyzing the preferred cellular RNA targets of small molecules, we discovered that 5"-azido neomycin B binds the Drosha processing site in the microRNA (miR)-525 precursor. MiR-525 confers invasive properties to hepatocellular carcinoma (HCC) cells. Although HCC is one of the most common cancers, treatment options are limited, making the disease often fatal. Herein, we find that addition of 5"-azido neomycin B and its FDA-approved precursor, neomycin B, to an HCC cell line selectively inhibits production of the mature miRNA, boosts a downstream protein, and inhibits invasion. Interestingly, neomycin B is a second-line agent for hepatic encephalopathy (HE) and bacterial infections due to cirrhosis. Our results provocatively suggest that neomycin B, or second-generation derivatives, may be dual functioning molecules to treat both HE and HCC. Collectively, these studies show that rational design approaches can be tailored to disease-associated RNAs to afford potential lead therapeutics.

  10. A directed approach for engineering conditional protein stability using biologically silent small molecules.

    Science.gov (United States)

    Maynard-Smith, Lystranne A; Chen, Ling-Chun; Banaszynski, Laura A; Ooi, A G Lisa; Wandless, Thomas J

    2007-08-24

    The ability to regulate the function of specific proteins using cell-permeable molecules can be a powerful method for interrogating biological systems. To bring this type of "chemical genetic" control to a wide range of proteins, we recently developed an experimental system in which the stability of a small protein domain expressed in mammalian cells depends on the presence of a high affinity ligand. This ligand-dependent stability is conferred to any fused partner protein. The FK506- and rapamycin-binding protein (FKBP12) has been the subject of extensive biophysical analyses, including both kinetic and thermodynamic studies of the wild-type protein as well as dozens of mutants. The goal of this study was to determine if the thermodynamic stabilities (DeltaDeltaG(U-F)) of various amino acid substitutions within a given protein are predictive for engineering additional ligand-dependent destabilizing domains. We used FKBP12 as a model system and found that in vitro thermodynamic stability correlates weakly with intracellular degradation rates of the mutants and that the ability of a given mutation to destabilize the protein is context-dependent. We evaluated several new FKBP12 ligands for their ability to stabilize these mutants and found that a cell-permeable molecule called Shield-1 is the most effective stabilizing ligand. We then performed an unbiased microarray analysis of NIH3T3 cells treated with various concentrations of Shield-1. These studies show that Shield-1 does not elicit appreciable cellular responses.

  11. Exopolysaccharide-Repressing Small Molecules with Antibiofilm and Antivirulence Activity against Pseudomonas aeruginosa.

    Science.gov (United States)

    van Tilburg Bernardes, Erik; Charron-Mazenod, Laetitia; Reading, David J; Reckseidler-Zenteno, Shauna L; Lewenza, Shawn

    2017-05-01

    Biofilm formation is a universal virulence strategy in which bacteria grow in dense microbial communities enmeshed within a polymeric extracellular matrix that protects them from antibiotic exposure and the immune system. Pseudomonas aeruginosa is an archetypal biofilm-forming organism that utilizes a biofilm growth strategy to cause chronic lung infections in cystic fibrosis (CF) patients. The extracellular matrix of P. aeruginosa biofilms is comprised mainly of exopolysaccharides (EPS) and DNA. Both mucoid and nonmucoid isolates of P. aeruginosa produce the Pel and Psl EPS, each of which have important roles in antibiotic resistance, biofilm formation, and immune evasion. Given the central importance of the EPS for biofilms, they are attractive targets for novel anti-infective compounds. In this study, we used a high-throughput gene expression screen to identify compounds that repress expression of the pel genes. The pel repressors demonstrated antibiofilm activity against microplate and flow chamber biofilms formed by wild-type and hyperbiofilm-forming strains. To determine the potential role of EPS in virulence, pel/psl mutants were shown to have reduced virulence in feeding behavior and slow killing virulence assays in Caenorhabditis elegans The antibiofilm molecules also reduced P. aeruginosa PAO1 virulence in the nematode slow killing model. Importantly, the combination of antibiotics and antibiofilm compounds increased killing of P. aeruginosa biofilms. These small molecules represent a novel anti-infective strategy for the possible treatment of chronic P. aeruginosa infections. Copyright © 2017 American Society for Microbiology.

  12. An Overall Comparison of Small Molecules and Large Biologics in ADME Testing

    Directory of Open Access Journals (Sweden)

    Hong Wan

    2016-03-01

    Full Text Available Biologics mainly monoclonal antibodies (mAbs and antibody-drug conjugates (ADCs as new therapeutics are becoming increasingly important biotherapeutics. This review is intended to provide an overall comparison between small molecules (SMs and biologics or large molecules (LMs concerning drug metabolism and pharmacokinetic (DMPK or associated with absorption, distribution, metabolism and elimination (ADME testing from pharmaceutical industry drug discovery and development points of view, which will help design and conduct relevant ADME testing for biologics such as mAbs and ADCs. Recent advancements in the ADME for testing biologics and related bioanalytical methods are discussed with an emphasis on ADC drug development as an example to understand its complexity and challenges from extensive in vitro characterization to in vivo animal PK studies. General non-clinical safety evaluations of biologics in particular for ADC drugs are outlined including drug-drug interaction (DDI and metabolite/catabolite assessments. Regulatory guidance on the ADME testing and safety evaluations including immunogenicity as well as bioanalytical considerations are addressed for LMs. In addition, the preclinical and human PK data of two marked ADC drugs (ADCETRIS, SGN-35 and KADCYLA, T-DM1 as examples are briefly discussed with regard to PK considerations and PK/PD perspectives.

  13. Fluorous tagging strategy for solution-phase synthesis of small molecules, peptides and oligosaccharides.

    Science.gov (United States)

    Zhang, Wei

    2004-11-01

    The purification of reaction mixtures is a slow process in organic synthesis, especially during the production of large numbers of analogs and compound libraries. Phase-tag methods such as solid-phase synthesis and fluorous synthesis, provide efficient ways of addressing the separation issue. Fluorous synthesis employs functionalized perfluoroalkyl groups attached to substrates or reagents. The separation of the resulting fluorous molecules can be achieved using strong and selective fluorous liquid-liquid extraction, fluorous silica gel-based solid-phase extraction or high-performance liquid chromatography. Fluorous technology is a novel solution-phase method, which has the advantages of fast reaction times in homogeneous environments, being readily adaptable to literature conditions, having easy intermediate analysis, and having flexibility in reaction scale and scope. In principle, any synthetic methods that use a solid-support could be conducted in solution-phase by replacing the polymer linker with a corresponding fluorous tag. This review summarizes the progress of fluorous tags in solution-phase synthesis of small molecules, peptides and oligosaccharides.

  14. Adsorption characteristics of charged and nonionic small molecules to colloidal alumina.

    Science.gov (United States)

    Pansare, Vikram J; Hwang, Victoria; Figueroa, Carlos; Prud'homme, Robert K

    2017-10-06

    Dense fluorescent pigments used for inkjet printing of UV and IR-readable non-photobleaching security features require stabilizers to prevent aggregation/sedimentation and inkjet head clogging at high resolution. A study of small molecule adsorption to α-alumina, a model system for security pigments, is presented. Alumina is dispersed by two methods yielding different zeta potentials but identical isoelectric points. Essentially complete dispersion is obtained in water at pH 3 but aggregation occurs at pH 6 where the surface charging is lower. Adsorption studies focus on the naphthyl-phosphate, -sulfate, and hydroxyl (triethylene glycol) groups. Phosphate adsorption was strongest with a 1.2 molecules/nm(2) plateau, close to the titratable exchange capacity of 1.3 OH groups/nm(2) on the alumina surface with ΔHadsorption=-7.58±1.63kJ/mol determined by calorimetry. Sulfate adsorption was weaker with a more linear adsorption isotherm. The adsorption/exchange process yields a rise in pH that is correlated with the binding strength. Hydroxyl binding is weakest, being driven by hydrogen bonding, and showed no rise in pH during adsorption. A polyphosphate-poly(ethylene glycol) block copolymer is expected to be advantageous for the dispersion of such inkjet colloids. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Two small molecule lead compounds as new antifungal agents effective against Candida albicans and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yones Pilehvar-Soltanahmadi

    2014-06-01

    Full Text Available  Background: Antifungal drug resistance and few numbers of available drugs limit therapeutic options against fungal infections. The present study was designed to discover new antifungal drugs. Materials and Methods: This study was carried out in two separate steps, that is, in silico lead identification and in vitro assaying of antifungal potential. A structural data file of a ternary complex of fusicuccin (legend, C terminus of H+-ATPase and 14-3-3 regulatory protein (1o9F.pdb file was used as a model. Computational screening of a virtual 3D database of drug-like molecules was performed and selected small molecules, resembling the functional part of the ligand performing ligand docking, were tested using ArgusLab (4.0.1. Two lead compounds, 3-Cyclohexan propionic acid (CXP and 4-phenyl butyric acid (PBA were selected according to their ligation scores. Standard Strains of Candida albicans and Saccharomyces cerevisiae were used to measure the antifungal potential of the two identified lead compounds against the fungi using micro-well plate dilution assay. Results: Ligation scores for CXP and PBA were -9.33744 and -10.7259 kcal/mol, respectively, and MIC and MFC of CXP and PBA against the two yeasts were promising. Conclusion: The evidence from the present study suggests that CXP and PBA possess potentially antifungals properties. 

  16. Weight loss by Ppc-1, a novel small molecule mitochondrial uncoupler derived from slime mold.

    Directory of Open Access Journals (Sweden)

    Toshiyuki Suzuki

    Full Text Available Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity.

  17. Identification of small molecule inhibitors of PTPσ through an integrative virtual and biochemical approach.

    Directory of Open Access Journals (Sweden)

    Katie R Martin

    Full Text Available PTPσ is a dual-domain receptor type protein tyrosine phosphatase (PTP with physiologically important functions which render this enzyme an attractive biological target. Specifically, loss of PTPσ has been shown to elicit a number of cellular phenotypes including enhanced nerve regeneration following spinal cord injury (SCI, chemoresistance in cultured cancer cells, and hyperactive autophagy, a process critical to cell survival and the clearance of pathological aggregates in neurodegenerative diseases. Owing to these functions, modulation of PTPσ may provide therapeutic value in a variety of contexts. Furthermore, a small molecule inhibitor would provide utility in discerning the cellular functions and substrates of PTPσ. To develop such molecules, we combined in silico modeling with in vitro phosphatase assays to identify compounds which effectively inhibit the enzymatic activity of PTPσ. Importantly, we observed that PTPσ inhibition was frequently mediated by oxidative species generated by compounds in solution, and we further optimized screening conditions to eliminate this effect. We identified a compound that inhibits PTPσ with an IC(50 of 10 µM in a manner that is primarily oxidation-independent. This compound favorably binds the D1 active site of PTPσ in silico, suggesting it functions as a competitive inhibitor. This compound will serve as a scaffold structure for future studies designed to build selectivity for PTPσ over related PTPs.

  18. Exploratory Analysis of Kinetic Solubility Measurements of a Small Molecule Library

    Science.gov (United States)

    Guha, Rajarshi; Dexheimer, Thomas S.; Kestranek, Aimee N.; Jadhav, Ajit; Chervenak, Andrew M.; Ford, Michael G.; Simeonov, Anton; Roth, Gregory P.; Thomas, Craig J.

    2011-01-01

    Kinetic solubility measurements using prototypical assay buffer conditions are presented for a ~58,000 member library of small molecules. Analyses of the data based upon physical and calculated properties of each individual molecule were performed and resulting trends were considered in the context of commonly held opinions of how physicochemical properties influence aqueous solubility. We further analyze the data using a decision tree model for solubility prediction and via a multi-dimensional assessment of physicochemical relationships to solubility in the context of specific ‘rule-breakers’ relative to common dogma. The role of solubility as a determinant of assay outcome is also considered based upon each compound’s cross-assay activity score for a collection of publicly available screening results. Further, the role of solubility as a governing factor for colloidal aggregation formation within a specified assay setting is examined and considered as a possible cause of a high cross-assay activity score. The results of this solubility profile should aid chemists during library design and optimization efforts and represents a useful training set for computational solubility prediction. PMID:21640593

  19. Mode of action of DNA-competitive small molecule inhibitors of tyrosyl DNA phosphodiesterase 2.

    Science.gov (United States)

    Hornyak, Peter; Askwith, Trevor; Walker, Sarah; Komulainen, Emilia; Paradowski, Michael; Pennicott, Lewis E; Bartlett, Edward J; Brissett, Nigel C; Raoof, Ali; Watson, Mandy; Jordan, Allan M; Ogilvie, Donald J; Ward, Simon E; Atack, John R; Pearl, Laurence H; Caldecott, Keith W; Oliver, Antony W

    2016-07-01

    Tyrosyl-DNA phosphodiesterase 2 (TDP2) is a 5'-tyrosyl DNA phosphodiesterase important for the repair of DNA adducts generated by non-productive (abortive) activity of topoisomerase II (TOP2). TDP2 facilitates therapeutic resistance to topoisomerase poisons, which are widely used in the treatment of a range of cancer types. Consequently, TDP2 is an interesting target for the development of small molecule inhibitors that could restore sensitivity to topoisomerase-directed therapies. Previous studies identified a class of deazaflavin-based molecules that showed inhibitory activity against TDP2 at therapeutically useful concentrations, but their mode of action was uncertain. We have confirmed that the deazaflavin series inhibits TDP2 enzyme activity in a fluorescence-based assay, suitable for high-throughput screen (HTS)-screening. We have gone on to determine crystal structures of these compounds bound to a 'humanized' form of murine TDP2. The structures reveal their novel mode of action as competitive ligands for the binding site of an incoming DNA substrate, and point the way to generating novel and potent inhibitors of TDP2. © 2016 The Author(s).

  20. Asymmetric Patterns of Small Molecule Transport After Nanosecond and Microsecond Electropermeabilization.

    Science.gov (United States)

    Sözer, Esin B; Pocetti, C Florencia; Vernier, P Thomas

    2017-05-08

    Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with our measurement system. Immediately after a microsecond pulse, YO-PRO-1 and propidium enter the cell roughly equally from the positive and negative poles, but transport through the cathode-facing side dominates in less than 1 s. After nanosecond pulse permeabilization, YO-PRO-1 and propidium enter primarily on the anode-facing side of the cell.

  1. Effects of serum albumin on SPR-measured affinity of small molecule inhibitors binding to nerve growth factor

    Directory of Open Access Journals (Sweden)

    Allison E. Kennedy

    2017-09-01

    Full Text Available The study of the interactions between a drug and plasma serum proteins are necessary in determining pharmacological and toxicological properties for therapeutic development. Small molecule nerve growth factor (NGF inhibitors have been investigated for their abilities to inhibit NGF binding to TrkA as a potential therapeutic option for the treatment of neuropathic and inflammatory pain. In this study, surface plasmon resonance (SPR spectroscopy and 125I-NGF radioisotope binding assays were carried out to better understand the role of serum albumin (SA in small molecule binding to NGF. SA has been characterized as a universal drug carrier with up to seven binding domains on its surface to transport drug molecules to target tissues. Here, we use SPR kinetic analysis to analyze the change in specificity of small molecules to immobilized NGF in the presence and absence of SA. In the presence of SA an overall increase in small molecule binding affinity for NGF was observed compared to binding in the absence of SA. Our results suggest a crucial role for SA in the pharmacokinetics of small molecule binding to NGF. This effect will require consideration when developing therapeutic agents.

  2. Structure-Guided Reprogramming of a Hydroxylase To Halogenate Its Small Molecule Substrate.

    Science.gov (United States)

    Mitchell, Andrew J; Dunham, Noah P; Bergman, Jonathan A; Wang, Bo; Zhu, Qin; Chang, Wei-Chen; Liu, Xinyu; Boal, Amie K

    2017-01-24

    Enzymatic installation of chlorine/bromine into unactivated carbon centers provides a versatile, selective, and environmentally friendly alternative to chemical halogenation. Iron(II) and 2-(oxo)-glutarate (Fe(II)/2OG)-dependent halogenases are powerful biocatalysts that are capable of cleaving aliphatic C-H bonds to introduce useful functional groups, including halogens. Using the structure of the Fe/2OG halogenase, WelO5, in complex with its small molecule substrate, we identified a similar N-acyl amino acid hydroxylase, SadA, and reprogrammed it to halogenate its substrate, thereby generating a new chiral haloalkyl center. The work highlights the potential of Fe(II)/2OG enzymes as platforms for development of novel stereospecific catalysts for late-stage C-H functionalization.

  3. Shape Memory Polymers from Blends of Elastomers and Crystalline Small Molecules

    Science.gov (United States)

    Cavicchi, Kevin; Brostowitz, Nicole; Hukill, Brent; Fairbairn, Heather

    2015-03-01

    This talk will present work on the fabrication of shape memory polymers (SMPs) by swelling natural with molten fatty acids. By this method a SMPs with excellent shape fixity and recovery can be obtained during free recovery after uniaxial deformation to 100% strain. Experiments to measure the shape memory properties under both stress and strain controlled conditions will be reported and compared. This fabrication method offers a number of advantages for preparing SMPs. First, it utilizes natural rubber as the base material for the SMP, which capitalizes on a high performance, commodity elastomer. Second, by blending a commercial polymer with a small molecule additive no additional chemistry is needed for the preparation of the SMP. Third, this route inverts the typically processing steps by crosslinking the permanent network prior to formation of the physically crosslinked reversible network. This offers a means to potentially generate a SMP from any preformed elastomeric article.

  4. Nitrogen-rich graphene from small molecules as high performance anode material

    Science.gov (United States)

    Gao, Weiwei; Huang, Hao; Shi, Hongyan; Feng, Xun; Song, Wenbo

    2014-10-01

    Nitrogen-rich graphene sheets were successfully achieved via facile thermal condensation of glucose and dicyandiamide at different temperatures during which dicyandiamide acts both as nitrogen source and sacrifice template. Devoid of surfactants or poisonous organic solvents, this small-molecule synthetic approach is a simple and cost-effective way to obtain nitrogen-rich graphene sheets (NRGS) with high specific surface area and large pore volume. Shown to be a promising anode material, the NRGS displayed high reversible capacity, excellent rate capability, and superior cycle performance. The superior lithium-storage performance is ascribed to the unique features of NRGS, including a large quantity of defects due to the high nitrogen doping level, favorable lithium ion transportation channels by virtue of the large surface area, and ultrahigh pore volume, as well as the crumpled two-dimensional structure.

  5. New serum markers for small-cell lung cancer. II. The neural cell adhesion molecule, NCAM

    DEFF Research Database (Denmark)

    Vangsted, A; Drivsholm, L; Andersen, E

    1994-01-01

    The neural cell adhesion molecule (NCAM) was recently suggested as a marker for small-cell lung cancer (SCLC). Immunohistochemical analysis demonstrated the presence of the NCAM in 78% of SCLC patients and in 25% of patients with other cancer forms. NCAM was proposed to be the most sensitive marker...... for SCLC, and it may also be an important prognostic marker for SCLC. We used a competitive ELISA to analyze the concentrations of NCAM in sera from 96 SCLC patients, 16 patients with non-SCLC, 4 patients with other cancer forms, and 16 healthy controls. All sera were collected at the time of diagnosis...... serum marker, FucGM1.(ABSTRACT TRUNCATED AT 250 WORDS)...

  6. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions.

    Science.gov (United States)

    Lumba, Shelley; Cutler, Sean; McCourt, Peter

    2010-01-01

    Plant hormones are a group of chemically diverse small molecules that direct processes ranging from growth and development to biotic and abiotic stress responses. Surprisingly, genome analyses suggest that classic animal nuclear hormone receptor homologs do not exist in plants. It now appears that plants have co-opted several protein families to perceive hormones within the nucleus. In one solution to the problem, the hormones auxin and jasmonate (JA) act as “molecular glue” that promotes protein-protein interactions between receptor F-boxes and downstream corepressor targets. In another solution, gibberellins (GAs) bind and elicit a conformational change in a novel soluble receptor family related to hormone-sensitive lipases. Abscisic acid (ABA), like GA, also acts through an allosteric mechanism involving a START-domain protein. The molecular identification of plant nuclear hormone receptors will allow comparisons with animal nuclear receptors and testing of fundamental questions about hormone function in plant development and evolution.

  7. Integrated Platform for Expedited Synthesis-Purification-Testing of Small Molecule Libraries.

    Science.gov (United States)

    Baranczak, Aleksandra; Tu, Noah P; Marjanovic, Jasmina; Searle, Philip A; Vasudevan, Anil; Djuric, Stevan W

    2017-04-13

    The productivity of medicinal chemistry programs can be significantly increased through the introduction of automation, leading to shortened discovery cycle times. Herein, we describe a platform that consolidates synthesis, purification, quantitation, dissolution, and testing of small molecule libraries. The system was validated through the synthesis and testing of two libraries of binders of polycomb protein EED, and excellent correlation of obtained data with results generated through conventional approaches was observed. The fully automated and integrated platform enables batch-supported compound synthesis based on a broad array of chemical transformations with testing in a variety of biochemical assay formats. A library turnaround time of between 24 and 36 h was achieved, and notably, each library synthesis produces sufficient amounts of compounds for further evaluation in secondary assays thereby contributing significantly to the shortening of medicinal chemistry discovery cycles.

  8. Improved Domain Size and Purity Enables Efficient All-Small-Molecule Ternary Solar Cells.

    Science.gov (United States)

    Zhang, Hao; Wang, Xiaohui; Yang, Liyan; Zhang, Shaoqing; Zhang, Yun; He, Chang; Ma, Wei; Hou, Jianhui

    2017-11-01

    An all-small-molecule ternary solar cell is achieved with a power conversion efficiency of 10.48% by incorporating phenyl-C 71 -butyric-acid-methyl ester (PC 71 BM) into a nonfullerene binary system. The addition of PC 71 BM is found to modulate the film morphology by improving the domain purity and decreasing the domain size. This modulation facilitates charge generation and suppresses charge recombination, as manifested by the significantly enhanced short-circuit current density and fill factor. The results correlate the domain characteristics with the device performance and offer new insight from the perspective of morphology modulation for constructing efficient ternary devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Small-Molecule Allosteric Modulators of the Protein Kinase PDK1 from Structure-Based Docking

    Science.gov (United States)

    Karpiak, Joel; Doak, Allison; Sali, Andrej; Shoichet, Brian K.; Wells, James A.

    2016-01-01

    Finding small molecules that target allosteric sites remains a grand challenge for ligand discovery. In the protein kinase field, only a handful of highly selective allosteric modulators have been found. Thus, more general methods are needed to discover allosteric modulators for additional kinases. Here, we use virtual screening against an ensemble of both crystal structures and comparative models to identify ligands for an allosteric peptide-binding site on the protein kinase PDK1 (the PIF pocket). We optimized these ligands through an analog-by-catalog search that yielded compound 4, which binds to PDK1 with 8 μM affinity. We confirmed the docking poses by determining a crystal structure of PDK1 in complex with 4. Because the PIF pocket appears to be a recurring structural feature of the kinase fold, known generally as the helix αC patch, this approach may enable the discovery of allosteric modulators for other kinases. PMID:26443011

  10. pKa prediction of monoprotic small molecules the SMARTS way.

    Science.gov (United States)

    Lee, Adam C; Yu, Jing-Yu; Crippen, Gordon M

    2008-10-01

    Realizing favorable absorption, distribution, metabolism, elimination, and toxicity profiles is a necessity due to the high attrition rate of lead compounds in drug development today. The ability to accurately predict bioavailability can help save time and money during the screening and optimization processes. As several robust programs already exist for predicting logP, we have turned our attention to the fast and robust prediction of pK(a) for small molecules. Using curated data from the Beilstein Database and Lange's Handbook of Chemistry, we have created a decision tree based on a novel set of SMARTS strings that can accurately predict the pK(a) for monoprotic compounds with R(2) of 0.94 and root mean squared error of 0.68. Leave-some-out (10%) cross-validation achieved Q(2) of 0.91 and root mean squared error of 0.80.

  11. Monitoring small molecule diffusion into hydrogels at various temperatures by fluorescence technique.

    Science.gov (United States)

    Evingür, Gülşen Akin; Karsli, Kadir; Pekcan, Onder

    2006-12-01

    Steady state fluorescence technique was used to study small molecule diffusion into polyacrylamide (PAAm) gels at various temperatures. Pyranine (P(y)), dissolved in water was introduced as a probe and fluorescence emission (I(p)) from P(y) was monitored during diffusion. Scattered light intensities, I(sc) from PAAm gel was also monitored to observe structural variations during diffusion process. Increase in I(p) intensity was attributed to P(y) diffusion into PAAm gel. On the other hand decrease in I(sc) intensity was interpreted as the variation of the spatial heterogeneities in the system. Li-Tanaka and Fickian models were used to quantify the swelling and diffusion experiments and diffusion coefficients were produced in both cases. Related activation energies were also calculated from the corresponding physical processes.

  12. Selective stalling of human translation through small-molecule engagement of the ribosome nascent chain

    Science.gov (United States)

    Lintner, Nathanael G.; McClure, Kim F.; Petersen, Donna; Londregan, Allyn T.; Piotrowski, David W.; Wei, Liuqing; Xiao, Jun; Bolt, Michael; Loria, Paula M.; Maguire, Bruce; Geoghegan, Kieran F.; Huang, Austin; Rolph, Tim; Liras, Spiros; Doudna, Jennifer A.; Dullea, Robert G.

    2017-01-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts. PMID:28323820

  13. Accurate on-chip measurement of the Seebeck coefficient of high mobility small molecule organic semiconductors

    Directory of Open Access Journals (Sweden)

    C. N. Warwick

    2015-09-01

    Full Text Available We present measurements of the Seebeck coefficient in two high mobility organic small molecules, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT and 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (C10-DNTT. The measurements are performed in a field effect transistor structure with high field effect mobilities of approximately 3 cm2/V s. This allows us to observe both the charge concentration and temperature dependence of the Seebeck coefficient. We find a strong logarithmic dependence upon charge concentration and a temperature dependence within the measurement uncertainty. Despite performing the measurements on highly polycrystalline evaporated films, we see an agreement in the Seebeck coefficient with modelled values from Shi et al. [Chem. Mater. 26, 2669 (2014] at high charge concentrations. We attribute deviations from the model at lower charge concentrations to charge trapping.

  14. Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK)

    Energy Technology Data Exchange (ETDEWEB)

    Huard, Kim [Medicine; Ahn, Kay [Internal; Amor, Paul [Internal; Beebe, David A. [Internal; Borzilleri, Kris A. [Structural; Chrunyk, Boris A. [Structural; Coffey, Steven B. [Medicine; Cong, Yang [Medicine; Conn, Edward L. [Medicine; Culp, Jeffrey S. [Medicine; Dowling, Matthew S. [Medicine; Gorgoglione, Matthew F. [Internal; Gutierrez, Jemy A. [Internal; Knafels, John D. [Structural; Lachapelle, Erik A. [Medicine; Pandit, Jayvardhan [Structural; Parris, Kevin D. [Structural; Perez, Sylvie [Internal; Pfefferkorn, Jeffrey A. [Internal; Price, David A. [Medicine; Raymer, Brian [Medicine; Ross, Trenton T. [Internal; Shavnya, Andre [Medicine; Smith, Aaron C. [Medicine; Subashi, Timothy A. [Structural; Tesz, Gregory J. [Internal; Thuma, Benjamin A. [Medicine; Tu, Meihua [Medicine; Weaver, John D. [Medicine; Weng, Yan [Medicine; Withka, Jane M. [Structural; Xing, Gang [Internal; Magee, Thomas V. [Internal

    2017-05-23

    Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.

  15. Controlled release of small molecules from silica xerogel with limited nanoporosity.

    Science.gov (United States)

    Chen, Rong; Qu, Haibo; Agrawal, Ashwin; Guo, Shaoyun; Ducheyne, Paul

    2013-01-01

    Conventional sol-gel processing requires several distinct steps involving hydrolysis, condensation and drying to obtain a highly porous, glassy solid material. With the goal of achieving controlled release of small molecules, herein we focus on the acceleration of the condensation and drying steps by casting the hydrolyzed sol on a large open surface to achieve a denser 100 % silica xerogel structure. Thus, cast xerogel with a more limited porosity was prepared. The effect of synthesis parameters during sol-gel synthesis on the release kinetics of bupivacaine, vancomycin and cephalexin was investigated. The release kinetics fitted well with the Higuchi model, suggesting a diffusional release mechanism. Combining the release and nanostructure data, the formation mechanism of cast xerogel is described. Without introducing additional precursors or additives into sol-gel systems, sol-gel casting is an easy technique that further expands the applicability of sol-gel materials as excellent carriers for the controlled release of a variety of drugs.

  16. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design.

    Science.gov (United States)

    Fong, Celesta; Le, Tu; Drummond, Calum J

    2012-02-07

    Future nanoscale soft matter design will be guided to a large extent by the teachings of amphiphile (lipid or surfactant) self-assembly. Ordered nanostructured lyotropic liquid crystalline mesophases may form in select mixtures of amphiphile and solvent. To reproducibly engineer the low energy amphiphile self-assembly of materials for the future, we must first learn the design principles. In this critical review we discuss the evolution of these design rules and in particular discuss recent key findings regarding (i) what drives amphiphile self-assembly, (ii) what governs the self-assembly structures that are formed, and (iii) how can amphiphile self-assembly materials be used to enhance product formulations, including drug delivery vehicles, medical imaging contrast agents, and integral membrane protein crystallisation media. We focus upon the generation of 'dilutable' lyotropic liquid crystal phases with two- and three-dimensional geometries from amphiphilic small molecules (225 references). This journal is © The Royal Society of Chemistry 2012

  17. Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates

    Directory of Open Access Journals (Sweden)

    Han Huang

    2016-09-01

    Full Text Available Two dimensional atomic crystals, like grapheme (G and molybdenum disulfide (MoS2, exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, and dioctylbenzothienobenzothiophene (C8-BTBT and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN. The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed.

  18. A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts

    Science.gov (United States)

    Pandian, Ganesh N.; Nakano, Yusuke; Sato, Shinsuke; Morinaga, Hironobu; Bando, Toshikazu; Nagase, Hiroki; Sugiyama, Hiroshi

    2012-07-01

    Cellular reprogramming involves profound alterations in genome-wide gene expression that is precisely controlled by a hypothetical epigenetic code. Small molecules have been shown to artificially induce epigenetic modifications in a sequence independent manner. Recently, we showed that specific DNA binding hairpin pyrrole-imidazole polyamides (PIPs) could be conjugated with chromatin modifying histone deacetylase inhibitors like SAHA to epigenetically activate certain pluripotent genes in mouse fibroblasts. In our steadfast progress to improve the efficiency of SAHA-PIPs, we identified a novel compound termed, δ that could dramatically induce the endogenous expression of Oct-3/4 and Nanog. Genome-wide gene analysis suggests that in just 24 h and at nM concentration, δ induced multiple pluripotency-associated genes including Rex1 and Cdh1 by more than ten-fold. δ treated MEFs also rapidly overcame the rate-limiting step of epithelial transition in cellular reprogramming by switching ``'' the complex transcriptional gene network.

  19. RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence.

    Science.gov (United States)

    Murphy, Erin R; Payne, Shelley M

    2007-07-01

    Regulation of bacterial gene expression by small RNA (sRNA) molecules is an increasingly recognized phenomenon but one that is not yet fully understood. We show that the sRNA RyhB suppresses several virulence-associated phenotypes of Shigella dysenteriae, a causative agent of bacillary dysentery in humans. The virulence genes repressed by S. dysenteriae RyhB include those encoding the type III secretion apparatus, its secreted effectors, and specific chaperones. Suppression of Shigella virulence occurs via RyhB-dependent repression of the transcriptional activator VirB, leading to reduced expression of genes within the VirB regulon. Efficient repression of virB is mediated by a single-stranded region of RyhB that is distinct from the region required for repression of Shigella sodB. Regulation of virB by RyhB implicates iron as an environmental factor contributing to the complex regulation of Shigella virulence determinants.

  20. A BOILED‐Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules

    Science.gov (United States)

    Daina, Antoine

    2016-01-01

    Abstract Apart from efficacy and toxicity, many drug development failures are imputable to poor pharmacokinetics and bioavailability. Gastrointestinal absorption and brain access are two pharmacokinetic behaviors crucial to estimate at various stages of the drug discovery processes. To this end, the Brain Or IntestinaL EstimateD permeation method (BOILED‐Egg) is proposed as an accurate predictive model that works by computing the lipophilicity and polarity of small molecules. Concomitant predictions for both brain and intestinal permeation are obtained from the same two physicochemical descriptors and straightforwardly translated into molecular design, owing to the speed, accuracy, conceptual simplicity and clear graphical output of the model. The BOILED‐Egg can be applied in a variety of settings, from the filtering of chemical libraries at the early steps of drug discovery, to the evaluation of drug candidates for development. PMID:27218427

  1. High performance small molecule photodetector with broad spectral response range from 200 to 900 nm

    Science.gov (United States)

    Wu, Shuang-hong; Li, Wen-lian; Chu, Bei; Su, Zi-sheng; Zhang, Feng; Lee, C. S.

    2011-07-01

    We demonstrate a photodetector (PD) with broad spectral response by taking the advantages of more flexible device design in using small molecule materials. The optimized device shows an external quantum efficiency of over 20% from 200 to 900 nm. The high performance is achieved by jointing two donor (D)/acceptor (A) hetero-junctions [m-MTDATA(D)/TiOPc(A) and TiOPc(D)/F16CuPc: PTCDI-C8(A)] such that photoresponses over the deep-ultraviolet (UV) and visible-near infrared regions can be independently optimized. By choosing D- and A-materials with matched energy level alignment, high carrier mobility, and balanced carrier transporting properties, the present PD shows a fast response of 56 ns. The high speed and deep-UV sensitivity might lead to potential military applications such as missile tracking in addition to optical communications, chemical/biological sensing etc.

  2. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth

    Science.gov (United States)

    Wang, Lei; Chang, Jianjun; Varghese, Diana; Dellinger, Michael; Kumar, Subodh; Best, Anne M.; Ruiz, Julio; Bruick, Richard; Peña-Llopis, Samuel; Xu, Junjie; Babinski, David J.; Frantz, Doug E.; Brekken, Rolf A.; Quinn, Amy M.; Simeonov, Anton; Easmon, Johnny; Martinez, Elisabeth D.

    2013-01-01

    The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signaling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) which specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumors in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumor burden and prolongs survival. Importantly, we find that patients with breast tumors that overexpress Jumonji demethylases have significantly lower survival. Thus JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance. PMID:23792809

  3. Design of small molecules that compete with nucleotide binding to an engineered oncogenic KRAS allele.

    Science.gov (United States)

    Zhang, Yan; Larraufie, Mare-Helene; Musavi, Leila; Akkiraju, Hemanth; Brown, Lewis M; Stockwell, Brent R

    2018-01-09

    RAS mutations are found in 30% of all human cancers, with KRAS the most frequently mutated among the three RAS isoforms (KRAS, NRAS, HRAS). However, directly targeting oncogenic KRAS with small molecules in the nucleotide-binding site has been difficult due to the high affinity of KRAS for GDP and GTP. We designed an engineered allele of KRAS, and a covalent inhibitor that competes for GTP and GDP. This ligand-receptor combination demonstrates that the high affinity of GTP/GDP for RAS proteins can be overcome with a covalent inhibitor and a suitably engineered binding site. The covalent inhibitor irreversibly modifies the protein at the engineered nucleotide binding site and is able to compete with GDP and GTP. This provides a new tool for studying KRAS function and suggests strategies for targeting the nucleotide-binding site of oncogenic RAS proteins.

  4. From small aromatic molecules to functional nanostructured carbon by pulsed laser-induced photochemical stitching

    Directory of Open Access Journals (Sweden)

    R. R. Gokhale

    2012-06-01

    Full Text Available A novel route employing UV laser pulses (KrF Excimer, 248 nm to cleave small aromatic molecules and stitch the generated free radicals into functional nanostructured forms of carbon is introduced. The process differs distinctly from any strategies wherein the aromatic rings are broken in the primary process. It is demonstrated that this pulsed laser-induced photochemical stitching (PLPS process when applied to routine laboratory solvents (or toxic chemical wastes when discarded Chlorobenzene and o-Dichlorobenzene yields Carbon Nanospheres (CNSs comprising of graphene-like sheets assembled in onion-like configurations. This room temperature process implemented under normal laboratory conditions is versatile and clearly applicable to the whole family of haloaromatic compounds without and with additions of precursors or other nanomaterials. We further bring out its applicability for synthesis of metal-oxide based carbon nanocomposites.

  5. Discovery and computer aided potency optimization of a novel class of small molecule CXCR4 antagonists.

    Directory of Open Access Journals (Sweden)

    Victoria Vinader

    Full Text Available Amongst the chemokine signalling axes involved in cancer, chemokine CXCL12 acting on chemokine receptor CXCR4 is particularly significant since it orchestrates migration of cancer cells in a tissue-specific metastatic process. High CXCR4 tumour expression is associated with poor prognosis of lung, brain, CNS, blood and breast cancers. We have identified a new class of small molecule CXCR4 antagonists based on the use of computational modelling studies in concert with experimental determination of in vitro activity against CXCL12-induced intracellular calcium mobilisation, proliferation and chemotaxis. Molecular modelling proved to be a useful tool in rationalising our observed potencies, as well as informing the direction of the synthetic efforts aimed at producing more potent compounds.

  6. Development of Potential Small Molecule Therapeutics for Treatment of Ebola Virus.

    Science.gov (United States)

    Schafer, Adam Michael; Cheng, Han; Lee, Charles; Du, Ruikun; Han, Julianna; Perez, Jasmine; Peet, Norton; Manicassamy, Balaji; Rong, Lijun

    2017-10-10

    Ebola virus has caused 26 outbreaks in 10 different countries since its identification in 1976, making it one of the deadliest emerging viral pathogens. The most recent outbreak in West Africa from 2014-16 was the deadliest yet and culminated in 11,310 deaths out of 28,616 confirmed cases. Currently there are no FDA-approved therapeutics or vaccines to treat Ebola virus infections. The slow development of effective vaccines combined with the severity of past outbreaks emphasizes the need to accelerate research into understanding the virus lifecycle and the development of therapeutics for post exposure treatment. Here we present a summary of the major findings on the Ebola virus replication cycle and the therapeutic approaches explored to treat this devastating disease. The major focus of this review is on small molecule inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    Science.gov (United States)

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-10-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  8. A Small Molecule Inhibitor of the BLM Helicase Modulates Chromosome Stability in Human Cells

    DEFF Research Database (Denmark)

    Nguyen, Giang Huong; Dexheimer, Thomas S; Rosenthal, Andrew S

    2013-01-01

    The Bloom's syndrome protein, BLM, is a member of the conserved RecQ helicase family. Although cell lines lacking BLM exist, these exhibit progressive genomic instability that makes distinguishing primary from secondary effects of BLM loss problematic. In order to be able to acutely disable BLM...... function in cells, we undertook a high throughput screen of a chemical compound library for small molecule inhibitors of BLM. We present ML216, a potent inhibitor of the DNA unwinding activity of BLM. ML216 shows cell-based activity and can induce sister chromatid exchanges, enhance the toxicity...... of aphidicolin, and exert antiproliferative activity in cells expressing BLM, but not those lacking BLM. These data indicate that ML216 shows strong selectivity for BLM in cultured cells. We discuss the potential utility of such a BLM-targeting compound as an anticancer agent....

  9. Small Molecules Greatly Improve Conversion of Human-Induced Pluripotent Stem Cells to the Neuronal Lineage

    Directory of Open Access Journals (Sweden)

    Sally K. Mak

    2012-01-01

    Key success factors for neuronal differentiation are the yield of desired neuronal marker expression, reproducibility, length, and cost. Three main neuronal differentiation approaches are stromal-induced neuronal differentiation, embryoid body (EB differentiation, and direct neuronal differentiation. Here, we describe our neurodifferentiation protocol using small molecules that very efficiently promote neural induction in a 5-stage EB protocol from six induced pluripotent stem cells (iPSC lines from patients with Parkinson’s disease and controls. This protocol generates neural precursors using Dorsomorphin and SB431542 and further maturation into dopaminergic neurons by replacing sonic hedgehog with purmorphamine or smoothened agonist. The advantage of this approach is that all patient-specific iPSC lines tested in this study were successfully and consistently coaxed into the neural lineage.

  10. A fully integrated protein crystallization platform for small-molecule drug discovery.

    Science.gov (United States)

    Hosfield, David; Palan, John; Hilgers, Mark; Scheibe, Daniel; McRee, Duncan E; Stevens, Raymond C

    2003-04-01

    Structure-based drug discovery in the pharmaceutical industry benefits from cost-efficient methodologies that quickly assess the feasibility of specific, often refractory, protein targets to form well-diffracting crystals. By tightly coupling construct and purification diversity with nanovolume crystallization, the Structural Biology Group at Syrrx has developed such a platform to support its small-molecule drug-discovery program. During the past 18 months of operation at Syrrx, the Structural Biology Group has executed several million crystallization and imaging trials on over 400 unique drug-discovery targets. Here, key components of the platform, as well as an analysis of some experimental results that allowed for platform optimization, will be described.

  11. Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells.

    Science.gov (United States)

    Al-Obaidi, Naowras; Mitchison, Timothy J; Crews, Craig M; Mayer, Thomas U

    2016-06-17

    The genetic integrity of each organism is intimately tied to the correct segregation of its genome during mitosis. Insights into the underlying mechanisms are fundamental for both basic research and the development of novel strategies to treat mitosis-relevant diseases such as cancer. Due to their fast mode of action, small molecules are invaluable tools to dissect mitosis. Yet, there is a great demand for novel antimitotic compounds. We performed a chemical genetic suppression screen to identify compounds that restore spindle bipolarity in cells treated with Monastrol, an inhibitor of the mitotic kinesin Eg5. We identified one compound-MAC1-that rescued spindle bipolarity in cells lacking Eg5 activity. Mechanistically, MAC1 induces the formation of additional microtubule nucleation centers, which allows kinesin Kif15-dependent bipolar spindle assembly in the absence of Eg5 activity. Thus, our chemical genetic suppression screen revealed novel unexpected insights into the mechanism of spindle assembly in mammalian cells.

  12. An Ursolic Acid Derived Small Molecule Triggers Cancer Cell Death through Hyperstimulation of Macropinocytosis.

    Science.gov (United States)

    Sun, Lin; Li, Bin; Su, Xiaohui; Chen, Ge; Li, Yaqin; Yu, Linqian; Li, Li; Wei, Wanguo

    2017-08-10

    Macropinocytosis is a transient endocytosis that internalizes extracellular fluid and particles into vacuoles. Recent studies suggest that hyperstimulation of macropinocytosis can induce a novel nonapoptotic cell death, methuosis. In this report, we describe the identification of an ursolic acid derived small molecule (compound 17), which induces cancer cell death through hyperstimulation of macropinocytosis. 17 causes the accumulation of vacuoles derived from macropinosomes based on transmission electron microscopy, time-lapse microscopy, and labeling with extracellular fluid phase tracers. The vacuoles induced by 17 separate from other cytoplasmic compartments but acquire some characteristics of late endosomes and lysosomes. Inhibiting hyperstimulation of macropinocytosis with the specific inhibitor amiloride blocks cell death, implicating that 17 leads to cell death via macropinocytosis, which is coincident with methuosis. Our results uncovered a novel cell death pathway involved in the activity of 17, which may provide a basis for further development of natural-product-derived scaffolds for drugs that trigger cancer cell death by methuosis.

  13. Antithrombotic and antiplatelet activities of small-molecule alkaloids from Scolopendra subspinipes mutilans.

    Science.gov (United States)

    Lee, Wonhwa; Lee, JungIn; Kulkarni, Roshan; Kim, Mi-Ae; Hwang, Jae Sam; Na, MinKyun; Bae, Jong-Sup

    2016-02-24

    The aim of this study was to discover small-molecule anticoagulants from Scolopendra subspinipes mutilans (SSM). A new acylated polyamine (1) and a new sulfated quinoline alkaloid (2) were isolated from SSM. Treatment with the new alkaloids 1, 2, and indole acetic acid 4 prolonged the activated partial thromboplastin time and prothrombin time and inhibited the activity and production of thrombin and activated factor X. Furthermore, compounds 1, 2, and 4 inhibited thrombin-catalyzed fibrin polymerization and platelet aggregation. In accordance with these potential in vitro antiplatelet activities, compounds 1, 2, and 4 showed enhanced antithrombotic effects in an in vivo pulmonary embolism and arterial thrombosis model. Compounds 1, 2, and 4 also elicited anticoagulant effects in mice. Collectively, this study may serve as the groundwork for commercializing SSM or compounds 1, 2, and 4 as functional food components for the prevention and treatment of pathogenic conditions and serve as new scaffolds for the development of anticoagulants.

  14. Pathway and protein engineering approaches to produce novel and commodity small molecules.

    Science.gov (United States)

    Bhan, Namita; Xu, Peng; Koffas, Mattheos A G

    2013-12-01

    Nature has provided us the basis of designing the most integrated and efficacious production platforms. Cell factories via their millions of years of evolution have nearly perfected each of their production systems. We have been trying to imitate, utilize and tweak this system to our advantage by using slightly overlapping and greatly interdependent approaches such as metabolic engineering and systems biology to make nature work for us in an efficient and robust way, without producing toxic waste and/or unnecessary side products. Systems biology, metabolic engineering and 'omics' technologies have paved the way for protein and pathway engineering. To this end we will talk about the recent advances in production of novel pharmaceutical and commodity small molecules by designing novel proteins and pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Discovery of a Parenteral Small Molecule Coagulation Factor XIa Inhibitor Clinical Candidate (BMS-962212).

    Science.gov (United States)

    Pinto, Donald J P; Orwat, Michael J; Smith, Leon M; Quan, Mimi L; Lam, Patrick Y S; Rossi, Karen A; Apedo, Atsu; Bozarth, Jeffrey M; Wu, Yiming; Zheng, Joanna J; Xin, Baomin; Toussaint, Nathalie; Stetsko, Paul; Gudmundsson, Olafur; Maxwell, Brad; Crain, Earl J; Wong, Pancras C; Lou, Zhen; Harper, Timothy W; Chacko, Silvi A; Myers, Joseph E; Sheriff, Steven; Zhang, Huiping; Hou, Xiaoping; Mathur, Arvind; Seiffert, Dietmar A; Wexler, Ruth R; Luettgen, Joseph M; Ewing, William R

    2017-12-14

    Factor XIa (FXIa) is a blood coagulation enzyme that is involved in the amplification of thrombin generation. Mounting evidence suggests that direct inhibition of FXIa can block pathologic thrombus formation while preserving normal hemostasis. Preclinical studies using a variety of approaches to reduce FXIa activity, including direct inhibitors of FXIa, have demonstrated good antithrombotic efficacy without increasing bleeding. On the basis of this potential, we targeted our efforts at identifying potent inhibitors of FXIa with a focus on discovering an acute antithrombotic agent for use in a hospital setting. Herein we describe the discovery of a potent FXIa clinical candidate, 55 (FXIa Ki = 0.7 nM), with excellent preclinical efficacy in thrombosis models and aqueous solubility suitable for intravenous administration. BMS-962212 is a reversible, direct, and highly selective small molecule inhibitor of FXIa.

  16. Elucidation of the Mechanism of Gene Silencing using Small Interferin RNA: DNA Hybrid Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, L

    2006-02-08

    The recent discovery that short hybrid RNA:DNA molecules (siHybrids) induce long-term silencing of gene expression in mammalian cells conflicts with the currently hypothesized mechanisms explaining the action of small, interfering RNA (siRNA). As a first step to elucidating the mechanism for this effect, we set out to quantify the delivery of siHybrids and determine their cellular localization in mammalian cells. We then tracked the segregation of the siHybrids into daughter cells after cell division. Markers for siHybrid delivery were shown to enter cells with and without the use of a transfection agent. Furthermore, delivery without transfection agent only occurred after a delay of 2-4 hours, suggesting a degradation process occurring in the cell culture media. Therefore, we studied the effects of nucleases and backbone modifications on the stability of siHybrids under cell culture conditions.

  17. Activation of CO{sub 2} and related small molecules by neopentyl-derivatized uranium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Anna-Corina

    2015-06-18

    This work reports the newly synthesized neopentyl derivatized tris(aryloxide) U{sup III} complex [(({sup nP,Me}ArO){sub 3}tacn)U{sup III}] (1) and its reactivity with small molecules like nitrous oxide (N{sub 2}O), carbon dioxide (CO{sub 2}), and sulfur dioxide (SO{sub 2}). Additionally, a deeper insight into covalency of U-R bonds with R = O, N and the participation of the f-orbitals to bonding are discussed. For this purpose, a large number of characterization methods were used, such as X-ray diffraction analysis, U{sup V}/vis/NIR, IR vibrational, Raman, X-ray absorption, EPR, and {sup 1}H, {sup 15}N, {sup 13}C and {sup 19}F NMR spectroscopy, cyclic voltammetry, SQUID magnetization measurements and DFT calculations. Moreover, all compounds were checked for purity by elemental analysis.

  18. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  19. Solution-Procesed Small-Molecule OLED Luminaire for Interior Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Ian [Dupont Displays, Inc., Santa Barbara, CA (United States)

    2012-02-29

    Prototype lighting panels and luminaires were fabricated using DuPont Displays solution-processed small-molecule OLED technology. These lighting panels were based on a spatially-patterned, 3-color design, similar in concept to an OLED display panel, with materials chosen to maximize device efficacy. The majority of the processing steps take place in air (rather than high vacuum). Optimization of device architecture, processing and construction was undertaken, with a final prototype design of 50 cm{sup 2} being fabricated and tested. Performance of these panels reached 35 lm/W at illuminant-A. A unique feature of this technology is the ability to color tune the emission, and color temperatures ranging from 2700 to > 6,500K were attained in the final build. Significant attention was paid to low-cost fabrication techniques.

  20. Link between hopping models and percolation scaling laws for charge transport in mixtures of small molecules

    Directory of Open Access Journals (Sweden)

    Dong-Gwang Ha

    2016-04-01

    Full Text Available Mixed host compositions that combine charge transport materials with luminescent dyes offer superior control over exciton formation and charge transport in organic light emitting devices (OLEDs. Two approaches are typically used to optimize the fraction of charge transport materials in a mixed host composition: either an empirical percolative model, or a hopping transport model. We show that these two commonly-employed models are linked by an analytic expression which relates the localization length to the percolation threshold and critical exponent. The relation is confirmed both numerically and experimentally through measurements of the relative conductivity of Tris(4-carbazoyl-9-ylphenylamine (TCTA :1,3-bis(3,5-dipyrid-3-yl-phenylbenzene (BmPyPb mixtures with different concentrations, where the TCTA plays a role as hole conductor and the BmPyPb as hole insulator. The analytic relation may allow the rational design of mixed layers of small molecules for high-performance OLEDs.

  1. Discovery of diverse small molecule chemotypes with cell-based PKD1 inhibitory activity.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Sharlow

    Full Text Available Protein kinase D (PKD is a novel family of serine/threonine kinases regulated by diacylglycerol, which is involved in multiple cellular processes and various pathological conditions. The limited number of cell-active, selective inhibitors has historically restricted biochemical and pharmacological studies of PKD. We now markedly expand the PKD1 inhibitory chemotype inventory with eleven additional novel small molecule PKD1 inhibitors derived from our high throughput screening campaigns. The in vitro IC(50s for these eleven compounds ranged in potency from 0.4 to 6.1 µM with all of the evaluated compounds being competitive with ATP. Three of the inhibitors (CID 1893668, (1Z-1-(3-ethyl-5-methoxy-1,3-benzothiazol-2-ylidenepropan-2-one; CID 2011756, 5-(3-chlorophenyl-N-[4-(morpholin-4-ylmethylphenyl]furan-2-carboxamide; CID 5389142, (6Z-6-[4-(3-aminopropylamino-6-methyl-1H-pyrimidin-2-ylidene]cyclohexa-2,4-dien-1-one inhibited phorbol ester-induced endogenous PKD1 activation in LNCaP prostate cancer cells in a concentration-dependent manner. The specificity of these compounds for PKD1 inhibitory activity was supported by kinase assay counter screens as well as by bioinformatics searches. Moreover, computational analyses of these novel cell-active PKD1 inhibitors indicated that they were structurally distinct from the previously described cell-active PKD1 inhibitors while computational docking of the new cell-active compounds in a highly conserved ATP-binding cleft suggests opportunities for structural modification. In summary, we have discovered novel PKD1 inhibitors with in vitro and cell-based inhibitory activity, thus successfully expanding the structural diversity of small molecule inhibitors available for this important pharmacological target.

  2. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function

    Science.gov (United States)

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J.; Smithgall, Thomas E.

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important

  3. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive.

    Science.gov (United States)

    Childs-Disney, Jessica L; Hoskins, Jason; Rzuczek, Suzanne G; Thornton, Charles A; Disney, Matthew D

    2012-05-18

    RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.

  4. Stable Small Composite Microbubbles Decorated with Magnetite Nanoparticles - A Synergistic Effect between Surfactant Molecules and Nanoparticles.

    Science.gov (United States)

    Ma, Jun; Pourroy, Geneviève; Krafft, Marie Pierre

    2016-05-01

    Three approaches to preparing iron oxide nanoparticle-decorated microbubbles (NP-decoMBs) have been investigated. The size and stability characteristics of these microbubbles (MBs) were investigated by optical microscopy, laser light scattering and an acoustical method, and compared with those of non-decorated MBs. First, magnetite nanoparticles (Fe3O4NPs) grafted with dimyristoylphosphatidylcholine (DMPC) were synthesized and used to prepare MBs by brief sonication under an atmosphere of air saturated with perfluorohexane. These MBs had a rather large mean radius (r ~ 12 µm), and a moderate volume of encapsulated gas. Remarkably, a second approach that consisted of dispersing unbound DMPC molecules in the aqueous phase along with DMPC-grafted Fe3O4NPs prior to sonication was found to drastically change the situation, allowing the obtaining of monomodal populations of much smaller (r ~ 0.6 µm) NP-decoMBs. The latter were echogenic and stable for at least 10 days at room temperature, without significant variation of their size characteristics. In a third approach, NP-decoMBs were directly prepared from dispersions of naked Fe3O4NPs in the presence of DMPC. The resulting NP-decoMBs suspensions consisted of broadly distributed bubble populations mostly containing two populations (with r ~ 5 and ~ 15 µm). Control microbubbles made of DMPC only were small (r ~ 1.3 µm), although not as small as those formed from DMPC-grafted Fe3O4NPs in the presence of free DMPC, and were less stable, with a room temperature half-life of only ~1 day. These observations imply that there is a synergy between the Fe3O4NPs and the DMPC molecules in the air/water interfacial film stabilization process.

  5. Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo

    Directory of Open Access Journals (Sweden)

    Lavu Siva

    2009-03-01

    Full Text Available Abstract Background Calorie restriction (CR produces a number of health benefits and ameliorates diseases of aging such as type 2 diabetes. The components of the pathways downstream of CR may provide intervention points for developing therapeutics for treating diseases of aging. The NAD+-dependent protein deacetylase SIRT1 has been implicated as one of the key downstream regulators of CR in yeast, rodents, and humans. Small molecule activators of SIRT1 have been identified that exhibit efficacy in animal models of diseases typically associated with aging including type 2 diabetes. To identify molecular processes induced in the liver of mice treated with two structurally distinct SIRT1 activators, SIRT501 (formulated resveratrol and SRT1720, for three days, we utilized a systems biology approach and applied Causal Network Modeling (CNM on gene expression data to elucidate downstream effects of SIRT1 activation. Results Here we demonstrate that SIRT1 activators recapitulate many of the molecular events downstream of CR in vivo, such as enhancing mitochondrial biogenesis, improving metabolic signaling pathways, and blunting pro-inflammatory pathways in mice fed a high fat, high calorie diet. Conclusion CNM of gene expression data from mice treated with SRT501 or SRT1720 in combination with supporting in vitro and in vivo data demonstrates that SRT501 and SRT1720 produce a signaling profile that mirrors CR, improves glucose and insulin homeostasis, and acts via SIRT1 activation in vivo. Taken together these results are encouraging regarding the use of small molecule activators of SIRT1 for therapeutic intervention into type 2 diabetes, a strategy which is currently being investigated in multiple clinical trials.

  6. Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen.

    Directory of Open Access Journals (Sweden)

    Anthony Arnoldo

    2008-02-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa ORFs. We identified the first small molecule inhibitor of Exoenzyme S (ExoS, a toxin involved in Type III secretion. We show that this inhibitor, exosin, modulates ExoS ADP-ribosyltransferase activity in vitro, suggesting the inhibition is direct. Moreover, exosin and two of its analogues display a significant protective effect against Pseudomonas infection in vivo. Furthermore, because the assay was performed in yeast, we were able to demonstrate that several yeast homologues of the known human ExoS targets are likely ADP-ribosylated by the toxin. For example, using an in vitro enzymatic assay, we demonstrate that yeast Ras2p is directly modified by ExoS. Lastly, by surveying a collection of yeast deletion mutants, we identified Bmh1p, a yeast homologue of the human FAS, as an ExoS cofactor, revealing that portions of the bacterial toxin mode of action are conserved from yeast to human. Taken together, our integrated cell-based, chemical-genetic approach demonstrates that such screens can augment traditional drug screening approaches and facilitate the discovery of new compounds against a broad range of human pathogens.

  7. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule

    Science.gov (United States)

    Petrik, David; Jiang, Yindi; Birnbaum, Shari G.; Powell, Craig M.; Kim, Mi-Sung; Hsieh, Jenny; Eisch, Amelia J.

    2012-01-01

    Adult neurogenesis occurs throughout life in the mammalian hippocampus and is essential for memory and mood control. There is significant interest in identifying ways to promote neurogenesis and ensure maintenance of these hippocampal functions. Previous work with a synthetic small molecule, isoxazole 9 (Isx-9), highlighted its neuronal-differentiating properties in vitro. However, the ability of Isx-9 to drive neurogenesis in vivo or improve hippocampal function was unknown. Here we show that Isx-9 promotes neurogenesis in vivo, enhancing the proliferation and differentiation of hippocampal subgranular zone (SGZ) neuroblasts, and the dendritic arborization of adult-generated dentate gyrus neurons. Isx-9 also improves hippocampal function, enhancing memory in the Morris water maze. Notably, Isx-9 enhances neurogenesis and memory without detectable increases in cellular or animal activity or vascularization. Molecular exploration of Isx-9-induced regulation of neurogenesis (via FACS and microarray of SGZ stem and progenitor cells) suggested the involvement of the myocyte-enhancer family of proteins (Mef2). Indeed, transgenic-mediated inducible knockout of all brain-enriched Mef2 isoforms (Mef2a/c/d) specifically from neural stem cells and their progeny confirmed Mef2's requirement for Isx-9-induced increase in hippocampal neurogenesis. Thus, Isx-9 enhances hippocampal neurogenesis and memory in vivo, and its effects are reliant on Mef2, revealing a novel cell-intrinsic molecular pathway regulating adult neurogenesis.—Petrik, D., Jiang, Y., Birnbaum, S. G., Powell, C. M., Kim, M.-S., Hsieh, J., Eisch, A. J. Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule. PMID:22542682

  8. Small molecule screening platform for assessment of cardiovascular toxicity on adult zebrafish heart

    Directory of Open Access Journals (Sweden)

    Kitambi Satish

    2012-03-01

    Full Text Available Abstract Background Cardiovascular toxicity is a major limiting factor in drug development and requires multiple cost-effective models to perform toxicological evaluation. Zebrafish is an excellent model for many developmental, toxicological and regenerative studies. Using approaches like morpholino knockdown and electrocardiogram, researchers have demonstrated physiological and functional similarities between zebrafish heart and human heart. The close resemblance of the genetic cascade governing heart development in zebrafish to that of humans has propelled the zebrafish system as a cost-effective model to conduct various genetic and pharmacological screens on developing embryos and larvae. The current report describes a methodology for rapid isolation of adult zebrafish heart, maintenance ex vivo, and a setup to perform quick small molecule throughput screening, including an in-house implemented analysis script. Results Adult zebrafish were anesthetized and after rapid decapitation the hearts were isolated. The short time required for isolation of hearts allows dissection of multiple fishes, thereby obtaining a large sample size. The simple protocol for ex vivo culture allowed maintaining the beating heart for several days. The in-house developed script and spectral analyses allowed the readouts to be presented either in time domain or in frequency domain. Taken together, the current report offers an efficient platform for performing cardiac drug testing and pharmacological screens. Conclusion The new methodology presents a fast, cost-effective, sensitive and reliable method for performing small molecule screening. The variety of readouts that can be obtained along with the in-house developed analyses script offers a powerful setup for performing cardiac toxicity evaluation by researchers from both academics and industry.

  9. Chalcone-based small-molecule inhibitors attenuate malignant phenotype via targeting deubiquitinating enzymes

    Science.gov (United States)

    Issaenko, Olga A.; Amerik, Alexander Yu

    2012-01-01

    The ubiquitin-proteasome system (UPS) is usurped by many if not all cancers to regulate their survival, proliferation, invasion, angiogenesis and metastasis. Bioflavonoids curcumin and chalcones exhibit anti-neoplastic selectivity through inhibition of the 26S proteasome-activity within the UPS. Here, we provide evidence for a novel mechanism of action of chalcone-based derivatives AM146, RA-9 and RA-14, which exert anticancer activity by targeting deubiquitinating enzymes (DUB) without affecting 20S proteasome catalytic-core activity. The presence of the α,β-unsaturated carbonyl group susceptible to nucleophilic attack from the sulfhydryl of cysteines in the active sites of DUB determines the capacity of novel small-molecules to act as cell-permeable, partly selective DUB inhibitors and induce rapid accumulation of polyubiquitinated proteins and deplete the pool of free ubiquitin. These chalcone-derivatives directly suppress activity of DUB UCH-L1, UCH-L3, USP2, USP5 and USP8, which are known to regulate the turnover and stability of key regulators of cell survival and proliferation. Inhibition of DUB-activity mediated by these compounds downregulates cell-cycle promoters, e.g., cyclin D1 and upregulates tumor suppressors p53, p27Kip1 and p16Ink4A. These changes are associated with arrest in S-G2/M, abrogated anchorage-dependent growth and onset of apoptosis in breast, ovarian and cervical cancer cells without noticeable alterations in primary human cells. Altogether, this work provides evidence of antitumor activity of novel chalcone-based derivatives mediated by their DUB-targeting capacity; supports the development of pharmaceuticals to directly target DUB as a most efficient strategy compared with proteasome inhibition and also provides a clear rationale for the clinical evaluation of these novel small-molecule DUB inhibitors. PMID:22510564

  10. Determinants of TRPV4 activity following selective activation by small molecule agonist GSK1016790A.

    Directory of Open Access Journals (Sweden)

    Min Jin

    2011-02-01

    Full Text Available TRPV4 (Transient Receptor Potential Vanilloid 4 channels are activated by a wide range of stimuli, including hypotonic stress, non-noxious heat and mechanical stress and some small molecule agonists (e.g. phorbol ester 4α-PDD. GSK1016790A (GSK101 is a recently discovered specific small molecule agonist of TRPV4. Its effects on physical determinants of TRPV4 activity were evaluated in HeLa cells transiently transfected with TRPV4 (HeLa-TRPV4. GSK101 (10 nM causes a TRPV4 specific Ca(2+ influx in HeLa-TRPV4 cells, but not in control transfected cells, which can be inhibited by ruthenium red and Ca(2+-free medium more significantly at the early stage of the activation rather than the late stage, reflecting apparent partial desensitization. Western blot analysis showed that GSK101 activation did not induce an increase in TRPV4 expression at the plasma membrane, but caused an immediate and sustained downregulation of TRPV4 on the plasma membrane in HeLa-TRPV4 cells. Patch clamp analysis also revealed an early partial desensitization of the channel which was Ca(2+-independent. FRET analysis of TRPV4 subunit assembly demonstrated that the GSK101-induced TRPV4 channel activation/desensitization was not due to alterations in homotetrameric channel formation on the plasma membrane. It is concluded that GSK101 specifically activates TRPV4 channels, leading to a rapid partial desensitization and downregulation of the channel expression on the plasma membrane. TRPV4 subunit assembly appears to occur during trafficking from the ER/Golgi to the plasma membrane and is not altered by agonist stimulation.

  11. Small-molecule Inhibitors of Epigenetic Mutations as Compelling Drugtargets for Myelodysplastic Syndromes.

    Science.gov (United States)

    Ganguly, Bani Bandana

    2017-01-01

    Involvement of mutations in epigenetic mechanism in the development of heterogeneous MDS and its evolution to AML has been understood with at least one mutation and median of 2-3 mutations of the landscapes of driver mutations in ~40 genes described in >90% MDS patients. Exclusivity and cooperating effects of mutations have directed therapeutic implementation with hypomethylating agents and identified a number of first-in-class small molecules as inhibitors of mutational expression. Preclinical and clinical trials have already been initiated for some synthetic and natural products and established proof-of-concept for mitigation of mutagenic effects. The present review article entails the mutational signatures in DNA-methylation and hydroxymethylation, histone acetylation and Deacetylation, polycomb repressor complex (PRC2), and small molecule inhibitors of these mutational expressions. Information has been collected from the recently published literature available mainly through Google search in Medline and PubMed database. Special emphasis was paid on the literature available during 2009-2016. The up-to-date information accumulated on signature-mutations and their inhibitors has to integrate the function of clonal hematopoiesis of indeterminate potential (CHIP) and mutational complexities for re-defining MDS-genesis. Nevertheless, molecular understanding of MDS heterogeneity and its transformation to AML is expanding at fast pace with expanding knowledge on abundant non-coding RNAs (ncRNAs), which forms the basis of targeted drug-tailoring, and will further develop personalized medicines based on individual genetic blue-prints. Mutation-specific targeted epigenetic drugs, which have already sensitized drug-makers and regulators, may promise attestation of 'del5q and lenalidomide'-like specific drugs for every mutational signature independently or in combination with standard therapeutic elements used for MDS-management, and that will add to understand their

  12. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  13. Structural Basis for Selective Small Molecule Kinase Inhibition of Activated c-Met

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, Keith W.; Patel, Sangita B.; Allison, Timothy J.; Byrne, Noel J.; Darke, Paul L.; Ford, Rachael E.; Guerin, David J.; Hall, Dawn L.; Kornienko, Maria; Lu, Jun; Munshi, Sanjeev K.; Reid, John C.; Shipman, Jennifer M.; Stanton, Elizabeth F.; Wilson, Kevin J.; Young, Jonathon R.; Soisson, Stephen M.; Lumb, Kevin J. (Merck)

    2012-03-15

    The receptor tyrosine kinase c-Met is implicated in oncogenesis and is the target for several small molecule and biologic agents in clinical trials for the treatment of cancer. Binding of the hepatocyte growth factor to the cell surface receptor of c-Met induces activation via autophosphorylation of the kinase domain. Here we describe the structural basis of c-Met activation upon autophosphorylation and the selective small molecule inhibiton of autophosphorylated c-Met. MK-2461 is a potent c-Met inhibitor that is selective for the phosphorylated state of the enzyme. Compound 1 is an MK-2461 analog with a 20-fold enthalpy-driven preference for the autophosphorylated over unphosphorylated c-Met kinase domain. The crystal structure of the unbound kinase domain phosphorylated at Tyr-1234 and Tyr-1235 shows that activation loop phosphorylation leads to the ejection and disorder of the activation loop and rearrangement of helix {alpha}C and the G loop to generate a viable active site. Helix {alpha}C adopts a orientation different from that seen in activation loop mutants. The crystal structure of the complex formed by the autophosphorylated c-Met kinase domain and compound 1 reveals a significant induced fit conformational change of the G loop and ordering of the activation loop, explaining the selectivity of compound 1 for the autophosphorylated state. The results highlight the role of structural plasticity within the kinase domain in imparting the specificity of ligand binding and provide the framework for structure-guided design of activated c-Met inhibitors.

  14. Multi-solution processes of small molecule for flexible white organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yu-Sheng, E-mail: ystsai@nfu.edu.tw [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Chittawanij, Apisit; Hong, Lin-Ann; Guo, Siou-Wei [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Wang, Ching-Chiun [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Juang, Fuh-Shyang [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China); Lai, Shih-Hsiang [Department of Solid State Lighting Technology, Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, ROC (China); Lin, Yang-Ching [Institute of Electro-optical and Materials Science, National Formosa University, Yunlin 63201, Taiwan, ROC (China)

    2016-04-01

    Most small molecule organic light emitting diode (SM-OLED) device structures are made in one layer using solution-based processing because the solution is usually a high dissolvent material that easily attacks the layer below it. We demonstrate a simple and reliable stamping technique for fabricating multi-solution process flexible white SM-OLEDs. The structure is anode/spin-hole injection layer/spin-emitting layer/stamping-electron transport layer/cathode. Poly(di-methyl silane) (PDMS) stamp is used for transferring electron transport layer. An intermediate ultraviolet-ozone surface treatment is introduced to temporarily modify the PDMS stamp surface. Then, the solution-based electron transport layer film can therefore be uniformly formed on top of the PDMS surface. After that the electron transport layer film on the PDMS stamp is transfer-printed onto the emitting layer with suitable heating and pressing. A solution-based processing is successfully established to efficiently fabricate flexible white SM-OLEDs. The SM-OLEDs were obtained at the current density of 20 mA/cm{sup 2}, luminance of 1062 cd/m{sup 2}, current efficiency of 5.57 cd/A, and Commission internationale de l'éclairage coordinate of (0.32, 0.35). - Highlights: • All solution-processed small molecule materials (emitting layer, electron transport layer). • Poly(di-methylsilane) (PDMS) stamp is subsequently used for stamping transfer. • The flexible white SM-OLEDs are based on solution-processes with a low-cost method.

  15. Galectin-3 Inhibition by a Small-Molecule Inhibitor Reduces Both Pathological Corneal Neovascularization and Fibrosis.

    Science.gov (United States)

    Chen, Wei-Sheng; Cao, Zhiyi; Leffler, Hakon; Nilsson, Ulf J; Panjwani, Noorjahan

    2017-01-01

    Corneal neovascularization and scarring commonly lead to significant vision loss. This study was designed to determine whether a small-molecule inhibitor of galectin-3 can inhibit both corneal angiogenesis and fibrosis in experimental mouse models. Animal models of silver nitrate cautery and alkaline burn were used to induce mouse corneal angiogenesis and fibrosis, respectively. Corneas were treated with the galectin-3 inhibitor, 33DFTG, or vehicle alone and were processed for whole-mount immunofluorescence staining and Western blot analysis to quantify the density of blood vessels and markers of fibrosis. In addition, human umbilical vein endothelial cells (HUVECs) and primary human corneal fibroblasts were used to analyze the role of galectin-3 in the process of angiogenesis and fibrosis in vitro. Robust angiogenesis was observed in silver nitrate-cauterized corneas on day 5 post injury, and markedly increased corneal opacification was demonstrated in alkaline burn-injured corneas on days 7 and 14 post injury. Treatment with the inhibitor substantially reduced corneal angiogenesis and opacification with a concomitant decrease in α-smooth muscle actin (α-SMA) expression and distribution. In vitro studies revealed that 33DFTG inhibited VEGF-A-induced HUVEC migration and sprouting without cytotoxic effects. The addition of exogenous galectin-3 to corneal fibroblasts in culture induced the expression of fibrosis-related proteins, including α-SMA and connective tissue growth factor. Our data provide proof of concept that targeting galectin-3 by the novel, small-molecule inhibitor, 33DFTG, ameliorates pathological corneal angiogenesis as well as fibrosis. These findings suggest a potential new therapeutic strategy for treating ocular disorders related to pathological angiogenesis and fibrosis.

  16. Small P-gp modulating molecules: SAR studies on tetrahydroisoquinoline derivatives.

    Science.gov (United States)

    Colabufo, Nicola Antonio; Berardi, Francesco; Cantore, Mariangela; Perrone, Maria Grazia; Contino, Marialessandra; Inglese, Carmela; Niso, Mauro; Perrone, Roberto; Azzariti, Amalia; Simone, Grazia Maria; Porcelli, Letizia; Paradiso, Angelo

    2008-01-01

    The development of small molecules as P-gp modulating agents and SAR studies on these ligands represented the aim of the present work. A series of 6,7-dimethoxytetrahydroisoquinoline derivatives was prepared and their ability to inhibit P-gp activity has been evaluated. The basic nucleus of these compounds, common to the best P-gp inhibitors such as Tariquidar and Elacridar, has been functionalized with no-basic moiety from our studied sigma receptor ligands displaying potent P-gp inhibition. The best results were obtained for compounds 3c and 3a (EC(50)=1.64 and 4.86 microM, respectively) and these results were remarkable because Elacridar showed in the same biological evaluation similar inhibitory activity (EC(50)=2 microM). SAR studies displayed that the removal of double bond on the spacer or its shifting into tetraline ring decreased the P-gp inhibiting activity. Moreover, the P-gp inhibition mechanism of tested compounds was investigated by three selected biological experiments. The results displayed that only compound 3c was P-gp inhibitor as Elacridar, while compound 3a and reference compounds Cyclosporin A and Verapamil modulated P-gp activity saturating the efflux pump as substrates. Flow cytometry studies carried out in Doxorubicin resistant breast cancer cell line (MCF7/Adr) confirmed that compound 3c increased Doxorubicin cell accumulation 5.7-fold. In addition, in MCF7/Adr, antiproliferative effect of 5 microM Doxorubicin shifted from 5% to 95% when co-administered with compound 3c (20 microM). The present study suggested a new class of small molecules displaying P-gp inhibitor activity differing from reference compounds Elacridar and Tariquidar for a simplified, and in the meantime, efficacious no-basic moiety.

  17. Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells

    Science.gov (United States)

    He, Wenhan

    Current state-of-the-art organic solar cells (OSCs) adopt the strategy of using conjugated polymers or small molecules as donors and fullerene derivatives as acceptors in their active layers. Regarding to the donors of interest, the conjugated polymers and small molecules coupled with heavy metals have been less explored compared to their counterparts. Among various transition metal complexes applied, Pt(II) complexes are unique because of their intrinsic square planar geometries and ability to serve as building blocks for conjugated systems. Furthermore, the heavy metal Pt facilitates the formation of triplet excitons with longer life times through spin-orbital coupling which are of benefit for the OSCs application. However, in order to obtain low bandgap polymers, people are intended to use chromophores with long conjugated length, nevertheless such design will inevitably dilute the spin-orbital coupling effect and finally influence the formation of triplet excitons. Furthermore, the majority of Pt-containing conjugated systems reported so far shared a common feature-- they all possessed "dumbbell" shaped structures and were amorphous, leading to poor device performance. In addition, there were few examples reporting the capture of the triplet excitons by the fullerene acceptors in the OSCs since there is a mismatch between the triplet energy state (T1) of the Pt-containing compounds and the LUMO level of fullerene acceptors. As a result, these three intrinsic problems will impede the further development of such a field. In order to solve these problems, I originally designed and synthesized three novel compounds with unique proprieties named as Bodipy-Pt, Pt-SM and C60+SDS-. Specifically, Bodipy has the advantages of compact size, easy to synthesis and high fluorescence quantum yield which can effectively solve the problem of long conjugated length. While in terms of second problem, the new Pt-SM possessed a "roller-wheel" structural design with increased

  18. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    Science.gov (United States)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below energy levels of small molecules SM-1 to SM-4 were suitable for use as electron-accepting materials. The small molecules showed good thermal stability up to 300°C. BHJ-OSCs with SM-1 and P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  19. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    Science.gov (United States)

    Yadav, Mukesh Kumar; Go, Yoon Young; Chae, Sung-Won; Song, Jae-Jun

    2015-01-01

    Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam) alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC). In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell-clumps were scattered

  20. The Small Molecule DAM Inhibitor, Pyrimidinedione, Disrupts Streptococcus pneumoniae Biofilm Growth In Vitro.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Yadav

    Full Text Available Streptococcus pneumoniae persist in the human nasopharynx within organized biofilms. However, expansion to other tissues may cause severe infections such as pneumonia, otitis media, bacteremia, and meningitis, especially in children and the elderly. Bacteria within biofilms possess increased tolerance to antibiotics and are able to resist host defense systems. Bacteria within biofilms exhibit different physiology, metabolism, and gene expression profiles than planktonic cells. These differences underscore the need to identify alternative therapeutic targets and novel antimicrobial compounds that are effective against pneumococcal biofilms. In bacteria, DNA adenine methyltransferase (Dam alters pathogenic gene expression and catalyzes the methylation of adenine in the DNA duplex and of macromolecules during the activated methyl cycle (AMC. In pneumococci, AMC is involved in the biosynthesis of quorum sensing molecules that regulate competence and biofilm formation. In this study, we examine the effect of a small molecule Dam inhibitor, pyrimidinedione, on Streptococcus pneumoniae biofilm formation and evaluate the changes in global gene expression within biofilms via microarray analysis. The effects of pyrimidinedione on in vitro biofilms were studied using a static microtiter plate assay, and the architecture of the biofilms was viewed using confocal and scanning electron microscopy. The cytotoxicity of pyrimidinedione was tested on a human middle ear epithelium cell line by CCK-8. In situ oligonucleotide microarray was used to compare the global gene expression of Streptococcus pneumoniae D39 within biofilms grown in the presence and absence of pyrimidinedione. Real-time RT-PCR was used to study gene expression. Pyrimidinedione inhibits pneumococcal biofilm growth in vitro in a concentration-dependent manner, but it does not inhibit planktonic cell growth. Confocal microscopy analysis revealed the absence of organized biofilms, where cell

  1. Cancer Theranostic Nanoparticles Self-Assembled from Amphiphilic Small Molecules with Equilibrium Shift-Induced Renal Clearance.

    Science.gov (United States)

    Ma, Yuan; Mou, Quanbing; Sun, Mo; Yu, Chunyang; Li, Jianqi; Huang, Xiaohua; Zhu, Xinyuan; Yan, Deyue; Shen, Jian

    2016-01-01

    Nano drug delivery systems have emerged as promising candidates for cancer therapy, whereas their uncertainly complete elimination from the body within specific timescales restricts their clinical translation. Compared with hepatic clearance of nanoparticles, renal excretion of small molecules is preferred to minimize the agent-induced toxicity. Herein, we construct in vivo renal-clearable nanoparticles, which are self-assembled from amphiphilic small molecules holding the capabilities of magnetic resonance imaging (MRI) and chemotherapy. The assembled nanoparticles can accumulate in tumor tissues for their nano-characteristics, while the small molecules dismantled from the nanoparticles can be efficiently cleared by kidneys. The renal-clearable nanoparticles exhibit excellent tumor-inhibition performance as well as low side effects and negligible chronic toxicity. These results demonstrate a potential strategy for small molecular nano drug delivery systems with obvious anticancer effect and low-toxic metabolism pathway for clinical applications.

  2. Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2

    Science.gov (United States)

    Kalinić, Marko; Zloh, Mire; Erić, Slavica

    2014-11-01

    Enhancer of Zeste Homolog 2 (EZH2) is a SET domain protein lysine methyltransferase (PKMT) which has recently emerged as a chemically tractable and therapeutically promising epigenetic target, evidenced by the discovery and characterization of potent and highly selective EZH2 inhibitors. However, no experimental structures of the inhibitors co-crystallized to EZH2 have been resolved, and the structural basis for their activity and selectivity remains unknown. Considering the need to minimize cross-reactivity between prospective PKMT inhibitors, much can be learned from understanding the molecular basis for selective inhibition of EZH2. Thus, to elucidate the binding of small-molecule inhibitors to EZH2, we have developed a model of its fully-formed cofactor binding site and used it to carry out molecular dynamics simulations of protein-ligand complexes, followed by molecular mechanics/generalized born surface area calculations. The obtained results are in good agreement with biochemical inhibition data and reflect the structure-activity relationships of known ligands. Our findings suggest that the variable and flexible post-SET domain plays an important role in inhibitor binding, allowing possibly distinct binding modes of inhibitors with only small variations in their structure. Insights from this study present a good basis for design of novel and optimization of existing compounds targeting the cofactor binding site of EZH2.

  3. Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haixia [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Jiang Bingying [School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400040 (China); Xiang Yun, E-mail: yunatswu@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Yuyong; Chai Yaqin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-03-04

    A novel strategy for 'signal on' and sensitive one-spot simultaneous detection of multiple small molecular analytes based on electrochemically encoded barcode quantum dot (QD) tags is described. The target analytes, adenosine triphosphate (ATP) and cocaine, respectively, are sandwiched between the corresponding set of surface-immobilized primary binding aptamers and the secondary binding aptamer/QD bioconjugates. The captured QDs yield distinct electrochemical signatures after acid dissolution, whose position and size reflect the identity and level, respectively, of the corresponding target analytes. Due to the inherent amplification feature of the QD labels and the 'signal on' detection scheme, as well as the sensitive monitoring of the metal ions released upon acid dissolution of the QD labels, low detection limits of 30 nM and 50 nM were obtained for ATP and cocaine, respectively, in our assays. Our multi-analyte sensing system also shows high specificity to target analytes and promising applicability to complex sample matrix, which makes the proposed assay protocol an attractive route for screening of small molecules in clinical diagnosis.

  4. Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics.

    Science.gov (United States)

    Chen, Bing-Jia; Wu, Yan-Ling; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs.

  5. A New Design Strategy and Diagnostic to Tailor the DNA-Binding Mechanism of Small Organic Molecules and Drugs.

    Science.gov (United States)

    Doan, Phi; Pitter, Demar R G; Kocher, Andrea; Wilson, James N; Goodson, Theodore

    2016-11-18

    The classical model for DNA groove binding states that groove binding molecules should adopt a crescent shape that closely matches the helical groove of DNA. Here, we present a new design strategy that does not obey this classical model. The DNA-binding mechanism of small organic molecules was investigated by synthesizing and examining a series of novel compounds that bind with DNA. This study has led to the emergence of structure-property relationships for DNA-binding molecules and/or drugs, which reveals that the structure can be designed to either intercalate or groove bind with calf thymus dsDNA by modifying the electron acceptor properties of the central heterocyclic core. This suggests that the electron accepting abilities of the central core play a key role in the DNA-binding mechanism. These small molecules were characterized by steady-state and ultrafast nonlinear spectroscopies. Bioimaging experiments were performed in live cells to evaluate cellular uptake and localization of the novel small molecules. This report paves a new route for the design and development of small organic molecules, such as therapeutics, targeted at DNA as their performance and specificity is dependent on the DNA-binding mechanism.

  6. The small molecule inhibitor QLT0267 Radiosensitizes squamous cell carcinoma cells of the head and neck.

    Directory of Open Access Journals (Sweden)

    Iris Eke

    Full Text Available BACKGROUND: The constant increase of cancer cell resistance to radio- and chemotherapy hampers improvement of patient survival and requires novel targeting approaches. Integrin-Linked Kinase (ILK has been postulated as potent druggable cancer target. On the basis of our previous findings clearly showing that ILK transduces antisurvival signals in cells exposed to ionizing radiation, this study evaluated the impact of the small molecule inhibitor QLT0267, reported as putative ILK inhibitor, on the cellular radiation survival response of human head and neck squamous cell carcinoma cells (hHNSCC. METHODOLOGY/PRINCIPAL FINDINGS: Parental FaDu cells and FaDu cells stably transfected with a constitutively active ILK mutant (FaDu-IH or empty vectors, UTSCC45 cells, ILK(floxed/floxed(fl/fl and ILK(-/- mouse fibroblasts were used. Cells grew either two-dimensionally (2D on or three-dimensionally (3D in laminin-rich extracellular matrix. Cells were treated with QLT0267 alone or in combination with irradiation (X-rays, 0-6 Gy single dose. ILK knockdown was achieved by small interfering RNA transfection. ILK kinase activity, clonogenic survival, number of residual DNA double strand breaks (rDSB; gammaH2AX/53BP1 foci assay, cell cycle distribution, protein expression and phosphorylation (e.g. Akt, p44/42 mitogen-activated protein kinase (MAPK were measured. Data on ILK kinase activity and phosphorylation of Akt and p44/42 MAPK revealed a broad inhibitory spectrum of QLT0267 without specificity for ILK. QLT0267 significantly reduced basal cell survival and enhanced the radiosensitivity of FaDu and UTSCC45 cells in a time- and concentration-dependent manner. QLT0267 exerted differential, cell culture model-dependent effects with regard to radiogenic rDSB and accumulation of cells in the G2 cell cycle phase. Relative to corresponding controls, FaDu-IH and ILK(fl/fl fibroblasts showed enhanced radiosensitivity, which failed to be antagonized by QLT0267. A

  7. Recent Developments in β-Cell Differentiation of Pluripotent Stem Cells Induced by Small and Large Molecules

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-12-01

    Full Text Available Human pluripotent stem cells, including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs, hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4, epidermal growth factor (EGF, fibroblast growth factor (FGF, keratinocyte growth factor (KGF, hepatocyte growth factor (HGF, noggin, transforming growth factor (TGF-α, and WNT3A are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.

  8. Bottom-up design of small molecules that stimulate exon 10 skipping in mutant MAPT pre-mRNA.

    Science.gov (United States)

    Luo, Yiling; Disney, Matthew D

    2014-09-22

    One challenge in chemical biology is to develop small molecules that control cellular protein content. The amount and identity of proteins are influenced by the RNAs that encode them; thus, protein content in a cell could be affected by targeting mRNA. However, RNA has been traditionally difficult to target with small molecules. In this report, we describe controlling the protein products of the mutated microtubule-associated protein tau (MAPT) mature mRNA with a small molecule. MAPT mutations in exon 10 are associated with inherited frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17), an incurable disease that is directly caused by increased inclusion of exon 10 in MAPT mRNA. Recent studies have shown that mutations within a hairpin at the MAPT exon 10-intron junction decrease the thermodynamic stability of the RNA, increasing binding to U1 snRNP and thus exon 10 inclusion. Therefore, we designed small molecules that bind and stabilize a mutant MAPT by using Inforna, a computational approach based on information about RNA-small-molecule interactions. The optimal compound selectively bound the mutant MAPT hairpin and thermodynamically stabilized its folding, facilitating exon 10 exclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fluorescent π-conjugated polymer dots versus self-assembled small-molecule nanoparticles: what's the difference?

    Science.gov (United States)

    Fischer, Irén; Kaeser, Adrien; Peters-Gumbs, Mauraline A M; Schenning, Albertus P H J

    2013-08-12

    Fluorescent nanoparticles based on π-conjugated small molecules and polymers are two different classes of π-conjugated systems that have attracted much interest. To date, both emerging classes have only been studied separately and showed no clear differences in their properties. Herein these nanoparticles are compared on the basis of a fluorene co-polymer and its corresponding small molecule. Both systems formed nanoparticles with the same diameter, whereas the fluorescence properties clearly differed. In case of the polymer the fluorescence diminished, whereas for the small molecules the fluorescence increased. In addition, the capability of encapsulation and release of a hydrophobic dye from the fluorescent nanoparticles was studied. For the polymer system, encapsulation was highly efficient and no release was observed, whereas for the small molecule system encapsulation was less efficient and release of the dye was observed. These studies show a clear difference between small molecules and polymers which has important implications for the design of fluorescent nanoparticles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chemical de-conjugation for investigating the stability of small molecule drugs in antibody-drug conjugates.

    Science.gov (United States)

    Chen, Tao; Su, Dian; Gruenhagen, Jason; Gu, Christine; Li, Yi; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-05

    Antibody-drug conjugates (ADCs) offer new therapeutic options for advanced cancer patients through precision killing with fewer side effects. The stability and efficacy of ADCs are closely related, emphasizing the urgency and importance of gaining a comprehensive understanding of ADC stability. In this work, a chemical de-conjugation approach was developed to investigate the in-situ stability of the small molecule drug while it is conjugated to the antibody. This method involves chemical-mediated release of the small molecule drug from the ADC and subsequent characterization of the released small molecule drug by HPLC. The feasibility of this technique was demonstrated utilizing a model ADC containing a disulfide linker that is sensitive to the reducing environment within cancer cells. Five reducing agents were screened for use in de-conjugation; tris(2-carboxyethyl) phosphine (TCEP) was selected for further optimization due to its high efficiency and clean impurity profile. The optimized de-conjugation assay was shown to have excellent specificity and precision. More importantly, it was shown to be stability indicating, enabling the identification and quantification of the small molecule drug and its degradation products under different formulation pHs and storage temperatures. In summary, the chemical de-conjugation strategy demonstrated here offers a powerful tool to assess the in-situ stability of small molecule drugs on ADCs and the resulting information will shed light on ADC formulation/process development and storage condition selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A Small Molecule That Protects the Integrity of the Electron Transfer Chain Blocks the Mitochondrial Apoptotic Pathway.

    Science.gov (United States)

    Jiang, Xian; Li, Li; Ying, Zhengxin; Pan, Chenjie; Huang, Shaoqiang; Li, Lin; Dai, Miaomiao; Yan, Bo; Li, Ming; Jiang, Hui; Chen, She; Zhang, Zhiyuan; Wang, Xiaodong

    2016-07-21

    In response to apoptotic stimuli, mitochondria in mammalian cells release cytochrome c and other apoptogenic proteins, leading to the subsequent activation of caspases and apoptotic cell death. This process is promoted by the pro-apoptotic members of the Bcl-2 family of proteins, such as Bim and Bax, which, respectively, initiate and execute cytochrome c release from the mitochondria. Here we report the discovery of a small molecule that efficiently blocks Bim-induced apoptosis after Bax is activated on the mitochondria. The cellular target of this small molecule was identified to be the succinate dehydrogenase subunit B (SDHB) protein of complex II of the mitochondrial electron transfer chain (ETC). The molecule protects the integrity of the ETC and allows treated cells to continue to proliferate after apoptosis induction. Moreover, this molecule blocked dopaminergic neuron death and reversed Parkinson-like behavior in a rat model of Parkinson's disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A Small Insulinomimetic Molecule Also Improves Insulin Sensitivity in Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Sandip Mukherjee

    Full Text Available Dramatic increase of diabetes over the globe is in tandem with the increase in insulin requirement. This is because destruction and dysfunction of pancreatic β-cells are of common occurrence in both Type1 diabetes and Type2 diabetes, and insulin injection becomes a compulsion. Because of several problems associated with insulin injection, orally active insulin mimetic compounds would be ideal substitute. Here we report a small molecule, a peroxyvanadate compound i.e. DmpzH[VO(O22(dmpz], henceforth referred as dmp, which specifically binds to insulin receptor with considerable affinity (KD-1.17μM thus activating insulin receptor tyrosine kinase and its downstream signaling molecules resulting increased uptake of [14C] 2 Deoxy-glucose. Oral administration of dmp to streptozotocin treated BALB/c mice lowers blood glucose level and markedly stimulates glucose and fatty acid uptake by skeletal muscle and adipose tissue respectively. In db/db mice, it greatly improves insulin sensitivity through excess expression of PPARγ and its target genes i.e. adiponectin, CD36 and aP2. Study on the underlying mechanism demonstrated that excess expression of Wnt3a decreased PPARγ whereas dmp suppression of Wnt3a gene increased PPARγ expression which subsequently augmented adiponectin. Increased production of adiponectin in db/db mice due to dmp effected lowering of circulatory TG and FFA levels, activates AMPK in skeletal muscle and this stimulates mitochondrial biogenesis and bioenergetics. Decrease of lipid load along with increased mitochondrial activity greatly improves energy homeostasis which has been found to be correlated with the increased insulin sensitivity. The results obtained with dmp, therefore, strongly indicate that dmp could be a potential candidate for insulin replacement therapy.

  13. Construction of Recombinant Pdu Metabolosome Shells for Small Molecule Production in Corynebacterium glutamicum.

    Science.gov (United States)

    Huber, Isabel; Palmer, David J; Ludwig, Kira N; Brown, Ian R; Warren, Martin J; Frunzke, Julia

    2017-09-01

    Bacterial microcompartments have significant potential in the area of industrial biotechnology for the production of small molecules, especially involving metabolic pathways with toxic or volatile intermediates. Corynebacterium glutamicum is an established industrial workhorse for the production of amino acids and has been investigated for the production of diamines, dicarboxylic acids, polymers and biobased fuels. Herein, we describe components for the establishment of bacterial microcompartments as production chambers in C. glutamicum. Within this study, we optimized genetic clusters for the expression of the shell components of the Citrobacter freundii propanediol utilization (Pdu) bacterial compartment, thereby facilitating heterologous compartment production in C. glutamicum. Upon induction, transmission electron microscopy images of thin sections from these strains revealed microcompartment-like structures within the cytosol. Furthermore, we demonstrate that it is possible to target eYFP to the empty microcompartments through C-terminal fusions with synthetic scaffold interaction partners (PDZ, SH3 and GBD) as well as with a non-native C-terminal targeting peptide from AdhDH (Klebsiella pneumonia). Thus, we show that it is possible to target proteins to compartments where N-terminal targeting is not possible. The overproduction of PduA alone leads to the construction of filamentous structures within the cytosol and eYFP molecules are localized to these structures when they are N-terminally fused to the P18 and D18 encapsulation peptides from PduP and PduD, respectively. In the future, these nanotube-like structures might be used as scaffolds for directed cellular organization and pathway enhancement.

  14. Small molecule-mediated control of hydroxyapatite growth: free energy calculations benchmarked to density functional theory.

    Science.gov (United States)

    Xu, Zhijun; Yang, Yang; Wang, Ziqiu; Mkhonto, Donald; Shang, Cheng; Liu, Zhi-Pan; Cui, Qiang; Sahai, Nita

    2014-01-05

    The unique, plate-like morphology of hydroxyapatite (HAP) nanocrystals in bone lends to the hierarchical structure and functions of bone. Proteins enriched in phosphoserine (Ser-OPO3) and glutamic acid (Glu) residues have been proposed to regulate crystal morphology; however, the atomic-level mechanisms remain unclear. Previous molecular dynamics studies addressing biomineralization have used force fields with limited benchmarking, especially at the water/mineral interface, and often limited sampling for the binding free energy profile. Here, we use the umbrella sampling/weighted histogram analysis method to obtain the adsorption free energy of Ser-OPO3 and Glu on HAP (100) and (001) surfaces to understand organic-mediated crystal growth. The calculated organic-water-mineral interfacial energies are carefully benchmarked to density functional theory calculations, with explicit inclusion of solvating water molecules around the adsorbate plus the Poisson-Boltzmann continuum model for long-range solvation effects. Both amino acids adsorb more strongly on the HAP (100) face than the (001) face. Growth rate along the [100] direction should then be slower than in the [001] direction, resulting in plate-like crystal morphology with greater surface area for the (100) than the (001) face, consistent with bone HAP crystal morphology. Thus, even small molecules are capable of regulating bone crystal growth by preferential adsorption in specific directions. Furthermore, Ser-OPO3 is a more effective growth modifier by adsorbing more strongly than Glu on the (100) face, providing one possible explanation for the energetically expensive process of phosphorylation of some proteins involved in bone biomineralization. The current results have broader implications for designing routes for biomimetic crystal synthesis. Copyright © 2013 Wiley Periodicals, Inc.

  15. In silico mechanistic profiling to probe small molecule binding to sulfotransferases.

    Directory of Open Access Journals (Sweden)

    Virginie Y Martiny

    Full Text Available Drug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing severe side effects and adverse drug reactions, or their inhibition can lead to drug-drug interactions. We focus on sulfotransferases (SULTs, a family of phase II metabolizing enzymes, acting on a large number of drugs and hormones and showing important structural flexibility. Here we report a novel in silico structure-based approach to probe ligand binding to SULTs. We explored the flexibility of SULTs by molecular dynamics (MD simulations in order to identify the most suitable multiple receptor conformations for ligand binding prediction. Then, we employed structure-based docking-scoring approach to predict ligand binding and finally we combined the predicted interaction energies by using a QSAR methodology. The results showed that our protocol successfully prioritizes potent binders for the studied here SULT1 isoforms, and give new insights on specific molecular mechanisms for diverse ligands' binding related to their binding sites plasticity. Our best QSAR models, introducing predicted protein-ligand interaction energy by using docking, showed accuracy of 67.28%, 78.00% and 75.46%, for the isoforms SULT1A1, SULT1A3 and SULT1E1, respectively. To the best of our knowledge our protocol is the first in silico structure-based approach consisting of a protein-ligand interaction analysis at atomic level that considers both ligand and enzyme flexibility, along with a QSAR approach, to identify small molecules that can interact with II phase dug metabolizing enzymes.

  16. Small molecule inhibition of 6-phosphofructo-2-kinase suppresses t cell activation

    Directory of Open Access Journals (Sweden)

    Telang Sucheta

    2012-05-01

    Full Text Available Abstract Background T cell activation is associated with a rapid increase in intracellular fructose-2,6-bisphosphate (F2,6BP, an allosteric activator of the glycolytic enzyme, 6-phosphofructo-1-kinase. The steady state concentration of F2,6BP in T cells is dependent on the expression of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4 and the fructose-2,6-bisphosphatase, TIGAR. Of the PFKFB family of enzymes, PFKFB3 has the highest kinase:bisphosphatase ratio and has been demonstrated to be required for T cell proliferation. A small molecule antagonist of PFKFB3, 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3PO, recently has been shown to reduce F2,6BP synthesis, glucose uptake and proliferation in transformed cells. We hypothesized that the induction of PFKFB3 expression may be required for the stimulation of glycolysis in T cells and that exposure to the PFKFB3 antagonist, 3PO, would suppress T cell activation. Methods We examined PFKFB1-4 and TIGAR expression and F2,6BP concentration in purified CD3+ T cells stimulated with microbead-conjugated agonist antibodies specific for CD3 and the co-stimulatory receptor, CD28. We then determined the effect of 3PO on anti-CD3/anti-CD28-induced T cell activation, F2,6BP synthesis, 2-[1-14C]-deoxy-d-glucose uptake, lactate secretion, TNF-α secretion and proliferation. Finally, we examined the effect of 3PO administration on the development of delayed type hypersensitivity to methylated BSA and on imiquimod-induced psoriasis in mice. Results We found that purified human CD3+ T cells express PFKFB2, PFKFB3, PFKFB4 and TIGAR, and that anti-CD3/anti-CD28 conjugated microbeads stimulated a >20-fold increase in F2,6BP with a coincident increase in protein expression of the PFKFB3 family member and a decrease in TIGAR protein expression. We then found that exposure to the PFKFB3 small molecule antagonist, 3PO (1–10 μM, markedly attenuated the stimulation of F2,6BP

  17. Discovering Small Molecule Inhibitors Targeted to Ligand-Stimulated RAGE-DIAPH1 Signaling Transduction

    Science.gov (United States)

    Pan, Jinhong

    The receptor of advanced glycation end product (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules, which plays an important role in immune responses. Full-length RAGE includes three extracellular immunoglobulin domains, a transmembrane domain and an intracellular domain. It is a pattern recognition receptor that can bind diverse ligands. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. It is found that calgranulin binding to the C1C2 domain or AGEs binding to the V domain activates extracellular signaling, which triggers interactions of the RAGE cytoplasmic tail (ctRAGE) with intracellular effector, such as diaphanous 1 (DIAPH1), to initiate signal transduction cascades. ctRAGE is essential for RAGE-ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE is over-expressed in diseased tissues of most RAGE-associated pathogenic conditions, such as complications of Alzheimer's diseases, diabetes, vascular diseases, inflammation, cancers and neurodegeneration. They are the major diseases affecting a large population worldwide. RAGE can function as a biomarker or drug target for these diseases. The cytoplasmic tail of RAGE can be used as a drug target to inhibit RAGE-induced intracellular signaling by small molecule inhibitors to treat RAGE-associated diseases. We developed a high throughput screening assay with which we probed a small molecule library of 58,000 compounds to find that 777 small molecules displayed 50% inhibition and 97 compounds demonstrated dose-dependent inhibition of the binding of ctRAGE-DIAPH1. Eventually, there were 13 compounds which displayed dose-dependent inhibition of ctRAGE binding to DIAPH1 and direct binding to ctRAGE analyzed by 15N HSQC-NMR and native tryptophan fluorescence titration experiments; thus, they were

  18. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    Directory of Open Access Journals (Sweden)

    Prerna Grover

    Full Text Available The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery

  19. Selective small-molecule inhibitors as chemical tools to define the roles of matrix metalloproteinases in disease.

    Science.gov (United States)

    Meisel, Jayda E; Chang, Mayland

    2017-11-01

    The focus of this article is to highlight novel inhibitors and current examples where the use of selective small-molecule inhibitors has been critical in defining the roles of matrix metalloproteinases (MMPs) in disease. Selective small-molecule inhibitors are surgical chemical tools that can inhibit the targeted enzyme; they are the method of choice to ascertain the roles of MMPs and complement studies with knockout animals. This strategy can identify targets for therapeutic development as exemplified by the use of selective small-molecule MMP inhibitors in diabetic wound healing, spinal cord injury, stroke, traumatic brain injury, cancer metastasis, and viral infection. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. An enzymatic deconjugation method for the analysis of small molecule active drugs on antibody-drug conjugates.

    Science.gov (United States)

    Li, Yi; Gu, Christine; Gruenhagen, Jason; Yehl, Peter; Chetwyn, Nik P; Medley, Colin D

    2016-01-01

    Antibody-drug conjugates (ADCs) are complex therapeutic agents that use the specific targeting properties of antibodies and the highly potent cytotoxicity of small molecule drugs to selectively eliminate tumor cells while limiting the toxicity to normal healthy tissues. Two critical quality attributes of ADCs are the purity and stability of the active small molecule drug linked to the ADC, but these are difficult to assess once the drug is conjugated to the antibody. In this study, we report a enzyme deconjugation approach to cleave small molecule drugs from ADCs, which allows the drugs to be subsequently characterized by reversed-phase high performance liquid chromatography. The model ADC we used in this study utilizes a valine-citrulline linker that is designed to be sensitive to endoproteases after internalization by tumor cells. We screened several proteases to determine the most effective enzyme. Among the 3 cysteine proteases evaluated, papain had the best efficiency in cleaving the small molecule drug from the model ADC. The deconjugation conditions were further optimized to achieve complete cleavage of the small molecule drug. This papain deconjugation approach demonstrated excellent specificity and precision. The purity and stability of the active drug on an ADC drug product was evaluated and the major degradation products of the active drug were identified. The papain deconjugation method was also applied to several other ADCs, with the results suggesting it could be applied generally to ADCs containing a valine-citrulline linker. Our results indicate that the papain deconjugation method is a powerful tool for characterizing the active small molecule drug conjugated to an ADC, and may be useful in ensuring the product quality, efficacy and the safety of ADCs.

  1. Proapoptotic and antiinvasive activity of Rac1 small molecule inhibitors on malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Cardama GA

    2014-10-01

    Full Text Available Georgina A Cardama,1 Nazareno Gonzalez,1 Matias Ciarlantini,2 Lucia Gandolfi Donadío,2 María Julieta Comin,2 Daniel F Alonso,1 Pablo Lorenzano Menna,1,* Daniel E Gomez1,*1Laboratory of Molecular Oncology, National University of Quilmes, Buenos Aires, Argentina; 2Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, San Martín, Argentina, *These authors contributed equally to this workAbstract: Malignant gliomas are characterized by an intrinsic ability to invade diffusely throughout the normal brain tissue. This feature contributes mainly to the failure of existing therapies. Deregulation of small GTPases signaling, in particular Rac1 activity, plays a key role in the invasive phenotype of gliomas. Here we report the effect of ZINC69391, a specific Rac1 inhibitor developed by our group, on human glioma cell lines LN229 and U-87 MG. ZINC69391 is able to interfere with the interaction of Rac1 with Dock180, a relevant Rac1 activator in glioma invasion, and to reduce Rac1-GTP levels. The kinase Pak1, a downstream effector of Dock180–Rac1 signaling, was also downregulated upon ZINC69391 treatment. ZINC69391 reduced cell proliferation, arrested cells in G1 phase, and triggered apoptosis in glioma cells. Importantly, ZINC69391 dramatically affected cell migration and invasion in vitro, interfering with actin cytoskeleton dynamics. We also evaluated the effect of analog 1A-116, a compound derived from ZINC69391 structure. 1A-116 showed an improved antiproliferative and antiinvasive activity on glioma cells. These findings encourage further preclinical testing in clinically relevant animal models.Keywords: GTPases. invasion, Dock180, small molecule

  2. Recent progress in the discovery of small-molecule inhibitors of the HMT EZH2 for the treatment of cancer.

    Science.gov (United States)

    Verma, Sharad K; Knight, Steven D

    2013-09-01

    The histone lysine methyltransferase EZH2 is the catalytic component of the multi-protein PRC2 complex and methylates lysine 27 on histone H3. EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumor types. Inhibition of aberrant EZH2 activity might attenuate tumorigenesis resulting from misregulated gene transcription derived from aberrant EZH2 activity. In the last year, the first reports of small molecules demonstrating potent and selective inhibition of EZH2 have been published by multiple groups. Herein, we review recent progress reported in the discovery of small molecule inhibitors of EZH2.

  3. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules.

    Science.gov (United States)

    Watts, Katharine R; Tenney, Karen; Crews, Phillip

    2010-12-01

    This review focuses on six important parasitic diseases that adversely affect the health and lives of over one billion people worldwide. In light of the global human impact of these neglected tropical diseases (NTDs), several initiatives and campaigns have been mounted to eradicate these infections once and for all. Currently available therapeutics summarized herein are either ineffective and/or have severe and deleterious side effects. Resistant strains continue to emerge and there is an overall unmet and urgent need for new antiparasitic drugs. Marine-derived small molecules (MDSMs) from invertebrates comprise an extremely diverse and promising source of compounds from a wide variety of structural classes. New discoveries of marine natural product privileged structures and compound classes that are being made via natural product library screening using whole cell in vitro assays are highlighted. It is striking to note that for the first time in history the entire genomes of all six parasites have been sequenced and additional transcriptome and proteomic analyses are available. Furthermore, open and shared, publicly available databases of the genome sequences, compounds, screening assays, and druggable molecular targets are being used by the worldwide research community. A combined assessment of all of the above factors, especially of current discoveries in marine natural products, implies a brighter future with more effective, affordable, and benign antiparasitic therapeutics. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Small Molecule Membrane Transporters in the Mammalian Podocyte: A Pathogenic and Therapeutic Target

    Directory of Open Access Journals (Sweden)

    Cristina Zennaro

    2014-11-01

    Full Text Available The intriguingly complex glomerular podocyte has been a recent object of intense study. Researchers have sought to understand its role in the pathogenesis of common proteinuric diseases such as minimal change disease and focal segmental glomerular sclerosis. In particular, considerable effort has been directed towards the anatomic and functional barrier to macromolecular filtration provided by the secondary foot processes, but little attention has been paid to the potential of podocytes to handle plasma proteins beyond the specialization of the slit diaphragm. Renal membrane transporters in the proximal tubule have been extensively studied for decades, particularly in relation to drug metabolism and elimination. Recently, uptake and efflux transporters for small organic molecules have also been found in the glomerular podocyte, and we and others have found that these transporters can engage not only common pharmaceuticals but also injurious endogenous and exogenous agents. We have also found that the activity of podocyte transporters can be manipulated to inhibit pathogen uptake and efflux. It is conceivable that podocyte transporters may play a role in disease pathogenesis and may be a target for future drug development.

  5. A dictionary to identify small molecules and drugs in free text.

    Science.gov (United States)

    Hettne, Kristina M; Stierum, Rob H; Schuemie, Martijn J; Hendriksen, Peter J M; Schijvenaars, Bob J A; Mulligen, Erik M van; Kleinjans, Jos; Kors, Jan A

    2009-11-15

    From the scientific community, a lot of effort has been spent on the correct identification of gene and protein names in text, while less effort has been spent on the correct identification of chemical names. Dictionary-based term identification has the power to recognize the diverse representation of chemical information in the literature and map the chemicals to their database identifiers. We developed a dictionary for the identification of small molecules and drugs in text, combining information from UMLS, MeSH, ChEBI, DrugBank, KEGG, HMDB and ChemIDplus. Rule-based term filtering, manual check of highly frequent terms and disambiguation rules were applied. We tested the combined dictionary and the dictionaries derived from the individual resources on an annotated corpus, and conclude the following: (i) each of the different processing steps increase precision with a minor loss of recall; (ii) the overall performance of the combined dictionary is acceptable (precision 0.67, recall 0.40 (0.80 for trivial names); (iii) the combined dictionary performed better than the dictionary in the chemical recognizer OSCAR3; (iv) the performance of a dictionary based on ChemIDplus alone is comparable to the performance of the combined dictionary. The combined dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web site http://www.biosemantics.org/chemlist.

  6. Structure-Based Drug Design of Small Molecule Peptide Deformylase Inhibitors to Treat Cancer

    Directory of Open Access Journals (Sweden)

    Jian Gao

    2016-03-01

    Full Text Available Human peptide deformylase (HsPDF is an important target for anticancer drug discovery. In view of the limited HsPDF, inhibitors were reported, and high-throughput virtual screening (HTVS studies based on HsPDF for developing new PDF inhibitors remain to be reported. We reported here on diverse small molecule inhibitors with excellent anticancer activities designed based on HTVS and molecular docking studies using the crystal structure of HsPDF. The compound M7594_0037 exhibited potent anticancer activities against HeLa, A549 and MCF-7 cell lines with IC50s of 35.26, 29.63 and 24.63 μM, respectively. Molecular docking studies suggested that M7594_0037 and its three derivatives could interact with HsPDF by several conserved hydrogen bonds. Moreover, the pharmacokinetic and toxicity properties of M7594_0037 and its derivatives were predicted using the OSIRIS property explorer. Thus, M7594_0037 and its derivatives might represent a promising scaffold for the further development of novel anticancer drugs.

  7. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1.

    Directory of Open Access Journals (Sweden)

    Manisha Juneja

    2017-06-01

    Full Text Available MACC1 (Metastasis Associated in Colon Cancer 1 is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC. However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.

  8. A Reaction Database for Small Molecule Pharmaceutical Processes Integrated with Process Information

    Directory of Open Access Journals (Sweden)

    Emmanouil Papadakis

    2017-10-01

    Full Text Available This article describes the development of a reaction database with the objective to collect data for multiphase reactions involved in small molecule pharmaceutical processes with a search engine to retrieve necessary data in investigations of reaction-separation schemes, such as the role of organic solvents in reaction performance improvement. The focus of this reaction database is to provide a data rich environment with process information available to assist during the early stage synthesis of pharmaceutical products. The database is structured in terms of reaction classification of reaction types; compounds participating in the reaction; use of organic solvents and their function; information for single step and multistep reactions; target products; reaction conditions and reaction data. Information for reactor scale-up together with information for the separation and other relevant information for each reaction and reference are also available in the database. Additionally, the retrieved information obtained from the database can be evaluated in terms of sustainability using well-known “green” metrics published in the scientific literature. The application of the database is illustrated through the synthesis of ibuprofen, for which data on different reaction pathways have been retrieved from the database and compared using “green” chemistry metrics.

  9. Galactosylated iodine-based small molecule I.V. CT contrast agent for bile duct imaging.

    Science.gov (United States)

    Jung, Yeonjin; Hwang, Hee Sook; Na, Kun

    2018-04-01

    Computed tomography (CT) with contrast plays an important role as a clinical diagnostic tool but still has a limited diagnostic range. In this work, we developed a novel injectable iodine-based small molecule CT contrast agent, even can be used for bile duct diagnostics. The bile duct diagnosable CT contrast agent (BDICA) is synthesized with 5-amino-2,4,6-triiodoisophthaloyl dichloride (ATIPC), tromethamine and lactobionic acid (LBA) for asialoglycoprotein receptor (ASGPR) targeted delivery via receptor-mediated endocytosis and transport to the bile canaliculi. Specific binding to the ASGPRs was confirmed by in vitro cellular uptake in HepG2 cells (ASGPR positive) and HCT 116 cells (ASGPR negative). Compared to iohexol, BDICA has equal in vivo distribution and a 13-fold iodine increase in content was observed in bile juice after BDICA injection. The radiopaque contrast effect in the bile duct has been clearly shown in in vivo CT scans. Furthermore, within 36 h, 91.3% of the BDICA was eliminated without organ damage, which verified the overall safety of the contrast agent. BDICA not only provides sufficient contrast images similar to iohexol, but also provides superior images of the bile duct. Based on recent studies, it has been shown that BDICA is a promising, safe and effective contrast agent for CT imaging of the organs and soft tissues, including the bile duct. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma.

    Science.gov (United States)

    Arihara, Yohei; Takada, Kohichi; Kamihara, Yusuke; Hayasaka, Naotaka; Nakamura, Hajime; Murase, Kazuyuki; Ikeda, Hiroshi; Iyama, Satoshi; Sato, Tsutomu; Miyanishi, Koji; Kobune, Masayoshi; Kato, Junji

    2017-09-12

    Reactive oxygen species (ROS) are normal byproducts of a wide variety of cellular processes. ROS have dual functional roles in cancer cell pathophysiology. At low to moderate levels, ROS act as signaling transducers to activate cell proliferation, migration, invasion, and angiogenesis. In contrast, high levels of ROS induce cell death. In multiple myeloma (MM), ROS overproduction is the trigger for apoptosis induced by several anticancer compounds, including proteasome inhibitors. However, no drugs for which oxidative stress is the main mechanism of action are currently used for treatment of MM in clinical situations. In this study, we demonstrate that the p53-activating small molecule CP-31398 (CP) effectively inhibits the growth of MM cell lines and primary MM isolates from patients. CP also suppresses the growth of MM xenografts in mice. Mechanistically, CP was found to induce intrinsic apoptosis in MM cells via increasing ROS production. Interestingly, CP-induced apoptosis occurs regardless of the p53 status, suggesting that CP has additional mechanisms of action. Our findings thus indicate that CP could be an attractive candidate for treatment of MM patients harboring p53 abnormalities; this satisfies an unmet clinical need, as such individuals currently have a poor prognosis.

  11. Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Xuan-Dung; Tamayo, Arnold B.; Seo, Junghwa; Hoven, Corey V.; Walker, Bright; Nguyen, Thuc-Quyen [Departments of Chemistry and Biochemistry, Department of Materials, Institute for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106 (United States)

    2010-10-08

    Photoconductive atomic force microscopy is employed to study the nanoscale morphology and optoelectronic properties of bulk heterojunction solar cells based on small molecules containing a benzofuran substituted diketopyrrolopyrrole (DPP) core (3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl))-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione, DPP(TBFu){sub 2}, and[6,6]-phenyl-C{sub 71}-butyric acid methyl ester (PC{sub 71}BM), which were recently reported to have power conversion efficiencies of 4.4%. Electron and hole collection networks are visualized for blends with different donor:acceptor ratios. Formation of nanostructures in the blends leads to a higher interfacial area for charge dissociation, while maintaining bicontinuous collection networks; conditions that lead to the high efficiency observed in the devices. An excellent agreement between nanoscale and bulk open-circuit voltage measurements is achieved by surface modification of the indium tin oxide (ITO) substrate by using aminopropyltrimethoxysilane. The local open-circuit voltage is linearly dependent on the cathode work function. These results demonstrate that photoconductive atomic force microscopy coupled with surface modification of ITO substrate can be used to study nanoscale optoelectronic phenomena of organic solar cells. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Small-Molecule Theranostic Probes: A Promising Future in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Suzana Aulić

    2013-01-01

    Full Text Available Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated, β-sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrPC. Many lines of evidence suggest that prions (PrPSc act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such, PrPSc may be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer’s disease, Parkinson’s disease, and prion disease. Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics.

  13. Extracting Conformational Ensembles of Small Molecules from Molecular Dynamics Simulations: Ampicillin as a Test Case

    Directory of Open Access Journals (Sweden)

    Giuliano Malloci

    2016-01-01

    Full Text Available The accurate and exhaustive description of the conformational ensemble sampled by small molecules in solution, possibly at different physiological conditions, is of primary interest in many fields of medicinal chemistry and computational biology. Recently, we have built an on-line database of compounds with antimicrobial properties, where we provide all-atom force-field parameters and a set of molecular properties, including representative structures extracted from cluster analysis over μs-long molecular dynamics (MD trajectories. In the present work, we used a medium-sized antibiotic from our sample, namely ampicillin, to assess the quality of the conformational ensemble. To this aim, we compared the conformational landscape extracted from previous unbiased MD simulations to those obtained by means of Replica Exchange MD (REMD and those originating from three freely-available conformer generation tools widely adopted in computer-aided drug-design. In addition, for different charge/protonation states of ampicillin, we made available force-field parameters and static/dynamic properties derived from both Density Functional Theory and MD calculations. For the specific system investigated here, we found that: (i the conformational statistics extracted from plain MD simulations is consistent with that obtained from REMD simulations; (ii overall, our MD-based approach performs slightly better than any of the conformer generator tools if one takes into account both the diversity of the generated conformational set and the ability to reproduce experimentally-determined structures.

  14. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1.

    Science.gov (United States)

    Juneja, Manisha; Kobelt, Dennis; Walther, Wolfgang; Voss, Cynthia; Smith, Janice; Specker, Edgar; Neuenschwander, Martin; Gohlke, Björn-Oliver; Dahlmann, Mathias; Radetzki, Silke; Preissner, Robert; von Kries, Jens Peter; Schlag, Peter Michael; Stein, Ulrike

    2017-06-01

    MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.

  15. The p53-reactivating small molecule RITA induces senescence in head and neck cancer cells.

    Directory of Open Access Journals (Sweden)

    Hui-Ching Chuang

    Full Text Available TP53 is the most commonly mutated gene in head and neck cancer (HNSCC, with mutations being associated with resistance to conventional therapy. Restoring normal p53 function has previously been investigated via the use of RITA (reactivation of p53 and induction of tumor cell apoptosis, a small molecule that induces a conformational change in p53, leading to activation of its downstream targets. In the current study we found that RITA indeed exerts significant effects in HNSCC cells. However, in this model, we found that a significant outcome of RITA treatment was accelerated senescence. RITA-induced senescence in a variety of p53 backgrounds, including p53 null cells. Also, inhibition of p53 expression did not appear to significantly inhibit RITA-induced senescence. Thus, this phenomenon appears to be partially p53-independent. Additionally, RITA-induced senescence appears to be partially mediated by activation of the DNA damage response and SIRT1 (Silent information regulator T1 inhibition, with a synergistic effect seen by combining either ionizing radiation or SIRT1 inhibition with RITA treatment. These data point toward a novel mechanism of RITA function as well as hint to its possible therapeutic benefit in HNSCC.

  16. Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2014-01-01

    Full Text Available An optimized hybrid planar heterojunction (PHJ of small molecule organic solar cells (SM-OSCs based on copper phthalocyanine (CuPc as donor and fullerene (C60 as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL, also known as hole extraction layer (HE