WorldWideScience

Sample records for pseudorotation phase angle

  1. Data for phase angle shift with frequency

    Directory of Open Access Journals (Sweden)

    T. Paul

    2016-06-01

    Full Text Available Phase angle shift between the current and voltage with frequency has been reported for a single phosphoric acid fuel cell in the cell temperature from 100 °C to 160 °C and the humidifier temperature from 40 °C to 90 °C. An electrochemical workbench is employed to find the shift. The figure of phase angle shift shows a peak in high humidifier temperatures. The peak in phase angle shift directs to lower frequency side with decreasing humidifier temperature. The estimation of electrochemical reaction time is also evaluated in the humidifier temperature zone from 50 °C to 90 °C.

  2. Bioimpedance-Derived Phase Angle and Mortality Among Older People.

    Science.gov (United States)

    Genton, Laurence; Norman, Kristina; Spoerri, Adrian; Pichard, Claude; Karsegard, Véronique L; Herrmann, François R; Graf, Christophe E

    2017-04-01

    Phase angle measured by bioelectrical impedance analysis (BIA) may be a marker of health state. This historical cohort study of prospectively collected BIA measurements aims to investigate the link between phase angle and mortality in older people and evaluate whether a phase angle cutoff can be defined. We included all adults aged ≥65 years who underwent a BIA measurement by the Nutriguard ® device at the Geneva University Hospitals. We retrieved retrospectively the phase angle and comorbidities at the last BIA measurement and mortality until December 2012. We calculated phase angle standardized for sex, age, and body mass index (BMI), using reference values determined with the same brand of BIA device. Sex-specific and standardized phase angle were categorized into quartiles. The association of mortality with sex-specific or standardized phase angle was evaluated through univariate and multivariate Cox regression models, Kaplan-Meier curves, and receiver operating characteristic (ROC) curves. We included 1307 (38% women) participants, among whom 628 (44% women) died. In a multivariate Cox regression model adjusted for comorbidities and setting of measurement (ambulatory vs. hospitalized), the protective effect against mortality increased progressively as the standardized phase angle quartile increased (HR 0.71 [95% CI 0.58, 0.86], 0.53 [95% CI 0.42, 0.67], and 0.32 [95% CI 0.23, 0.43]). The discriminative value of continuous standardized phase angle, assessed as the area under the ROC curve, was 0.72 (95%CI 0.70, 0.75). We could not define an acceptable phase angle cutoff for individual prediction of mortality (LK), based on sensibility and specificity values. This study shows the association of phase angle and mortality in older patients, independent of age, sex, comorbidities, BMI categories, and setting of measurement.

  3. Bioimpedance phase angle indicates catabolism in Type 2 diabetes.

    Science.gov (United States)

    Dittmar, M; Reber, H; Kahaly, G J

    2015-09-01

    Body cell mass is directly proportional to the bioimpedance phase-angle which is an indicator of the amount of electrical charge that cell membranes can hold and is an index of cellular health and function. To evaluate whether the bioimpedance phase angle is relevant for indicating catabolism in people with diabetes and whether it discriminates between people with diabetes receiving different types of therapy. A cross-sectional study was performed in 182 people with Type 2 diabetes and 107 age- and BMI-matched control subjects. The phase angle was measured at 5, 50 and 100 kHz using multifrequency bioimpedance analysis. The phase angles were compared among different diabetes therapy groups (untreated patients with diabetes, patients receiving oral antidiabetic drugs and patients receiving insulin therapy). The phase angle at 100 kHz strongly correlated with total body potassium (r = 0.70, P = 0.001), and was therefore a good indicator of body cell mass. The phase angle at 100 kHz discriminated more strongly between patients with Type 2 diabetes and control subjects than did the phase angle at 50 kHz. Compared with control subjects, patients with Type 2 diabetes had a smaller phase angle at 100 kHz (men: 5.2° vs. 4.5°, P measurement for assessing catabolic state in people with diabetes. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  4. Measurement of Angle of Ultrasound Propagation from Phase

    Energy Technology Data Exchange (ETDEWEB)

    Civale, John; Rivens, Ian; Haar, Gail ter, E-mail: john.civale@icr.ac.uk [Joint Department of Physics, The Royal Marsden Hospital, Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT (United Kingdom)

    2011-02-01

    Acoustic field calibrations often use Fast Fourier Transforms (FFT) to quantify the spectral amplitude components of detected acoustic waveforms. The ability of FFTs to provide phase information is often overlooked. This phase data may be useful in determining the angle of propagation of the ultrasound beam. The angle of propagation at the focal peak (and any other point in the field) can be calculated easily and quickly without additional measurement, and may be the quickest and most accurate method of aligning the sound axis with respect to the beamplotting system's co-ordinates. Acoustic fields have been measured experimentally using a system capable of waveform acquisition. Measurements were made using a fibre-optic hydrophone (Precision Acoustics, UK) which provided spatial resolution of <100 {mu}m. Two operating configurations of a 10 strip array HIFU (high intensity focused ultrasound) transducer were tested, as was a single element HIFU device. Theoretical pressure and phase distributions for these transducers were predicted using a linear acoustic field model. Results show that for the single element, radially symmetric device, beam alignment measurements using phase data at the focal peak are in agreement with the more conventional method based on finding the on-axis peak positions. In the case of a transducer with a number of elements de-activated to produce an asymmetric ultrasound source, the angle of propagation at the focal peak was altered, indicating a change in performance of the transducer which otherwise might not have been detected using the 'on-axis peaks' method. Simulations agreed with the experimental data.

  5. A longitudinal assessment of sleep timing, circadian phase, and phase angle of entrainment across human adolescence.

    Science.gov (United States)

    Crowley, Stephanie J; Van Reen, Eliza; LeBourgeois, Monique K; Acebo, Christine; Tarokh, Leila; Seifer, Ronald; Barker, David H; Carskadon, Mary A

    2014-01-01

    The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys) were 9-10 years ("younger cohort") and 56 (30 boys) were 15-16 years ("older cohort") at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO) phase - a marker of the circadian timing system - was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday), later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy).

  6. A longitudinal assessment of sleep timing, circadian phase, and phase angle of entrainment across human adolescence.

    Directory of Open Access Journals (Sweden)

    Stephanie J Crowley

    Full Text Available The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys were 9-10 years ("younger cohort" and 56 (30 boys were 15-16 years ("older cohort" at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO phase - a marker of the circadian timing system - was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday, later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy.

  7. A Longitudinal Assessment of Sleep Timing, Circadian Phase, and Phase Angle of Entrainment across Human Adolescence

    Science.gov (United States)

    Crowley, Stephanie J.; Van Reen, Eliza; LeBourgeois, Monique K.; Acebo, Christine; Tarokh, Leila; Seifer, Ronald; Barker, David H.; Carskadon, Mary A.

    2014-01-01

    The aim of this descriptive analysis was to examine sleep timing, circadian phase, and phase angle of entrainment across adolescence in a longitudinal study design. Ninety-four adolescents participated; 38 (21 boys) were 9–10 years (“younger cohort”) and 56 (30 boys) were 15–16 years (“older cohort”) at the baseline assessment. Participants completed a baseline and then follow-up assessments approximately every six months for 2.5 years. At each assessment, participants wore a wrist actigraph for at least one week at home to measure self-selected sleep timing before salivary dim light melatonin onset (DLMO) phase – a marker of the circadian timing system – was measured in the laboratory. Weekday and weekend sleep onset and offset and weekend-weekday differences were derived from actigraphy. Phase angles were the time durations from DLMO to weekday sleep onset and offset times. Each cohort showed later sleep onset (weekend and weekday), later weekend sleep offset, and later DLMO with age. Weekday sleep offset shifted earlier with age in the younger cohort and later in the older cohort after age 17. Weekend-weekday sleep offset differences increased with age in the younger cohort and decreased in the older cohort after age 17. DLMO to sleep offset phase angle narrowed with age in the younger cohort and became broader in the older cohort. The older cohort had a wider sleep onset phase angle compared to the younger cohort; however, an age-related phase angle increase was seen in the younger cohort only. Individual differences were seen in these developmental trajectories. This descriptive study indicated that circadian phase and self-selected sleep delayed across adolescence, though school-day sleep offset advanced until no longer in high school, whereupon offset was later. Phase angle changes are described as an interaction of developmental changes in sleep regulation interacting with psychosocial factors (e.g., bedtime autonomy). PMID:25380248

  8. Quantum theory of angle and relative-phase measurement

    Science.gov (United States)

    Shepard, Scott Roger

    2014-12-01

    The complementarity between time and energy, as well as between an angle and a component of angular momentum, is described at three different layers of understanding. The phenomena of super-resolution are readily apparent in the quantum phase representation which also reveals that entanglement is not required. We modify Schwinger's harmonic oscillator model of angular momentum to include the case of photons. Therein, the quantum angle measurement is shown to be equivalent to the measurement of the relative phase between the two oscillators. Two reasonable ways of dealing with degeneracy are shown to correspond to a conditional measurement which takes a snapshot in absolute time (corresponding to adding probability amplitudes) and a marginal measurement which takes an average in absolute time (corresponding to adding probabilities). The sense in which distinguishability is a "matter of how long we look" is discussed and the meaning of the general theory is illustrated by taking the two oscillators to be circularly polarized photons. It is shown that an odd number of x -polarized photons will never have an angle in correspondence with the y axis, but an even number of x -polarized photons always can! The behavior of an x -polarized coherent state is examined and the snapshot angular distributions are seen to evolve into two counter-rotating peaks resulting in considerable correspondence with the y axis at the time for which a classical linear polarization vector would shrink to zero length. We also demonstrate how the probability distribution of absolute time (herein a measurable quantity, rather than just a parameter) has an influence on how these snapshot angular distributions evolve into a quantum version of the polarization ellipse.

  9. Cassini CIRS Observations of Thermal Differences in Saturn's Main Rings with Increasing Phase Angle

    Science.gov (United States)

    Spilker, Linda J.; Pilorz, S.; Pearl, J.; Cuzzi, J.; Wallis, B.; Ferrari, C.; Brooks, S.; Edgington, S.; Altobelli, N.; Showalter, M.

    2003-01-01

    Radial scans of main rings obtained at a variety of phase angles, local times and ring opening angles. Circular focal plane 1 slowly scanned across rings. Radial resolution approx. 2500 km. Temperatures decrease with increasing phase angle for all main rings. Rough estimate of particle spin period for B ring particle is P > 1.8 hours

  10. Geometric phase for collinear conical intersections. I. Geometric phase angle and vector potentials.

    Science.gov (United States)

    Li, Xuan; Brue, Daniel A; Kendrick, Brian K; Blandon, Juan D; Parker, Gregory A

    2011-02-14

    We present a method for properly treating collinear conical intersections in triatomic systems. The general vector potential (gauge theory) approach for including the geometric phase effects associated with collinear conical intersections in hyperspherical coordinates is presented. The current study develops an introductory method in the treatment of collinear conical intersections by using the phase angle method. The geometric phase angle, η, in terms of purely internal coordinates is derived using the example of a spin-aligned quartet lithium triatomic system. A numerical fit and thus an analytical form for the associated vector potentials are explicitly derived for this triatomic A(3) system. The application of this methodology to AB(2) and ABC systems is also discussed.

  11. Effect of Load Phase Angle on Wind Turbine Blade Fatigue Damage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    White, D. L.; Musial, W. D.

    2003-11-01

    This paper examines the importance of phase angle variations with respect to fatigue damage. The operating loads on a generic conventional three-bladed upwind 1.5-MW wind turbine blade were analyzed over a range of operating conditions, and an aggregate probability distribution for the actual phase angles between the in-plane (lead-lag) and out-of-plane (flap) loads was determined. Using a finite element model of a generic blade and Miner's Rule, the accumulated theoretical damage (based on axial strains) resulting from a fatigue test with variable phase angles was compared to the damage resulting from a fatigue test with a constant phase angle. The nodal damage distribution at specific blade cross-sections are compared for the constant and variable phase angle cases. The sequence effects of various phase angle progressions were also considered. For this analysis, the finite element results were processed using the nonlinear Marco-Starkey damage accumulation model. Each phase angle sequence was constrained to have the same overall phase angle distribution and the same total number of cycles but the order in which the phase angles were applied was varied.

  12. Phase angle is related to outcome after ICU admission; an observational study.

    Science.gov (United States)

    Buter, Hanneke; Veenstra, Janny A; Koopmans, Matty; Boerma, Christiaan E

    2018-02-01

    Malnutrition at the time of ICU admission is associated with an increased morbidity and mortality. Malnutrition is most often assessed by a questionnaire but can also be determined with bio-impedance and measurement of phase angle. In a single-centre observational study we compared the percentage of malnutrition in patients admitted to our ICU, according to the Short Nutritional Assessment Questionnaire (SNAQ) with the phase angle measured with bio-impedance. Furthermore, we questioned whether malnutrition is related to outcome parameters. In a 15 week period consecutive patients admitted to the ICU were included. Exclusion criteria included age angle of angle. There was a fair accordance between the SNAQ and phase angle. Phase angle was significantly higher in patients with a SNAQ score of 0-1 (5.5°±1.3) in comparison with patients with a SNAQ score ≥2 (4.4°± 1.1) (p angle and age, sex, BMI, malignant disease, hospital length of stay and hospital mortality. Malnutrition was present in 16% according to the SNAQ and in 36% according to phase angle in our IC population. Malnutrition was associated with prolonged hospital length of stay. In this small population of mixed ICU patients, a low phase angle was found to independently predict hospital mortality. CLINICAL TRIALS. NCT02911181. Copyright © 2017 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  13. PHASE ANGLE EFFECTS ON 3 μm ABSORPTION BAND ON CERES: IMPLICATIONS FOR DAWN MISSION

    Energy Technology Data Exchange (ETDEWEB)

    Takir, D.; Reddy, V.; Sanchez, J. A.; Corre, L. Le [Planetary Science Institute, 1700 E Fort Lowell Road, Suite 106, Tucson, AZ 85719 (United States); Hardersen, P. S. [Department of Space Studies, University of North Dakota, Grand Forks, ND 58202 (United States); Nathues, A., E-mail: dtakir@psi.edu [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2015-05-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.

  14. Influence of impedance phase angle on sound pressures and reverberation times in a rectangular room.

    Science.gov (United States)

    Jeong, Cheol-Ho; Lee, Doheon; Santurette, Sébastien; Ih, Jeong-Guon

    2014-02-01

    In most room acoustic predictions, phase shift on reflection has been overlooked. This study aims to quantify the effects of the surface impedance phase angle of the boundary surfaces on room acoustic conditions. As a preliminary attempt, a medium-sized rectangular room is simulated by a phased beam tracing model, after verifying it numerically against boundary element simulations. First, the absorption characteristic of the boundary surfaces varies uniformly from 0.2 to 0.8, but with various impedance phase angles. Second, typical non-uniform cases having hard walls and floor, but with an absorptive ceiling are investigated. The zero phase angle, which has commonly been assumed in practice, is regarded as reference and differences in the sound pressure level and early decay time from the reference are quantified. As expected, larger differences in the room acoustic parameters are found for larger impedance phase angles. Additionally, binaural impulse responses are compared in a listening test for the uniform absorption cases, revealing that non-zero impedance phase angle cases can be perceptually different from the reference condition in terms of reverberance perception. For the non-uniform settings, the change in the impedance phase angle of the ceiling does not affect the acoustic conditions significantly.

  15. Small angle neutron scattering study of U(VI) third phase formation ...

    Indian Academy of Sciences (India)

    It was observed that third phase formation takes place due to the formation of. UO2(NO3)2.DHDECMP reverse micelles in the dodecane phase. SANS data obtained were interpreted with particle interaction model using Baxter sticky spheres model. Keywords. Small angle neutron scattering; U(VI); third phase; DHDECMP.

  16. Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper, we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  17. A bioelectrical impedance phase angle measuring system for assessment of nutritional status.

    Science.gov (United States)

    Zhang, Guanghao; Huo, Xiaolin; Wu, Changzhe; Zhang, Cheng; Duan, Zhongping

    2014-01-01

    Bioelectrical impedance phase angle has been recommended as a tool to assess nutrition state, but there are no measuring devices have been specially designed for hospital residents. In this study, a system was established for the measurement of bioelectrical impedance phase angle. The electrical composition, calculation method and measuring method of this system are presented in this paper. Experiments showed excellent performance of this system in measuring impedance made of resistors and capacitors. The designed system was also used to measure the bioelectrical impedance phase angle of both healthy subjects and patients with malnutrition, and the results demonstrated that the phase angle of patients with malnutrition is lower than that of healthy subjects (P nutritional status.

  18. Influence of impedance phase angle on sound pressures and reverberation times in a rectangular room

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Lee, Doheon; Santurette, Sébastien

    2014-01-01

    In most room acoustic predictions, phase shift on reflection has been overlooked. This study aims to quantify the effects of the surface impedance phase angle of the boundary surfaces on room acoustic conditions. As a preliminary attempt, a medium-sized rectangular room is simulated by a phased b...... beam tracing model, after verifying it numerically against boundary element simulations. First, the absorption characteristic of the boundary surfaces varies uniformly from 0.2 to 0.8, but with various impedance phase angles. Second, typical non-uniform cases having hard walls and floor...

  19. Phase-angle jump during voltage dips in wind power installations

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Lazaro, E.; Canas, M.; Pujante, A.J. [Universidad de Castilla-La Mancha, Albacete (Spain). Renewable Energy Research Inst. and Dept. of Electrical, Electronic and Control Engineering; Fuentes, J.A.; Molina-Garcia, A. [Universidad Politecnica de Cartagena (Spain). Dept. of Electrical Engineering

    2008-07-01

    A voltage dip is a disturbance in the power system that consists in a sudden reduction of voltage level and a recovery in a short period of time, the magnitude and angle of the voltage phasors can be affected by this disturbance. The variation between the pre-fault voltage phasor angle and dip voltage phasor angle is called phase-angle jump. In this paper, it is carried out a study of the characteristics of real voltage dips. The study highlights the phase-angle jumps that appear on voltage dips, analyzing the influence of the voltage dip type, depth or length. Voltage dips have been acquired with power quality analyzers with a 10 MHz sample rate in a Spanish wind farm for 18 months. (orig.)

  20. Application of phase angle for evaluation of the nutrition status of patients with anorexia nervosa.

    Science.gov (United States)

    Małecka-Massalska, Teresa; Popiołek, Joanna; Teter, Mariusz; Homa-Mlak, Iwona; Dec, Mariola; Makarewicz, Agata; Karakuła-Juchnowicz, Hanna

    2017-12-30

    The evaluation of the nutrition status of patients has been the subject of interest of many scientific disciplines. Any deviation from normal values is a serious clinical problem. There are multiple nutrition status evaluation methods used including diet history, scales and questionnaires, physical examination, anthropometric measurements, biochemical measurements, function tests, as well as bioelectric impedance analysis or adipometry. Phase angle, obtained by means of bioelectric impedance analysis, is another parameter that is being more and more frequently applied in nutrition status monitoring. It is proportional to body cell mass. Its direct correlation with the cellular nutrition status has been documented. High phase angle values signify well-being, while low phase angle values indicate poor condition of cells. The purpose of this paper was to review the current state of knowledge about the application of phase angle in evaluation and monitoring of the nutrition status of patients with anorexia nervosa on the basis of available literature. It was proven that the phase angle values in patients with anorexia nervosa are much lower compared to healthy people. Detailed observations showed phase angle value increase in the course of treatment. The relevance of the commonly used body mass index (BMI) has been questioned due to significant degree of generalization in the nutrition status evaluation. Thus, there is a need for new, objective parameters for nutrition status evaluation, which will assist in the treatment and monitoring of patients in a more meaningful and reliable way. The existing independent studies equivocally confirm the usefulness of phase angle in the evaluation of nutrition status of patients with anorexia nervosa and its broader application in clinical practice is only a matter of time. However, these are merely attempts and they have not yet found wider application in clinical practice in the treatment of anorexia nervosa.

  1. Sex of college students moderates associations among bedtime, time in bed, and circadian phase angle.

    Science.gov (United States)

    Van Reen, Eliza; Sharkey, Katherine M; Roane, Brandy M; Barker, David; Seifer, Ronald; Raffray, Tifenn; Bond, Tamara L; Carskadon, Mary A

    2013-12-01

    Sex differences in circadian rhythms have been reported with some conflicting results. The timing of sleep and length of time in bed have not been considered, however, in previous such studies. The current study has 3 major aims: (1) replicate previous studies in a large sample of young adults for sex differences in sleep patterns and dim light melatonin onset (DLMO) phase; (2) in a subsample constrained by matching across sex for bedtime and time in bed, confirm sex differences in DLMO and phase angle of DLMO to bedtime; (3) explore sex differences in the influence of sleep timing and length of time in bed on phase angle. A total of 356 first-year Brown University students (207 women) aged 17.7 to 21.4 years (mean = 18.8 years, SD = 0.4 years) were included in these analyses. Wake time was the only sleep variable that showed a sex difference. DLMO phase was earlier in women than men and phase angle wider in women than men. Shorter time in bed was associated with wider phase angle in women and men. In men, however, a 3-way interaction indicated that phase angles were influenced by both bedtime and time in bed; a complex interaction was not found for women. These analyses in a large sample of young adults on self-selected schedules confirm a sex difference in wake time, circadian phase, and the association between circadian phase and reported bedtime. A complex interaction with length of time in bed occurred for men but not women. We propose that these sex differences likely indicate fundamental differences in the biology of the sleep and circadian timing systems as well as in behavioral choices.

  2. NEAs: Phase Angle Dependence of Asteroid Class and Diameter from Observational Studies

    Science.gov (United States)

    Wooden, Diane H.; Lederer, Susan M.; Bus, Schlete; Tokunaga, Alan; Jehin, Emmanuel; Howell, Ellen S.; Nolan, Michael C.; Ryan, Erin; Fernandez, Yan; Harker, David; hide

    2015-01-01

    We will discuss the results of a planned observation campaign of Near Earth Asteroids (NEAs), 1999 CU3, 2002 GM2, 2002 FG7, and 3691 Bede with instruments on the United Kingdom Infrared Telescope (UKIRT) from 15-Mar-2015 to 28-April 2015 UT. We will study the phase-angle dependence of the reflectance and thermal emission spectra. Recent publications reveal that the assignment of the asteroid class from visible and near-IR spectroscopy can change with phase angle for NEAs with silicate-bearing minerals on their surfaces (S-class asteroids) (Thomas et al. 2014, Icarus 228, 217; Sanchez et al. 2012 Icarus 220, 36). Only three of the larger NEAs have been measured at a dozen phase angles and the trends are not all the same, so there is not yet enough information to create a phase-angle correction. Also, the phase angle effect is not characterized well for the thermal emission including determination of the albedo and the thermal emission. The few NEAs were selected for our study amongst many possible targets based on being able to observe them through a wide range of phase angles, ranging from less than about 10 degrees to greater than 45 degrees over the constrained date range. The orbits of NEAs often generate short observing windows at phase angles higher than 45 deg (i.e., whizzing by Earth and/or close to dawn or dusk). Ultimately, lowering the uncertainty of the translation of asteroid class to meteorite analog and of albedo and size determinations are amongst our science goals. On a few specific nights, we plan to observe the 0.75-2.5 micron spectra with IRTF+SpeX for comparison with UKIRT data including 5-20 micron with UKIRT+UIST/Michelle to determine as best as possible the albedos. To ensure correct phasing of spectroscopic data, we augment with TRAPPIST-telescope light curves and R-band guider image data. Our observations will contribute to understanding single epoch mid-IR and near-IR measurements to obtain albedo, size and IR beaming parameters (the

  3. Evaluation of algorithms for calculating bioimpedance phase angle values from measured whole-body impedance modulus.

    Science.gov (United States)

    Nordbotten, Bernt J; Tronstad, Christian; Martinsen, Ørjan G; Grimnes, Sverre

    2011-07-01

    This paper addresses the problem of calculating the bioimpedance phase angle from measurements of impedance modulus. A complete impedance measurement was performed on altogether 20 healthy persons using a Solatron 1260/1294 system. The obtained impedance modulus (absolute impedance value) values were used to calculate the Cole parameters and from them the phase angles. In addition, the phase angles were also calculated using a Kramers-Kronig approach. A correlation analysis for all subjects at each frequency (5, 50, 100 and 200 kHz) for both methods gave R(2) values ranging from 0.7 to 0.96 for the Cole approach and from 0.83 to 0.96 for the Kramers-Kronig approach; thus, both methods gave good results compared with the complete measurement results. From further statistical significance testing of the absolute value of the difference between measured and calculated phase angles, it was found that the Cole equation method gave significantly better agreement for the 50 and 100 kHz frequencies. In addition, the Cole equation method gives the four Cole parameters (R(0), R(∞), τ(z) and α) using measurements at frequencies up to 200 kHz while the Kramers-Kronig method used frequencies up to 500 kHz to reduce the effect of truncation on the calculated results. Both methods gave results that can be used for further bioimpedance calculations, thus improving the application potential of bioimpedance measurement results obtained using relatively inexpensive and portable measurement equipment.

  4. Power Swing Detection in UPFC-Compensated Line by Phase Angle of Current

    DEFF Research Database (Denmark)

    Khodaparast, Jalal; Khederzadeh, M.; Silva, Filipe Miguel Faria da

    2017-01-01

    condition. The results show that these indices may no longer work in systems with UPFC. In addition, this paper proposes a new method for detecting power swing based on the phase angle of current at relay point and compares it with two other methods. The new method distinguishes power swing from a fault...

  5. About a linear polarization of comets: The phase-angle dependences of polarization degree

    Science.gov (United States)

    Shestopalov, D. I.; Golubeva, L. F.

    2017-05-01

    The ground-based astronomic observations of comet cannot provide a proper phase angle coverage that is needed to estimate with a reasonable accuracy all of the attributes of comet polarization phase curve. To find the best approximation to the phase polarization dependences observed for comets, we apply a simple empiric formula that has already shown good results when operating with asteroid and lunar polarimetric curves (Shestopalov, 2004; Shestopalov and Golubeva, 2015). From the set of comets present in DBCP (Kiselev et al., 2006), we selected 20, for which the calculation of regular polarimetric curves (i.e. the phase angle - polarization dependences with a low level of nonsteady activity) was possible. Within the phase angle coverage area for these 20 comets, a potential user can reproduce 82 best-fitting polarimetric phase curves in various spectral domains. Then we analyzed the properties of negative and positive polarization of the comets. The interrelation between the averaged polarimetric slope h at the inversion angle and wavelength was found. In general, the parameters of negative branch vary slightly from one comet to another. We found a close correlation between the maximum polarization degree Pmax and the slope of the segment of polarimetric curve bounded by phase angles of 30° and 50°. This finding allowed to adduce the evidence in support of the idea voiced by Chernova et al. (1993) about two types of comet with high and low Pmax. Moreover, we have found direct correlation between the maximum polarization degree of comets and their dust-to-gas ratio. The latter is actually a visual proof of assumptions voiced many years ago about a mutual effect of gas and dust on observed polarization of comets (see, for instance, a historical review in Kiselev et al., 2015). Thus, the polarimetric effect of resonant fluorescence should be completely eliminated from the phase-dependent polarization curve of comet in order to correctly interpret the physical

  6. Characterization of complex phase steel using backscattered electron images with controlled collection angles.

    Science.gov (United States)

    Sato, Kaoru; Sueyoshi, Hitoshi; Yamada, Katsumi

    2015-10-01

    For optimizing the microstructure of complex phase (CP) steels, characterization using scanning electron microscopy (SEM) is powerful because it allows observations from very low to high magnification. SEM specimens of steels are often etched in order to distinguish between the different phases by producing topographic information. This is however an 'indirect' method of characterization, which does not give precise structural information. We have developed a new technique for the selective imaging of the martensite (M) phase in a ferritic (F)-M complex phase steel. Backscattered electron (BSE) images at 15-20 kV were recorded by systematically changing the collection angle θ, where θ is measured from the specimen surface. When θ was 30-45°, strong channeling contrast was observed. For lower values of θ, it is the low energy loss electrons that mainly contribute to the contrast. As θ increases, the M phase exhibits brighter contrast. When θ exceeds 60°, a selective imaging of the M phase is achieved. This is not because martensite has a larger mean atomic number than ferrite, but is due to the fact that martensite has a high crystallographic defect density. Anomalously bright M contrast is due to multiple scattering of BSE due to the high density of planar defects and dislocations. Low angle BSE allows high resolution characterization of complex microstructures, while high angle BSE gives quantitative assessment of the distribution and the volume fraction of the martensite phase. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Phase angle and impedance measurements for nondestructive moisture content determination of in-shell peanuts using a cylindrical sample holder

    Science.gov (United States)

    A simple, low cost instrument that measures impedance and phase angle was used along with a parallel-plate capacitance system to estimate the moisture content (MC) of yellow corn. A sample of corn weighing about 100g was placed between the parallel-plate electrodes and the impedance and phase angle...

  8. Capacitance and phase-angle measurement for estimating moisture content in nuts and grain nondestructively

    Science.gov (United States)

    Kandala, Chari V.; Butts, Chris L.

    2006-03-01

    The design and performance of an electrical instrument that would be useful in estimating the moisture content (mc) of agricultural products such as grain and nuts nondestructively and rapidly is described here. The instrument, here after called the impedance meter, determines the capacitance and phase angle of a sample of the produce (about 100 g), filling the space between two parallel-plate electrodes, at two frequencies 1 and 5 MHz. The measured values were used in a semi-empirical equation to obtain the mc of the sample. In this paper, capacitance and phase angle were determined for in-shell peanuts in the moisture range between 6 and 25% by the impedance meter, and their moisture contents were calculated. The calculated values were compared with the mc values obtained by the standard air-oven method. The estimated values were in good agreement with the standard values. This method is applicable to produce such as corn, wheat and pecans also.

  9. POLO: a unique dataset to derive the phase angle dependence of the Moon irradiance

    Science.gov (United States)

    Lachérade, S.; Aznay, O.; Fougnie, B.; Lebègue, L.

    2014-10-01

    PLEIADES is a dual Earth observation system composed of two satellites, PLEIADES-1A and PLEIADES-1B, respectively launched at the end of 2011 and 2012. This imagery system, led by CNES, has four spectral bands, blue, green, red and near infrared, with a spatial resolution of 2.8 m and a panchromatic band with a resolution of 0.7 m in vertical viewing. Its swath is about 20 km. In the framework of the PLEIADES radiometric calibration, studies took place in order to determine the calibration precision that could be reached from the acquisitions realized on the Moon. Indeed, the precisions reached from observations of calibration sites on Earth (African deserts, Antarctica, clouds, instrumented sites) are about 2-3% for most of the spectral bands in the visible and the near infrared spectra. It is very difficult to further improve this precision down to 1% because each method has its own limitations, generally due to atmospheric disturbances. In this context, the Moon seems to be an ideal calibration site: there is no atmosphere and its surface properties - thus its optical properties - are perfectly stable. Taking advantage of the high level of agility of PLEIADES, we performed an intensive observation campaign of the Moon in addition to the nominal acquisitions - when the Moon phase angle is about 40°. This intensive observation of the Moon, named POLO for Pleiades Orbital Lunar Observations, consists of a thousand acquisitions covering the phase angle range ±115 deg. The Moon was acquired as frequently as once every orbit, which represents acquisitions every 100 minutes. This paper provides an overview of these lunar experiments and an assessment of the variation of the irradiance of the Moon with phase angle. This paper also discusses a way to improve the phase angle dependence of existing lunar models.

  10. Effect of vision angle on the phase transition in flocking behavior of animal groups.

    Science.gov (United States)

    Nguyen, P The; Lee, Sang-Hee; Ngo, V Thanh

    2015-09-01

    The nature of the phase transition in a system of self-propelling particles has been extensively studied during the past few decades. A theoretical model was proposed by [T. Vicsek et al. Phys. Rev. Lett. 75, 1226 (1995)PRLTAO0031-900710.1103/PhysRevLett.75.1226] with a simple rule for updating the direction of motion of each particle. Based on the model of Vicsek et al., in this paper, we consider a group of animals as particles moving freely in a two-dimensional space. Due to the fact that the viewable area of animals depends on the species, we consider the motion of each individual within an angle φ=ϕ/2 (ϕ is called the angle of view) of a circle centered at its position of radius R. We obtained a phase diagram in the space (φ,η_{c}) with η_{c} being the critical noise. We show that the phase transition exists only in the case of a wide view's angle φ≥0.5π. The flocking of animals is a universal behavior of the species of prey but not the one of the predator. Our simulation results are in good agreement with experimental observation [C. Beccoa et al., Physica A 367, 487 (2006)PHYADX0378-437110.1016/j.physa.2005.11.041].

  11. [Orthodontics in general practice 3. Angle Class II/1 malocclusion: one-phase treatment treatment preferred to two-phase treatment

    NARCIS (Netherlands)

    Kuijpers, M.A.; Kuijpers-Jagtman, A.M.

    2008-01-01

    With regard to the optimal treatment timing for children with an Angle Class II division 1 malocclusion, there is an ongoing controversy on the effectiveness of a two-phase or a one-phase therapy. Two-phase treatment involves a first phase to correct the jaw relationship starting at the age of 7 to

  12. Phased array ultrasonic inspection method for homogeneous tube inspection over a wide oblique angle range

    Science.gov (United States)

    Lepage, Benoit; Painchaud-April, Guillaume

    2017-02-01

    As seamless tube manufacturers push quality requirements for their products, automated phased array Rotating Tube Inspection Systems (RTIS) are now required to provide continuous NDE detection performances over a wide angular range of oblique flaws. One major impact of this new reality is a paradigm shift for the calibration method use. This change is driven by the requirement to meet homogeneous detection over broad oblique flaw angle intervals, whereas standard practice only requires calibration at specific discrete angles. This paper presents an innovative method specifically designed to obtain high productivity and homogeneous inspection measurements over an oblique flaw range extending from -45 to 45 degrees. Experimental results from the application of the method on various tubes presenting multiple artificial flaws support the quantitative performance evaluation.

  13. A low bioimpedance phase angle predicts a higher mortality and lower nutritional status in chronic dialysis patients

    Science.gov (United States)

    Dumler Md, Francis

    2010-04-01

    Bioelectrical impedance analysis is an established technique for body composition analysis. The phase angle parameter, an index of body cell mass, tissue hydration, and membrane integrity, makes it suitable for assessing nutritional status and survivability. We evaluated the significance of a low phase angle value on nutritional status and mortality in 285 chronic dialysis patients during a longitudinal prospective observational study. Patients in the lower phase angle tertile had decreased body weight, body mass index, fat free mass, body cell mass, and lower serum albumin concentrations than those in the higher tertile (Prisk for malnutrition and increased mortality.

  14. An estimation of knee and ankle joint angles during extension phase of standing up motion performed using an inertial sensor

    OpenAIRE

    Jin, Fang; Nagasaki, Takayuki; Wada, Chikamune

    2017-01-01

    [Purpose] Motion capture system is difficult to use in daily life. The aim of this study was to propose an estimation model for knee and ankle joint angle measurements and locate body center of gravity (COG) of the extension phase during standing-up motion. [Subjects and Methods] Seven healthy male volunteers were enrolled. An estimation model was proposed for the knee and ankle joint angle measurements by combining the angle and acceleration of the trunk, based on readings from the inertial ...

  15. CUTOFF POINT OF THE PHASE ANGLE IN PRE-RADIOTHERAPY CANCER PATIENTS.

    Science.gov (United States)

    Souza Thompson Motta, Rachel; Alves Castanho, Ivany; Guillermo Coca Velarde, Luis

    2015-11-01

    malnutrition is a common complication for cancer patients. The phase angle (PA), direct measurement of bioelectrical impedance analysis (BIA), has been considered a predictor of body cell mass and prognostic indicator. Cutoff points for phase angle (PA) associated with nutritional risk in cancer patients have not been determined yet. assess the possibility of determining the cutoff point for PA to identify nutritional risk in pre-radiotherapy cancer patients. sample group: Patients from both genders diagnosed with cancer and sent for ambulatory radiotherapy. body mass index (BMI), percentage of weight loss (% WL), mid-arm circumference (MAC), triceps skinfold thickness (TST), mid-arm muscle circumference (MAMC), mid-arm muscle area (MAMA), score and categorical assessment obtained using the Patient-Generated Subjective Global Assessment (PG-SGA) form, PA and standardized phase angle (SPA). Kappa coefficient was used to test the degree of agreement between the diagnoses of nutritional risk obtained from several different methods of nutritional assessment. Cutoff points for the PA through anthropometric indicators and PG-SGA were determined by using Receiver Operating Characteristic (ROC) curves, and patient survival was analyzed with the Cox regression method. the cutoff points with the greatest discriminatory power were those obtained from BMI (5.2) and the categorical assessment of PG-SGA (5.4). The diagnosis obtained using these cutoff points showed a significant association with risk of death for the patients in the sample group. we recommend using the cutoff point 5.2 for the PA as a criterion for identifying nutritional risk in pre-radiotherapy cancer patients. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Vapor Phase Sensing Using Metal Nanorod Thin Films Grown by Cryogenic Oblique Angle Deposition

    Directory of Open Access Journals (Sweden)

    Piyush Shah

    2013-01-01

    Full Text Available We demonstrate the chemical sensing capability of silver nanostructured films grown by cryogenic oblique angle deposition (OAD. For comparison, the films are grown side by side at cryogenic (~100 K and at room temperature (~300 K by e-beam evaporation. Based on the observed structural differences, it was hypothesized that the cryogenic OAD silver films should show an increased surface enhanced Raman scattering (SERS sensitivity. COMSOL simulation results are presented to validate this hypothesis. Experimental SERS results of 4-aminobenzenethiol (4-ABT Raman test probe molecules in vapor phase show good agreement with the simulation and indicate promising SERS applications for these nanostructured thin films.

  17. Methods for calculating phase angle from measured whole body bioimpedance modulus

    Science.gov (United States)

    Nordbotten, Bernt J.; Martinsen, Ørjan G.; Grimnes, Sverre

    2010-04-01

    Assuming the Cole equation we have developed a method to calculate the Cole parameters (R0, R∞, α, τZ) and the phase angle from four frequency measurements of impedance modulus values. The values obtained compare well with impedance measurements obtained using the Solatron 1294/1260 as obtained when making whole body measurements on five persons. We have also performed calculations using an algorithm based on the Kramers-Kronig approach. The results which are presented show that it is possible to obtain complete body impedance data combining relatively simple measurements with advanced calculation using a laptop. This extends the potential of portable equipment, since the measurements will require less instrumentation.

  18. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Science.gov (United States)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  19. Peeking into Saturn's atmosphere: the HST low-phase angle view

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sanz-Requena, J. F.; Sanchez-Lavega, A.; Hueso, R.; del Río-Gaztelurrutia, T.; Rojas, J. F.; Simon, A. A.; Wong, M. H.; de Pater, I.; Irwin, P. G. J.; Irizar, I.

    2015-11-01

    Recent Hubble Space Telescope WFC3 observations of Saturn have provided a low-phase angle view of the planet that nicely complements the higher phase angles and increased spatial resolution view from the Cassini spacecraft. HST orbits were perfectly timed for observing an atmospheric perturbation at polar latitudes, but they serendipitously captured other interesting features at the Equatorial Zone (EZ). In this presentation we will discuss how the synergy between the Cassini/ISS and HST/WFC3 observations provides an excellent way for peeking into Saturn's atmosphere and analyze the vertical distribution and properties of the particles and aerosols located in the lower stratosphere and upper troposphere of the planet. We first discuss how Cassini/ISS observations at a variety of phase angles constrain particle properties and phase function, in particular at the Equatorial Zone. This had not been investigated since the early 1980s (Tomasko & Doose, 1984), more than a Saturnian year before the current work. We will also discuss the sizes and shapes of particles in the troposphere, as constrained by the retrieved phase function . With this information, the HST/WFC3 observations at 10 filters from near-ultraviolet to the near-infrared provide substantial information on the vertical cloud structure and composition: the filters in and out of the intermediate and deep methane bands at the near infrared give information on particle number density around the tropopause level (5-10 part/cm3) and down to the ammonia condensation level, while near-ultraviolet and blue filters characterize the absorption of unknown chromophores in Saturn's atmosphere. We will further show observations and radiative transfer models of selected atmospheric features that have important dynamical implications for understanding Saturn's atmospheric dynamics at the EZ and the Northern polar atmosphere. In particular, fast-moving features in the EZ with Voyager-era speeds seem to be located deeper (

  20. The Association between Phase Angle of Bioelectrical Impedance Analysis and Survival Time in Advanced Cancer Patients: Preliminary Study.

    Science.gov (United States)

    Lee, So Yeon; Lee, Yong Joo; Yang, Jung-Hwa; Kim, Chul-Min; Choi, Whan-Seok

    2014-09-01

    A frequent manifestation of advanced cancer patients is malnutrition, which is correlated with poor prognosis and high mortality. Bioelectrical impedance analysis (BIA) is an easy-to-use and non-invasive technique to evaluate changes in body composition and nutritional status. We investigated BIA-derived phase angle as a prognostic indicator for survival in advanced cancer patients. Twenty-eight patients treated at the hospice center of Seoul St. Mary's Hospital underwent BIA measurements from January, 2013 to May, 2013. We also evaluated palliative prognostic index (PPI) and palliative performance scale to compare with the prognostic value of phase angle. Cox's proportional hazard models were constructed to evaluate the prognostic effect of phase angle. The Kaplan Meier method was used to calculate survival. Using univariate Cox analysis, phase angle (hazard ratio [HR], 0.61/per degree increase; 95% confidence interval [CI], 0.42 to 0.89; P = 0.010), PPI (HR, 1.21; 95% CI, 1.00 to 1.47; P = 0.048) were found to be significantly associated with survival. Adjusting age, PPI, body mass index, phase angle significantly showed association with survival in multivariate analysis (HR, 0.64/per degree increase; 95% CI, 0.42 to 0.95; P = 0.028). Survival time of patients with phase angle ≥ 4.4° was longer than patients with phase angle < 4.4° (log rank, 6.208; P-value = 0.013). Our data suggest BIA-derived phase angle may serve as an independent prognostic indicator in advanced cancer patients.

  1. Large Negative Stress Phase Angle (SPA) attenuates nitric oxide production in bovine aortic endothelial cells.

    Science.gov (United States)

    Dancu, Michael B; Tarbell, John M

    2006-06-01

    Hemodynamics plays an important role in cardiovascular physiology and pathology. Pulsatile flow (Q), pressure (P), and diameter (D) waveforms exert wall shear stress (WSS), normal stress, and circumferential strain (CS) on blood vessels. Most in vitro studies to date have focused on either WSS or CS but not their interaction. Recently, we have shown that concomitant WSS and CS affect EC biochemical response modulated by the temporal phase angle between WSS and CS (stress phase angle, SPA). Large negative SPA has been shown to occur in regions of the circulation where atherosclerosis and intimal hyperplasia are prevalent. Here, we report that nitric oxide (NO) biochemical secretion was significantly decreased in response to a large negative SPA of -180 deg with respect to an SPA of 0 degrees in bovine aortic endothelial cells (BAEC) at 5 h. A new hemodynamic simulator for the study of the physiologic SPA was used to provide the hemodynamic conditions of pro-atherogenic (SPA = -180 deg) and normopathic (SPA = 0 deg) states. The role of complex hemodynamics in vascular remodeling, homeostasis, and pathogenesis can be advanced by further assessment of the hypothesis that a large negative SPA is pro-atherogenic.

  2. Geometrical phase and inertial regime of the magnetization: Hannay angle and magnetic monopole

    Science.gov (United States)

    Wegrowe, J.-E.; Olive, E.

    2015-09-01

    It is well known that the Landau-Lifshitz-Gilbert (LLG) equation for a macroscopic magnetic moment find its limit of validity at very short time scales or equivalently at very high frequencies. The reason for this limit of validity is well understood in terms of separation of the characteristic times between slow (the magnetization) and fast (the environment) degrees of freedom, as pointed-out in the stochastic derivation of the LLG equation first proposed by W. F. Brown in 1963. Indeed, the ferromagnetic moment is a slow collective variable, but fast degrees of freedom are also playing a role in the dynamics, and especially the variation of the angular momentum responsible for inertia. In the last couple of years, the generalization of the LLG equation with inertia (ILLG) has been derived by different means (see list of references). The signature of the inertial regime of the magnetization is the nutation that can be measured by resonance experiments (but it has not been observed up to know). We developed an approach in terms of geometrical phase (defining the corresponding Hannay angle, which is the classical analog to the quantum Berry phase: see references), that has recently been used with success to analogous problems. We calculated the Hannay angle for the precession of the magnetization in the case of the inertial effect, and the corresponding magnetic monopole. This analysis allows the slow vs. fast variable expansion to be calculated in the specific case of pure precession.

  3. Grazing angle Mach-Zehnder interferometer using reflective phase gratings and a polychromatic, un-collimated light source

    Science.gov (United States)

    Kemble, Camille K.; Auxier, Julie; Lynch, Susanna K.; Bennett, Eric E.; Morgan, Nicole Y.; Wen, Han

    2011-01-01

    Normal incidence Talbot-Lau interferometers in x-ray applications have the drawbacks of low fringe visibility with polychromatic sources when the wave propagation distance is increased to achieve higher phase sensitivity, and when fabrication limits the attainable grating density. In contrast, reflective gratings illuminated at grazing angles have dramatically higher effective densities than their physical values. However, new designs are needed for far field interferometers using grazing angle geometry with incoherent light sources. We show that, with the appropriate design and choice of reflective phase gratings, there exist pairs of interfering pathways of exactly equal lengths independent of the incoming beam’s incidence angle and wavelength. With a visible light grazing angle Mach-Zehnder interferometer, we show the conditions for achieving near ideal fringe visibility and demonstrate both absolute and differential phase-contrast imaging. We also describe the design parameters of an x-ray interferometer and key factors for its implementation. PMID:21197023

  4. An estimation of knee and ankle joint angles during extension phase of standing up motion performed using an inertial sensor.

    Science.gov (United States)

    Jin, Fang; Nagasaki, Takayuki; Wada, Chikamune

    2017-07-01

    [Purpose] Motion capture system is difficult to use in daily life. The aim of this study was to propose an estimation model for knee and ankle joint angle measurements and locate body center of gravity (COG) of the extension phase during standing-up motion. [Subjects and Methods] Seven healthy male volunteers were enrolled. An estimation model was proposed for the knee and ankle joint angle measurements by combining the angle and acceleration of the trunk, based on readings from the inertial sensor attachment on the subject's chest, during the extension phase. Joint angles and COG position were compared to those obtained by a motion capture system. [Results] The joint angles and COG position demonstrated high correlation coefficients which represent strong correlation between the proposed model and the motion capture system. The proposed model could estimate the joint angle during extension phase, with a maximum error of 4.58 degrees, as well as COG position in the horizontal and vertical directions with maximum errors of 4.48 cm and 3.19 cm, respectively. [Conclusion] The proposed system could be used instead of motion capture system to estimate knee and ankle joint angles; however, the estimation of the COG position was insufficient because of lacked accuracy.

  5. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber

    Science.gov (United States)

    Yahiaoui, Riad; Ouslimani, Habiba Hafdallah

    2017-09-01

    We report the simulation, fabrication, and experimental characterization of a single-layer broadband, polarization-insensitive and wide-angle near perfect metamaterial absorber (MA) in the microwave regime. The topology of the resonators is chosen in such a way that is capable of supporting simultaneously multiple plasmon resonances at adjacent frequencies, which lead to a broadband operation of the MA. Absorption larger than 80% at normal incidence covering a broad frequency range (between 7.4 GHz and 10.4 GHz) is demonstrated experimentally and through numerical simulations. Furthermore, the performance of the metamaterial absorber is kept constant up to an incident angle of 30°, for both TE and TM-polarizations. In addition, a hybrid model of the MA is proposed and implemented numerically in order to dynamically tune the absorption window. The hybrid MA is controlled by incorporating vanadium dioxide (VO2) temperature-driven metal-insulator phase transition material, which enables the transition from broadband (80% absorption and 3 GHz bandwidth) to narrowband (80% absorption and 0.7 GHz bandwidth) absorption window. Our proposed single-layer MA offers substantial advantages due to its low-cost and simplicity of fabrication. The results are very promising, suggesting a potential use of the MA in wide variety of applications including solar energy harvesting, biosensing, imaging, and stealth technology.

  6. Applying Closing Phase-Angle Control Technique in Bounce Reduction of AC Permanent Magnet Contactor

    Directory of Open Access Journals (Sweden)

    Chieh-Tsung Chi

    2009-01-01

    Full Text Available A new low-cost electronic control circuit actuator is proposed for minimizing the bouncing times of an AC permanent magnet (PM contactor after two contacts closing. The proposed new actuator overcomes the bouncing problem of an uncontrollable restrictions imposed by previously conventional AC electromagnetic (EM contactor based on the minimization of kinetic energy prior to two contacts impact. By choosing the closing phase angle of coil voltage on purpose, the bouncing problems of the movable contact during the closing process are then overcome. The using life of contacts is then prolonged and their operating reliability is improved as well. In order to validate the feasibility and effectiveness of the proposed method here, several simulation and experimental procedures were performed on a prototype of AC PM contactor in the laboratory. Testing results actually showed that bouncing problem of contactor's contacts during the closing process was to be controlled by using the proposed technology.

  7. Body composition and phase angle in Russian children in remission from acute lymphoblastic leukemia

    Science.gov (United States)

    Tseytlin, G. Ja; Khomyakova, I. A.; Nikolaev, D. V.; Konovalova, M. V.; Vashura, A. Yu; Tretyak, A. V.; Godina, E. Z.; Rudnev, S. G.

    2010-04-01

    Elevated degree of body fatness and changes in other body composition parameters are known to be common effects of treatment for acute lymphoblastic leukemia (ALL) in children. In order to study peculiarities of somatic growth and development in ALL survivors, we describe the results of BIA body composition analysis of 112 boys and 108 girls aged 5-18 years in remission from ALL (remission time range 1-13 years) compared to data from the same number of age- and sex-matched healthy controls (n=220). Detrimental effect on height in ALL boys was observed, whereas girls experienced additional weight gain compared to healthy subjects. In ALL patients, resistance, body fat, and percent body fat were significantly increased. The reactance, phase angle, absolute and relative values of skeletal muscle and body cell mass were significantly decreased. Principal component analysis revealed an early prevalence of adiposity traits in the somatic growth and development of ALL girls compared to healthy controls.

  8. Phase Angle Calculation Dynamics of Type 4 Wind Turbines in RMS Simulations during Severe Voltage Dips

    DEFF Research Database (Denmark)

    Altin, Müfit; Göksu, Ömer; Sørensen, Poul Ejnar

    2016-01-01

    In order to conduct power system simulations with high shares of wind energy, standard wind turbine models, which are aimed to be generic rms models for a wide range of wind turbine types, have been developed. As a common practice of rms simulations, the power electronic interface of wind turbines...... is assumed to be ideally synchronized, i.e. grid synchronization (e.g. PLL) is not included in simplified wind turbine models. As will be shown in this paper, this practice causes simulation convergence problems during severe voltage dips and when the loss of synchronism occurs. In order to provide...... the simulation convergence without adding complexity to the generic models, a first order filtering approach is proposed as a phase angle calculation algorithm in the grid synchronization of the rms type 4 wind turbine models. The proposed approach provides robustness for the simulation of large scale power...

  9. Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study.

    Science.gov (United States)

    Barrea, Luigi; Muscogiuri, Giovanna; Macchia, Paolo Emidio; Di Somma, Carolina; Falco, Andrea; Savanelli, Maria Cristina; Colao, Annamaria; Savastano, Silvia

    2017-02-17

    The Mediterranean diet is a healthy dietary pattern known to actively modulate the cell membrane properties. Phase angle (PhA) is a direct measure by Bioelectrical Impedance Analysis (BIA) used as marker of cell membrane integrity. Both food behaviour and PhA are influenced by age, sex and body weight. The aim of this study was to cross-sectionally evaluate the association between the adherence to Mediterranean diet and PhA in 1013 healthy adult patients stratified according to sex, age, and body mass index (BMI). The adherence to the Mediterranean diet was evaluated using the PREvención con DIeta MEDiterránea (PREDIMED) questionnaire. PhA was calculated by BIA phase-sensitive system (50 kHz BIA 101 RJL, Akern Bioresearch, Florence, Italy Akern). In both sexes, at ROC analysis a PREDIMED score ≥ 6 predicted a PhA beyond the median value. At the multivariate analysis, among PREDIMED score, age, and BMI, the PREDIMED score was the major determinant of PhA, explaining 44.5% and 47.3% of PhA variability, in males and females respectively (p Mediterranean diet and PhA, independently of sex, age, and body weight. This association uncovered a new potential benefit of the Mediterranean diet on health outcomes, as in both sexes higher adherence to the Mediterranean diet was associated to larger PhAs, as expression of cell membrane integrity.

  10. The Effect of the Phase Angle between the Forewing and Hindwing on the Aerodynamic Performance of a Dragonfly-Type Ornithopter

    OpenAIRE

    Hidetoshi Takahashi; Alice Concordel; Jamie Paik; Isao Shimoyama

    2016-01-01

    Dragonflies achieve agile maneuverability by flapping four wings independently. Different phase angles between the flapping forewing and hindwing have been observed during various flight modes. The aerodynamic performance depends on phase angle control, as exemplified by an artificial flying ornithopter. Here, we present a dragonfly-like ornithopter whose phase angle was designed to vary according to the phase lag between the slider-cranks of the forewing and hindwing. Two microelectromechani...

  11. A pilot study of the phase angle between cortisol and melatonin in major depression - a potential biomarker?

    Science.gov (United States)

    Buckley, Theresa M; Schatzberg, Alan F

    2010-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis and melatonin rhythm alterations have been independently reported in major depression (MDD) as well as in insomnia. In this pilot study, we link cortisol and melatonin rhythms and propose that the phase angle between cortisol acrophase (CA) and dim-light melatonin onset (20 pg/ml) (DLMO-20) may yield a useful state specific biomarker for MDD. Six healthy (HC) and six depressed (MDD) psychotropic free subjects were admitted to the General Clinical Research Center. Blood was sampled for cortisol and melatonin from 1600h to 1000h, under dim lights (cortisol concentration was determined for each subject. Phase angle was computed as the difference in time between CA and DLMO-20. Phase angle was significantly increased in MDD's versus HC's (13.40+/-1.61h. versus 11.61+/-1.66h, p=0.026). Using ROC analysis, a phase angle greater than 13.57h distinguished MDD's from HC's (sensitivity=0.83, specificity=1.0). Mean nocturnal melatonin (1600-1000h) was significantly decreased in MDD's versus HC's (22.67+/-9.08 pg/ml versus 47.82+/-14.76 pg/ml, p=0.015). The phase angle between CA and DLMO-20 appears to distinguish HC's from MDD's and may be a useful biomarker to aid biologic assessment as well as treatment. Lower nocturnal melatonin in MDD's highlights its importance in MDD's pathophysiology. Additional study with larger sample size is needed to confirm the results of this pilot study. The mechanism for this phase angle difference and decreased melatonin, itself, requires further study. Copyright 2009. Published by Elsevier Ltd.

  12. Optimizing utilization efficiencies in electronegative discharges: The importance of the impedance phase angle

    Science.gov (United States)

    Entley, W. R.; Langan, J. G.; Felker, B. S.; Sobolewski, M. A.

    1999-11-01

    We have investigated the operating conditions that result in the greatest utilization efficiencies (UEs) of NF3, CF4, and C2F6 in a capacitively coupled GEC reference cell. We have also independently measured the rf electrical characteristics and optical emission spectra of the plasmas. To avoid inadvertently attributing changes in the UE, discharge impedance, rf currents, or atomic emission intensities to parasitic losses in the matching network or rf delivery system, the rf generator was adjusted to ensure that the same amount of power was dissipated within each discharge. For the NF3 plasmas, argon was used as a diluent and both the NF3 concentration and reactor pressure were varied. For the CF4 and C2F6 based plasmas, the gas compositions were fixed (86 mol % CF4/O2 and 50 mol % C2F6/O2) and the reactor pressure was varied. The greatest NF3 UEs occurred within a narrow range of NF3 partial pressures. The greatest CF4 and C2F6 UEs occurred within a narrow range of reactor pressures. For all mixtures, operating conditions that yielded the highest UEs also yielded the brightest plasmas, the lowest impedance magnitudes, the greatest fraction of current flowing to the grounded electrode, and impedance phase angles within a narrow window centered near φpe=-40°. Within this region, plasma power is most efficiently utilized to dissociate the source gas and excite the atoms that emit light. Collapsed plasmas, observed for high pressure highly electronegative conditions, exhibited very low UEs. At optimal operating conditions the UE of the fluorinated source gases were found to decrease in the order: NF3>C2F6>CF4. The results of this study suggest that the baseline corrected fluorine atom emission intensity (703.7 nm), the magnitude of the discharge impedance, or phase angle of the discharge impedance could be monitored to determine the relative fluorinated source gas UE in an arbitrary plasma reactor as the operating conditions are varied. The concept of an ideal NF3

  13. The contact angle of wetting of the solid phase of soil before and after chemical modification

    Directory of Open Access Journals (Sweden)

    Tyugai Zemfira

    2015-07-01

    Full Text Available Wettability of soil affects a wide variety of processes including infiltration, preferential flow and surface runoff. Wettability of surface is usually expressed in terms of contact angle (CA measurement. If the CA between liquid and solid surface is less than 90°, the surface is called hydrophilic, otherwise the surface is called hydrophobic. If the CA of water droplet on hydrophilic surface is in a range of 0-30° this surface is called superhydrophilic. In case of superhydrophobic surfaces the CA exceeds 150° that means that these surfaces are extremely difficult to wet. CA of wetting of mineral soil particles depends on the overlying organic and iron compounds. The object of study is a sample of the humus-accumulative horizon of typical chernozem (Kursk, Russia and two samples (horizons A1, B2 of red ferrallitic soils (Fr. Norfolk, NE Oceania. The soil samples were analyzed for organic carbon, forms of non-silicate iron and hydrophobic-hydrophilic composition of humic substances. CA of wetting was determined in the intact samples and after removal of organic matter (H2O2 treatment, amorphous and crystallized forms of iron. Static contact angles were determined with the sessile drop method using a digital goniometer (Drop Shape Analysis System, DSA100, Krüss GmbH, Hamburg, Germany. The contact angle was calculated by the Young–Laplace method (fitting of Young–Laplace equation to the drop shape. The measurements were repeated 10-15 times for every sample. Oxidation of organic matter (H2O2 treatment causes an increase in the values of CA of wetting (in chernozem from 9.3 to 28,0-29.5º, in ferrallitic soil from 18.0 − 27.3 to 22.4 − 33.4º. CA remained constant for chernozem and slightly decreased in the case of ferrallitic soil, when the removal of amorphous and crystallized forms of iron was performed on samples pretreated with H2O2. CA increase occurs after successive removal of nonsilicate forms of iron from soil samples of

  14. Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study

    Science.gov (United States)

    Barrea, Luigi; Muscogiuri, Giovanna; Macchia, Paolo Emidio; Di Somma, Carolina; Falco, Andrea; Savanelli, Maria Cristina; Colao, Annamaria; Savastano, Silvia

    2017-01-01

    The Mediterranean diet is a healthy dietary pattern known to actively modulate the cell membrane properties. Phase angle (PhA) is a direct measure by Bioelectrical Impedance Analysis (BIA) used as marker of cell membrane integrity. Both food behaviour and PhA are influenced by age, sex and body weight. The aim of this study was to cross-sectionally evaluate the association between the adherence to Mediterranean diet and PhA in 1013 healthy adult patients stratified according to sex, age, and body mass index (BMI). The adherence to the Mediterranean diet was evaluated using the PREvención con DIeta MEDiterránea (PREDIMED) questionnaire. PhA was calculated by BIA phase-sensitive system (50 kHz BIA 101 RJL, Akern Bioresearch, Florence, Italy Akern). In both sexes, at ROC analysis a PREDIMED score ≥ 6 predicted a PhA beyond the median value. At the multivariate analysis, among PREDIMED score, age, and BMI, the PREDIMED score was the major determinant of PhA, explaining 44.5% and 47.3% of PhA variability, in males and females respectively (p < 0.001). A novel association was reported between the adherence to the Mediterranean diet and PhA, independently of sex, age, and body weight. This association uncovered a new potential benefit of the Mediterranean diet on health outcomes, as in both sexes higher adherence to the Mediterranean diet was associated to larger PhAs, as expression of cell membrane integrity. PMID:28218645

  15. Resistance training prescription with different load-management methods improves phase angle in older women.

    Science.gov (United States)

    Ribeiro, Alex S; Schoenfeld, Brad J; Souza, Mariana F; Tomeleri, Crisieli M; Silva, Analiza M; Teixeira, Denílson C; Sardinha, Luís B; Cyrino, Edilson S

    2017-08-01

    The purpose of the present study was to investigate the effect of two different resistance training (RT) prescription methods on phase angle (PA) in older women. Seventy-six older women (68.5 ± 5.7 years) were randomly assigned to one of three groups: two training groups that performed an eight-week RT programme either in a constant load (CT, n = 25) or an ascending pyramidal load (PR, n =  26) routine three times per week, or a control group (CG, n =  25) that performed no exercise. The CT programme consisted of three sets of 8-12 repetition maximum (RM) with a constant load for the three sets, whereas the PR training consisted of three sets of 12/10/8 RM with incremental loads for each set. PA was assessed by whole-body spectral bioelectrical impedance. After the RT period, both CT and PR achieved higher (P  .05) between trained groups. The results suggest that eight weeks of RT based on a PR and CT load routines promote an improvement in PA, and both prescription methods performed similarly.

  16. [Phase angle as an indicator of nutritional status and prognosis in critically ill patients].

    Science.gov (United States)

    Reis de Lima e Silva, Renata; Porto Sabino Pinho, Cláudia; Galvão Rodrigues, Isa; Gildo de Moura Monteiro Júnior, José

    2014-09-12

    The phase angle (PA) has been considered a sensitive tool to assess nutritional status and effectiveness of interventions dietetics. To evaluate the PA as an indicator of nutritional status and prognosis in critically ill patients. Prospective observational study of patients admitted to the Coronary Intensive Care Unit between May and October 2013. The PA was determined by bioelectrical impedance analysis, PA was considered low below 5º values for men and 4.6º for women. The values obtained were related to other evaluation parameters of nutritional status: anthropometric (arm circumference - AC , triceps skinfold thickness - TST , corrected arm muscle area - AMAc and calf circumference - CC) and biochemical (total lymphocyte count, hemoglobin, hematocrit), in addition to clinical prognostic APACHE II (Acute Physiology and Chronic Health Disease Classification System II) and serum albumin. The tabulation and analysis were performed using SPSS version 13.0. The sample consisted of 110 patients, in which an association was found between low AF and renal failure on dialysis (p < 0.001), % adequacy AC (p = 0.028), % adequacy of TST (p = 0.043), albumin level (p = 0.042), anemia (p = 0.040) and APACHE II (p = 0.012) scores. The AF was positively correlated with CC (p= 0.043) and inversely with the length of hospitalization (p = 0.006). PA in the ICU may be useful to identify early and malnourished patients as a prognostic indicator. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Phase Angle Control of Three Level Inverter Based D-STATCOM Using Neuro-Fuzzy Controller

    Directory of Open Access Journals (Sweden)

    COTELI, R.

    2012-02-01

    Full Text Available Distribution Static Compensator (D-STATCOM is a shunt compensation device used to improve electric power quality in distribution systems. It is well-known that D-STATCOM is a nonlinear, semi-defined and time-varying system. Therefore, control of D-STATCOM by the conventional control techniques is very difficult task. In this paper, the control of D-STATCOM is carried out by the neuro-fuzzy controller (NFC which has non-linear and robust structure. For this aim, an experimental setup based on three-level H-bridge inverter is constructed. Phase angle control method is used for control of D-STATCOM's output reactive power. Control algorithm for this experimental setup is prepared in MATLAB/Simulink and downloaded to DS1103 controller card. A Mamdani type NFC is designed for control of D-STATCOM's reactive current. Output of NFC is integrated to increase tracking performance of controller in steady state. The performance of D-STATCOM is experimentally evaluated by changing reference reactive current as on-line. The experimental results show that the proposed controller gives very satisfactory performance under different loading conditions.

  18. Phase angle and bioelectrical impedance vectors in adolescent and adult male athletes.

    Science.gov (United States)

    Koury, Josely C; Trugo N, M F; Torres, Alexandre G

    2014-09-01

    The aim of the current study was to assess phase angle (PA) and bioelectrical impedance vectors (BIVA) in adolescent (n = 105, 12-19 y) and adult (n = 90, 20-50 y) male athletes practicing varied sports modalities. Bioelectrical impedance analysis (BIA) was performed with a single-frequency tetrapolar impedance analyzer after the athletes had fasted overnight for 8 h. PA and BIVA were determined from BIA data. PA presented correlations (P athletes and also with age in adolescent (r = .63) and adult (r = -.27) athletes. Compared with adults, adolescent athletes presented lower PA and higher frequency of PA below the 5th percentile of a reference population (P athletes were different (P athletes were in the 95th percentile of BIVA tolerance ellipses and in quadrants consistent with adequate body cell mass and total body water. The adolescent athletes outside the 95th percentile ellipse were all football and basketball players who showed indications of decreased water retention and body cell mass and of increased water retention, respectively. PA and BIVA ellipses showed that the intense training routine of the athletes changed functional and hydration parameters and that the magnitude of these changes in adolescents may depend on the sport modality practiced.

  19. High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light

    Science.gov (United States)

    Varghese, Babu; Rajan, Vinayakrishnan; Van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2008-02-01

    We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach-Zehnder interferometer, at a high phase modulation angle. For dynamic turbid media this results in Doppler broadened phase modulation interference peaks at the modulation frequency and its multiples. The signal to noise ratio is increased by almost one order or magnitude for large modulation angles and the shape of the spectral peaks resulting from the interference of Doppler shifted sample waves and reference light is not changed. The path length dependent Doppler broadening is compared with the theoretical predictions in the single scattered and diffusive regimes. The experimentally measured optical path lengths are validated with the Monte Carlo technique.

  20. Phase angle and World Health Organization criteria for the assessment of nutritional status in children with osteogenesis imperfecta.

    Science.gov (United States)

    Pileggi, Vicky Nogueira; Scalize, Antonio Rodolpho Hakime; Camelo Junior, José Simon

    2016-12-01

    To compare the phase angle of patients with osteogenesis imperfecta treated at a tertiary university hospital with patients in a control group of healthy children, and to assess the nutritional status of these patients through the body mass index proposed by the World Health Organization. Cross-sectional study carried out in a university hospital that included seven patients with osteogenesis imperfecta and a control group of 17 healthy children of the same gender and age. Weight and height were measured and bioelectrical impedance was performed. Subsequently, the phase angle was calculated based on resistance and reactance values. The phase angle of the group of children with osteogenesis imperfecta was significantly lower than that of the control group (posteogenesis imperfecta have a nutritional risk detected by the phase angle, which is a useful tool for nutritional screening. The calculation result could help in the diet therapy of patients with osteogenesis imperfecta. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  1. Phase-Angle Dependence of Determinations of Diameter, Albedo, and Taxonomy: A Case Study of NEO 3691 Bede

    Science.gov (United States)

    Wooden, Diane H.; Lederer, Susan M.; Jehin, Emmanuel; Howell, Ellen S.; Fernandez, Yan; Harker, David E.; Ryan, Erin; Lovell, Amy; Woodward, Charles E.; Benner, Lance A.

    2015-01-01

    Parameters important for NEO risk assessment and mitigation include Near-Earth Object diameter and taxonomic classification, which translates to surface composition. Diameters of NEOs are derived from the thermal fluxes measured by WISE, NEOWISE, Spitzer Warm Mission and ground-based telescopes including the IRTF and UKIRT. Diameter and its coupled parameters Albedo and IR beaming parameter (a proxy for thermal inertia and/or surface roughness) are dependent upon the phase angle, which is the Sun-target-observer angle. Orbit geometries of NEOs, however, typically provide for observations at phase angles greater than 20 degrees. At higher phase angles, the observed thermal emission is sampling both the day and night sides of the NEO. We compare thermal models for NEOs that exclude (NEATM) and include (NESTM) night-side emission. We present a case study of NEO 3691 Bede, which is a higher albedo object, X (Ec) or Cgh taxonomy, to highlight the range of H magnitudes for this object (depending on the albedo and phase function slope parameter G), and to examine at different phase angles the taxonomy and thermal model fits for this NEO. Observations of 3691 Bede include our observations with IRTF+SpeX and with the 10 micrometer UKIRT+Michelle instrument, as well as WISE and Spitzer Warm mission data. By examining 3691 Bede as a case study, we highlight the interplay between the derivation of basic physical parameters and observing geometry, and we discuss the uncertainties in H magnitude, taxonomy assignment amongst the X-class (P, M, E), and diameter determinations. Systematic dependencies in the derivation of basic characterization parameters of H-magnitude, diameter, albedo and taxonomy with observing geometry are important to understand. These basic characterization parameters affect the statistical assessments of the NEO population, which in turn, affects the assignment of statistically-assessed basic parameters to discovered but yet-to-be-fully-characterized NEOs.

  2. Wall-to-bed mass transfer in three phase fluidized beds in the presence of angled disc promoter

    Science.gov (United States)

    Rohini Kumar, P.; Ashok Kumar, K.; Murty, M. S. N.; Ramesh, K. V.

    2017-10-01

    Mass transfer coefficient data were computed from measured limiting current values obtained at point electrodes fixed flush with the inner wall of an outer cylinder of three phase fluidized bed electrochemical reactor in the presence of an angled disc internal. Nitrogen was used as gas phase. Glass balls of different diameters were used as solid phase. The liquid phase was an electrolyte that belonged to the ferricyanide-ferrocyanide redox system. Enhancement in mass transfer coefficient obtained in the case of three-phase fluidized bed in the presence of angled disc internal was upto 14 fold in comparison with the homogeneous flow of electrolyte in plain pipe. The mass transfer coefficient data thus obtained were found to increase with increasing gas velocity, pitch and disc diameter. An increase in disc angle resulted in a decrease in the mass transfer coefficient. The influence of liquid velocity, promoter rod diameter and particle diameter on mass transfer coefficient was found to be insignificant. The entire mass transfer coefficient data obtained in the present study were subjected to regression analysis and useful correlation equation was obtained.

  3. Evolution of the frequency-dependent polarization-angle phase-shift in the microwave radiation-induced magnetoresistance oscillations

    Science.gov (United States)

    Liu, Han-Chun; Samaraweera, Rasanga L.; Reichl, C.; Wegscheider, W.; Mani, R. G.

    2017-06-01

    We report the evolution of the phase shift, θ 0, extracted from traces of the diagonal resistance, Rxx , vs. the linear polarization angle, θ, at oscillatory extrema of the microwave radiation induced magnetoresistance oscillations over the 36 ≤ f ≤ 40 GHz band in GaAs/AlGaAs system. A reference phase shift for the linear polarization angle in the vicinity of the specimen is obtained with the help of a sensitive carbon resistor. We fit an empirical cosine square law to the sinusoidal responses of Rxx vs. θ to extract the phase shift θ 0. The quasi-continuous variation θ 0 vs. f trace suggests a preferable polarization orientation for the specimen, and the f- and B- independence of overall average of θ 0.

  4. Depth-encoded dual beam phase-resolved Doppler OCT for Doppler-angle-independent flow velocity measurement

    Science.gov (United States)

    Qian, Jie; Cheng, Wei; Cao, Zhaoyuan; Chen, Xinjian; Mo, Jianhua

    2017-02-01

    Phase-resolved Doppler optical coherence tomography (PR-D-OCT) is a functional OCT imaging technique that can provide high-speed and high-resolution depth-resolved measurement on flow in biological materials. However, a common problem with conventional PR-D-OCT is that this technique often measures the flow motion projected onto the OCT beam path. In other words, it needs the projection angle to extract the absolute velocity from PR-D-OCT measurement. In this paper, we proposed a novel dual-beam PR-D-OCT method to measure absolute flow velocity without separate measurement on the projection angle. Two parallel light beams are created in sample arm and focused into the sample at two different incident angles. The images produced by these two beams are encoded to different depths in single B-scan. Then the Doppler signals picked up by the two beams together with the incident angle difference can be used to calculate the absolute velocity. We validated our approach in vitro on an artificial flow phantom with our home-built 1060 nm swept source OCT. Experimental results demonstrated that our method can provide an accurate measurement of absolute flow velocity with independency on the projection angle.

  5. A New Algorithm of Online Stator Faults Diagnosis of Three-Phase Induction Motors Using Duty Ratios of Half-Period Frequencies According to Phase Angle Changes

    Directory of Open Access Journals (Sweden)

    Go YoungJin

    2016-01-01

    Full Text Available The causes of faults of induction motors are largely categorized into bearing fault, which causes a mechanical fault, and stator fault and rotor fault, which cause an electrical fault. A stator fault among these faults, which causes an electrical fault, occurs due to the breakdown of insulation, meaning the stator is directly connected with the power supply, and the direct connection is a direct cause of a major accident. For this reason, many studies are being performed to detect the faults. This paper explained the effects of a negative sequence on phase angle change by analyzing the effects of the existing negative sequence on the d-q transform of Park’s vector approach. This paper suggested a new algorithm that identifies the causes of stator faults with the use of the change in the duty ratio of the half-period frequency of the frequency when a phase angle change occurs at that moment.

  6. An Alternative Method to Implement Contact Angle Boundary Condition on Immersed Surfaces for Phase-Field Simulations

    CERN Document Server

    Huang, Jun-Jie

    2016-01-01

    In this paper, we propose an alternative approach to implement the contact angle boundary condition on immersed surfaces for phase-field simulations of two-phase flows using the Cahn-Hilliard equation on a Cartesian mesh. This simple and effective method was inspired by previous works on the geometric formulation of the wetting boundary condition. In two dimensions, by making full use of the hyperbolic tangent profile of the order parameter, we were able to obtain its unknown value at a ghost point from the information at only one point in the fluid. This is in contrast with previous approaches using interpolations involving several points. The special feature allows this method to be easily implemented on immersed surfaces (including curved ones) that cut through the grid lines. It is verified through the study of two examples: (1) the shape of a drop on a circular cylinder with different contact angles; (2) the spreading of a drop on an embedded inclined wall with a given contact angle.

  7. Phase angle assessment by bioelectrical impedance analysis and its predictive value for malnutrition risk in hospitalized geriatric patients.

    Science.gov (United States)

    Varan, Hacer Dogan; Bolayir, Basak; Kara, Ozgur; Arik, Gunes; Kizilarslanoglu, Muhammet Cemal; Kilic, Mustafa Kemal; Sumer, Fatih; Kuyumcu, Mehmet Emin; Yesil, Yusuf; Yavuz, Burcu Balam; Halil, Meltem; Cankurtaran, Mustafa

    2016-12-01

    Phase angle (PhA) value determined by bioelectrical impedance analysis (BIA) is an indicator of cell membrane damage and body cell mass. Recent studies have shown that low PhA value is associated with increased nutritional risk in various group of patients. However, there have been only a few studies performed globally assessing the relationship between nutritional risk and PhA in hospitalized geriatric patients. The aim of the study is to evaluate the predictive value of the PhA for malnutrition risk in hospitalized geriatric patients. One hundred and twenty-two hospitalized geriatric patients were included in this cross-sectional study. Comprehensive geriatric assessment tests and BIA measurements were performed within the first 48 h after admission. Nutritional risk state of the patients was determined with NRS-2002. Phase angle values of the patients with malnutrition risk were compared with the patients that did not have the same risk. The independent variables for predicting malnutrition risk were determined. SPSS version 15 was utilized for the statistical analyzes. The patients with malnutrition risk had significantly lower phase angle values than the patients without malnutrition risk (p = 0.003). ROC curve analysis suggested that the optimum PhA cut-off point for malnutrition risk was 4.7° with 79.6 % sensitivity, 64.6 % specificity, 73.9 % positive predictive value, and 73.9 % negative predictive value. BMI, prealbumin, PhA, and Mini Mental State Examination Test scores were the independent variables for predicting malnutrition risk. PhA can be a useful, independent indicator for predicting malnutrition risk in hospitalized geriatric patients.

  8. The Effect of the Phase Angle between the Forewing and Hindwing on the Aerodynamic Performance of a Dragonfly-Type Ornithopter

    Directory of Open Access Journals (Sweden)

    Hidetoshi Takahashi

    2016-01-01

    Full Text Available Dragonflies achieve agile maneuverability by flapping four wings independently. Different phase angles between the flapping forewing and hindwing have been observed during various flight modes. The aerodynamic performance depends on phase angle control, as exemplified by an artificial flying ornithopter. Here, we present a dragonfly-like ornithopter whose phase angle was designed to vary according to the phase lag between the slider-cranks of the forewing and hindwing. Two microelectromechanical systems (MEMS differential pressure sensors were attached to the center of both forewing and hindwing to evaluate the aerodynamic performance during flapping motions when the phase angle was changed. By varying the phase angle in both the tethered condition and free-flight, the performance of the forewing remained approximately constant, whereas that of the hindwing exhibited obvious variations; the maximum average value was two-fold higher than the minimum. The experimental results suggest that simple phase angle changes enable a flying ornithopter to control flight force balance without complex changes in the wing kinematics.

  9. A small-angle X-ray scattering study of the lyotropic nematic phase of vanadium pentoxide gels

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, P. [Universite de Paris-Sud, Orsay (France). Lab. de Phys. des Solides; Bourgaux, C.; Sergot, P.; Livage, J.

    1997-10-01

    Aqueous suspensions of vanadium pentoxide (V{sub 2}O{sub 5}) ribbons, also called Zocher phases, are known to display a lyotropic nematic phase. In this paper, it is shown how the small-angle X-ray scattering (SAXS) technique can provide useful information on the building blocks and their organization in this phase. SAXS experiments were performed either on unoriented samples or on samples aligned by a magnetic field or by shear flow. The scattering is comparable to that of the other classic lyotropic nematic phases displayed by stiff organic rod-like particles such as the tobacco mosaic virus. Scattering studies show that the building blocks have a ribbon shape, that their thickness is 9(1) A and indirectly that their width is several 100 A. Their length is known to be around a few thousand A and therefore could not be measured by SAXS. By following the average distance between the ribbons as a function of concentration, it is shown that the swelling of the phase is one-dimensional at large concentrations and two-dimensional at low concentrations. Finally, estimates of the nematic order parameter of a single domain sample and of samples sheared in a Couette cell have been obtained. (orig.). 24 refs.

  10. Lensless phase microscopy and diffraction tomography with multi-angle and multi-wavelength illuminations using a LED matrix.

    Science.gov (United States)

    Zuo, Chao; Sun, Jiasong; Zhang, Jialin; Hu, Yan; Chen, Qian

    2015-06-01

    We demonstrate lensless quantitative phase microscopy and diffraction tomography based on a compact on-chip platform, using only a CMOS image sensor and a programmable color LED matrix. Based on the multi-wavelength phase retrieval and multi-angle illumination diffraction tomography, this platform offers high quality, depth resolved images with a lateral resolution of 3.72μm and an axial resolution of 5μm, across a wide field-of-view of 24mm2. We experimentally demonstrate the success of our method by imaging cheek cells, micro-beads, and fertilized eggs of Parascaris equorum. Such high-throughput and miniaturized imaging device can provide a cost-effective tool for telemedicine applications and point-of-care diagnostics in resource-limited environments.

  11. Load-Independent Harmonic Mitigation in SCR-Fed Three-Phase Multiple ASD Systems with Deliberately Dispatched Firing Angles

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Blaabjerg, Frede

    2018-01-01

    .e., Silicon-Controlled Rectifiers - SCRs) with boost converters in the dc-link have adopted to increase the harmonic-current controllability. More specific, the SCR firing angles are deliberately dispatched among the SCR drive units, which results in certain phase shifts of the SCR currents on purpose......Adjustable Speed Drives (ASDs) are widely used in three-phase multi-drive applications in industry for energy savings, where low-cost rectifiers (mainly Diode Rectifiers - DRs) are still employed as the front-ends in practice, also for simplicity in control and reliability in operation. However...... not of much cost-effectiveness, and hence, the use of communication in multiple parallel motordrive systems for harmonic control is rarely witnessed in industry. In this sense, this paper proposes a harmonic mitigation strategy for multiple parallel ASD systems, where another type of low-cost rectifiers (i...

  12. Effect of operating frequency and phase angle on performance of Alpha Stirling cryocooler driven by a novel compact mechanism

    Science.gov (United States)

    Sant, K. D.; Bapat, S. L.

    2015-12-01

    cryocooler and is adopted for the present theoretical investigations. An appropriate choice of the equations to compute different losses, from available co-relations, is made in accordance with the conditions existing in the present system. The effects of operating frequency and phase angle between compressor and expander pistons are presented in this paper. The cryocooler performance enhances with increase in operating frequency. However, cryocooler operation at 24 Hz (motor operation at 48 Hz) is considered for theoretical performance prediction. The maximum net refrigeration effect as well as COP is available at phase angle of 81° However, it is essential to fix the phase angle at 90° for both the cryocoolers for the positive functioning of drive mechanism.

  13. Polymer boosting effect in the droplet phase studied by small-angle neutron scattering

    CERN Document Server

    Frielinghaus, H; Allgaier, J; Richter, D; Jakobs, B; Sottmann, T; Strey, R

    2002-01-01

    Small-angle neutron-scattering experiments were performed in order to obtain the six partial scattering functions of a droplet microemulsion containing water, decane, C sub 1 sub 0 E sub 4 surfactant and PEP sub 5 -PEO sub 8 sub 0. We systematically varied the contrast around the polymer contrast, where only the polymer becomes visible, and we also measured bulk and film contrasts. With the singular value decomposition method we could extract the desired six partial scattering functions from the 15 measured spectra. We find a sphere-shell-shell structure of the droplets, where the innermost sphere consists of oil, the middle shell of surfactant and the outer shell is a depletion zone where the polymer is almost not present. (orig.)

  14. Effect of Exposure Face Orientation and Tilt Angle on Immersion Corrosion Behavior of Dual-Phase and Mild Steels

    Science.gov (United States)

    Murkute, Pratik; Choudhary, Sanjay; Ramkumar, J.; Mondal, K.

    2017-01-01

    The present study aims to investigate the effect of the exposure angle (0°, 30°, 45°, 60° and near 90°) and the number of exposed faces (skyward and downward surfaces) on the immersion corrosion behavior of a dual phase and a mild steel in freely aerated stagnant 3.5% NaCl solution for a period of 10 days. In one case, two surfaces are exposed simultaneously, whereas in other case, one of the surfaces is exposed, while other is lacquered. Analysis shows that the corrosion rate of the skyward surface is considerably high when both the surfaces are exposed. The corrosion rate of the downward surface is higher than that of the skyward sample, when one of the surfaces is exposed. Moreover, the corrosion rate gradually decreases from zero to near-90° orientation for all the cases. Though the effect of tilt angle and exposed face does not depend on steel varieties, the dual-phase steel has higher corrosion resistance than the mild steel. Relative oxygen content, microcell formation, gravity effect and reaction nature with depth are the plausible reasons for the observed variation of corrosion behavior.

  15. Unbalance Identification of Speed-Variant Rotary Machinery without Phase Angle Measurement

    OpenAIRE

    Cong Yue; Xingmin Ren; Yongfeng Yang; Wangqun Deng

    2015-01-01

    As rotary mechanical structure becomes more complicated, difficulty arises in receiving prime correction mass and optimum balancing plane efficiently. An innovative modal balancing process for estimating the residual unbalance from different equilibrium plane of complex flexible rotor system is presented. The method is based on a numerical approach with modal ratio among measurement points (MRMP) coefficient and triple phase method (TPM). The veracity of calculation result is verified by an a...

  16. Deliberately dispatched SCR firing angles for harmonic mitigation in three-phase multi-drive systems without communication

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2016-01-01

    Adjustable Speed Drives (ASDs) are widely used in threephase multi-drive applications in industry, where low-cost Diode Rectifiers (DRs) or Silicon-Controlled Rectifiers (SCRs) are still employed as the front-ends in practice, also for simplicity. However, the associated harmonics are produced...... at the grid, which has to be addressed properly according to increasingly stringent standards and/or gridconnection rules. Currently, communication technologies are still not of much cost-effectiveness, and hence, the use of communication in multiple parallel motor-drive systems for harmonic control is rarely...... witnessed in industry. In this sense, this paper proposes a harmonic mitigation strategy for multiple parallel ASD systems, where the firing angles of the SCR units are deliberately dispatched among the SCR drive units, resulting in certain phase shifts of the SCR currents on purpose. In such a manner...

  17. Small angle X-ray scattering and 31P NMR studies on the phase behavior of phospholipid bilayered mixed micelles

    Science.gov (United States)

    Bolze, Jörg; Fujisawa, Tetsuro; Nagao, Takashi; Norisada, Kazushi; Saitô, Hazime; Naito, Akira

    2000-10-01

    The phase behavior of lipid bilayered micelles (`bicelles') (dimyristoyl-phosphatidylcholine, DMPC/dihexanoyl-phosphatidyl-choline, DHPC 2.6/1) has been studied by small angle X-ray scattering and 31P NMR. Below 3% w/v the bilayers are arranged in tightly packed stacks. At intermediate concentrations single units are observed, whereas at 24% w/v and higher, weak stacking occurs again. The DMPC/DHPC ratio in the bicelles strongly increases at low concentration, which is correlated with an increase in the bicelle size and stacking. The increase of the order parameter in a magnetic field is related to the stack formation. Below 297 K there is no stacking at any concentration and no magnetic alignment.

  18. A phase angle based diagnostic scheme to planetary gear faults diagnostics under non-stationary operational conditions

    Science.gov (United States)

    Feng, Ke; Wang, Kesheng; Ni, Qing; Zuo, Ming J.; Wei, Dongdong

    2017-11-01

    Planetary gearbox is a critical component for rotating machinery. It is widely used in wind turbines, aerospace and transmission systems in heavy industry. Thus, it is important to monitor planetary gearboxes, especially for fault diagnostics, during its operational conditions. However, in practice, operational conditions of planetary gearbox are often characterized by variations of rotational speeds and loads, which may bring difficulties for fault diagnosis through the measured vibrations. In this paper, phase angle data extracted from measured planetary gearbox vibrations is used for fault detection under non-stationary operational conditions. Together with sample entropy, fault diagnosis on planetary gearbox is implemented. The proposed scheme is explained and demonstrated in both simulation and experimental studies. The scheme proves to be effective and features advantages on fault diagnosis of planetary gearboxes under non-stationary operational conditions.

  19. Interaction between the Stress Phase Angle (SPA and the Oscillatory Shear Index (OSI Affects Endothelial Cell Gene Expression.

    Directory of Open Access Journals (Sweden)

    Ronny Amaya

    Full Text Available Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS and solid circumferential stress (CS. Due to variations in impedance (global factors and geometric complexities (local factors in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle-SPA. Asynchronous flows (SPA close to -180° that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous

  20. Experimental investigations of turbulent temperature fluctuations and phase angles in ASDEX Upgrade

    Science.gov (United States)

    Freethy, Simon

    2017-10-01

    A complete experimental understanding of the turbulent fluctuations in tokamak plasmas is essential for providing confidence in the extrapolation of heat transport models to future experimental devices and reactors. Guided by ``predict first'' nonlinear gyrokinetic simulations with the GENE code, two new turbulence diagnostics were designed and have been installed on ASDEX Upgrade (AUG) to probe the fundamentals of ion-scale turbulent electron heat transport. The first, a 30-channel correlation ECE (CECE) radiometer, measures radial profiles (0.5 opens questions about the role of multi-scale turbulence physics, but also indicates the need for the comparison of more experimental turbulence properties to have a more complete validation hierarchy. In an effort to understand the discrepancy, predictions of the nT-phase and the radial correlation length have been made along with an assessment of their sensitivity to experimental errors. Comparison to experimental measurements will be discussed. This work is supported in part by the US DOE under Grants DE-SC0006419 and DE-SC0017381. This work has also received funding from the European Union's Horizon 2020 research and innovation programme under Grant agreement number 633053.

  1. Interaction between the Stress Phase Angle (SPA) and the Oscillatory Shear Index (OSI) Affects Endothelial Cell Gene Expression

    Science.gov (United States)

    Amaya, Ronny; Cancel, Limary M.; Tarbell, John M.

    2016-01-01

    Hemodynamic forces play an important role in the non-uniform distribution of atherosclerotic lesions. Endothelial cells are exposed simultaneously to fluid wall shear stress (WSS) and solid circumferential stress (CS). Due to variations in impedance (global factors) and geometric complexities (local factors) in the arterial circulation a time lag arises between these two forces that can be characterized by the temporal phase angle between CS and WSS (stress phase angle–SPA). Asynchronous flows (SPA close to -180°) that are most prominent in coronary arteries have been associated with localization of atherosclerosis. Reversing oscillatory flows characterized by an oscillatory shear index (OSI) that is great than zero are also associated with atherosclerosis localization. In this study we examined the relationship between asynchronous flows and reversing flows in altering the expression of 37 genes relevant to atherosclerosis development. In the case of reversing oscillatory flow, we observed that the asynchronous condition upregulated 8 genes compared to synchronous hemodynamics, most of them proatherogenic. Upregulation of the pro-inflammatory transcription factor NFκB p65 was confirmed by western blot, and nuclear translocation of NFκB p65 was confirmed by immunofluorescence staining. A comparative study between non-reversing flow and reversing flow found that in the case of synchronous hemodynamics, reversing flow altered the expression of 11 genes, while in the case of asynchronous hemodynamics, reversing flow altered the expression of 17 genes. Reversing flow significantly upregulated protein expression of NFκB p65 for both synchronous and asynchronous conditions. Nuclear translocation of NFκB p65 was confirmed for synchronous and asynchronous conditions in the presence of flow reversal. These data suggest that asynchronous hemodynamics and reversing flow can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics

  2. Phase Angle of Bioelectrical Impedance Analysis as Prognostic Factor in Palliative Care Patients at the National Cancer Institute in Mexico.

    Science.gov (United States)

    Pérez Camargo, Dana A; Allende Pérez, Silvia R; Rivera Franco, Mónica M; Álvarez Licona, Nelson E; Urbalejo Ceniceros, Víctor I; Figueroa Baldenegro, Lilian E

    2017-01-01

    Patients with advanced cancer often experience symptoms of disease and treatment that contribute to distress such as weight loss, which is present in up to 85% of cancer patients. Palliative care in these patients focuses on care aimed at improving quality of life. Phase angle (PA) is obtained by bioelectric impedance analysis (BIA) and is associated with cellular function. It is considered a reliable marker of malnutrition. A low PA may suggest deterioration of the cell membrane, which in palliative patients may result in a short-term survival. The aim of this study was to associate PA and survival in palliative patients of the National Cancer Institute of Mexico. We included 452 patients (women, 56.4%); the average PA was 4.0°. The most frequent disease was gastric cancer (39.2%). Mean body mass index (BMI) was 22.84. The average survival of patients with PA ≤ 4° was 86 days, while in the group with PA > 4°, it was 163 days (P > 0.0001). PA showed significant positive correlation with survival time and BMI. Our results corroborate the reliability of PA in Mexican population, as an indicator of survival in palliative care patients compared to the reported literature in other countries.

  3. Molecular Structures of Fluid Phase Phosphatidylglycerol Bilayers as Determined by Small Angle Neutron and X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianjun [ORNL; Heberle, Frederick A [ORNL; Tristram-Nagle, Dr. Stephanie [Carnegie Mellon University; Michelle, Szymanski [Rutgers University; Mary, Koepfinger [Rutgers University; Katsaras, John [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia)

    2012-01-01

    We have determined the molecular structures of commonly used phosphatidylglycerols (PGs) in the commonly accepted biologically relevant fluid phase. This was done by simultaneously analyzing small-angle neutron and X-ray scattering data, with the constraint of a measured volume per lipid. We report the temperature dependence of bilayer parameters obtained using the one dimensional scattering density profile model derived from molecular dynamics simulations, including the area per lipid, the overall bilayer thickness, as well as other intrabilayer parameters (e.g., hydrocarbon thickness). Lipid areas are found to be larger than their phosphatidylcholine (PC) counterparts, a result likely due to repulsive electrostatic interactions taking place between the charged PG headgroups even in the presence of Na+ counterions. In general, PG and PC bilayers show a similar response to changes in temperature and chain length, but differ in their response to chain unsaturation. For example, compared to their PC counterparts, the inclusion of a double bond in PG lipids results in a smaller incremental change in lipid area and bilayer thickness. However, the extrapolated lipid area of saturated PG lipids at infinite chain length is found to be similar to that of PCs, an indication of the glycerol-carbonyl backbone's pivotal role in influencing the lipid-water interface.

  4. Microscopie à l'angle de Brewster : transitions de phases et défauts d'orientation dans des films monomoléculairess

    OpenAIRE

    Hénon, Sylvie

    1993-01-01

    Microscopy at the Brewster angle is a new powerful technique for the study of monolayers at the free surface of water. Taking advantage of the reflectivity properties of an interface, it is sensitive to the thickness, density and anisotopy of the films. This technique was used to study the phase transitions that sometimes occur during the formation of films adsorbed at the surface of aqueous solutionsof amphiphiles. The number, nature and morphology of these phases depend on experimental cond...

  5. HST Multicolor (255-1042 nm) Photometry of Saturn's Main Rings. 1; Radial Profiles, Phase and Opening Angle Variations, and Regional Spectra

    Science.gov (United States)

    Cuzzi, Jeffrey N.; French, Richard G.; Dones, Luke; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The main rings of Saturn were observed with the Planetary Camera of the WFPC2 instrument on the Hubble Space Telescope (HST) from September 1996 to August 2000 as the'ring opening angle to Earth and Sun increased from 4 deg to 24 deg, with a spread of phase angles between 0.3 deg and 6 deg at each opening angle. The rings were routinely observed in the five HST wideband UBVRI filters (F336W, F439W, F555W, F675W, and F814W) and occasionally in the F255W, F785LP, and F1042M filters. The emphasis in this series of papers will be on radial color (implying compositional) variations. In this first paper we describe the analysis technique and calibration procedure, note revisions in a previously published Voyager ring color data analysis, and present new results based on over 100 HST images. In the 300-600 nm spectral range where the rings are red, the 555nm/336nm ratio increases by about 14% as the phase angle increases from 0.3 deg to 6 deg. This effect, never reported previously for the rings, is significantly larger than the phase reddening which characterizes other icy objects, primarily because of the redness of the rings. However, there is no discernible tendency for color to vary with ring opening angle at a given phase angle, and there is no phase variation of color where the spectrum is flat. We infer from this combination of facts that multiple intraparticle scattering, either in a regolith or between facets of an unusually rough surface, is important in these geometries, but that multiple interparticle scattering in a vertically extended layer is not. Voyager color ratios at a phase angle of 14 deg are compatible with this trend, but calibration uncertainties prevent their use in quantitative modeling. Overall ring-average spectra are compatible with those of earlier work within calibration uncertainties, but ring spectra vary noticeably with region. We refine and subdivide the regions previously defined by others. The variation seen between radial profiles of

  6. Bioimpedance spectroscopy measurements of phase angle and height for age are predictive of outcome in children following surgery for congenital heart disease.

    Science.gov (United States)

    Marino, L V; Meyer, R; Johnson, M; Newell, C; Johnstone, C; Magee, A; Sykes, K; Wootton, S A; Pappachan, J V

    2017-06-28

    Children with congenital heart disease (CHD) are often growth restricted (low weight- and/or height-for-age) which may increase risk of poor post operative resilience. Bioelectrical impedance spectroscopy (BIS) has been used to determine body composition in different clinical settings and has been shown to mark differences in nutritional state and clinical outcome. In disease conditions were fluid is not normally distributed it is proposed that raw impedance values and BIS derived phase-angle may serve as prognostic indicators of clinical outcome. We sought to describe the relationship between nutritional status, phase-angle and post-operative outcomes in children with congenital heart disease. Single centre prospective cohort study. Paediatric Intensive Care Unit (PICU), Southampton Children's Hospital. 122 children with CHD following cardiac surgery (March 2015-April 2016). Outcome variables included growth, mechanical-ventilation, PICU length of stay (PICU-LOS) and phase-angle at 50 Hz. BIS measurements were taken before and on the day of surgery (day 0), day 2 post-operatively and on discharge from hospital. Pre-operative moderate malnutrition defined as height-for-age-z-score (HAZ) ≤-2 was observed in 28.5% of infants and 20.6% of children. Regression analysis was used to investigate the relationship between phase-angle, HAZ and clinical outcomes. Moderate-malnutrition (HAZ ≤-2) was associated with an increased PICU-LOS (odds ratios (OR) with 95% confidence interval: 1.8; 1.1-2.7, p = 0.008) whilst a low phase-angle (≤2.7° on day 2 was associated with longer PICU-LOS (OR 7.8; 2.7-22.45, p angle ≤2.7° on day 2 were associated with longer PICU-LOS (p = 0.001 and p = 0.04 respectively) and together explained 81.7% of the variability in PICU-LOS. Moderate malnutrition (HAZ ≤-2) in infants and children undergoing cardiac surgery is associated with longer PICU-LOS. Post-operative measures of BIS phase angle may further improve our ability to

  7. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer.

    Science.gov (United States)

    Norman, Kristina; Wirth, Rainer; Neubauer, Maxi; Eckardt, Rahel; Stobäus, Nicole

    2015-02-01

    We investigated the impact of low phase angle (PhA) values on muscle strength, quality of life, symptom severity, and 1-year mortality in older cancer patients. Prospective study with 1-year follow-up. Cancer patients aged >60 years. PhA was derived from whole body impedance analysis. The fifth percentile of age-, sex-, and body mass index-stratified reference values were used as cut-off. Quality of life was determined with the European Organization of Research and Treatment in Cancer questionnaire, reflecting both several function scales and symptom severity. Muscle strength was assessed by hand grip strength, knee extension strength, and peak expiratory flow. 433 cancer patients, aged 60-95 years, were recruited. Patients with low PhA (n = 197) exhibited decreased muscle strength compared with patients with normal PhA (hand grip strength: 22 ± 8.6 vs 28.9 ± 8.9 kg, knee extension strength: 20.8 ± 11.8 vs 28.1 ± 14.9 kg, and peak expiratory flow: 301.1 ± 118 vs 401.7 ± 142.6 L/min, P regression analysis, PhA emerged as independent predictor of physical function (ß:-0.538, P = .023), hand grip strength (ß:-4.684, P extension strength (ß:-4.548, P = .035), and peak expiratory flow (ß:-66.836, P Cox proportional hazards regression model, whereas grip strength was no longer significant. PhA below the fifth reference percentile is highly predictive of decreased muscle strength, impaired quality of life, and increased mortality in old patients with cancer and should be evaluated in routine assessment. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  8. Phase Angle Is Moderately Associated With Muscle Quality and Functional Capacity, Independent of Age and Body Composition in Older Women.

    Science.gov (United States)

    Tomeleri, Crisieli M; Cavalcante, Edilaine F; Antunes, Melissa; Nabuco, Hellen C G; de Souza, Mariana F; Teixeira, Denilson C; Gobbo, Luis A; Silva, Analiza M; Cyrino, Edilson S

    2017-11-28

    There is a growing body of evidence indicating that phase angle (PhA) can be used as an indicator of nutritional status, disease prognosis, and mortality risk; however, it is still unknown whether PhA can be used as an explanator of functional capacity and muscle quality in older women. The main purpose of this cross-sectional study was to explore whether PhA is associated with muscle quality and functional capacity in older women, regardless of total and regional body composition. A total of 125 older women-66.7 (4.7) years; 65.6 (10.9) kg body mass; 156.1 (5.2) cm height; 26.9 (4.0) kg/m body mass index-participated in this study. Anthropometric, PhA, body composition (whole-body dual-energy x-ray absorptiometry) and muscle quality (defined as total muscular strength per kilogram of appendicular lean soft tissue) were measured. The functional capacity was assessed by 4 tests: 10-m walk test, rising from sitting position, rising from ventral decubitus position, and rising from a chair and walking around the house. The summing z-scores for the 4 tests was used as a continuous functional capacity score. Linear regression analysis was conducted to test whether PhA is related to the dependent variables (muscle quality and functional capacity), after adjusting for potential covariates. The PhA presented a small-to-moderate relationship with muscle quality (r = 0.27; P women with higher values of PhA have a better muscle quality and functionality, regardless of age and body composition.

  9. Depth distribution of secondary phases in kesterite Cu2ZnSnS4 by angle-resolved X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    J. Just

    2017-12-01

    Full Text Available The depth distribution of secondary phases in the solar cell absorber material Cu2ZnSnS4 (CZTS is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  10. An estimation of knee and ankle joint angles during extension phase of standing up motion performed using an inertial sensor

    National Research Council Canada - National Science Library

    FANG JIN; TAKAYUKI NAGASAKI; CHIKAMUNE WADA

    2017-01-01

    [Abstract.] [Purpose] Motion capture system is difficult to use in daily life. The aim of this study was to propose an estimation model for knee and ankle joint angle measurements and locate body center of gravity (COG...

  11. An estimation of knee and ankle joint angles during extension phase of standing up motion performed using an inertial sensor

    National Research Council Canada - National Science Library

    Jin, Fang; Nagasaki, Takayuki; Wada, Chikamune

    2017-01-01

    [Purpose] Motion capture system is difficult to use in daily life. The aim of this study was to propose an estimation model for knee and ankle joint angle measurements and locate body center of gravity (COG...

  12. Optical measurements of the phase diagrams of Langmuir monolayers of fatty acid, ester, and alcohol mixtures by Brewster-angle microscopy

    Science.gov (United States)

    Teer, Ellis; Knobler, Charles M.; Lautz, Carsten; Wurlitzer, Stefan; Kildae, John; Fischer, Thomas M.

    1997-02-01

    Surface pressure-temperature phase diagrams have been determined by Brewster-angle microscopy for Langmuir monolayers of heneicosanoic acid with the esters methyl and ethyl heneicosanoate and octadecanoic acid with methyl, ethyl, and propyl octadecanoate. The behavior is similar to that found previously in mixtures of an acid and an alcohol. In each case with increasing ester concentration the L2/L2' phase boundary moves toward lower pressure and higher temperature while the L2/Ov boundary moves toward lower pressure and lower temperature. The L2' and Ov phases eventually merge and the boundary with the L2 phase moves to zero pressure. The phase diagram of eicosyl acetate is similar to that of the fatty acids. We attribute the variations in the diagrams to the extent of hydrogen bonding between the head group and the subphase.

  13. Structural phase transition of ternary dielectric SmGdO{sub 3}: Evidence from angle dispersive x-ray diffraction and Raman spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Yogesh, E-mail: rkatiyar@uprrp.edu, E-mail: satya504@gmail.com, E-mail: yogesh.sharma@upr.edu; Sahoo, Satyaprakash, E-mail: rkatiyar@uprrp.edu, E-mail: satya504@gmail.com, E-mail: yogesh.sharma@upr.edu; Misra, Pankaj; Pavunny, Shojan P.; Katiyar, Ram S., E-mail: rkatiyar@uprrp.edu, E-mail: satya504@gmail.com, E-mail: yogesh.sharma@upr.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00936-8377 (United States); Mishra, A. K.; Dwivedi, Abhilash; Sharma, S. M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2015-03-07

    High-pressure synchrotron based angle dispersive x-ray diffraction (ADXRD) studies were carried out on SmGdO{sub 3} (SGO) up to 25.7 GPa at room temperature. ADXRD results indicated a reversible pressure-induced phase transition from ambient monoclinic to hexagonal phase at ∼8.9 GPa. The observed pressure-volume data were fitted with the third order Birch-Murnaghan equation of state yielding zero pressure bulk modulus B{sub 0} = 132(22) and 177(9) GPa for monoclinic (B-type) and hexagonal (A-type) phases, respectively. Pressure dependent micro-Raman spectroscopy further confirmed the monoclinic to hexagonal phase transition at about 5.24 GPa. The mode Grüneisen parameters and pressure coefficients for different Raman modes corresponding to each individual phases of SGO were calculated using pressure dependent Raman mode analysis.

  14. Body mass index and bioelectrical impedance phase angle as potentially modifiable nutritional markers are independent risk factors for outcome in allogeneic hematopoietic cell transplantation.

    Science.gov (United States)

    Urbain, Paul; Birlinger, Jakob; Ihorst, Gabriele; Biesalski, Hans-Konrad; Finke, Juergen; Bertz, Hartmut

    2013-01-01

    Beside many risk factors in patients considered for alloHCT, only body mass index (BMI) as a broad marker of nutritional status has prognostic value in these patients. This is the first prospective study to investigate the validity of further nutritional markers: adjusted BMI, normalized for gender and age; Subjective Global Assessment questionnaire and standardized phase angle, normalized for gender, age and BMI in 105 patients as independent risk factors for outcomes [overall survival (OS), non-relapse mortality (NRM), relapse mortality (RM), progression-free survival (PFS)] until 2 years after alloHCT. In Cox proportional-hazards regression models, we included a variety of accepted risk factors. The two most influential pre-transplant risk factors identified and associated with similarly increased hazard ratios (HR) for OS, RM, and PFS were a low-standardized phase angle (HR = 1.97, P = 0.043; HR = 3.18, P = 0.017, and HR = 1.91, P = 0.039) and advanced disease. Under- and overweight according BMI percentiles (≤10th; ≥90th) revealed associations with increased risk of NRM (HR = 2.90, P = 0.018; HR = 3.02, P = 0.062), although only low BMI was weakly associated with OS (HR = 1.82, P = 0.09). In conclusion, our results demonstrate that pre-transplant phase angle is an independent predictor for 2-year outcomes in these patients. Further investigation is necessary to demonstrate whether the theoretically modifiable phase angle can be increased by physical training combined with nutritional support, and if this improves outcome after alloHCT.

  15. High angle phase modulated low coherence interferometry for path length resolved Doppler measurements of multiply scattered light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2008-01-01

    We describe an improved method for coherence domain path length resolved measurements of multiply scattered photons in turbid media. An electro-optic phase modulator sinusoidally modulates the phase in the reference arm of a low coherence fiber optic Mach–Zehnder interferometer, at a high phase

  16. Polar-horizontal versus polar-vertical reverse-tilt-domain walls: influence of a pretilt angle below the nematic-isotropic phase transition.

    Science.gov (United States)

    Lee, Ji-Hoon; Atherton, Timothy J; Kang, Daeseung; Petschek, Rolfe G; Rosenblatt, Charles

    2008-08-01

    On cooling through the isotropic-to-nematic phase transition in a cell whose substrates induce a large pretilt angle theta0 from the vertical direction, but with no preferential azimuthal orientation, tilt domains appear. The boundary walls between reverse tilt domains are found to be bendlike and twistlike when theta0(T=TNI) is sufficiently large just below the isotropic-nematic phase transition temperature TNI--i.e., for a nearly planar orientation. Here the director becomes planar approximately midway through the wall, and we refer to this type of wall as "polar horizontal," which is topologically stable. However, if theta0(T=TNI) is sufficiently small just below TNI--i.e., closer to vertical orientation--a splay like and twistlike domain wall obtains, where the director is vertically oriented approximately midway through the wall; we refer to this type of wall as "polar vertical," whose stability depends on the anchoring. On cooling through the nematic phase, the pretilt angle theta0 decreases, with the director aligning closer to the vertical orientation. Nevertheless, the structures of both types of domain walls remain unchanged on variation of theta0 with temperature owing to topological constraints and also are unchanged after the application and removal of a large electric field. We examine the structure of domain walls for the liquid crystal ZLI-4330 (Merck) as a function of pretilt angle theta0(T=TNI) and calculate a critical value theta0c(T=TNI) of the pretilt angle just below TNI for which the predominance of domain walls crosses over from polar horizontal to polar vertical.

  17. The Comparison of two models of marker – placement for identifying the rear foot angle in normal people with and without shoes during the stance phase of walking

    Directory of Open Access Journals (Sweden)

    2016-09-01

    Full Text Available Objective: The purpose of this study was to compare the two models of marker placement for identifying of rear foot angle in normal people with and without shoes during the different stage of stance phase of walking. Methods: Fifteen male students in Birjand University were selected based on Navicular Drop Index. After marker placement based on Clarke and Nigg models, the rear foot angle were recorded with two-dimensional analysis (Panasonic Camera from behind position while subjects walked with 1.7 m/s on a treadmill with and without shoes. For statistical analysis, independent samples t-test was used (p≤0.05. Results: The Results showed a significant difference in rear foot angle during the stance phase between the two models of Clarke and Nigg during walking with and without shoes (p≤0.001. Conclusion: Based on the results of the present study, due to their specific features care must be considered when using any of these two models to investigate the angular kinematics of the foot.

  18. Determination of the spatial distribution of multiple fluid phases in porous media by ultra-small-angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kainourgiakis, M.; Steriotis, Th. [National Center for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi Attikis, Athens (Greece); Charalambopoulou, G., E-mail: gchar@chem.demokritos.gr [National Center for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi Attikis, Athens (Greece); Strobl, M. [Helmholtz Zentrum Berlin fuer Materialien und Energie, Lise Meitner Campus, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Stubos, A. [National Center for Scientific Research ' Demokritos' , 15310 Ag. Paraskevi Attikis, Athens (Greece)

    2010-06-15

    In the present work contrast-matching USANS (ultra-small-angle neutron scattering) was employed in order to determine the spatial distribution of immiscible fluids confined within a macroporous {alpha}-Al{sub 2}O{sub 3} membrane. Water-air as well as water-hydrocarbon and hydrocarbon-air systems were examined and the analysis of the results, also on the basis of a complementary numerical study provided significant information on the behaviour of the multiphase ensemble as it has been demonstrated that the individual fluids occupy certain positions in the pore space, regardless of the actual values of the respective interfacial properties.

  19. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    Science.gov (United States)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.

  20. Investigation of the effect of sugar stereochemistry on biologically relevant lyotropic phases from branched-chain synthetic glycolipids by small-angle X-ray scattering.

    Science.gov (United States)

    Zahid, N Idayu; Conn, Charlotte E; Brooks, Nicholas J; Ahmad, Noraini; Seddon, John M; Hashim, Rauzah

    2013-12-23

    Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.

  1. A High-Resolution Magic Angle Spinning NMR Study of the Enantiodiscrimination of 3,4-Methylenedioxymethamphetamine (MDMA by an Immobilized Polysaccharide-Based Chiral Phase.

    Directory of Open Access Journals (Sweden)

    Juliana C Barreiro

    Full Text Available This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R-enantiomer, which is the second one to elute at the chromatographic conditions.

  2. Steady and out-of-equilibrium phase diagram of a complex fluid at the nanolitre scale: combining microevaporation, confocal Raman imaging and small angle X-ray scattering.

    Science.gov (United States)

    Daubersies, Laure; Leng, Jacques; Salmon, Jean-Baptiste

    2013-03-07

    We engineered specific microfluidic devices based on the pervaporation of water through a PDMS membrane, to formulate continuous and steady concentration gradients of a binary aqueous molecular mixture at the nanolitre scale. In the case of a model complex fluid (a triblock copolymer solution), we demonstrate that such a steady gradient crosses the phase diagram from pure water up to a succession of highly viscous mesophases. We then performed in situ spatially resolved measurements (confocal spectroscopy and small-angle X-ray scattering) to quantitatively measure the concentration profile and to determine the microstructure of the different textures. Within a single microfluidic channel, we thus screen quantitatively and continuously the phase diagram of a complex fluid. Beside, as such a gradient corresponds to an out-of-equilibrium regime, we also extract from the concentration measurement a precise estimate of the collective diffusion coefficient of the mixture as a function of the concentration. In the present case of the triblock copolymer, this transport coefficient features discontinuities at some phase boundaries, which have never been observed before.

  3. Mathematical Derivation of Switching Angles of Multilevel Voltage Source Inverter based on Alternative Phase Opposition Disposition (APOD

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Alif

    2017-01-01

    Full Text Available Modular structured multilevel inverter is very useful for electrical application especially in high voltage and high power applications. The main function of this multilevel inverter is to produce multilevel AC output voltage from several separate DC sources. This project is to derive a newmathematical formulation of multilevel voltage source inverter switching instants. The proposed method for this project is based on the sinusoidal natural sampling PWM (SPWM by comparing several modified modulation signal with a triangular carrier signal. This resulting intersection points between this modulation and carrier signal become the switching instants of the PWM pulses. Derivation also based on Alternative Phase opposition disposition (APOD. A cascaded multilevel inverter is selected as a topology for this project due to major advantages compare with other topology. The derived formula is analyzed by using MATLAB simulation software. It is found that the results that use the derived formula are almost identical to simulation result.

  4. Intrinsic period and light intensity determine the phase relationship between melatonin and sleep in humans. : Phase Angle of Entrainment in Humans

    OpenAIRE

    Wright, Kenneth,; Gronfier, Claude; Duffy, Jeanne,; Czeisler, Charles,

    2005-01-01

    International audience; The internal circadian clock and sleep-wake homeostasis regulate the timing of human brain function, physiology, and behavior so that wakefulness and its associated functions are optimal during the solar day and that sleep and its related functions are optimal at night. The maintenance of a normal phase relationship between the internal circadian clock, sleep-wake homeostasis, and the light-dark cycle is crucial for optimal neurobehavioral and physiological function. H...

  5. Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics

    DEFF Research Database (Denmark)

    Ghazal, Aghiad; Gontsarik, Mark; Kutter, Jörg P.

    2016-01-01

    This article introduces a simple microfluidic device that can be combined with synchrotron small-angle X-ray scattering (SAXS) for monitoring dynamic structural transitions. The microfluidic device is a thiol-ene-based system equipped with 125 µm-thick polystyrene windows, which are suitable for X......-ray experiments. The device was prepared by soft lithography using elastomeric molds followed by a simple UV-initiated curing step to polymerize the chip material and simultaneously seal the device with the polystyrene windows. The microfluidic device was successfully used to explore the dynamics...... of symmetry Im3m to an internal inverted-type cubic phase of symmetry Pn3m was detected. The combination of microfluidics with X-ray techniques opens the door to the investigation of early dynamic structural transitions, which is not possible with conventional techniques such as glass flow cells...

  6. High stable, high efficient ultraviolet laser with angle-phase-mismatching compensation by adjusting temperature of the nonlinear crystals

    Science.gov (United States)

    Yang, Houwen; Wang, Bo; Wang, Junhua; Li, Xiaofang; Liu, Zhaojun; Cheng, Wenyong

    2017-03-01

    We demonstrated an ultraviolet laser at 355 nm using a type-I and a type-II phase-matching nonlinear optical crystal of LiB3O5 (LBO). A method of adjusting temperature for compensation is presented. The crystal temperature is controlled by proportional integral derivative (PID) thermal controllers with a  ±0.01 °C resolution. The value of wave vector mismatch, distance of light propagation in nonlinear crystals, effective nonlinear coefficient, theoretical analysis and calculation of conversion efficiency versus temperature are discussed. The experimental results show that the average output power of the 355 nm laser is 1.24 W with the pump power of 13.33 W, when the repetition frequency is 15 kHz. The pulse duration is 9.8 ns, and the beam quality factors are of Mx2   =  1.8, My2   =  1.7. The conversion efficiency from 808 nm to 355 nm laser is 9.3%, which nearly reaches the optimum value reported so far and is limited by the wavelength mismatch between the pumping and absorbing lasers. The 355 nm output power instability of the laser device is 0.45% in 2 h. A compact no-water-cooling ultraviolet laser with high stability and high efficiency is obtained.

  7. Wing structure in the phase diagram of the Ising ferromagnet URhGe close to its tricritical point investigated by angle-resolved magnetization measurements

    Science.gov (United States)

    Nakamura, Shota; Sakakibara, Toshiro; Shimizu, Yusei; Kittaka, Shunichiro; Kono, Yohei; Haga, Yoshinori; Pospíšil, Jiří; Yamamoto, Etsuji

    2017-09-01

    High-precision angle-resolved dc magnetization and magnetic torque studies were performed on a single-crystalline sample of URhGe, an orthorhombic Ising ferromagnet with the c axis being the magnetization easy axis, in order to investigate the phase diagram around the ferromagnetic (FM) reorientation transition in a magnetic field near the b axis. We have clearly detected a first-order transition in both the magnetization and the magnetic torque at low temperatures, and determined detailed profiles of the wing structure of the three-dimensional T -Hb-Hc phase diagram, where Hc and Hb denote the field components along the c and the b axes, respectively. The quantum wing critical points are located at μ0Hc˜±1.1 T and μ0Hb˜13.5 T. Two second-order transition lines at the boundaries of the wing planes rapidly tend to approach each other with increasing temperature up to ˜3 K. Just at the zero conjugate field (Hc=0 ), however, a signature of the first-order transition can still be seen in the field derivative of the magnetization at ˜4 K, indicating that the tricritical point exists in a rather high temperature region above 4 K. This feature of the wing plane structure is consistent with the theoretical expectation that three second-order transition lines merge tangentially at the tricritical point.

  8. SU-F-T-84: Measurement and Monte-Carlo Simulation of Electron Phase Spaces Using a Wide Angle Magnetic Electron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Englbrecht, F; Lindner, F; Bin, J; Wislsperger, A; Reiner, M; Kamp, F; Belka, C; Dedes, G; Schreiber, J; Parodi, K [LMU Munich, Munich, Bavaria (Germany)

    2016-06-15

    Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by an online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser

  9. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection.

    Science.gov (United States)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi; Wolff, Anders; Bang, Dang Duong

    2017-04-15

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Estimating the angle of attack from blade pressure measurements on the NREL Phase VI rotor using a free wake vortex model: axial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sant, Tonio [Delft Univ. of Technology, Faculty of Aerospace Engineering, Delft (Netherlands); Malta Univ., Mechanical Engineering Dept., Msida (Malta); Kuik, Gijs van; Bussel, G.J.W. van [Delft Univ. of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2006-07-01

    Blade element momentum (BEM) methods are still the most common methods used for predicting the aerodynamic loads during the aeroelastic design of wind turbine blades. However, their accuracy is limited by the availability of reliable aerofoil data. Owing to the 3D nature of the flow over wind turbine blades, the aerofoil characteristics will vary considerably from the 2D aerofoil characteristics, especially at the inboard sections of the blades. Detailed surface pressure measurements on the blade surfaces may be used to derive more realistic aerofoil data. However, in doing so, knowledge of the angle of attack distributions is required. This study presents a method in which a free wake vortex model is used to derive such distributions for the NREL Phase VI wind turbine under different operating conditions. The derived free wake geometry solutions are plotted together with the corresponding wake circulation distribution. These plots provide better insight into how circulation formed at the blades is eventually diffused into the wake. The free wake model is described and its numerical behaviour is examined. (Author)

  11. Small-angle neutron scattering study of protein crowding in liquid and solid phases: lysozyme in aqueous solution, frozen solution, and carbohydrate powders.

    Science.gov (United States)

    Curtis, Joseph E; Nanda, Hirsh; Khodadadi, Sheila; Cicerone, Marcus; Lee, Hyo Jin; McAuley, Arnold; Krueger, Susan

    2012-08-16

    The structure, interactions, and interprotein configurations of the protein lysozyme were studied in a variety of phases. These properties have been studied under a variety of solution conditions before, during, and after freezing and after freeze-drying in the presence of glucose and trehalose. Contrast variation experiments have also been performed to determine which features of the scattering in the frozen solutions are from the protein and which are from the ice structure. Data from lysozyme at concentrations ranging from 1 to 100 mg/mL in solution and water ice with NaCl concentrations ranging from 0 to 0.4 mol/L are fit to model small-angle neutron scattering (SANS) intensity functions consisting of an ellipsoidal form factor and either a screened-Coulomb or hard-sphere structure factor. Parameters such as protein volume fraction and long dimension are followed as a function of temperature and salt concentration. The SANS results are compared to real space models of concentrated lysozyme solutions at the same volume fractions obtained from Monte Carlo simulations. A cartoon representation of the frozen lysozyme solution in 0 mol/L NaCl is presented based on the SANS and Monte Carlo results, along with those obtained from other complementary methods.

  12. Towards fractional-order capacitors with broad tunable constant phase angles: Multi-walled carbon nanotube-polymer composite as a case study

    KAUST Repository

    Agambayev, Agamyrat

    2018-01-03

    In this study, multi-walled carbon nanotube (MWCNT) filled Polyevinelidenefluoride-trifluoroethylene-chlorofluoroethylene (PVDF-TrFE-CFE) composites are used to realize fractional-order capacitors (FOCs). A solution-mixing and drop-casting approach is used to fabricate the composite. Due to the high aspect ratio of MWCNTs, percolation regime starts at a small weight percentage (wt%), 1.00 % .The distributed MWCNTs inside the polymer act as an electrical network of micro-capacitors and micro-resistors, which, in effect, behaves like a FOC. The resulting FOCs\\' constant phase angle (CPA) can be tuned from to by changing the wt% of the MWCNTs. This is the largest dynamic range reported so far at the frequency range from 150 kHz to 2 MHz for an FOC. Furthermore, the CPA and pseudo-capacitance are shown to be practically stable (with less than 1% variation) when the applied voltage is, changed between 500 µV and 5V. For a fixed value of CPA, the pseudo-capacitance can be tuned by changing the thickness of the composite, which can be done in a straightforward manner via the solution-mixing and drop-casting fabrication approach. Finally, it is shown that the frequency of a Hartley oscillator built using an FOC is almost 15 times higher than that of a Hartley oscillator built using a conventional capacitor.

  13. Correlation of bioelectrical impedance analysis phase angle with changes in oxidative stress on end-stage renal disease patients, before, during, and after dialysis.

    Science.gov (United States)

    Zouridakis, Andreas; Simos, Yannis V; Verginadis, Ioannis I; Charalabopoulos, Konstantinos; Ragos, Vasilios; Dounousi, Evangelia; Boudouris, Georgios; Karkabounas, Spyridon; Evangelou, Angelos; Peschos, Dimitrios

    2016-06-01

    Chronic kidney disease is a condition that promotes oxidative stress. There are conflicting evidence about the role of hemodialysis on oxidative stress, that are mostly related with the various types of membrane materials used, the quality and type of dialysate, the method used, etc. The phase angle (PhA), which is determined with bioelectrical impedance analysis (BIA), measures the functionality of cell membranes. In this study, the correlation of the PhA with parameters of oxidative stress is attempted for the first time. We evaluated parameters of oxidative status as total antioxidant capacity (TAC) in erythrocytes (RBCs) and plasma of patients with ESRD undergoing hemodialysis with low flux synthetic polysulfone membranes. Measurements were recorded from 30 patients (16 men and 14 women) aged 64 ± 14 years before, during, and after dialysis, and in 15 healthy volunteers aged 56 ± 12 years The PhA was obtained by BIA. The plasma TAC increased significantly (41%, p < 0.05). Intracellular TAC noted a non-significant increase. Total antioxidant capacity of the patients before and after hemodialysis was significantly lower from the healthy volunteers (p < 0.05) showing that ESRD patients are at the state of increased oxidative stress. The PhA increased in significantly positive correlation with plasma TAC at the end of hemodialysis. The process of hemodialysis with biocompatible synthetic membranes and bicarbonate dialysate improved plasma TAC. The positive correlation of PhA with extracellular TAC could evolve to a method of oxidative stress estimation by BIA but further research is needed.

  14. A simulation study to compare the phase-shift angle radiofrequency ablation mode with bipolar and unipolar modes in creating linear lesions for atrial fibrillation ablation.

    Science.gov (United States)

    Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi

    2016-05-01

    Purpose In pulmonary veins (PVs) isolation (PVI), radiofrequency (RF) energy is often used to create a linear lesion for blocking the accessory conduction pathways around PVs. By using transient finite element analysis, this study compared the effectiveness of phase-shift mode (PsM) ablation with bipolar mode (BiM) and unipolar mode (UiM) in creating a continuous lesion and lesion depth in a 5-mm thick atrial wall. Materials and methods Computer models were developed to study the temperature distributions and lesion dimensions in atrial walls created through PsM, BiM, and UiM. Four phase-shift angles - 45°, 90°, 135°, and 180° - were considered in PsM ablation (hereafter, PsM-45°, PsM-90°, PsM-135°, and PsM-180°, respectively). Results At 60 s/30 V peak value of RF voltage, UiM and PsM-45° did not create an effective lesion, whereas BiM created a lesion of maximum depth and width approximately 1.01 and 1.62 mm, respectively. PsM-135° and PsM-180° not only created transmural lesions in 5-mm thick atrial walls but also created continuous lesions between electrodes spaced 4 mm apart; similarly, PsM-90° created a continuous lesion with a maximum depth and width of nearly 4.09 and 6.12 mm. Conclusions Compared with UiM and BiM, PsM-90°, PsM-135° and PsM-180° created continuous and larger lesions in a single ablation procedure and at 60 s/30 V peak value of RF voltage. Therefore, the proposed PsM ablation method is suitable for PVI and linear isolation at the left atrial roof for treating atrial fibrillation.

  15. Phase Angle and Handgrip Strength Are Sensitive Early Markers of Energy Intake in Hypophagic, Non-Surgical Patients at Nutritional Risk, with Contraindications to Enteral Nutrition

    Directory of Open Access Journals (Sweden)

    Riccardo Caccialanza

    2015-03-01

    Full Text Available The assessment of nutritional intakes during hospitalization is crucial, as it is known that nutritional status tends to worsen during the hospital stay, and this can lead to the negative consequences of malnutrition. International guidelines recommend the use of parenteral nutrition (PN in hypophagic, non-surgical patients at nutritional risk, with contraindications to enteral nutrition. However, to date, there are no published data regarding either energy intake or objective measurements associated with it in this patient population. The aim of the present exploratory methodological study was to evaluate whether phase angle (PhA and handgrip strength normalized for skeletal muscle mass (HG/SMM are sensitive early markers of energy intake in hypophagic, non-surgical patients at nutritional risk, with contraindications to enteral nutrition. We evaluated 30 eligible patients, who were treated with personalized dietary modifications and supplemental PN for at least one week during hospitalization. In a liner regression model adjusted for age, gender, basal protein intake and the basal value of each variable, a trend toward improvement of PhA and preservation of HG/SMM was observed in patients satisfying the estimated calorie requirements (N = 20, while a significant deterioration of these parameters occurred in those who were not able to reach the target (N = 10. The mean adjusted difference and 95% CI were +1.4° (0.5–2.3 (p = 0.005 for PhA and +0.23 (0.20–0.43 (p = 0.033 for HG/SMM. A significant correlation between PhA and HG/SMM variations was also observed (r = 0.56 (95% CI, 0.23–0.77; p = 0.0023. PhA and HG/SMM were able to distinguish between hypophagic, non-surgical patients at nutritional risk who satisfied their estimated caloric requirements and those who did not after a one-week personalized nutritional support. Clinical studies are warranted, in order to verify these preliminary observations and to validate the role of Ph

  16. Investigation of the electrical properties of agarose gel: characterization of concentration using nyquist plot phase angle and the implications of a more comprehensive in vitro model of the brain.

    Science.gov (United States)

    Pomfret, Roland; Sillay, Karl; Miranpuri, Gurwattan

    2013-07-01

    The electrical properties of agarose gel, namely impedance and capacitance, are relatively unexplored. Agarose gels are used as in vitro models in studies across numerous disciplines, including imaging, radiotherapy, infusion, and neurosurgery. In this study, we seek to characterize the impedance response of low concentration agarose gels by relating the gel concentrations to Nyquist Plot phase in order to establish a baseline with which to modify the response of the gel to simulate that of in vivo brain tissue. This information is relevant to areas such as deep brain stimulation, and could have a significant impact on in vitro model design for such studies in the future. Ten agarose gels spanning four different concentrations were subjected to impedance spectroscopy using a Model 3387 DBS electrode. Phase angles were calculated and Cartesian Nyquist plots generated from the data. Results suggest that an inverse relationship exists between agarose gel concentration and phase angle. In addition, the results indicate that agarose gel reasonably emulates a constant phase element, which portrays the electrode-electrolyte interface impedance of some equivalent circuit models of brain tissue. The data shows that agarose gel is a suitable substrate for a deep brain stimulation in vitro model, but requires modification. In the future, we plan to utilize this data to determine the modifications necessary in the current agarose gel model to make it scientifically applicable to studies of both deep brain stimulation and infusion due to their overlapping variables.

  17. Glaucoma, Open-Angle

    Science.gov (United States)

    ... USAJobs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  18. Small angle X-ray scattering study of poly(N-isopropyl acrylamide) based cryogels near the volume-phase transition temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chalal, Mohand [Laboratoire d' Electronique Quantique, Faculte de Physique, USTHB Alger, 16111 Alger (Algeria); Ehrburger-Dolle, Francoise; Morfin, Isabelle [Laboratoire de Spectrometrie Physique, UMR 5588 CNRS/UJF, 38402 Saint Martin d' Heres (France); Armas, Maria-Rosa Aguilar de; Lopez, Maria-Luisa [Instituto de Ciencia y TecnologIa de PolImeros, CSIC and CIBER-BBN, 28006 Madrid (Spain); Bley, Francoise, E-mail: francoise.ehrburger-dolle@ujf-grenoble.f [Science et Ingenierie des Materiaux et Procedes, UMR 5266 CNRS/INPG/UJF, 38402 Saint Martin d' Heres (France)

    2010-10-01

    The structural modifications induced by changes in temperature are investigated by Small-Angle X-ray Scattering (SAXS) over a broad range of q-values (3.5x10{sup -2} - 12 nm{sup -1}) in cryogels based on N-isopropylacrylamide (NIPA) and/or 2-Hydroxyethyl methacrylate-L-Lactide-Dextran (HEMA-LLA-D) macromer. Various copolymeric cryogels of these two monomers are prepared by cryopolymerization yielding macroporous gels (cryogels). For the plain pNIPA cryogel, the SAXS curves obtained at each temperature are well fitted by a sum of four equations describing respectively the scattering resulting from the gel surface (power law), from the solid-like (Guinier equation) and liquid-like (Ornstein-Zernike equation) heterogeneities and from the chain-chain correlation yielding a broad peak (pseudo-Voigt equation) in the high-q domain. The temperature dependence of the parameters obtained from the fit is analyzed and discussed. It is shown that the existence of an isoscattering (or isosbestic) point observed in pNIPA gels and in some copolymers is related to features observed by Differential Scanning Calorimetry and swelling ratio measurements.

  19. Ângulo de fase derivado de bioimpedância elétrica em pacientes sépticos internados em unidades de terapia intensiva Bioelectrical impedance phase angle in septic patients admitted to intensive care units

    Directory of Open Access Journals (Sweden)

    Marina Carvalho Berbigier

    2013-03-01

    Full Text Available OBJETIVO: Identificar valores de ângulo de fase em pacientes sépticos, por meio de bioimpedância elétrica, buscando associação com variáveis clínicas e bioquímicas, bem como comparação com valores de ângulo de fase de referência. MÉTODOS: Estudo de coorte, com 50 pacientes sépticos, idade ≥18 anos, internados em unidade de terapia intensiva, avaliados quanto a índices prognósticos (APACHE II e SOFA, evolução clínica (mortalidade, gravidade da sepse e tempo de internação na unidade de terapia intensiva, parâmetros bioquímicos (albumina e proteína C-reativa e ângulo de fase. RESULTADOS: A média de idade dos pacientes estudados foi de 65,6±16,5 anos, a maioria do gênero masculino (58% e apresentando choque séptico (60%. A média dos escores APACHE II e SOFA foi de 22,98±7,1 e 7,5±3,4, respectivamente, o tempo de internação na unidade de terapia intensiva dos pacientes que sobreviveram foi de 9 dias (5 a 13 e a taxa de mortalidade foi de 30%. A média do ângulo de fase da amostra total foi de 5,4±2,6° e menor no gênero feminino (p=0,01. Não houve associação entre ângulo de fase e a gravidade da sepse, mortalidade, gênero e idade, assim como não houve correlação entre ângulo de fase, tempo de internação e parâmetros bioquímicos. Comparativamente a dados em população saudável, os valores de ângulo de fase, a depender da idade e gênero, apresentaram-se 1,1 a 1,9 vezes inferiores. CONCLUSÃO: O ângulo de fase médio de pacientes sépticos foi inferior aos valores referência para população saudável, não havendo correlação e associação com as variáveis clínicas e bioquímicas, o que poderia ser atribuído a homogeneidade da amostra.OBJECTIVE: To calculate the values of the phase angle of septic patients using bioelectrical impedance analysis, correlate the values with clinical and biochemical variables, and compare them to reference values. METHODS: Cohort study conducted with 50 septic

  20. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi

    2016-01-01

    Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detectio......-PCR and SAF microlens array allows for on-chip highly sensitive and multiplexed pathogen detection with low-cost and compact optical components. The LOC platform would be widely used as a high-throughput biosensor to analyze food, clinical and environmental samples.......Solid-phase PCR (SP-PCR) has become increasingly popular for molecular diagnosis and there have been a few attempts to incorporate SP-PCR into lab-on-a-chip (LOC) devices. However, their applicability for on-line diagnosis is hindered by the lack of sensitive and portable on-chip optical detection......-PCR directly on top of the SAF microlens array. Attribute to the high fluorescence collection efficiency of the SAF microlens array, the SP-PCR assay on the LOC platform demonstrated a high sensitivity of 1.6 copies/µL, comparable to off-chip detection using conventional laser scanner. The combination of SP...

  1. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    Science.gov (United States)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J.; Polenova, Tatyana

    2014-09-01

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear 1H-X (X = 13C, 15N, 31P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the 1H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the 1H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from 1H chemical shift anisotropy, while keeping the 1H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [15N]-N-acetyl-valine and [U-13C,15N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate 1H-15N dipolar couplings in the context of 3D experiments is presented on U-13C,15N-enriched dynein light chain protein LC8.

  2. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy.

    Science.gov (United States)

    Hou, Guangjin; Lu, Xingyu; Vega, Alexander J; Polenova, Tatyana

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear (1)H-X (X = (13)C, (15)N, (31)P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the (1)H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the (1)H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from (1)H chemical shift anisotropy, while keeping the (1)H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [(15)N]-N-acetyl-valine and [U-(13)C,(15)N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate (1)H-(15)N dipolar couplings in the context of 3D experiments is presented on U-(13)C,(15)N-enriched dynein light chain protein LC8.

  3. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Guangjin, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu; Lu, Xingyu, E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Vega, Alexander J., E-mail: luxingyu@udel.edu, E-mail: lexvega@comcast.net; Polenova, Tatyana, E-mail: hou@udel.edu, E-mail: tpolenov@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-14

    We report a Phase-Alternating R-Symmetry (PARS) dipolar recoupling scheme for accurate measurement of heteronuclear {sup 1}H-X (X = {sup 13}C, {sup 15}N, {sup 31}P, etc.) dipolar couplings in MAS NMR experiments. It is an improvement of conventional C- and R-symmetry type DIPSHIFT experiments where, in addition to the dipolar interaction, the {sup 1}H CSA interaction persists and thereby introduces considerable errors in the dipolar measurements. In PARS, phase-shifted RN symmetry pulse blocks applied on the {sup 1}H spins combined with π pulses applied on the X spins at the end of each RN block efficiently suppress the effect from {sup 1}H chemical shift anisotropy, while keeping the {sup 1}H-X dipolar couplings intact. Another advantage over conventional DIPSHIFT experiments, which require the signal to be detected in the form of a reduced-intensity Hahn echo, is that the series of π pulses refocuses the X chemical shift and avoids the necessity of echo formation. PARS permits determination of accurate dipolar couplings in a single experiment; it is suitable for a wide range of MAS conditions including both slow and fast MAS frequencies; and it assures dipolar truncation from the remote protons. The performance of PARS is tested on two model systems, [{sup 15}N]-N-acetyl-valine and [U-{sup 13}C,{sup 15}N]-N-formyl-Met-Leu-Phe tripeptide. The application of PARS for site-resolved measurement of accurate {sup 1}H-{sup 15}N dipolar couplings in the context of 3D experiments is presented on U-{sup 13}C,{sup 15}N-enriched dynein light chain protein LC8.

  4. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  5. Angles in Complex Vector Spaces

    OpenAIRE

    Scharnhorst, K.

    1999-01-01

    The article reviews some of the (fairly scattered) information available in the mathematical literature on the subject of angles in complex vector spaces. The following angles and their relations are considered: Euclidean, complex, and Hermitian angles, (Kasner's) pseudo-angle, the Kaehler angle (synonyms for the latter used in the literature are: angle of inclination, characteristic deviation, holomorphic deviation, holomorphy angle, Wirtinger angle, slant angle).

  6. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    OBJECTIVES: To evaluate the effect of measurement technique and limb positioning on quadriceps (Q) angle measurement, intra- and interobserver reliability, potential sources of error, and the effect of Q angle variation. STUDY DESIGN: Cadaveric radiographic study and computer modeling. ANIMALS......: Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...... alone and in combination were modeled to identify the effect on Q angle. The effect of measured Q angles on the medial force exerted on the patella (F(MEDIAL) ) was calculated. RESULTS: The HD position yielded significantly (P angles than the WL position. No significant difference...

  7. Angles in hyperbolic lattices

    DEFF Research Database (Denmark)

    Risager, Morten S.; Södergren, Carl Anders

    2017-01-01

    It is well known that the angles in a lattice acting on hyperbolic n -space become equidistributed. In this paper we determine a formula for the pair correlation density for angles in such hyperbolic lattices. Using this formula we determine, among other things, the asymptotic behavior of the den...

  8. Conformational variability of the stationary phase survival protein E from Xylella fastidiosa revealed by X-ray crystallography, small-angle X-ray scattering studies, and normal mode analysis.

    Science.gov (United States)

    Machado, Agnes Thiane Pereira; Fonseca, Emanuella Maria Barreto; Reis, Marcelo Augusto Dos; Saraiva, Antonio Marcos; Santos, Clelton Aparecido Dos; de Toledo, Marcelo Augusto Szymanski; Polikarpov, Igor; de Souza, Anete Pereira; Aparicio, Ricardo; Iulek, Jorge

    2017-10-01

    Xylella fastidiosa is a xylem-limited bacterium that infects a wide variety of plants. Stationary phase survival protein E is classified as a nucleotidase, which is expressed when bacterial cells are in the stationary growth phase and subjected to environmental stresses. Here, we report four refined X-ray structures of this protein from X. fastidiosa in four different crystal forms in the presence and/or absence of the substrate 3'-AMP. In all chains, the conserved loop verified in family members assumes a closed conformation in either condition. Therefore, the enzymatic mechanism for the target protein might be different of its homologs. Two crystal forms exhibit two monomers whereas the other two show four monomers in the asymmetric unit. While the biological unit has been characterized as a tetramer, differences of their sizes and symmetry are remarkable. Four conformers identified by Small-Angle X-ray Scattering (SAXS) in a ligand-free solution are related to the low frequency normal modes of the crystallographic structures associated with rigid body-like protomer arrangements responsible for the longitudinal and symmetric adjustments between tetramers. When the substrate is present in solution, only two conformers are selected. The most prominent conformer for each case is associated to a normal mode able to elongate the protein by moving apart two dimers. To our knowledge, this work was the first investigation based on the normal modes that analyzed the quaternary structure variability for an enzyme of the SurE family followed by crystallography and SAXS validation. The combined results raise new directions to study allosteric features of XfSurE protein. © 2017 Wiley Periodicals, Inc.

  9. Experimental study on the effect of nozzle hole-to-hole angle on the near-field spray of diesel injector using fast X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xusheng; Moon, Seoksu; Gao, Jian; Dufresne, Eric M.; Fezzaa, Kamel; Wang, Jin

    2016-12-01

    Fuel atomization and vaporization process play a critical role in determining the engine combustion and emission. The primary near-nozzle breakup is the vital link between the fuel emerging from the nozzle and the fully atomized spray. In this study, the near-nozzle spray characteristics of diesel injector with different umbrella angle (UA) were investigated using high-speed X-ray phase-contrast imaging and quantitative image processing. A classic ‘dumbbell’ profile of spray width (SW) composed of three stages: opening stage, semisteady stage and closing stage. The SW peak of two-hole injectors was more than twice of that of single-hole injector at the opening and closing stages, corresponding to the hollow-cone spray. This indicated the vortex flow was formed with the increase of the UA. The higher injection pressure had little influence on the SW while led to earlier breakup closer to the nozzle. Significant fuel effect on the SW at higher needle lift was found. However, this effect could be neglect at lower needle lift due to the leading role of internal flow and cavitation on the near-field spray characteristics. In addition, the morphology-based breakup process was observed, which highlighted the important effect of internal flow on the spray development. The possibility of using hollow-cone spray in diesel injector was also discussed.

  10. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  11. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    This article presents the results of a validation study of a previously published method of sex determination from the temporal bone. The purpose of this study was to evaluate the lateral angle method for the internal acoustic canal for accurately determining the sex of human skeletal remains using...... measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability....... The mean lateral angle of the internal acoustic canal was found to be larger in females (46.5°) than in males (43.4°). However, the difference was not statistically significant and the sex differences reported in previous studies were not substantiated. In light of the observed results, the lateral angle...

  12. Angle-Ply Weaving

    Science.gov (United States)

    Farley, Gary L.

    1990-01-01

    Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.

  13. At Right Angles

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 9. At Right Angles. Shailesh A Shirali. Information and Announcements Volume 17 Issue 9 September 2012 pp 920-920. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/017/09/0920-0920 ...

  14. A Different Angle on Perspective

    Science.gov (United States)

    Frantz, Marc

    2012-01-01

    When a plane figure is photographed from different viewpoints, lengths and angles appear distorted. Hence it is often assumed that lengths, angles, protractors, and compasses have no place in projective geometry. Here we describe a sense in which certain angles are preserved by projective transformations. These angles can be constructed with…

  15. Phase angle as a nutritional evaluation tool in all stages of chronic liver disease Ángulo de fase como una herramienta para evaluar el estado nutricional en todas las etapas de la enfermedad hepática crónica

    OpenAIRE

    W. A. F. Peres; D. F. Lento; K. Baluz; A. Ramalho

    2012-01-01

    Introduction: Malnutrition is commonly and frequently under-diagnosed in clinical settings in patients with chronic liver disease (CLD) due to the limitations of nutritional evaluation methods in this population. We hypothesized that the bioelectrical impedance analysis derived phase angle (BIA-derived PhA) might be considered as a nutritional indicator in CLD since it represents either cell death or malnutrition characterized by changes in cellular membrane integrity. Objective: The aim of t...

  16. Small Angle Neutron Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Volker S [ORNL

    2012-01-01

    Small Angle Neutron Scattering (SANS) probes structural details at the nanometer scale in a non-destructive way. This article gives an introduction to scientists who have no prior small-angle scattering knowledge, but who seek a technique that allows elucidating structural information in challenging situations that thwart approaches by other methods. SANS is applicable to a wide variety of materials including metals and alloys, ceramics, concrete, glasses, polymers, composites and biological materials. Isotope and magnetic interactions provide unique methods for labeling and contrast variation to highlight specific structural features of interest. In situ studies of a material s responses to temperature, pressure, shear, magnetic and electric fields, etc., are feasible as a result of the high penetrating power of neutrons. SANS provides statistical information on significant structural features averaged over the probed sample volume, and one can use SANS to quantify with high precision the structural details that are observed, for example, in electron microscopy. Neutron scattering is non-destructive; there is no need to cut specimens into thin sections, and neutrons penetrate deeply, providing information on the bulk material, free from surface effects. The basic principles of a SANS experiment are fairly simple, but the measurement, analysis and interpretation of small angle scattering data involves theoretical concepts that are unique to the technique and that are not widely known. This article includes a concise description of the basics, as well as practical know-how that is essential for a successful SANS experiment.

  17. Radiological assessment of the femoral bicondylar angle in a ...

    African Journals Online (AJOL)

    Background: Femoral bicondylar angle is the angle between the diaphysis of the femur and a line perpendicular to the infracondylar plane. It is indispensable in bipedal locomotion as it serves to place the knee and foot under the body's center of gravity during the single support phase of gait. Although the mechanism for the ...

  18. Relationship between the angle of repose and angle of internal ...

    African Journals Online (AJOL)

    Abstract. Click on the link to view the abstract. Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression machine, moisture content. Tanzania J. Agric. Sc. (1998) Vol.1 No.2, 187-194 ...

  19. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributions...

  20. Angle-insensitive and solar-blind ultraviolet bandpass filter.

    Science.gov (United States)

    Kim, Sangsik; Man, Mengren; Qi, Minghao; Webb, Kevin J

    2014-10-01

    We present a metal-dielectric stack ultraviolet (UV) bandpass filter that rejects the longer wavelength, visible spectrum and is thin and relatively insensitive to the angle of incidence. Parametric evaluations of the reflection phase shift at the metal-dielectric interface provide insight and design information. This nontrivial phase shift allows coupled Fabry-Perot resonances with subwavelength dielectric film thickness. Furthermore, the total phase shift, with contributions from wave propagation and nontrivial reflection phase shift, is insensitive to the angle of incidence. Filter passbands in the UV can be shifted to visible or longer wavelengths by engineering the dielectric thickness and selecting a metal with an appropriate plasma frequency.

  1. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyo [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with 13C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  2. Angle performance on optima MDxt

    Energy Technology Data Exchange (ETDEWEB)

    David, Jonathan; Kamenitsa, Dennis [Axcelis Technologies, Inc., 108 Cherry Hill Dr, Beverly, MA 01915 (United States)

    2012-11-06

    Angle control on medium current implanters is important due to the high angle-sensitivity of typical medium current implants, such as halo implants. On the Optima MDxt, beam-to-wafer angles are controlled in both the horizontal and vertical directions. In the horizontal direction, the beam angle is measured through six narrow slits, and any angle adjustment is made by electrostatically steering the beam, while cross-wafer beam parallelism is adjusted by changing the focus of the electrostatic parallelizing lens (P-lens). In the vertical direction, the beam angle is measured through a high aspect ratio mask, and any angle adjustment is made by slightly tilting the wafer platen prior to implant. A variety of tests were run to measure the accuracy and repeatability of Optima MDxt's angle control. SIMS profiles of a high energy, channeling sensitive condition show both the cross-wafer angle uniformity, along with the small-angle resolution of the system. Angle repeatability was quantified by running a channeling sensitive implant as a regular monitor over a seven month period and measuring the sheet resistance-to-angle sensitivity. Even though crystal cut error was not controlled for in this case, when attributing all Rs variation to angle changes, the overall angle repeatability was measured as 0.16 Degree-Sign (1{sigma}). A separate angle repeatability test involved running a series of V-curves tests over a four month period using low crystal cut wafers selected from the same boule. The results of this test showed the angle repeatability to be <0.1 Degree-Sign (1{sigma}).

  3. Pictorial review: Foot axes and angles

    OpenAIRE

    Gentili, A; Masih, S; Yao, L; Seeger, LL

    1996-01-01

    Using radiographs and diagrams, this article reviews the most commonly used axes and angles of the foot, including: longitudinal axis of the rearfoot, collum tall axis, talocalcaneal angle, cuboid abduction angle, longitudinal axis of the lesser tarsus, lesser tarsus angle, talonavicular angle, longitudinal axis of the metatarsus, forefoot adductus angle, metatarsus adductus angle, first intermetatarsal angle, hallux valgus angle, proximal and distal articular set angles, and hallux interphal...

  4. Heterodyne Interferometer Angle Metrology

    Science.gov (United States)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  5. different outer cone angle

    Directory of Open Access Journals (Sweden)

    Smyk Emil

    2017-01-01

    Full Text Available One of the method of flow separation control is application of axisymmetric valve. It is composed of nozzle with core. Normally the main flow is attached to inner cone and flow by preferential collector to primary flow pipe. If through control nozzle starts flow jet (control jet the main flow is switched to annular secondary collector. In both situation the main flow is deflected to inner or outer cone (placed at the outlet of the valve’s nozzle by Coanda effect. The paper deals with the numerical simulation of this axisymetric annular nozzle with integrated synthetic jet actuator. The aim of the work is influence examination of outer cone angle on deflection on main stream.

  6. Electroweak phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.W.

    1991-09-16

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, {l angle}{phi}{r angle}{sub T} is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of {l angle}{phi}{r angle}{sub T}. In very minimal extensions of the standard model it is quite easy to increase {l angle}{phi}{r angle}{sub T} so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value {l angle}{phi}{r angle} = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state {l angle}{phi}{r angle} = 246 GeV unstable. The requirement that the state {l angle}{phi}{r angle} = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field.

  7. Comparison of children with joint angles in spastic diplegia with those of normal children.

    Science.gov (United States)

    Kim, Chang Ju; Kim, Young Mi; Kim, Dong Dae

    2014-09-01

    [Purpose] The purpose of this study was to compare joint angles between normal children and those with spastic diplegia using three-dimensional gait analysis. [Subjects and Methods] The study subjects were eight patients with spastic diplegia and eight normal children. Three-dimensional gait analysis was used for the survey. The measured gait variables were the joints of the lower extremity in the sagittal plane, frontal plane, and transverse planes and the maximum and minimum angles of their stance phase and swing phases. [Results] In the sagittal plane, the maximum angles of both the right and left pelvis and hip joint in the stance phase and swing phases were significantly greater for children with spastic diplegia than for normal children. In the stance phase of the right side of the hip joint, the maximum angles of the hip in the swing phase and the knee joint's minimum angles in the stance phase differed significantly. In the transverse plane, there were a significant differences on the left side of the pelvis in the maximum angles in the swing and stance phases. There were also significant differences on the right side pelvis, in the maximum and minimum angles in the stance phase and minimum angles in the swing phase. [Conclusion] Children with spastic diplegia employ a different gait strategy and pattern from normal children.

  8. The Critical Angle Can Override the Brewster Angle

    Science.gov (United States)

    Froehle, Peter H.

    2009-01-01

    As a culminating activity in their study of optics, my students investigate polarized light and the Brewster angle. In this exercise they encounter a situation in which it is impossible to measure the Brewster angle for light reflecting from a particular surface. This paper describes the activity and explains the students' observations.

  9. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  10. Weak mixing angle measurements at hadron colliders

    CERN Document Server

    Di Simone, Andrea; The ATLAS collaboration

    2015-01-01

    The Talk will cover weak mixing angle measurements at hadron colliders ATLAS and CMS in particular. ATLAS has measured the forward-backward asymmetry for the neutral current Drell Yan process in a wide mass range around the Z resonance region using dielectron and dimuon final states with $\\sqrt{s}$ =7 TeV data. For the dielectron channel, the measurement includes electrons detected in the forward calorimeter which extends the covered phase space. The result is then used to extract a measurement of the effective weak mixing angle. Uncertainties from the limited knowledge on the parton distribution functions in the proton constitute a significant part of the uncertainty and a dedicated study is performed to obtain a PDF set describing W and Z data measured previously by ATLAS. Similar studies from CMS will be reported.

  11. The small angle diffractometer SANS at PSI

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    With the start-up of SINQ an instrument for small angle neutron scattering will be operational which compares well with the world`s largest and most powerful facilities of this kind. Following the classical principle of the D11-instrument of ILL, it is equipped with state-of-the-art components as are nowadays available, including options for further upgrading. Great emphasis was laid upon providing a flexible, universal multi-user facility which guarantees a comfortable and reliable operation. In the present paper, the principle layout of the instrument is presented, and the individual components are described in detail. The paper concludes with model application of small angle scattering to a system of dilute CuCo alloys which undergo a phase separation under thermal treatment, forming spherical Co-precipitates dispersed in a Cu-rich matrix. (author) 3 figs., 1 tab., 14 refs.

  12. Didactical Design Enrichment of Angle in Geometry

    Science.gov (United States)

    Setiadi, D. R.; Suryadi, D.; Mulyana, E.

    2017-09-01

    The underlying problem of this research is the lack of student’s competencies in understanding the concept of angle in geometry as the results of the teaching and learning pattern that only to receive the topic rather than to construct the topic and has not paid attention to the learning trajectory. The purpose of this research is to develop the didactical design of angle in space learning activity. The used research method is a method of qualitative research in the form of a didactical design research through three phases of analysis i.e. didactical situation analysis, metapedadidactical analysis, and retrospective analysis, which conducted in students from 10th grade at one of private schools in Bandung. Based on the results of research and discussion, the didactical design that has been made, is capable to change student’s learning habit and quite capable to develop student’s competencies although not optimal.

  13. Contact angles of microellipsoids at fluid interfaces.

    Science.gov (United States)

    Coertjens, Stijn; Moldenaers, Paula; Vermant, Jan; Isa, Lucio

    2014-04-22

    The wetting of anisotropic colloidal particles is of great importance in several applications, including Pickering emulsions, filled foams, and membrane transduction by particles. However, the combined effect of shape and surface chemistry on the three-phase contact angle of anisotropic micrometer and submicrometer colloids has been poorly investigated to date, due to the lack of a suitable experimental technique to resolve individual particles. In the present work, we investigate the variation of the contact angle of prolate ellipsoidal colloids at a liquid-liquid interface as a function of surface chemistry and aspect ratio using freeze-fracture shadow-casting cryo-SEM. The method, initially demonstrated for spherical colloids, is extended here to the more general case of ellipsoids. The prolate ellipsoidal particles are prepared from polystyrene and poly(methyl methacrylate) spheres using a film stretching technique, in which cleaning steps are needed to remove all film material from the particle surface. The effects of the preparation protocol are reported, and wrinkling of the three-phase contact line is observed when the particle surface is insufficiently cleaned. For identically prepared ellipsoids, the cosine of the measured contact angle is, in a first approximation, a linearly decreasing function of the contact line length and thus a decreasing function of the aspect ratio. Such a trend violates Young-Laplace's equation and can be rationalized by adding a correction term to the ideal Young-Laplace contact angle that expresses the relative importance of line effects relative to surface effects. From this term the contribution of an effective line tension can be extracted. This contribution includes the effects that both surface chemical and topographical heterogeneities have on the contact line and which become increasingly more important for ellipsoids with higher aspect ratios, where the contact line length to contact area ratio increases.

  14. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition...

  15. Cubatic phase for tetrapods

    NARCIS (Netherlands)

    Blaak, R.; Mulder, B.M.; Frenkel, D.

    2004-01-01

    We investigate the phase behavior of tetrapods, hard nonconvex bodies formed by four rods connected under tetrahedral angles. We predict that, depending on the relative lengths of the rods these particles can form a uniaxial nematic phase, and more surprisingly they can exhibit a cubatic phase, a

  16. Fast and robust global decoupling with coupling angle modulation

    Directory of Open Access Journals (Sweden)

    Y. Luo

    2005-07-01

    Full Text Available We describe a fast and robust global decoupling scheme, coupling angle modulation. This novel technique introduces an extra rotating coupling coefficient into the coupled optics to determine the global decoupling strengths. The eigentune split is used as the observable during the modulation. The two eigentunes are tracked with a high-resolution phase locked loop tune measurement system. In the article, the principle of coupling angle modulation is presented, followed by its application to the Relativistic Heavy Ion Collider (RHIC. Coupling angle modulation coupling correction has been used for the global coupling correction on the nonstop RHIC ramp.

  17. Investigation of the electrical properties of agarose gel: characterization of concentration using nyquist plot phase angle and the implications of a more comprehensive in vitro model of the brain

    OpenAIRE

    Pomfret, Roland; Sillay, Karl; Miranpuri, Gurwattan

    2013-01-01

    Background The electrical properties of agarose gel, namely impedance and capacitance, are relatively unexplored. Agarose gels are used as in vitro models in studies across numerous disciplines, including imaging, radiotherapy, infusion, and neurosurgery. Purpose In this study, we seek to characterize the impedance response of low concentration agarose gels by relating the gel concentrations to Nyquist Plot phase in order to establish a baseline with which to modify the response of the gel to...

  18. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    ). The angle of internal friction ... compression chambers. Lorenzen, 1957 (quoted by Mohsenin,. 1986), reported that the design of deep ... tiongiven for lateral pressure in deep bins as presented by Mohsenin. (1986). The presence of moisture ...

  19. A Novel Monopulse Angle Estimation Method for Wideband LFM Radars

    Directory of Open Access Journals (Sweden)

    Yi-Xiong Zhang

    2016-06-01

    Full Text Available Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP of monopulse. In wideband radars, linear frequency modulated (LFM signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF. Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars.

  20. Observations at large zenith angles

    CERN Document Server

    Schroeder, F

    2000-01-01

    Cherenkov telescope observations at zenith angles >70 deg. are capable of providing large collection areas for high energy gamma-induced air showers. In order to provide a full Monte Carlo simulation of the large zenith angle observations the air shower simulation code CORSIKA was modified to treat particles in a curved geometry. First results of studies with the stand alone telescope HEGRA CT1 are presented.

  1. The Semiotic and Conceptual Genesis of Angle

    Science.gov (United States)

    Tanguay, Denis; Venant, Fabienne

    2016-01-01

    In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…

  2. A LEGO Mindstorms Brewster angle microscope

    Science.gov (United States)

    Fernsler, Jonathan; Nguyen, Vincent; Wallum, Alison; Benz, Nicholas; Hamlin, Matthew; Pilgram, Jessica; Vanderpoel, Hunter; Lau, Ryan

    2017-09-01

    A Brewster Angle Microscope (BAM) built from a LEGO Mindstorms kit, additional LEGO bricks, and several standard optics components, is described. The BAM was built as part of an undergraduate senior project and was designed, calibrated, and used to image phospholipid, cholesterol, soap, and oil films on the surface of water. A BAM uses p-polarized laser light reflected off a surface at the Brewster angle, which ideally yields zero reflectivity. When a film of different refractive index is added to the surface a small amount of light is reflected, which can be imaged in a microscope camera. Films of only one molecule (approximately 1 nm) thick, a monolayer, can be observed easily in the BAM. The BAM was used in a junior-level Physical Chemistry class to observe phase transitions of a monolayer and the collapse of a monolayer deposited on the water surface in a Langmuir trough. Using a photometric calculation, students observed a change in thickness of a monolayer during a phase transition of 7 Å, which was accurate to within 1 Å of the value determined by more advanced methods. As supplementary material, we provide a detailed manual on how to build the BAM, software to control the BAM and camera, and image processing software.

  3. The qualitative criterion of transient angle stability

    DEFF Research Database (Denmark)

    Lyu, R.; Xue, Y.; Xue, F.

    2015-01-01

    In almost all the literatures, the qualitative assessment of transient angle stability extracts the angle information of generators based on the swing curve. As the angle (or angle difference) of concern and the threshold value rely strongly on the engineering experience, the validity and robust...... that misjudgment would be taken if an angle (or angle difference) of concern departing from the concept of the controlling mode or a constant threshold value is used in the criterion....

  4. Digital holographic metrology based on multi-angle interferometry.

    Science.gov (United States)

    Dong, Jun; Jiang, Chao; Jia, Shuhai

    2016-09-15

    We propose a multi-angle interferometry method for digital holographic metrology. In an application of three-dimensional (3D) reconstruction, the hologram corresponding to a different illumination angle is recorded as the illumination angle with a single wavelength tilted at regular intervals by an electronically controlled rotating stage. A Fourier-transform-based axial depth scanning algorithm formed by the reconstructed phase is used to obtain the height point by point over the whole field of view. Hence, the 3D reconstruction can be obtained effectively; even the object has large depth discontinuities resulting from the difficulty of the phase unwrapping. Due to a monochrome source only being used, the method is available for objects with wavelength-dependent reflectivity and those that are free of chromatic aberration caused by the different wavelengths.

  5. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  6. Effects of slant angle and illumination angle on MTF estimations

    CSIR Research Space (South Africa)

    Vhengani, LM

    2012-07-01

    Full Text Available these techniques have been successfully used to assess the MTF of imaging systems aboard the Ikonos, Landsat and QuickBird satellites. Laboratory experiments were conducted to evaluate the effect of slant angle of the knife-edge target and the effect of light...

  7. Systematic variations in divergence angle

    CERN Document Server

    Okabe, Takuya

    2012-01-01

    Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance.

  8. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  9. Polarization optimization of spin-echo small angle scattering instruments

    NARCIS (Netherlands)

    Rekveldt, M.T.; Duif, C.P.; Kraan, W.H.; Plomp, J.; Bouwman, W.G.

    2008-01-01

    The polarization optimization in a small angle scattering spin-echo setup is considered, under the depolarization and phase errors that occur in field transition regions by improper adjustment of inclined magnetized foils as n-flippers. Various correction procedures are discussed. In these setups

  10. Apparent and microscopic dynamic contact angles in confined flows

    Science.gov (United States)

    Omori, Takeshi; Kajishima, Takeo

    2017-11-01

    An abundance of empirical correlations between a dynamic contact angle and a capillary number representing a translational velocity of a contact line have been provided for the last decades. The experimentally obtained dynamic contact angles are inevitably apparent contact angles but often undistinguished from microscopic contact angles formed right on the wall. As Bonn et al. ["Wetting and spreading," Rev. Mod. Phys. 81, 739-805 (2009)] pointed out, however, most of the experimental studies simply report values of angles recorded at some length scale which is quantitatively unknown. It is therefore hard to evaluate or judge the physical validity and the generality of the empirical correlations. The present study is an attempt to clear this clutter regarding the dynamic contact angle by measuring both the apparent and the microscopic dynamic contact angles from the identical data sets in a well-controlled manner, by means of numerical simulation. The numerical method was constructed so that it reproduced the fine details of the flow with a moving contact line predicted by molecular dynamics simulations [T. Qian, X. Wang, and P. Sheng, "Molecular hydrodynamics of the moving contact line in two-phase immiscible flows," Commun. Comput. Phys. 1, 1-52 (2006)]. We show that the microscopic contact angle as a function of the capillary number has the same form as Blake's molecular-kinetic model [T. Blake and J. Haynes, "Kinetics of liquid/liquid displacement," J. Colloid Interface Sci. 30, 421-423 (1969)], regardless of the way the flow is driven, the channel width, the mechanical properties of the receding fluid, and the value of the equilibrium contact angle under the conditions where the Reynolds and capillary numbers are small. We have also found that the apparent contact angle obtained by the arc-fitting of the interface behaves surprisingly universally as claimed in experimental studies in the literature [e.g., X. Li et al., "An experimental study on dynamic pore

  11. Contact angles from Young's equation in molecular dynamics simulations

    Science.gov (United States)

    Jiang, Hao; Müller-Plathe, Florian; Panagiotopoulos, Athanassios Z.

    2017-08-01

    We propose a method to calculate the equilibrium contact angle of heterogeneous 3-phase solid/fluid/fluid systems using molecular dynamics simulations. The proposed method, which combines the phantom-wall method [F. Leroy and F. Müller-Plathe, J. Chem. Phys. 133, 044110 (2010)] and Bennett's acceptance ratio approach [C. H. Bennett, J. Comput. Phys. 22, 245 (1976)], is able to calculate the solid/fluid surface tension relative to the solid surface energy. The calculated relative surface tensions can then be used in Young's equation to estimate the equilibrium contact angle. A fluid droplet is not needed for the proposed method, in contrast to the situation for direct simulations of contact angles. In addition, while prior free-energy based methods for contact angles mainly focused on the wetting of fluids in coexistence with their vapor on solid surfaces, the proposed approach was designed to study the contact angles of fluid mixtures on solid surfaces above the fluid saturation pressures. Using the proposed approach, the contact angles of binary Lennard-Jones fluid mixtures on a non-polar solid substrate were calculated at various interaction parameters and the contact angle of water in equilibrium with CO2 on a hydrophilic polar silica surface was obtained. For both non-polar and polar systems, the calculated contact angles from the proposed method were in agreement with those obtained from the geometry of a cylindrical droplet. The computational cost of the proposed method was found to be comparable to that of simulations that use fluid droplets, but the new method provides a way to calculate the contact angle directly from Young's equation without ambiguity.

  12. Femoral varus: what's the angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Svalastoga, Eiliv Lars; Eriksen, Thomas

    angles were calculated using Microsoft Excel for the three previously reported techniques and a novel method, which we believed would be more reliable. Reliability between readings was assessed using the within-subject standard deviation and repeatability coefficient, and the effect of angulation...

  13. Reflective Type Small-Angle Sensor Based on Multiple Total Internal Reflections in Heterodyne Interferometry

    Directory of Open Access Journals (Sweden)

    Shinn-Fwu Wang

    2008-12-01

    Full Text Available A reflective type small-angle sensor based on the multiple total internal reflections (MTIRs in heterodyne interferometry is proposed. In the paper, we try to measure the phase difference variation between s- and p-polarizations due to MTIRs. The phase difference variation depends on the incident angle. Therefore, only evaluating the phase difference variation can perform small-angle measurement. The resolution of the method can reach 5.5E-7 radian. The method has some merits, e.g., a simple optical setup, easy operation, high measurement accuracy, high resolution, rapid measurement, and high stability etc. and its feasibility is demonstrated.

  14. Small-angle Sensor Based on the SPR Technology and Heterodyne Interferomery

    Directory of Open Access Journals (Sweden)

    Shinn-Fwu Wang

    2008-05-01

    Full Text Available A small-angle sensor based on the surface plasmon resonance (SPR technology and heterodyne interferometry is proposed. In the paper, we try to measure the phase difference variation between s and p polarizations due to attenuated total reflection (ATR. The phase difference variation depends on the incident angle. Therefore, only evaluating the phase difference variation can perform small-angle measurement. The resolution of the method can reach 2.4 x 10-7 radian. The method has some merits, e.g., a simple optical setup, easy operation, high measurement accuracy, high resolution, rapid measurement, and high stability etc. And its feasibility is demonstrated.

  15. An Angle Criterion for Riesz Bases

    DEFF Research Database (Denmark)

    Lindner, Alexander M; Bittner, B.

    1999-01-01

    We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived.......We present a characterization of Riesz bases in terms ofthe angles between certain finite dimensional subspaces. Correlationsbetween the bounds of the Riesz basis and the size of the angles arederived....

  16. Switching Angles Determination Using Genetic Algorithm for Two-Level SHEPWM Inverter

    OpenAIRE

    DENİZ, Erkan

    2015-01-01

    Selective Harmonic Elimination pulse width modulation (SHEPWM technique) requires the determination of optimum switching angles by solving the nonlinear equation set and a look-up table stored the switching times in a real-time application. In this paper, an 11-angle SHEPWM algorithm is presented to eliminate low-order harmonics from line-to-neutral voltage waveform of three-phase two-level inverter. The nonlinear equations set which are functions of the switching angles obtained from the Fou...

  17. Holographic display with LED sources illumination and enlarged viewing angle

    Science.gov (United States)

    Chlipała, Maksymilian; Kozacki, Tomasz

    2016-09-01

    In this work we present holographic display that uses LED sources illumination and have enlarged viewing angle. In this holographic display design we employ phase only SLM because it allows to obtain reconstructions of high quality. Our setup realizes complex coding scheme and allows to reconstruct complex holographic images. Thus reconstruction of inplane holograms is possible. Holograms displayed on SLM are computer generated. For enlargement of angular field of view we use three spatially separated illumination sources and time multiplexing technique. In experimental part, where we display computer generated holograms, we show that it is possible to obtain holographic reconstructions of 3D object with extended viewing angle.

  18. Measurement of the CKM angle $\\gamma$ at LHCb

    CERN Multimedia

    Gersabeck, M

    2009-01-01

    The precise measurement of the CKM unitarity triangle angle $\\gamma$ is a key goal of the LHCb physics programme. The uncertainty on $\\gamma$, the currently least-well known of the three angles, will be reduced dramatically. Complementary measurements will be made in tree-level processes, and modes where loop diagrams play an important role. The tree-level measurements will cover time-integrated as well as time- dependent measurements in both the $B^0_d$ and the $B^0_s$ sectors. The ensemble of these measurements will provide a powerful test of whether new physics phases contribute to heavy-flavour transitions.

  19. LHC Report: playing with angles

    CERN Multimedia

    Mike Lamont for the LHC team

    2016-01-01

    Ready (after a machine development period), steady (running), go (for a special run)!   The crossing angles are an essential feature of the machine set-up. They have to be big enough to reduce the long-range beam-beam effect. The LHC has recently enjoyed a period of steady running and managed to set a new record for “Maximum Stable Luminosity Delivered in 7 days” of 3.29 fb-1 between 29 August and 4 September. The number of bunches per beam remains pegged at 2220 because of the limitations imposed by the SPS beam dump. The bunch population is also somewhat reduced due to outgassing near one of the injection kickers at point 8. Both limitations will be addressed during the year-end technical stop, opening the way for increased performance in 2017. On 10 and 11 September, a two day machine development (MD) period took place. The MD programme included a look at the possibility of reducing the crossing angle at the high-luminosity interaction points. The crossing angles are an ess...

  20. The development of mathematics courseware for learning line and angle

    Science.gov (United States)

    Halim, Noor Dayana Abd; Han, Ong Boon; Abdullah, Zaleha; Yusup, Junaidah

    2015-05-01

    Learning software is a teaching aid which is often used in schools to increase students' motivation, attract students' attention and also improve the quality of teaching and learning process. However, the development of learning software should be followed the phases in Instructional Design (ID) Model, therefore the process can be carried out systematic and orderly. Thus, this concept paper describes the application of ADDIE model in the development of mathematics learning courseware for learning Line and Angle named CBL-Math. ADDIE model consists of five consecutive phases which are Analysis, Design, Development, Implementation and Evaluation. Each phase must be properly planned in order to achieve the objectives stated. Other than to describe the processes occurring in each phase, this paper also demonstrating how cognitive theory of multimedia learning principles are integrated in the developed courseware. The principles that applied in the courseware reduce the students' cognitive load while learning the topic of line and angle. With well prepared development process and the integration of appropriate principles, it is expected that the developed software can help students learn effectively and also increase students' achievement in the topic of Line and Angle.

  1. Effect of Mean Angle of Attack Modulation on Dynamic Stall

    Science.gov (United States)

    Heintz, Kyle; Corke, Thomas

    2016-11-01

    Wind tunnel experiments at M = 0 . 2 were conducted on a cambered airfoil instrumented with surface pressure transducers that was oscillated with two independent frequencies. The primary input, f1, corresponds to a range of reduced frequencies, while the slower, secondary input, f2, drives the modulation of the mean angle of attack, thus varying the stall-penetration angle, αpen. Various combinations transitioned different regimes of dynamic stall from "light" to "deep". Results suggest that when αpen is falling between consecutive cycles, the aerodynamic loads do not fully recover to the values seen when αpen is rising, even though the airfoil recedes to αpen < 0 during each oscillation. The experimental data is presented in terms of load coefficients, aerodynamic damping, and their phase relationships to pitch angle. APS Fellow.

  2. Substorm onset location and dipole tilt angle

    Directory of Open Access Journals (Sweden)

    J. Wanliss

    2006-03-01

    Full Text Available From an initial data set of over 200 substorms we have studied a subset of 30 magnetospheric substorms close to magnetic midnight to investigate, in a statistical fashion, the source region of the auroral arc that brightens at the onset of expansive phase. This arc is usually identified as the ionospheric signature of the expansive phase onset that occurs in the magnetotail. All the substorm onsets were identified via ground-based magnetometer and photometer data from the CANOPUS array. Various Tsyganenko global magnetic field models were used to map magnetic field lines from the location of the onset arc out to its greatest radial distance in the magnetotail. The results appear to favour the current disruption model of substorms since the average onset location has an average of 14.1 Earth radii (RE and is therefore more consistent with theories that place the onset location in the inner magnetotail. For the narrow range of tilts available our modeling indicates the parameter that appears to strongly influence the location of the substorm onset is the dipole tilt angle; as tilt becomes less negative onsets occur further downtail.

  3. Substorm onset location and dipole tilt angle

    Directory of Open Access Journals (Sweden)

    J. Wanliss

    2006-03-01

    Full Text Available From an initial data set of over 200 substorms we have studied a subset of 30 magnetospheric substorms close to magnetic midnight to investigate, in a statistical fashion, the source region of the auroral arc that brightens at the onset of expansive phase. This arc is usually identified as the ionospheric signature of the expansive phase onset that occurs in the magnetotail. All the substorm onsets were identified via ground-based magnetometer and photometer data from the CANOPUS array. Various Tsyganenko global magnetic field models were used to map magnetic field lines from the location of the onset arc out to its greatest radial distance in the magnetotail. The results appear to favour the current disruption model of substorms since the average onset location has an average of 14.1 Earth radii (RE and is therefore more consistent with theories that place the onset location in the inner magnetotail. For the narrow range of tilts available our modeling indicates the parameter that appears to strongly influence the location of the substorm onset is the dipole tilt angle; as tilt becomes less negative onsets occur further downtail.

  4. Ocular Biometry in Angle Closure

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Razeghinejad

    2013-01-01

    Full Text Available Purpose: To compare ocular biometric parameters in primary angle closure suspects (PACS, primary angle closure glaucoma (PACG and acute primary angle closure (APAC. Methods: This cross-sectional study was performed on 113 patients including 33 cases of PACS, 45 patients with PACG and 35 subjects with APAC. Central corneal thickness (CCT, axial length (AL, anterior chamber depth (ACD and lens thickness (LT were measured with an ultrasonic biometer. Lens-axial length factor (LAF, relative lens position, corrected ACD (CACD and corrected lens position were calculated. The parameters were measured bilaterally but only data from the right eyes were compared. In the APAC group, biometric parameters were also compared between affected and unaffected fellow eyes. Logistic regression analysis was performed to identify risk factors. Results: No statistically significant difference was observed in biometric parameters between PACS and PACG eyes, or between affected and fellow eyes in the APAC group (P>0.05 for all comparisons. However, eyes with APAC had thicker cornea (P=0.001, thicker lens (P<0.0001, shallower ACD (P=0.009, shallower CACD (P=0.003 and larger LAF (P<0.0001. Based on ROC curve analysis, lower ACD, and larger LT, LAF and CCT values were associated with APAC. In the APAC group, LAF (P<0.0001 and CCT (P=0.001 were significant risk factors. Conclusion: This study revealed no significant difference in biometric characteristics in eyes with PACS and PACG. However, larger LAF and CCT were predictive of APAC.

  5. Small angle scattering and polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, J.P. [Laboratoire Leon Brillouin (LLB) - Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1996-12-31

    The determination of polymer structure is a problem of interest for both statistical physics and industrial applications. The average polymer structure is defined. Then, it is shown why small angle scattering, associated with isotopic substitution, is very well suited to the measurement of the chain conformation. The corresponding example is the old, but pedagogic, measurement of the chain form factor in the polymer melt. The powerful contrast variation method is illustrated by a recent determination of the concentration profile of a polymer interface. (author) 12 figs., 48 refs.

  6. Methods for magnetic resonance analysis using magic angle technique

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  7. The Use of Accelerometers and Gyroscopes to Estimate Hip and Knee Angles on Gait Analysis

    Directory of Open Access Journals (Sweden)

    Francesco Alonge

    2014-05-01

    Full Text Available In this paper the performance of a sensor system, which has been developed to estimate hip and knee angles and the beginning of the gait phase, have been investigated. The sensor system consists of accelerometers and gyroscopes. A new algorithm was developed in order to avoid the error accumulation due to the gyroscopes drift and vibrations due to the ground contact at the beginning of the stance phase. The proposed algorithm have been tested and compared to some existing algorithms on over-ground walking trials with a commercial device for assisted gait. The results have shown the good accuracy of the angles estimation, also in high angle rate movement.

  8. Polarization optimization of spin-echo small angle scattering instruments.

    Science.gov (United States)

    Rekveldt, M Theo; Duif, Chris P; Kraan, Wicher H; Plomp, Jeroen; Bouwman, Wim G

    2008-01-01

    The polarization optimization in a small angle scattering spin-echo setup is considered, under the depolarization and phase errors that occur in field transition regions by improper adjustment of inclined magnetized foils as pi-flippers. Various correction procedures are discussed. In these setups with precession fields perpendicular to the beam directions, corrections can be reduced strongly by the use of pi-flippers, and for the remaining errors, correction coils can be constructed.

  9. Automatic control of a drop-foot stimulator based on angle measurement using bioimpedance.

    Science.gov (United States)

    Nahrstaedt, Holger; Schauer, Thomas; Shalaby, Raafat; Hesse, Stefan; Raisch, Jörg

    2008-08-01

    The topic of this contribution is iterative learning control of a drop-foot stimulator in which a predefined angle profile during the swing phase is realized. Ineffective dorsiflexion is compensated by feedback-controlled stimulation of the muscle tibialis anterior. The ankle joint measurement is based on changes in the bioimpedance (BI) caused by leg movements. A customized four-channel BI measurement system was developed. The suggested control approach and the new measurement method for the joint angle were successfully tested in preliminary experiments with a neurologically intact subject. Reference angle measurements were taken with a marker-based optical system. An almost linear relation between joint angle and BI was found for the angle range applicable during gait. The desired angle trajectory was closely tracked by the iterative learning controller after three gait cycles. The final root mean square tracking error was below 5 degrees.

  10. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System.

    Science.gov (United States)

    Jiang, Rui; Yang, Gongliu; Zou, Rui; Wang, Jing; Li, Jing

    2017-03-17

    In the dual-axis rotation inertial navigation system (INS), besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF). This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α₁ , α₂), initial phase angles (ϕ₁,ϕ₂), and the non-perpendicular angle (η). In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles' variation are reduced by about 20%-30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved.

  11. The Q-angle and sport

    DEFF Research Database (Denmark)

    Hahn, Thomas; Foldspang, Anders

    1997-01-01

    Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations with par......Quadriceps muscle contraction tends to straighten the Q angle. We expected that sports comprising a high amount of quadriceps training could be associated with low Q angles. The aim of the present study was to estimate the Q angle in athletes and to investigate its potential associations...... with participation in sport. Three hundred and thirty-nine athletes had their Q angle measured. The mean of right-side Q angles was higher than left side, and the mean Q angle was higher in women than in men. The Q angle was positively associated with years of jogging, and negatively with years of soccer, swimming...... and sports participation at all. It is concluded that the use of Q angle measurements is questionable....

  12. Wafer scale oblique angle plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  13. Neutron elastic scattering at very small angles

    CERN Multimedia

    2002-01-01

    This experiment will measure neutron-proton elastic scattering at very small angles and hence very small four-momentum transfer, |t|. The range of |t| depends on the incident neutron momentum of the events but the geometrical acceptance will cover the angular range 0.025 < $\\Theta_{lab}$ < 1.9 mrad. The higher figure could be extended to 8.4 mrad by changing the geometry of the experiment in a later phase. \\\\ \\\\ The neutron beam will be highly collimated and will be derived from a 400 GeV external proton beam of up to $4 \\times 10^{10}$ protons per pulse in the SPS North Area Hall 1. The hydrogen target will be gaseous, operating at 40 atm. pressure and acts as a multiwire proportional chamber to detect the recoil protons. The forward neutron will be detected and located by interaction in a neutron vertex detector and its energy measured by a conventional steel plate calorimeter. \\\\ \\\\ The experiment will cover the angular region of nucleon-nucleon scattering which is dominated by Coulomb scattering ...

  14. The paediatric Bohler's angle and crucial angle of Gissane: a case series

    Directory of Open Access Journals (Sweden)

    Crawford Haemish A

    2011-01-01

    Full Text Available Abstract Background Bohler's angle and the crucial angle of Gissane can be used to assess calcaneal fractures. While the normal adult values of these angles are widely known, the normal paediatric values have not yet been established. Our aim is to investigate Bohler's angle and the crucial angle of Gissane in a paediatric population and establish normal paediatric reference values. Method We measured Bohler's angle and the crucial angle of Gissane using normal plain ankle radiographs of 763 patients from birth to 14 years of age completed over a five year period from July 2003 to June 2008. Results In our paediatric study group, the mean Bohler's angle was 35.2 degrees and the mean crucial angle of Gissane was 111.3 degrees. In an adult comparison group, the mean Bohler's angle was 39.2 degrees and the mean crucial angle of Gissane was 113.8 degrees. The differences in Bohler's angle and the crucial angle of Gissane between these two groups were statistically significant. Conclusion We have presented the normal values of Bohler's angle and the crucial angle of Gissane in a paediatric population. These values may provide a useful comparison to assist with the management of the paediatric calcaneal fracture.

  15. Accurate Compensation of Attitude Angle Error in a Dual-Axis Rotation Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Rui Jiang

    2017-03-01

    Full Text Available In the dual-axis rotation inertial navigation system (INS, besides the gyro error, accelerometer error, rolling misalignment angle error, and the gimbal angle error, the shaft swing angle and the axis non-orthogonal angle also affect the attitude accuracy. Through the analysis of the structure, we can see that the shaft swing angle and axis non-orthogonal angle will produce coning errors which cause the fluctuation of the attitude. According to the analysis of the rotation vector, it can be seen that the coning error will generate additional drift velocity along the rotating shaft, which can reduce the navigation precision of the system. In this paper, based on the establishment of the modulation average frame, the vector projection is carried out, and then the attitude conversion matrix and the attitude error matrix mainly including the shaft swing angle and axis non-orthogonal are obtained. Because the attitude angles are given under the static condition, the shaft swing angle and the axis non-orthogonal angle are estimated by the static Kalman filter (KF. This kind of KF method has been widely recognized as the standard optimal estimation tool for estimating the parameters such as coning angles (α1 , α2, initial phase angles (ϕ1,ϕ2, and the non-perpendicular angle (η. In order to carry out the system level verification, a dual axis rotation INS is designed. Through simulation and experiments, the results show that the amplitudes of the attitude angles’ variation are reduced by about 20%–30% when the shaft rotates. The attitude error equation is reasonably simplified and the calibration method is accurate enough. The attitude accuracy is further improved.

  16. Large neutrino mixing angles in unified theories

    Science.gov (United States)

    Babu, K. S.; Barr, S. M.

    1996-02-01

    Typically in unified theories the neutrino mixing angles, like the Cabibbo-Kobayashi-Maskawa (CKM) angles of the quarks, are related to the small mass ratios between fermions of different generations and are therefore quite small. A new approach for explaining the intergenerational mass hierarchies is proposed here which, while giving small CKM angles, naturally leads to neutrino angles of order unity. Such large mixing angles may be required for a resolution of the atmospheric neutrino anomaly and may also be relevant for the solar neutrino puzzle. The mechanism presented here provides a framework in which novel approaches to the fermion mass question can arise. In particular, within this framework a variant of the texture idea allows highly predictive models to be constructed, an illustrative example of which is given. It is shown how the neutrino mixing angles may be completely determined in such schemes.

  17. The new INRIM rotating encoder angle comparator (REAC)

    Science.gov (United States)

    Pisani, Marco; Astrua, Milena

    2017-04-01

    A novel angle comparator has been built and tested at INRIM. The device is based on a double air bearing structure embedding a continuously rotating encoder, which is read by two heads: one fixed to the base of the comparator and a second fixed to the upper moving part of the comparator. The phase measurement between the two heads’ signals is proportional to the relative angle suspended between them (and, therefore, the angle between the base and the upper, movable part of the comparator). The advantage of this solution is to reduce the encoder graduation errors and to cancel the cyclic errors due to the interpolation of the encoder lines. By using only two pairs of reading heads, we have achieved an intrinsic accuracy of  ±0.04″ (rectangular distribution) that can be reduced through self-calibration. The residual cyclic errors have shown to be less than 0.01″ peak-to-peak. The random fluctuations are less than 0.01″ rms on a 100 s time interval. A further advantage of the rotating encoder is the intrinsic knowledge of the absolute position without the need of a zeroing procedure. Construction details of the rotating encoder angle comparator (REAC), characterization tests, and examples of practical use are given.

  18. Oblique angle lasing in a periodically pumped organic microcavity

    Science.gov (United States)

    Hintschich, Susanne I.; Lyssenko, Vadim G.; Sudzius, Markas; Schütte, Bernd; Fröb, Hartmut; Leo, Karl

    2010-05-01

    We investigate a planar organic microcavity under spatially periodic optical excitation. The host:guest system of Alq3:DCM is the emitting layer embedded in between two dielectric mirrors. Excitation by an interference field of two femtosecond laser pulses generates an array of lasers spaced by few microns. The far field of the cavity response shows conventional stimulated emission at k=0 and, in addition, two stripes of laser emission at oblique angles. The excitation pattern generates a periodic modification of the optical properties of the cavity, a dynamic diffraction grating with a period of few microns. This enhances the spontaneous emission in the direction of the Bragg angle, which depends on the distance of the interference stripes. Via the angle of incidence of the excitation beams, we can optically tune output angle and the wavelength of lasing. Measurements are confirmed by simulations of the mode dynamics inside a lossy cavity with small excitation spot sizes, where the local gain exceeds the total mirror and absorptive losses. We find that adjacent cavity quasimodes couple out of phase at certain separation distances, which critically depend on the quasimode radius and, thus, on the residual absorption. Thus, we gain insight into the development of coherence and mode-locking in microcavities.

  19. Nonlinear description of Yang-Mills cosmology: cosmic inflation and the accompanying Hannay’s angle

    Science.gov (United States)

    Bouguerra, Yacine; Maamache, Mustapha; Ryeol Choi, Jeong

    2017-06-01

    Hannay’s angle is a classical analogue of the “geometrical phase factor” found by Berry in his research on the quantum adiabatic theorem. This classical analogue is defined if closed curves of constant action variables return to the same curves in phase space after an adaibatic evolution. Adiabatic evolution of Yang-Mills cosmology, which is described by a time-dependent quartic oscillator, is investigated. Phase properties of the Yang-Mills fields are analyzed and the corresponding Hannay’s angle is derived from a rigorous evaluation. The obtained Hannay’s angle shift is represented in terms of several observable parameters associated with such an angle shift. The time evolution of Hannay’s angle in Yang-Mills cosmology is examined from an illustration plotted on the basis of numerical evaluation, and its physical nature is addressed. Hannay’s angle, together with its quantum counterpart Berry’s phase, plays a pivotal role in conceptual understanding of several cosmological problems and indeed can be used as a supplementary probe for cosmic inflation. Supported by Basic Science Research Program through National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  20. Direct angle resolved photoemission spectroscopy and ...

    Indian Academy of Sciences (India)

    Keywords. Condensed matter physics; high-c superconductivity; electronic properties; photoemission spectroscopy; angle resolved photoemission spectroscopy; cuprates; films; strain; pulsed laser deposition.

  1. Miniature Angle Measuring Interferometer (MIAMI)

    Science.gov (United States)

    Bauer, Robert J.

    The miniature Angle Measuring Interferometer (MIAMI) is a compact laser interferometer that was developed by Ball to satisfy the sensor needs of various pointing and tracking applications. These include: (1) attitude sensing for fast-steering mirrors and other optical elements, (2) structural monitoring and control for optical benches and other structures requiring micro-positioning, and (3) high-precision encoders for use in measuring the angular position of gimballed payloads and drives. MIAMI is constructed from off-the-shelf optical elements, using the inherent precision of the optical faces for alignment when feasible. In the present configuration, the laser light makes eight passes between the sensor head and the retroreflective target, amplifying the sensitivity of this device by a factor of eight. The interference of the two laser beams create fringe patterns, and the separation between fringes is equivalent to one wavelength of laser light (0.6328 micrometers). MIAMI uses interpolation to further subdivide each fringe spacing by a factor of 8 or 16, depending on configuration. MIAMI exhibits excellent performance characteristics, Its angular resolution is 175 nanoradians, and it achieves this with incremental data rates exceeding 5 MHz. MIAMI can accommodate rapid slew rates (greater than 50 deg/sec) and large angular travel (greater than +/- 20 deg). When used as a linear calibration sensor, MIAMI is capable of approxiamtely 10 nanometer linear resolution. The compact design (approximately 5 cubic in.) and light weight (approximately 8 oz) for the sensor head optics make it a very attractive candidate for space sensor applications.

  2. Anterior Segment Imaging for Angle Closure.

    Science.gov (United States)

    Chansangpetch, Sunee; Rojanapongpun, Prin; Lin, Shan C

    2018-01-31

    To summarize the role of anterior segment imaging (AS-imaging) in angle closure diagnosis and management, and the possible advantages over the current standard of gonioscopy. Literature review and perspective. Review of the pertinent publications with interpretation and perspective in relation to the use of AS-imaging in angle closure assessment focusing on anterior segment optical coherence tomography and ultrasound biomicroscopy. Several limitations have been encountered with the reference standard of gonioscopy for angle assessment. AS-imaging has been shown to have performance in angle closure detection compared to gonioscopy. Also, imaging has greater reproducibility and serves as better documentation for long-term follow-up than conventional gonioscopy. The qualitative and quantitative information obtained from AS-imaging enables better understanding of the underlying mechanisms of angle closure and provides useful parameters for risk assessment and possible prediction of the response to laser and surgical intervention. The latest technologies-including 3-dimensional imaging-have allowed for the assessment of the angle that simulates the gonioscopic view. These advantages suggest that AS-imaging has a potential to be a reference standard for the diagnosis and monitoring of angle closure disease in the future. Although gonioscopy remains the primary method of angle assessment, AS-imaging has an increasing role in angle closure screening and management. The test should be integrated into clinical practice as an adjunctive tool for angle assessment. It is arguable that AS-imaging should be considered first-line screening for patients at risk for angle closure. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes.

    Science.gov (United States)

    Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M

    2017-10-03

    Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (pcutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (pcutting towards sharper angles (pcutting angles and then stabilized compared to the 45° cutting angle (pcutting to sharper angles (pcutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Interference-induced angle-independent acoustical transparency

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Lehua; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn; Wang, Ning [Department of Marine Technology, Ocean University of China, Qingdao 266100 (China); Wang, Xinlong [Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Wang, Guibo [Shipbuilding Information Center of China, Beijing 100012 (China)

    2014-12-21

    It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtz resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.

  5. A Climbing Class' Reinvention of Angles

    Science.gov (United States)

    Fyhn, Anne Birgitte

    2008-01-01

    A previous study shows how a twelve-year-old girl discovers angles in her narrative from a climbing trip. Based on this research, the girl's class takes part in one day of climbing and half a day of follow-up work at school. The students mathematise their climbing with respect to angles and they express themselves in texts and drawings. Their…

  6. Acute angle closure glaucoma following ileostomy surgery

    Directory of Open Access Journals (Sweden)

    Mariana Meirelles Lopes

    2015-02-01

    Full Text Available Angle-closure glaucoma can be induced by drugs that may cause pupillary dilatation. We report a case of a patient that developed bilateral angle closure glaucoma after an ileostomy surgery because of systemic atropine injection. This case report highlights the importance of a fast ophthalmologic evaluation in diseases with ocular involvement in order to make accurate diagnoses and appropriate treatments.

  7. Nasolabial angle: a perception of treatment needs.

    Science.gov (United States)

    Sukhia, Rashna Hoshang; Sukhia, Hoshang Rumi; Fida, Mubassar; Khan, Munizeh

    2012-01-01

    The nasolabial angle holds a very important position in the treatment planning process for an orthodontic case, especially in today's soft tissue paradigm. This study was therefore conducted to compare the mean preference scores for orthodontic treatment need considering the nasolabial angle among orthodontists, orthodontic patients and their parents.

  8. Solid angles III. The role of conformers in solid angle calculations

    CSIR Research Space (South Africa)

    White, D

    1995-06-14

    Full Text Available The values of the solid angles Omega for a range of commonly encountered ligands in organometallic chemistry (phosphines, phosphites, amines, arsines and cyclopentadienyl rings) have been determined. The solid angles were derived from a single...

  9. New Type Small-angle Sensor Based on the TIR and SPR Theories in Heterodyne Interferomery

    Directory of Open Access Journals (Sweden)

    Shinn-Fwu Wang

    2009-06-01

    Full Text Available In this paper, a new type small-angle sensor based on the total internal reflection (TIR and surface plasmon resonance (SPR theories in heterodyne interferomery is proposed. With the small-displacement sensor, a small rotation angle can be obtained only by measuring the variation in phase difference between s- and p-polarization states. The best theoretical sensitivity of the small-angle sensor is 2x10-4 degree/degree. And its resolution can reach 1x10-7 radian. The sensor has some merits, e.g., a simple optical setup, high resolution, high sensitivity, rapid measurement.

  10. Three-Phase and Six-Phase AC at the Lab Bench

    Science.gov (United States)

    Caplan, George M.

    2009-01-01

    Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…

  11. Optimization-based Dielectric Metasurfaces for Angle-Selective Multifunctional Beam Deflection.

    Science.gov (United States)

    Cheng, Jierong; Inampudi, Sandeep; Mosallaei, Hossein

    2017-09-25

    Synthesization of multiple functionalities over a flat metasurface platform offers a promising approach to achieving integrated photonic devices with minimized footprint. Metasurfaces capable of diverse wavefront shaping according to wavelengths and polarizations have been demonstrated. Here we propose a class of angle-selective metasurfaces, over which beams are reflected following different and independent phase gradients in the light of the beam direction. Such powerful feature is achieved by leveraging the local phase modulation and the non-local lattice diffraction via inverse scattered field and geometry optimization in a monolayer dielectric grating, whereas most of the previous designs utilize the local phase modulation only and operate optimally for a specific angle. Beam combiner/splitter and independent multibeam deflections with up to 4 incident angles are numerically demonstrated respectively at the wavelength of 700 nm. The deflection efficiency is around 45% due to the material loss and the compromise of multi-angle responses. Flexibility of the approach is further validated by additional designs of angle-switchable metagratings as splitter/reflector and transparent/opaque mirror. The proposed designs hold great potential for increasing information density of compact optical components from the degree of freedom of angle.

  12. Fat attenuation using a dual steady‐state balanced‐SSFP sequence with periodically variable flip angles

    National Research Council Canada - National Science Library

    Absil, J; Denolin, V; Metens, T

    2006-01-01

    .... The sequence uses periodically variable flip angles and produces a dual steady state of the signal, which is obtained after a dual transient phase if an appropriate preparation is used. The off...

  13. Modified angle's classification for primary dentition

    Directory of Open Access Journals (Sweden)

    Kaushik Narendra Chandranee

    2017-01-01

    Full Text Available Aim: This study aims to propose a modification of Angle's classification for primary dentition and to assess its applicability in children from Central India, Nagpur. Methods: Modification in Angle's classification has been proposed for application in primary dentition. Small roman numbers i/ii/iii are used for primary dentition notation to represent Angle's Class I/II/III molar relationships as in permanent dentition, respectively. To assess applicability of modified Angle's classification a cross-sectional preschool 2000 children population from central India; 3–6 years of age residing in Nagpur metropolitan city of Maharashtra state were selected randomly as per the inclusion and exclusion criteria. Results: Majority 93.35% children were found to have bilateral Class i followed by 2.5% bilateral Class ii and 0.2% bilateral half cusp Class iii molar relationships as per the modified Angle's classification for primary dentition. About 3.75% children had various combinations of Class ii relationships and 0.2% children were having Class iii subdivision relationship. Conclusions: Modification of Angle's classification for application in primary dentition has been proposed. A cross-sectional investigation using new classification revealed various 6.25% Class ii and 0.4% Class iii molar relationships cases in preschool children population in a metropolitan city of Nagpur. Application of the modified Angle's classification to other population groups is warranted to validate its routine application in clinical pediatric dentistry.

  14. View Angle Tilting Echo Planar Imaging for Distortion Correction

    OpenAIRE

    Ahn, Sinyeob; Hu, Xiaoping

    2011-01-01

    Geometric distortion caused by field inhomogeneity along the phase-encode (PE) direction is one of the most prominent artifacts due to a relatively low effective bandwidth along that direction in magnetic resonance echo planar imaging (EPI). This work describes a method for correcting in-plane image distortion along the PE direction using a view angle tilting (VAT) imaging technique in spin-echo EPI (SE-EPI). SE-EPI with VAT (SE-EPI-VAT) utilizes the addition of gradient blips along the slice...

  15. Why does acute primary angle closure happen? Potential risk factors for acute primary angle closure.

    Science.gov (United States)

    Zhang, Xiulan; Liu, Yaoming; Wang, Wei; Chen, Shida; Li, Fei; Huang, Wenbin; Aung, Tin; Wang, Ningli

    Acute primary angle closure is an ocular emergency and requires immediate management to avoid blindness. Narrow anterior chamber angle, advanced age, female gender, and Asian ethnic background are considered risk factors for acute primary angle closure. The predictive power of these factors is, however, relatively poor, and many questions remain unanswered because acute primary angle closure eventually develops in only a relatively small proportion of anatomically predisposed eyes. We summarize the potential roles of various factors in the pathogenesis of acute primary angle closure. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Computing angle of arrival of radio signals

    Science.gov (United States)

    Borchardt, John J.; Steele, David K.

    2017-11-07

    Various technologies pertaining to computing angle of arrival of radio signals are described. A system that is configured for computing the angle of arrival of a radio signal includes a cylindrical sheath wrapped around a cylindrical object, where the cylindrical sheath acts as a ground plane. The system further includes a plurality of antennas that are positioned about an exterior surface of the cylindrical sheath, and receivers respectively coupled to the antennas. The receivers output measurements pertaining to the radio signal. A processing circuit receives the measurements and computes the angle of arrival of the radio signal based upon the measurements.

  17. Branes at angles from worldvolume actions

    Directory of Open Access Journals (Sweden)

    Reza Abbaspur

    2016-05-01

    Full Text Available We investigate possible stable configurations of two arbitrary branes at general angles using the dynamics of DBI+WZ action. The analysis naturally reveals two types of solutions which we identify as the “marginal” and “non-marginal” configurations. We characterize possible configurations of a pair of identical or non-identical branes in either of these two classes by specifying their proper intersection rules and allowed intersection angles. We also perform a partial analysis of configurations with multiple angles of a system of asymptotically flat curved branes.

  18. Residual Angle Closure One Year After Laser Peripheral Iridotomy in Primary Angle Closure Suspects.

    Science.gov (United States)

    Baskaran, Mani; Yang, Elizabeth; Trikha, Sameer; Kumar, Rajesh S; Wong, Hon Tym; He, Mingguang; Chew, Paul T K; Foster, Paul J; Friedman, David; Aung, Tin

    2017-11-01

    To determine the incidence and baseline clinical and anterior segment optical coherence tomography (AS-OCT) predictors associated with residual angle closure as assessed by gonioscopy 1 year after laser peripheral iridotomy (LPI) in primary angle closure suspects (PACS). Subanalysis of randomized controlled trial data. AS-OCT images from 181 PACS subjects ≥50 years of age were analyzed using customized software before and 1 year after LPI. Other parameters assessed were intraocular pressure (IOP) and axial length (Axl). Residual angle closure was defined as the inability to see the posterior trabecular meshwork for at least 2 quadrants on gonioscopy after LPI. Multivariate regression analysis determined the baseline predictors of residual angle closure 1 year after LPI. The mean age of participants was 62.4 (standard deviation 9.9) years. The majority were female (137, 75.7%) and Chinese (174, 96.1%). At 1 year post LPI, 148 (81.8%) subjects had gonioscopic residual angle closure. Univariate analysis showed that baseline Axl, anterior chamber area, anterior chamber volume, angle opening distance at 750 μm from the scleral spur, and angle recess area were smaller while baseline lens vault and iris curvature were larger in residual angle closure subjects (all P angle closure. One year after LPI, >80% of PACS had gonioscopic residual angle closure. Greater baseline iris volume and higher IOP at baseline are independent risk factors for residual gonioscopic angle closure. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Intermittent acute angle closure glaucoma and chronic angle closure following topiramate use with plateau iris configuration

    Directory of Open Access Journals (Sweden)

    Rajjoub LZ

    2014-07-01

    Full Text Available Lamise Z Rajjoub, Nisha Chadha, David A Belyea Department of Ophthalmology, The George Washington University, Washington, DC, USA Abstract: This is a case report describing recurrent intermittent acute angle closure episodes in the setting of topiramate use in a female suffering from migraines. Despite laser peripheral iridotomy placement for the pupillary block component, and the discontinuation of topiramate, the acute angle closure did not resolve in the left eye with chronic angle closure and the patient required urgent trabeculectomy. The right eye responded to laser peripheral iridotomy immediately and further improved after the cessation of topiramate. While secondary angle closure glaucoma due to topiramate use has been widely reported, its effects in patients with underlying primary angle closure glaucoma have not been discussed. Our report highlights the importance of recognizing the often multifactorial etiology of angle closure glaucoma to help guide clinical management. Keywords: angle closure glaucoma, plateau iris, topiramate, secondary glaucoma, drug-induced glaucoma

  20. Efficient scattering angle filtering for Full waveform inversion

    KAUST Repository

    Alkhalifah, Tariq Ali

    2015-08-19

    Controlling the scattering angles between the state and the adjoint variables for the energy admitted into an inversion gradient or an image can help improve these functions for objectives in full waveform inversion (FWI) or seismic imaging. However, the access of the scattering angle information usually requires an axis extension that could be costly, especially in 3D. For the purpose of a scattering angle filter, I develop techniques that utilize the mapping nature (no domain extension) of the filter for constant-velocity background models to interpolate between such filtered gradients using the actual velocity. The concept has well known roots in the application of phase-shift-plus-interpolation utilized commonly in the downward continuation process. If the difference between the minimum and maximum velocity of the background medium is large, we obtain filtered gradients corresponding to more constant velocity backgrounds and use linear interpolation between such velocities. The accuracy of this approximation for the Marmousi model gradient demonstrates the e ectiveness of the approach.

  1. Angle Class II correction with MARA appliance

    Directory of Open Access Journals (Sweden)

    Kelly Chiqueto

    2013-02-01

    Full Text Available OBJECTIVE: To assess the effects produced by the MARA appliance in the treatment of Angle's Class II, division 1 malocclusion. METHODS: The sample consisted of 44 young patients divided into two groups: The MARA Group, with initial mean age of 11.99 years, treated with the MARA appliance for an average period of 1.11 years, and the Control Group, with initial mean age of 11.63 years, monitored for a mean period of 1.18 years with no treatment. Lateral cephalograms were used to compare the groups using cephalometric variables in the initial and final phases. For these comparisons, Student's t test was employed. RESULTS: MARA appliance produced the following effects: Maxillary growth restriction, no change in mandibular development, improvement in maxillomandibular relationship, increased lower anterior facial height and counterclockwise rotation of the functional occlusal plane. In the upper arch, the incisors moved lingually and retruded, while the molars moved distally and tipped distally. In the lower arch, the incisors proclined and protruded, whereas the molars mesialized and tipped mesially. Finally, there was a significant reduction in overbite and overjet, with an obvious improvement in molar relationship. CONCLUSIONS: It was concluded that the MARA appliance proved effective in correcting Angle's Class II, division 1 malocclusion while inducing skeletal changes and particularly dental changes.OBJETIVO: avaliar os efeitos proporcionados pelo aparelho MARA no tratamento da má oclusão de Classe II, 1ª divisão. MÉTODOS: utilizou-se uma amostra de 44 jovens, divididos em dois grupos - Grupo MARA, com idade inicial média de 11,99 anos e tratado com o aparelho MARA por um período médio de 1,11 ano; e Grupo Controle, com idade inicial média de 11,63 ano e observado por um período médio de 1,18 ano, sem nenhum tratamento. Utilizou-se as telerradiografias em norma lateral para comparar os grupos quanto às variáveis cefalométricas das

  2. A Modified Wide Angle Parabolic Wave Equation

    Science.gov (United States)

    St. Mary, Donald F.; Lee, Ding; Botseas, George

    1987-08-01

    We demonstrate the implicit finite difference discretization of a higher order parabolic-like partial differential equation approximating the reduced wave equation in the far field and show that the discretization is unconditionally stable. We discuss a method of associating an angle of dispersion with parabolic approximations, present an example which can be used to compare methods on the basis of dispersion angle, and make comparisons among well-known methods and the new method.

  3. Generalized Euler Angles Viewed as Spherical Coordinates

    OpenAIRE

    Brezov, Danail; Mladenova, Clementina; Mladenov, Ivaïlo

    2017-01-01

    Here we develop a specific factorization technique for rotations in $\\mathbb{R}^3$ into five factors about two or three fixed axes. Although not always providing the most efficient solution, the method allows for avoiding gimbal lock singularities and decouples the dependence on the invariant axis ${\\bf n}$ and the angle $\\phi$ of the compound rotation. In particular, the solutions in the classical Euler setting are given directly by the angle of rotation $\\phi$ and the coordinate...

  4. Biomechanical analysis of mandibular angle fractures.

    Science.gov (United States)

    Kimsal, Julie; Baack, Bret; Candelaria, Lionel; Khraishi, Tariq; Lovald, Scott

    2011-12-01

    Clinical evidence has suggested that minimal fixation can reduce complications of mandibular angle fractures, though no detailed biomechanical model has yet explored this unique and somewhat unexpected finding. The current study uses finite element analysis to biomechanically evaluate different fixation schemes used to fixate mandibular angle fractures. Three fixation scenarios were considered: a single tension band at the superior mandibular border, a single bicortical angle compression plate at the inferior border and the tension band and bicortical plate used together. The dual plate model incurred the lowest von Mises stresses in the plates and the lowest principal strain in the callus. The tension band model observed the highest plate and screw von Mises stresses, but had fracture-site callus strain near to that of the dual plate model. The bicortical angle compression plate model observed the highest fracture-site callus strain. The results from this study support the use of the single tension band configuration as a less invasive fixation approach to fractures of the mandibular angle. This is the first known study to explore and confirm clinical observations of angle fracture fixation outcomes with a detailed biomechanical modeling methodology. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Automatic measurement of contact angle in pore-space images

    Science.gov (United States)

    AlRatrout, Ahmed; Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2017-11-01

    A new approach is presented to measure the in-situ contact angle (θ) between immiscible fluids, applied to segmented pore-scale X-ray images. We first identify and mesh the fluid/fluid and fluid/solid interfaces. A Gaussian smoothing is applied to this mesh to eliminate artifacts associated with the voxelized nature of the image, while preserving large-scale features of the rock surface. Then, for the fluid/fluid interface we apply an additional smoothing and adjustment of the mesh to impose a constant curvature. We then track the three-phase contact line, and the two vectors that have a direction perpendicular to both surfaces: the contact angle is found from the dot product of these vectors where they meet at the contact line. This calculation can be applied at every point on the mesh at the contact line. We automatically generate contact angle values representing each invaded pore-element in the image with high accuracy. To validate the approach, we first study synthetic three-dimensional images of a spherical droplet of oil residing on a tilted flat solid surface surrounded by brine and show that our results are accurate to within 3° if the sphere diameter is 2 or more voxels. We then apply this method to oil/brine systems imaged at ambient temperature and reservoir pressure (10MPa) using X-ray microtomography (Singh et al., 2016). We analyse an image volume of diameter approximately 4.6 mm and 10.7 mm long, obtaining hundreds of thousands of values from a dataset with around 700 million voxels. We show that in a system of altered wettability, contact angles both less than and greater than 90° can be observed. This work provides a rapid method to provide an accurate characterization of pore-scale wettability, which is important for the design and assessment of hydrocarbon recovery and carbon dioxide storage.

  6. Long range correlations and folding angle with applications to α-helical proteins

    Energy Technology Data Exchange (ETDEWEB)

    Krokhotin, Andrey, E-mail: Andrei.Krokhotine@cern.ch [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Nicolis, Stam, E-mail: Stam.Nicolis@lmpt.univ-tours.fr [Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se [Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108, Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France); Department of Physics, Beijing Institute of Technology, Haidian District, Beijing 100081 (China)

    2014-03-07

    The conformational complexity of chain-like macromolecules such as proteins and other linear polymers is much larger than that of point-like atoms and molecules. Unlike particles, chains can bend, twist, and even become knotted. Thus chains might also display a much richer phase structure. Unfortunately, it is not very easy to characterize the phase of a long chain. Essentially, the only known attribute is the radius of gyration. The way how it changes when the degree of polymerization becomes different, and how it evolves when the ambient temperature and solvent properties change, is commonly used to disclose the phase. But in any finite length chain there are corrections to scaling that complicate the detailed analysis of the phase structure. Here we introduce a quantity that we call the folding angle to identify and scrutinize the phase structure, as a complement to the radius of gyration. We argue for a mean-field level relationship between the folding angle and the scaling exponent in the radius of gyration. We then estimate the value of the folding angle in the case of crystallographic α-helical protein structures in the Protein Data Bank. We also show how the experimental value of the folding angle can be obtained computationally, using a semiclassical Born-Oppenheimer description of α-helical chiral chains.

  7. System For Characterizing Three-Phase Brushless dc Motors

    Science.gov (United States)

    Howard, David E.; Smith, Dennis A.

    1996-01-01

    System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.

  8. Comparative biometric study between plateau iris configuration and primary open angle glaucoma with narrow angle.

    Science.gov (United States)

    Diniz Filho, Alberto; Cronemberger, Sebastião; Mérula, Rafael Vidal; Calixto, Nassim

    2009-01-01

    To investigate biometrically the differences between plateau iris configuration (PIC) eyes and primary open angle glaucoma with narrow angle eyes. A comparative study involving a case series with 20 eyes of 11 plateau iris configuration patients and 45 eyes of 27 primary open angle glaucoma with narrow angle eyes patients was done. The following measurements were taken: corneal curvature, central corneal thickness, anterior chamber depth, lens thickness (LT), axial length (AL), lens thickness and axial length ratio, lens position (LP) and relative lens position (RLP). The plateau iris configuration eyes presented a higher corneal cuvature value than primary open angle glaucoma with narrow angle eyes eyes but not with clinical and statistical difference (P=0.090). The plateau iris configuration eyes demonstrated a higher central corneal thickness, with statistical significance, when compared to primary open angle glaucoma with narrow angle eyes (P=0.010). Statistical significant difference between plateau iris configuration and primary open angle glaucoma with narrow angle eyes was found in axial length (21.69 +/- 0.98 vs. 22.42 +/- 0.89; P=0.003). No significant difference was found when anterior chamber depth (2.62 +/- 0.23 vs. 2.71 +/- 0.31; P=0.078), LT (4.67 +/- 0.36 vs. 4.69 +/- 0.45; P=0.975), LT/AL (2.16 +/- 0.17 vs. 2.10 +/- 0.21; P=0.569), LP (4.95 +/- 0.25 vs. 5.06 +/- 0.34; P=0.164) and RLP (0.23 +/- 0.01 vs. 0.22 +/- 0.14; P=0.348) were evaluated. The eyes with plateau iris configuration presented statistical significantly shorter axial length and higher central corneal thickness than primary open angle glaucoma with narrow angle eyes.

  9. A new method for measurement of occipitocervical angle by occiput-C3 angle.

    Science.gov (United States)

    Kunakornsawat, Sombat; Pluemvitayaporn, Tinnakorn; Pruttikul, Pritsanai; Punpichet, Suppachai; Piyasakulkaew, Chaiwat; Arirachakaran, Alisara; Kongtharvonskul, Jatupon

    2017-12-01

    The description of the measurement technique of the posterior occiput-third cervical spine (OC3) angle-before performing occipitocervical fusion is still controversial. Setting an appropriate alignment in occipitocervical instrumentation is important for successful fixation surgery. Several methods were used for quantifying occipitocervical alignment on the lateral radiograph. This study was performed to describe a measurement technique of OC3 angle and comparing reliability and reproducibility in the measurement of occipitocervical angle with previous method. The purpose of this study was to determine the best technique for assessing this angle. Three hundred and twenty-six lateral cervical spine radiographs from volunteers without spinal disorder were taken in neutral position and collected from June 2011 to December 2012. Analysis consisted of measurement of the OC3 angle and posterior occipitocervical angle. Inter- and intra-observer reliabilities were assessed using limit agreement test. The mean OC3 angle measurements were approximately 107 (94-120) degrees. Intra- and inter-observer error assessed by 95% limit agreement was approximately ±5.5 and ±7.5, while the POCA measurements were approximately 108 (94-120) degrees. Intra- and inter-observer error assessed by 95% limit agreement was approximately ±13.3 and ±18.2. The OC3 angle measurement is a simple method, good inter- and intra-observer reliabilities to measure of the occipitocervical angle. That can be useful to setting the patient's position and facilitate confirmation of the occipitocervical neutral position during occipitocervical fusion.

  10. Complications and Reoperations in Mandibular Angle Fractures.

    Science.gov (United States)

    Chen, Collin L; Zenga, Joseph; Patel, Ruchin; Branham, Gregory

    2018-01-04

    Mandible angle fractures can be repaired in a variety of ways, with no consensus on the outcomes of complications and reoperation rates. To analyze patient, injury, and surgical factors, including approach to the angle and plating technique, associated with postoperative complications, as well as the rate of reoperation with regard to mandible angle fractures. Retrospective cohort study analyzing the surgical outcomes of patients with mandible angle fractures between January 1, 2000, and December 31, 2015, who underwent open reduction and internal fixation. Patients were eligible if they were aged 18 years or older, had 3 or less mandible fractures with 1 involving the mandibular angle, and had adequate follow-up data. Patients with comminuted angle fractures, bilateral angle fractures, and multiple surgical approaches were excluded. A total of 135 patients were included in the study. All procedures were conducted at a single, large academic hospital located in an urban setting. Major complications and reoperation rates. Major complications included in this study were nonunion, malunion, severe malocclusion, severe infection, and exposed hardware. Of 135 patients 113 (83.7%) were men; median age was 29 years (range, 18-82 years). Eighty-seven patients (64.4%) underwent the transcervical approach and 48 patients (35.6%) received the transoral approach. Fifteen (17.2%) patients in the transcervical group and 9 (18.8%) patients in the transoral group experienced major complications (difference, 1%; 95% CI, -8% to 10%). Thirteen (14.9%) patients in the transcervical group and 8 (16.7%) patients in the transoral group underwent reoperations (difference, 2%; 95% CI, -13% to 17%). Active smoking had a significant effect on the rate of major complications (odds ratio, 4.04; 95% CI, 1.07 to 15.34; P = .04). During repair of noncomminuted mandibular angle fractures, both of the commonly used approaches-transcervical and transoral-can be used during treatment with equal

  11. PRIMARY OPEN ANGLE GLAUCOMA IN THYROID DISORDER

    Directory of Open Access Journals (Sweden)

    Pragati Garg

    2016-07-01

    Full Text Available PURPOSE To assess the association of thyroid profile with open angle glaucoma. DESIGN Cross-sectional observational study. MATERIAL AND METHOD 128 cases of diagnosed thyroid disorder were enrolled. 5 cases dropped out. Ocular examination included applanation tonometry, stereoscopic optic disc photography, and automated perimetry. Correlative association of thyroid disorder and open angle glaucoma was assessed. RESULTS Of 123 patients of thyroid disorder, 87.8% had hypothyroidism and remaining 12.2% had hyperthyroidism. 15.74% of hypothyroidism and 20% of hyperthyroidism patients had open angle glaucoma, which was statistically significant (Pearson chi-square: Value=6.548, df=2, p=0.040. On multivariate analysis with other risk factors like female sex, family history of glaucoma, myopia, hypertension, and diabetes; it was found that hypothyroidism is an independent risk factor for open angle glaucoma. CONCLUSION All patients having thyroid disorder should be investigated for early diagnosis of open angle glaucoma so that if need be antiglaucoma treatment is started at the earliest and the eye maybe saved from any further deterioration.

  12. Lateral angle and cranial base sexual dimorphism

    DEFF Research Database (Denmark)

    Duquesnel Mana, Mathilde; Adalian, Pascal; Lynnerup, Niels

    2016-01-01

    SUMMARY: Previous studies have yielded very different results in sex estimation based on measurements of the lateral angle (LA) of the temporal bone. The purpose of this study was to, first, investigate if the bad results obtained by the LA method could be due to the methodology and then, second......, to examine sexual dimorphism in the relationship between the lateral angle and cranial base shape. The lateral angle method was tested using a forensic sample of 102 CT scans of the head with known sex. We measured the angle using two methods: measurements directly on the CT slide, the method usually applied...... the direct measurements. The mean angle was greater in females (48.2° ± 7.2°) than in males (45.38° ±8.06°) but the difference was not significant (t-test, p = 0.063). A statistically significant difference in cranial base shape existed between the two sexes, but the results also demonstrated a major overlap...

  13. Neck Flexion Angle Estimation during Walking

    Directory of Open Access Journals (Sweden)

    Duc Cong Dang

    2017-01-01

    Full Text Available Neck pain is recently known as the fourth leading cause of disability and the number of patients is apparently increasing. By analyzing the effect of gravitational force on inertial sensor attached to the neck, this study aims to investigate the head flexion posture during walking. The estimated angle is compared with the craniovertebral angle which is measured with an optical tracker. A total of twenty subjects with no history of neck pain or discomfort were examined by walking on the treadmill inside the working range of an optical tracker. In our laboratory settings, the neck flexion angle (NFA may have a linear relationship with the craniovertebral angle (CVA in both static case and constant speed walking case. Therefore, inertial sensor, which is lightweight, low cost, and especially free in movement, can be used instead of a camera system. Our proposed estimation method shows its flexibility and gives a result with the mean of absolute error of estimated neck angle varying from 0.48 to 0.58 degrees, which is small enough to use in applications.

  14. Graphene spin valve: An angle sensor

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-06-15

    Graphene spin valves can be optimized for various spintronic applications by tuning the associated experimental parameters. In this work, we report the angle dependent magnetoresistance (MR) in graphene spin valve for different orientations of applied magnetic field (B). The switching points of spin valve signals show a clear shift towards higher B for each increasing angle of the applied field, thus sensing the response for respective orientation of the magnetic field. The angular variation of B shifts the switching points from ±95 G to ±925 G as the angle is varied from 0° to 90° at 300 K. The observed shifts in switching points become more pronounced (±165 G to ±1450 G) at 4.2 K for similar orientation. A monotonic increase in MR ratio is observed as the angle of magnetic field is varied in the vertical direction at 300 K and 4.2 K temperatures. This variation of B (from 0° to 90°) increases the magnitude of MR ratio from ∼0.08% to ∼0.14% at 300 K, while at 4.2 K it progresses to ∼0.39% from ∼0.14%. The sensitivity related to angular variation of such spin valve structure can be employed for angle sensing applications.

  15. View Angle Tilting Echo Planar Imaging for Distortion Correction

    Science.gov (United States)

    Ahn, Sinyeob; Hu, Xiaoping

    2011-01-01

    Geometric distortion caused by field inhomogeneity along the phase-encode (PE) direction is one of the most prominent artifacts due to a relatively low effective bandwidth along that direction in magnetic resonance echo planar imaging (EPI). This work describes a method for correcting in-plane image distortion along the PE direction using a view angle tilting (VAT) imaging technique in spin-echo EPI (SE-EPI). SE-EPI with VAT (SE-EPI-VAT) utilizes the addition of gradient blips along the slice-select (SS) direction, concurrently applied with the PE gradient blips, producing an additional phase. This phase effectively offsets an unwanted phase accumulation caused by field inhomogeneity, resulting in the removal of image distortion along the PE direction. The proposed method is simple and straightforward both in implementation and application with no scan time penalty. Therefore, it is readily applicable on commercial scanners without having any customized post-processing. The efficacy of the SE-EPI-VAT technique in the correction of image distortion is demonstrated in phantom and in vivo brain imaging. PMID:22213567

  16. Dihedral Angles As A Diagnostic Tool For Interpreting The Cooling History Of Mafic Rocks

    Science.gov (United States)

    Holness, M. B.

    2016-12-01

    The geometry of three-grain junctions in mafic rocks, particularly those involving two grains of plagioclase, overwhelmingly results from processes occurring during solidification. Sub-solidus textural modification is only significant for fine-grained rocks that have remained hot for a considerable time (e.g. chill zones). The underlying control on the geometry of junctions involving plagioclase is the response of the different plagioclase growth faces to changes in cooling rate. This is demonstrated by the systematic co-variation of plagioclase grain shape and the median value of the pyroxene-plag-plag dihedral angle across (unfractionated) mafic sills. In mafic layered intrusions the median dihedral angle is constant across large stretches of stratigraphy, changing in a step-wise manner as the number of liquidus phases changes in the bulk magma. In the Skaergaard layered intrusion, the shape of cumulus plagioclase grains changes smoothly through the stratigraphy, consistent with continuously decreasing cooling rates in a well-mixed chamber: there is no correlation between overall plagioclase grain shape and dihedral angle. However, three-grain junctions are formed during the last stages of crystallization and therefore record events at the base of the crystal mushy layer. While the overall shape of plagioclase grains is dominated by growth at the magma-mush interface or in the bulk magma, it is the post-accumulation overgrowth that creates the dihedral angle: the shape of this overgrowth changes in a step-wise fashion, matching the step-wise variation in dihedral angle. Dihedral angles in layered intrusions can be used to place constraints on the thickness of the mushy layer, using the stratigraphic offset between the step-wise change in dihedral angle and the first appearance/disappearance of the associated liquidus phase. Dihedral angles also have the potential to constrain intrusion size for fragments of cumulate rocks entrained in volcanic ejecta.

  17. Neutron diffraction and NQR study of the intermediate turn angle phase formed during AFI to AFII recording in YBa2Cu3-xAlxO6+#delta#

    DEFF Research Database (Denmark)

    Brecht, E.; Schmahl, W.W.; Fuess, H.

    1997-01-01

    The reordering mechanism from the antiferromagnetic phase AFI to the antiferromagnetic phase AFII in an oxygen-deficient YBa2Cu2.94Al0.06O6+delta single crystal with an oxygen content delta=0.18 in the Cu(1) layer has been studied by neutron diffraction and nuclear quadrupole resonance (NQR...

  18. Precision measurements of the CKM angle gamma

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The level of CP-violation permitted within the Standard Model cannot account for the matter dominated universe in which we live. Within the Standard Model the CKM matrix, which describes the quark couplings, is expected to be unitary. By making precise measurements of the CKM matrix parameters new physics models can be constrained, or with sufficient precision the effects of physics beyond the standard model might become apparent. The CKM angle gamma is the least well known angle of the unitarity triangle. It is the only angle easily accessible at tree-level, and furthermore has almost no theoretical uncertainties. Therefore it provides an invaluable Standard Model benchmark against which other new physics sensitive tests of the CP-violation can be made. I will discuss recent measurements of gamma using the the Run 1 LHCb dataset, which improve our knowledge of this key parameter.

  19. Stability limits of capillary bridges: How contact angle hysteresis affects morphology transitions of liquid microstructures

    NARCIS (Netherlands)

    de Ruiter, Riëlle; Semprebon, C.; van Gorcum, Mathijs; Duits, Michael H.G.; Brinkmann, M.; Mugele, Friedrich Gunther

    2015-01-01

    The equilibrium shape of a drop in contact with solid surfaces can undergo continuous or discontinuous transitions upon changes in either drop volume or surface energies. In many instances, such transitions involve the motion of the three-phase contact line and are thus sensitive to contact angle

  20. Structure of Co–Zn ferrite ferrofluid: A small angle neutron scattering ...

    Indian Academy of Sciences (India)

    A hydrothermal synthesis route is used to synthesize nanomagnetic particles of Co0.3Zn0.7Fe2O4 ferrite ferrofluids with particle diameter ranging from 5.5–9 nm. XRD analysis shows the formation of a single phase spinel structure. EDX results confirm the stoichiometric composition of the cations. Small angle neutron ...

  1. Small-angle neutron and dynamic light scattering study of gelatin ...

    Indian Academy of Sciences (India)

    The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation, which is a liquid-liquid phase transition phenomenon. Dynamic light ...

  2. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  3. Anatomic predictors for anterior chamber angle opening after laser peripheral iridotomy in narrow angle eyes.

    Science.gov (United States)

    Huang, Guofu; Gonzalez, Eduardo; Lee, Roland; Osmonavic, Senad; Leeungurasatien, Thidarat; He, Mingguang; Lin, Shan C

    2012-07-01

    To investigate anterior chamber parameters and biometric factors associated with degree of angle opening after laser peripheral iridotomy (LPI) for narrow angles. In this prospective cohort study, patients with narrow angles who were scheduled for LPI were recruited. Anterior chamber parameters by anterior segment coherence tomography (ASOCT) under dark conditions were compared before and after LPI. Only the right eye was used for analysis if both eyes were eligible. Measurements performed by customized software included anterior chamber depth, iris area, angle opening distance at 500 µm (AOD500) anterior to the scleral spur, iris thickness at 750 µm from sclera spur (IT750), trabecular-iris space area 500 (TISA500), and iris curvature (I-Curv). Univariate and multiple regression analyses were performed to determine the predictive factors of angle opening after LPI. Eighty-one patients with narrow angles were prospectively recruited in this study. The AOD500 increased significantly from 0.128 ± 0.081 mm (before) to 0.209 ± 0.087 mm (after) in the nasal quadrant, and from 0.103 ± 0.067 mm (before) to 0.197 ± 0.071 mm (after) in the temporal quadrant (p iris area (standardized β = -0.292, p = 0.015). In this hospital-based study on the results of LPI for narrow angle subjects, statistically significant independent predictors of anterior chamber angle widening after LPI were older age, smaller iris area, and steeper iris.

  4. Understanding Angle and Angle Measure: A Design-Based Research Study Using Context Aware Ubiquitous Learning

    Science.gov (United States)

    Crompton, Helen

    2015-01-01

    Mobile technologies are quickly becoming tools found in the educational environment. The researchers in this study use a form of mobile learning to support students in learning about angle concepts. Design-based research is used in this study to develop an empirically-substantiated local instruction theory about students' develop of angle and…

  5. Sharper angle, higher risk? The effect of cutting angle on knee mechanics in invasion sport athletes

    NARCIS (Netherlands)

    Schreurs, Mervin J.; Benjaminse, Anne; Lemmink, Koen A. P. M.

    2017-01-01

    Introduction: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. Material and methods: 13 males and 16 females performed cuts at different angles (45°, 90°,

  6. Small angle neutron scattering and small angle X-ray scattering ...

    Indian Academy of Sciences (India)

    Abstract. The morphology of carbon nanofoam samples comprising platinum nanopar- ticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. Results show that the structure of pores of carbon matrix exhibits a mass (pore) fractal nature ...

  7. Using Digital Technology to See Angles from Different Angles. Part 2: Openings and Turns

    Science.gov (United States)

    Host, Erin; Baynham, Emily; McMaster, Heather

    2015-01-01

    Ever wondered how to use technology to teach angles? This article follows on from an earlier article published last year, providing a range of ideas for integrating technology and concrete materials with the teaching of angle concepts. The authors also provide a comprehensive list of free online games and learning objects that can be used to teach…

  8. Sharper angle, higher risk? : The effect of cutting angle on knee mechanics in invasion sport athletes

    NARCIS (Netherlands)

    Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M

    2017-01-01

    INTRODUCTION: Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. MATERIAL AND METHODS: 13 males and 16 females performed cuts at different angles (45°, 90°,

  9. Effect of polar organic components on wettability as studied by adsorption and contact angles

    Energy Technology Data Exchange (ETDEWEB)

    Standal, S.; Haavik, J.; Blokhus, A.M. [Department of Chemistry, University of Bergen, Allegaten 41, 5007 Bergen (Norway); Skauge, A. [Norsk Hydro Research Centre, Bergen (Norway)

    1999-12-01

    Adsorption of polar organic components onto the rock surface is one of the mechanisms that is believed to cause wetting alteration of a reservoir rock. Polar compounds in crude oil that are believed to be responsible for surface interactions and wetting properties include carboxylic and phenolic acids, organic bases and metal complexes. Known compounds, representative of these naturally occurring polar organic compounds in crude oil, have been chosen for adsorption and contact angle studies. Contact angles and adsorption isotherms in solid-oil-brine model systems have been examined as a function of component concentration in either water or oil and of salinity and pH of the water phase. The systems investigated consist of isooctane oil phase and water solutions of NaCl and CaCl{sub 2} as the water phase. Silicate glass and {alpha}-alumina were used as solid phases. The polar compounds were 1-naphtoic acid, 5-indanol, quinoline, vanadyl-octaethyl-porphyrin (VO OEP) and dihydrogen-octaethyl-porphyrin (H{sub 2} OEP). The compounds chosen represent functionalities that are found in polar crude oil fractions, such as asphaltenes, but still can be considered well-defined model substances. The components were adsorbed from the oil phase as well as from the water phase, both for contact angle and adsorption isotherm experiments. The results demonstrate the difference in adsorption behaviour between compounds with different functional groups of varying polarity and acidity. The importance of solid-solute interactions compared to solvent-solute interactions is demonstrated.

  10. Variations of (pseudo-)rotations and the Laplace-Beltrami operator on homogeneous spaces

    Energy Technology Data Exchange (ETDEWEB)

    Brezov, D. S. [Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, 1 Hristo Smirnenski Blvd., 1046 Sofia (Bulgaria); Mladenova, C. D. [Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, 1113 Sofia (Bulgaria); Mladenov, I. M., E-mail: mladenov@bio21.bas.bg [Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia (Bulgaria)

    2015-10-28

    In this paper we obtain the Lie derivatives of the scalar parameters in the generalized Euler decomposition with respect to arbitrary axes under left and right deck transformations. This problem can be directly related to the representation of the angular momentum in quantum mechanics. As a particular example, we calculate the angular momentum and the corresponding quantum hamiltonian in the standard Euler and Bryan representations. Similarly, in the hyperbolic case, the Laplace-Beltrami operator is retrieved for the Iwasawa decomposition. The case of two axes is considered as well.

  11. The contact angle in inviscid fluid mechanics

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    have been imposed. It is our contention that these cannot be classical solutions to the classical field equations since classical solutions do not permit the imposition of a contact angle condition. It is suggested that these 'solutions' belong to an improperly defined class of 'weak-type solutions', in the sense that they attempt to ...

  12. The contact angle in inviscid fluid mechanics

    Indian Academy of Sciences (India)

    We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived;however, these include ...

  13. Haematological Parameters in Open Angle Glaucoma Patients ...

    African Journals Online (AJOL)

    There have been relationships between inflammatory cell count and glaucoma. Eosinophils have inverse relationship with steroids which is used to induce ocular hypertension. Here we compare hematological parameters for a group of 68 chronic open-angle glaucoma (OAG) patients and a non-glaucomatous group of 71.

  14. Association between Bolton discrepancy and Angle malocclusions

    Directory of Open Access Journals (Sweden)

    Rodrigo Hermont CANÇADO

    2015-01-01

    Full Text Available This study aimed to assess and compare the overall and anterior ratios of tooth size discrepancies in all Angle malocclusion groups. The following null hypothesis (H0 was tested: no difference between tooth size discrepancies (overall and anterior would be observed among Angle malocclusion groups. The sample comprised of 711 pre-orthodontic treatment study casts of Brazilian patients with a mean age of 17.42 years selected from private practices in Brazil. The casts were divided into 3 groups according to the type of malocclusion: Class I (n = 321, Class II (n = 324, and Class III patients (n = 66. The measurement of the greatest mesiodistal width of the teeth was performed using a centesimal precision digital caliper directly on the study casts, from the distal surface of the left first molar to the distal surface of the right first molar. The overall and anterior ratios between the maxillary and mandibular teeth were evaluated using Bolton’s method. The following statistical tests were applied: chi-square, independent t-test, and one-way ANOVA. Results showed that all Angle malocclusions groups exhibited a ratio compatible with those recommended by Bolton. With respect to the overall and anterior ratios among the malocclusion groups, no statistically significant differences were found. The null hypothesis was accepted because the results showed no differences in the overall and anterior ratios of tooth size discrepancies among different Angle malocclusion groups.

  15. Camber Angle Inspection for Vehicle Wheel Alignments

    Directory of Open Access Journals (Sweden)

    Jieh-Shian Young

    2017-02-01

    Full Text Available This paper introduces an alternative approach to the camber angle measurement for vehicle wheel alignment. Instead of current commercial approaches that apply computation vision techniques, this study aims at realizing a micro-control-unit (MCU-based camber inspection system with a 3-axis accelerometer. We analyze the precision of the inspection system for the axis misalignments of the accelerometer. The results show that the axes of the accelerometer can be aligned to the axes of the camber inspection system imperfectly. The calibrations that can amend these axis misalignments between the camber inspection system and the accelerometer are also originally proposed since misalignments will usually happen in fabrications of the inspection systems. During camber angle measurements, the x-axis or z-axis of the camber inspection system and the wheel need not be perfectly aligned in the proposed approach. We accomplished two typical authentic camber angle measurements. The results show that the proposed approach is applicable with a precision of ± 0.015 ∘ and therefore facilitates the camber measurement process without downgrading the precision by employing an appropriate 3-axis accelerometer. In addition, the measured results of camber angles can be transmitted via the medium such as RS232, Bluetooth, and Wi-Fi.

  16. The resection angle in apical surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Janner, Simone F M; Jensen, Simon S

    2016-01-01

    study, cone beam computed tomography (CBCT) scans were taken before and 1 year after apical surgery to measure the angle of the resection plane relative to the longitudinal axis of the root. Further, the surgical depth (distance from the buccal cortex to the most lingual/palatal point of the resection...

  17. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...... strengthening the shell against transverse shear distortion....

  18. Prediction of ultrasonic properties from grain angle

    Science.gov (United States)

    M.F. Kabir

    2001-01-01

    The ultrasonic properties of rubber wood were evaluated in three main symmetry axes – longitudinal (L), radial (R) and tangential direction and also at an angle rotating from the symmetry axes at different moisture content. The ultrasonic velocity were determined with a commercial ultrasonic tester of 45 kHz pulsed longitudinal waves. The experimental results were...

  19. Neural basis of stimulus-angle-dependent motor control of wind-elicited walking behavior in the cricket Gryllus bimaculatus.

    Directory of Open Access Journals (Sweden)

    Momoko Oe

    Full Text Available Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent 'escape behavior' from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals

  20. Vertical cross-spectral phases in atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2014-01-01

    . The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases increase with stream-wise wavenumber and vertical separation distance...

  1. Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation

    NARCIS (Netherlands)

    Chevalliot, S.; Dhindsa, M.; Kuiper, S.; Heikenfeld, J.

    2011-01-01

    Basic electrowetting theory predicts that a continued increase in applied voltage will allow contact angle modulation to zero degrees. In practice, the effect of contact angle saturation has always been observed to limit the contact angle modulation, often only down to a contact angle of 60 to 70°.

  2. Optical method for measuring optical rotation angle and refractive index of chiral solution.

    Science.gov (United States)

    Lin, Jiun-You; Chen, Kun-Huang; Chen, Jing-Heng

    2007-11-20

    Based on the phenomena of Brewster's angle and the principles of common-path heterodyne interferometry, we present an optical method for measuring the optical rotation angle and the refractive index of a chiral solution simultaneously in one optical configuration. A heterodyne light beam and a circularly polarized heterodyne light beam are separately guided to project onto the interface of a semicircle glass and a chiral solution. One of the beams is transmitted through the solution, and the other is reflected near Brewster's angle at the interface. Then the two beams pass through polarization components respectively for interference. The phase differences of the two interference signals used to determine the rotation angle and the refractive index become very high with the proper azimuth angles of some polarization components, hence achieving an accurate rotational angle and a refractive index. The feasibility of the measuring method was demonstrated by our experimental results. This method should bear the merits of high accuracy, short sample medium length, and simpler operational endeavor.

  3. The small angle neutron scattering study on the segmented polyurethane

    Energy Technology Data Exchange (ETDEWEB)

    Sudirman; Gunawan; Prasetyo, S.M.; Karo Karo, A.; Lahagu, I.M.; Darwinto, Tri [Materials Science Research Center, National Nuclear Energy Agency, Serpong, Tangerang (Indonesia)

    1999-10-01

    The distance between hard segment (HS) and soft segment (SS) of segmented polyurethane have been determined using the Small Angle Neutron Scattering (SANS) technique. The segmented Polyurethanes (SPU) are linear multiblock copolymers, which include elastomer thermoplastic. SPU consist of hard segment and soft segment, each has tendency to make a group with similar type to form a domain. The soft segments used were polypropylene glycol (PPG) and 4,4 diphenylmethane diisocyanate (MDI), while l,4 butanediol (BD) was used as hard segment. The characteristic of SPU depends on its phase structure which is affected by several factors, such as type of chemical formula and the composition of the HS and SS, solvent as well as the synthesizing process. The samples used in this study were SPU56 and SPU68. Based on the appearance of SANS profile, it was obtained that domain distances are 12.32 nm for the SPU56 and 19 nm for the SPU68. (author)

  4. Review of Research On Angle-of-Attack Indicator Effectiveness

    Science.gov (United States)

    Le Vie, Lisa R.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) conducted a literature review to determine the potential benefits of a display of angle-of-attack (AoA) on the flight deck of commercial transport that may aid a pilot in energy state awareness, upset recovery, and/or diagnosis of air data system failure. This literature review encompassed an exhaustive list of references available and includes studies on the benefits of displaying AoA information during all phases of flight. It also contains information and descriptions about various AoA indicators such as dial, vertical and horizontal types as well as AoA displays on the primary flight display and the head up display. Any training given on the use of an AoA indicator during the research studies or experiments is also included for review

  5. Statistical mechanics of fluids adsorbed in planar wedges: finite contact angle.

    Science.gov (United States)

    Henderson, J R

    2004-06-01

    I consider the statistical mechanics of inhomogeneous fluids applied to fluids adsorbed in planar wedges. Exact results are described that belong to an infinite subset of models defined as the intersection of any two identical semi-infinite planar wall-fluid potentials. This geometry is interesting as a generic example of adsorption onto structured interfaces and of interfacial phase transitions controlled by the substrate geometry. Previously described virial theorems are extended to the case of a general wall-fluid model. This enables the consideration of wedge filling when Young's contact angle far from the wedge apex is finite. The virial theorems generate two important relations: the wedge sum rules. The first sum rule links the interfacial free energy far from the wedge apex to the structure induced at the apex. The second sum rule links the free energy of the apex region to the structure induced by the apex. When Young's contact angle at the wedge walls is finite these relations further yield an exact result for the macroscopic contact angle in terms of the nanoscopic structure at the three-phase contact line (the intersection of the liquid-vapor surface with a wedge wall): the contact angle sum rule. These exact results are of direct relevance to computer simulation studies of adsorbed films. In addition, they take on special significance in the vicinity of continuous interfacial phase transitions: an approach to complete filling and the filling transition at bulk liquid-vapor coexistence.

  6. Influence nonstationary ionospheric signal of a signal on accuracy of measurements of angles of arrival.

    Science.gov (United States)

    Bochkarev, V.; Petrova, I.; Teplov, V.

    In the report we consider accuracy of angular measurements connected with nonstationary ionospheric signal. The estimation is made for the array antenna with small base. At measurements of angle of arrival in system with small base the mode separation is achieved due to Doppler shift. Therefore influence nonstationary ionospheric signal on the achievable spectral resolution, on mistakes of definition of frequencies and phases of close spectral components has the high profile. For numerical estimations the measurements of angles and phases executed in September - December 2001 on a measuring ionospheric complex of the Kazan State University are used. In the most part (92 %) received spectra are observed two and more components, frequently there are measurements with close spectral components. At definition of phases for close spectral lines with the help of window Fast Fourier Transformation there are distortions, which depend on differences of frequencies and phases of these spectral lines. The beams which have come from different directions, on different antennas will have a various phase difference. It will result in various extent of error in a phase definition, so and to a error in angle definition. The extent of error in angle definition is increased by reduction of a difference of frequencies of spectral components and increase of distinction in arrival directions of beams. We execute accounts for frequency 10 MHz and array antenna consisting of two independent perpendicular bases, crossed in a horizontal plane. Array antenna consists of 4 vertical dipole antennas (height of 10.7 m.), located on a circle by a diameter 15.6. Having compared the received dependence with results of processing of the experimentally received signals, it is possible to make a conclusion, that the accuracy of definition of corners about 1degree is for the system, described by the aerial, a limit at use of classical methods of spectral processing. For achievement of accuracy is

  7. A globally stable autopilot with wave filter using only yaw angle measurements

    Directory of Open Access Journals (Sweden)

    Trygve Lauvdal

    1996-04-01

    Full Text Available A stable minimum phase transfer function from rudder angle to yaw angle is used to design a globally stable adaptive ship autopilot. First-order wave disturbances in yaw are filtered by applying a notch filter. Integral action is introduced by using a reference model technique. Global stability is proven for the total system which include the yaw rate observer, the parameter update law, the feedback controller, the notch filter and the integral part of the controller. The simulation results showed that the performance is excellent, even with no a priori knowledge of the ship parameters.

  8. Linkage studies in primary open angle glaucoma

    Energy Technology Data Exchange (ETDEWEB)

    Avramopoulos, D.; Grigoriadu, M. [Institute of Child Health, Athens (Greece); Kitsos, G. [Univ. Eye Clinic of Ioannina (Greece)] [and others

    1994-09-01

    Glaucoma is a leading cause of blindness worldwide. The majority of glaucoma is associated with an open, normal appearing anterior chamber angle and is termed primary open angle glaucoma (POAG, MIM 137760). It is characterized by elevated intraocular pressure and onset in middle age or later. A subset of POAG with juvenile onset has recently been linked to chromosome 1q in two families with autosomal dominant inheritance. Eleven pedigrees with autosomal dominant POG (non-juvenile-onset) have been identified in Epirus, Greece. In the present study DNA samples have been collected from 50 individuals from one large pedigree, including 12 affected individuals. Preliminary results of linkage analysis with chromosome 1 microsatellites using the computer program package LINKAGE Version 5.1 showed no linkage with the markers previously linked to juvenile-onset POAG. Further linkage analysis is being pursued, and the results will be presented.

  9. Exclusive Backward-Angle Omega Meson Electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Wenliang, Li [Univ. of Regina, Regina, SK (Canada)

    2017-10-01

    Exclusive meson electroproduction at different squared four-momenta of the exchanged virtual photon, Q2 , and at different four-momentum transfers, t and u, can be used to probe QCD's transition from hadronic degrees of freedom at the long distance scale to quark-gluon degrees of freedom at the short distance scale. Backward-angle meson electroproduction was previously ignored, but is anticipated to offer complimentary information to conventional forward-angle meson electroproduction studies on nucleon structure. This work is a pioneering study of backward-angle ω cross sections through the exclusive 1H(e, e'p)ω reaction using the missing mass reconstruction technique. The extracted cross sections are separated into the transverse (T), longitudinal (L), and LT, TT interference terms. The analyzed data were part of experiment E01-004 (Fπ-2), which used 2.6-5.2 GeV electron beams and HMS+SOS spectrometers in Jefferson Lab Hall C. The primary objective was to detect coincidence π in the forward-angle, where the backward-angle omega events were fortuitously detected. The experiment has central Q2 values of 1.60 and 2.45 GeV2 , at W = 2.21 GeV. There was significant coverage in phi and epsilon, which allowed separation of σT,L,LT,TT . The data set has a unique u coverage of -u ~ 0, which corresponds to -t > 4 GeV2 . The separated σT result suggest a flat ~ 1/Q1.33±1.21 dependence, whereas sigma_L seems to hold a stronger 1/Q9.43±6.28 dependence. The σL/σT ratio indicate σT dominance at Q2 = 2.45 GeV2 at the ~90% confidence level. After translating the results into the -t space of the published CLAS data, our data show evidence of a backward-angle omega electroproduction peak at both Q2 settings. Previously, this phenomenon showing both forward and backward-angle peaks was only observed in the meson

  10. Fan Stagger Angle for Dirt Rejection

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Rose, Becky E. (Inventor); Brilliant, Lisa I. (Inventor)

    2015-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle alpha with the axis, and the stagger angle alpha is less than 15 deg. at a position along the propulsor blade that is within an inboard 20% of the span.

  11. Dancing droplets: Contact angle, drag, and confinement

    Science.gov (United States)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2015-11-01

    When deposited on a clean glass slide, a mixture of water and propylene glycol forms a droplet of given contact angle, when both pure liquids spread. (Cira, Benusiglio, Prakash: Nature, 2015). The droplet is stabilized by a gradient of surface tension due to evaporation that induces a Marangoni flow from the border to the apex of the droplets. The apparent contact angle of the droplets depends on both their composition and the external humidity as captured by simple models. These droplets present remarkable properties such as lack of a large pinning force. We discuss the drag on these droplets as a function of various parameters. We show theoretical and experimental results of how various confinement geometries change the vapor gradient and the dynamics of droplet attraction.

  12. [Morphologic aspects of angle grinder injury].

    Science.gov (United States)

    Thurner, W; Pollak, S

    1989-01-01

    Experiments were conducted on soft-tissue and bone preparations to determine the morphological characteristics of angle grinder injuries. The grinding effect of the rotating cutting-off wheel causes severances with local loss of tissue, resulting in tool-specific wound features. Superficial skin notches and (incomplete) severances of bony structures are of particular significance. Mutual trace transfer is a valuable means for determining the tool used and for interpreting the scene.

  13. Lifetime broadening in angle-resolved photoemission

    Science.gov (United States)

    McLean, A. B.; Mitchell, C. E. J.; Hill, I. G.

    1994-08-01

    The register line formalism of angle-resolved photoemission is applied to the special case where electrons are excited from sp surface states. By considering lifetime broadening alone, it is demonstrated that it is possible to explain why photoemission linewidths increase as the initial states disperse towards the Fermi level. Favourable comparisons are made between the theory and with measurements of the surface state widths on Cu(111) and Al(001).

  14. Off-Angle Iris Correction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Thompson, Joseph T [ORNL; Karakaya, Mahmut [ORNL; Boehnen, Chris Bensing [ORNL

    2016-01-01

    In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not account for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.

  15. Large Spin Hall Angle in Vanadium Film

    Science.gov (United States)

    Wang, Tao; Fan, Xin; Wang, Wenrui; Xie, Yunsong; Warsi, Muhammad A.; Wu, Jun; Chen, Yunpeng; Lorenz, Virginia O.; Xiao, John Q.

    We report the large spin Hall angle observed in Vanadium film with small grain size and distorted lattice parameter. The spin Hall angle is quantified by measuring current-induced spin-orbit torque in V/CoFeB bilayer using optical spin torque magnetometer based on polar magneto-optical Kerr effect (MOKE). The spin Hall angle as large as θSH = -0.071 has been observed in V/CoFeB bilayer Structural analysis, using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), confirms films grown at room temperature have very small grain size and enlarged lattice parameter. The Vanadium films with distorted crystal structure also have high resistivity (>200 μΩ cm) and long spin diffusion length (~16.3 nm) measured via spin pumping experiment. This finding of spin Hall effect enhancement in more disordered structure will provide insights for understanding and exploiting materials with strong spin orbit interaction, especially in light 3d transition metals which promise long spin diffusion length.

  16. Head flexion angle while using a smartphone.

    Science.gov (United States)

    Lee, Sojeong; Kang, Hwayeong; Shin, Gwanseob

    2015-01-01

    Repetitive or prolonged head flexion posture while using a smartphone is known as one of risk factors for pain symptoms in the neck. To quantitatively assess the amount and range of head flexion of smartphone users, head forward flexion angle was measured from 18 participants when they were conducing three common smartphone tasks (text messaging, web browsing, video watching) while sitting and standing in a laboratory setting. It was found that participants maintained head flexion of 33-45° (50th percentile angle) from vertical when using the smartphone. The head flexion angle was significantly larger (p smartphone, could be a main contributing factor to the occurrence of neck pain of heavy smartphone users. Practitioner Summary: In this laboratory study, the severity of head flexion of smartphone users was quantitatively evaluated when conducting text messaging, web browsing and video watching while sitting and standing. Study results indicate that text messaging while sitting caused the largest head flexion than that of other task conditions.

  17. Multi-Angle Snowflake Camera Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Martin [Univ. of Alaska, Fairbanks, AK (United States); Bailey, J. [Univ. of Alaska, Fairbanks, AK (United States)

    2016-07-01

    The Multi-Angle Snowflake Camera (MASC) takes 9- to 37-micron resolution stereographic photographs of free-falling hydrometers from three angles, while simultaneously measuring their fall speed. Information about hydrometeor size, shape orientation, and aspect ratio is derived from MASC photographs. The instrument consists of three commercial cameras separated by angles of 36º. Each camera field of view is aligned to have a common single focus point about 10 cm distant from the cameras. Two near-infrared emitter pairs are aligned with the camera’s field of view within a 10-angular ring and detect hydrometeor passage, with the lower emitters configured to trigger the MASC cameras. The sensitive IR motion sensors are designed to filter out slow variations in ambient light. Fall speed is derived from successive triggers along the fall path. The camera exposure times are extremely short, in the range of 1/25,000th of a second, enabling the MASC to capture snowflake sizes ranging from 30 micrometers to 3 cm.

  18. Visual estimation of pro-supination angle is superior to wrist or elbow angles.

    Science.gov (United States)

    Luria, Shai; Apt, Elad; Kandel, Leonid; Bdolah-Abram, Tali; Zinger, Gershon

    2015-05-01

    To examine our hypothesis that the accuracy of visual estimation, while measuring the angles of forearm, wrist and elbow, may vary between the different angles, and that this may depend on the experience of the observer. A slide show comprising of clinical photos and radiographs of different elbow, forearm and wrist angles was presented to 164 attending orthopedic surgeons, orthopedic residents and medical students who made a visual estimation of the different joints' angles. Forearm pronation was found to be estimated most accurately (mean 6.1°) while radiographs of wrist flexion (mean 12°) and photos of wrist extension (mean 16°) were estimated the least accurately. Specialists estimated angles more accurately than residents and both were more accurate than students, regardless of the estimated joint. The accuracy of visual estimation of a joint's angle depends on the specific joint viewed. Experience in the practice of orthopedic surgery (and not only upper extremity surgery) will improve the accuracy of estimation in general. Regarding the elbow, forearm and wrist, the results of our study suggest that a goniometer should be used whenever an accuracy of up to 10° is important, and for measuring wrist flexion and extension.

  19. Polyphase tectonic evolution of the Aksu Basin, Isparta Angle (Southern Turkey)

    Science.gov (United States)

    Üner, Serkan; Özsayin, Erman; Kutluay, Alkor; Dirik, Kadir

    2015-04-01

    The Aksu Basin, within the Isparta Angle, is located to the north of the intersection of the Aegean and Cyprus arcs and has been evolving since the Middle Miocene. Correlation of: (1) kinematic analysis of fault planes that cut the basin fill, (2) the reactivation/inversion of fault planes and (3) sedimentological data indicate that the Aksu Basin has evolved by four alternating compressional and extensional tectonic phases since its formation. The first phase was NW-SE oriented compression caused by the emplacement of the Lycian Nappe units which ended in Langhian. This compressional phase that induced the formation and the initial deformation of the basin was followed by a NW-SE extensional phase. This tectonic phase prevailed between the Langhian and Messinian and was terminated by a NE-SW compressional regime known as the Aksu Phase. The neotectonic period is characterized by NE-SW extension and began in the Late Pliocene. Correlation with the existing tectonic literature shows that the order of deformational phases proposed in this study might also be valid for the entire Isparta Angle area.

  20. Evidence that pitch angle scattering is an important loss mechanism for energetic electrons in the inner radiation belt of Jupiter

    Science.gov (United States)

    Fillius, W.; Mcilwain, C.; Mogro-Campero, A.; Steinberg, G.

    1976-01-01

    Analysis of data from the Pioneer 10 flyby discloses that pitch angle scattering plays an important part in determining the distribution of energetic electrons in the inner magnetosphere of Jupiter. Angular distributions measured by a Cerenkov detector reveal that redistribution takes place in pitch angle. Additionally, the radial profile of phase space density along the equator demands simultaneous particle losses. The loss rates are too high to be accounted for by synchrotron radiation loss, but are reasonably attributed to pitch angle scattering into the planetary loss cone.

  1. Angle Closure Scoring System (ACSS-A Scoring System for Stratification of Angle Closure Disease.

    Directory of Open Access Journals (Sweden)

    Aparna Rao

    Full Text Available To evaluate the angle closure scoring system (ACSS for stratifying primary angle course disease.This observational cross sectional institutional study included patients with primary open angle glaucoma suspects (n = 21 and primary angle closure disease (primary angle closure, PAC, n = 63 and primary angle course glaucoma, PACG, n = 58 (defined by International society of Geographical and Epidemiological Ophthalmology, ISGEO. Two independent examiners blinded to clinical details, graded good quality pre-laser goniophotographs of the patients incorporating quadrants of peripheral anterior synechieae (PAS, non-visibility of posterior trabecular meshwork (PTM and blotchy pigments (ranging from 1-4 quadrants, iris configuration, angle recess (sum of above depicting ACSSg and lens thickness/axial length ratio (LT/AL, cup disc ratio and baseline intraocular pressure (IOP to give total score (ACSSt.There were significant differences in ACSSg scores within the same ISGEO stage of PAC and PACG between eyes that required nil or >1medicines after laser iridotomy, p1 medicines in both PAC and PACG eyes, p12 and 14 in PAC (odds ratio = 2.7(95% CI-1.7-5.9 and PACG (Odds ratio = 1.6(95%CI-1.19-2.2 predicted need for single medicines while ACSSg scores >14 and 19 predicted need for ≥2 medicines in PAC and PACG eyes, respectively. The LT/Al ratio, IOP score or cup disc score did not influence the need for medical treatment independently.The ACSS can be a useful clinical adjunct to the ISGEO system to predict need for medicines and prognosticate each stage more accurately.

  2. Angle Closure Scoring System (ACSS)-A Scoring System for Stratification of Angle Closure Disease

    Science.gov (United States)

    Rao, Aparna; Padhy, Debananda; Sarangi, Sarada; Das, Gopinath

    2016-01-01

    Purpose To evaluate the angle closure scoring system (ACSS) for stratifying primary angle course disease. Methods This observational cross sectional institutional study included patients with primary open angle glaucoma suspects (n = 21) and primary angle closure disease (primary angle closure, PAC, n = 63 and primary angle course glaucoma, PACG, n = 58 (defined by International society of Geographical and Epidemiological Ophthalmology, ISGEO). Two independent examiners blinded to clinical details, graded good quality pre-laser goniophotographs of the patients incorporating quadrants of peripheral anterior synechieae (PAS), non-visibility of posterior trabecular meshwork (PTM) and blotchy pigments (ranging from 1–4 quadrants), iris configuration, angle recess (sum of above depicting ACSSg) and lens thickness/axial length ratio (LT/AL), cup disc ratio and baseline intraocular pressure (IOP) to give total score (ACSSt). Result There were significant differences in ACSSg scores within the same ISGEO stage of PAC and PACG between eyes that required nil or >1medicines after laser iridotomy, p1 medicines in both PAC and PACG eyes, p12 and 14 in PAC (odds ratio = 2.7(95% CI-1.7–5.9) and PACG (Odds ratio = 1.6(95%CI-1.19–2.2) predicted need for single medicines while ACSSg scores >14 and 19 predicted need for ≥2 medicines in PAC and PACG eyes, respectively. The LT/Al ratio, IOP score or cup disc score did not influence the need for medical treatment independently. Conclusion The ACSS can be a useful clinical adjunct to the ISGEO system to predict need for medicines and prognosticate each stage more accurately. PMID:27788183

  3. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps.

    Science.gov (United States)

    Gheller, Rodrigo G; Dal Pupo, Juliano; Ache-Dias, Jonathan; Detanico, Daniele; Padulo, Johnny; dos Santos, Saray G

    2015-08-01

    This study aimed to analyze the effect of different knee starting angles on jump performance, kinetic parameters, and intersegmental coupling coordination during a squat jump (SJ) and a countermovement jump (CMJ). Twenty male volleyball and basketball players volunteered to participate in this study. The CMJ was performed with knee flexion at the end of the countermovement phase smaller than 90° (CMJ(90)), and in a preferred position (CMJ(PREF)), while the SJ was performed from a knee angle of 70° (SJ(70)), 90° (SJ(90)), 110° (SJ(110)), and in a preferred position (SJ(PREF)). The best jump performance was observed in jumps that started from a higher squat depth (CMJ(90). Analysis of continuous relative phase showed that thigh-trunk coupling was more in-phase in the jumps (CMJ and SJ) performed with a higher squat depth, while the leg-thigh coupling was more in-phase in the CMJ(>90) and SJ(PREF). Jumping from a position with knees more flexed seems to be the best strategy to achieve the best performance. Intersegmental coordination and jump performance (CMJ and SJ) were affected by different knee starting angles. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Calamitic Smectic A-Polar Smectic APA Transition Observed in Bent Molecules with Large Bent-Angle Central Core of 4,6-Dichlorobenzene and Alkylthio Terminal Tail

    Science.gov (United States)

    Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji

    2011-07-01

    New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.

  5. Line tension and reduction of apparent contact angle associated with electric double layers

    CERN Document Server

    Dörr, Aaron

    2014-01-01

    The line tension of an electrolyte wetting a non-polar substrate is computed analytically and numerically. The results show that, depending on the value of the apparent contact angle, positive or negative line tension values may be obtained. Furthermore, a significant difference between Young's contact angle and the apparent contact angle measured several Debye lengths remote from the three-phase contact line occurs. When applying the results to water wetting highly charged surfaces, line tension values of the same order of magnitude as found in recent experiments can be achieved. Therefore, the theory presented may contribute to the understanding of line tension measurements and points to the importance of the electrostatic line tension. Being strongly dependent on the interfacial charge density, electrostatic line tension is found to be tunable via the pH value of the involved electrolyte. As a practical consequence, the stability of nanoparticles adsorbed at fluid-fluid interfaces is predicted to be depend...

  6. Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Libo; Chien, Liang-Chy [Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 (United States); Liao, Pei-Chun [Liquid Crystal Institute, Kent State University, Kent, Ohio 44242 (United States); AU Optronics Corporation, Hsinchu, 300, Taiwan (China); Lin, Chen-Chun; Ting, Tien-Lun; Hsu, Wen-Hao; Su, Jenn-Jia [AU Optronics Corporation, Hsinchu, 300, Taiwan (China)

    2015-09-15

    We demonstrate enhanced surface anchoring energy and control of pretilt angle in a nematic liquid crystal cell with vertical alignment and polymerized surfaces (PS-VA). The polymerized surfaces are formed by ultraviolet (UV) irradiation-induced phase separation of a minute amount of a reactive monomer in the vertical-aligned nematic liquid crystal. By introducing a bias voltage during UV curing, surface-localized polymer protrusions with a dimension of 100nm and a field-induced pretilt angle are observed. Experimental evidences and theoretical analyses validate that PS-VA has increased surface anchoring strength by two folds and pretilt angle has been changed from 89° to 86° compared to those of a VA cell. The enabling PS-VA cell technique with excel electro-optical properties such as very good dark state, high optical contrast, and fast rise and decay times may lead to development of a wide range of applications.

  7. Anchoring energy enhancement and pretilt angle control of liquid crystal alignment on polymerized surfaces

    Directory of Open Access Journals (Sweden)

    Libo Weng

    2015-09-01

    Full Text Available We demonstrate enhanced surface anchoring energy and control of pretilt angle in a nematic liquid crystal cell with vertical alignment and polymerized surfaces (PS-VA. The polymerized surfaces are formed by ultraviolet (UV irradiation-induced phase separation of a minute amount of a reactive monomer in the vertical-aligned nematic liquid crystal. By introducing a bias voltage during UV curing, surface-localized polymer protrusions with a dimension of 100nm and a field-induced pretilt angle are observed. Experimental evidences and theoretical analyses validate that PS-VA has increased surface anchoring strength by two folds and pretilt angle has been changed from 89° to 86° compared to those of a VA cell. The enabling PS-VA cell technique with excel electro-optical properties such as very good dark state, high optical contrast, and fast rise and decay times may lead to development of a wide range of applications.

  8. The Basic Angle Monitoring (BAM) software tool in the context of Gaia's astrometric verification

    Science.gov (United States)

    Riva, Alberto; Lattanzi, Mario G.; Drimmel, Ronald; Gai, Mario; Busonero, Deborah; Buzzi, Raffaella; Pecoraro, Marco; Russo, Federico; Messineo, Rosario

    2014-08-01

    The goal of the Gaia mission is to achieve micro-arcsecond astrometry, making Gaia the most important astro- metric space mission of the 21st century. To achieve this performance several innovative technological solutions have been realized as part of the satellite's scientific payload. A critical component of the Gaia scientific pay- load is the Basic Angle Monitoring device (BAM), an interferometric metrology instrument with the task of monitoring, to some picometers, the variation of the Basic Angle between Gaia's two telescopes. In this paper we provide an overview of the AVU/BAM software, running at the Italian Data Processing Center (DPCT), to analyze the BAM data and to recover the basic angle variations at the micro-arcosecond level. Outputs based on preliminary data from Gaia's Commissioning phase are shown as an example.

  9. Small Angle X-ray Diffraction Study of DNA—Cationic Liposomes Aggregates

    Science.gov (United States)

    Pullmannová, Petra; Uhríková, Daniela; Funari, Sergio S.; Lacko, Ivan; Devínsky, Ferdinand; Balgavý, Pavol

    2010-01-01

    The microstructure of DNA—dioleoylphosphatidylethanolamine (DOPE)—propane-1,3-diyl-bis(dodecyldimethylammonium bromide) (C3GS12) aggregates as a function of the C3GS12:DOPE molar ratio and temperature was investigated using small angle X-ray diffraction. At 20° C, we observe a condensed lamellar phase (Lαc) with the lattice parameter d˜6.8-6.2 nm and the DNA—DNA distance dDNA˜5.8-3.2 nm decreasing with increasing content of C3GS12 in the phospholipid bilayer. Increase in temperature induces a phase transition from Lαc phase to condensed inverted hexagonal phase (HIIc). The temperature of the Lαc→HIIc phase transition increases with increasing C3GS12:DOPE molar ratio.

  10. HF Radio Angle-of-Arrival Measurements and Ionosonde Positioning

    Directory of Open Access Journals (Sweden)

    Lung-Chih Tsai

    2014-01-01

    Full Text Available Since 2010 a 2nd generation NOAA MF/HF radar, also referred to as the VIPIR ionosonde, has been operated at Hualien, Taiwan (23.8973°N, 121.5503°E. The Hualien VIPIR ionosonde is a modern ionospheric radar, fully digitizing complex signal records and using multiple parallel receiver channels for simultaneous signal measurements from multiple spaced receiving antennas. This paper considers radio direction finding based on interferometric phase measurements from a horizontal antenna array in the Hualien VIPIR ionosonde system. We applied the Hermite normal form method to solve the phase-measurement aliasing and least squares problems and improve the radio angle-of-arrival (AOA measurements. Backward ray-tracing simulation has been proposed to determine radio transmitter position. This paper presents a numerical, step by step ray-tracing method based on the IGRF superimposed onto a phenomenological ionospheric electron density model, the TaiWan Ionospheric Model (TWIM. The proposed methodology is successfully applied to locate two experimental HF radio transmitters at Longquan and Chungli with distance errors within 5 km and less than 5% of the great circle distances.

  11. A simple method to obtain consistent and clinically meaningful pelvic angles from euler angles during gait analysis.

    Science.gov (United States)

    Wren, Tishya A L; Mitiguy, Paul C

    2007-08-01

    Clinical gait analysis usually describes joint kinematics using Euler angles, which depend on the sequence of rotation. Studies have shown that pelvic obliquity angles from the traditional tilt-obliquity-rotation (TOR) Euler angle sequence can deviate considerably from clinical expectations and have suggested that a rotation-obliquity-tilt (ROT) Euler angle sequence be used instead. We propose a simple alternate approach in which clinical joint angles are defined and exactly calculated in terms of Euler angles from any rotation sequence. Equations were derived to calculate clinical pelvic elevation, progression, and lean angles from TOR and ROT Euler angles. For the ROT Euler angles, obliquity was exactly the same as the clinical elevation angle, rotation was similar to the clinical progression angle, and tilt was similar to the clinical lean angle. Greater differences were observed for TOR. These results support previous findings that ROT is preferable to TOR for calculating pelvic Euler angles for clinical interpretation. However, we suggest that exact clinical angles can and should be obtained through a few extra calculations as demonstrated in this technical note.

  12. Small angle electron diffraction and deflection

    OpenAIRE

    T. Koyama; K. Takayanagi; Y. Togawa; S. Mori; K. Harada

    2012-01-01

    Electron optical system is constructed in order to obtain small angle diffraction and Lorentz deflection of electrons at the order of down to 10-6 radian in the reciprocal space. Long-distance camera length up to 3000 m is achieved in a conventional transmission electron microscope with LaB6 thermal emission type. The diffraction pattern at 5 × 10-6 radian is presented in a carbon replica grating with 500 nm lattice spacing while the magnetic deflection pattern at 2 × 10-5 radian is exhibited...

  13. Constraining CKM $\\gamma$ angle at LHCb

    CERN Document Server

    Vallier, Alexis Roger Louis

    2015-01-01

    The current combination of all available tree-level measurements of the CKM angle gamma at LHCb is reported. It includes results obtained from time independent analyses of B+ -> DK+ and of B0 -> DK∗0 decays; and from a time-dependent analysis of Bs0 -> DsK decays. The results represent the world's best single-experiment determination of gamma. The first observation of the Bs->Ds*K decay and the first observation and amplitude analysis of B- -> D+K-pi- are also reported. In addition to these tree measurements, the estimation of gamma from charmless B meson decay, sensitive to loops contribution, is presented.

  14. Rapidly-Indexing Incremental-Angle Encoder

    Science.gov (United States)

    Christon, Philip R.; Meyer, Wallace W.

    1989-01-01

    Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.

  15. Influence of hip-flexion angle on hamstrings isokinetic activity in sprinters.

    Science.gov (United States)

    Guex, Kenny; Gojanovic, Boris; Millet, Grégoire P

    2012-01-01

    Hamstrings strains are common and debilitating injuries in many sports. Most hamstrings exercises are performed at an inadequately low hip-flexion angle because this angle surpasses 70° at the end of the sprinting leg's swing phase, when most injuries occur. To evaluate the influence of various hip-flexion angles on peak torques of knee flexors in isometric, concentric, and eccentric contractions and on the hamstrings-to-quadriceps ratio. Descriptive laboratory study. Research laboratory. Ten national-level sprinters (5 men, 5 women; age = 21.2 ± 3.6 years, height = 175 ± 6 cm, mass = 63.8 ± 9.9 kg). For each hip position (0°, 30°, 60°, and 90° of flexion), participants used the right leg to perform (1) 5 seconds of maximal isometric hamstrings contraction at 45° of knee flexion, (2) 5 maximal concentric knee flexion-extensions at 60° per second, (3) 5 maximal eccentric knee flexion-extensions at 60° per second, and (4) 5 maximal eccentric knee flexionextensions at 150° per second. Hamstrings and quadriceps peak torque, hamstrings-to-quadriceps ratio, lateral and medial hamstrings root mean square. We found no difference in quadriceps peak torque for any condition across all hip-flexion angles, whereas hamstrings peak torque was lower at 0° of hip flexion than at any other angle (P .05). Hip-flexion angle influenced hamstrings peak torque in all muscular contraction types; as hip flexion increased, hamstrings peak torque increased. Researchers should investigate further whether an eccentric resistance training program at sprint-specific hip-flexion angles (70° to 80°) could help prevent hamstrings injuries in sprinters. Moreover, hamstrings-to-quadriceps ratio assessment should be standardized at 80° of hip flexion.

  16. Imaging of the lumbar plexus: Optimized refocusing flip angle train design for 3D TSE.

    Science.gov (United States)

    Cervantes, Barbara; Bauer, Jan S; Zibold, Felix; Kooijman, Hendrik; Settles, Marcus; Haase, Axel; Rummeny, Ernst J; Wörtler, Klaus; Karampinos, Dimitrios C

    2016-04-01

    To study the effects of refocusing angle modulation with 3D turbo spin echo (TSE) on signal and sharpness of small oblique nerves embedded in muscle and suppressed fat in the lumbar plexus. Flip angle trains were generated with extended phase graphs (EPG) for a sequence parameter subspace. Signal loss and width broadening were simulated for a single-pixel nerve embedded in muscle and suppressed fat to prescribe a flip angle modulation that gives the best compromise between signal and sharpness of small nerves. Two flip angle trains were defined based on the simulations of small embedded nerves: design denoted A, predicting maximum global signal, and design denoted B, predicting maximum signal for minimum width broadening. In vivo data of the lumbar plexus in 10 healthy volunteers was acquired at 3.0T with 3D TSE employing flip angle trains A and B. Quantitative and qualitative analyses of the acquired data were made to assess changes in width and signal intensity. Changing flip angle modulation from A to B resulted in: 1) average signal losses of 23% in (larger) L5 nerves and 9% in (smaller) L3 nerves; 2) average width reductions of 4% in L5 nerves and of 16% in L3 nerves; and 3) statistically significant sharpness improvement (P = 0.005) in L3 nerves. An optimized flip angle train in 3D TSE imaging of the lumbar plexus considering geometry-specific blurring effects from both the nerve and the surrounding tissue can improve the delineation of small nerves. © 2015 Wiley Periodicals, Inc.

  17. Angle-Multiplexed Metasurfaces: Encoding Independent Wavefronts in a Single Metasurface under Different Illumination Angles

    Directory of Open Access Journals (Sweden)

    Seyedeh Mahsa Kamali

    2017-12-01

    Full Text Available The angular response of thin diffractive optical elements is highly correlated. For example, the angles of incidence and diffraction of a grating are locked through the grating momentum determined by the grating period. Other diffractive devices, including conventional metasurfaces, have a similar angular behavior due to the fixed locations of the Fresnel zone boundaries and the weak angular sensitivity of the meta-atoms. To alter this fundamental property, we introduce angle-multiplexed metasurfaces, composed of reflective high-contrast dielectric U-shaped meta-atoms, whose response under illumination from different angles can be controlled independently. This enables flat optical devices that impose different and independent optical transformations when illuminated from different directions, a capability not previously available in diffractive optics.

  18. Online monitoring of the maximum angle error in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    2016-01-01

    Anisotropic Magnetoresistance (AMR) sensors are often used for angle measurements. The sensor outputs consist of two sinusoidal signals that show undesired characteristics as offset voltage, amplitude imbalance and harmonics, which affect the angle measurements. These parameters change due to aging

  19. Apparatus and method for variable angle slant hole collimator

    Science.gov (United States)

    Lee, Seung Joon; Kross, Brian J.; McKisson, John E.

    2017-07-18

    A variable angle slant hole (VASH) collimator for providing collimation of high energy photons such as gamma rays during radiological imaging of humans. The VASH collimator includes a stack of multiple collimator leaves and a means of quickly aligning each leaf to provide various projection angles. Rather than rotate the detector around the subject, the VASH collimator enables the detector to remain stationary while the projection angle of the collimator is varied for tomographic acquisition. High collimator efficiency is achieved by maintaining the leaves in accurate alignment through the various projection angles. Individual leaves include unique angled cuts to maintain a precise target collimation angle. Matching wedge blocks driven by two actuators with twin-lead screws accurately position each leaf in the stack resulting in the precise target collimation angle. A computer interface with the actuators enables precise control of the projection angle of the collimator.

  20. Measurement of Angle Kappa Using Ultrasound Biomicroscopy and Corneal Topography.

    Science.gov (United States)

    Yeo, Joon Hyung; Moon, Nam Ju; Lee, Jeong Kyu

    2017-06-01

    To introduce a new convenient and accurate method to measure the angle kappa using ultrasound biomicroscopy (UBM) and corneal topography. Data from 42 eyes (13 males and 29 females) were analyzed in this study. The angle kappa was measured using Orbscan II and calculated with UBM and corneal topography. The angle kappa of the dominant eye was compared with measurements by Orbscan II. The mean patient age was 36.4 ± 13.8 years. The average angle kappa measured by Orbscan II was 3.98° ± 1.12°, while the average angle kappa calculated with UBM and corneal topography was 3.19° ± 1.15°. The difference in angle kappa measured by the two methods was statistically significant (p angle kappa. This method is convenient to use and allows for measurement of the angle kappa without an expensive device.

  1. Effect of skew angle on second harmonic guided wave measurement in composite plates

    Science.gov (United States)

    Cho, Hwanjeong; Choi, Sungho; Lissenden, Cliff J.

    2017-02-01

    Waves propagating in anisotropic media are subject to skewing effects due to the media having directional wave speed dependence, which is characterized by slowness curves. Likewise, the generation of second harmonics is sensitive to micro-scale damage that is generally not detectable from linear features of ultrasonic waves. Here, the effect of skew angle on second harmonic guided wave measurement in a transversely isotropic lamina and a quasi-isotropic laminate are numerically studied. The strain energy density function for a nonlinear transversely isotropic material is formulated in terms of the Green-Lagrange strain invariants. The guided wave mode pairs for cumulative second harmonic generation in the plate are selected in accordance with the internal resonance criteria - i.e., phase matching and non-zero power flux. Moreover, the skew angle dispersion curves for the mode pairs are obtained from the semi-analytical finite element method using the derivative of the slowness curve. The skew angles of the primary and secondary wave modes are calculated and wave propagation simulations are carried out using COMSOL. Numerical simulations revealed that the effect of skew angle mismatch can be significant for second harmonic generation in anisotropic media. The importance of skew angle matching on cumulative second harmonic generation is emphasized and the accompanying issue of the selection of internally resonant mode pairs for both a unidirectional transversely isotropic lamina and a quasi-isotropic laminate is demonstrated.

  2. Switched-angle spinning applied to bicelles containing phospholipid-associated peptides

    Energy Technology Data Exchange (ETDEWEB)

    Zandomeneghi, Giorgia; Williamson, Philip T.F.; Hunkeler, Andreas; Meier, Beat H. [Physical Chemistry, ETH Zurich, ETH-Hoenggerberg (Switzerland)], E-mail: beme@ethz.ch

    2003-02-15

    In a model study, the proton NMR spectrum of the opioid pentapeptide leucine-enkephalin associated with bicelles is investigated. The spectral resolution for a static sample is limited due to the large number of anisotropic interactions, in particular strong proton-proton couplings, but resolution is greatly improved by magic-angle sample spinning. Here we present two-dimensional switched-angle spinning NMR experiments, which correlate the high-resolution spectrum of the membrane-bound peptide under magic-angle spinning with its anisotropic spectrum, leading to well-resolved spectra. The two-dimensional spectrum allows the exploitation of the high resolution of the isotropic spectrum, while retaining the structural information imparted by the anisotropic interactions in the static spectrum. Furthermore, switched-angle spinning techniques are demonstrated that allow one to record the proton spectrum of ordered bicellar phases as a function of the angle between the rotor axis and the magnetic field direction, thereby scaling the dipolar interactions by a predefined factor.

  3. Improvement in viewing angle properties of top-emitting organic light-emitting devices

    Science.gov (United States)

    Liou, Bo-Ting; Tsai, Miao-Chan; Huang, Yi-Hsiang; Chen, Fang-Ming; Lin, Yu-Rui; Kuo, Yen-Kuang

    2011-02-01

    The blue shift of viewing angle in the top-emitting organic light-emitting devices is discussed in this study. For the single-mode cavity, the device of anode metal/ m-MTDATA (40 nm)/ α-NPD (10 nm)/ Alq3 (47.6 nm)/ LiF (1 nm)/ Ag (20 nm) with the metal phase difference of 1.30 π has the minimum blue shift of viewing angle. For the double-mode cavity, the recombination area must be away from the cathode for the device with better performance. However, the double-mode cavity with only one recombination area still has worse FWHM and gets more serious the blue shift of viewing angle than the single-mode cavity. Therefore, the double-mode cavity with a recombination area at each antinode is performed, and the results prove that the blue shift of viewing angle and the FWHM are improved. Finally, we replace the emission layer with Alq3:DCM (0.01%) and adjust the main peak wavelength in the double-mode cavity by adjusting the thicknesses of the cavity. The results show that the FWHM and the blue shift of viewing angle obtain further improvement for the double-mode cavity with a recombination area at each antinode.

  4. High resolution and stability roll angle measurement method for precision linear displacement stages

    Science.gov (United States)

    Jin, Tao; Xia, Guizheng; Hou, Wenmei; Le, Yanfen; Han, Sen

    2017-02-01

    A method for high resolution roll angle measurement of linear displacement stages is developed theoretically and tested experimentally. The new optical configuration is based on a special differential plane mirror interferometer, a wedge prism assembly, and a wedge mirror assembly. The wedge prisms assembly is used as a roll angle sensor, which converts roll angle to the changes of optical path. The special interferometer, composed a polarization splitter plane, a half wave plate, a beam splitter, a retro-reflector and a quarter wave plate, is designed for high resolution measurement of the changes of the optical path. The interferometric beams are a completely common path for the adoption of the centrosymmetrical measurement structure, and the cross talk of the straightness, yaw, and pitch errors is avoided. The angle measurement resolution of the proposed method is 3.5 μrad in theoretical with a phase meter which has a resolution of 2 π /512 . The experimental result also shows the great stability and accuracy of the present roll angle measurement system.

  5. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  6. Resident-performed laser peripheral iridotomy in primary angle closure, primary angle closure suspects, and primary angle closure glaucoma

    Directory of Open Access Journals (Sweden)

    Kam JP

    2017-10-01

    Full Text Available Jason P Kam, Emily M Zepeda, Leona Ding, Joanne C Wen Department of Ophthalmology, University of Washington, Seattle, WA, USA Purpose: To investigate the power use and complication frequency of resident-performed laser peripheral iridotomy (LPI.Methods: A retrospective analysis of 196 eyes from 103 patients who underwent neodymium: yttrium-aluminum-garnet laser iridotomy performed by resident physicians from January 1, 2010 through April 30, 2015 at a university-based county hospital was done. All patients were treated for primary angle closure, primary angle closure suspects, and primary angle closure glaucoma. Data were collected on pre- and post-laser intraocular pressure (IOP, ethnicity, laser parameters and complications. Mean power use and frequency of complications were evaluated. Complications included elevated post-laser IOP at 30–45 minutes (≥8 mmHg, hyphema, aborted procedures, and lasering non-iris structures. The number of repeated LPI procedures, was also recorded.Results: Mean total power used for all residents was 78.2±68.7 mJ per eye. Power use by first-year trainees was significantly higher than second- and third-year trainees (103.5±75.5 mJ versus 73.7±73.8 mJ and 67.2±56.4 mJ, respectively, p=0.011. Complications included hyphema or microhyphema in 17.9% (35/196, IOP spikes in 5.1% (10/196, aborted procedures in 1.1% (3/196 and lasering non-iris structures in 0.5% (1/196. LPI was repeated in 22.4% of cases (44/196 with higher incidence of repeat LPI among non-Caucasian compared to the Caucasian subjects (p=0.02. Complication rates did not differ with increased training (p=0.16.Conclusion: Total power used for LPI decreased with increased resident training, while the complication rate did not differ significantly among resident classes. Complication rates were comparable to rates reported in the literature for attending-performed LPIs. Keywords: laser, iridotomy, resident, complications, power, energy

  7. Vertical Crossing Angle in IR8

    CERN Document Server

    Holzer , B J; Alemany, R

    2013-01-01

    The operation of the LHCb spectrometer dipole has a considerably larger and more challenging impact on the geometry of the LHC beams than the magnets in the high luminosity regions [1]. The integrated dipole field of 4 Tm deflects the beams in the horizontal plane, and using a set of three dipole magnets, called "compensators" a closed horizontal orbit bump is created. This paper summarizes the basic layout of the beam geometry in IR8 under the influence of the LHCb dipole and its compensators and shows the theoretically expected beam orbits, envelopes and aperture needs in the originally designed version. LHCb operation with both field polarities leads to unequal net crossing angles between the two beams and affects the experiment acceptance. It had been proposed therefore to establish a LHC operation mode where the originally designed horizontal crossing angle is shifted at high energy into the vertical plane leading to a vertical crossing scheme at luminosity operation. The new scheme has been successfully...

  8. Cluster headache or narrow angle glaucoma?

    Directory of Open Access Journals (Sweden)

    Prasad Palimar

    1991-01-01

    Full Text Available A 47 year old man with episodes of attacks of pain, redness and mild blurring of vision was investigated for narrow angle glaucoma in view of shallow anterior chambers and a cupped optic disc. The history was reviewed following a spontaneous attack in hospital, which had features other than acute glaucoma. A diagnosis of cluster headache was made on the basis of tests. Cluster headache has been defined as unilateral intense pain, involving the eye and head on one side, usually associated with flushing, nasal congestion and lacrimation; the attacks recurring one or more times daily and lasting 20 - 120 minutes. Such attacks commonly continue for weeks or months and are separated by an asymptomatic period of months to years. This episodic nature, together with unilaterality and tendency to occur at night, closely mimics narrow angle glaucoma. Further, if patients have shallow anterior chambers and disc cupping, the differentiation becomes more difficult yet critical. Resource to provocative tests is often the only answer as the following case report demonstrates.

  9. Lasers in primary open angle glaucoma

    Science.gov (United States)

    Sihota, Ramanjit

    2011-01-01

    Lasers have been used in the treatment of primary open angle glaucoma (POAG) over the years, with the hope that they would eventually replace medical and surgical therapy. Laser trabeculoplasty (LT) is an application of argon, diode, or selective laser energy to the surface of the trabecular meshwork to increase the aqueous outflow. The mechanisms by which intraocular pressure (IOP) is lowered could be mechanical, biologic, or by division of adjacent cells. It is commonly used as an adjunct to medical therapy, but is contraindicated if the angle is obstructed, e.g., peripheral anterior synechia (PAS) or developmental glaucomas. About 75% of individuals will show a significant fall in IOP after argon laser trabeculoplasty (ALT), and the response is similar with selective laser trabeculoplasty (SLT). The effects of LT are not always long lasting, with about 10% of individuals showing a rise in IOP with every passing year. Laser thermal sclerostomy, ab interno or externo, is an alternative to other full-thickness filtration procedures. Longer wavelengths in the infrared range have water-absorptive characteristics that facilitate perforation of the sclera. These lasers can be used to avoid intraocular instrumentation and minimize conjunctival trauma. PMID:21150022

  10. Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)

    Science.gov (United States)

    Alamdar, K.; Ansari, A. H.; Ghorbani, A.

    2009-04-01

    Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which

  11. SN2002es-like Supernovae from Different Viewing Angles

    Science.gov (United States)

    Cao, Yi; Kulkarni, S. R.; Gal-Yam, Avishay; Papadogiannakis, S.; Nugent, P. E.; Masci, Frank J.; Bue, Brian D.

    2016-11-01

    In this article, we compare optical light curves of two SN2002es-like Type Ia supernovae (SNe), iPTF14atg and iPTF14dpk, from the intermediate Palomar Transient Factory. Although the two light curves resemble each other around and after maximum, they show distinct early-phase rise behavior in the r-band. On the one hand, iPTF14atg revealed a slow and steady rise that lasted for 22 days with a mean rise rate of 0.2-0.3 mag day-1, before it reached the R-band peak (-18.05 mag). On the other hand, iPTF14dpk rose rapidly to -17 mag within a day of discovery with a rise rate \\gt 1.8 {{mag}} {{{day}}}-1, and then rose slowly to its peak (-18.19 mag) with a rise rate similar to iPTF14atg. The apparent total rise time of iPTF14dpk is therefore only 16 days. We show that emission from iPTF14atg before -17 days with respect to its maximum can be entirely attributed to radiation produced by collision between the SN and its companion star. Such emission is absent from iPTF14dpk probably because of an unfavored viewing angle, provided that SN2002es-like events arise from the same progenitor channel. We further show that an SN2002es-like SN may experience a dark phase after the explosion but before its radioactively powered light curve becomes visible. This dark phase may be lit by radiation from supernova-companion interaction.

  12. Phase Field

    Science.gov (United States)

    Koyama, Toshiyuki

    The term phase field has recently become known across many fields of materials science. The meaning of phase field is the spatial and temporal order parameter field defined in a continuum-diffused interface model. By using the phase field order parameters, many types of complex microstructure changes observed in materials science are described effectively. This methodology has been referred to as the phase field method, phase field simulation, phase field modeling, phase field approach, etc. In this chapter, the basic concept and theoretical background for the phase field approach is explained in Sects. 21.1 and 21.2. The overview of recent applications of the phase field method is demonstrated in Sects. 21.3 to 21.6.

  13. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    Science.gov (United States)

    Shi, F. X.; Yang, J. H.; Wang, X. H.; Zhang, R. H.; Li, C. E.

    2012-11-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  14. Divergence Angle as a Quality Parameter for Fiber Modes

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller; Rottwitt, Karsten

    2014-01-01

    We suggest using divergence angle as a quality parameter for pure fiber modes.We demonstrate a measurement of the divergence angle of an LP11-mode and obtain agreement with numerical predictions with 2-digit precision......We suggest using divergence angle as a quality parameter for pure fiber modes.We demonstrate a measurement of the divergence angle of an LP11-mode and obtain agreement with numerical predictions with 2-digit precision...

  15. A Physical Situation as a Way to Teach Angle

    Science.gov (United States)

    Munier, Valerie; Devichi, Claude; Merle, Helene

    2008-01-01

    Traditional school geometry often introduces the angle concept to students by having teachers show visual examples on the blackboard. In this article, the authors propose a teaching sequence to teach angle concept in elementary school that breaks away from this "ostensive" method. They hypothesize that the angle concept may emerge from solving…

  16. Turn vs. Shape: Teachers Cope with Incompatible Perspectives on Angle

    Science.gov (United States)

    Kontorovich, Igor'; Zazkis, Rina

    2016-01-01

    This study is concerned with tensions between the two different perspectives on the concept of angle: angle as a static shape and angle as a dynamic turn. The goal of the study is to explore how teachers cope with these tensions. We analyze scripts of 16 in-service secondary mathematics teachers, which feature a dialogue between a teacher and…

  17. Surgery for an "Acute Erection Angle," When Counseling Fails

    NARCIS (Netherlands)

    Nugteren, Helena M.; Pascal, Astrid L.; Schultz, Willibrord C. M. Weijmar; van Driel, Mels F.

    Introduction. During erection, the penis increases in volume, rigidity, and angle. Textbooks of urology and sexology provide only very limited information about erection angle dysfunction. In some men, this angle is too tight toward their belly, causing problems with intercourse. Aim. We reported

  18. Influence of gender on quadriceps (Q) angle among adult Urhobos ...

    African Journals Online (AJOL)

    Background: The Quadriceps angle (Q-angle) is defined as the angle formed between the longitudinal axis of the femur representing the pull of the quadriceps muscle and the patellar tendon. Materials and Methods: This study comprises of 90 male and 100 female adult Nigerian population of Urhobo ethnicity between the ...

  19. Goniodysgenesis in familial primary open-angle glaucoma

    NARCIS (Netherlands)

    Verbraak, F. D.; vd Berg, W.; Delleman, J. W.; Greve, E. L.

    1994-01-01

    Results of a pilot study to evaluate goniodysgenesis as a cause of familial open-angle glaucoma are reported. Patients with a familial high tension open-angle glaucoma and a goniodysgenetic chamber angle (n = 11), a number of their relatives with glaucoma (n = 12), and their relatives without

  20. Fostering Students' Development of the Concept of Angles Using Technology

    Science.gov (United States)

    Richardson, Sue Ellen; Koyunkaya, Melike Yigit

    2017-01-01

    We have used "GeoGebra," a dynamic geometry software environment, to explore how Year 4 students understand definitions of angles. Seven students defined angle and then completed several activities adapted for the dynamic environment. Afterward, students again shared their definitions of angles. We found that even a short investigation…

  1. Determination of angle of inclination for optimum power production ...

    African Journals Online (AJOL)

    Considering the Daily Average Power Output, Tilt angle of 150 recorded Optimum Daily Average Power output of 16.83 Watts throughout the period of measurement. This suggests that tilt angle of 150 is considered as suitable angle for Solar panel installation for optimum daily power production in this geographical location.

  2. Spectral Weighting Functions for Single-symbol Phase-noise Specifications in OFDM Systems

    NARCIS (Netherlands)

    Hoeksema, F.W.; Schiphorst, Roelof; Slump, Cornelis H.

    2003-01-01

    For the specification of phase-noise requirements for the front-end of a HiperLAN/2 system we investigated available literature on the subject. Literature differed in several aspects. One aspect is in the type of phase-noise used (Wiener phase-noise or small-angle phase noise). A Wiener phase-noise

  3. Biomechanical study: determining the optimum insertion angle for screw-in suture anchors-is deadman's angle correct?

    Science.gov (United States)

    Green, Robert N; Donaldson, Oliver W; Dafydd, Meilyr; Evans, Sam L; Kulkarni, Rohit

    2014-12-01

    To assess the effect of the insertion angle and the angle of applied load on the pullout strength of screw-in suture anchors. Screw-in metallic suture anchors were inserted into a 10-lb/cu ft synthetic cancellous bone block at 30°, 45°, 60°, and 90° to the surface. The suture pull angle was then varied in 30° increments between 0° and 180°. Five constructs were tested to failure (anchor pullout) for each combination of angles using a Zwick tensile testing machine (Zwick Roell, Ulm, Germany). There were a total of 25 combinations. The greatest pullout strength was seen with a suture anchor inserted at 90° to the bone block with a pull angle of 90° to the bone (mean, 306 N; standard deviation [SD], 9 N). The weakest pullout strength was seen with a suture anchor inserted at 30° with the angle of pull at 120° (i.e., opposite to the direction of insertion of the anchor) (mean, 97 N; SD, 11 N). A simulated deadman's angle of 45° with an angle of pull of 150° produced a pullout strength of 127 N (SD, 4 N). The pullout strengths for each insertion angle were greatest when the angle of pull was similar to the angle of insertion (P suture anchor and the insertion angle significantly influence the biomechanical pullout strength of screw-in suture anchors. The insertion angle of the suture anchor should replicate the angle of applied load to ensure the optimum pullout strength. The screw-in anchor insertion angle and angle of applied load may have an influence on pullout strength. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. New angle measurement device to control the posterior tibial slope angle in medial opening wedge high tibial osteotomy.

    Science.gov (United States)

    Ogawa, Hiroyasu; Matsumoto, Kazu; Akiyama, Haruhiko

    2017-11-17

    Medial opening wedge high tibial osteotomy has been associated with an unintentional increase in the posterior tibial slope angle. We aimed to evaluate the effectiveness of a novel bone spreader angle rod to maintain the native posterior tibial slope angle in medial opening wedge high tibial osteotomy. Data from 92 consecutive knees in 83 patients who underwent medial opening wedge high tibial osteotomy for knee osteoarthritis between March 2015 and June 2016 were analysed. The osteotomy was performed without the use of a bone spreader angle rod in the first 50 cases (control group) and with the use of the angle rod in the subsequent 42 cases (angle rod group). The wedge insertion angle, defined as the angle between a line drawn along the posterior aspect of the wedge spacer and a line tangential to the posterior aspect of the femoral condyles, and the posterior tibial slope angle were evaluated on pre- and postoperative lateral knee radiographs and postoperative computed tomography images. Wedge insertion angle showed that wedge spacers were inserted in a more direct horizontal direction in the angle rod group than in the control group (16.0 ± 8.8° and 23.0 ± 10.0°, respectively, P angle was significantly smaller in the angle rod group (0.6 ± 1.6°) compared to that in the control group (3.2 ± 3.2°; P angle > 3° (outlier) was identified in 1 case (2.4%) in the angle rod group compared to 27 cases in the control group (54.0%). The direct horizontal insertion of wedge spacers with the assistance of our novel bone spreader angle rod maintains the native posterior tibial slope angle better than conventional methods. IV.

  5. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).

    Science.gov (United States)

    D'Août, Kristiaan; Aerts, Peter; De Clercq, Dirk; De Meester, Koen; Van Elsacker, Linda

    2002-09-01

    We describe segment angles (trunk, thigh, shank, and foot) and joint angles (hip, knee, and ankle) for the hind limbs of bonobos walking bipedally ("bent-hip bent-knee walking," 17 sequences) and quadrupedally (33 sequences). Data were based on video recordings (50 Hz) of nine subjects in a lateral view, walking at voluntary speed. The major differences between bipedal and quadrupedal walking are found in the trunk, thigh, and hip angles. During bipedal walking, the trunk is approximately 33-41 degrees more erect than during quadrupedal locomotion, although it is considerably more bent forward than in normal human locomotion. Moreover, during bipedal walking, the hip has a smaller range of motion (by 12 degrees ) and is more extended (by 20-35 degrees ) than during quadrupedal walking. In general, angle profiles in bonobos are much more variable than in humans. Intralimb phase relationships of subsequent joint angles show that hip-knee coordination is similar for bipedal and quadrupedal walking, and resembles the human pattern. The coordination between knee and ankle differs much more from the human pattern. Based on joint angles observed throughout stance phase and on the estimation of functional leg length, an efficient inverted pendulum mechanism is not expected in bonobos. Copyright 2002 Wiley-Liss, Inc.

  6. The Effect of Suture Anchor Insertion Angle on Calcaneus Pullout Strength: Challenging the Deadman's Angle.

    Science.gov (United States)

    Weiss, William M; Saucedo, Ramon P; Robinson, John D; Lo, Chung-Chieh Jason; Morris, Randal P; Panchbhavi, Vinod K

    2017-10-01

    Refractory cases of Achilles tendinopathy amenable to surgery may include reattachment of the tendon using suture anchors. However, there is paucity of information describing the optimal insertion angle to maximize the tendon footprint and anchor stability in the calcaneus. The purpose of this investigation is to compare the fixation strength of suture anchors inserted at 90° and 45° (the Deadman's angle) relative to the primary compressive trabeculae of the calcaneus. A total of 12 matched pairs of adult cadaveric calcanei were excised and potted to approximate their alignment in vivo. Each pair was implanted with 5.5-mm bioabsorbable suture anchors placed either perpendicular (90°) or oblique (45°) to the primary compressive trabeculae. A tensile load was applied until failure of anchor fixation. Differences in failure load and stiffness between anchor fixation angles were determined by paired t-tests. No significant differences were detected between perpendicular and oblique suture anchor insertion relative to primary compressive trabeculae in terms of load to failure or stiffness. This investigation suggests that the fixation strength of suture anchors inserted perpendicular to the primary compression trabeculae and at the Deadman's angle are possibly comparable. Biomechanical comparison study.

  7. Comparison of compound trabeculectomy for angle-closure and open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Hai-Juan Xie

    2016-07-01

    Full Text Available AIM: To compared therapeutic effect of compound trabeculectomy in treatment of angle-closure and open angle glaucoma. METHODS: A total of 136 patients(136 eyeswith glaucoma from July 2014 to July 2015 were divided into angle-closure glaucoma(ACGgroup with 72 cases(72 eyesand open angle glaucoma(OAGgroup with 64 cases(64 eyes. All the patients were given compound trabeculectomy. The intraocular pressure, shallow anterior chamber, functional follicular and complications were compared between two groups after operation. RESULTS: The intraocular pressure of all patients were significantly decreased at 1 and 3mo after surgery. The intraocular pressure of ACG group were significantly lower than that of OAG group(t=11.037, 12.660, Pχ2=5.580, P0.05at 3mo after surgery. The shallow anterior chamber total incidence of ACG group was 11.1%. It was significantly lower than OAG group(25.0%(χ2=4.497, Pχ2=4.035, Pvs 7.8%, P=0.475. CONCLUSION: Compound trabeculectomy can reduce intraocular pressure of ACG and OAG patients safely. The results in ACG patients is better than that in OAG patients.

  8. Using Digital Technology to See Angles from Different Angles. Part 1: Corners

    Science.gov (United States)

    Host, Erin; Baynham, Emily; McMaster, Heather

    2014-01-01

    In Part 1 of their article, Erin Host, Emily Baynham and Heather McMaster use a combination of digital technology and concrete materials to explore the concept of "corners". They provide a practical, easy to follow sequence of activities that builds on students' understandings. [For "Using Digital Technology to See Angles from…

  9. Small-angle and surface scattering from porous and fractal materials.

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  10. Scattering angle-based filtering via extension in velocity

    KAUST Repository

    Kazei, Vladimir

    2016-09-06

    The scattering angle between the source and receiver wavefields can be utilized in full-waveform inversion (FWI) and in reverse-time migration (RTM) for regularization and quality control or to remove low frequency artifacts. The access to the scattering angle information is costly as the relation between local image features and scattering angles has non-stationary nature. For the purpose of a more efficient scattering angle information extraction, we develop techniques that utilize the simplicity of the scattering angle based filters for constantvelocity background models. We split the background velocity model into several domains with different velocity ranges, generating an

  11. Experimental investigation of synthetic aperture flow angle estimation

    DEFF Research Database (Denmark)

    Oddershede, Niels; Jensen, Jørgen Arendt

    2005-01-01

    -correlation as a function of velocity and angle. This paper presents an experimental investigation of this velocity angle estimation method based on a set of synthetic aperture flow data measured using our RASMUS experimental ultrasound system. The measurements are performed for flow angles of 60, 75, and 90 deg...... for the experiments, and the emitted pulse is a 20 micro sec. chirp, linearly sweeping frequencies from approximately 3.5 to 10.5 MHz. The flow angle could be estimated with an average bias up to 5.0 deg., and a average standard deviation between 0.2 deg. and 5.2 deg. Using the angle estimates, the velocity...

  12. Spherical Trigonometry of the Projected Baseline Angle

    Directory of Open Access Journals (Sweden)

    Mathar, R. J.

    2008-12-01

    Full Text Available The basic vector geometry of a stellar interferometer with two telescopes is defined by the right triangle of (i the baseline vector between the telescopes, of (ii the delay vector which points to the star, and of (iii the projected baseline vector in the plane of the wavefront of the stellar light. The plane of this triangle intersects the celestial sphere at the position of the star; the intersection is a circular line segment. The interferometric angular resolution is high (diffraction limited to the ratio of the wavelength over the projected baseline length in the two directions along thisline segment, and low (diffraction limited to the ratio of thewavelength over the telescope diameter perpendicular to these. Theposition angle of these characteristic directions in the sky iscalculated here, given either local horizontal coordinates, orcelestial equatorial coordinates.

  13. Spherical trigonometry of the projected baseline angle

    Directory of Open Access Journals (Sweden)

    Mathar R.J.

    2008-01-01

    Full Text Available The basic vector geometry of a stellar interferometer with two telescopes is defined by the right triangle of (i the baseline vector between the telescopes, of (ii the delay vector which points to the star, and of (iii the projected baseline vector in the plane of the wave front of the stellar light. The plane of this triangle intersects the celestial sphere at the position of the star; the intersection is a circular line segment. The interferometric angular resolution is high (diffraction limited to the ratio of the wavelength over the projected baseline length in the two directions along this line segment, and low (diffraction limited to the ratio of the wavelength over the telescope diameter perpendicular to these. The position angle of these characteristic directions in the sky is calculated here, given either local horizontal coordinates, or celestial equatorial coordinates.

  14. Angle-resolved cathodoluminescence imaging polarimetry

    CERN Document Server

    Osorio, Clara I; Brenny, Benjamin; Polman, Albert; Koenderink, A Femius

    2015-01-01

    Cathodoluminescence spectroscopy (CL) allows characterizing light emission in bulk and nanostructured materials and is a key tool in fields ranging from materials science to nanophotonics. Previously, CL measurements focused on the spectral content and angular distribution of emission, while the polarization was not fully determined. Here we demonstrate a technique to access the full polarization state of the cathodoluminescence emission, that is the Stokes parameters as a function of the emission angle. Using this technique, we measure the emission of metallic bullseye nanostructures and show that the handedness of the structure as well as nanoscale changes in excitation position induce large changes in polarization ellipticity and helicity. Furthermore, by exploiting the ability of polarimetry to distinguish polarized from unpolarized light, we quantify the contributions of different types of coherent and incoherent radiation to the emission of a gold surface, silicon and gallium arsenide bulk semiconductor...

  15. Small angle electron diffraction and deflection

    Directory of Open Access Journals (Sweden)

    T. Koyama

    2012-03-01

    Full Text Available Electron optical system is constructed in order to obtain small angle diffraction and Lorentz deflection of electrons at the order of down to 10-6 radian in the reciprocal space. Long-distance camera length up to 3000 m is achieved in a conventional transmission electron microscope with LaB6 thermal emission type. The diffraction pattern at 5 × 10-6 radian is presented in a carbon replica grating with 500 nm lattice spacing while the magnetic deflection pattern at 2 × 10-5 radian is exhibited in Permalloy elements. A simultaneous recording of electron diffraction and Lorentz deflection is also demonstrated in 180 degree striped magnetic domains of La0.825Sr0.175MnO3.

  16. The critical slope angle for orographic rain

    Science.gov (United States)

    Breidenthal, R. E.; Zagar, N.

    2013-12-01

    Krishnamurti has shown that orographic rain depends on the slope of the windward terrain rather than just the total elevation gain. A simple physical model is proposed to account for the effect of slope. Based on the inhibiting effect of vortex (rotational) acceleration on entrainment, a critical slope angle is derived. If the rate of orographic lifting is sufficiently large, the enhanced buoyancy from latent heat release increases the acceleration parameter. As a consequence, the entrainment rate of under-saturated air is reduced. The critical slope corresponds to the situation where the rate of condensation in a rising adiabatic parcel just equals the rate of evaporation due to the entrainment of under-saturated air. The model is also applied to the trigger conditions for towering cumulus in general.

  17. Wide-angle energy-momentum spectroscopy

    CERN Document Server

    Dodson, Christopher M; Li, Dongfang; Zia, Rashid

    2014-01-01

    Light emission is defined by its distribution in energy, momentum, and polarization. Here, we demonstrate a method that resolves these distributions by means of wide-angle energy-momentum spectroscopy. Specifically, we image the back focal plane of a microscope objective through a Wollaston prism to obtain polarized Fourier-space momentum distributions, and disperse these two-dimensional radiation patterns through an imaging spectrograph without an entrance slit. The resulting measurements represent a convolution of individual radiation patterns at adjacent wavelengths, which can be readily deconvolved using any well-defined basis for light emission. As an illustrative example, we use this technique with the multipole basis to quantify the intrinsic emission rates for electric and magnetic dipole transitions in europium-doped yttrium oxide (Eu$^{3+}$:Y$_{2}$O$_{3}$) and chromium-doped magnesium oxide (Cr$^{3+}$:MgO). Once extracted, these rates allow us to reconstruct the full, polarized, two-dimensional radi...

  18. Angle-independent structural colors of silicon

    DEFF Research Database (Denmark)

    Højlund-Nielsen, Emil; Weirich, Johannes; Nørregaard, Jesper

    2014-01-01

    Structural colors are optical phenomena of physical origin, where microscale and nanoscale structures determine the reflected spectrum of light. Artificial structural colors have been realized within recent years. However, multilayer structures require substantial fabrication. Instead we considered...... one-layer surface textures of silicon.We explored four patterns of square structures in a square lattice with periods of 500, 400, 300, and 200 nm. The reflectivity and daylight-colors were measured and compared with simulations based on rigorously coupledwave analysis with excellent agreement. Based...... on the 200-nm periodic pattern, it was found that angle-independent specular colors up to 60 deg of incidence may be provided. The underlying mechanisms include (1) the suppression of diffraction and (2) a strong coupling of light to localized surface states. The strong coupling yields absorption anomalies...

  19. ESPRIT with multiple-angle subarray beamforming

    Science.gov (United States)

    Xu, Wen; Jiang, Ying; Zhang, Huiquan

    2012-12-01

    This article presents a new approach of implementing signal direction-of-arrival estimation, in which subarray beamforming is applied prior to estimation of signal parameters via rotational invariance techniques (ESPRIT). Different from the previous approaches, the beam-domain data from multiple adjacent pointing angles are combined in a way that the displacement invariance structure required by ESPRIT is maintained. It is intended to further obtain a sub-beamwidth resolution for a conventional multi-beam system already having small beamwidths. Computer simulations show that for typical multi-beam system applications the new approach provides improved estimation mean-square errors over the original ESPRIT, on top of reduced requirements for signal-to-noise ratio, number of snapshots, and computational time.

  20. Foreign Body Embedded in Anterior Chamber Angle

    Directory of Open Access Journals (Sweden)

    Shmuel Graffi

    2012-01-01

    Full Text Available Introduction. We present a case of a metallic foreign body embedded in the anterior chamber angle. After standing in close proximity to a construction worker breaking a tile, a 26-year-old woman using soft contact lens for the correction of mild myopia presented to emergency department for evaluation of a foreign body sensation of her right eye. Methods and Results. Diagnosis was confirmed by gonioscopic examination and a noncontrast CT scan of head and orbits. The foreign body was removed by an external approach without utilizing a magnet. The patient's final outcome was favorable. Discussion. The above is a rare clinical situation, which is impossible to detect on slit-lamp examination without a gonioscopic view. Proper imaging and a specific management are mandatory in order to achieve favorable outcome.

  1. Angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs.

  2. Penile erections: shape, angle, and length.

    Science.gov (United States)

    Sparling, J

    1997-01-01

    A U.S. Census-matched sample of 1,484 men between 20 and 69 years old from archived data of the Kinsey Institute and current questionnaire plus documentary photo data from a new sample of 81 men between 21 and 67 years old were analyzed to generate a description of penile erections that might act as a useful information base for therapists and others. Estimates derived from Kinsey data on erections were found to provide a credible foundation of fact, with the current questionnaire and photo analysis implying the need for moderate increases in the Kinsey figures in three areas: (a) more n-curved (downward curved) erections, about 15% of the total; (b) more erection angles in the lower ranges, with at least one fourth below horizontal; and (c) a greater proportion of shorter erections, with lengths in the 4.5-5.75 in. range, representing about 40% of the total.

  3. Dilemma of gonial angle measurement: Panoramic radiograph or lateral cephalogram

    Energy Technology Data Exchange (ETDEWEB)

    Radhakrishnan, Pillai Devu; Varma, Nilambur Kovilakam Sapna; Ajith, Vallikat Velath [Dept. of Orthodontics, Amrita School of Dentistry, Kochi (India)

    2017-06-15

    The purpose of this study was to evaluate the accuracy of panoramic imaging in measuring the right and left gonial angles by comparing the measured angles with the angles determined using a lateral cephalogram of adult patients with class I malocclusion. The gonial angles of 50 class I malocclusion patients (25 males and 25 females; mean age: 23 years) were measured using both a lateral cephalogram and a panoramic radiograph. In the lateral cephalograms, the gonial angle was measured at the point of intersection of the ramus plane and the mandibular plane. In the panoramic radiographs, the gonial angle was measured by drawing a line tangent to the lower border of the mandible and another line tangent to the distal border of the ascending ramus and the condyle on both sides. The data obtained from both radiographs were statistically compared. No statistically significant difference was observed between the gonial angle measured using the lateral cephalograms and that determined using the panoramic radiographs. Further, there was no statistically significant difference in the measured gonial angle with respect to gender. The results also showed a statistically insignificant difference in the mean of the right and the left gonial angles measured using the panoramic radiographs. As the gonial angle measurements using panoramic radiographs and lateral cephalograms showed no statistically significant difference, panoramic radiography can be considered in orthodontics for measuring the gonial angle without any interference due to superimposed images.

  4. Angle Kappa and its importance in refractive surgery

    Science.gov (United States)

    Moshirfar, Majid; Hoggan, Ryan N.; Muthappan, Valliammai

    2013-01-01

    Angle kappa is the difference between the pupillary and visual axis. This measurement is of paramount consideration in refractive surgery, as proper centration is required for optimal results. Angle kappa may contribute to MFIOL decentration and its resultant photic phenomena. Adjusting placement of MFIOLs for angle kappa is not supported by the literature but is likely to help reduce glare and haloes. Centering LASIK in angle kappa patients over the corneal light reflex is safe, efficacious, and recommended. Centering in-between the corneal reflex and the entrance pupil is also safe and efficacious. The literature regarding PRK in patients with an angle kappa is sparse but centering on the corneal reflex is assumed to be similar to centering LASIK on the corneal reflex. Thus, centration of MFIOLs, LASIK, and PRK should be focused on the corneal reflex for patients with a large angle kappa. More research is needed to guide surgeons’ approach to angle kappa. PMID:24379548

  5. Angle Kappa and its importance in refractive surgery

    Directory of Open Access Journals (Sweden)

    Majid Moshirfar

    2013-01-01

    Full Text Available Angle kappa is the difference between the pupillary and visual axis. This measurement is of paramount consideration in refractive surgery, as proper centration is required for optimal results. Angle kappa may contribute to MFIOL decentration and its resultant photic phenomena. Adjusting placement of MFIOLs for angle kappa is not supported by the literature but is likely to help reduce glare and haloes. Centering LASIK in angle kappa patients over the corneal light reflex is safe, efficacious, and recommended. Centering in-between the corneal reflex and the entrance pupil is also safe and efficacious. The literature regarding PRK in patients with an angle kappa is sparse but centering on the corneal reflex is assumed to be similar to centering LASIK on the corneal reflex. Thus, centration of MFIOLs, LASIK, and PRK should be focused on the corneal reflex for patients with a large angle kappa. More research is needed to guide surgeons′ approach to angle kappa.

  6. Reducing scan angle using adaptive prior knowledge for a limited-angle intrafraction verification (LIVE) system for conformal arc radiotherapy

    Science.gov (United States)

    Zhang, Yawei; Yin, Fang-Fang; Zhang, You; Ren, Lei

    2017-05-01

    The purpose of this study is to develop an adaptive prior knowledge guided image estimation technique to reduce the scan angle needed in the limited-angle intrafraction verification (LIVE) system for 4D-CBCT reconstruction. The LIVE system has been previously developed to reconstruct 4D volumetric images on-the-fly during arc treatment for intrafraction target verification and dose calculation. In this study, we developed an adaptive constrained free-form deformation reconstruction technique in LIVE to further reduce the scanning angle needed to reconstruct the 4D-CBCT images for faster intrafraction verification. This technique uses free form deformation with energy minimization to deform prior images to estimate 4D-CBCT based on kV-MV projections acquired in extremely limited angle (orthogonal 3°) during the treatment. Note that the prior images are adaptively updated using the latest CBCT images reconstructed by LIVE during treatment to utilize the continuity of the respiratory motion. The 4D digital extended-cardiac-torso (XCAT) phantom and a CIRS 008A dynamic thoracic phantom were used to evaluate the effectiveness of this technique. The reconstruction accuracy of the technique was evaluated by calculating both the center-of-mass-shift (COMS) and 3D volume-percentage-difference (VPD) of the tumor in reconstructed images and the true on-board images. The performance of the technique was also assessed with varied breathing signals against scanning angle, lesion size, lesion location, projection sampling interval, and scanning direction. In the XCAT study, using orthogonal-view of 3° kV and portal MV projections, this technique achieved an average tumor COMS/VPD of 0.4  ±  0.1 mm/5.5  ±  2.2%, 0.6  ±  0.3 mm/7.2  ±  2.8%, 0.5  ±  0.2 mm/7.1  ±  2.6%, 0.6  ±  0.2 mm/8.3  ±  2.4%, for baseline drift, amplitude variation, phase shift, and patient breathing signal variation

  7. Radial Diffusion Caused by Pitch Angle Scattering and Drift Shell Splitting - Simulation and Van Allen Probes Observations

    Science.gov (United States)

    Henderson, M. G.; Morley, S.; Cunningham, G.; Tu, W.; Reeves, G. D.; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Spence, H.; Baker, D. N.

    2013-12-01

    In realistic asymmetric magnetic fields, particles with different pitch angles starting on the same field line will trace out different drift shells. As a result of this drift shell splitting, pitch angle scattering automatically leads to additional radial diffusion. At a given position on a drift shell, the instantaneous DLL associated with this process is related to the gradient of L* with respect to equatorial pitch angle and the local value of the bounce averaged Daa diffusion coefficient. The final DLL associated with pitch angle scattering is then obtained by drift averaging. We show initial results of computed DLL coefficients and simulations using the DREAM diffusion code. The results are compared with Phase Space Densities measured with the recently launched Van Allen Probes.

  8. Probing polymer nanocomposite morphology by small angle ...

    Indian Academy of Sciences (India)

    diamine monomers on a flat support which is then dipped in a continuous organic phase containing trimesoyl chloride monomers so that polymer film is formed at the surface of the support by interfacial polycondensation ... Puyam S Singh and Vinod K Aswal. Table 1. Silicon content of the silica–polyamide samples. S1. S2.

  9. Modification of the morphology and optical properties of SnS films using glancing angle deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Sazideh, M.R., E-mail: Mohammadrezasazideh@gmail.com [Thin Film Lab., Faculty of Physics, Semnan University, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Dizaji, H. Rezagholipour, E-mail: hrgholipour@semnan.ac.ir [Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Ehsani, M.H., E-mail: mhe_ehsani@yahoo.com [Faculty of Physics, Semnan University, P.O. Box: 35195-363, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of); Moghadam, R. Zarei, E-mail: r.zarei1991@gmail.com [Thin Film Lab., Faculty of Physics, Semnan University, Semnan, Islamic Republic of Iran (Iran, Islamic Republic of)

    2017-05-31

    Highlights: • SnS thin films produced by thermal evaporation method using glancing angle deposition technique. • At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range. • FESEM images showed drastic changes in the structure and morphology of individual nano-plates as a function of incident angle deposition. - Abstract: Tin sulfide (SnS) films were prepared by thermal evaporation method using Glancing Angle Deposition (GLAD) technique at zero and different oblique incident flux angles (α = 45°, 55°, 65°, 75° and 85°). The physical properties of prepared films were systematically investigated. The X-ray diffraction analysis indicated that the film deposited at α = 0° formed as single phase with an orthorhombic structure. However, the layers became amorphous at α = 45°, 55°, 65°, 75° and 85°. Beside the appearance of amorphous feature in the film prepared at α higher than zero, Sn{sub 2}S{sub 3} phase was also observed. The top and cross-sectional field emission scanning electron microscope (FESEM) images of the samples showed noticeable changes in the structure and morphology of individual nano-plates as a function of incident angle. The band gap and refractive index values of the films were calculated by optical transmission measurements. The optical band-gap values were observed to increase with increasing the incident flux angle. This can be due to presence of Sn{sub 2}S{sub 3} phase observed in the samples produced at α values other than zero. The effective refractive index and porosity exhibit an opposite evolution as the incident angle α rises. At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range.

  10. Morphometric analysis for evaluating the relation between incisal guidance angle, occlusal plane angle, and functional temporomandibular joint shape variation.

    Science.gov (United States)

    Han, Seulgi; Shin, Sang Min; Choi, Yong-Seok; Kim, So Yeun; Ko, Ching-Chang; Kim, Yong-Il

    2018-01-11

    The correlations between morphology of the temporomandibular joint structure, the anterior guidance angle, and occlusal plane were investigated. A cone beam computed tomography analysis was performed in 158 patients (86 women and 72 men). 3D software was employed to obtain the coordinates of the shape of the incisal guidance angle, occlusal guidance angle, articular fossa, and mandibular condyle. Generalized Procrustes analysis including principal components analysis (PCA) were performed and produced principal components (PCs) scores of each shape and their centroid size (CS). A significant Pearson correlation coefficient of 0.3451 (p angle and occlusal plane. The CS also showed a correlation with the incisal guidance angle, but not with the occlusal plane angle. The PCA results revealed that there were no significant correlations between the temporomandibular joint structure (TMJ) shape (fossa and condyle) and the incisal guidance angle. Incisor guidance angle and occlusal plane angle were correlated. In addition, there was a correlation between CS and incisal guidance angle. In the PCA, It can be concluded that the size is more related to the incisor guidance angle than the morphological factors of the constituent components of the TMJ.

  11. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow

    Science.gov (United States)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.

    2017-09-01

    We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.

  12. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow

    Energy Technology Data Exchange (ETDEWEB)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M.

    2017-09-01

    We employ a pairwise force Smoothed Particle Hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows for modeling of free surface flow without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on rough surfaces in a shape of a sinusoidal function and made of rectangular bars placed on top of a flat surface. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. Next, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the classical lotus effect. We demonstrate that linear scaling relationships between Bond and capillary number for droplet flow on flat surfaces also hold for flow on rough surfaces.

  13. The Achilles tendon resting angle as an indirect measure of Achilles tendon length following rupture, repair, and rehabilitation

    Directory of Open Access Journals (Sweden)

    Michael R. Carmont

    2015-04-01

    Conclusion: The ATRA increases following injury, is reduced by surgery, and then increases again during initial rehabilitation. The angle also correlates with patient-reported symptoms early in the rehabilitation phase and with heel-rise height after 1 year. The ATRA might be considered a simple and effective means to evaluate Achilles tendon function 1 year after the rupture.

  14. Nanoscale uniformity of pore architecture in diatomaceous silica : A combined small and wide angle X-ray scattering study

    NARCIS (Netherlands)

    Vrieling, EG; Beelen, TPM; van Santen, RA; Gieskes, WWC

    Combined small and wide angle IZ-ray scattering (SAXS and WAXS) analysis was applied to purified biogenic silica of cultured diatom frustules and of natural populations sampled on marine tidal flats. The overall WAXS patterns did not reveal crystalline phases (WAXS domain between 0.07 to 0.5 nm) in

  15. Near field phased array DOA and range estimation of UHF RFID tags

    NARCIS (Netherlands)

    Huiting, J.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2015-01-01

    This paper presents a near field localization system based on a phased array for UHF RFID tags. To estimate angle and range the system uses a two-dimensional MUSIC algorithm. A four channel phased array is used to experimentally verify the estimation of angle and range for an EPC gen2 tag. The

  16. Conservative compensatory Angle Class III malocclusion treatment

    Directory of Open Access Journals (Sweden)

    Marcio Costa Sobral

    2012-12-01

    Full Text Available INTRODUCTION: Angle's Class III malocclusion is a dental discrepancy in a sagittal view that may appear or not with an important skeletal discrepancy. Facial esthetics may be affected by this skeletal discrepancy and it is one of the most common complaints of patients who seek orthodontic treatment. Class III treatment, in adults, may be done by compensatory tooth movement, in simple cases, or through an association between orthodontics and orthognathic surgery, in more severe cases. OBJECTIVE: This article describes a non-extraction compensatory Class III treatment case, applying the Tweed-Merrifield mechanical principles with headgear (J-Hook in the mandibular arch. This case was presented at the V Brazilian Association of Orthodontics and Dentofacial Orthopedics (ABOR Meeting, it was evaluated by members of Brazilian Board of Orthodontics and obtained third place in the general classification.INTRODUÇÃO: a má oclusão de Classe III se caracteriza por uma desarmonia dentária anteroposterior, podendo estar ou não acompanhada por discrepâncias esqueléticas. A estética facial pode se apresentar comprometida, em maior ou menor grau, a depender da magnitude da discrepância, constituindo um dos principais fatores motivadores da procura por tratamento ortodôntico. O tratamento da Classe III em pacientes adultos pode ser realizado mediante compensação dentária, nos casos mais simples, ou, em situações mais severas, mediante a associação entre Ortodontia e Cirurgia Ortognática. OBJETIVO: o presente artigo objetiva relatar um caso clínico caracterizado por uma má oclusão de Classe III de Angle, tratado de forma compensatória, com extração dos terceiros molares inferiores, mediante a utilização de aparelhagem extrabucal na arcada inferior (J-hook, aplicando-se princípios da técnica de Tweed-Merrifield. Esse caso foi apresentado no 5º Congresso da Associação Brasileira de Ortodontia e Ortopedia Facial (ABOR, na categoria

  17. Wide-Angle-Scanning Reflectarray Antennas Actuated by MEMS

    Science.gov (United States)

    Fang, Houfei; Huang, John; Thomson, Mark W.

    2009-01-01

    An effort to develop large-aperture, wide-angle-scanning reflectarray antennas for microwave radar and communication systems is underway. In an antenna of this type as envisioned, scanning of the radiated or incident microwave beam would be effected through mechanical rotation of the passive (reflective) patch antenna elements, using microelectromechanical systems (MEMS) stepping rotary actuators typified by piezoelectric micromotors. It is anticipated that the cost, mass, and complexity of such an antenna would be less than, and the reliability greater than, those of an electronically scanned phased-array antenna of comparable beam-scanning capability and angular resolution. In the design and operation of a reflectarray, one seeks to position and orient an array of passive patch elements in a geometric pattern such that, through constructive interference of the reflections from them, they collectively act as an efficient single reflector of radio waves within a desired frequency band. Typically, the patches lie in a common plane and radiation is incident upon them from a feed horn.

  18. Measurements of the CKM angle $\\gamma$ at the LHCb experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00388653; Malde, Sneha

    Two measurements of the Cabibbo-Kobayashi-Maskawa angle $\\gamma$ using $B \\to D K$ and $B^{0} \\to D K^{\\ast 0}$ decays are presented in this thesis. The subsequent $D$ meson decays to the $K_{S}^{0} \\pi^{+} \\pi^{-}$ and $K_{S}^{0} K^{+} K^{-}$ final states are studied using a binned Dalitz plot analysis. The $D$ strong-phase variation over the Dalitz plot is taken from measurements performed at the CLEO-c experiment, making the analysis independent of a model to describe the $D$ decay amplitude. Both measurements are performed using proton-proton collision data collected by the Large Hadron Collider beauty (LHCb) experiment in 2011 and 2012, corresponding to an integrated luminosity of 3 fb$^{-1}$ at centre-of-mass energies $\\sqrt{s}=$ 7 TeV and 8 TeV. The value $\\gamma=(62\\,^{+15}_{-14})^{\\circ}$ is measured using $B \\to D K$ decays and $\\gamma=(71\\pm20)^{\\circ}$ is measured using $B^{0} \\to D K^{\\ast 0}$ decays, with a second solution for each value corresponding to $\\gamma+180^{\\circ}$. The measurement...

  19. X-Ray Studies of Phase Transitions on Surfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1984-01-01

    The density variation across the surface from vapor to liquid in liquid crystal materials has been measured in the isotropic, nematic and smectic A phases by specular reflection of X rays with grazing angles from θc to θB (total reflection angle and Bragg angle for smectic A layering, respectively......) using synchroton X-rays in HASYLAB, Hamburg. Crystalline surface structures may be deduced from X-ray diffraction, utilizing the evanescent beam occuring for grazing angles less than θc to obtain surface sensitivity. Results from the reconstruction of Au(110) surface are reviewed....

  20. Trabecular Meshwork Height in Primary Open-Angle Glaucoma Versus Primary Angle-Closure Glaucoma.

    Science.gov (United States)

    Masis, Marisse; Chen, Rebecca; Porco, Travis; Lin, Shan C

    2017-11-01

    To determine if trabecular meshwork (TM) height differs between primary open-angle glaucoma (POAG) and primary angle-closure glaucoma (PACG) eyes. Prospective, cross-sectional clinical study. Adult patients were consecutively recruited from glaucoma clinics at the University of California, San Francisco, from January 2012 to July 2015. Images were obtained from spectral-domain optical coherence tomography (Cirrus OCT; Carl Zeiss Meditec, Inc, Dublin, California, USA). Univariate and multivariate linear mixed models comparing TM height and glaucoma type were performed to assess the relationship between TM height and glaucoma subtype. Mixed-effects regression was used to adjust for the use of both eyes in some subjects. The study included 260 eyes from 161 subjects, composed of 61 men and 100 women. Mean age was 70 years (SD 11.77). There were 199 eyes (123 patients) in the POAG group and 61 eyes (38 patients) in the PACG group. Mean TM heights in the POAG and PACG groups were 812 ± 13 μm and 732 ± 27 μm, respectively, and the difference was significant in univariate analysis (P = .004) and in multivariate analysis (β = -88.7 [24.05-153.5]; P = .008). In this clinic-based population, trabecular meshwork height is shorter in PACG patients compared to POAG patients. This finding may provide insight into the pathophysiology of angle closure and provide assistance in future diagnosis, prevention, and management of the angle-closure spectrum of disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Indoor Multipath Assisted Angle of Arrival Localization.

    Science.gov (United States)

    Wielandt, Stijn; Strycker, Lieven De

    2017-11-02

    Indoor radio frequency positioning systems enable a broad range of location aware applications. However, the localization accuracy is often impaired by Non-Line-Of-Sight (NLOS) connections and indoor multipath effects. An interesting evolution in widely deployed communication systems is the transition to multi-antenna devices with beamforming capabilities. These properties form an opportunity for localization methods based on Angle of Arrival (AoA) estimation. This work investigates how multipath propagation can be exploited to enhance the accuracy of AoA localization systems. The presented multipath assisted method resembles a fingerprinting approach, matching an AoA measurement vector to a set of reference vectors. However, reference data is not generated by labor intensive site surveying. Instead, a ray tracer is used, relying on a-priori known floor plan information. The resulting algorithm requires only one fixed receiving antenna array to determine the position of a mobile transmitter in a room. The approach is experimentally evaluated in LOS and NLOS conditions, providing insights in the accuracy and robustness. The measurements are performed in various indoor environments with different hardware configurations. This leads to the conclusion that the proposed system yields a considerable accuracy improvement over common narrowband AoA positioning methods, as well as a reduction of setup efforts in comparison to conventional fingerprinting systems.

  2. Raising heels of hind hooves changes the equine coffin, fetlock and hock joint angle: a kinematic evaluation on the treadmill at walk and trot.

    Science.gov (United States)

    Peham, C; Girtler, D; Kicker, C; Licka, T

    2006-08-01

    Raised heels are commonly recommended for various equine orthopaedic conditions. However, the simultaneous effect of raised heels on the different joint angles of the equine hindlimb throughout the motion cycle has not been previously evaluated. To document the simultaneous effect of raised heels on the joint angles of the equine hindlimb coffin, fetlock and hock joints. Eight sound, adult, Warmblood horses were evaluated barefoot and with a heel wedge of 8 or 16 degrees, walking and trotting on a horizontal treadmill. Markers placed on the dorsal and cranial aspect of the hindlimb were traced using a 3D high speed video system and joint angles calculated. The effects of raising the hindlimb heels by 8 or 16 degrees on the angles of the hindlimb during the stance phase are a reduction of the plantar combined coffin joint and pastern joint angle, a reduction of maximum extension in the fetlock joint, and an increase in maximum hock flexion. The relation between angles did not change significantly during the course of the stance phase in the three measurement situations, with only small differences in time of occurrence of each joint angle maxima and minima. Raising the heels of hind hooves increases flexion of the coffin and hock joints during the stance phases of walk and trot, and a doubling of the angle of the raised heels also doubles the effect on the joint angles investigated. Raised heels reduce the maximum extension of the fetlock joint during the the stance phase at walk and trot. This study provides evidence for the therapeutic use of raised shoes with heels in horses with pain on maximum hock extension, e.g. spavin.

  3. Gradient angle estimation by uniform directional simulation on a cone

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1997-01-01

    of these projections is derived assuming the limit-state surface to be a hyperplane. This distribution depends on the angle between the cone axis and the normal vector to the hyperplane. Assuming sufficient flatness of the actual limit-state surface within a neighbourhood of the cut point with the cone axis, the cone...... top angle can be chosen small enough that this distribution can be taken as the basis for the formulation of the likelihood function of the angle given the sample of projections. The angle of maximum likelihood is then the indicator of whether the cut point can be taken as a sufficiently accurate...... approximation to a locally most central limit state point. Moreover, the estimated angle can be used to correct the geometric reliability index.\\bfseries Keywords: Directional simulation, effectivity factor, gradient angle estimation, maximum likelihood, model-correction-factor method, Monte Carlo simulation...

  4. Steering Angle Function Algorithm of Morphing of Residential Area

    Directory of Open Access Journals (Sweden)

    XIE Tian

    2015-07-01

    Full Text Available A residential area feature morphing method based on steering angle function is presented. To residential area with the same representation under two different scales,transforming the representation of the residential area polygon from vector coordinates to steering angle function,then using the steering angle function to match,and finding out the similarity and the differences between the residential areas under different scale to get the steering angle function of the the residential areas under any middle scale,the final,transforming the middle scale steering angle function to vector coordinates form,and get the middle shape interpolation of the the residential area polygon.Experimental results show:the residential area morphing method by using steering angle function presented can realize the continuous multi-scale representation under the premise of keeping in shape for the residential area with the rectangular boundary features.

  5. Vehicle Sideslip Angle Estimation Based on General Regression Neural Network

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2016-01-01

    Full Text Available Aiming at the accuracy of estimation of vehicle’s mass center sideslip angle, an estimation method of slip angle based on general regression neural network (GRNN and driver-vehicle closed-loop system has been proposed: regarding vehicle’s sideslip angle as time series mapping of yaw speed and lateral acceleration; using homogeneous design project to optimize the training samples; building the mapping relationship among sideslip angle, yaw speed, and lateral acceleration; at the same time, using experimental method to measure vehicle’s sideslip angle to verify validity of this method. Estimation results of neural network and real vehicle experiment show the same changing tendency. The mean of error is within 10% of test result’s amplitude. Results show GRNN can estimate vehicle’s sideslip angle correctly. It can offer a reference to the application of vehicle’s stability control system on vehicle’s state estimation.

  6. Luminosity Anti-leveling with Crossing Angle (MD 1669)

    CERN Document Server

    Gorzawski, Arkadiusz; Ponce, Laurette; Salvachua Ferrando, Belen Maria; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    A significant fraction of the LHC luminosity ($\\sim$30\\% in 2016) is lost due to the presence (and necessity) of the crossing angles at the IPs. At the LHC the crossing angle is typically set to a value that provides sufficient separation of the beams at the start of fills for the peak bunch intensities. As the bunch intensity decays during a fill, it is possible to reduce the crossing angle and recover some luminosity. A smooth crossing angle reduction procedure must be developed to take advantage of this option during stable beam operation. During this MD a smooth procedure for luminosity leveling with crossing angle was tested. It was demonstrated that the orbit was well controlled, beam losses were low and the offset leveled experiments ALICE and LHCb were not affected by crossing angle leveling in ATLAS and CMS.

  7. A single-layer wide-angle negative-index metamaterial at visible frequencies

    Science.gov (United States)

    Burgos, Stanley P.; de Waele, Rene; Polman, Albert; Atwater, Harry A.

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50∘ angular range, yielding a wide-angle NIM at visible frequencies.

  8. Development of Human Posture Simulation Method for Assessing Posture Angles and Spinal Loads

    Science.gov (United States)

    Lu, Ming-Lun; Waters, Thomas; Werren, Dwight

    2015-01-01

    Video-based posture analysis employing a biomechanical model is gaining a growing popularity for ergonomic assessments. A human posture simulation method of estimating multiple body postural angles and spinal loads from a video record was developed to expedite ergonomic assessments. The method was evaluated by a repeated measures study design with three trunk flexion levels, two lift asymmetry levels, three viewing angles and three trial repetitions as experimental factors. The study comprised two phases evaluating the accuracy of simulating self and other people’s lifting posture via a proxy of a computer-generated humanoid. The mean values of the accuracy of simulating self and humanoid postures were 12° and 15°, respectively. The repeatability of the method for the same lifting condition was excellent (~2°). The least simulation error was associated with side viewing angle. The estimated back compressive force and moment, calculated by a three dimensional biomechanical model, exhibited a range of 5% underestimation. The posture simulation method enables researchers to simultaneously quantify body posture angles and spinal loading variables with accuracy and precision comparable to on-screen posture matching methods. PMID:26361435

  9. Numerical study of effect of pitch angle on performance characteristics of a HAWT

    Directory of Open Access Journals (Sweden)

    Sudhamshu A.R.

    2016-03-01

    Full Text Available Wind energy is one of the clean renewable forms of energy that can handle the existing global fossil fuel crisis. Although it contributes to 2.5% of the global electricity demand, with diminishing fossil fuel sources, it is important that wind energy is harnessed to a greater extent to meet the energy crisis and problem of pollution. The present work involves study of effect of pitch angle on the performance of a horizontal axis wind turbine (HAWT, NREL Phase VI. The wind velocities considered for the study are 7, 15.1 and 25.1 m/s. The simulations are performed using a commercial CFD code Fluent. A frozen rotor model is used for simulation, wherein the governing equations are solved in the moving frame of reference rotating with the rotor speed. The SST k-ω turbulence model has been used. It is seen that the thrust increases with increase in wind velocity, and decreases with increase in pitch angle. For a given wind velocity, there is an optimum pitch angle where the power generated by the turbine is maximum. The observed effect of pitch angle on the power produced has been correlated to the stall characteristics of the airfoil blade.

  10. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.

    Science.gov (United States)

    Gibson, W; Campbell, A; Allison, G

    2013-09-01

    Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Focusing, imaging, and ATR for the Gotcha 2008 wide angle SAR collection

    Science.gov (United States)

    Gianelli, Christopher D.; Xu, Luzhou

    2013-05-01

    The following work discusses IAA's approach to tackling the wide angle, circular spotlight, synthetic aperture radar (SAR) problem from the 2008 Gotcha wide angle SAR data set, which is publicly released, with unlimited distribution. This data set comes with a MATLAB image formation routine and attendant graphical user inter- face (GUI). We begin by introducing a simple approach to focusing the collected phase history data that utilizes point targets (quadrahedral targets) present in the scene. Two SAR imaging algorithms are then presented, namely, the data-independent backprojection (BP) algorithm and the data-adaptive sparse learning via itera- tive minimization (SLIM) algorithm. These imaging approaches are compared using the 2008 Gotcha wide angle SAR data to perform both a clutter discrimination experiment, as well as an automatic target recognition (ATR) experiment. The ATR system is composed of a target pose and target center estimation preprocessing system, and includes a novel target feature for the final classification stage. Empirical results obtained by applying the focusing approach and imaging algorithms to the 2008 Gotcha wide angle SAR data set are presented and described. The results presented highlight the benefit of applying the SLIM algorithm over its data-independent counterpart, as well as the utility of the novel target feature.

  12. Vertical cross-spectral phases in neutral atmospheric flow

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2012-01-01

    The cross-spectral phases between velocity components at two heights are analyzed from observations at the Hovsore test site and from the field experiments under the Cooperative Atmosphere-Surface Exchange Study in 1999. These phases represent the degree to which turbulence sensed at one height...... leads (or lags) in time the turbulence sensed at the other height. The phase angle of the cross-wind component is observed to be significantly greater than the phase for the along-wind component, which in turn is greater than the phase for the vertical component. The cross-wind and along-wind phases...... increase with stream-wise wavenumber and vertical separation distance, but there is no significant change in the phase angle of vertical velocity, which remains close to zero. The phases are also calculated using a rapid distortion theory model and large-eddy simulation. The results from the models show...

  13. ASSESSMENT OF LENS THICKNESS IN ANGLE CLOSURE DISEASE

    Directory of Open Access Journals (Sweden)

    Nishat Sultana Khayoom

    2016-08-01

    Full Text Available BACKGROUND Anterior chamber depth and lens thickness have been considered as important biometric determinants in primary angle-closure glaucoma. Patients with primary narrow angle may be classified as a primary angle closure suspect (PACS, or as having primary angle closure (PAC or primary angle closure glaucoma (PACG. 23.9% of patients with primary angle closure disease are in India, which highlights the importance of understanding the disease, its natural history, and its underlying pathophysiology, so that we may try to establish effective methods of treatment and preventative measures to delay, or even arrest, disease progression, thereby reducing visual morbidity. AIM To determine the lens thickness using A-scan biometry and its significance in various stages of angle closure disease. MATERIALS AND METHODS Patients attending outpatient department at Minto Ophthalmic Hospital between October 2013 to May 2015 were screened for angle closure disease and subsequently evaluated at glaucoma department. In our study, lens thickness showed a direct correlation with shallowing of the anterior chamber by determining the LT/ ACD ratio. A decrease in anterior chamber depth is proportional to the narrowing of the angle which contributes to the progression of the angle closure disease from just apposition to occlusion enhancing the risk for optic nerve damage and visual field loss. Hence, if the lens thickness values are assessed earlier in the disease process, appropriate intervention can be planned. CONCLUSION Determination of lens changes along with anterior chamber depth and axial length morphometrically can aid in early detection of angle closure. The role of lens extraction for PACG is a subject of increased interest. Lens extraction promotes the benefits of anatomical opening of the angle, IOP reduction and improved vision. This potential intervention may be one among the armamentarium of approaches for PACG. Among the current treatment modalities

  14. Separation of aqueous two-phase polymer systems in microgravity

    Science.gov (United States)

    Vanalstine, J. M.; Harris, J. M.; Synder, S.; Curreri, P. A.; Bamberger, S. B.; Brooks, D. E.

    1984-01-01

    Phase separation of polymer systems in microgravity is studied in aircraft flights to prepare shuttle experiments. Short duration (20 sec) experiments demonstrate that phase separation proceeds rapidly in low gravity despite appreciable phase viscosities and low liquid interfacial tensions (i.e., 50 cP, 10 micro N/m). Ostwald ripening does not appear to be a satisfactory model for the phase separation mechanism. Polymer coated surfaces are evaluated as a means to localize phases separated in low gravity. Contact angle measurements demonstrate that covalently coupling dextran or PEG to glass drastically alters the 1-g wall wetting behavior of the phases in dextran-PEG two phase systems.

  15. Extension of the GPS satellite antenna patterns to nadir angles beyond 14°

    Science.gov (United States)

    Jaeggi, A.; Dilssner, F.; Schmid, R.; Dach, R.; Springer, T.; Bock, H.; Steigenberger, P.; Andres, Y.; Enderle, W.

    2012-04-01

    The absolute phase center model igs08.atx adopted by the International GNSS Service (IGS) in 2011 is based on robot calibrations for more than 200 terrestrial GNSS receiver antennas and consistent correction values for the GNSS transmitter antennas estimated from tracking data of the global IGS ground network. As the calibration of the satellite antennas is solely based on terrestrial measurements, the estimation of their phase patterns is limited to a nadir angle of 14°. This is not sufficient for the analysis of spaceborne GPS data collected by low Earth orbiting (LEO) satellites that record - depending on the missions' orbital altitude - observations at nadir angles of up to 17°. We use GPS tracking data from the LEO missions Jason-1/2, MetOp-A, GRACE, and GOCE to extend the IGS satellite antenna patterns to nadir angles beyond 14° using different processing strategies and GNSS software packages (BERNESE, NAPEOS). In order to achieve estimates that are consistent with the PCVs currently used within the IGS, GPS satellite orbits and clocks are fixed to reprocessed solutions obtained by adopting the IGS conventional values from igs08.atx. Due to significant near-field multipath effects arising in the LEO spacecraft environment, it is necessary to solve for GPS (nadir-dependent only) and LEO (azimuth- and elevation-dependent) antenna patterns simultaneously. We compare and combine the results obtained with both software packages and derive the PCV extension proposed for igs08.atx.

  16. Antibody elbow angles are influenced by their light chain class

    Energy Technology Data Exchange (ETDEWEB)

    Stanfield, R; Zemla, A; Wilson, I; Rupp, B

    2006-01-12

    We have examined the elbow angles for 365 different Fab fragments, and observe that Fabs with lambda light chains have adopted a wider range of elbow angles than their kappa-chain counterparts, and that the lambda light chain Fabs are frequently found with very large (>195{sup o}) elbow angles. This apparent hyperflexibility of lambda-chain Fabs may be due to an insertion in their switch region, which is one residue longer than in kappa chains, with glycine occurring most frequently at the insertion position. A new, web-based computer program that was used to calculate the Fab elbow angles is also described.

  17. Old and new in exploring the anterior chamber angle

    Science.gov (United States)

    Raluca, Moisescu; Mircea, Filip; Andrei, Filip; Carmen, Dragne; Miruna, Nicolae; Grigorios, Triantafyllidis; Ileana, Ungureanu

    2015-01-01

    Angle-closure glaucoma includes a number of entities with closed angle, elevated intraocular pressure, in association with optic nerve damage and visual field defects as common markers. These entities are characterized by irido-trabecular apposition, irido-trabecular synechiae or both. The angle configuration must be systematically checked at least one time in patients presenting with raised intraocular pressure or glaucoma. Gonioscopy represented for a long time the gold standard for clinically assessing anterior chamber angle structures and their configuration. However, the interpretation of gonio-scopic findings is subjective and only semiquantitative. With the development of new imaging techniques of the anterior segment, new analysis methods have also emerged. Ultrabiomicroscopy was the first method of analyzing the anterior segment and is still the only imaging technique for all anterior segment structures (especially the ciliary body). Another method is optical coherence tomography, a non-contact technique by which angle configuration can be assessed in a more rapid and less invasive manner. Recently developed Pentacam technology could represent in the near future a more quantitative, rapid and non-invasive screening tool which could allow early detection of angle closure glaucoma and narrow angle configurations by measuring a set of anterior chamber parameters. List of abbreviations: ACG –angle closure glaucoma, ASOCT-anterior segment optical coherence tomography UMB- ultrasound biomicroscopy (ultrabiomicroscopy), PAS-posterior angle synechiae ACD-anterior chamber depth, ACV-anterior chamber volume, PLI-periphery laser iridotomy PMID:29450309

  18. Angle Stability Analysis for Voltage-Controlled Converters

    DEFF Research Database (Denmark)

    Lin, Hengwei; Jia, Chenxi; Guerrero, Josep M.

    2017-01-01

    Power electronics based voltage source converters (VSCs) keep increasing in modern electrical systems. As a branch of stability problems, angle stability is significant for an electrical system. Based on small disturbance analysis and time scale decomposition perspective, this paper proposes...... a criterion to analyze the quasi-steady angle stability and the direct current (DC) side stability for VSCs. The operating limit and the angle instability mechanism are revealed, which is generally applicable to the voltage-controlled converters. During the analysis, the influence of the parameters on angle...

  19. Tachometer Derived From Brushless Shaft-Angle Resolver

    Science.gov (United States)

    Howard, David E.; Smith, Dennis A.

    1995-01-01

    Tachometer circuit operates in conjunction with brushless shaft-angle resolver. By performing sequence of straightforward mathematical operations on resolver signals and utilizing simple trigonometric identity, generates voltage proportional to rate of rotation of shaft. One advantage is use of brushless shaft-angle resolver as main source of rate signal: no brushes to wear out, no brush noise, and brushless resolvers have proven robustness. No switching of signals to generate noise. Another advantage, shaft-angle resolver used as shaft-angle sensor, tachometer input obtained without adding another sensor. Present circuit reduces overall size, weight, and cost of tachometer.

  20. Escape angles in bulk chi((2)) soliton interactions

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter

    2002-01-01

    We develop a theory for nonplanar interaction between two identical type I spatial solitons propagating at opposite, but arbitrary transverse angles in quadratic nonlinear (or so-called chi((2))) bulk, media. We predict quantitatively the outwards escape angle, below which the solitons turn around...... and collide, and above which they continue to move-away from each other. For in-plane interaction, the theory allows prediction of the Outcome of a collision through the inwards escape angle, i.e., whether the solitons fuse or cross. We find an analytical expression determining the inwards escape angle using...

  1. Characterizing the combinatorial beam angle selection problem

    Science.gov (United States)

    Bangert, Mark; Ziegenhein, Peter; Oelfke, Uwe

    2012-10-01

    The beam angle selection (BAS) problem in intensity-modulated radiation therapy is often interpreted as a combinatorial optimization problem, i.e. finding the best combination of η beams in a discrete set of candidate beams. It is well established that the combinatorial BAS problem may be solved efficiently with metaheuristics such as simulated annealing or genetic algorithms. However, the underlying parameters of the optimization process, such as the inclusion of non-coplanar candidate beams, the angular resolution in the space of candidate beams, and the number of evaluated beam ensembles as well as the relative performance of different metaheuristics have not yet been systematically investigated. We study these open questions in a meta-analysis of four strategies for combinatorial optimization in order to provide a reference for future research related to the BAS problem in intensity-modulated radiation therapy treatment planning. We introduce a high-performance inverse planning engine for BAS. It performs a full fluence optimization for ≈3600 treatment plans per hour while handling up to 50 GB of dose influence data (≈1400 candidate beams). For three head and neck patients, we compare the relative performance of a genetic, a cross-entropy, a simulated annealing and a naive iterative algorithm. The selection of ensembles with 5, 7, 9 and 11 beams considering either only coplanar or all feasible candidate beams is studied for an angular resolution of 5°, 10°, 15° and 20° in the space of candidate beams. The impact of different convergence criteria is investigated in comparison to a fixed termination after the evaluation of 10 000 beam ensembles. In total, our simulations comprise a full fluence optimization for about 3000 000 treatment plans. All four combinatorial BAS strategies yield significant improvements of the objective function value and of the corresponding dose distributions compared to standard beam configurations with equi

  2. RF waveguide phase-directed power combiners

    Science.gov (United States)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.

    2017-05-02

    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  3. Effect of nozzle outlet angle on flow and temperature field in a slab continuous casting mould

    Directory of Open Access Journals (Sweden)

    L. Sowa

    2011-04-01

    Full Text Available The mathematical and numerical simulation model of the growth of the solid metal phase within a continuous cast slab is presented in thispaper. The problem was treated as a complex one. The velocity fields are obtained by solving the momentum equations and the continuityequation, whereas the thermal fields are calculated by solving the conduction equation with the convection term. One takes intoconsideration in the mathematical model the changes of thermophysical parameters depending on the temperature and the solid phasevolume fractions in the mushy zone. The problem was solved by the finite element method. A numerical simulation of the cast slabsolidification process was made for different cases of continuous casting mould pouring by molten metal. The effect of nozzle outlet angle on the velocity fields in liquid phase and the solid phase growth kinetics of the cast slab were investigated, because these magnitudes have essential an influence on high-quality of a continuous steel cast slab.

  4. Wigner functions for angle and orbital angular momentum. Operators and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, Hans A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2017-02-15

    Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S{sup 1} x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.

  5. Method for estimating interfacial tensions and contact angles from sessile and pendant drop shapes

    Energy Technology Data Exchange (ETDEWEB)

    Huh, C.; Reed, R.L.

    1983-02-01

    Optimal estimation techniques were developed for measurement of interfacial tensions and contact angles for multiphase microemulsion systems of the following types: (1) lower-phase microemulsion in equilibrium with excess oil, (2) upper-phase microemulsion in equilbrium with excess brine, and (3) middle-phase microemulsion in equilibrium with excess brine and excess oil. The surfactant was the monoethanol amine salt of dodecyl o-xylene sulfonate mixed with a cosolvent of t-amyl alcohol in the ratio 63/67 by vol. The oil was a mixture of 90% paraffinic oil (Isopar M) and 10% heavy aromatic naphtha (by volume), and the brine was various concentrations of NaCl in distilled water. The method is applied to sessile drops, bubbles, and pendant configurations. 21 referernces.

  6. Normal Q-angle in an adult Nigerian population.

    Science.gov (United States)

    Omololu, Bade B; Ogunlade, Olusegun S; Gopaldasani, Vinod K

    2009-08-01

    The Q-angle has been studied among the adult Caucasian population with the establishment of reference values. Scientists are beginning to accept the concept of different human races. Physical variability exists between various African ethnic groups and Caucasians as exemplified by differences in anatomic features such as a flat nose compared with a pointed nose, wide rather than narrow faces, and straight rather than curly hair. Therefore, we cannot assume the same Q-angle values will be applicable to Africans and Caucasians. We established a baseline reference value for normal Q-angles among asymptomatic Nigerian adults. The Q-angles of the left and right knees were measured using a goniometer in 477 Nigerian adults (354 males; 123 females) in the supine and standing positions. The mean Q-angles for men were 10.7 degrees +/- 2.2 degrees in the supine position and 12.3 degrees +/- 2.2 degrees in the standing position in the right knee. The left knee Q-angles in men were 10.5 degrees +/- 2.6 degrees in the supine position and 11.7 degrees +/- 2.8 degrees in the standing position. In women, the mean Q-angles for the right knee were 21 degrees +/- 4.8 degrees in the supine position and 22.8 degrees +/- 4.7 degrees in the standing position. The mean Q-angles for the left knee in women were 20.9 degrees +/- 4.6 degrees in the supine position and 22.7 degrees +/- 4.6 degrees in the standing position. We observed a difference in Q-angles in the supine and standing positions for all participants. The Q-angle in adult Nigerian men is comparable to that of adult Caucasian men, but the Q-angle of Nigerian women is greater than that of their Caucasian counterparts.

  7. Plateau iris in Japanese patients with primary angle closure and primary angle closure glaucoma.

    Science.gov (United States)

    Mizoguchi, Takanori; Ozaki, Mineo; Wakiyama, Harumi; Ogino, Nobuchika

    2015-01-01

    To determine the prevalence of plateau iris in Japanese patients with primary angle closure (PAC) and primary angle closure glaucoma (PACG) and analyze the biometric parameters in patients with plateau iris using ultrasound biomicroscopy (UBM). In this cross-sectional observational study, subjects aged >50 years with PAC and PACG who had previously undergone a patent laser peripheral iridotomy underwent UBM in one eye. UBM images were qualitatively analyzed using standardized criteria. Plateau iris in a quadrant was defined by anteriorly directed ciliary body, absent ciliary sulcus, steep iris root from its point of insertion followed by a downward angulation, flat iris plane, and irido-angle contact. At least two quadrants had to fulfill these UBM criteria for an eye to be classified as having plateau iris. A-scan biometry was used to measure anterior segment parameters. Ninety-one subjects with PAC (58 subjects) or PACG (33 subjects) and 68 normal controls were recruited. The mean (standard deviation) ages of PAC and PACG patients and normal controls were 73.5 (6.2) and 72.6 (7.3), respectively. Based on UBM criteria, plateau iris was found in 16 eyes (17.6%) of 91 eyes. In these 16 eyes, quadrant-wise analysis showed ten eyes (62.5%) had plateau iris in two quadrants; four eyes (25%) had plateau iris in three quadrants; and two eyes (12.5%) had plateau iris in four quadrants. Anterior chamber depth, lens thickness, axial length, lens position, and relative lens position were not statistically significant between the group having plateau iris and that not having plateau iris, respectively. Approximately 20% of Japanese subjects with PAC and PACG with a patent laser peripheral iridotomy were found to have plateau iris on UBM. No morphological difference was noted in the anterior segment of the eye between those with or without plateau iris.

  8. Frequency and 2D Angle Estimation Based on a Sparse Uniform Array of Electromagnetic Vector Sensors

    Directory of Open Access Journals (Sweden)

    Kwong Sam

    2006-01-01

    Full Text Available We present an ESPRIT-based algorithm that yields extended-aperture two-dimensional (2D arrival angle and carrier frequency estimates with a sparse uniform array of electromagnetic vector sensors. The ESPRIT-based frequency estimates are first achieved by using the temporal invariance structure out of the two time-delayed sets of data collected from vector sensor array. Each incident source's coarse direction of arrival (DOA estimation is then obtained through the Poynting vector estimates (using a vector cross-product estimator. The frequency and coarse angle estimate results are used jointly to disambiguate the cyclic phase ambiguities in ESPRIT's eigenvalues when the intervector sensor spacing exceeds a half wavelength. Monte Carlo simulation results verified the effectiveness of the proposed method.

  9. Optimization of MUSIC algorithm for angle of arrival estimation in wireless communications

    Science.gov (United States)

    Mohanna, Mahmoud; Rabeh, Mohamed L.; Zieur, Emad M.; Hekala, Sherif

    2013-06-01

    Smart Antennas are phased array antennas with smart signal processing algorithms used to identify the angle of arrival (AOA) of the signal, which can be used subsequently to calculate beam-forming vectors needed to track and locate the intended mobile set. This concept is called space division multiple access (SDMA) which enables a higher capacity and data rates for all modern wireless communications by focusing the antenna beam on the intended user. This enables wide coverage and very low interference and also adding new applications like location based services. MUltiple SIgnal Classification (MUSIC) is a well-known high resolution eigen structure method, extensively used to estimate the number of signals, and their angles of arrival. In this paper we investigate the possibility of optimization of some key parameters of the MUSIC algorithm that can enhance the performance of the estimation process. This leads to an increased accuracy in determining the directions of multiple users and beam-forming (Gross, 2005).

  10. Characterization of Delaminations and Transverse Matrix Cracks in Composite Laminates Using Multiple-Angle Ultrasonic Inspection

    Science.gov (United States)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2012-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  11. Synthetic aperture double exposure digital holographic interferometry for wide angle measurement and monitoring of mechanical displacements

    Science.gov (United States)

    Kujawinska, M.; Makowski, P.; Finke, G.; Zak, J.; Józwik, M.; Kozacki, T.

    2015-08-01

    A novel approach for wide angle registration and display of double exposure digital holograms of 3D objects under static or step-wise load is presented. The registration setup concept combines digital Fourier holography with synthetic aperture (SA) technique, which is equivalent to usage of a wide angle, spherically curved detector. The coherent object wavefields extracted from a pair of acquisitions collected in the synthetic aperture double exposure digital holographic interferometry scheme (SA DEDH) are utilized as the input for two different scenarios of investigation, which include (i) numerical determination of 2D phase difference fringes representing deformation of an object and (ii) physical displaying of a 3D image resulting from interference of two object (slightly different) wavefronts registered at the SA double exposure hologram. The capture and display processes are analyzed and implemented. The applicability of both numerical and experimental approach to SA DEDH for testing engineering objects is discussed.

  12. Measurement of the analysing power in proton–proton elastic scattering at small angles

    Directory of Open Access Journals (Sweden)

    Z. Bagdasarian

    2014-12-01

    Full Text Available The proton analysing power in p→p elastic scattering has been measured at small angles at COSY-ANKE at 796 MeV and five other beam energies between 1.6 and 2.4 GeV using a polarised proton beam. The asymmetries obtained by detecting the fast proton in the ANKE forward detector or the slow recoil proton in a silicon tracking telescope are completely consistent. Although the analysing power results agree well with the many published data at 796 MeV, and also with the most recent partial wave solution at this energy, the ANKE data at the higher energies lie well above the predictions of this solution at small angles. An updated phase shift analysis that uses the ANKE results together with the World data leads to a much better description of these new measurements.

  13. Hardware Implementation of Producing Variable Conduction Angles of a Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Memon

    2012-10-01

    Full Text Available In this paper the hardware implementation of producing the voltage pulses of variable duty cycle which are applied at the gate driver terminal of the switching devices used in the converter of a switched reluctance motor have been presented. These voltage gated pulses which corresponds to phase excitation sequence of the motor are necessary to run the motor. The proposed counter was tested in the laboratory with the 8/6 poles drive, and operation of the machine at variable conduction angles was found to be excellent. The implemented method of producing the variable conduction angles is simple, cheaper and easy to implement and does not require prior knowledge of programming.

  14. Characterization of delaminations and transverse matrix cracks in composite laminates using multiple-angle ultrasonic inspection

    Science.gov (United States)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2013-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar-angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  15. Plateau iris in Japanese patients with primary angle closure and primary angle closure glaucoma

    Directory of Open Access Journals (Sweden)

    Mizoguchi T

    2015-06-01

    Full Text Available Takanori Mizoguchi,1 Mineo Ozaki,2,3 Harumi Wakiyama,1,4 Nobuchika Ogino1,51Mizoguchi Eye Clinic, Nagasaki, Japan; 2Ozaki Eye Clinic Miyazaki, Japan; 3Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan; 4The Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan; 5Nishigaki Eye Clinic, Nagoya, JapanPurpose: To determine the prevalence of plateau iris in Japanese patients with primary angle closure (PAC and primary angle closure glaucoma (PACG and analyze the biometric parameters in patients with plateau iris using ultrasound biomicroscopy (UBM.Methods: In this cross-sectional observational study, subjects aged >50 years with PAC and PACG who had previously undergone a patent laser peripheral iridotomy underwent UBM in one eye. UBM images were qualitatively analyzed using standardized criteria. Plateau iris in a quadrant was defined by anteriorly directed ciliary body, absent ciliary sulcus, steep iris root from its point of insertion followed by a downward angulation, flat iris plane, and irido-angle contact. At least two quadrants had to fulfill these UBM criteria for an eye to be classified as having plateau iris. A-scan biometry was used to measure anterior segment parameters.Results: Ninety-one subjects with PAC (58 subjects or PACG (33 subjects and 68 normal controls were recruited. The mean (standard deviation ages of PAC and PACG patients and normal controls were 73.5 (6.2 and 72.6 (7.3, respectively. Based on UBM criteria, plateau iris was found in 16 eyes (17.6% of 91 eyes. In these 16 eyes, quadrant-wise analysis showed ten eyes (62.5% had plateau iris in two quadrants; four eyes (25% had plateau iris in three quadrants; and two eyes (12.5% had plateau iris in four quadrants. Anterior chamber depth, lens thickness, axial length, lens position, and relative lens position were not statistically significant between the group having plateau iris and that not having plateau iris

  16. The Relation Between Sacral Angle and Vertical Angle of Sacral Curvature and Lumbar Disc Degeneration

    Science.gov (United States)

    Ghasemi, Ahmad; Haddadi, Kaveh; Khoshakhlagh, Mohammad; Ganjeh, Hamid Reza

    2016-01-01

    Abstract The purpose of this study is to determine the reliability and validity of a goniometric measurement of the vertical angle of the sacrum and sacral angle (SA), and their relationships to lumbar degeneration. A herniated lumbar disc is one of the most frequent medical issues. Investigators in a number of studies have reported associated risk factors for prevalent disc degeneration. Atypical lumbosacral angles and curvature are thought to contribute to the degradation of the spine by many researchers. This study analyzed 360 patients referred to our clinic from 2013 to 2015 due to low back pain. A cross-sectional case–control study was designed in order to compare the sagittal alignment of the lumbosacral area in 3 groups of patients suffering from LBP. A total 120 patients were in a control group with a normal lumbar magnetic resonance imaging (MRI), 120 patients had lumbar disk herniation (LDH), and 120 patients had spinal stenosis. From the sagittal plan of lumbar MRI, SA and vertical angle of sacral curvature (VASC) were determined and then analyzed. The means of VASC in these groups were: 38.98 (SD: 6.36 ± 0.58), 40.89 (SD: 7.69 ± 0.69), and 40.54 (SD: 7.13 ± 0.92), respectively (P = 0.089). Moreover, studies of SA in 3 groups showed that the means of SA were: 39.30 (SD: 6.69 ± 0.63), 40.52 (SD: 7.47 ± 0.65), and 35.63 (SD: 6.07 ± 0.79), respectively. Relation between SA and spinal stenosis was just statistically significant (P ≤ 0.05). One significant limitation of our study is the lack of standing MRI for increased accuracy of measurement. However, we were reluctant to give patients needless exposure to radiation from conventional X-ray, and instead used MRI scans. We did not find any significant correlation between the VASC and LDH in lumbar MRI. Also, SA is not an independent risk factor for LDH in men and women. We suggested that there are several biomechanical factors involved in LDH. PMID:26871821

  17. Accelerated iterative beam angle selection in IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, Mark, E-mail: m.bangert@dkfz.de [Department of Medical Physics in Radiation Oncology, German Cancer Research Center—DKFZ, Im Neuenheimer Feld 280, Heidelberg D-69120 (Germany); Unkelbach, Jan [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2016-03-15

    Purpose: Iterative methods for beam angle selection (BAS) for intensity-modulated radiation therapy (IMRT) planning sequentially construct a beneficial ensemble of beam directions. In a naïve implementation, the nth beam is selected by adding beam orientations one-by-one from a discrete set of candidates to an existing ensemble of (n − 1) beams. The best beam orientation is identified in a time consuming process by solving the fluence map optimization (FMO) problem for every candidate beam and selecting the beam that yields the largest improvement to the objective function value. This paper evaluates two alternative methods to accelerate iterative BAS based on surrogates for the FMO objective function value. Methods: We suggest to select candidate beams not based on the FMO objective function value after convergence but (1) based on the objective function value after five FMO iterations of a gradient based algorithm and (2) based on a projected gradient of the FMO problem in the first iteration. The performance of the objective function surrogates is evaluated based on the resulting objective function values and dose statistics in a treatment planning study comprising three intracranial, three pancreas, and three prostate cases. Furthermore, iterative BAS is evaluated for an application in which a small number of noncoplanar beams complement a set of coplanar beam orientations. This scenario is of practical interest as noncoplanar setups may require additional attention of the treatment personnel for every couch rotation. Results: Iterative BAS relying on objective function surrogates yields similar results compared to naïve BAS with regard to the objective function values and dose statistics. At the same time, early stopping of the FMO and using the projected gradient during the first iteration enable reductions in computation time by approximately one to two orders of magnitude. With regard to the clinical delivery of noncoplanar IMRT treatments, we could

  18. Angle-domain common-image gathers from anisotropic Gaussian ...

    Indian Academy of Sciences (India)

    An approach for extracting angle-domain common-image gathers (ADCIGs) from anisotropic Gaussian beam prestack depth migration (GB-PSDM) is presented in this paper. The propagation angle is calculated in the process of migration using the real-value traveltime information of Gaussian beam. Based on the above, ...

  19. Angle-domain common-image gathers from anisotropic Gaussian ...

    Indian Academy of Sciences (India)

    An approach for extracting angle-domain common-image gathers (ADCIGs) from anisotropic Gaussian beam prestack depth migration (GB-PSDM) is presented in this paper. The propagation angle is calcu- lated in the process of migration using the real-value traveltime information of Gaussian beam. Based on the above ...

  20. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero...... balance, unless all terms in the carbon dioxide conservation equation can be precisely estimated....

  1. The extent of visual space inferred from perspective angles.

    Science.gov (United States)

    Erkelens, Casper J

    2015-01-01

    Retinal images are perspective projections of the visual environment. Perspective projections do not explain why we perceive perspective in 3-D space. Analysis of underlying spatial transformations shows that visual space is a perspective transformation of physical space if parallel lines in physical space vanish at finite distance in visual space. Perspective angles, i.e., the angle perceived between parallel lines in physical space, were estimated for rails of a straight railway track. Perspective angles were also estimated from pictures taken from the same point of view. Perspective angles between rails ranged from 27% to 83% of their angular size in the retinal image. Perspective angles prescribe the distance of vanishing points of visual space. All computed distances were shorter than 6 m. The shallow depth of a hypothetical space inferred from perspective angles does not match the depth of visual space, as it is perceived. Incongruity between the perceived shape of a railway line on the one hand and the experienced ratio between width and length of the line on the other hand is huge, but apparently so unobtrusive that it has remained unnoticed. The incompatibility between perspective angles and perceived distances casts doubt on evidence for a curved visual space that has been presented in the literature and was obtained from combining judgments of distances and angles with physical positions.

  2. Measurement of angle kappa and centration in refractive surgery.

    Science.gov (United States)

    Park, Choul Yong; Oh, Sei Yeul; Chuck, Roy S

    2012-07-01

    Consideration of angle kappa is important for correct centration of refractive treatments. Decentered refractive treatment can cause photic phenomena including glare, halo, and deterioration of vision. This review highlights the concept of angle kappa, its measurement and distribution in normal populations, and the methods to compensate for large angle kappa in refractive surgery using laser or intraocular lenses (IOLs). Determination of the treatment center is very important in refractive surgery. Moving the ablation center from the center of the entrance pupil to points near visual axis, such as the corneal light reflex (line of sight) or corneal vertex normal, results in less induction of higher order aberrations (including coma aberration) and either the same or better visual outcomes both in hyperopic and myopic eyes when compared to laser ablation centered on the entrance pupil. Decentration of multifocal IOLs can result in deterioration of postoperative visual function with induction of higher order aberrations. The occurrence of photic phenomena positively correlated with preoperative values of angle kappa. There is a growing body of evidence that emphasizes the consideration of angle kappa in refractive surgery. Ignoring angle kappa may sometimes result in decentered treatment and aggravation of visual symptoms. Compensation for angle kappa is important for optimal correction of refractive error by either laser ablation or IOLs, especially for hyperopes and any eyes with large angle kappa.

  3. determination of determination of optimal tilt angle for maximum

    African Journals Online (AJOL)

    eobe

    The paper analyses the solar radiation data estimated from sunshine hours and ambient temperature to predict the PV energy output at the site. The analysis showed that the best tilt angle for PV energy production is 60 if the module is fixed module is fixed but if adjusted monthly, the best tilt angle for each month will be 300, ...

  4. Contact angle hysteresis: a review of fundamentals and applications

    NARCIS (Netherlands)

    Eral, Burak; 't Mannetje, Dieter; Oh, J.M.

    2013-01-01

    Contact angle hysteresis is an important physical phenomenon. It is omnipresent in nature and also plays a crucial role in various industrial processes. Despite its relevance, there is a lack of consensus on how to incorporate a description of contact angle hysteresis into physical models. To

  5. The impact of contact angle on the biocompatibility of biomaterials

    National Research Council Canada - National Science Library

    Menzies, Kara L; Jones, Lyndon

    2010-01-01

    .... A characteristic that significantly influences this response is that related to surface wettability, which is often determined by measuring the contact angle of the material. This article reviews the impact of contact angle on the biocompatibility of tissue engineering substrates, blood-contacting devices, dental implants, intraocular lenses, and contact lens materials.

  6. Comparison of Primary Open Angle Glaucoma Patients in Rural and ...

    African Journals Online (AJOL)

    NRR width reduced to ≤0.1CDR (between 11 to 1 o'clock or 5 to 7 o'clock). 2 ... 24. TOTAL. 100. 855. 100. 1013. Table 2: POAG - primary open angle glaucoma, POAGS – primary open angle glaucoma suspect, NTG ..... Twenty-four-hour.

  7. Determination of the Optimum Collector Angle for Composite Solar ...

    African Journals Online (AJOL)

    A model for predicting solar radiation available at any given time in the inhabited area in Ilorin was developed. From the equation developed, the optimum tilt angle of the collector due south was carried out. The optimum angle of tilt of the collector and the orientation are dependent on the month of the year and the location ...

  8. Presentation of Primary Open Angle Glaucoma (POAG) at Lions ...

    African Journals Online (AJOL)

    Objective Primary open angle glaucoma (POAG) is the most common type of glaucoma in Africa. We carried out a study to determine the clinical presentation pattern of patients with primary open angle glaucoma (POAG) at a tertiary hospital in Malawi. Design A cross-sectional study. Setting Lions Sight First Eye Hospital—a ...

  9. Evaluation of the normal calcaneal angles in Egyptian population

    African Journals Online (AJOL)

    Fahmy Anwar Shoukry

    2012-02-01

    Feb 1, 2012 ... The importance of the cal- caneal angles in assessing the fractures of calcaneus and planning treatment has been highlighted. Aim: The purpose of this study was to evaluate the normal calcaneal angles in the Egyptian pop- .... ulae groups which increases with osteoporosis and disrupted in comminuted ...

  10. Automated measurement of diagnostic angles for hip dysplasia

    DEFF Research Database (Denmark)

    de Raedt, Sepp; Mechlenburg, I.; Stilling, M.

    2013-01-01

    A fully automatic method for measuring diagnostic angles of hip dysplasia is presented. The method consists of the automatic segmentation of CT images and detection of anatomical landmarks on the femur and acetabulum. The standard angles used in the diagnosis of hip dysplasia are subsequently...

  11. Solar electricity potentials and optimal angles for mounting solar ...

    African Journals Online (AJOL)

    The need for harnessing solar energy using solar panels mounted at optimal inclination angles in the six geopolitical zones of Nigeria is presented. The optimal angle for mounting solar panels as presented by Photovoltaic Geographic Information System (PVGIS) ranges from 11º to 14º in the Southern zone and 13º to 16º ...

  12. Engineering sidewall angles of silica-on-silicon waveguides

    DEFF Research Database (Denmark)

    Haiyan, Ou

    2004-01-01

    Burned photoresist is used as etch mask when producing silica-onsilicon waveguides. The sidewall angle of the optical glass waveguides is engineered by varying photoresist thickness and etch selectivity. The principle for the formation of the angles is introduced and very promising experimental...

  13. Physiological response to angling of Africa's premier freshwater ...

    African Journals Online (AJOL)

    Blood plasma was analysed for glucose, cortisol and lactate concentrations to assess the effects of angling duration, fish size and fish condition. Larger fish were angled for a longer duration. Plasma glucose concentrations decreased with greater lactate concentrations, an indication of the aerobic and anaerobic work done ...

  14. Normal values of knee angle, intercondylar and intermalleolar ...

    African Journals Online (AJOL)

    There is little data on the range of variation of knee angle, intermalleolar and intercondylar distances in African children. Such measurements are needed to assist determining whether a child legs are normal or not. Knee angle intermalleolar and intercondylar distances were measured in 2166 Nigerian children aged one ...

  15. A cephalometric assessment of the nasolabial angle of an adult ...

    African Journals Online (AJOL)

    Objective: One of the most important components of orthodontic diagnosis and treatment planning is an evaluation of the patient's soft tissue profile. An assessment of the nasolabial angle is a vital component of this evaluation. The purpose of this study was to establish norms for the nasolabial angle of an adult Nigerian ...

  16. Centric slide in different Angle's classes of occlusion.

    Science.gov (United States)

    Čimić, Samir; Badel, Tomislav; Šimunković, Sonja Kraljević; Pavičin, Ivana Savić; Ćatić, Amir

    2016-01-01

    The purpose of this study was to test the possible differences in centric slide values between different Angle's classes of occlusion. The study included 98 participants divided into four groups: Angle's class I, Angle's class II, subdivision 1, Angle's class II, subdivision 2 and Angle's class III. All recordings were obtained using an ultrasound jaw tracking device with six degrees of freedom. The distance between the maximum intercuspation (reference position) and the centric occlusion was recorded at the condylar level. Anteroposterior, superoinferior and transversal distance of the centric slide were calculated for each participant, and the data were statistically analyzed (analysis of variance and Newman-Keuls post hoc test). No statistically significant difference was found in the anteroposterior and transversal distance of the centric slide between tested groups, while Angle's class II, subdivision 2 showed smaller vertical amount of the centric slide compared to Angle's class I and class II, subdivision 1. None of the 98 participants showed coincidence of centric occlusion and maximum intercuspation. Our results suggest that coincidence of the maximum intercuspation with the centric occlusion should not be expected. Smaller extent of the vertical distance of the centric slide could be morphological and a functional expression characteristic of the Angle's class II, subdivision 2. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. An assessment of recreational bank angling in the Free State ...

    African Journals Online (AJOL)

    Recreational angling is an important form of utilisation of inland fisheries in South Africa but there is little information on this sector. The objective of this study was to provide an assessment of recreational bank angling in the Free State Province using licence sale and tournament data. During 2013 and 2014, 8 256 and 7 ...

  18. Sample similarity analysis of angles of repose based on experimental results for DEM calibration

    Directory of Open Access Journals (Sweden)

    Tan Yuan

    2017-01-01

    Full Text Available As a fundamental material property, particle-particle friction coefficient is usually calculated based on angle of repose which can be obtained experimentally. In the present study, the bottomless cylinder test was carried out to investigate this friction coefficient of a kind of biomass material, i.e. willow chips. Because of its irregular shape and varying particle size distribution, calculation of the angle becomes less applicable and decisive. In the previous studies only one section of those uneven slopes is chosen in most cases, although standard methods in definition of a representable section are barely found. Hence, we presented an efficient and reliable method from the new technology, 3D scan, which was used to digitize the surface of heaps and generate its point cloud. Then, two tangential lines of any selected section were calculated through the linear least-squares regression (LLSR, such that the left and right angle of repose of a pile could be derived. As the next step, a certain sum of sections were stochastic selected, and calculations were repeated correspondingly in order to achieve sample of angles, which was plotted in Cartesian coordinates as spots diagram. Subsequently, different samples were acquired through various selections of sections. By applying similarities and difference analysis of these samples, the reliability of this proposed method was verified. Phased results provides a realistic criterion to reduce the deviation between experiment and simulation as a result of random selection of a single angle, which will be compared with the simulation results in the future.

  19. Non-destructive microwave evaluation of TBC delamination induced by acute angle laser drilling

    Science.gov (United States)

    Sezer, H. K.; Li, Lin; Wu, Z.; Anderson, B.; Williams, P.

    2007-01-01

    Laser drilling has been applied to the production of cooling holes of various size and angles in the modern aerospace gas turbine components such as turbine blades, nozzle guide vanes, combustion chambers and afterburner. These parts are usually made of heat resistant nickel superalloys. The superalloy substrate is coated with yttria-stabilized zirconia thermal barrier coatings (TBCs) to protect them from reaching excessive temperatures in hot engine environments. Drilling the parts at acute angles to the surface is complicated because (i) multiple layers are being drilled through, (ii) the melt ejection and heat flow patterns around the hole are non-symmetrical and (iii) the drilling distance is greater than when drilling normal to the surface. In a previous investigation by the authors, delamination of TBC was addressed as a main problem of angled drilling and mechanisms involved were discussed. Characterization of delamination cracks was normally performed via metallographic techniques. It involves sectioning the samples using an abrasive cutting machine, grinding with successively finer silicon carbide paper up to the centre of the hole and polishing to allow optical microscopic analysis of the cracks. However, clamping and sectioning process of thermal-spray-coated workpieces can introduce cracks in brittle coatings due to the drag of the cut-off wheels. Hence, it is not possible to decide if the delamination is caused as a result of post-process sectioning or laser drilling. In this paper, a microwave non-destructive testing (NDT) technique is employed to evaluate the integrity of TBC after acute angle laser drilling. An Agilent 8510 XF network analyser operating over the frequency range of 45 MHz to 110 GHz was used to measure the amplitude and phase variations of scattered waves. The results significantly indicated the existence of delamination of 1-1.5 mm long at the TBC/substrate interface on the leading edge part of an acute-angled hole laser drilled

  20. Relationship Between Hand Contact Angle and Shoulder Loading During Manual Wheelchair Propulsion by Individuals with Paraplegia.

    Science.gov (United States)

    Requejo, Philip Santos; Mulroy, Sara J; Ruparel, Puja; Hatchett, Patricia E; Haubert, Lisa Lighthall; Eberly, Valerie J; Gronley, JoAnne K

    2015-01-01

    Shoulder loading during manual wheelchair propulsion (WCP) contributes to the development of shoulder pain in individuals with spinal cord injury (SCI). To use regression analysis to investigate the relationships between the hand contact angle (location of the hand on the pushrim at initial contact and release during the push phase of the WCP cycle) with propulsion characteristics, pushrim forces, and shoulder kinetics during WCP in individuals with paraplegia. Biomechanical data were collected from 222 individuals (198 men and 24 women) with paraplegia from SCI during WCP on a stationary ergometer at a self-selected speed. The average age of participants was 34.7 years (±9.3), mean time since SCI was 9.3 years (±6.1), and average body weight was 74.4 kg (±15.9). The majority (n = 127; 56%) of participants had lower level paraplegia (T8 to L5) and 95 (42%) had high paraplegia (T2 to T7). Increased push arc (mean = 75.3°) was associated with greater velocity (R = 0.384, P < .001) and cycle distance (R = 0.658, P < .001) and reduced cadence (R = -0.419, P <.001). Initial contact angle and hand release angles were equally associated with cycle distance and cadence, whereas a more anterior release angle was associated with greater velocity (R = 0.372, P < .001). When controlling for body weight, a more posterior initial contact angle was associated with greater posterior shoulder net joint force (R = 0.229, P = .001) and greater flexor net joint moment (R = 0.204, P = .002), whereas a more anterior hand release angle was significantly associated with increased vertical (R = 0.270, P < .001) and greater lateral (R = .293, P < .001) pushrim forces; greater shoulder net joint forces in all 3 planes - posterior (R = 0.164, P = .015), superior (R = 0.176, P = .009), and medial (R = 0.284, P < .001); and greater external rotator (R = 0.176, P = .009) and adductor (R = 0.259, P = .001) net joint moments. Current clinical practice guidelines recommend using long, smooth

  1. Does Sacrococcygeal Angle Play a Role on Pilonidal Sinus Etiology?

    Directory of Open Access Journals (Sweden)

    Ramazan Eryilmaz

    2015-01-01

    Full Text Available The predisposing factors for the development of sacrococcygeal pilonidal disease (SPD still remain undetermined. Here, we investigate the sacrococcygeal angle as a possible predisposing factor for the development of disease. Consecutive male patients admitted to our clinic with the diagnosis of SPD were included. Sex, age and BMI matched healthy controls without SPD were enrolled to the study. The predefined sacrococcygeal angles of patients and controls were measured on lateral pelvic radiographs by a single experienced radiologist. Thirty patients were included in each group. Sacrococcygeal angles of patients and control group were measured as 37.3 ± 14.5 and 36.81 ± 10.23 in patients and controls, respectively. The difference with respect to sacrococcygeal angle was not statistically significant between two groups. Sacrococcygeal angle which is the main skeletal determinant of intergluteal sulcus is not a predisposing factor for the development of sacrococcygeal pilonidal disease.

  2. Trigonometry of the quantum state space, geometric phases and relative phases

    CERN Document Server

    Ortega, R

    2003-01-01

    A complete set of invariants for three states in the quantum space of states P is obtained together with a complete set of relationships linking them. This is done in a way that preserves the self-duality of P and leads to a clear geometric description of invariants (distances, lateral phases; Hermitian angles, angular phases; and two purely triangular phases). Some of these invariants appear here for the first time. Symplectic area (and hence the triangle geometric phase) is proportional to a 'mixed phase excess', thus extending to P the relation 'area-angular excess' in the real sphere. The new triangle lateral phases provide a description, intrinsic to P, of relative phases in a superposition. This approach also provides closed expressions for the triangle holonomy associated with the usual Fubini-Study metric in P, as well as many other expressions for similar 'loop' operators along the triangle, including closed and exact expressions for the triangle Aharonov-Anandan geometric phase.

  3. Venus Phasing.

    Science.gov (United States)

    Riddle, Bob

    1997-01-01

    Presents a science activity designed to introduce students to the geocentric and heliocentric models of the universe. Helps students discover why phase changes on Venus knocked Earth out of the center of the universe. (DKM)

  4. Deep learning methods for protein torsion angle prediction.

    Science.gov (United States)

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  5. [Diagnostic value of Blumensaat angle for anterior cruciate ligament injury].

    Science.gov (United States)

    Cheng, Xiang-Yun; Feng, Jiang-Feng; Lu, Yan-Hui; Zhao, Yong-Liang; Yang, Zi-Quan

    2017-08-25

    The receiver operator characteristic(ROC) curve was used to determine the best Blumensaat angle for the diagnosis of anterior cruciate ligament injury, so as to objectively evaluate the diagnostic value of Blumensaat angle for anterior cruciate ligament injury. Total 167 patients who had knee arthroscopic treatment in a hospital from January 2015 to January 2016 were retrospectively studied, and the patients' age, gender, left and right limb condition were recorded. The patients were divided into two groups according to Blumensaat angle measured on the MRI: group A(Blumensaat angle0°). The ROC curve was drawn from the statistical data of the group B to get the best critical value of the anterior cruciate ligament injury when the Blumensaat angle was more than 0°. According to the best critical value obtained by ROC curve, the coincidence rate of the total sample was obtained. There were no significant differences in patients' age, gender, and affected limbs. There were 51 patients in group A, in which 49 patients were diagnosed as anterior cruciate injury under arthroscopy(gold standard for diagnosis of anterior cruciate ligament injury), and 2 patients were diagnosed as no anterior cruciate injury under arthroscopy. When the Blumensaat angle was=15°, the probability of anterior cruciate ligament injury was greater. When the Blumensaat angle was 0° to 15°, the anterior cruciate ligament was more likely to be not injured. The Blumensaat angle=15° were used to diagnose the injury of anterior cruciate ligament. Compared with the results of arthroscopy, the coincidence rate of the total sample was 92.8%. Blumensaat angle is helpful to diagnose the ACL injuries. When the Blumensaat angle was =15°, the probability of ACL injury is greater.

  6. Preferred viewing distance and screen angle of electronic paper displays.

    Science.gov (United States)

    Shieh, Kong-King; Lee, Der-Song

    2007-09-01

    This study explored the viewing distance and screen angle for electronic paper (E-Paper) displays under various light sources, ambient illuminations, and character sizes. Data analysis showed that the mean viewing distance and screen angle were 495 mm and 123.7 degrees. The mean viewing distances for Kolin Chlorestic Liquid Crystal display was 500 mm, significantly longer than Sony electronic ink display, 491 mm. Screen angle for Kolin was 127.4 degrees, significantly greater than that of Sony, 120.0 degrees. Various light sources revealed no significant effect on viewing distances; nevertheless, they showed significant effect on screen angles. The screen angle for sunlight lamp (D65) was similar to that of fluorescent lamp (TL84), but greater than that of tungsten lamp (F). Ambient illumination and E-paper type had significant effects on viewing distance and screen angle. The higher the ambient illumination was, the longer the viewing distance and the lesser the screen angle. Character size had significant effect on viewing distances: the larger the character size, the longer the viewing distance. The results of this study indicated that the viewing distance for E-Paper was similar to that of visual display terminal (VDT) at around 500 mm, but greater than normal paper at about 360 mm. The mean screen angle was around 123.7 degrees, which in terms of viewing angle is 29.5 degrees below horizontal eye level. This result is similar to the general suggested viewing angle between 20 degrees and 50 degrees below the horizontal line of sight.

  7. Angle-differential elastic electron scattering off Mn

    Science.gov (United States)

    Dolmatov, V. K.

    2017-11-01

    Angle-differential elastic electron-scattering cross section, d/σ d Ω , for a 20-eV electron collision with a half-filled-subshell Mn (...3 d54 s2,6S) atom is studied using a semiempirical static polarization potential of the atom in the calculations. The study is in order, primarily due to noticeable discrepancies between results of the only two existing experimental measurements of the differential cross section, as well as discrepancies between the experimental results and available theoretical data. The calculation of d/σ d Ω is performed in the framework of the spin-polarized Hartree-Fock approximation modified by the addition of the Bates static polarization potential Vpol(r ) into the equations. An element of the study is the utilization of individual static dipole polarizabilities, α4 s ↑ and α4 s ↓, of the 4 s electrons with opposite spin orientations (4 s ↑ and 4 s ↓ electrons) from the atomic 4 s2 subshell. They are calculated and used for the subsequent calculation of Vpol(r ) and, finally, d/σ d Ω . The utility of the model is proven by a good agreement between the results of a trial calculation of d/σ d Ω and corresponding trial calculated results obtained in the framework of a sophisticated random phase approximation with exchange. The results of the subsequent final calculation of d/σ d Ω are compared with the experimental data along with the available theoretical results obtained in the framework of a spin-polarized local density approximation. Renewed theoretical and experimental studies of the 20-eV d/σ d Ω of Mn are urged.

  8. Polymorph separation induced by angle distortion and electron delocalization effect via orbital modification in V O2 epitaxial thin films

    Science.gov (United States)

    Hong, Bin; Hu, Kai; Tao, Zhuchen; Zhao, Jiangtao; Pan, Nan; Wang, Xiaoping; Lu, Minghui; Yang, Yuanjun; Luo, Zhenlin; Gao, Chen

    2017-02-01

    Since Morin discovered that vanadium dioxide (V O2 ) undergoes a reversible and dramatic structural phase transition coupled with an abrupt metal-insulator transition, extensive attention has been paid to V O2 due to its importance in fundamental condensed state physics and its potential technological applications. Here, we observed that the precipitated phases of V O2 (insulating and metallic polymorphs) could be controlled by relaxing the dimerization of the vanadium-vanadium (V-V) atomic chain. In particular, the monoclinic metallic phase can be stabilized even at room temperature with the assistance of the angle-distortion-induced (β =120∘ ) metallization through symmetry matching between the V O2 epitaxial thin films and the (0001)-oriented sapphire substrates. Concomitantly, the insulating phase (M1 ,β =122 .6∘ ) that separates from the metallic matrix may supply another driving force for stabilizing the metallic phase, as indicated by scattering-type scanning near-field optical infrared microscopy and further confirmed by synchrotron radiation high-resolution x-ray diffraction characterizations. Soft x-ray absorption spectroscopy results showed that the orbital features of the monoclinic metallic phase are analogous to those of the high-temperature metallic rutile V O2 (R) phase. First-principles calculations further demonstrate the angle-distortion-induced reduction of the V-V atomic dimerization, which enhances the electron delocalization and thus the conductivity. Therefore, the angle distortion results in the metallic monoclinic phase and stabilizes it with the assistance of the nanoscale insulating V O2 (M1) domains at room temperature. These results are of great importance for understanding the contributions of various polymorphs to the metal-insulator transition and for the design of novel artificially heterointerfacial devices based on V O2 nanoscale polymorphs.

  9. Comparison of axial lengths in occludable angle and angle-closure glaucoma-The Bhaktapur Glaucoma Study

    NARCIS (Netherlands)

    Thapa, S.S.; Paudyal, I.; Khanal, S.; Paudel, N.; van Rens, G.H.M.B.

    2011-01-01

    Purpose. To compare the anterior chamber depth (ACD) and axial length of eyes in a population-based sample among normal, occludable angle, and primary angle-closure glaucoma (PACG) groups. Methods. Totally, 3979 subjects from a population-based glaucoma prevalence study underwent complete ocular

  10. Correlations between Preoperative Angle Parameters and Postoperative Unpredicted Refractive Errors after Cataract Surgery in Open Angle Glaucoma (AOD 500).

    Science.gov (United States)

    Lee, Wonseok; Bae, Hyoung Won; Lee, Si Hyung; Kim, Chan Yun; Seong, Gong Je

    2017-03-01

    To assess the accuracy of intraocular lens (IOL) power prediction for cataract surgery with open angle glaucoma (OAG) and to identify preoperative angle parameters correlated with postoperative unpredicted refractive errors. This study comprised 45 eyes from 45 OAG subjects and 63 eyes from 63 non-glaucomatous cataract subjects (controls). We investigated differences in preoperative predicted refractive errors and postoperative refractive errors for each group. Preoperative predicted refractive errors were obtained by biometry (IOL-master) and compared to postoperative refractive errors measured by auto-refractometer 2 months postoperatively. Anterior angle parameters were determined using swept source optical coherence tomography. We investigated correlations between preoperative angle parameters [angle open distance (AOD); trabecular iris surface area (TISA); angle recess area (ARA); trabecular iris angle (TIA)] and postoperative unpredicted refractive errors. In patients with OAG, significant differences were noted between preoperative predicted and postoperative real refractive errors, with more myopia than predicted. No significant differences were recorded in controls. Angle parameters (AOD, ARA, TISA, and TIA) at the superior and inferior quadrant were significantly correlated with differences between predicted and postoperative refractive errors in OAG patients (-0.321 to -0.408, pangle parameters, especially AOD 500 at the superior quadrant, were significantly correlated with these unpredicted errors.

  11. Coming to Understand Angle and Angle Measure: A Design-Based Research Curriculum Study Using Context-Aware Ubiquitous Learning

    Science.gov (United States)

    Crompton, Helen

    2013-01-01

    This study uses design-based research (DBR) to develop an empirically-substantiated instructional theory about students' development of angle and angle measure, with real-world connections and technological tools through the use of context-aware ubiquitous learning. The research questions guiding this research are: 1) How do students come to…

  12. Within tree variation of lignin, extractives, and microfibril angle coupled with the theoretical and near infrared modeling of microfibril angle

    Science.gov (United States)

    Brian K. Via; chi L. So; Leslie H. Groom; Todd F. Shupe; michael Stine; Jan. Wikaira

    2007-01-01

    A theoretical model was built predicting the relationship between microfibril angle and lignin content at the Angstrom (A) level. Both theoretical and statistical examination of experimental data supports a square root transformation of lignin to predict microfibril angle. The experimental material used came from 10 longleaf pine (Pinus palustris)...

  13. Can orbital angle morphology distinguish dogs from wolves?

    Science.gov (United States)

    Janssens, Luc; Spanoghe, Inge; Miller, Rebecca; Van Dongen, Stefan

    For more than a century, the orbital angle has been studied by many authors to distinguish dog skulls from their progenitor, the wolf. In early studies, the angle was reported to be different between dogs (49°-55°) and wolves (39°-46°). This clear difference was, however, questioned in a more recent Scandinavian study that shows some overlap. It is clear that in all studies several methodological issues were unexplored or unclear and that group sizes and the variety of breeds and wolf subspecies were small. Archaeological dog skulls had also not been studied. Our goal was to test larger and more varied groups and add archaeological samples as they are an evolutionary stage between wolves and modern dogs. We also tested the influence of measuring methods, intra- and inter-reliability, angle symmetry, the influence of variations in skull position and the possibility of measuring and comparing this angle on 3D CT scan images. Our results indicate that there is about 50 % overlap between the angle range in wolves and modern dogs. However, skulls with a very narrow orbital angle were only found in wolves and those with a very wide angle only in dogs. Archaeological dogs have a mean angle very close to the one of the wolves. Symmetry is highest in wolves and lowest in archaeological dogs. The measuring method is very reliable, for both inter- and intra-reliability (0.99-0.97), and most skull position changes have no statistical influence on the angle measured. Three-dimensional CT scan images can be used to measure OA, but the angles differ from direct measuring and cannot be used for comparison. Evolutionary changes in dog skulls responsible for the wider OA compared to wolf skulls are mainly the lateralisation of the zygomatic process of the frontal bone. Our conclusion is that the orbital angle can be used as an additional morphological measuring method to discern wolves from recent and archaeological dogs. Angles above 60° are certainly from recent dogs. Angles

  14. On the crystallographic structure of S-phase

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A. J.

    2003-01-01

    Homogeneous, stress-free S-phase was synthesized by gaseous nitriding of AISI 316 stainless steel in ammonia/hydrogen gas mixtures. X-ray diffraction analysis was applied to assess unambiguously the Bravais lattice of S-phase and to identify the effect of stacking faults on the Bragg angle of X......-ray line profiles....

  15. In Vivo Analysis of Angle Dysgenesis in Primary Congenital, Juvenile, and Adult-Onset Open Angle Glaucoma.

    Science.gov (United States)

    Gupta, Viney; Chaurasia, Abadh K; Gupta, Shikha; Gorimanipalli, Bhavya; Sharma, Ajay; Gupta, Amisha

    2017-11-01

    The purpose of this study was to comparatively evaluate angle dysgenesis in vivo, among congenital, juvenile, and adult-onset open angle glaucoma patients. A cross-sectional evaluation of 96 glaucoma patients, 22 children with primary congenital glaucoma (PCG) old enough to cooperate for optical coherence tomography (OCT), 34 juvenile-onset open angle glaucoma (JOAG) patients, 40 adult-onset primary open angle glaucoma (POAG), and 30 healthy subjects, was carried out using high-resolution anterior segment spectral domain (SD)-OCT. Subgroup analysis was done for presence/ absence of angle dysgenesis as defined by presence of abnormal tissue/hyperreflective membrane within angle recess and/or absence of Schlemm's canal (SC). Morphologic features suggestive of angle dysgenesis such as the presence of abnormal tissue at the angle and a hyperreflective membranous structure covering the meshwork were seen in all PCG eyes (100%), in 14 (40%) JOAG eyes, and none of the POAG eyes in comparison to healthy eyes (P = 0.01, P = 0.03, and P = 0.23 for PCG, JOAG, and POAG, respectively). SC could be seen in 27 (90%) healthy eyes compared with only 7 (30%) in PCG (P = 0.01) 20 (60%) JOAG eyes (P = 0.03), and 26 (65%) adult-onset POAG eyes (P = 0.23; χ2 test). Angle dysgenesis in the form of abnormal tissue at the angle/hyperreflective membrane and/or absence of SC could be identified on anterior segment SD-OCT, which can be used for in vivo evaluation of eyes with developmental glaucoma.

  16. Effect of Collision Angle on Binary Droplet Coalescence

    Science.gov (United States)

    Kim, Jungyong; Longmire, Ellen

    2006-11-01

    Drop pairs of water/glycerin solution were injected into silicone oil of lower density through opposing tubes at varying initial angles with the goal of controlling the eventual collision angles. Simultaneous dual-field PIV measurements were obtained in index-matched fluids to characterize coalescence and rebounding behavior. The larger field captured trajectories, and the smaller field captured the thin film region. Experiments were performed for Weber numbers [We] in the range of 1-50 and collision angles of 15-80 degrees below the horizontal. Above We ˜ 10, drops coalesced, with the rebounding/coalescence boundary shifting to higher We with increasing collision angle. Also, the collision angle affected the eventual location of film rupture. The rupture location moved higher in the thin film region as the collision angle increased. Interactions of vortex rings within drops and strong deformation associated with shallow collision angles and sufficient We encouraged coalescence. Details of these interactions will be discussed in the presentation. Supported by Petroleum Research Fund (42939-AC9) and NSF (CTS-0320327).

  17. Ultrasound Determination of the Femoral Head-Neck Alpha Angle.

    Science.gov (United States)

    Robinson, D J; Lee, S; Marks, P; Schneider, M E

    2018-02-01

    The femoral head-neck alpha angle is used to quantify the degree of femoral head asphericity in patients suspected of cam-type femoroacetabular impingement. The measurement was first performed using magnetic resonance imaging and, more recently, three-dimensional computed tomography (CT). We set out to determine whether the alpha angle could be reliably measured using ultrasound. Patients were recruited from a cohort presenting for CT of the hip. Alpha angles were calculated following the departmental protocol by institutionally accredited radiographers. After the CT, patients were imaged with ultrasound and the alpha angle calculated from the ultrasound image by a sonographer blinded to the CT result. Statistical comparison of the two methods was performed with the Bland-Altman test using SPSS (version 21.0, Chicago, USA), and a p angle was calculated at 0.718. Ultrasound demonstrates good sensitivity and good negative predictive value in calculation of the femoral head-neck alpha angle compared with CT; however, specificity is low. Ultrasound measurement of the alpha angle can provide objective evidence of cam-type femoroacetabular impingement in symptomatic patients and can direct patients to more established imaging techniques where appropriate. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. All rights reserved.

  18. Graphic angle measure as an electrocochleography evaluation parameter.

    Science.gov (United States)

    Lopes, Karen de Carvalho; Munhoz, Mário Sérgio Lei; Santos, Marco Aurélio Rocha; Moraes, Márcio Flávio Dutra; Chaves, Adriana Gonzaga

    2011-01-01

    To improve electrocochleography's diagnostic sensitivity in Meniére's disease - new assessment methods are being studied. To determine whether or not graphic angle measurement is sensitive and specific to Menière's disease laboratorial diagnosis and if there is an increase in the electrocochleography's sensitivity and specificity when graphic angle measurements are associated with Summating Potential-Action Potential ratio (SP/AP ratio). Electrocochleography's was used to analyze 71 ears from 55 subjects: 41 patients with clinical diagnosis of Menière's disease (MD group), and 14 healthy individuals as control (Group C). Graphic results were analyzed initially to obtain the SP/AP ratio; afterwards, through another program graphic angle measurements were calculated. Sensitivity and specificity values of angle measures, SP/AP ratio, and the association between them varied according to the cutoff point, the highest equilibrium between sensitivity and specificity was observed with the values of 166.25 for angle measurement and 27% for SP/AP relation; 62.79% / 60.71% and 74.42% / 67.86%, respectively. The association between measurements showed a sensitivity increase due to the specificity decrease; 88.37% and 50%, respectively. Angle graphic measurement is not sensitive and specific enough for the laboratorial diagnosis of MD. Angle graphic measurement and SP/AP ratio association proved to be higher in sensitivity, in detriment of exam specificity.

  19. Dynamic angle selection in X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dabravolski, Andrei, E-mail: andrei.dabravolski@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Batenburg, Kees Joost, E-mail: joost.batenburg@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Centrum Wiskunde and Informatica (CWI), Science Park 123, 1098 XG Amsterdam (Netherlands); Sijbers, Jan, E-mail: jan.sijbers@uantwerpen.be [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2014-04-01

    Highlights: • We propose the dynamic angle selection algorithm for CT scanning. • The approach is based on the concept of information gain over a set of solutions. • Projection angles are selected based on the already available projection data. • The approach can lead to more accurate results from fewer projections. - Abstract: In X-ray tomography, a number of radiographs (projections) are recorded from which a tomogram is then reconstructed. Conventionally, these projections are acquired equiangularly, resulting in an unbiased sampling of the Radon space. However, especially in case when only a limited number of projections can be acquired, the selection of the angles has a large impact on the quality of the reconstructed image. In this paper, a dynamic algorithm is proposed, in which new projection angles are selected by maximizing the information gain about the object, given the set of possible new angles. Experiments show that this approach can select projection angles for which the accuracy of the reconstructed image is significantly higher compared to the standard angle selections schemes.

  20. Effect of Angle of Attack on Slope Climbing Performance

    Science.gov (United States)

    Creager, Colin M.; Jones, Lucas; Smith, Lauren M.

    2017-01-01

    Ascending steep slopes is often a very difficult challenge for off-road vehicles, whether on Earth or on extraterrestrial bodies. This challenge is even greater if the surface consists of loose granular soil that does not provide much shear strength. This study investigated how the path at which a vehicle traverses a slope, specifically the angle that it is commanded to drive relative to the base of the hill (the angle of attack), can affect its performance. A vehicle was driven in loose sand at slope angles up to 15 degrees and angles of attack ranging from 10 to 90 degrees. A novel photogrammetry technique was implemented to both track vehicle motion and create a three-dimensional profile of the terrain. This allowed for true wheel sinkage measurements. The study showed that though low angles of attack result in lower wheel slip and sinkage, the efficiency of the vehicles uphill motion increased at higher angles of attack. For slopes up to 15 degrees, a 90 degree angle of attack provided the greatest likelihood of successful ascent.

  1. High Efficiency Large-Angle Pancharatnam Phase Deflector Based on Dual Twist Design

    Science.gov (United States)

    2016-12-16

    of view (FOV), which is controlled only by changing handedness of circularly polarized input light. Following the method proposed by Crawford, et... left circular polarization (LCP) or right circular polarization (RCP). When this single DTPPD is combined with a second one that is constructed by

  2. Patient-specific rhytidectomy: finding the angle of maximal rejuvenation.

    Science.gov (United States)

    Jacono, Andrew A; Ransom, Evan R

    2012-09-01

    Rhytidectomy is fundamentally an operation of tissue release and resuspension, although the manner and direction of suspension are subject to perpetual debate. The authors describe a method for identifying the angle of maximal rejuvenation during rhytidectomy and quantify the resulting angle and its relationship to patient age. Patients were prospectively enrolled; demographic data, history, and operative details were recorded. Rhytidectomies were performed by the senior author (AAJ). After complete elevation, the face-lift flap was rotated in a medially-based arc (0-90°) while attention was given to the submental area, jawline, and midface. The angle of maximal rejuvenation for each hemiface was identified as described, and the flap was resuspended. During redraping, measurements of vertical and horizontal skin excess were recorded in situ. The resulting angle of lift was then calculated for each hemiface using trigonometry. Symmetry between sides was determined, and the effect of patient age on this angle was assessed. Three hundred hemifaces were operated (147 women; 3 men). Mean age was 60 years (range, 37-80 years). Mean resulting angle for the cohort was 60° from horizontal (range, 46-77°). This was inversely correlated with patient age (r = -.3). Younger patients (<50 years, 64°) had a significantly more vertical angle than older patients (≥70 years, 56°; P < .0002). No significant intersubject difference was found between hemifaces (P = .53). The authors present a method for identifying the angle of maximal rejuvenation during rhytidectomy. This angle was more superior than posterior in all cases and is intimately related to patient age. Lasting results demand a detailed anatomical understanding and strict attention to the direction and degree of laxity.

  3. Hybrid Projectile Body Angle Estimation for Selectable Range Increase

    Science.gov (United States)

    Gioia, Christopher J.

    A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. A simple launch timer was first envisioned to control the transformation point in order to achieve maximum distance. However, this timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It was also necessary to filter out noise from a simulated inertial measurement unit (IMU), GPS receiver, and magnetometer. An Extended Kalman Filter (EKF) was chosen to estimate the Euler angles, position and velocity of the HP while an algorithm determined when to deploy the wings. A parametric study was done to verify the optimum deployment condition using a Simulink aerodynamic model. Because range is directly related to launch angle, various launch angles were simulated in the model. By fixing the glide slope angle to -10° as a deployment condition for all launch angles, the range differed only by a maximum of 6.1% from the maximum possible range. Based on these findings, the body angle deployment condition provides the most flexible option to maintain maximum distance without the need of reprogramming. Position and velocity estimates were also determined from the EKF using the GPS measurements. Simulations showed that the EKF estimates exhibited low root mean squared error values, corresponding to less than 3% of the total position values. Because the HP was in flight for less than a minute in this experiment, the drift encountered was acceptable.

  4. Superfluid phase transitions in dense neutron matter.

    Science.gov (United States)

    Khodel, V A; Clark, J W; Zverev, M V

    2001-07-16

    The phase transitions in a realistic system with triplet pairing, dense neutron matter, have been investigated. The spectrum of phases of the 3P2-3F2 model, which adequately describes pairing in this system, is analytically constructed with the aid of a separation method for solving BCS gap equations in states of arbitrary angular momentum. In addition to solutions involving a single value of the magnetic quantum number (and its negative), there exist ten real multicomponent solutions. Five of the corresponding angle-dependent order parameters have nodes, and five do not. In contrast to the case of superfluid 3He, transitions occur between phases with nodeless order parameters.

  5. Isotretinoin-induced Angle Closure and Myopic Shift.

    Science.gov (United States)

    Park, Young-Myoung; Lee, Tae-Eun

    2017-11-01

    To report and describe the management a rare case of transient bilateral angle closure with increased intraocular pressure (IOP) and myopic shift while on isotretinoin therapy for acne. A 28-year-old woman presented with bilateral myopic shift, angle closure with IOP increase, and supraciliary effusion 1 week after acne therapy with isotretinoin. Two weeks after stopping isotretinoin, and treatment with topical prednisolone acetate, atropine, and fixed combination of timolol and dorzolamide, refraction, IOP returned to normal and supraciliary effusions was decreased on ultrasound biomicroscopy. Oral isotretinoin for acne treatment may be associated with an adverse reaction, resulting in bilateral transient myopia and angle closure with IOP elevation.

  6. The modified Cassie’s equation and contact angle hysteresis

    KAUST Repository

    Xu, Xianmin

    2012-08-29

    In this paper, we derive a modified Cassie\\'s equation for wetting on chemically patterned surfaces from a homogenization approach. The derivation reveals that effective contact angle is a local average of the static contact angle along the contact line which describes all possible equilibrium states including the local minimum of the free energy of the system. The usual Cassie\\'s state which corresponds to the global minimum is only a special case. We then discuss the contact angle hysteresis on chemically patterned surfaces. © 2012 Springer-Verlag.

  7. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  8. Penetrating facial injury from angle grinder use: management and prevention

    Directory of Open Access Journals (Sweden)

    Varley Iain

    2008-01-01

    Full Text Available Abstract Injuries resulting from the use of angle grinders are numerous. The most common sites injured are the head and face. The high speed disc of angle grinders does not respect anatomical boundaries or structures and thus the injuries produced can be disfiguring, permanently disabling or even fatal. However, aesthetically pleasing results can be achieved with thorough debridement, resection of wound edges and careful layered functional closure after reduction and fixation of facial bone injuries. A series of penetrating facial wounds associated with angle grinder use are presented and the management and prevention of these injuries discussed.

  9. Penetrating facial injury from angle grinder use: management and prevention.

    Science.gov (United States)

    Carter, Lachlan M; Wales, Craig J; Varley, Iain; Telfer, Martin R

    2008-01-23

    Injuries resulting from the use of angle grinders are numerous. The most common sites injured are the head and face. The high speed disc of angle grinders does not respect anatomical boundaries or structures and thus the injuries produced can be disfiguring, permanently disabling or even fatal. However, aesthetically pleasing results can be achieved with thorough debridement, resection of wound edges and careful layered functional closure after reduction and fixation of facial bone injuries. A series of penetrating facial wounds associated with angle grinder use are presented and the management and prevention of these injuries discussed.

  10. Bounded-Angle Iterative Decoding of LDPC Codes

    Science.gov (United States)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  11. Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    1999-01-01

    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham, and Klapwijk (BTK),An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection...... and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle...

  12. Evaluation of the nasolabial angle in the Indian population

    Directory of Open Access Journals (Sweden)

    Vinay Dua

    2010-01-01

    Full Text Available Nasolabial angle has become the angle depicting the esthetics so has attained the prime importance in the treatment planning. Dr Jay P. Fitzgerland and Dr. Ram S. Nanda. In 1992 gave norms for Caucasian population. A radiographic cephalometric study was undertaken with 45 subjects of Indian origin to evaluate and compare with their result. The method of evaluation was according to the criteria given by Dr. Jay P Fitzergerald in AJODO 1992; 102:328-34. Significant decrease in nasolabial angle values was found in case of Indian population as compared to white adults.

  13. Indoor Measurement of Angle Resolved Light Absorption by Black Silicon

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Iandolo, Beniamino; Davidsen, Rasmus Schmidt

    2017-01-01

    Angle resolved optical spectroscopy of photovoltaic (PV) samples gives crucial information on PV panels under realistic working conditions. Here, we introduce measurements of angle resolved light absorption by PV cells, performed indoors using a collimated high radiance broadband light source. Our...... indoor method offers a significant simplification as compared to measurements by solar trackers. As a proof-of-concept demonstration, we show characterization of black silicon solar cells. The experimental results showed stable and reliable optical responses that makes our setup suitable for indoor......, angle resolved characterization of solar cells....

  14. Remote logo detection using angle-distance histograms

    Science.gov (United States)

    Youn, Sungwook; Ok, Jiheon; Baek, Sangwook; Woo, Seongyoun; Lee, Chulhee

    2016-05-01

    Among all the various computer vision applications, automatic logo recognition has drawn great interest from industry as well as various academic institutions. In this paper, we propose an angle-distance map, which we used to develop a robust logo detection algorithm. The proposed angle-distance histogram is invariant against scale and rotation. The proposed method first used shape information and color characteristics to find the candidate regions and then applied the angle-distance histogram. Experiments show that the proposed method detected logos of various sizes and orientations.

  15. The wave vane - A device to measure the breaker angle

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; Anand, N.M.

    can easily be fabricated and used to measure the breaker angle. ERROR IN VISUAL ESTIMATION Three trained persons were asked to stand at the same location on the Kar- war beach on the west coast of India, and observe independently the breaker angle... and parallel, the wave directions measured at 16 m water depth were corrected for refraction effects using Snell's law (Shore TABLE 1 Measurement of breaker angles by various methods Date Buoy Visual Wave vane OL b O~ b Hs Tz o~ b (m) (s) (~) (~) (~) 20...

  16. Research advances on multifocal electroretinogram in primary open angle glaucoma

    Directory of Open Access Journals (Sweden)

    Feng-Fei Mo

    2013-10-01

    Full Text Available Primary open angle glaucoma is a chronic and progressive optic neuropathy. It can lead to serious damage of visual impairment, and it is an important eye disease of blindness. Multifocal electroretinogram is a new way to measure visual electrophysiology. It can measure electroretinogram of the whole visual field of many small parts in a relatively short period of time, and it can reflect the function of regional retina. It has an extremely important value for early diagnosis of primary open angle glaucoma. The research advances on multifocal electroretinogram in diagnosing primary open angle glaucoma were summarized in this paper.

  17. Toroidal Precession as a Geometric Phase

    Energy Technology Data Exchange (ETDEWEB)

    J.W. Burby and H. Qin

    2012-09-26

    Toroidal precession is commonly understood as the orbit-averaged toroidal drift of guiding centers in axisymmetric and quasisymmetric configurations. We give a new, more natural description of precession as a geometric phase effect. In particular, we show that the precession angle arises as the holonomy of a guiding center's poloidal trajectory relative to a principal connection. The fact that this description is physically appropriate is borne out with new, manifestly coordinate-independent expressions for the precession angle that apply to all types of orbits in tokamaks and quasisymmetric stellarators alike. We then describe how these expressions may be fruitfully employed in numerical calculations of precession.

  18. Phase retrieval in X-ray phase-contrast imaging suitable for tomography.

    Science.gov (United States)

    Burvall, Anna; Lundström, Ulf; Takman, Per A C; Larsson, Daniel H; Hertz, Hans M

    2011-05-23

    In-line phase-contrast X-ray imaging provides images where both absorption and refraction contribute. For quantitative analysis of these images, the phase needs to be retrieved numerically. There are many phase-retrieval methods available. Those suitable for phase-contrast tomography, i.e., non-iterative phase-retrieval methods that use only one image at each projection angle, all follow the same pattern though derived in different ways. We outline this pattern and use it to compare the methods to each other, considering only phase-retrieval performance and not the additional effects of tomographic reconstruction. We also outline derivations, approximations and assumptions, and show which methods are similar or identical and how they relate to each other. A simple scheme for choosing reconstruction method is presented, and numerical phase-retrieval performed for all methods.

  19. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  20. Integrating angle-frequency domain synchronous averaging technique with feature extraction for gear fault diagnosis

    Science.gov (United States)

    Zhang, Shengli; Tang, J.

    2018-01-01

    Gear fault diagnosis relies heavily on the scrutiny of vibration responses measured. In reality, gear vibration signals are noisy and dominated by meshing frequencies as well as their harmonics, which oftentimes overlay the fault related components. Moreover, many gear transmission systems, e.g., those in wind turbines, constantly operate under non-stationary conditions. To reduce the influences of non-synchronous components and noise, a fault signature enhancement method that is built upon angle-frequency domain synchronous averaging is developed in this paper. Instead of being averaged in the time domain, the signals are processed in the angle-frequency domain to solve the issue of phase shifts between signal segments due to uncertainties caused by clearances, input disturbances, and sampling errors, etc. The enhanced results are then analyzed through feature extraction algorithms to identify the most distinct features for fault classification and identification. Specifically, Kernel Principal Component Analysis (KPCA) targeting at nonlinearity, Multilinear Principal Component Analysis (MPCA) targeting at high dimensionality, and Locally Linear Embedding (LLE) targeting at local similarity among the enhanced data are employed and compared to yield insights. Numerical and experimental investigations are performed, and the results reveal the effectiveness of angle-frequency domain synchronous averaging in enabling feature extraction and classification.

  1. Multi-angle Imaging SpectroRadiometer (MISR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-angle Imaging SpectroRadiometer (MISR) was successfully launched into sun-synchronous polar orbit aboard Terra, NASA's first Earth Observing System (EOS)...

  2. Adaptive Control of a Vibratory Angle Measuring Gyroscope

    Science.gov (United States)

    Park, Sungsu

    2010-01-01

    This paper presents an adaptive control algorithm for realizing a vibratory angle measuring gyroscope so that rotation angle can be directly measured without integration of angular rate, thus eliminating the accumulation of numerical integration errors. The proposed control algorithm uses a trajectory following approach and the reference trajectory is generated by an ideal angle measuring gyroscope driven by the estimate of angular rate and the auxiliary sinusoidal input so that the persistent excitation condition is satisfied. The developed control algorithm can compensate for all types of fabrication imperfections such as coupled damping and stiffness, and mismatched stiffness and un-equal damping term in an on-line fashion. The simulation results show the feasibility and effectiveness of the developed control algorithm that is capable of directly measuring rotation angle without the integration of angular rate. PMID:22163667

  3. First statistics of the isopistonic angle for long baseline interferometry

    Science.gov (United States)

    Ziad, A.; Elhalkouj, T.; Petrov, R. G.; Borgnino, J.; Lazrek, M.; Benkhaldoun, Z.; Martin, F.; Elazhari, Y.

    2016-06-01

    To reach a suitable limiting magnitude with a multi-aperture interferometer, we need to cophase the different telescopes using a reference source. The latter should be located in the same isopistonic domain as the science source. We developed a direct analytical expression of deducing the isopistonic angle from atmospheric optical parameters as seeing, isoplanatic angle and outer scale. All of these atmospheric turbulence parameters are measured by the Generalized Seeing Monitor (GSM). The first statistics of the isopistonic angle obtained from the GSM data are presented and comparison between the major sites over the world are discussed (La Silla, Cerro Pachon, Paranal, San Pedro, Mt Palomar, Mauna Kea, La Palma, Oukaïmeden, Maydanak, Dome C). Implications of these isopistonic angle statistics on large interferometers cophasing in terms of sky coverage and limiting magnitude are discussed.

  4. Small-angle neutron scattering studies of sodium butyl benzene ...

    Indian Academy of Sciences (India)

    Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope ...

  5. Acute Angle Closure Secondary to Tubercular Choroidal Granuloma.

    Science.gov (United States)

    Kaushik, Sushmita; Singh, Ramandeep; Arora, Atul; Joshi, Gunjan; Sharma, Kusum; Tigari, Basavraj

    2017-12-01

    Acute angle closure is usually thought to be secondary to pupillary block, which is relieved by laser iridotomy. Anterior rotation of the ciliary body at the scleral spur following development of an inflammatory ciliochoroidal detachment may result in a presentation of acute angle closure. It is imperative to recognize this condition correctly, because the management is with cycloplegics and anti-inflammatory drugs, which is diametrically opposite to the treatment of primary angle closure. More importantly, it has been reported as a consequence of serious systemic disease such as HIV infection and Vogt Koyanagi Harada (VKH) syndrome. We report a patient who presented to the medical emergency with headache and vomiting and was subsequently found to have acute angle closure in 1 eye secondary to a tubercular choroidal granuloma. This presentation of ocular tuberculosis has not been reported previously.

  6. Full-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification

    KAUST Repository

    Liu, Bingyi

    2017-07-01

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell\\'s law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for full-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the full-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates. The coiling-up space structures are utilized to build desired acoustic gradient metasurface and the full-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface and enables a new degree of the acoustic wave manipulating.

  7. Phase Vocoder

    Directory of Open Access Journals (Sweden)

    J.L. Flanagan

    2013-08-01

    Full Text Available A vocoder technique is described in which speech signals are represented by their short-time phase and amplitude spectra. A complete transmission system utilizing this approach is simulated on a digital computer. The encoding method leads to an economy in transmission bandwidth and to a means for time compression and expansion of speech signals.

  8. Transparent stepped phase measurement using two illuminating beams

    Science.gov (United States)

    Tayebi, Behnam; Sharif, Farnaz; Jafarfard, Mohammad Reza; Kim, Dug Young

    2014-07-01

    We propose a single shot and single wavelength phase imaging technique for measuring phase of the transparent objects without using unwrapping process. A grating between a laser and the object is used to make beams with different angle, which determines the measurement range of the microscope. The grating pitch and magnification of the lens system before the sample affect the angle. The angle inside the object is changed according to Snell's law; therefore, final angle is related to the refractive index of the object. Magnification of the lens system after sample will control the modulation frequency of microscope. The interference pattern is constructed at CCD plane and convey information of the sample. For a phase below the measurement range of the microscope, the reconstructed phase is not wrapped. By increasing the measurement range accuracy of the system will drop; therefore the magnification of the lenses must choose carefully to obtain optimal phase. The ability of this technique is demonstrated by reconstructing phases of two transparent step objects with 150 and 510 μm height. Their refractive indexes for red light are 1.515 and 1.508 , respectively. Therefore, total optical path length difference is 336 micrometers that is 500 times more than the laser wavelength. The phase is successfully reconstructed without using unwrapping algorithms.

  9. Measurement of the angle of superficial tension by images

    Science.gov (United States)

    Yanez M., Javier; Alonso R., Sergio

    2006-02-01

    When a liquid is deposited on a surface, this one form a certain angle with respect to the surface, where depending on its value, it will conclude that so hard it is his adhesion with the surface. By means of the analysis of images we looked for to measure this angle of superficial tension. In order to make this measurement, we propose a technique by means of projective transformations and one method of regression to estimation parameters to conic fitting.

  10. Anthropometric study of angle of femoral torsion in Maharashtrian population

    Directory of Open Access Journals (Sweden)

    Anil Kumar Dwivedi

    2016-01-01

    Full Text Available Introduction: Angle of femoral torsion is a normal torsion or twist present in femur that plays an important role in stability and function of the hip joint. The angle of femoral torsion can be defined as the angle formed by femoral condyle′s plane (bicondylar plane and a plane passing through center of neck and femoral head. Abnormal angle of femoral torsion has been implicated in the etiology of hip osteoarthrosis and developmental dysplasia of hip joint. Materials and Methods: This study was carried out on unpaired 280, adult human femora devoid of any gross pathology, 139 male (65 right and 74 left, and 141 female (71 right and 70 left from bone banks of three medical colleges of Maharashtra. The gender of each specimen was determined by the established practice. Femora were evaluated by Kingsley Olmsted method, and data were tabulated and statistically analyzed. Results: The average angle of femoral torsion 13.39° and 11.23° on the right and left side respectively in male, 16.21° and 13.23° on the right and left side, respectively, in female. Statistical analysis using Student′s "t"-test revealed significant difference (P < 0.05, greater angle of femoral torsion in female and on the right side. Conclusion: Knowledge of angle of femoral torsion is becoming significant nowadays with an increase in demand for total hip replacement, as the angle of femoral torsion is crucial to attain a normal activity of the replaced joint.

  11. Wide-angle and polarization-independent chiral metamaterial absorber

    OpenAIRE

    Wang, Bingnan; Koschny, Thomas; Soukoulis, Costas M.

    2010-01-01

    We propose a resonant microwave absorber based on a chiral metamaterial. We show, with both numerical simulations and experimental measurements, that the absorber works well for a very wide range of incident angles for different polarizations. The proposed absorber has a compact size and the absorption is close to one for a wide range of incident angles and it is a good candidate for potential applications.

  12. Small-angle neutron scattering on polymer gels

    Energy Technology Data Exchange (ETDEWEB)

    Shibayama, Mitsuhiro [Department of Polymer Science and Engineering, Kyoto Institute of Technology, Kyoto (Japan)

    1999-10-01

    Recent development on the small-angle neutron scattering studies on polymer gels has been reviewed with an emphasis of the importance of the static inhomogeneities. The well-known phenomenon of the cross-linking inhomogeneities, i.e., a strong upturn of the scattered intensity at low scattering angles, is interpreted with the static inhomogeneities. It is demonstrated that the gel structures are now well characterized with the novel theories, which take account of the static inhomogeneities. (author)

  13. A study of arrival angles of natural VLF waves

    Science.gov (United States)

    Apsen, A. G.; Fedorenko, Iu. V.; Chernysheva, S. P.; Kleimenova, N. G.; Putilin, A. N.

    Methods are proposed for determining the arrival angles of natural VLF waves at a ground-based observatory. A device in which the proposed method is implemented is described, and questions regarding its calibration and suppression of lightning-induced and industrial noise are addressed. Measurements of natural VLF-wave arrival angles, carried out in the auroral zone in the Murmansk region are presented.

  14. Penetrating head injury from angle grinder: A cautionary tale

    OpenAIRE

    S SenthilKumaran; N Balamurgan; Arthanari, K; Thirumalaikolundusubramanian, P

    2010-01-01

    Penetrating cranial injury is a potentially life-threatening condition. Injuries resulting from the use of angle grinders are numerous and cause high-velocity penetrating cranial injuries. We present a series of two penetrating head injuries associated with improper use of angle grinder, which resulted in shattering of disc into high velocity missiles with reference to management and prevention. One of those hit on the forehead of the operator and the other on the occipital region of the co-w...

  15. Penetrating facial injury from angle grinder use: management and prevention

    OpenAIRE

    Varley Iain; Wales Craig J; Carter Lachlan M; Telfer Martin R

    2008-01-01

    Abstract Injuries resulting from the use of angle grinders are numerous. The most common sites injured are the head and face. The high speed disc of angle grinders does not respect anatomical boundaries or structures and thus the injuries produced can be disfiguring, permanently disabling or even fatal. However, aesthetically pleasing results can be achieved with thorough debridement, resection of wound edges and careful layered functional closure after reduction and fixation of facial bone i...

  16. 2DFFT: Measuring Galactic Spiral Arm Pitch Angle

    Science.gov (United States)

    Davis, Benjamin L.; Berrier, Joel C.; Shields, Douglas W.; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S.; Lacy, Claud H. S.; Puerari, Ivânio

    2016-08-01

    2DFFT utilizes two-dimensional fast Fourier transformations of images of spiral galaxies to isolate and measure the pitch angles of their spiral arms; this provides a quantitative way to measure this morphological feature and allows comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. 2DFFT requires fourn.c from Numerical Recipes in C (Press et al. 1989).

  17. Clinical value of different QRS-T angle expressions.

    Science.gov (United States)

    Hnatkova, Katerina; Seegers, Joachim; Barthel, Petra; Novotny, Tomas; Smetana, Peter; Zabel, Markus; Schmidt, Georg; Malik, Marek

    2017-09-13

    Increased spatial angle between QRS complex and T wave loop orientations has repeatedly been shown to predict cardiac risk. However, there is no consensus on the methods for the calculation of the angle. This study compared the reproducibility and predictive power of three most common ways of QRS-T angle assessment. Electrocardiograms of 352 healthy subjects, 941 survivors of acute myocardial infarction (MI), and 605 patients recorded prior to the implantation of automatic defibrillator [implantable cardioverter defibrillator (ICD)] were used to obtain QRS-T angle measurements by the maximum R to T (MRT), area R to T (ART), and total cosine R to T (TCRT) methods. The results were compared in terms of physiologic reproducibility and power to predict mortality in the cardiac patients during 5-year follow-up. Maximum R to T results were significantly less reproducible compared to the other two methods. Among both survivors of acute MI and ICD recipients, TCRT method was statistically significantly more powerful in predicting mortality during follow-up. Among the acute MI survivors, increased spatial QRS-T angle (TCRT assessment) was particularly powerful in predicting sudden cardiac death with the area under the receiver operator characteristic of 78% (90% confidence interval 63-90%). Among the ICD recipients, TCRT also predicted mortality significantly among patients with prolonged QRS complex duration when the spatial orientation of the QRS complex is poorly defined. The TCRT method for the assessment of spatial QRS-T angle appears to offer important advantages in comparison to other methods of measurement. This approach should be included in future clinical studies of the QRS-T angle. The TCRT method might also be a reasonable candidate for the standardization of the QRS-T angle assessment.

  18. Light Airplane Crash Test at Three Pitch Angles

    Science.gov (United States)

    Vaughan, Victor L., Jr.; Alfaro-Bou, Emilio

    1979-01-01

    Three similar twin-engine general-aviation airplane specimens were crash tested at the Langley Impact Dynamics Research Facility at 27 m/sec, a flight-path angle of -15deg, and pithch angles of -15deg, 0deg, and 15deg. Other crash parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  19. Light airplane crash tests at three pitch angles

    Science.gov (United States)

    Vaughan, V. L., Jr.; Alfaro-Bou, E.

    1979-01-01

    Three similar twin-engine general aviation airplane specimens were crash tested at an impact dynamics research facility at 27 m/sec, a flight path angle of -15 deg, and pitch angles of -15 deg, 0 deg, and 15 deg. Other crash parameters were held constant. The test facility, instrumentation, test specimens, and test method are briefly described. Structural damage and accelerometer data for each of the three impact conditions are presented and discussed.

  20. Is large angle exclusive scattering controlled by the hadronic radius?

    CERN Document Server

    Schrempp, Barbara

    1975-01-01

    It is pointed out that the large angle pp to pp data suggest an exponential behaviour in p/sub perpendicular to / modulated by a regular oscillation in p/sub perpendicular to / more naturally than a power law s/sup -N/. It is argued that these effects are due to a manifestation of the same geometrical length scale R approximately=1 fermi which is known to control small angle scattering. (19 refs).

  1. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    OpenAIRE

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the sa...

  2. Convergence angles of tooth preparations assessed on dies for full ...

    African Journals Online (AJOL)

    Subject: Dies of full crown and bridge retainers. Results: A majority (59%) of the tooth preparations were for single crowns and 41% were for bridge retainers. The mean convergence angle for all the dies was 24.0○ with a mean buccal-lingual convergence angle of 26.7 ○ +11.93SD and a mean mesio-distal convergence ...

  3. Multilayered wideband absorbers for oblique angle of incidence

    OpenAIRE

    Kazemzadeh, Alireza; Karlsson, Anders

    2010-01-01

    Design procedures of Jaumann and circuit analog absorbers are mostly formulated for normal angle of incidence. Only a few design methods considering oblique angle of incidence are published. The published methods are restricted to single resistive layer circuit analog absorbers or multilayered Jaumann absorbers with low permittivity spacers. General design procedures are developed in this paper for multilayered Jaumann and capacitive circuit absorbers. By expanding the scan and frequency comp...

  4. Muon tomography imaging improvement using optimized limited angle data

    Science.gov (United States)

    Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew

    2014-05-01

    Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.

  5. Evaluation of the anterior chamber angle in pseudoexfoliation syndrome.

    Science.gov (United States)

    Iwanejko, Małgorzata; Turno-Kręcicka, Anna; Tomczyk-Socha, Martyna; Kaczorowski, Kamil; Grzybowski, Andrzej; Misiuk-Hojło, Marta

    2017-08-01

    Pseudoexfoliation syndrome (PEX) is the most frequently identifiable cause of secondary open-angle glaucoma, known as pseudoexfoliation glaucoma. The exact pathophysiology and etiology of PEX and associated glaucoma remains obscure. The purpose of this study was to determine the differences in the morphology of the anterior chamber angle in people with pseudoexfoliation syndrome and pseudoexfoliation glaucoma compared to a control group. We also evaluated the correlation between intraocular pressure (IOP) and pigmentation of the angle with the amount of exfoliated material in the anterior segment. The study group was composed of 155 eyes from 103 patients aged between 43 and 86 years. Each patient underwent a complete ophthalmological examination. Some difference was found in intraocular pressure between the PEX group and the control group and between the pseudoexfoliation glaucoma group and the control group, but no significant difference was found between the 2 study groups. There was a significant difference in the incidence of some degree of pigmentation in the anterior chamber angle and no difference in the widths of the angle between each group. A significant positive relationship was observed between intraocular pressure and the degree of pigmentation of the anterior chamber angle in both the PEX group and the pseudoexfoliation glaucoma group. The results of this study indicate that the amount of pigmentation and exfoliation material in the anterior segment significantly correlates with the level of IOP and possibly with the degree of trabecular dysfunction. It seems that for clear identification of PEX and pseudoexfoliation glaucoma factors, clinical assessment appears to be insufficient.

  6. Detachment faults:Evidence for a low-angle origin

    Science.gov (United States)

    Scott, Robert J.; Lister, Gordon S.

    1992-09-01

    The origin of low-angle normal faults or detachment faults mantling metamorphic core complexes in the southwestern United States remains controversial. If σ1 is vertical during extension, the formation of, or even slip along, such low-angle normal faults is mechanically implausible. No records exist of earthquakes on low-angle normal faults in areas currently undergoing continental extension, except from an area of actively forming core complexes in the Solomon Sea, Papua New Guinea. In light of such geophysical and mechanical arguments, W. R. Buck and B. Wernicke and G. J. Axen proposed models in which detachment faults originate as high-angle normal faults, but rotate to low angles and become inactive as extension proceeds. These models are inconsistent with critical field relations in several core complexes. The Rawhide fault, an areally extensive detachment fault in western Arizona, propagated at close to its present subhorizontal orientation late in the Tertiary extension of the region. Neither the Wernicke and Axen nor Buck models predict such behavior; in fact, both models preclude the operation of low-angle normal faults. We must seek alternative explanations or modify existing models to explain the evidence that detachment faults form and operate with gentle dips.

  7. Angle of Attack Modulation for Mars Entry Terminal State Optimization

    Science.gov (United States)

    Lafleur, Jarret M.; Cerimele, Christopher J.

    2009-01-01

    From the perspective of atmospheric entry, descent, and landing (EDL), one of the most foreboding destinations in the solar system is Mars due in part to its exceedingly thin atmosphere. To benchmark best possible scenarios for evaluation of potential Mars EDL system designs, a study is conducted to optimize the entry-to-terminal-state portion of EDL for a variety of entry velocities and vehicle masses, focusing on the identification of potential benefits of enabling angle of attack modulation. The terminal state is envisioned as one appropriate for the initiation of terminal descent via parachute or other means. A particle swarm optimizer varies entry flight path angle, ten bank profile points, and ten angle of attack profile points to find maximum-final-altitude trajectories for a 10 30 m ellipsled at 180 different combinations of values for entry mass, entry velocity, terminal Mach number, and minimum allowable altitude. Parametric plots of maximum achievable altitude are shown, as are examples of optimized trajectories. It is shown that appreciable terminal state altitude gains (2.5-4.0 km) over pure bank angle control may be possible if angle of attack modulation is enabled for Mars entry vehicles. Gains of this magnitude could prove to be enabling for missions requiring high-altitude landing sites. Conclusions are also drawn regarding trends in the bank and angle of attack profiles that produce the optimal trajectories in this study, and directions for future work are identified.

  8. Hydrologic controls on junction angle of river networks

    Science.gov (United States)

    Hooshyar, Milad; Singh, Arvind; Wang, Dingbao

    2017-05-01

    The formation and growth of river channels and their network evolution are governed by the erosional and depositional processes operating on the landscape due to the movement of water. The branching angles, i.e., the angle between two adjoining channels, in drainage networks are important features related to the network topology and contain valuable information about the forming mechanisms of the landscape. Based on the channel networks extracted from 1 m Digital Elevation Models of 120 catchments with minimal human impacts across the United States, we show that the junction angles have two distinct modes with α1¯≈49.5° and α2¯≈75.0°. The observed angles are physically explained as the optimal angles that result in minimum energy dissipation and are linked to the exponent characterizing the slope-area curve. Our findings suggest that the flow regimes, debris-flow dominated or fluvial, have distinct characteristic angles which are functions of the scaling exponent of the slope-area curve. These findings enable us to understand the geomorphic signature of hydrologic processes on drainage networks and develop more refined landscape evolution models.

  9. Hybrid algorithm for rotor angle security assessment in power systems

    Directory of Open Access Journals (Sweden)

    D. Prasad Wadduwage

    2015-08-01

    Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.

  10. Positive angle kappa: a possible sign of aniridia.

    Science.gov (United States)

    Merrill, Kimberly S; Summers, C Gail

    2012-01-01

    Aniridia is a panocular disorder with variable expressivity, caused by PAX6 mutations. Foveal hypoplasia and nystagmus occur in both aniridia and albinism. Individuals with albinism have a moderately positive angle kappa. This study evaluates the angle kappa in individuals with aniridia. We performed a retrospective chart review of recorded angle kappa for individuals with aniridia. In addition, we prospectively examined the monocular corneal light reflex in each eye of patients with congenital aniridia and central fixation. We recorded other ocular characteristics and the results of gene testing. Patients with eccentric fixation or corneal surgery were excluded, as were patients with retinal abnormalities that might have influenced the angle kappa. We included sixteen individuals with congenital aniridia and found that all had a positive angle kappa. Two patients underwent pattern visual evoked potential (VEP) testing with monocular stimulation and were found to have a reversal of polarity, indicating misrouting of the retino-striate fibers. The phenotype of aniridia is variable. However, a positive angle kappa may be considered to be a frequent clinical feature of aniridia.

  11. Angle-Resolved Plasmonic Properties of Single Gold Nanorod Dimers

    Institute of Scientific and Technical Information of China (English)

    Jian Wu; Xuxing Lu; Qiannan Zhu; Junwei Zhao; Qishun Shen; Li Zhan; Weihai Ni

    2014-01-01

    Through wet-chemical assembly methods, gold nanorods were placed close to each other and formed a dimer with a gap distance*1 nm, and hence degenerated plasmonic dipole modes of individual nanorods coupled together to produce hybridized bonding and antibonding resonance modes. Previous studies using a condenser for illumination result in averaged signals over all excitation angles. By exciting an individual dimer obliquely at different angles, we demonstrate that these two new resonance modes are highly tunable and sensitive to the angle between the excitation polarization and the dimer orientation, which follows cos2u dependence. Moreover, for dimer structures with various structure angles, the resonance wavelengths as well as the refractive index sensitivities were found independent of the structure angle. Cal-culated angle-resolved plasmonic properties are in good agreement with the measurements. The assembled nanostructures investigated here are important for fundamental researches as well as potential applications when they are used as building blocks in plasmon-based optical and optoelectronic devices.

  12. Optimum Tilt Angle of Photovoltaic Panels for Some Iraq Cities

    Directory of Open Access Journals (Sweden)

    Firas Aziz Ali

    2017-12-01

    Full Text Available The operation of a photovoltaic (PV panels are influenced by its inclination angle with the horizontal surface. Thus, it must be inclined at a proper angle to raise the effectiveness of these panels. This research focuses on the computation of optimum slope angle of the PV panels in order to get the maximum incident solar radiation. Therefore, it is recommended to set the PV panels at fixed slope angle throughout the year to avoid the cost of sun tracking systems. In this research, an optimum slope angle of PV panels is investigated to get a maximum incident solar irradiance value using Bernard-Menguy-Schwartz model for some Iraq cities: Baghdad city (latitude of 33o22'N, Mosul city (latitude of 36o15'N, Zakho city (latitude of 37o10'N, and Samawah city (latitude of 31o15'N. The results showed that the optimum slope angle for these panels seems to be close to latitude of these cities.

  13. Interfacial shape and contact-angle measurement of transparent samples with confocal interference microscopy.

    Science.gov (United States)

    Fischer, D G; Ovryn, B

    2000-04-01

    A model has been developed that predicts the effective optical path through a thick, refractive specimen on a reflective substrate, as measured with a scanning confocal interference microscope equipped with a high-numerical-aperture objective. Assuming that the effective pinhole of the confocal microscope has an infinitesimal diameter, only one ray in the illumination bundle (the magic ray) contributes to the differential optical path length (OPL). A pinhole with finite diameter, however, allows rays within a small angular cone centered on the magic ray to contribute to the OPL. The model was incorporated into an iterative algorithm that allows the measured phase to be corrected for refractive errors by use of an a priori estimate of the sample profile. The algorithm was validated with a reflected-light microscope equipped with a phase-shifting laser-feedback interferometer to measure the interface shape and the 68 degrees contact angle of a silicone-oil drop on a coated silicon wafer.

  14. Interpreting contact angle results under air, water and oil for the same surfaces

    Science.gov (United States)

    Ozkan, Orkun; Yildirim Erbil, H.

    2017-06-01

    complementary hysteresis varies almost linearly with the surface free energy of the flat solid samples. This is the first report showing the relation of the surface free energy of a solid which is determined under-air with the contact angles obtained on the same solid in different three-phase systems.

  15. Dual wavelength multiple-angle light scattering system for cryptosporidium detection

    Science.gov (United States)

    Buaprathoom, S.; Pedley, S.; Sweeney, S. J.

    2012-06-01

    A simple, dual wavelength, multiple-angle, light scattering system has been developed for detecting cryptosporidium suspended in water. Cryptosporidium is a coccidial protozoan parasite causing cryptosporidiosis; a diarrheal disease of varying severity. The parasite is transmitted by ingestion of contaminated water, particularly drinking-water, but also accidental ingestion of bathing-water, including swimming pools. It is therefore important to be able to detect these parasites quickly, so that remedial action can be taken to reduce the risk of infection. The proposed system combines multiple-angle scattering detection of a single and two wavelengths, to collect relative wavelength angle-resolved scattering phase functions from tested suspension, and multivariate data analysis techniques to obtain characterizing information of samples under investigation. The system was designed to be simple, portable and inexpensive. It employs two diode lasers (violet InGaN-based and red AlGaInP-based) as light sources and silicon photodiodes as detectors and optical components, all of which are readily available. The measured scattering patterns using the dual wavelength system showed that the relative wavelength angle-resolved scattering pattern of cryptosporidium oocysts was significantly different from other particles (e.g. polystyrene latex sphere, E.coli). The single wavelength set up was applied for cryptosporidium oocysts'size and relative refractive index measurement and differential measurement of the concentration of cryptosporidium oocysts suspended in water and mixed polystyrene latex sphere suspension. The measurement results showed good agreement with the control reference values. These results indicate that the proposed method could potentially be applied to online detection in a water quality control system.

  16. Prediction of strain state of landfill considering soil foundation and angle of slope

    Directory of Open Access Journals (Sweden)

    N.S. Remez

    2016-09-01

    Full Text Available Today increase in volumes of accumulation of a household waste acts as a global serious problem. Ukraine occupies one of the first places on the list in the world by garbage quantity per capita. Already about 7% of the territory in the country are under municipal solid waste, besides more than 52 million tons of household waste are annually formed. In this regard, sharply raises the question of the stability of landfills after their closure for further use as a basis for engineering constructions and designs. Aim: The aim of this research is to establish the dependence of settlement of the closed landfill on the properties of the underlying soil, as well as the landfill slope angle to predict the possibility of using it as a basis for construction. Materials and Methods: The phased load of landfill by waste layers and angle of inclination were taken into account during the research. The covering and underlying layers are described by Coulomb-Mohr model. The body of landfill was modeled as a weak ground considering its creep. The Soft Soil Creep (SSC model was applied for this. The finite elements method was used for numerical solution of the problem. Results: In this work the mathematical model of sedimentation of municipal solid waste constructed for the first time, taking into account geometrical and physical and mechanical parameters of landfill and soil base, which will allow further prediction the use of landfill for building structures on it for various purposes. As a result of researches was found that with decreasing of inclination angle of the landfill slope there is a significant decrease in settlement. Thus, while reducing the angle from 75° to 30° the settlement is reduced by 5...22% depending on the type of soil foundation. The largest landfill reduction is observed for the least dense soil (sand.

  17. A modified multi-echo AFI for simultaneous B1(+) magnitude and phase mapping.

    Science.gov (United States)

    Choi, Narae; Lee, Joonsung; Kim, Min-Oh; Shin, Jaewook; Kim, Dong-Hyun

    2014-05-01

    To simultaneously acquire the B1(+) magnitude and B1(+) phase, a modified multi-echo actual flip-angle imaging (AFI) sequence is proposed. A multi-echo gradient echo sequence was integrated into every even TR of AFI to measure both magnitude and phase of B1(+). In addition, to increase the signal-to-noise ratio of the B1(+) phase, a double-angle multi-echo AFI sequence, in which the flip-angle of the RF pulses is α at the odd TR and 2α at the even TR is proposed. Images were simulated to evaluate the performance of this method under various imaging and physical parameters. The performance was compared to the spin echo based B1(+) mapping method in phantom and in vivo studies. In the simulation, the estimation error decreased as TR1/T1 decreased and TR2/TR1 increased. For double-angle AFI, flip-angle ranges that could estimate B1(+) magnitude and phase better than the original AFI were identified. Using the proposed method, B1(+) phase estimation was similar to spin echo phase. In the phantom study, correlation coefficient between the estimated B1(+) phases using the spin echo and the proposed method was 0.9998. The results show that the B1(+) magnitude and B1(+) phase can be simultaneously acquired and accurately estimated using the proposed double-angle AFI method. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Small-angle X-ray scattering at high brilliance european synchrotrons for biotechnology and nano-technology

    Energy Technology Data Exchange (ETDEWEB)

    Svergun, D.; Malfois, M. [EMBL c/o DESY, Hamburg (Germany); Svergun, D. [Institute of Crystallography, Russian Academy of Sciences, Moscow (Russian Federation); Douka, M. [Commission Europeenne, DG III, Bruxelles (Belgium); Riekel, Ch. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Perez, J. [Soleil, 91 - Saclay (France); Roessle, M. [European Molecular Biology Laboratory (EMBL), 38 - Grenoble (France); Amenitsch, H. [IBN/Elettra (Germany); Gunter Grossman, J. [Daresbury Synchrotron Radiation Source (SRS) (United Kingdom); Vestergaard, B. [University of Pharmaceutical Sciences, Copenhagen (Denmark); Receveur-Brechot, V. [Centre National de la Recherche Scientifique (CNRS/AFMB), 13 - Marseille (France); Roth, St.V. [Deutsches Elektronen Synchrotron (HASYLAB), Hamburg (Germany); Ferrari, E. [National Institute for the Physics of Matter (CNR-INFM), Trieste (Italy)

    2007-07-01

    Different issues such as micro-fluidic devices for SAXS (small-angle X-ray diffraction), the use of electro-spray and ion trapping for SAXS in the gas phase, the study of flexible and disordered proteins through SAXS, the time-resolved SAXS studies in solution, or the study of nano-structured soft materials, were addressed in this workshop. This document gathers the transparencies of the presentations.

  19. Doppler angle correction in the measurement of intrarenal parameters

    Directory of Open Access Journals (Sweden)

    Mennitt K

    2011-03-01

    Full Text Available Jing Gao¹, Keith Hentel¹, Qiang Zhu², Teng Ma², George Shih¹, Kevin Mennitt¹, Robert Min¹¹Department of Radiology, New York Presbyterian Hospital, Weill Cornell Medical College, NY, USA; ²Division of Diagnostic Ultrasound, Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, ChinaBackground: The aim of this study was to assess differences in intrarenal artery Doppler parameters measured without and with Doppler angle correction.Methods: We retrospectively reviewed color duplex sonography in 30 normally functioning kidneys (20 native kidneys in 10 subjects and 10 transplanted kidneys in 10 subjects performed between January 26, 2010 and July 26, 2010. There were 10 age-matched men and10 age-matched women (mean 39.8 ± 12.2, range 21–60 years in this study. Depending on whether the Doppler angle was corrected in the spectral Doppler measurement, Doppler parameters including peak systolic velocity (PSV, end-diastolic velocity (EDV, and resistive index (RI measured at the interlobar artery of the kidney were divided into two groups, ie, initial Doppler parameters measured without Doppler angle correction (Group 1 and remeasured Doppler parameters with Doppler angle correction (Group 2. Values for PSV, EDV, and RI measured without Doppler angle correction were compared with those measured with Doppler angle correction, and were analyzed statistically with a paired-samples t-test.Results: There were statistical differences in PSV and EDV at the interlobar artery in the upper, mid, and lower poles of the kidney between Group 1 and Group 2 (all P < 0.001. PSV and EDV in Group 1 were significantly lower than in Group 2. RI in Group 1 was the same as that in Group 2 in the upper, mid, and lower poles of the kidneys.Conclusion: Doppler angle correction plays an important role in the accurate measurement of intrarenal blood flow velocity. The true flow velocity converted from the maximum Doppler velocity shift

  20. [Anatomy of fractures of the inferior scapular angle].

    Science.gov (United States)

    Bartoníček, J; Tuček, M; Malík, J

    2018-01-01

    The aim of this study is to describe the anatomy of fractures of the inferior angle and the adjacent part of the scapular body, based on 3D CT reconstructions. In a series of 375 scapular fractures, we identified a total of 20 fractures of the inferior angle of the scapular body (13 men, 7 women), with a mean patient age of 50 years (range 3373). In all fractures, 3D CT reconstructions were obtained, allowing an objective evaluation of the fracture pattern with a focus on the size and shape of the inferior angle fragment, propagation of the fracture line to the lateral and medial borders of the infraspinous part of the scapular body, fragment displacement and any additional fracture of the ipsilateral scapula and the shoulder girdle. We identified a total of 5 types of fracture involving the distal half of the infraspinous part of the scapular body. The first type, recorded in 5 cases, affected only the apex of the inferior angle, with a small part of the adjacent medial border. The second type, occurring in 4 cases, involved fractures separating the entire inferior angle. The third type, represented by 4 cases, was characterized by a fracture line starting medially close above the inferior angle and passing proximolaterally. The separated fragment had a shape of a big drop, carrying also the distal half of the lateral pillar in addition to the inferior angle. In the fourth type identified in 5 fractures, the separated fragment was formed both by the inferior angle and a variable part of the medial border. The fifth type, being by its nature a transition to the fracture of the infraspinous part of the body, was recorded in 2 cases, with the same V-shaped fragment. Fractures of the inferior angle and the adjacent part of the scapular body are groups of fractures differing from other infraspinous fractures of the scapular body. Although these fractures are highly variable in terms of shape, they have the same course of fracture line and the manner of displacement