Sample records for pseudomorphic ingaas lasers

  1. Pseudomorphic Bipolar Quantum Resonant-Tunneling Transistor

    National Research Council Canada - National Science Library

    Seabaugh, Alan C; Frensley, William R; Randall, John N; Reed, Mark A; Farrington, Dewey L; Matyi, Richard J


    ...+ InGaAs quantum well of a double-barrier resonant-tunneling structure. The heterojunction transistor consists of an n-GaAs emitter and collector, undoped AlAs tunnel barriers, and a pseudomorphic p...

  2. Broadband Tuning (170nm) of InGaAs Quantum Well Lasers


    Eng, L. E.; Mehuys, D. G.; Mittelstein, M.; Yariv, A.


    The wavelength tuning properties of strained InGaAs quantum well lasers using an external grating for feedback is reported. Tunable laser oscillation has been observed over a range of 170 nm, between 840 and 1010 nm, under pulsed current excitation. The optimal conditions for broadband tunability for the InGaAs lasers are different from GaAs lasers, which is attributed to a difference in spectral gain curves. Together with an optimised GaAs quantum well laser the entire region between 740 and...

  3. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  4. High-power single-element pseudomorphic InGaAs/GaAs/AlGaAs single quantum well lasers for pumping Er-doped fiber amplifiers (United States)

    Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.


    A 980-nm-ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well laser with a maximum single-ended output power of 240 mW from a facet-coated device is fabricated from a graded-index separate-confinement heterostructure grown by molecular-beam epitaxy. The laser oscillates in the fundamental spatial mode, allowing 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. Life testing at an output power of 30 mW per facet from uncoated devices reveals a superior reliability to GaAs/AlGaAs quantum-well lasers but also the need for protective facet coatings for long term reliability at power levels required for pumping Er-doped fiber amplifiers.

  5. Vertically coupled double-microdisk lasers composed of InGaAs quantum dots-in-a-well active layers (United States)

    Hsing, J. Y.; Tzeng, T. E.; Lay, T. S.; Shih, M. H.


    We report the epitaxy, fabrication, and measurement of vertically coupled double-microdisk lasers using InGaAs quantum dots-in-a-well as the optical gain material. The bonding and anti-bonding photonic molecule laser modes are simultaneously observed at room temperature (T = 300 K). The optical coupling is confirmed by measuring the double disks for three different air gaps of 100 nm, 200 nm, and 480 nm, respectively. The coupling strengths for the photonic molecule bonding mode MB1,9 and anti-bonding mode MA1,9 between the adjacent microdisks are equal to 17.4 THz for 100 nm air gap, and 5.2 THz for 200 nm air gap, respectively. The refractive index sensing experiments show the lasing wavelength sensitivity of 60 nm/RIU for the vertically coupled double-microdisk laser of 100 nm air gap.

  6. Yb:LiNbO3 Annealed/Proton-Exchanged Waveguide Lasers Pumped by InGaAs Laser Diode at 980 nm Wavelength (United States)

    Fujimura, Masatoshi; Tsuchimoto, Hidekazu; Suhara, Toshiaki


    Various waveguide lasers in rare-earth-doped LiNbO3 have been studied, and an Yb:LiNbO3 annealed/proton-exchanged (APE) waveguide laser pumped at a 918 nm wavelength has been reported recently. In this paper, an Yb:LiNbO3 APE waveguide laser pumped at a 980 nm wavelength is proposed and demonstrated. Pumping at 980 nm allows the use of a commercially available InGaAs laser diode for a pump source instead of a Ti:Al2O3 laser used in the previous work. The longer pump wavelength is favorable to avoid photorefractive damage. A prototype device was designed, fabricated and tested. Laser oscillation was achieved at 1061 nm wavelength with a threshold pump power of 30 mW. An output power of 4.3 mW was obtained, which was three-orders of magnitude larger than that obtained in the previous work.

  7. Measurements of loss and gain of optically pumped InGaAs semiconductor lasers based on the photoluminescence spectra from dual facets (United States)

    Jia, Y.; Yu, Q.-N.; Lu, W.; Zhang, J.; Zhang, X.; Ning, Y.-Q.; Wu, J.


    In this paper, the loss and gain characteristics of optically-pumped InGaAs/GaAs quantum well lasers are measured based on the photoluminescence spectra from dual facets of a single laser device. The device is pumped by 808nm fiber coupled semiconductor lasers controlled with pulsing signal and beam shaping system to reduce the thermal effect. The result of loss spectra is consistent with gain spectra well. In addition, the special double-peak configuration in the loss and gain spectra is observed and analyzed, in term of the strain mechanism and band structure of InGaAs quantum well. The results will be very helpful to the study and design of the InGaAs semiconductor lasers

  8. InGaAs quantum-well saturable absorbers for a diode-pumped passively Q-switched Nd:YAG laser at 1123 nm. (United States)

    Huang, J Y; Liang, H C; Su, K W; Lai, H C; Chen, Y-F; Huang, K F


    A low-loss semiconductor saturable absorber based on InGaAs quantum wells was developed for highly efficient Q switching of a diode-pumped Nd:YAG laser operating at 1123 nm. With an incident pump power of 16 W, an average output power of 3.1 W with a Q-switched pulse width of 77 ns at a pulse repetition rate of 100 kHz was obtained.

  9. InP-based pseudomorphic InAs/InGaAs triangular quantum well lasers with bismuth surfactant. (United States)

    Ji, W Y; Gu, Y; Zhang, Y G; Ma, Y J; Chen, X Y; Gong, Q; Du, B; Shi, Y H


    An InP-based 2.1 μm InAs/In 0.53 Ga 0.47 As triangular quantum well laser grown with Bi surfactant has shown improved performance in comparison to the device with the same structure but grown without Bi surfactant. Under continuous-wave driving operation, the output light power is increased from 32.6 to 37.5 mW at the same injecting current of 850 mA at 200 K. The external differential and internal quantum efficiencies for the laser with Bi surfactant are 18.4% and 41%, respectively, which are correspondingly higher than 13.1% and 31% for the reference device. Furthermore, a decreased internal loss from 20.9 to 17.6  cm -1 for the Bi surfactant laser is also observed. These results suggest that Bi surfactant is promising for further enhancing performances of strained quantum well laser diodes.

  10. Terahertz radiation using log-spiral-based low-temperature-grown InGaAs photoconductive antenna pumped by mode-locked Yb-doped fiber laser. (United States)

    Kong, Moon Sik; Kim, Ji Su; Han, Sang Pil; Kim, Namje; Moon, Kiwon; Park, Kyung Hyun; Jeon, Min Yong


    We demonstrate a terahertz (THz) radiation using log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules and a passively mode-locked 1030 nm Yb-doped fiber laser. The passively mode-locked Yb-doped fiber laser is easily implemented with nonlinear polarization rotation in the normal dispersion using a 10-nm spectral filter. The laser generates over 250 mW of the average output power with positively chirped 1.58 ps pulses, which are dechirped to 127 fs pulses using a pulse compressor outside the laser cavity. In order to obtain THz radiation, a home-made emitter and receiver constructed from log-spiral-based LTG InGaAs PCA modules were used to generate and detect THz signals, respectively. We successfully achieved absorption lines over 1.5 THz for water vapor in free space. Therefore, we confirm that a mode-locked Yb-doped fiber laser has the potential to be used as an optical source to generate THZ waves.

  11. Growth and fabrication of high-performance 980-nm strained InGaAs quantum-well lasers for erbium-doped fiber amplifiers (United States)

    Chand, Naresh; Chu, Sung Nee George; Dutta, Niloy K.; Lopata, John; Geva, Michael; Syrbu, Alexei; Mereutza, Alexandru Z.; Yakovlev, Vladimir P.


    A 980-nm strained InGaAs quantum-well (QW) laser is the preferred pump source for an Er(3+)-doped fiber amplifier for the next generation of lightwave communication systems because of lower noise, high power conversion efficiency, and low temperature sensitivity. Obtaining long lifetime, narrow far field, high power output in the fundamental transverse mode centered at 980 +/- 5 nm, and planarity of the structure while maintaining low threshold current density (J(sub th)) and high differential quantum efficiency (eta) are the major challenges. We report work aimed at optimizing the design, growth, and fabrication of 980-nm lasers to address some of these issues. We demonstrate very low broad-area J(sub th) of 47 cm(exp -2), operation up to 200 C, and a very low linewidth enhancement factor of 0.54 of these lasers. We have also monolithically integrated 980-nm lasers with 850-nm GaAs QW lasers.

  12. Laser-induced breakdown spectra in the infrared region from 750 to 2000 nm using a cooled InGaAs diode array detector. (United States)

    Radziemski, Leon J; Cremers, David A; Bostian, Melissa; Chinni, Rosemarie C; Navarro-Northrup, Claudia


    Emissions from a laser-induced breakdown spectroscopy (LIBS) plasma were examined in the region from 750 nm to 2000 nm. A Nd:YAG laser at 532 nm and 75 mJ per pulse were used to initiate the plasma. The detector was an InGaAs 1024 element diode array cooled to -100 degrees C. An f/4 spectrometer with gratings blazed for this region was used as the dispersive element. Survey spectra of soils, uranium, and other selected samples were taken in air and in a flow cell purged with argon at a local pressure of 0.84 x 10(5) Pa. Strong infrared lines of neutral aluminum, carbon, potassium, silicon, sulfur, and uranium, as well as once ionized lines of calcium, were observed out to 1670 nm. For potassium, the detection limits of the infrared (IR) system were compared with those obtained from a standard intensified charge-coupled device (ICCD) spectrometer arrangement, using the 766-770 nm doublet. Detection limits with the IR system were twice as high as those obtained from the ICCD detector.

  13. Submilliampere threshold current pseudomorphic InGaAs/AlGaAs buried-heterostructure quantum well lasers grown by molecular beam epitaxy


    Eng, L. E.; Chen, T. R.; Sanders, S.; Zhuang, Y. H.; Zhao, B.; Yariv, A.; Morkoç, H.


    We report on low threshold current strained InGaAs/AlGaAs single quantum well lasers grown by molecular beam epitaxy. Broad-area threshold current densities of 114 A/cm2 at 990 nm were measured for 1540-µm-long lasers. Threshold currents of 2.4 mA at 950 nm were obtained for an uncoated buried-heterostructure device with a 2-µm-wide stripe and 425-µm-long cavity. With reflective coatings the best device showed 0.9 mA threshold current (L=225 µm). Preliminary modulation measurements show bandw...

  14. Monolithic InGaAs Nanowire Array Lasers on Silicon-on-Insulator Operating at Room Temperature (United States)

    Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C.; Morales, Juan S. D.; Senanayake, Pradeep; Prikhodko, Sergey V.; Ochalski, Tomasz J.; Huffaker, Diana L.


    Chip-scale integrated light sources are a crucial component in a broad range of photonics applications. III-V semiconductor nanowire emitters have gained attention as a fascinating approach due to their superior material properties, extremely compact size, and the capability to grow directly on lattice-mismatched silicon substrates. Although there have been remarkable advances in nanowire-based emitters, their practical applications are still in the early stages due to the difficulties in integrating nanowire emitters with photonic integrated circuits (PICs). Here, we demonstrate for the first time optically pumped III-V nanowire array lasers monolithically integrated on silicon-on-insulator (SOI) platform. Selective-area growth of purely single-crystalline InGaAs/InGaP core/shell nanowires on an SOI substrate enables the nanowire array to form a photonic crystal nanobeam cavity with superior optical and structural properties, resulting in the laser to operate at room temperature. We also show that the nanowire array lasers are effectively coupled with SOI waveguides by employing nanoepitaxy on a pre-patterned SOI platform. These results represent a new platform for ultra-compact and energy-efficient optical links, and unambiguously point the way toward practical and functional nanowire lasers.

  15. Intersubband transitions in pseudomorphic InGaAs/GaAs/AlGaAs multiple step quantum wells


    Li, H. S.; Chen, Y. W.; Wang, K. L.; Lie, D. Y. C.


    Intersubband transitions from the ground state to the first and second excited states in pseudomorphic AlGaAs/InGaAs/GaAs/AlGaAs multiple step quantum wells have been observed. The step well structure has a configuration of two AlGaAs barriers confining an InGaAs/GaAs step. Multiple step wells were grown on GaAs substrate with each InGaAs layer compressively strained. During the growth, a uniform growth condition was adopted so that inconvenient long growth interruptions and fast temperature ...

  16. SWIR InGaAs focal plane arrays in France (United States)

    Rouvié, A.; Huet, O.; Hamard, S.; Truffer, J. P.; Pozzi, M.; Decobert, J.; Costard, E.; Zécri, M.; Maillart, P.; Reibel, Y.; Pécheur, A.


    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The study of InGaAs FPA has begun few years ago with III-VLab, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has led to put quickly on the market a 320x256 InGaAs module. The recent transfer of imagery activities from III-VLab to Sofradir allows developing new high performances products, satisfying customers' new requirements. Especially, a 640x512 InGaAs module with a pitch of 15µm is actually under development to fill the needs of low light level imaging.

  17. High transconductance InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors (United States)

    Ketterson, A.; Moloney, M.; Masselink, W. T.; Klem, J.; Fischer, R.


    Pseudomorphic In0.15Ga0.85As/A10.15Ga0.85As modulation-doped field effect transistors (MODFET's) exhibiting extremely good dc characteristics have been successfully fabricated. dc transconductance in these strained-layer structures of 270 mS/mm was measured for 1-micron gate, normally-on devices at 300 K. Maximum drain current levels are 290 mA/mm, with excellent pinch-off and saturation characteristics. The transconductance increased to 360 mS/mm at 77 K while no persistent photoconductivity or drain collapse was observed. Preliminary microwave results indicate a 300-K current gain cutoff frequency of about 20 GHz. These results are equivalent to the best GaAs/AlGaAs MODFET results and are due in part to the improved transport properties and carrier confinement in the InGaAs quantum well.

  18. InGaAsGaAs pseudomorphic heterostructure transistors prepared by MOVPE (United States)

    Liu, Wen-Chau; Laih, Lih-Wen; Tsai, Jung-Hui; Lin, Kun-Wei; Cheng, Chin-Chuan


    In this paper, we will demonstrate two new InGaAs-GaAs pseudomorphic heterostructure transistors prepared by MOVPE technology, i.e. InGaAs-GaAs graded-concentration doping-channel MIS-like field effect transistors (FET) and heterostructure-emitter and heterostructure-base (InGaAs-GaAs) transistors (HEHBT). For the doping-channel MIS-like FET, the graded In 0.15Ga 0.85As doping-channel structure is employed as the active channel. For a 0.8 × 100 μm 2 gate device, a breakdown voltage of 15 V, a maximum transconductance of 200 mS/mm, and a maximum drain saturation current of 735 mA/mm are obtained. For the HEHBT, the confinement effect for holes is enhanced owing to the presence of GaAs/InGaAs/GaAs quantum wells. Thus, the emitter injection efficiency is increased and a high current gain can be obtained. Also, due to the lower surface recombination velocity of InGaAs base layers, the potential spike of the emitter-base (E-B) junction can be reduced significantly. This can provide a lower collector-emitter offset voltage. For an emitter area of 4.9 × 10 -5 cm 2, the common emitter current gain of 120 and the collector-emitter offset voltage of 100 mV are obtained.

  19. Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency (United States)

    Larsson, Anders; Cody, Jeffrey; Lang, Robert J.


    Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.

  20. Non-coherent growth patches in pseudomorphic films: Unusual strain relief in electrodeposited Co on Cu(001)

    DEFF Research Database (Denmark)

    Schindler, W.; Koop, T.; Kazimirov, A.


    The critical thickness for pseudomorphic Co growth on Cu(001) is found to be independent of the onset of lattice constant relaxation. The pseudomorphic film relieves strain by local formation of orthomorphic growth patches within the pseudomorphic matrix. This unusual relaxation mechanism of elec...

  1. InGaAs focal plane array developments at III-V Lab (United States)

    Rouvié, Anne; Reverchon, Jean-Luc; Huet, Odile; Djedidi, Anis; Robo, Jean-Alexandre; Truffer, Jean-Patrick; Bria, Toufiq; Pires, Mauricio; Decobert, Jean; Costard, Eric


    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. For few years, III-VLab has been studying InGaAs imagery, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has lead to put quickly on the market a 320x256 InGaAs module, exhibiting high performances in terms of dark current, uniformity and quantum efficiency. In this paper, we present the last developments achieved in our laboratory, mainly focused on increasing the pixels number to VGA format associated to pixel pitch decrease (15μm) and broadening detection spectrum toward visible wavelengths. Depending on targeted applications, different Read Out Integrated Circuits (ROIC) have been used. Low noise ROIC have been developed by CEA LETI to fit the requirements of low light level imaging whereas logarithmic ROIC designed by NIT allows high dynamic imaging adapted for automotive safety.

  2. Manufacturing of calcium phosphate scaffolds by pseudomorphic transformation of gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Batista, H. de.; Batista Cardoso, M.; Sales Vasconcelos, A.; Vinicius Lia Fook, M.; Rodriguez Barbero, M. A.; Garcia Carrodeguas, R.


    Carbonated hydroxyapatite (CHAp) and β-tricalcium phosphate (β-TCP) have been employed for decades as constituents of scaffolds for bone regeneration because they chemically resemble bone mineral. In this study, the feasibility to manufacture CHAp/β-TCP scaffolds by pseudomorphic transformation of casted blocks of gypsum was investigated. The transformation was carried out by immersing the precursor gypsum block in 1 M (NH{sub 4}){sub 2}HPO{sub 4}/1.33 M NH{sub 4}OH solution with liquid/solid ratio of 10 mL/g and autoclaving at 120 degree centigrade and 203 kPa (2 atm) for 3 h at least. Neither shape nor dimensions significantly changed during transformation. The composition of scaffolds treated for 3 h was 70 wt.% CHAp and 30 wt.% β-TCP, and their compressive and diametral compressive strengths were 6.5 ± 0.7 and 5.3 ±0.7 MPa, respectively. By increasing the time of treatment to 6 h, the composition of the scaffold enriched in β-TCP (60 wt.% CHAp and 40 wt.% β-TCP) but its compressive and diametral compressive strengths were not significantly affected (6.7 ± 0.9 and 5.4 ± 0.6 MPa, respectively). On the basis of the results obtained, it was concluded that this route is a good approach to the manufacturing of biphasic (CHAp/β-TCP) scaffolds from previously shaped pieces of gypsum. (Author)

  3. Widely Tunable High-Power Tapered Diode Laser at 1060 nm

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Sumpf, Bernd; Erbert, Götz


    We report a large tuning range from 1018 to 1093 nm from a InGaAs single quantum-well 1060-nm external cavity tapered diode laser. More than 2.5-W output power has been achieved. The tuning range is to our knowledge the widest obtained from a high-power InGaAs single quantum-well tapered laser...

  4. Characteristics of Monolithically Integrated InGaAs Active Pixel Image Array (United States)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.


    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate.

  5. Theoretical Study of Operational Limits of High-Speed Quantum Dot Lasers (United States)


    strained -layer InGaAs quantum - well improvement of an InAs quantum dot AlGaAs –GaAs– InGaAs –InAs... AlGaAs –GaAs– InGaAs heterostructure diode laser operation Appl. Phys. Lett. 80 1126–8 [20] Walter G, Chung T and Holonyak N 2002 Coupled-stripe quantum - well ...8] Tokranov V, Yakimov M, van Eisden J and Oktyabrsky S 2006 Tunnel quantum well -on-dots InGaAs –InAs high-gain medium for laser diodes Proc.

  6. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Ghysels, Günther; Murray, Andrew S.


    We report on quartz Optically Stimulated Luminescence (OSL) dating of the infill of 14 relict sand wedges and composite-wedge pseudomorphs at 5 different sites in Flanders, Belgium. A laboratory dose recovery test indicates that the single-aliquot regenerative-dose (SAR) procedure is suitable...

  7. InGaAs focal plane array developments and perspectives (United States)

    Rouvié, A.; Coussement, J.; Huet, O.; Truffer, J. P.; Pozzi, M.; Oubensaid, E. H.; Hamard, S.; Chaffraix, V.; Costard, E.


    SWIR spectral band is an attractive domain thanks to its intrinsic properties. Close to visible wavelengths, SWIR images interpretation is made easier for field actors. Besides complementary information can be extracted from SWIR band and bring significant added value in several fields of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). Among the various new technologies able to detect SWIR wavelengths, InGaAs appears as a key technology. Initially developed for optical telecommunications, this material guaranties performances, stability and reliability and is compatible with attractive production capacity. Thanks to high quality material, very low dark current levels can be achieved at ambient temperature. Then uncooled operation can be set up, allowing compact and low power systems. Since the recent transfer of InGaAs imaging activities from III-Vlab, Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm sensor appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE and the perspectives of InGaAs new developments.

  8. 12-band $\\textbf{k}\\cdot\\textbf{p}$ model for dilute bismide alloys of (In)GaAs derived from supercell calculations


    Broderick, Christopher A.; Usman, Muhammad; O'Reilly, Eoin P.


    Incorporation of bismuth (Bi) in dilute quantities in (In)GaAs has been shown to lead to unique electronic properties that can in principle be exploited for the design of high efficiency telecomm lasers. This motivates the development of simple models of the electronic structure of these dilute bismide alloys, which can be used to evaluate their potential as a candidate material system for optical applications. Here, we begin by using detailed calculations based on an $sp^{3}s^{*}$ tight-bind...

  9. Low-noise behavior of InGaAs quantum-well-structured modulation-doped FET's from 10 to the -2nd to 10 to the 8 Hz (United States)

    Liu, Shih-Ming J.; Das, Mukunda B.; Peng, Chin-Kun; Klem, John; Henderson, Timothy S.


    Equivalent gate noise voltage spectra of 1-micron gate-length modulation-doped FET's with pseudomorphic InGaAs quantum-well structure have been measured for the frequency range of 0.01 Hz to 100 MHz and commpared with the noise spectra of conventional AlGaAs/GaAs MODFET's and GaAs MESFET's. The prominent generation-recombination (g-r) noise bulge commonly observed in the vicinity of 10 kHz in conventional MODFET's at 300 K does not appear in the case of the new InGaAs quantum-well MODFET. Instead, its noise spectra indicate the presence of low-intensity multiple g-r noise components superimposed on a reduced 1/f noise. The LF noise intensity in the new device appears to be the lowest among those observed in any MODFET or MESFET. The noise spectra at 82 K in the new device represent nearly true 1/f noise. This unusual low-noise behavior of the new structure suggests the effectiveness of electron confinement in the quantum well that significantaly reduces electron trapping in the n-AlGaAs, and thus eliminates the g-r noise bulge observed in conventional MODFET's.

  10. CdSe colloidal nanocrystals monolithically integrated in a pseudomorphic semiconductor epilayer

    Energy Technology Data Exchange (ETDEWEB)

    Larramendi, Erick M. [Physics Faculty-ICTM, University of Havana, Colina Universitaria, C.P. 10400 Havana (Cuba); Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Department Physik, Center for Optoelectronics and Photonics Paderborn (CeOPP), Universitaet Paderborn, Warburger Strasse 100, D-33098 Paderborn (Germany); Schoeps, Oliver; Woggon, Ulrike [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Strasse des 17. Juni 135, D-10623 Berlin (Germany); Artemyev, Mikhail V. [Institute for Physico-Chemical Problems, Belarussian State University, Minsk 220080 (Belarus); Schikora, Detlef; Lischka, Klaus [Department Physik, Center for Optoelectronics and Photonics Paderborn (CeOPP), Universitaet Paderborn, Warburger Strasse 100, D-33098 Paderborn (Germany)


    As optically active emitters in a semiconductor matrix, core/shell and bare CdSe colloidal nanocrystals (CNCs) were monolithically incorporated in ZnSe pseudomorphic epilayers by molecular beam epitaxy (MBE). A suspension of wet chemically synthesized CNCs was sprayed ex-situ over a pseudomorphic ZnSe/GaAs(001) heterostructure using a nebulizer. Subsequently, the matrix material growth was resumed to form a capping layer by a slow MBE growth mode. Structural investigations show high crystalline quality and pseudomorphic epitaxial character of the whole hybrid CNC-matrix structure. The core/shell CNCs remain optically active following the embedding process. Their emission is blue shifted without a significant change on the spectral shape, and shows the same temperature dependence as that of the free exciton peak energy in zinc-blende CdSe at temperatures above 80 K. Our optical characterization of the samples showed that the embedded CNCs were stable and that the structure of the host was preserved. These results are encouraging for the fabrication of more complex optoelectronic devices based on CNCs.

  11. CdSe colloidal nanocrystals monolithically integrated in a pseudomorphic semiconductor epilayer (United States)

    Larramendi, Erick M.; Schöps, Oliver; Artemyev, Mikhail V.; Schikora, Detlef; Lischka, Klaus; Woggon, Ulrike


    As optically active emitters in a semiconductor matrix, core/shell and bare CdSe colloidal nanocrystals (CNCs) were monolithically incorporated in ZnSe pseudomorphic epilayers by molecular beam epitaxy (MBE). A suspension of wet chemically synthesized CNCs was sprayed ex-situ over a pseudomorphic ZnSe/GaAs(001) heterostructure using a nebulizer. Subsequently, the matrix material growth was resumed to form a capping layer by a slow MBE growth mode. Structural investigations show high crystalline quality and pseudomorphic epitaxial character of the whole hybrid CNC-matrix structure. The core/shell CNCs remain optically active following the embedding process. Their emission is blue shifted without a significant change on the spectral shape, and shows the same temperature dependence as that of the free exciton peak energy in zinc-blende CdSe at temperatures above 80 K. Our optical characterization of the samples showed that the embedded CNCs were stable and that the structure of the host was preserved. These results are encouraging for the fabrication of more complex optoelectronic devices based on CNCs.

  12. Testing relativity again, laser, laser, laser, laser

    NARCIS (Netherlands)

    Einstein, A.


    laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser,

  13. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher


    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... is obtained by exciting and detecting the photoluminescence through a microscope objective which is located inside the cryostat. Furthermore, e-beam lithography and mesa etching have been used to reduce the size of the detection area to a few hundred nanometers in diameter. These techniques allow us...

  14. The paleomagnetism of the salt pseudomorph beds of middle cambrian age from the salt range, West Pakistan

    NARCIS (Netherlands)

    Wensink, H.


    Oriented cores for a paleomagnetic investigation were collected from ten sites in the sedimentary redbeds of the Salt Pseudomorph Beds of Middle Cambrian age m the Salt Range near Khcwra. All samples were subjected to progressive, thermal demagnetization procedures which revealed the

  15. Characterization of NIR InGaAs imager arrays for the JDEM SNAP mission concept


    Seshadri, S; Cole, M D; Hancock, B.; Ringold, P.; Wrigley, C; Bonati, M.; Brown, M. G.; Schubnell, M.; Rahmer, G.; Guzman, D.; Figer, D.; Tarle, G; Smith, R M; Bebek, C.


    We present the results of a study of the performance of InGaAs detectors conducted for the SuperNova Acceleration Probe (SNAP) dark energy mission concept. Low temperature data from a nominal 1.7um cut-off wavelength 1kx1k InGaAs photodiode array, hybridized to a Rockwell H1RG multiplexer suggest that InGaAs detector performance is comparable to those of existing 1.7um cut-off HgCdTe arrays. Advances in 1.7um HgCdTe dark current and noise initiated by the SNAP detector research and devel...

  16. The origin of low-frequency negative transconductance dispersion in a pseudomorphic HEMT (United States)

    Balakrishnan, V. R.; Kumar, Vikram; Ghosh, Subhasis


    Measurements of low-frequency transconductance dispersion at different temperatures and conductance deep level transient spectroscopic (CDLTS) studies of an AlGaAs/InGaAs pseudomorphic high electron mobility transistor (p-HEMT) were carried out. The experimental results show the presence of defect states at the AlGaAs/InGaAs hetero-interface. A mobility degradation model was developed to explain the low-frequency negative transconductance dispersion as well as the apparent 'hole' like peaks observed in the CDLTS spectra. This model incorporates a time-dependent change in the two-dimensional electron gas mobility due to ionized impurity scattering by the remaining charge states at the adjoining AlGaAs/InGaAs hetero-interface.

  17. Off state breakdown behavior of AlGaAs / InGaAs field plate pHEMTs

    Energy Technology Data Exchange (ETDEWEB)

    Palma, John; Mil' shtein, Samson [Advanced Electronic Technology Center, Dept. of Electrical and Computer Engineering University of Massachusetts, 1 University Ave., Lowell, MA 01854 (United States)


    Off-state breakdown voltage, V{sub br}, is an important parameter determining the maximum power output of microwave Field Effect Transistors (FETs). In recent years, the use of field plates has been widely adopted to significantly increase V{sub br}. This important technological development has extended FET technologies into new areas requiring these higher voltages and power levels. Keeping with this goal, field plates were added to an existing AlGaAs / InGaAs pseudomorphic High Electron Mobility Transistor (pHEMT) process with the aim of determining the off-state breakdown mechanism and the dependency of V{sub br} on the field plate design. To find the mechanism responsible for breakdown, temperature dependent off-state breakdown measurements were conducted. It was found that at low current levels, the temperature dependence indicates thermionic field emission at the Schottky gate and at higher current levels, impact ionization is indicated. The combined results imply that impact ionization is ultimately the mechanism that is responsible for the breakdown in the tested transistors, but that it is preceded by thermionic field emission from the gate. To test the dependence of V{sub br} upon the field plate design, the field plate length and the etch depth through the highly-doped cap layer under the field plate were varied. Also, non-field plate devices were tested along side field plate transistors. It was found that the length of the etched region under the field plate is the dominant factor in determining the off-state breakdown of the more deeply etched devices. For less deeply etched devices, the length of the field plate is more influential. The influence of surface states between the highly doped cap layer and the passivation layer along the recess are believed to have a significant influence in the case of the more deeply etched examples. It is believed that these traps spread the electric field, thus raising the breakdown voltage. Three terminal breakdown

  18. Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning (United States)

    Kim, Honghyuk; Choi, Jonathan; Lingley, Zachary; Brodie, Miles; Sin, Yongkun; Kuech, Thomas F.; Gopalan, Padma; Mawst, Luke J.


    Semiconductor laser diodes (LD) were demonstrated employing a strained (In)GaAs quantum dot (QD) active region grown by metalorganic vapor phase epitaxy (MOVPE) on nominally exact (1 0 0) GaAs substrates using selective area epitaxy (SAE). The SAE QD growth employed a SiNx nano-patterned mask defined by diblock copolymer (BCP) lithography. In-situ etching using carbon tetrabromide (CBr4), prior to the SAE of the QDs, was shown to be effective to remove the processing-related damage introduced during the nanopattern transfer process, resulting in a significant reduction in the threshold current density of the LD under the optimal in-situ etching condition. Furthermore, the modal optical gain parameter and the transparency current density were extracted by the conventional cavity length analysis (CLA) on LD devices where the QD was grown with the optimal in-situ etching condition.

  19. Exciton dephasing in single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis


    . The homogeneous and inhomogeneous broadening of InGaAs quantum dot luminescence is of central importance for the potential application of this material system in optoelectronic devices. Recent measurements of MOCVD-grown InAs/InGaAs quantum dots indicate a large homogeneous broadening at room temperature due......The homogeneous linewidth of excitonic transitions is a parameter of fundamental physical importance. In self-assembled quantum dot systems, a strong inhomogeneous broadening due to dot size fluctuations masks the homogeneous linewidth associated with transitions between individual states...... to fast dephasing. We present an investigation of the low-temperature homogeneous linewidth of individual PL lines from MBE-grown In0.5Ga0.5As/GaAs quantum dots....

  20. Dimensionality of InGaAs nonlinear optical response

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, S.R. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.


    In this thesis the ultrafast optical properties of a series of InGaAs samples ranging from the two to the three dimensional limit are discussed. An optical system producing 150 fs continuum centered at 1.5 microns was built. Using this system, ultrafast pump-probe and four wave mixing experiments were performed. Carrier thermalization measurements reveal that screening of the Coulomb interaction is relatively unaffected by confinement, while Pauli blocking nonlinearities at the band edge are approximately twice as strong in two dimensions as in three. Carrier cooling via phonon emission is influenced by confinement due both to the change in electron distribution function and the reduction in electron phonon coupling. Purely coherent band edge effects, as measured by the AC Stark effect and four wave mixing, are found to be dominated by the changes in excitonic structure which take place with confinement.

  1. 4x4 Individually Addressable InGaAs APD Arrays Optimized for Photon Counting Applications (United States)

    Gu, Y.; Wu, X.; Wu, S.; Choa, F. S.; Yan, F.; Shu, P.; Krainak, M.


    InGaAs APDs with improved photon counting characteristics were designed and fabricated and their performance improvements were observed. Following the results, a 4x4 individually addressable APD array was designed, fabricated, and results are reported.

  2. Characterization of NIR InGaAs imager arrays for the JDEM SNAPmission concept

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, S.; Cole, M.D.; Hancock, B.; Ringold, P.; Wrigley, C.; Bonati, M.; Brown, M.G.; Schubnell, M.; Rahmer, G.; Guzman, D.; Figer,D.; Tarle, G.; Smith, R.M.; Bebek, C.


    We present the results of a study of the performance of InGaAs detectors conducted for the SuperNova Acceleration Probe (SNAP) dark energy mission concept. Low temperature data from a nominal 1.7um cut-off wavelength 1kx1k InGaAs photodiode array, hybridized to a Rockwell H1RG multiplexer suggest that InGaAs detector performance is comparable to those of existing 1.7um cut-off HgCdTe arrays. Advances in 1.7um HgCdTe dark current and noise initiated by the SNAP detector research and development program makes it the baseline detector technology for SNAP. However, the results presented herein suggest that existing InGaAs technology is a suitable alternative for other future astronomy applications.

  3. Radiation-Hardened, Substrate-Removed, Metamorphic InGaAs Detector Arrays Project (United States)

    National Aeronautics and Space Administration — High-performance radiation-hardened metamorphic InGaAs imaging arrays sensitive from the ultraviolet (UV) through the short-wavelength infrared (SWIR) will be...

  4. Comparative Study between Direct and Pseudomorphic Transformation of Rice Husk Ash into MFI-Type Zeolite. (United States)

    Alyosef, Hallah Ahmad; Roggendorf, Hans; Schneider, Denise; Inayat, Alexandra; Welscher, Julia; Schwieger, Wilhelm; Münster, Tom; Kloess, Gert; Ibrahim, Suzan; Enke, Dirk


    Pre-shaped mesoporous amorphous rice husk ash (RHA) and MCM-41 derived from RHA as a silica source were transformed into MFI-type zeolites using two different structure-directing agents. Tetrapropylammonium hydroxide (TPAOH) was utilized as an alkali source for silica dissolution and structure control during the direct transformation of RHA into zeolite. A monopropylamine (PA)-containing alkaline solution (NaOH) was used for the pseudomorphic transformation of RHA or MCM-41 into zeolite. The hydrothermal conversion of RHA or MCM-41 into MFI-type zeolites was investigated as a function of reaction time at 175 °C. With PA as template, the crystallization took place inside and on the outer surface of RHA or MCM-41 without losing the original shape of the initial silica sources, while TPAOH led to the formation of conventional MFI-type zeolite crystals due to the complete dissolution of RHA. The final products were characterized by X-ray diffraction, nitrogen adsorption, scanning electron microscopy, and optical emission spectroscopy.

  5. Pseudomorphic synthesis of monodisperse magnetic mesoporous silica microspheres for selective enrichment of endogenous peptides. (United States)

    Zhu, Gang-Tian; Li, Xiao-Shui; Gao, Qiang; Zhao, Ning-Wei; Yuan, Bi-Feng; Feng, Yu-Qi


    In this work, we describe a novel synthetic strategy of magnetic mesoporous silica spheres (Fe3O4@mSiO2) for the selective enrichment of endogenous peptides. Fe3O4 particles were coated with silica shell by a sol-gel method, followed by pseudomorphic synthesis to transform nonporous silica shell into ordered mesoporous silica shell. The core/shell structure and mesostructure were individually fabricated in two steps, which can be expedient to independently optimize the properties of monodispersion, magnetization and mesostructure. Actually, it was confirmed that the produced Fe3O4@mSiO2 particles possess good monodispersion, high magnetization, superparamagnetism, uniform accessible mesopores, and large surface area and pore volume. With these good properties, Fe3O4@mSiO2 spheres were applied to the rapid enrichment of peptides. Based on the size-exclusion mechanism and hydrophobic interaction with siloxane bridge group mainly on the surface of inside pores, Fe3O4@mSiO2 can selectively capture peptides and exclude high-MW proteins and salts. Furthermore, peptides in human plasma were successfully enriched by Fe3O4@mSiO2. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Crystal structure refinements of the 2H and 2M pseudomorphs of ferric carbonate-hydroxyapatite. (United States)

    Low, H R; Ritter, C; White, T J


    The crystal structures of the ferric carbonate-hydroxyapatite (Fe-CHAp) and oxyapatite (Fe-OAp) pseudomorphs were investigated by powder neutron diffraction and Fourier transform infrared spectroscopy. At low iron loadings, Fe-CHAp (x = 0.1) is A-B type carbonate apatite-2H, where atmospheric CO(2) displaces tunnel hydroxyl and framework phosphate (Ca(2+) + 2PO(4)(3-) --> square(Ca) + 2CO(3)(2-) and Ca(2+) + OH(-) --> Fe(3+) + CO(3)(2-)), while Fe-CHAp (x = 0.2) is A type carbonate apatite-2M. For high iron loadings (x = 0.5), near the solubility limit, Fe(3+) incorporation includes concomitant oxidation of hydroxyl groups (Ca(2+) + OH(-) --> Fe(3+) + O(2-)). The discontinuity in the lattice metric at x approximately 0.2 together with a progressive reduction of OH(-) and CO(3)(2-), substantiates these incorporation mechanisms. The general formula of Fe-CHAp is [Ca(4-x)(F)Fe(x)][Ca(6-y)(T) square(y)][(PO(4))(6-y)(CO(3))(y)][(OH(4))(2-x)(CO(3))(x)] (0 27.(0) degrees, monoclinic and triclinic structures are preferable.

  7. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael, E-mail: [Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany and Nanosystems Initiative Munich, Schellingstraße 4, 80799 München (Germany)


    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  8. Al/Sb free InGaAs unipolar barrier infrared detectors (United States)

    Uzgur, Fatih; Karaca, Utku; Kizilkan, Ekin; Kocaman, Serdar


    It is numerically shown that Al/Sb free InGaAs unipolar barrier detectors with superior performance compared to the conventional heterojunction detectors can be constructed. Compositionally graded layers provide the transition between the high bandgap InGaAs barrier and the lattice matched InGaAs absorber layers. In addition, the delta doped layers remove the valence band offset in order to block only majority carriers and allow unimpeded flow of minority carriers. More than one order of magnitude reduction in the dark current is observed while photocurrent remains nearly unchanged. Proposed barrier structure utilized in this study is not limited to short wave infrared (SWIR) and can be applied to a variety of materials operating in various infrared regions.

  9. An effective indicator for evaluation of wavelength extending InGaAs photodetector technologies (United States)

    Zhang, Yong-gang; Gu, Yi; Chen, Xing-you; Ma, Ying-jie; Li, Xue; Shao, Xiu-mei; Gong, Hai-mei; Fang, Jia-xiong


    An effective indicator for the evaluation of wavelength extending InGaAs photodetector and focal plane array technologies is demonstrated. The validity of the indicator has been confirmed using data from different categories including our works. Based on a formula with two meaningful parameters, the indicator could be a practical index for system designers to estimate the performance of wavelength extending InGaAs PDs and FPAs based on the same technology; and a useful criterion for device developers to improve their technology.

  10. Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu; Li, Qiang; Lau, Kei May, E-mail: [Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Chang, Shih-Pang; Hsu, Wen-Da [National Nano Device Laboratories, Narlabs, Hsinchu 300, Taiwan (China)


    We report InGaAs quasi-quantum wires embedded in planar InP nanowires grown on (001) silicon emitting in the 1550 nm communication band. An array of highly ordered InP nanowire with semi-rhombic cross-section was obtained in pre-defined silicon V-grooves through selective-area hetero-epitaxy. The 8% lattice mismatch between InP and Si was accommodated by an ultra-thin stacking disordered InP/GaAs nucleation layer. X-ray diffraction and transmission electron microscope characterizations suggest excellent crystalline quality of the nanowires. By exploiting the morphological evolution of the InP and a self-limiting growth process in the V-grooves, we grew embedded InGaAs quantum-wells and quasi-quantum-wires with tunable shape and position. Room temperature analysis reveals substantially improved photoluminescence in the quasi-quantum wires as compared to the quantum-well reference, due to the reduced intrusion defects and enhanced quantum confinement. These results show great promise for integration of III-V based long wavelength nanowire lasers on the well-established (001) Si platform.

  11. 270 nm Pseudomorphic Ultraviolet Light-Emitting Diodes with Over 60 mW Continuous Wave Output Power (United States)

    Grandusky, James R.; Chen, Jianfeng; Gibb, Shawn R.; Mendrick, Mark C.; Moe, Craig G.; Rodak, Lee; Garrett, Gregory A.; Wraback, Michael; Schowalter, Leo J.


    In this letter, the achievement of over 60 mW output power from pseudomorphic ultraviolet light-emitting diodes in continuous wave operation is reported. Die thinning and encapsulation improved the photon extraction efficiency to over 15%. Improved thermal management and a high characteristic temperature resulted in a low thermal rolloff up to 300 mA injection current with an output power of 67 mW, an external quantum efficiency (EQE) of 4.9%, and a wall plug efficiency (WPE) of 2.5% for a single-chip device emitting at 271 nm in continuous wave operation.

  12. Fiber grating sensing interrogation based on an InGaAs photodiode linear array. (United States)

    Li, Guoyu; Guo, Tuan; Zhang, Hao; Gao, Hongwei; Zhang, Jian; Liu, Bo; Yuan, Shuzhong; Kai, Guiyun; Dong, Xiaoyi


    We present a new method of the fiber grating sensing interrogation technique by utilizing an indium gallium arsenide photodiode linear array and blazed fiber Bragg gratings. An interrogation system based on an InGaAs photodiode linear array is designed, and the system performance is analyzed. The interrogation system shows a good prospect for smart sensing.

  13. Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array (United States)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.


    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.

  14. Quantum efficiency and oscillator strength of site-controlled InGaAs quantum dots

    DEFF Research Database (Denmark)

    Albert, F.; Schneider, C.; Stobbe, Søren


    We report on time-resolved photoluminescence spectroscopy to determine the oscillator strength (OS) and the quantum efficiency (QE) of site-controlled In(Ga)As quantum dots nucleating on patterned nanoholes. These two quantities are determined by measurements on site-controlled quantum dot (SCQD...

  15. Suppression of extension of the photo-sensitive area for a planar-type front-illuminated InGaAs detector by the LBIC technique

    Energy Technology Data Exchange (ETDEWEB)

    Li Yongfu; Tang Hengjing; Li Tao; Zhu Yaoming; Jiang Peilu; Qiao Hui; Li Xue; Gong Haimei, E-mail: [State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)


    To suppress the extension of the photo-sensitive area of a planar-type InGaAs detector, the structure of the detector was modified, and the small-diffusion-area diffusion method, circle-type covering contact and guard-ring were introduced. The laser-beam-induced-current (LBIC) technique was used to study the photo responsive characteristics of the photo-sensitive area of different detector structures. It was indicated that, by modifying the size of the diffusion area, the width of the circle-type covering contact, the distance between the guard-ring and the photo-sensitive area and the working status of the guard-ring, extension of the photo-sensitive area could be effectively suppressed, and the detector photo-sensitive area could be exactly defined. (semiconductor materials)

  16. Optically Pumped Subwavelength Lasers Operated at Room Temperature (United States)


    laser with a tunable emission wavelength. The semiconductor nanoring laser is suitable for the optical interconnect application because it possesses...focal-length monochrometer and detected by a cooled InGaAs photodetector. Results of the measurement are shown in Fig. 2. Progression of a lasing...emission into competing Fabry-Perot (FP) modes in the microdisk cavity. We propose a new type of photonic crystal microdisk ( PCM ) laser to

  17. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite-wedge casts on the Magdalen Islands (eastern Canada)

    DEFF Research Database (Denmark)

    Remillard, A.M.; Hetu, B.; Bernatchez, P.


    The Magdalen Islands are a valuable terrestrial record, evidencing the complex glacial and periglacial history of the Gulf of St. Lawrence. Thirteen structures interpreted as ice-wedge pseudomorphs or composite-wedge casts were observed at four sites on the southern Magdalen Islands and testify t...

  18. Temperature Effects on The Electrical Characteristics of In0.15Ga0.85As Pseudomorphic High-Electron-Mobility Transistors

    Directory of Open Access Journals (Sweden)

    BECHLAGHEM Fatima Zohra


    Full Text Available Nowadays, GaAs-based HEMTs and pseudomorphic HEMTs are speedily replacing conventional MESFET technology in military and commercial applications including, communication, radar and automotive technologies having need of high gain, and low noise figures especially at millimeter-wave frequencies. In this work, a short gate length pseudomorphic HEMT "p-HEMT" on GaAs substrate is treated. As temperature dependence study is a very important part of the complete characterization on active devices, the impact of temperature variation on the electrical properties of our 30nm short gate length pseudomorphic high-electron mobility In0.15Ga0.85As device is investigated. All our static DC device characteristics and RF response have been obtained using a device simulator that is Silvaco software to examine temperature impact on our device output current, transconductance and cutoff frequency. The 30nm gate pseudomorphic HEMT reported here exhibit superior DC and RF performances, Our results reveals a maximum drain-source current IDS up to 537.16 mA/mm, a peak extrinsic transconductance Gm of 345.4 mS/mm, a cutoff frequency Ft of 285.9 GHz, and a maximum frequency Fmax of 1580 GHz at room temperature.

  19. Pseudomorphs of Neotethyan Evaporites in Anatolia's HP/LT belts - Aptian basin-wide pelagic gypsum deposits (United States)

    Scheffler, Franziska; Oberhänsli, Roland; Pourteau, Amaury; Immenhauser, Adrian; Candan, Osman


    Rosetta Marble was defined in SW Anatolia as 3D-radiating textures of dm-to-m-long calcite rods in the HP/LT metamorphosed Mid-Cretaceous pelagic carbonate sequence of the Ören Unit. Rosetta Marble in the type locality are interbedded with meta-chert beds, and may constitute entire carbonate beds. Rare aragonite relicts and Sr-rich, fibrous calcite pseudomorphs after aragonite witness the HP metamorphic imprint of this sequence during the closure of a Neotethyan oceanic domain during latest Cretaceous-Palaeocene times. We investigated the Rosetta Marble of the Ören Unit, as well as other known and newly found localities in the Tavşanlı and Afyon zones, and the Alanya Massif and Malatya area, to decipher the metamorphic, diagenetic and sedimentologic significance of these uncommon textures. Based on field, petrographic and geochemical investigations, we document a wide variety of Rosetta-type textures. A striking resemblance with well-known gypsum morphologies (e.g. shallow-tail, palm-tree textures) leads us to argue that Rosetta Marble was initially composed of giant gypsum crystals (selenite). The absence of anhydrite relicts of pseudomorphs indicate that gypsum transformed into calcite soon after the deposition by the mean of a sulphate reduction reaction. The gypsum-to-calcite transformation requires that organic matter intervened as a reactant phase. Mid Cretaceous oceanic domains in the Tethyan realm are characterised by overall anoxic conditions that allowed the preservation of organic material. Rosetta Marble exposures are widely distributed over 600 km along the Neotethyan suture zone. During deepening of the Neotethyan ocean in Mid Cretaceous times, basin-wide and cyclic sedimentation of gypsum and radiolarite occurred. The origin of high-salinity waters needed for gypsum precipitation was located at shelf levels. Density and gravity effects forced the brines to cascade downwards into the deep ocean. Favorable climatic conditions trigger the formation

  20. From structure to spectra. Tight-binding theory of InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, Elias


    counterintuitively. Our result demonstrates the applicability of InGaAs quantum dots for quantum telecommunication at the desired telecom wavelengths, offering good growth controllability. For the application in lasers, quantum based active media are known to offer superior properties to common quantum well lasers such as low threshold currents or temperature stability. For device design, the knowledge about the saturation behaviour of optical gain with excitation density is of major importance. In the present work we combine quantum-kinetic models for the calculation of the optical gain of quantum dot active media with our atomistic tight-binding model for the calculation of single-particle energies and wave functions. We investigate the interplay between structural properties of the quantum dots and many-body effects in the optical gain spectra and identify different regimes of saturation behaviour. Either phase-space filling dominates the excitation dependence of the optical gain, leading to saturation, or excitation-induced dephasing dominates the excitation dependence of the optical gain, resulting in a negative differential gain.

  1. Measurement of 3-dimensional dopant distribution in InGaAs microdiscs grown selectively on Si (111) (United States)

    Watanabe, Tohma; Takeuchi, Miyuki; Nakano, Yoshiaki; Sugiyama, Masakazu


    The control of the dopant profile in 3-dimentional InGaAs microdiscs on Si (111) is essential for their device applications. However, such profiles can never be controlled by simply changing the supply of dopant precursors during the growth of microdiscs. This is because a variety of crystal planes, such as (111), {-110}, and irregular planes near the corners, surround a hexagonal pillar of InGaAs and the incorporation efficiency of dopant elements depends significantly on the kind of planes involved. We here observed the distributions of sulfur and zinc in p-i-n InGaAs microdiscs by both cross-sectional scanning capacitance microscopy (SCM) and secondary-ion mass spectrometry using focused ion beam (NanoSIMS). Even though the InGaAs shell was grown on the microdiscs using dimethylzinc (DMZn), no p-type region was found on the top of the microdiscs and the p-type region existed on the sidewall of the discs alone. This result suggested that the zinc incorporation efficiency on InGaAs (111) plane is much lower than that on {-110} planes. Complete encapsulation of the microdiscs with p-type region was possible by the post-diffusion of zinc during exposure to a mixture of tertiarybutylarsine (TBAs) and DMZn after the growth of InGaAs microdiscs.

  2. Analysis of the damage threshold of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse (United States)

    Xi, Xiao-Wen; Chai, Chang-Chun; Liu, Yang; Yang, Yin-Tang; Fan, Qing-Yang; Shi, Chun-Lei


    An electromagnetic pulse (EMP)-induced damage model based on the internal damage mechanism of the GaAs pseudomorphic high electron mobility transistor (PHEMT) is established in this paper. With this model, the relationships among the damage power, damage energy, pulse width and signal amplitude are investigated. Simulation results show that the pulse width index from the damage power formula obtained here is higher than that from the empirical formula due to the hotspot transferring in the damage process of the device. It is observed that the damage energy is not a constant, which decreases with the signal amplitude increasing, and then changes little when the signal amplitude reaches up to a certain level. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  3. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor (United States)

    Jiqiang, Niu; Yang, Zhang; Min, Guan; Chengyan, Wang; Lijie, Cui; Qiumin, Yang; Yiyang, Li; Yiping, Zeng


    Lead poisoning is a serious environmental concern, which is a health threat. Existing technologies always have some drawbacks, which restrict their application ranges, such as real time monitoring. To solve this problem, glutathione was functionalized on the Au-coated gate area of the pseudomorphic high electron mobility transistor (pHEMT) to detect trace amounts of Pb2+. The positive charge of lead ions will cause a positive potential on the Au gate of the pHEMT sensor, which will increase the current between the source and the drain. The response range for Pb2+ detection has been determined in the concentrations from 0.1 pmol/L to 10 pmol/L. To our knowledge, this is currently the best result for detecting lead ions. Project supported by the National Natural Science Foundation of China (Nos. 61204012, 61274049, 61376058), the Beijing Natural Science Foundation (Nos. 4142053, 4132070), and the Beijing Nova Program (Nos. 2010B056, xxhz201503).

  4. Spectral imaging of O(2) infrared atmospheric airglow with an InGaAs array detector. (United States)

    Doushkina, V V; Wiens, R H; Thomas, P J; Peterson, R N; Shepherd, G G


    A linear InGaAs array was used in an interference filter spectral imager to monitor the twilight decay of the O(2) Infrared Atmospheric (0-1) band in the twilight airglow. The interference filter was centered at 1.582 μm and had a bandwidth (full width at half-maximum) of 1.0 nm. The imaging lens was a simple doublet, and a Fresnel lens was used for smearing any possible sky inhomogeneities. Spectra measured over Toronto in October 1994 show that the sensitivity and spectral discrimination against the contaminating OH spectrum are potentially sufficient to infer meaningful rotational temperatures. The improvements that would result from an area InGaAs array are discussed.

  5. Enhanced THz emission efficiency of composition-tunable InGaAs nanowire arrays (United States)

    BeleckaitÄ--, I.; Treu, J.; Morkötter, S.; Döblinger, M.; Xu, X.; Adomavičius, R.; Finley, J. J.; Koblmüller, G.; Krotkus, A.


    We report the terahertz (THz) emission properties of composition-tunable, intrinsically n-type InGaAs nanowire (NW) arrays using THz time-domain spectroscopy. By tuning the alloy composition of In1-xGaxAs NWs from pure InAs (x(Ga)=0) up to the intermediate composition (x(Ga)˜0.5), a substantially enhanced (>3-fold) THz emission efficiency is found, which is ascribed to a reduction in electron accumulation at the NW surface and respective electron scattering at donor-type surface defects. These findings are also confirmed by photoexcitation wavelength dependent measurements, while the THz emission characteristics are further found to be different from corresponding bulk-type planar InGaAs. In particular, NWs exhibit no distinct maxima in THz excitation spectra as caused by electron scattering to subsidiary conduction band valleys and commonly observed in the majority of bulk semiconductors. The wavelength-dependent emission spectra further reveal distinct signatures of modified intervalley scattering, revealing the underlying polytypism of intermixed wurtzite and zincblende phases in the investigated InGaAs NWs.

  6. The development of InGaAs short wavelength infrared focal plane arrays with high performance (United States)

    Li, Xue; Gong, Haimei; Fang, Jiaxiong; shao, Xiumei; Tang, Hengjing; Huang, Songlei; Li, Tao; Huang, Zhangcheng


    High performance, various specifications InGaAs focal plane arrays(FPAs) were studied in Shanghai Institute of Technical Physics (SITP). On the one hand, the typical linear 256 × 1, 512 × 1 and 1024 × 1 FPAs were obtained for response wavelengths from 0.9 μm to 1.7 μm. The typical 320 × 256 FPAs and special sizes 512 × 128, 512 × 256 FPAs for the near infrared multi-spectral imaging were studied. The performance of InGaAs FPAs from 0.9 μm to 1.7 μm has improved enormously. The average peak detectivity, the response non-uniformity and non-operable pixel of the FPAs are superior to 3 × 1012 cm Hz1/2/W, 5% and 1% at the room temperature. On the other hand, the development of the extended InGaAs FPAs was also focused in SITP. The dark current of InGaAs detectors with the response wavelength from 1.0 μm to 2.5 μm decreases to about 10 nA/cm2 at 200 K. The dark current mechanisms for extended InGaAs detectors were studied by P/A photodiodes. The special sizes 512 × 256 FPAs has been fabricated since 2011. The average peak detectivity, the response non-uniformity and non-operable pixel of the FPAs are superior to 5 × 1011 cm Hz1/2/W, 8% and 2% at 200 K. In order to verify the performance of FPAs, the short wavelength infrared lens was used to form optical imaging system. The buildings, water, trees are sharply imaged by 320 × 256 FPAs with 0.9-1.7 μm wavelength and 512 × 1 FPAs with 0.9-2.5 μm wavelength at about hundreds of meters distance as target at daylight.

  7. Continuous-wave Raman laser pumped within a semiconductor disk laser cavity. (United States)

    Parrotta, Daniele C; Lubeigt, Walter; Kemp, Alan J; Burns, David; Dawson, Martin D; Hastie, Jennifer E


    A KGd(WO₄)₂ Raman laser was pumped within the cavity of a cw diode-pumped InGaAs semiconductor disk laser (SDL). The Raman laser threshold was reached for 5.6 W of absorbed diode pump power, and output power up to 0.8 W at 1143 nm, with optical conversion efficiency of 7.5% with respect to the absorbed diode pump power, was demonstrated. Tuning the SDL resulted in tuning of the Raman laser output between 1133 and 1157 nm.

  8. Preparation of γ-Al2O3 films by laser chemical vapor deposition (United States)

    Gao, Ming; Ito, Akihiko; Goto, Takashi


    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  9. Continuous-wave single-frequency 295 nm laser source by a frequency-quadrupled optically pumped semiconductor laser. (United States)

    Kaneda, Yushi; Fallahi, Mahmoud; Hader, Jörg; Moloney, Jerome V; Koch, Stephan W; Kunert, Bernardette; Stoltz, Wolfgang


    Up to 136 mW of cw single-frequency output at 295 nm was obtained from a frequency-quadrupled optically pumped semiconductor laser. The highly strained InGaAs quantum-well semiconductor laser operates at 1178 nm in a single frequency. The single-frequency intracavity-doubled 589 nm output is further converted to 295 nm in an external resonator using beta-BaB(2)O(4).

  10. The physical origin of dispersion in accumulation in InGaAs based metal oxide semiconductor gate stacks (United States)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe


    Dispersion in accumulation is a widely observed phenomenon in technologically important InGaAs gate stacks. Two principal different interface defects were proposed as the physical origin of this phenomenon—disorder induced gap states and border traps. While the gap states are located at the semiconductor side of the interface, the border traps are related to the dielectric side. The study of Al2O3, HfO2, and an intermediate composition of HfxAlyO deposited on InGaAs enabled us to find a correlation between the dispersion and the dielectric/InGaAs band offset. At the same time, no change in the dispersion was observed after applying an effective pre-deposition treatment which results in significant reduction of the interface states. Both observations prove that border traps are the physical origin of the dispersion in accumulation in InGaAs based metal-oxide-semiconductor gate stacks.

  11. Damage effect and mechanism of the GaAs pseudomorphic high electron mobility transistor induced by the electromagnetic pulse (United States)

    Xiao-Wen, Xi; Chang-Chun, Chai; Gang, Zhao; Yin-Tang, Yang; Xin-Hai, Yu; Yang, Liu


    The damage effect and mechanism of the electromagnetic pulse (EMP) on the GaAs pseudomorphic high electron mobility transistor (PHEMT) are investigated in this paper. By using the device simulation software, the distributions and variations of the electric field, the current density and the temperature are analyzed. The simulation results show that there are three physical effects, i.e., the forward-biased effect of the gate Schottky junction, the avalanche breakdown, and the thermal breakdown of the barrier layer, which influence the device current in the damage process. It is found that the damage position of the device changes with the amplitude of the step voltage pulse. The damage appears under the gate near the drain when the amplitude of the pulse is low, and it also occurs under the gate near the source when the amplitude is sufficiently high, which is consistent with the experimental results. Project supported by the National Basic Research Program of China (Grant No. 2014CB339900), and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (CAEP) (Grant No. 2015-0214.XY.K).

  12. Spin injection from Co2MnGa into an InGaAs quantum well

    DEFF Research Database (Denmark)

    Hickey, M. C.; Damsgaard, Christian Danvad; Holmes, S. N.


    We have demonstrated spin injection from a full Heusler alloy Co2MnGa thin film into a (100) InGaAs quantum well in a semiconductor light-emitting diode structure at a temperature of 5 K. The detection is performed in the oblique Hanle geometry, allowing quantification of the effective spin lifet...... increases by a factor of approximately 2 as compared with an off-stoichiometric Co2.4Mn1.6Ga injector. (C) 2008 American Institute of Physics....

  13. Lasers. (United States)

    Passeron, T


    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. [Lasers]. (United States)

    Passeron, T


    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Modeling and optimization of InGaAs infrared photovoltaic detectors

    CERN Document Server

    Piotrowski, J; Reginski, K


    The performance of In sub x Ga sub 1 sub - sub x As detectors operating in the 2-3.4 mu m spectral range and temperature of 300 K has been analyzed theoretically as a function of wavelength, band gap and doping level with special emphasis on 2-2.5 mu m and 3-3.5 mu m atmospheric window devices. The calculations show that the dominant generation-recombination mechanism in p-type, intrinsic and in a lightly doped n-type InGaAs is the spin split-off band Auger process (AS). Since the AS generation increases with the square of the hole concentration, the minimum thermal generation and the best performance can be obtained using moderately doped n-type material as the absorber region of a photovoltaic device. In principle, the ultimate performance can be achieved in the optimized homojunction devices with relatively thick n-type absorber region forming n-p junction with a thin p-type material. N-type doping of absorber region of InGaAs photodiodes at 300 K changes from 1x10 sup 1 sup 4 to 5.2x10 sup 1 sup 5 cm sup ...

  16. Noise characteristics analysis of short wave infrared InGaAs focal plane arrays (United States)

    Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei


    The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.

  17. Near-infrared InGaAs detectors for background-limited imaging and photometry (United States)

    Sullivan, Peter W.; Croll, Bryce; Simcoe, Robert A.


    Originally designed for night-vision equipment, InGaAs detectors are beginning to achieve background-limited performance in broadband imaging from the ground. The lower cost of these detectors can enable multi-band instruments, arrays of small telescopes, and large focal planes that would be uneconomical with high-performance HgCdTe detectors. We developed a camera to operate the FLIR AP1121 sensor using deep thermoelectric cooling and up-the-ramp sampling to minimize noise. We measured a dark current of 163 e- s-1 pix-1, a read noise of 87 e- up-the-ramp, and a well depth of 80k e-. Laboratory photometric testing achieved a stability of 230 ppm hr-1/2, which would be required for detecting exoplanet transits. InGaAs detectors are also applicable to other branches of near-infrared time-domain astronomy, ranging from brown dwarf weather to gravitational wave follow-up.

  18. Optical anisotropy of InGaAs quantum wire arrays on vicinal (111)B GaAs (United States)

    Kawazu, Takuya


    We studied the optical anisotropy of InGaAs quantum wire (QWR) arrays on vicinal (111)B GaAs. Polarized photoluminescence (PL) studies showed that the PL is polarized preferentially along [1-10], where the polarization degree ρ is about 9.4%. We also theoretically investigated the electronic states of the InGaAs QWR arrays to clarify how the optical anisotropy is affected by (1) the corrugated structure, (2) the strain effect including piezoelectricity, and (3) the thickness difference of the InGaAs layers on the two facets of the corrugated structure. While ρ for the corrugated structure is almost the same as that for a flat quantum well structure, the strain effects and the thickness difference result in the increases of ρ by about 1.9 and 2.5 times. The calculated results were compared to the experimental data. It was found that the effects of the strain and the thickness difference are important to explain the optical anisotropy of the InGaAs QWR arrays.

  19. Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtarova, Anna; Valdueza-Felip, Sirona; Redaelli, Luca; Durand, Christophe; Monroy, Eva; Eymery, Joël, E-mail: [Université Grenoble Alpes, 38000 Grenoble (France); CEA-CNRS group “Nanophysique et semiconducteurs”, CEA-INAC-PHELIQS, 17 av. des Martyrs, 38054 Grenoble (France); Bougerol, Catherine [Université Grenoble Alpes, 38000 Grenoble (France); CEA-CNRS group “Nanophysique et semiconducteurs”, Institut Néel-CNRS, 25 av. des Martyrs, 38042 Grenoble (France)


    We investigate the photovoltaic performance of pseudomorphic In{sub 0.1}Ga{sub 0.9}N/GaN multiple-quantum well (MQW) solar cells as a function of the total active region thickness. An increase in the number of wells from 5 to 40 improves the short-circuit current and the open-circuit voltage, resulting in a 10-fold enhancement of the overall conversion efficiency. Further increasing the number of wells leads to carrier collection losses due to an incomplete depletion of the active region. Capacitance-voltage measurements point to a hole diffusion length of 48 nm in the MQW region.

  20. Tunable continuous-wave diamond Raman laser. (United States)

    Parrotta, Daniele C; Kemp, Alan J; Dawson, Martin D; Hastie, Jennifer E


    Continuous-wave operation of a diamond Raman laser, intracavity-pumped by a diode-pumped InGaAs semiconductor disk laser (SDL), is reported. The Raman laser, which utilized a 6.5-mm-long synthetic single-crystal diamond, reached threshold for 5.3 W of diode laser pump power absorbed by the SDL. Output power up to 1.3 W at the first Stokes wavelength of 1227 nm was demonstrated with excellent beam quality and optical conversion efficiency of 14.4% with respect to absorbed diode laser pump power. Broad tuning of the Raman laser output between 1217 and 1244 nm was achieved via intracavity tuning of the SDL oscillation wavelength. © 2011 Optical Society of America

  1. Characterization of InGaAs Linear Array for Applications to Remote Sensing (United States)

    Garcia, Christopher S.; Refaat, Tamer F.; Farnsworth, Glenn R.; Abedin, M. N.; Elsayed-Ali, Hani E.


    An Indium Gallium Arsenide linear photodiode array in the 1.1-2.5 micron spectral range was characterized. The array has 1024x1 pixels with a 25 micron pitch and was manufactured by Sensors Unlimited, Inc. Characterization and analysis of the electrical and optical properties of a camera system were carried out at room temperature to obtain detector performance parameters. The signal and noise were measured while the array was uniformly illuminated at varying exposure levels. A photon transfer curve was generated by plotting noise as a function of average signal to obtain the camera gain constant. The spectral responsivity was also measured, and the quantum efficiency, read noise and full-well capacity were determined. This paper describes the characterization procedure, analyzes the experimental results, and discusses the applications of the InGaAs linear array to future earth and planetary remote sensing mission.

  2. Single electron phenomena in InP /InGaAs quantum point contacts (United States)

    Bandaru, Prabhakar; Robinson, Hans; Kosaka, Hideo; Yablonovitch, Eli; Jiang, Hong-Wen


    InP based heterostructures have the advantages over those based on GaAs, in that (a) the bandgap wavelengths are in the range 1.3-1.55 microns, suitable for light transmission through fibers, (b) there is a greater tunability range of the electromagnetic Lande g-factors, important for spintronic applications, and (c) growth on InP substrates is more flexible as InP is lattice matched both to InGaAs and AlInAs. We report here on our results in Quantum Point Contacts (QPCs) fabricated in InP/InGaAs heterostructures, of relevance to single electron phenomena. Several features of the conductance quantization in QPCs such as the Random Telegraph Signal (RTS) noise and resonant tunneling peaks are analyzed with respect to the (a) the length and width of the channel, (b) the nature of the impurities, (d) magnetic field, (e) bias voltage, and (f) temperature.

  3. Numerical simulation of the modulation transfer function in planar InGaAs dense arrays (United States)

    Bai, Lin; Xu, Yun; Jiang, Yu; Chen, Huamin; Wu, Haoyue; Zhang, Jiushuang; Song, Guofeng


    Three-dimensional simulation methodology has been used to evaluate the performance of lattice matched InGaAs/InP double layer planar heterointerface detector arrays. The device characteristics under optical illumination and dark conditions have been computed. The modulation transfer function (MTF) profiles have been calculated with varying device geometries and carrier dynamics. It is found that the p well diffusion radius and minority carrier recombination play important roles in the MTF behaviors of dense arrays. Moderate p well diffusion dimension should be used to balance the device performances between the dark current and MTF profile. Moreover, better MTF characteristic under low light condition can be achieved with higher quality material which has longer recombination lifetime. The influences of underlying mechanisms including photon generated carriers diffusion and carrier recombination processes have been discussed. These simulation methods and results should provide a useful tool for the evaluation and improvement of imaging power of InGaAs focal plane arrays.

  4. Sensing flexural motion of a photonic crystal membrane with InGaAs quantum dots (United States)

    Carter, S. G.; Bracker, A. S.; Yakes, M. K.; Zalalutdinov, M. K.; Kim, M.; Kim, C. S.; Czarnocki, C.; Scheibner, M.; Gammon, D.


    Optical coupling between quantum dots and photonic crystal cavities and waveguides has been studied for many years in order to explore interesting physics and to advance quantum technologies. Here, we demonstrate strain-based coupling between mechanical motion of a photonic crystal membrane and embedded single InGaAs quantum dots. The response to high frequency mechanical vibration is measured for a series of quantum dots along the length of a photonic crystal waveguide for several flexural modes by optically driving the membrane while measuring high resolution time-resolved photoluminescence. The position-dependent response is similar to the measured and calculated displacement profile of the membrane but falls off less rapidly at higher frequencies. These results indicate potential for nanoscale strain sensing with high bandwidth and sensitivity.

  5. Composition Related Electrical Active Defect States of InGaAs and GaAsN

    Directory of Open Access Journals (Sweden)

    Arpad Kosa


    Full Text Available This paper discusses results of electrically active defect states - deep energy level analysis in InGaAs and GaAsN undoped semiconductor structures grown for solar cell applications. Main attention is focused on composition and growth condition dependent impurities and the investigation of their possible origins. For this purpose a widely utilized spectroscopy method, Deep Level Transient Fourier Spectroscopy, was utilized. The most significant responses of each sample labelled as InG2, InG3 and NG1, NG2 were discussed in detail and confirmed by simulations and literature data. The presence of a possible dual conduction type and dual state defect complex, dependent on the In/N composition, is reported. Beneficial characteristics of specific indium and nitrogen concentrations capable of eliminating or reducing certain point defects and dislocations are stated.

  6. Exciton spin relaxation dynamics in InGaAs /InP quantum wells (United States)

    Akasaka, Shunsuke; Miyata, Shogo; Kuroda, Takamasa; Tackeuchi, Atsushi


    We have investigated the exciton spin relaxation mechanism between 13 and 300K in InGaAs /InP quantum wells using time-resolved spin-dependent pump and probe absorption measurements. The exciton spin relaxation time, τs above 40K was found to depend on temperature, T, according to τs∝T-1.1, although the spin relaxation time is constant below 40K. The clear carrier density dependence of the exciton spin relaxation time was observed below 40K, although the carrier density dependence is weak above 40K. These results imply that the main spin relaxation mechanism above and below 40K are the D'yakonov-Perel' process and the Bir-Aronov-Pikus process, respectively.

  7. Ab initio modeling of vacancies, antisites, and Si dopants in ordered InGaAs (United States)

    Wang, Jingyang; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette


    In0.53Ga0.47As, a III-V compound semiconductor with high electron mobility, is expected to bring better performance than silicon in next-generation n-type MOSFET devices. However, one major challenge to its wide scale adoption is the difficulty of obtaining high enough dopant activation. For Si-doped InGaAs, the best current experimental result, involving 10 min of furnace annealing at temperatures above 700 °C, yields a free electron concentration of 1.4 ×1019 cm-3, a value that still falls short of requirement for practical applications. In this paper, we investigate the origin of low dopant activation in InGaAs by calculating formation energies for a wide variety of single point defects (Si substutionals, Si tetrahedral interstitials, vacancies, and antisites) in Si-doped In0.5Ga0.5As in a CuAu-I type crystal structure. We find that (1) a high electron concentration can only be achieved under In/Ga-poor growth conditions, while As-poor conditions inhibit n-type doping; and (2) in heavily n-doped samples, cation vacancies VIn/Ga-3 contribute the most to the compensation of excess Si donors via the Si III - VIII mechanism (III = In/Ga), thus becoming the limiting factor to higher dopant activation. Under the most favorable growth conditions for n-doping, we find the maximum carrier concentration to be 5.2 ×1018 cm-3 under thermal equilibrium, within an order of magnitude of the best experimental value.

  8. InGaAs Schottky barrier diode array detectors integrated with broadband antenna (Conference Presentation) (United States)

    Park, Dong Woo; Lee, Eui Su; Park, Jeong-Woo; Kim, Hyun-Soo; Lee, Il-Min; Park, Kyung Hyun


    Terahertz (THz) waves have been actively studied for the applications of astronomy, communications, analytical science and bio-technologies due to their low energy and high frequency. For example, THz systems can carry more information with faster rates than GHz systems. Besides, THz waves can be applied to imaging, sensing, and spectroscopy. Furthermore, THz waves can be used for non-destructive and non-harmful tomography of living objects. In this reasons, Schottky barrier diodes (SBD) have been widely used as a THz detector for their ultrafast carrier transport, high responsivity, high sensitivity, and excellent noise equivalent power. Furthermore, SBD detectors envisage developing THz applications at low cost, excellent capability, and high yield. Since the major concerns in the THz detectors for THz imaging systems are the realizations of the real-time image acquisitions via a reduced acquisition time, rather than the conventional raster scans that obtains an image by pixel-by-pixel acquisitions, a line-scan based systems utilizes an array detector with an 1 × n SBD array is preferable. In this study, we fabricated the InGaAs based SBD array detectors with broadband antennas of log-spiral and square-spiral patterns. To optimize leakage current and ideality factor, the dependence to the doping levels of ohmic and Schottky layers have been investigated. In addition, the dependence to the capacitance and resistance to anode size are also examined as well. As a consequence, the real-time THz imaging with our InGaAs SBD array detector have been successfully obtained.

  9. Pseudomorphic growth mode of Pb on the Al{sub 13}Fe{sub 4}(0 1 0) approximant surface

    Energy Technology Data Exchange (ETDEWEB)

    Ledieu, J., E-mail: [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France); Weerd, M.-C de [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France); Hahne, M.; Gille, P. [Department of Earth and Environmental Sciences, Crystallography Section, Ludwig-Maximilians-Universität München, Theresienstr. 41, D-80333 München (Germany); Fournée, V. [Institut Jean Lamour (UMR 7198 CNRS-Université de Lorraine), Parc de Saurupt, CS50840, 54011 Nancy Cedex (France)


    Highlights: • Pb adsorption has been characterised on the Al{sub 13}Fe{sub 4}(0 1 0) approximant surface. • A pseudomorphic Pb monolayer is formed at 300 K on this highly corrugated template. • The Pb atomic arrangement replicates the motifs observed on the clean surface. • The formation of surface alloys and intermixing can be disregarded. • Efficient energy dissipation of impinging adatoms allows additional layer deposition. - Abstract: We report the adsorption of lead adatoms on the pseudo-10-fold Al{sub 13}Fe{sub 4}(0 1 0) surface using low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and scanning tunneling microscopy (STM). For the submonolayer regime, Pb adatoms remain highly mobile across the surface at 300 K. STM analysis indicates the formation of irregularly shaped islands of monoatomic height. The latter do not coalesce with increasing coverage. At 0.95 MLE coverage, the LEED patterns are consistent with a pseudomorphic growth of the adatoms. This is confirmed by STM measurements which reveal local motifs qualitatively similar to those observed on the clean Al{sub 13}Fe{sub 4}(0 1 0) surface, i.e. prior to dosing. Apart from the absence of plasmons, the XPS measurements of Pb 4f and Al 2s core levels are comparable to those observed for the Pb/Al(1 1 1) system.

  10. Growth of InGaAs nanowires on Ge(111) by selective-area metal-organic vapor-phase epitaxy (United States)

    Yoshida, Akinobu; Tomioka, Katsuhiro; Ishizaka, Fumiya; Motohisa, Junichi


    We report the growth of InGaAs nanowires (NWs) on Ge(111) substrates using selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) for novel InGaAs/Ge hybrid complementary metal-oxide-semiconductor (CMOS) applications. Ge(111) substrates with periodic arrays of mask opening were prepared, and InGaAs was selectively grown on the opening region of Ge(111). A uniform array of InGaAs NWs with a diameter around 100 nm was successfully grown using appropriate preparation of the initial surfaces with an AsH3 thermal treatment and flow-rate modulation epitaxy (FME). We found that optimizing partial pressure of AsH3 and the number of FME cycles improved the yield of vertical InGaAs NWs. Line-scan profile analysis of energy dispersive X-ray (EDX) spectrometry showed that the In composition in the InGaAs NW was almost constant from the bottom to the top. Transmission electron microscope (TEM) analysis revealed that the interface between InGaAs NW and Ge had misfit dislocations, but their distance was longer than that expected from the difference in their lattice constants.

  11. Phase and Frequency Control of Laser Arrays for Pulse Synthesis (United States)


    M. Fukuda, M. Okayasu, J. Temmyo, and J. Nakano, “Degradation behavior of 0.98-µm strained quantum well InGaAs /AlGaAs lasers under high-power...from traditional quantum well lasers remains difficult however due to the onset of limiting effects such as two-photon absorption, gain Passively Mode Locked GaAs/AlGaAs Quantum Well Lasers,” IEEE J. of Quant. Elec. 48(3), 318-327 (2012). 2. A. Schmitt-Sody, A. Velten, Y. Liu, L

  12. Corrugated surfaces formed on GaAs(331)A substrates: the template for laterally ordered InGaAs nanowires. (United States)

    Gong, Zheng; Niu, Zhichuan; Fang, Zhidan


    Morphology evolution of high-index GaAs(331)A surfaces during molecular beam epitaxy (MBE) growth has been investigated in order to achieve regularly distributed step-array templates and fabricate spatially ordered low-dimensional nano-structures. Atomic force microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature. By using the step arrays formed on GaAs(331)A surfaces as the templates, we have fabricated highly ordered InGaAs nanowires. The improved homogeneity and the increased density of the InGaAs nanowires are attributed to the modulated strain field caused by vertical multi-stacking, as well as the effect of corrugated surface of the template. Photoluminescence (PL) tests confirmed remarkable polarization anisotropy.

  13. Multiplexed 256 element InGaAs detector arrays for 0.8-1.7-micron room-temperature operation (United States)

    Olsen, G. H.; Joshi, A. M.; Ban, V. S.; Woodruff, K. M.; Gasparian, G. A.


    InGaAs photodetectors have been configured into linear arrays of 30 x 30 micron photodetectors spaced 50 microns apart. The devices have typical responsivities of 0.9 A/W (86-percent QE) at 1.3 microns and exhibit room temperature dark currents below 100 pA. A 256-element array has been mounted in a Reticon multiplexer and configured into a PAR optical multichannel analyzer to extend spectral response out to 1.7 microns. Individual InGaAs detectors have been fabricated for response out to 2.2 microns with dark current below 1 microA (-1V) and 50-percent QE at room temperature.

  14. 2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT

    Directory of Open Access Journals (Sweden)

    Xiaoli Ji


    Full Text Available We fabricate 2.6 μm InGaAs photodetectors by MBE technology and study its dark current mechanisms. Deep-level transient spectroscopy (DLTS demonstrates a deep-level trap located at Ec - 0.25 eV in the absorption layer. Using the trap parameters, a dark current model is constructed and the device simulation generates the dark current characteristic which agrees well with the experimental data. The model suggests that the dark current at low reverse voltage is dominated by the Shockley-Read-Hall (SRH and trap-assisted tunneling (TAT. Furthermore, it predicts some basic rules for suppressing the dark current in 2.6 μm InGaAs detectors.

  15. Interface Defect Hydrogen Depassivation and Capacitance-Voltage Hysteresis of Al2O3/InGaAs Gate Stacks. (United States)

    Tang, Kechao; Palumbo, Felix Roberto; Zhang, Liangliang; Droopad, Ravi; McIntyre, Paul C


    We investigate the effects of pre- and postatomic layer deposition (ALD) defect passivation with hydrogen on the trap density and reliability of Al2O3/InGaAs gate stacks. Reliability is characterized by capacitance-voltage hysteresis measurements on samples prepared using different fabrication procedures and having different initial trap densities. Despite its beneficial capability to passivate both interface and border traps, a final forming gas (H2/N2) anneal (FGA) step is correlated with a significant hysteresis. This appears to be caused by hydrogen depassivation of defects in the gate stack under bias stress, supported by the observed bias stress-induced increase of interface trap density, and strong hydrogen isotope effects on the measured hysteresis. On the other hand, intentional air exposure of the InGaAs surface prior to Al2O3 ALD increases the initial interface trap density (Dit) but considerably lowers the hysteresis.

  16. Temperature dependence of trapping effects in metal gates/Al2O3/InGaAs stacks (United States)

    Palumbo, F.; Pazos, S.; Aguirre, F.; Winter, R.; Krylov, I.; Eizenberg, M.


    The influence of the temperature on Metal Gate/Al2O3/n-InGaAs stacks has been studied by means of capacitance-voltage (C-V) hysteresis and flat band voltage as function of both negative and positive stress fields. It was found that the de-trapping effect decreases at low-temperature, indicating that the de-trapping of trapped electrons from oxide traps may be performed via Al2O3/InGaAs interface defects. The dependence of the C-V hysteresis on the stress field at different temperatures in our InGaAs stacks can be explained in terms of the defect spatial distribution. An oxide defect distribution can be found very close to the metal gate/Al2O3 interface. On the other side, the Al2O3/InGaAs interface presents defects distributed from the interface into the bulk of the oxide, showing the influence of InGaAs on Al2O3 in terms of the spatial defect distribution. At the present, he is a research staff of the National Council of Science and Technology (CONICET), working in the National Commission of Atomic Energy (CNEA) in Buenos Aires, Argentina, well embedded within international research collaboration. Since 2008, he is Professor at the National Technological University (UTN) in Buenos Aires, Argentina. Dr. Palumbo has received research fellowships from: Marie Curie Fellowship within the 7th European Community Framework Programme, Abdus Salam International Centre for Theoretical Physics (ICTP) Italy, National Council of Science and Technology (CONICET) Argentina, and Consiglio Nazionale delle Ricerche (CNR) Italy. He is also a frequent scientific visitor of academic institutions as IMM-CNR-Italy, Minatec Grenoble-France, the Autonomous University of Barcelona-Spain, and the Israel Institute of Technology-Technion. He has authored and co-authored more than 50 papers in international conferences and journals.

  17. Carrier Dynamics and Band Structure in InGaAs and InGaAs/InP Nanowires (United States)

    Linser, Samuel; Shojaei, Iraj; Jnawali, Giriraj; Wickramasuriya, Nadeeka; Jackson, Howard; Smith, Leigh; Ameruddin, Amira; Caroff, Philippe; Tan, Hoe; Jagadish, Chennupati

    We use transient Rayleigh scattering (TRS) measurements to explore the electronic energy structure of wurtzite InGaAs nanowires. We studied single core-only InGaAs nanowires as well as strained core-shell InGaAs-InP heterostructures at 300 K and 10 K, with probe photon energies in the near-infrared from 0.79 to 1.16 eV. We report a factor of four enhancement of the typical lifetime of excited states in the core-shell nanowires (500 ps) when compared to the core-only nanowires (125 ps). We observe a clear band-edge-like structure in the core-shell wires at energies of 0.98 eV at 10 K and 0.88 eV at 300 K. In both cases, this structure is at a significantly higher energy than the reported bandgap of bulk zincblende InGaAs of the same nominal composition as our nanowires. We also present a phenomenological fitting model of our TRS spectra which provides insight into the cooling dynamics of the electron-hole plasma within a single photo-excited nanowire. We acknowledge the financial support of the NSF through Grants DMR 1507844, DMR 1531373 and ECCS 1509706, and the financial support of the Australian Research Council.

  18. Carrier dynamics of strain-engineered InAs quantum dots with (In)GaAs surrounding material (United States)

    Nasr, O.; Chauvin, N.; Alouane, M. H. Hadj; Maaref, H.; Bru-Chevallier, C.; Sfaxi, L.; Ilahi, B.


    The present study reports on the optical properties of epitaxially grown InAs quantum dots (QDs) inserted within an InGaAs strain-reducing layer (SRL). The critical energy states in such QD structures have been identified by combining photoluminescence (PL) and photoluminescence of excitation (PLE) measurements. Carrier lifetime is investigated by time-resolved photoluminescence (TRPL), allowing us to study the impact of the composition of the surrounding materials on the QD decay time. Results showed that covering the InAs QDs with, or embedding them within, an InGaAs SRL increases the carrier dynamics, while a shorter carrier lifetime has been observed when they are grown on top of an InGaAs SRL. Investigation of the dependence of carrier lifetime on temperature showed good stability of the decay time, deduced from the consequences of improved QD confinement. The findings suggest that embedding or capping the QDs with SRL exerts optimization of their room temperature optical properties.

  19. InGaAs/InGaAsP/InP strained-layer quantum well lasers at about 2 microns (United States)

    Forouhar, S.; Ksendzov, A.; Larsson, A.; Temkin, H.


    The first successful operation of InGaAs strained layer quantum well (Sl-QW) injection lasers at about 2 microns is reported. The threshold current density and the external differential quantum efficiency of 5 microns wide and 800 microns long ridge waveguide lasers were 2.5 kA/sq cm and 6 percent, respectively. The devices had a reverse leakage current of less than 20 micro-A at -1 V indicating epitaxial layers with low defect density.

  20. Low-noise AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor recessed by electron cyclotron resonance plasma etching

    CERN Document Server

    Lee, J H; Lee, C W; Yoon, H S; Park, B S; Park, C S


    GaAs pseudomorphic high electron mobility transistor recessed by electron cyclotron resonance (ECR) plasma etching have been investigated. We used a BCl sub 3 /SF sub 6 gas mixture to implement the gate recess process. We obtained a uniformity of the threshold voltage to within 50 mV in 3-inch wafers. The GaAs PHEMTs with a 0.2-mu m gate length recessed by the ECR plasma exhibited a minimum noise figure (NF sub m sub i sub n) as low as 0.26 dB with an associated gain (G sub a) of 13 dB at 12 GHz. At 18 GHz, the NF sub m sub i sub n was 0.47 dB with a Ga of 11.66 dB. These results suggest that the ECR plasma etching process reported here is suitable as a manufacturing process for gate recess of a GaAs PHEMT.

  1. Pion Radiation Damage in InGaAs p-i-n Photodiodes

    CERN Document Server

    Gill, Karl; Cervelli, Giovanni; Grabit, Robert; Mommaert, Chantal; Stefanini, Giorgio; Troska, Jan; Vasey, François


    Fully packaged InGaAs p-i-n photodiodes for use in CMS Tracker optical digital timing and control links have been irradiated at room temperature with 330MeV positive pions. Measurements of the leakage current and photocurrent response were made in-situ for pion fluences up to 3.9x10 14pi+/cm2. The leakage current increases from <1nA to 40 muA at 5V reverse bias and the photocurrent for 100 muW incident optical power decreases from 90 muW to 18 muW after 2x10 14 pi+/cm2. 330MeV pions cause a similar level of damage to 24GeV protons and several times more damage than 6MeV neutrons. The leakage current damage anneals slowly and no significant recovery of the photocurrent damage occurs at temperatures up to 80 degree C. Although the damage effects are relatively large they are tolerable in the CMS tracker digital timing/control optical link system.

  2. Single InGaAs quantum dots embedded in electrically active photonic crystal nanocavities

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Felix; Kaniber, Michael; Bichler, Max; Boehm, Gerhard; Abstreiter, Gerhard; Finley, Jonathan [Walter Schottky Institut, Am Coulombwall 3, TU Muenchen, 85748 Garching (Germany)


    We present investigations of the coupling of single InGaAs quantum dots (QDs) to both extended and strongly localised optical modes in electrical contacted 2D photonic crystal (PC) nanostructures. The samples investigated consist of an 180 nm thick, free-standing GaAs membrane into which a PC is formed by etching a triangular lattice of air holes. Low mode-volume (V (<{lambda}/n){sup 3}) and high-Q ({proportional_to}2000) cavities are introduced by single missing hole defects. Embedding the QDs into the intrinsic region of a p-i-n diode enables us to apply static electric fields to QDs in the cavity and control the energy detuning between the dot and cavity using the quantum confined Stark effect. The active PC nanocavities were studied using spatially resolved luminescence and photocurrent absorption spectroscopy. Quenching of the PL is observed for fields>50 kV/cm due to carrier tunneling escape from the dots that occurs over timescales faster than the radiative lifetime. By measuring the PL quenching as a function of position on the PC and nanocavity we electrically probe the local density of photonic states via a shift of the threshold voltage. Also investigations of the exciton lifetime and PL intensity of single QDs as a function of spectral detuning from the cavity mode are made.

  3. Stern-Gerlach effect and spin separation in InGaAs nanstructures (United States)

    Kohda, Makoto


    The demonstration of quantized spin splitting by Stern and Gerlach in 1922 is one of the most important experiments in modern physics. We utilized an effective non-uniform magnetic field which originates from Rashba spin orbit interaction (SOI) and demonstrated an experimental manifestation of electronic Stern-Gerlach spin separation in InGaAs based quantum point contacts (QPCs). Lateral potential confinement in a trench-type QPC creates a spatial modulation of Rashba SOI inducing a spin dependent force Clear conductance plateaus are observed in steps of 2e2/ hwhen the strength of Rashba SOI becomes small. However, when the Rashba SOI is enhanced by applying the top gate, a half-integer plateau additionally appears at 0.5(2e2 / h) , indicating the spin polarized current. We found that the spin polarization of the conduction electrons in this plateau is as high as 70%. Our new approach for generating spin polarization in semiconductor nanostructures provides a way to seamlessly integrate electrical spin generation, manipulation, and detection in a single semiconductor device without the need for either external magnetic fields or magnetic materials. This work was supported in part by the PRESTO of the Japan Science and Technology Agency and by Grant-in-Aids from Japan Society for the Promotion of Science

  4. Low-noise InGaAs balanced p-i-n photoreceiver for space based remote sensing applications at 2 micron wavelength (United States)

    Joshi, Abhay; Becker, Don; Datta, Shubhashish


    Greenhouse gases, such as carbon dioxide, carbon monoxide, and methane, can be remotely monitored through optical spectroscopy at ~2 micron wavelength. Space based LIDAR sensors have become increasingly effective for greenhouse gas detection to study global warming. The functionality of these LIDAR sensors can be enhanced to track global wind patterns and to monitor polar ice caps. Such space based applications require sensors with very low sensitivity in order to detect weak backscattered signals from an altitude of ~1000km. Coherent detection allows shot noise limited operation at such optical power levels. In this context, p-i-n photoreceivers are of specific interest due to their ability to handle large optical power, thereby enabling high coherent gain. Balanced detection further improves the system performance by cancelling common mode noise, such as laser relative intensity noise (RIN). We demonstrate a low-noise InGaAs balanced p-i-n photoreceiver at 2μm wavelength. The photoreceiver is comprised of a matched pair of p-i-n photodiodes having a responsivity of 1.34A/W that is coupled to transimpedance amplifier (TIA) having an RF gain of 24dB (transimpedance = 800Ω) and input equivalent noise of 19pA/√Hz at 300K. The photoreceiver demonstrates a 3dB bandwidth of 200MHz. Such bandwidth is suitable for LIDAR sensors having 20 to 30m resolution. The photoreceiver exhibits a common mode rejection ratio of 30dB and optical power handling of 3dBm per photodiode.

  5. Optically pumped DBR-free semiconductor disk lasers. (United States)

    Yang, Zhou; Albrecht, Alexander R; Cederberg, Jeffrey G; Sheik-Bahae, Mansoor


    We report high power distributed Bragg reflector (DBR)-free semiconductor disk lasers. With active regions lifted off and bonded to various transparent heatspreaders, the high thermal impedance and narrow bandwidth of DBRs are mitigated. For a strained InGaAs multi-quantum-well sample bonded to a single-crystalline chemical-vapor deposited diamond, a maximum CW output power of 2.5 W and a record 78 nm tuning range centered at λ≈1160 nm was achieved. Laser operation using a total internal reflection geometry is also demonstrated. Furthermore, analysis for power scaling, based on thermal management, is presented.

  6. Growth of quantum three-dimensional structure of InGaAs emitting at 1 μm applicable for a broadband near-infrared light source (United States)

    Ozaki, Nobuhiko; Kanehira, Shingo; Hayashi, Yuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.


    We obtained a high-intensity and broadband emission centered at 1 μm from InGaAs quantum three-dimensional (3D) structures grown on a GaAs substrate using molecular beam epitaxy. An InGaAs thin layer grown on GaAs with a thickness close to the critical layer thickness is normally affected by strain as a result of the lattice mismatch and introduced misfit dislocations. However, under certain growth conditions for the In concentration and growth temperature, the growth mode of the InGaAs layer can be transformed from two-dimensional to 3D growth. We found the optimal conditions to obtain a broadband emission from 3D structures with a high intensity and controlled center wavelength at 1 μm. This method offers an alternative approach for fabricating a broadband near-infrared light source for telecommunication and medical imaging systems such as for optical coherence tomography.

  7. Spatially correlated structural and optical characterization of a single InGaAs quantum well fin selectively grown on Si by microscopy and cathodoluminescence techniques (United States)

    David, S.; Roque, J.; Rochat, N.; Bernier, N.; Piot, L.; Alcotte, R.; Cerba, T.; Martin, M.; Moeyaert, J.; Bogumilowizc, Y.; Arnaud, S.; Bertin, F.; Bassani, F.; Baron, T.


    Structural and optical properties of InGaAs quantum well fins (QWFs) selectively grown on Si using the aspect ratio trapping (ART) method in 200 nm deep SiO2 trenches are studied. A new method combining cathodoluminescence, transmission electron microscopy, and precession electron diffraction techniques is developed to spatially correlate the presence of defects and/or strain with the light emission properties of a single InGaAs QWF. Luminescence losses and energy shifts observed at the nanoscale along InGaAs QWF are correlated with structural defects. We show that strain distortions measured around threading dislocations delimit both high and low luminescent areas. We also show that trapped dislocations on SiO2 sidewalls can also result in additional distortions. Both behaviors affect optical properties of QWF at the nanoscale. Our study highlights the need to improve the ART growth method to allow integration of new efficient III-V optoelectronic components on Si.

  8. Low phase noise high power handling InGaAs photodiodes for precise timing applications (United States)

    Datta, Shubhashish; Joshi, Abhay; Becker, Don


    Time is the most precisely measured physical quantity. Such precision is achieved by optically probing hyperfine atomic transitions. These high Q-factor resonances demonstrate frequency instability of ~10-18 over 1 s observation time. Conversion of such a stable optical clock signal to an electrical clock through photodetection introduces additional phase noise, thereby resulting in a significant degradation in the frequency stability. This excess phase noise is primarily caused by the conversion of optical intensity noise into electrical phase noise by the phase non-linearity of the photodetector, characterized by its power-to-phase conversion factor. It is necessary to minimize this phase nonlinearity in order to develop the next generation of ultra-high precision electronic clocks. Reduction in excess phase noise must be achieved while ensuring a large output RF signal generated by the photodetector. The phase linearity in traditional system designs that employ a photoreceiver, namely a photodiode followed by a microwave amplifier, is limited by the phase non-linearity of the amplifier. Utilizing high-power handling photodiodes eliminates the need of microwave amplifiers. In this work, we present InGaAs p-i-n photodiodes that display a power-to-phase conversion factor RF output amplitude of 2 V. In comparison, the photodiode coupled to a transimpedance amplifier demonstrates >44 rad/W at a peak-to-peak RF output amplitude of 0.5 V. These results are supported by impulse response measurements at 1550 nm wavelength at 1 GHz repetition rate. These photodiodes are suitable of applications such as optical clock distribution networks, photonic analog-to-digital converters, and phased array radars.

  9. Development of low-SWaP and low-noise InGaAs detectors (United States)

    Fraenkel, R.; Berkowicz, E.; Bikov, L.; Elishkov, R.; Giladi, A.; Hirsh, I.; Ilan, E.; Jakobson, C.; Kondrashov, P.; Louzon, E.; Nevo, I.; Pivnik, I.; Tuito, A.; Vasserman, S.


    In recent years SCD has developed InGaAs/InP technology for Short-Wave Infrared (SWIR) imaging. The first product, Cardinal 640, has a 640×512 (VGA) format at 15μm pitch, and more than two thousand units have already been delivered to customers. Recently we have also introduced Cardinal 1280 which is an SXGA array with 10μm pitch aimed for long-range high end platforms [1]. One of the big challenges facing the SWIR technology is its proliferation to widespread low cost and low SWaP applications, specifically Low Light Level (LLL) and Image Intensifier (II) replacements. In order to achieve this goal we have invested and combined efforts in several design and development directions: 1. Optimization of the InGaAs pixel array, reducing the dark current below 2fA at 20° C in order to save TEC cooling power under harsh light and environmental conditions. 2. Design of a new "Low Noise" ROIC targeting 15e noise floor and improved active imaging capabilities 3. Design of compact, low SWaP and low cost packages. In this context we have developed 2 types of packages: a non-hermetic package with thermo-electric cooler (TEC) and a hermetic TEC-Less ceramic package. 4. Development of efficient TEC-Less algorithms for optimal imaging at both day-light and low light level conditions. The result of these combined efforts is a compact low SWaP detector that provides equivalent performance to Gen III image intensifier under starlight conditions. In this paper we will present results from lab and field experiments that will support this claim.

  10. Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays. (United States)

    Luu, Jane X; Jiang, Leaf A


    We report, to the best of our knowledge, the first demonstration of heterodyne detection of a glint target using an InGaAs avalanche photodiode detector (APD) array in the Geiger mode. Due to the finite number of pixels, all such photon-counting arrays necessarily suffer from saturation effects. At large photon fluxes, saturation of the APD degrades the Doppler frequency resolution and the signal-to-noise ratio (SNR). We derive analytical expressions for the Doppler resolution and SNR, taking saturation effects into account. The optimal local oscillator power can be obtained numerically from the SNR expression.

  11. 2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT


    Xiaoli Ji; Baiqing Liu; Hengjing Tang; Xuelin Yang; Xue Li; HaiMei Gong; Bo Shen; Ping Han; Feng Yan


    We fabricate 2.6 μm InGaAs photodetectors by MBE technology and study its dark current mechanisms. Deep-level transient spectroscopy (DLTS) demonstrates a deep-level trap located at Ec - 0.25 eV in the absorption layer. Using the trap parameters, a dark current model is constructed and the device simulation generates the dark current characteristic which agrees well with the experimental data. The model suggests that the dark current at low reverse voltage is dominated by the Shockley-Read-Ha...

  12. Optical emission of a strained direct-band-gap Ge quantum well embedded inside InGaAs alloy layers. (United States)

    Pavarelli, N; Ochalski, T J; Murphy-Armando, F; Huo, Y; Schmidt, M; Huyet, G; Harris, J S


    We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.

  13. The simulation of localized surface plasmon and surface plasmon polariton in wire grid polarizer integrated on InP substrate for InGaAs sensor


    Rui Wang; Tao Li; Xiumei Shao; Xue Li; Haimei Gong


    We numerically demonstrate the integration of gold wire grid polarizer on InP substrate for InGaAs polarimetric imaging. The effective spectral range of wire grid polarizer has been designed in 0.8-3 μm according to InGaAs response waveband. The dips in TM transmission are observed due to surface plasmon (SPs) significantly damaging polarization performance. To further understand the coupling mechanism between gold wire grid grating and InP, the different contributions of surface plasmon pola...

  14. Low threshold continuous operation of InGaAs/InGaAsP quantum well lasers at about 2.0 microns (United States)

    Forouhar, S.; Keo, S.; Larsson, A.; Ksendzov, A.; Temkin, H.


    The first low threshold continuous operation of InGaAs strained layer quantum well lasers at about 2.0 microns is reported. The threshold current density of 5-micron wide and 1.5 mm long ridge waveguide lasers was less than 380 A/sq cm. The external differential quantum efficiency of 1 mm long lasers was as high as 15 percent and laser operation was observed at temperatures as high as 50 C. The lasers are characterized by T(0) = 54 C which is the highest characteristic temperature ever achieved at this wavelength in any material system.

  15. InP-based lattice-matched InGaAsP and strain-compensated InGaAs /InGaAs quantum well cells for thermophotovoltaic applications (United States)

    Rohr, Carsten; Abbott, Paul; Ballard, Ian; Connolly, James P.; Barnham, Keith W. J.; Mazzer, Massimo; Button, Chris; Nasi, Lucia; Hill, Geoff; Roberts, John S.; Clarke, Graham; Ginige, Ravin


    Quantum well cells (QWCs) for thermophotovoltaic (TPV) applications are demonstrated in the InGaAsP material system lattice matched to the InP substrate and strain-compensated InGaAs /InGaAs QWCs also on InP substrates. We show that lattice-matched InGaAsP QWCs are very well suited for TPV applications such as with erbia selective emitters. QWCs with the same effective band gap as a bulk control cell show a better voltage performance in both wide and erbialike emission. We demonstrate a QWC with enhanced efficiency in a narrow-band spectrum compared to a bulk heterostructure control cell with the same absorption edge. A major advantage of QWCs is that the band gap can be engineered by changing the well thickness and varying the composition to the illuminating spectrum. This is relatively straightforward in the lattice-matched InGaAsP system. This approach can be extended to longer wavelengths by using strain-compensation techniques, achieving band gaps as low as 0.62eV that cannot be achieved with lattice-matched bulk material. We show that strain-compensated QWCs have voltage performances that are at least as good as, if not better than, expected from bulk control cells.

  16. InGaAs Nanomembrane/Si van der Waals Heterojunction Photodiodes with Broadband and High Photoresponsivity. (United States)

    Um, Doo-Seung; Lee, Youngsu; Lim, Seongdong; Park, Jonghwa; Yen, Wen-Chun; Chueh, Yu-Lun; Kim, Hyung-Jun; Ko, Hyunhyub


    Development of broadband photodetectors is of great importance for applications in high-capacity optical communication, night vision, and biomedical imaging systems. While heterostructured photodetectors can expand light detection range, fabrication of heterostructures via epitaxial growth or wafer bonding still faces significant challenges because of problems such as lattice and thermal mismatches. Here, a transfer printing technique is used for the heterogeneous integration of InGaAs nanomembranes on silicon semiconductors and thus the formation of van der Waals heterojunction photodiodes, which can enhance the spectral response and photoresponsivity of Si photodiodes. Transfer-printed InGaAs nanomembrane/Si heterojunction photodiode exhibits a high rectification ratio (7.73 × 10 4 at ±3 V) and low leakage current (7.44 × 10 -5 A/cm 2 at -3 V) in a dark state. In particular, the photodiode shows high photoresponsivities (7.52 and 2.2 A W -1 at a reverse bias of -3 V and zero bias, respectively) in the broadband spectral range (400-1250 nm) and fast rise-fall response times (13-16 ms), demonstrating broadband and fast photodetection capabilities. The suggested III-V/Si van der Waals heterostructures can be a robust platform for the fabrication of high-performance on-chip photodetectors compatible with Si integrated optical chips.

  17. Control of the electron spin relaxation by the built-in piezoelectric field in InGaAs quantum wells (United States)

    Azaizia, S.; Balocchi, A.; Carrère, H.; Renucci, P.; Amand, T.; Arnoult, A.; Fontaine, C.; Marie, X.


    The electron spin dynamics is studied by time-resolved optical orientation experiments in strained InGaAs/GaAs quantum wells (QWs) grown on (111) or (001) substrates. For a given well width, the electron spin relaxation time in (111) InGaAs QWs decreases by an order of magnitude when the indium fraction in the well varies only from 4% to 12%. In contrast, the electron spin relaxation time depends weakly on the indium fraction in similar InGaAs quantum wells grown on (001) substrates. The strong variation of the electron spin relaxation time in (111) strained quantum well can be well interpreted by the Dyakonov-Perel spin relaxation mechanism where the conduction band spin-orbit splitting is dominated by the structural inversion asymmetry (Rashba term) induced by the piezoelectric field. In (001) QWs, due to the absence of piezoelectric field, the electron spin relaxation time is solely controlled by the Dresselhaus term. These results demonstrate the possibility to engineer the electron spin relaxation time in (111)-oriented quantum wells by the piezoelectric field induced by the built-in strain.

  18. High-performance InP/InGaAs co-integrated metamorphic heterostructure bipolar and field-effect transistors with pseudomorphic base-emitter spacer and channel layers (United States)

    Wu, Yi-Chen; Tsai, Jung-Hui; Chiang, Te-Kuang; Chiang, Chung-Cheng; Wang, Fu-Min


    In the InP/InGaAs metamorphic co-integrated heterostructure bipolar and field-effect transistors (BiFETs), the field-effect transistor (FET) with pseudomorphic channel layer was stacked on the top of the metamorphic heterostructure bipolar transistor (HBT) with pseudomorphic base-emitter spacer layers. In the FET, a relatively thin as well as heavily doped In0.65Ga0.35As pseudomorphic channel layer between two undoped InP layers was employed to enhance the gate forward operation voltage, drain current, and transconductance, simultaneously. On the other hand, after removing the top four layers of material structures, the studied HBT was fabricated on the metamorphic buffer layer. In the metamorphic HBT, the valence band discontinuity at InP/In0.65Ga0.35As heterojunction and emitter injection efficiency could be further extended than the conventional InP/In0.53Ga0.47As lattice-matched HBTs. Furthermore, the delta doping layer between two In0.65Ga0.35As spacer layers at emitter side could effectively eliminate the potential spike at base-emitter junction for reducing the collector-emitter offset voltage. Consequently, the co-integrated metamorphic devices show a good potential for mixed signal integrated circuits and systems applications.

  19. Improving carrier injection in colloidal CdSe nanocrystals by embedding them in a pseudomorphic ZnSe/ZnMgSe quantum well structure (United States)

    Larramendi, E. M.; Schöps, O.; Artemyev, M. V.; Schikora, D.; Lischka, K.; Woggon, U.


    The incorporation of colloidal nanocrystals in a high crystalline quality semiconductor matrix, the efficient carrier injection into the embedded nanocrystals and the fast optical response are key features for the fabrication of novel optoelectronic nanodevices based on colloidal nanostructures as active optical material. Using a novel growth approach, colloidal bare CdSe and core-shell CdSe/ZnS nanocrystals were monolithically incorporated in pseudomorphic ZnSe/ZnMgSe quantum wells in order to control and enhance the carrier transfer into the nanocrystals. The photoluminescence for bare CdSe nanocrystals incorporated in ZnSe/ZnMgSe quantum well structures is substantially enhanced in comparison to nanocrystals sandwiched in ZnSe epilayers, which we attribute to increased carrier injection into the embedded nanocrystals via the quantum well, resembling the function of a wetting layer in Stranski-Krastanov-grown quantum dots. Core-shell CdSe/ZnS nanocrystals embedded in quantum well structures do not show considerable PL modifications because the ZnS shell prevents the efficient carrier migration between the nanocrystal and the matrix. Systematic investigations of structural and optical properties by high-resolution x-ray diffraction, temperature-dependent photoluminescence and time-resolved emission are presented.

  20. Magnetotransport measurements on modulation Si {delta}-doped pseudomorphic In{sub 0.2}Ga{sub 0.8}As/GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Babinski, A.; Li, G.; Jagadish, C. [The Australian National University, ACT (Australia). Institute of Advanced Studies, Research School of Physical Sciences and Engineering, Department of Electronic Materials Engineering


    The effect of doping concentration on electrical properties of Si {delta}-doped pseudomorphic In{sub 0} {sub .2}Ga{sub 0.} {sub 8}As/GaAs quantum wells (QWs) was examined in this work. Magnetotransport measurements were carried out in the magnetic fields up to 12 T in the dark at the temperature of T=1.7 K. The results were analysed using the fast Fourier transform (FFT). It was found that one electron subband was occupied in the QW with the doping concentrations of 2.3 x 10{sup 12} or 6.0 x 10{sup 12} cm{sup -2}. The parallel conduction was present in both samples, which increased with an increase of Si {delta}-doping concentration. The well-developed plateaus arising from the quantised Hall effect were observed in the Si {delta}-doped In{sub 0.} {sub 2}Ga{sub 0.} {sub 8}As/GaAs QW with reduced parallel conduction. The two subbands remain occupied within the V-shaped potential well formed at the Si doping plane when the Si {delta}-doping concentration was high. The results of measurements in tilted magnetic fields, confirming the attribution of FFT peaks to the particular 2DEG systems, are also presented.

  1. Low frequency noise and electrical transport properties of pseudomorphic Si/Si sub 1 sub - xGe sub x heterostructures

    CERN Document Server

    Prest, M J


    Growth of high germanium content (x=0.44) pseudomorphic Si/Si sub 1 sub - sub x Ge sub x structures at low temperature, followed by a high temperature anneal, was optimised for low temperature mobility. The optimum was found for growth at 380 deg C with an ex-situ anneal at 800 deg C which gave a 10K mobility of 1030cm sup 2 V sup - sup 1 s sup - sup 1 with a sheet density of 1.2x10 sup 1 sup 2 cm sup - sup 2. A sample grown at 380 deg C with an in-situ anneal at 800 deg C gave an even higher 10K mobility of 1985cm sup 2 V sup - sup 1 s sup - sup 1 with a sheet density of 1.0x10 sup 1 sup 2 cm sup - sup 2. Chemical etching was used to fully deplete the dopant supply layer so that a room temperature Hall mobility of 255cm sup 2 V sup - sup 1 s sup - sup 1 was measured. Variation of the Hall coefficient was used to determine the room temperature Hall scattering factor as 0.58 which gave a Drift mobility of 440cm sup 2 V sup - sup 1 s sup - sup 1 (about twice that of a conventional Si pMOS device at the same ver...

  2. Room- and low-temperature assessment of pseudomorphic AlGaAs/InGaAs/GaAS high-electron-mobility transistor structures by photoluminescence spectroscopy (United States)

    Gilperez, J. M.; Sanchez-Rojas, J. L.; Munoz, E.; Calleja, E.; David, J. P. R.; Reddy, M.; Hill, G.; Sanchez-Dehesa, J.


    The use of room- and low-temperature photoluminescence (PL) spectroscopy for the assessment of n-type pseudomorphic AlGaAs/InGaAs/GaAs high-electron-mobility transistor stransitor structures is reported. We describe a method to determine the InAs mole fraction x, the channel layer thickness L, and the confined two-dimensional electron gas density (n(sub s)), based on the comparison between the PL transitions and the recombination energies derived from self-consistent calculations of the subband structure. A detailed analysis of the optical transitions and their dependence on the Fermi level position and temperature is performed. It is shown that, in real devices, the high sensitivity of the recombination energies and intensities on small changes of the parameters x, L, and n(sub s) allows us to detect deviations from their nominal structural parameters within the uncertainty of the molecular beam epitaxy growth technique. The present assessment procedure has been applied to a significant number of samples, and it has been backed by independent measurements of these parameters by more sophisticated techniques such as Shubnikov-de Haas and PL excitation in standard and gated samples, and by physical techniques like transmission electron microscopy and Auger spectroscopy.

  3. Growth and properties of In(Ga)As nanowires on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hertenberger, Simon


    nanowire properties and homogeneous array-like characteristics. High vertical growth yields of 90 % are achieved on substrates patterned either by e-beam lithography (for small scale arrays) or nanoimprint lithography (NIL, for large scale arrays > 5 x 5 mm{sup 2}). In addition, X-ray rocking curve measurements evidence very low crystal tilt and perfect vertical alignment along the (111) direction with full widths at half maximum (FWHM) as low as 0.6 . Furthermore, systematic investigations of the size scaling behavior as a function of the pitch (interwire distance) highlight the existence of two growth regimes: (i) a competitive growth regime for narrow pitches and (ii) a diffusion-limited regime for wider pitches, where growth is limited by the diffusion length of In adatoms on the SiO{sub 2} surface (∝750 nm at T=480 C). Furthermore, the growth of ternary InGaAs nanowires on sputter-deposited SiO{sub x}/Si(111) and NIL-patterned SiO{sub 2}/Si(111) substrates is investigated. Here, composition tuning with Ga contents ranging from 0-60 % was achieved as confirmed by X-ray diffraction and energy dispersive X-ray spectroscopy. Furthermore, the two different growth strategies are compared yielding a significantly lower FWHM of the 2θ-XRD-peak in the case of NIL-patterned substrates (0.031 ) as compared to self-assembled grown nanowires (0.084 ). This finding is further supported by Raman spectroscopy showing lower longitudinal optical to transversal optical (LO/TO) intensity ratios and lower LO-FWHM for both the InAs-like and GaAs-like LO modes in the case of NIL-patterned nanowire growth. These observations indicate superior composition homogeneity for positioned nanowire growth on patterned substrates. In addition, low-T photoluminescence (PL) measurements are presented showing band gap tuning over a wavelength range of ∝1800-2850 nm where PL peak linewidths are as narrow as ∝30 meV, independent of the Ga content. Finally, the effect of growth parameters on the

  4. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells. (United States)

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev


    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

  5. Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature


    Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C.; Morales, Juan S. D.; Senanayake, Pradeep; Prikhodko, Sergey V.; Ochalski, Tomasz J.; Huffaker, Diana L.


    Chip-scale integrated light sources are a crucial component in a broad range of photonics applications. III-V semiconductor nanowire emitters have gained attention as a fascinating approach due to their superior material properties, extremely compact size, and the capability to grow directly on lattice-mismatched silicon substrates. Although there have been remarkable advances in nanowire-based emitters, their practical applications are still in the early stages due to the difficulties in int...

  6. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner. (United States)

    Han, Sang-Pil; Ko, Hyunsung; Park, Jeong-Woo; Kim, Namje; Yoon, Young-Jong; Shin, Jun-Hwan; Kim, Dae Yong; Lee, Dong Hun; Park, Kyung Hyun


    We present a terahertz (THz) broadband antenna-integrated 1 × 20 InGaAs Schottky barrier diode (SBD) array detector with an average responsivity of 98.5 V/W at a frequency of 250 GHz, which is measured without attaching external amplifiers and Si lenses, and an average noise equivalent power (NEP) of 106.6 pW/√Hz. The 3-dB bandwidth of the SBD detector is also investigated at approximately 180 GHz. For implementing an array-type SBD detector by a simple fabrication process to achieve a high yield, a structure comprising an SiN(x) layer instead of an air bridge between the anode and the cathode is designed. THz line beam imaging using a Gunn diode emitter with a center frequency of 250 GHz and a 1 × 20 SBD array detector is successfully demonstrated.

  7. Room-temperature InGaAs detector arrays for 1.0 - 1.7 microns spectroscopy (United States)

    Olsen, G. H.; Joshi, A. M.; Mykietyn, E.; Colosi, J.; Woodruff, K. M.


    Linear arrays of 256 element InGaAs detectors with 100 x 30 micron pixels were mounted in multiplexer packages and tested in an optical multichannel analyzer (OMA). Typical performance characteristics include dark current (-5V) of 400 picoamps and responsivities of 0.75 A/W (1.3 microns) and 0.14 A/W (0.85 microns). The 256 element exhibited a mean room-temperature dark current of under 400 picoamps when mounted in the OMA and a dynamic range over 11 bits (2000:1). Future applications, including room-temperature detector arrays for 2.5 microns and avalanche photodiode arrays for 1.0-1.7 microns, are discussed.

  8. Electrical control of the exciton-biexciton splitting in self-assembled InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kaniber, M; Huck, M F; Mueller, K; Clark, E C; Bichler, M; Finley, J J [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching (Germany); Troiani, F [S3, Instituto Nanoscienze-CNR, 41125 Modena (Italy); Krenner, H J, E-mail: [Lehrstuhl fuer Experimentalphysik 1 and Augsburg Center for Innovative Technologies (ACIT), Universitaet Augsburg, Universiaetsstr. 1, 86159 Augsburg (Germany)


    The authors demonstrate how lateral electric fields can be used to precisely control the exciton-biexciton splitting in InGaAs quantum dots. By defining split-gate electrodes on the sample surface, optical studies show how the exciton transition can be tuned into resonance with the biexciton by exploiting the characteristically dissimilar DC Stark shifts. The results are compared to model calculations of the relative energies of the exciton and biexciton, demonstrating that the tuning can be traced to a dominance of hole-hole repulsion in the presence of a lateral field. Cascaded decay of the exciton-biexciton system enables the generation of entangled photon pairs without the need to suppress the fine structure splitting of the exciton. Our results demonstrate how the exciton-biexciton system can be electrically controlled.

  9. Fin width dependence on gate controllability of InGaAs channel FinFETs with regrown source/drain (United States)

    Kise, Nobukazu; Kinoshita, Haruki; Yukimachi, Atsushi; Kanazawa, Toru; Miyamoto, Yasuyuki


    In this paper, we report on the structure and characteristics of an indium gallium arsenide (InGaAs) channel fin field effect transistor (FinFET) with a regrown source/drain. The fabrication process we propose is suitable for forming a channel with a high aspect ratio. In simulations, the subthreshold characteristics and drain current (Id) were improved by reducing the fin width. Following the simulations, fabricated devices showed improved gate controllability after the fin width was reduced. A short-channel device (Lch = 50 nm, Hfin = 50 nm, and Wfin = 20 nm) showed an Id of 367 μA/μm and a minimum subthreshold swing (SSmin) of 211 mV/dec at Vd = 0.5 V. The maximum-to-minimum Id ratio was 105.

  10. Compact fiber-pigtailed InGaAs photoconductive antenna module for terahertz-wave generation and detection. (United States)

    Han, Sang-Pil; Kim, Namje; Ko, Hyunsung; Ryu, Han-Cheol; Park, Jeong-Woo; Yoon, Young-Jong; Shin, Jun-Hwan; Lee, Dong Hun; Park, Sang-Ho; Moon, Seok-Hwan; Choi, Sung-Wook; Chun, Hyang Sook; Park, Kyung Hyun


    We propose a compact fiber-pigtailed InGaAs photoconductive antenna (FPP) module having an effective heat-dissipation solution as well as a module volume of less than 0.7 cc. The heat-dissipation of the FPP modules when using a heat-conductive printed circuit board (PCB) and an aluminium nitride (AlN) submount, without any cooling systems, improve by 40% and 85%, respectively, when compared with a photoconductive antenna chip on a conventional PCB. The AlN submount is superior to those previously reported as a heat-dissipation solution. Terahertz time-domain spectroscopy (THz-TDS) using the FPP module perfectly detects the absorption lines of water vapor in free space and an α-lactose sample.

  11. Inversion of the exciton built-in dipole moment in In(Ga)As quantum dots via nonlinear piezoelectric effect (United States)

    Aberl, Johannes; Klenovský, Petr; Wildmann, Johannes S.; Martín-Sánchez, Javier; Fromherz, Thomas; Zallo, Eugenio; Humlíček, Josef; Rastelli, Armando; Trotta, Rinaldo


    We show that anisotropic biaxial stress can be used to tune the built-in dipole moment of excitons confined in In(Ga)As quantum dots up to complete erasure of its magnitude and inversion of its sign. We demonstrate that this phenomenon is due to piezoelectricity. We present a model to calculate the applied stress, taking advantage of the so-called piezotronic effect, which produces significant changes in the current-voltage characteristics of the strained diode-membranes containing the quantum dots. Finally, self-consistent k .p calculations reveal that the experimental findings can be only accounted for by the nonlinear piezoelectric effect, whose importance in quantum dot physics has been theoretically recognized although it has proven difficult to single out experimentally.

  12. Exciton and carrier spin relaxations in InGaAs lattice-matched to off-cut Ge substrates (United States)

    Ushimi, Takenori; Nakata, Hiromi; Ishizuka, Toshihiro; Sasayama, Kazutoshi; Lu, Shulong; Dong, Jianrong; Tackeuchi, Atsushi


    We have investigated the exciton and carrier spin relaxations in InGaAs lattice-matched to Ge substrates. Time-resolved spin-dependent pump and probe reflectance measurements revealed a spin relaxation behavior between 10 and 300 K. The presence of the carrier density dependence of spin relaxation time at 10-200 K implies that the Bir-Aronov-Pikus process is effective. At 250-300 K, the strong temperature and weak carrier density dependences of spin relaxation time show that the D'yakonov-Perel' process is dominant. The longest observed spin relaxation time of 2.6 ns at 77 K is explained by the decrease in the spatial overlap of electrons and holes.

  13. Spectral imaging of chemical compounds using multivariate optically enhanced filters integrated with InGaAs VGA cameras (United States)

    Priore, Ryan J.; Jacksen, Niels


    Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.

  14. Vertical-cavity surface-emitting lasers for medical diagnosis

    DEFF Research Database (Denmark)

    Ansbæk, Thor

    -Pérot filters with dissimilar mirrors and the design of such Fabry-Pérot cavities for VCSELs. Fabrication of InGaAs multiple quantum wells with GaAsP strain balancing layers is covered together with the growth and wet chemical etching of InAlP. The fabrication of the proposed Fabry-Pérot filters and VCSELs......This thesis deals with the design and fabrication of tunable Vertical-Cavity Surface-Emitting Lasers (VCSELs). The focus has been the application of tunable VCSELs in medical diagnostics, specifically OCT. VCSELs are candidates as light sources for swept-source OCT where their high sweep rate, wide...

  15. Telecom-Wavelength Bottom-up Nanobeam Lasers on Silicon-on-Insulator. (United States)

    Kim, Hyunseok; Lee, Wook-Jae; Farrell, Alan C; Balgarkashi, Akshay; Huffaker, Diana L


    Semiconductor nanowire lasers are considered promising ultracompact and energy-efficient light sources in the field of nanophotonics. Although the integration of nanowire lasers onto silicon photonic platforms is an innovative path toward chip-scale optical communications and photonic integrated circuits, operating nanowire lasers at telecom-wavelengths remains challenging. Here, we report on InGaAs nanowire array lasers on a silicon-on-insulator platform operating up to 1440 nm at room temperature. Bottom-up photonic crystal nanobeam cavities are formed by growing nanowires as ordered arrays using selective-area epitaxy, and single-mode lasing by optical pumping is demonstrated. We also show that arrays of nanobeam lasers with individually tunable wavelengths can be integrated on a single chip by the simple adjustment of the lithographically defined growth pattern. These results exemplify a practical approach toward nanowire lasers for silicon photonics.

  16. The simulation of localized surface plasmon and surface plasmon polariton in wire grid polarizer integrated on InP substrate for InGaAs sensor

    Directory of Open Access Journals (Sweden)

    Rui Wang


    Full Text Available We numerically demonstrate the integration of gold wire grid polarizer on InP substrate for InGaAs polarimetric imaging. The effective spectral range of wire grid polarizer has been designed in 0.8-3 μm according to InGaAs response waveband. The dips in TM transmission are observed due to surface plasmon (SPs significantly damaging polarization performance. To further understand the coupling mechanism between gold wire grid grating and InP, the different contributions of surface plasmon polariton (SPP and localized surface plasmon (LSP to the dips are analyzed. Both transmission and reflectance spectra are simulated at different grating periods and duty cycles by finite-different time-domain (FDTD method. LSP wavelength is located at around 1 μm and sensitive to the specific shape of metal wire. SPP presents higher resonance wavelength closely related to grating period. The simulations of electric field distribution show the same results.

  17. Detailed Study of the Influence of InGaAs Matrix on the Strain Reduction in the InAs Dot-In-Well Structure. (United States)

    Wang, Peng; Chen, Qimiao; Wu, Xiaoyan; Cao, Chunfang; Wang, Shumin; Gong, Qian


    InAs/InGaAs dot-in-well (DWELL) structures have been investigated with the systematically varied InGaAs thickness. Both the strained buffer layer (SBL) below the dot layer and the strain-reducing layer (SRL) above the dot layer were found to be responsible for the redshift in photoluminescence (PL) emission of the InAs/InGaAs DWELL structure. A linear followed by a saturation behavior of the emission redshift was observed as a function of the SBL and SRL thickness, respectively. The PL intensity is greatly enhanced by applying both of the SRL and SBL. Finite element analysis simulation and transmission electron microscopy (TEM) measurement were carried out to analyze the strain distribution in the InAs QD and the InGaAs SBL. The results clearly indicate the strain reduction in the QD induced by the SBL, which are likely the main cause for the emission redshift.

  18. Comparison of different grading schemes in InGaAs metamorphic buffers on GaAs substrate: Tilt dependence on cross-hatch irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul, E-mail: [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Bag, Ankush [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Mukhopadhyay, Partha [Rajendra Mishra School of Engineering Entrepreneurship, Indian Institute of Technology, Kharagpur 721302 (India); Das, Subhashis [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302 (India); Biswas, Dhrubes [Department of Electronics & Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)


    Highlights: • InGaAs graded MBs with different grading scheme has been grown by MBE on GaAs. • Continuously graded MB exhibits smoother surface morphology. • Grading scheme has been found to have little impact on lattice relaxation. • Grading schemeaffects the lattice tilt significantly. • Cross-hatch surface irregularities affect the crystallographic tilt. - Abstract: InGaAs graded metamorphic buffers (MBs) with different grading strategies have been grown by molecular beam epitaxy (MBE) on GaAs (0 0 1) substrate. A detailed comparative analysis of surface using atomic force microscopy (AFM), and bulk properties using high resolution X-ray diffraction (HRXRD) and room temperature photoluminescence (RTPL) of grown MBs have been presented to comprehend the effectiveness of different grading scheme on InGaAs MBs. Conventional, statistical and fractal analysis on measured AFM data has been performed for in-depth investigation of these surfaces. The grading scheme has been found to have little impact on residual strain while it affects the epitaxial tilt significantly. Moreover, the tilt has been found to depend on growth front irregularities. Tilt magnitude in a graded MB has been found to vary with composition while tilt azimuth has been found to be almost same in the graded layers. PL Intensity and a shift in the PL peaks have been used to study the quality of the MB and residual strain comparatively.

  19. Room Temperature O-band DFB Laser Array Directly Grown on (001) Silicon. (United States)

    Tian, Bin; Wang, Zhechao; Pantouvaki, Marianna; Absil, Philippe; Van Campenhout, Joris; Merckling, Clement; Van Thourhout, Dries


    Several approaches for growing III-V lasers on silicon were recently demonstrated. Most are not compatible with further integration, however, and rely on thick buffer layers and require special substrates. Recently, we demonstrated a novel approach for growing high quality InP without buffer on standard 001-silicon substrates using a selective growth process compatible with integration. Here we show high quality InGaAs layers can be grown on these InP-templates. High-resolution TEM analysis shows these layers are free of optically active defects. Contrary to InP, the InGaAs material exhibits strong photoluminescence for wavelengths relevant for integration with silicon photonics integrated circuits. Distributed feedback lasers were defined by etching a first order grating in the top surface of the device. Clear laser operation at a single wavelength with strong suppression of side modes was demonstrated. Compared to the previously demonstrated InP lasers 65% threshold reduction is observed. Demonstration of laser arrays with linearly increasing wavelength prove the control of the process and the high quality of the material. This is an important result toward realizing fully integrated photonic ICs on silicon substrates.

  20. Room-temperature operation of MOCVD-grown GaInAs/InP strained-layer multiquantum well lasers in 1.8 micron range (United States)

    Forouhar, S.; Larsson, A.; Ksendzov, A.; Lang, R. J.; Tothill, N.; Scott, M. D.


    The first successful room-temperature pulsed operation is reported of InGaAs strained layer multiquantum well injection lasers grown by MOVPE on InP substrates in the 1.8 micron range. The threshold current density and the external differential quantum efficiency of the 10 micron wide ridge waveguide lasers were 2.5 kA/sq cm (cavity length = 1 mm) and 5 percent (cavity length = 400 microns), respectively. Broad-area lasers, 100 microns wide and 1 mm long, had a reverse leakage current of less than 10 microamps at -1 V indicating high quality of the epitaxial layers.

  1. 640x512 InGaAs focal plane array camera for visible and SWIR imaging (United States)

    Martin, Tara; Brubaker, Robert; Dixon, Peter; Gagliardi, Mari-Anne; Sudol, Tom


    We report on our 640x512 pixel InGaAs/InP focal plane array camera for visible and short-wavelength infrared imaging. For this camera, we have fabricated a 640x512 element substrate-removed backside-illuminated InGaAs/InP photodiode array (PDA) with a 25 mm pixel pitch. The PDA is indium bump bonded to a silicon read out integrated circuit. Removing the InP substrate from the focal plane array allows visible wavelengths, which would otherwise be absorbed by the InP substrate due to its 920 nm wavelength cut-off, to reach the pixels' active region. The quantum efficiency is approximately 15% at 500 nm, 70% at 850 nm, 85% at 1310 nm, and 80% at 1550 nm. Features incorporated into this video-rate, 14-bit output camera include external triggering, windowing, individual pixel correction, 8 operational settings of gain and exposure time, and gamma correction. The readout circuit uses a gate-modulated pixel for high sensitivity imaging over a wide illumination range. This camera is useable for visible imaging as well as imaging eye-safe lasers and is of particular interest seeing laser designators and night vision as well as hyperspectral imaging.

  2. High-power diode lasers at 1178  nm with high beam quality and narrow spectra. (United States)

    Paschke, K; Bugge, F; Blume, G; Feise, D; Erbert, G


    High-power distributed Bragg reflector tapered diode lasers (DBR-TPLs) at 1180 nm were developed based on highly strained InGaAs quantum wells. The lasers emit a nearly diffraction-limited beam with more than two watts with a narrow spectral width. These features are believed to make this type of diode laser a key component for the manufacturing of miniaturized laser modules in the yellow and orange spectral range by second-harmonic generation to cover a spectral region currently not accessible with direct emitting diode lasers. Future applications might be the laser-cooling of sodium, high-resolution glucose-content measurements, as well as spectroscopy on rare earth elements.

  3. Screened-exchange density functional approach to Auger recombination and impact ionization rates in InGaAs (United States)

    Picozzi, Silvia; Asahi, Ryoji; Geller, Clint; Freeman, Arthur


    We present an ab-initio modeling approach for Auger recombination and impact ionization in semiconductors directed at i) quantitative rate determinations and 2) elucidating trends with respect to alloy composition, carrier concentration and temperature. We present a fully first-principles formalism (S.Picozzi, R.Asahi, C.B. Geller and A.J.Freeman, Phys.Rev.Lett. 89, 197601 (2002); Phys.Rev.B 65, 113206 (2002).), based on accurate energy bands and wave functions within the screened exchange local density approximation and the full-potential linearized augmented plane wave (FLAPW) method (E.Wimmer, H.Krakauer, M.Weinert, A.J.Freeman, Phys.Rev.B 24, 864 (1981)). Results are presented for electron- and hole-initiated impact ionization processes and Auger recombinations for p-type and n-type InGaAs. Anisotropy and composition effects in the related rates are discussed in terms of the underlying band-structures. Calculated Auger lifetimes, in general agreement with experiments, are studied for different recombination mechanisms (i.e. CCCH, CHHL, CHHS, involving conduction electrons (C), heavy- (H) and light-hole (L), spin split-off (S) band) in order to understand the dominant mechanism.

  4. Single mode 1.3 μm InGaAs VCSELs for access network applications (United States)

    Westbergh, Petter; Söderberg, Emma; Gustavsson, Johan S.; Modh, Peter; Larsson, Anders; Zhang, Zhenzhong; Berggren, Jesper; Hammar, Mattias


    GaAs-based VCSELs emitting near 1.3 μm are realized using highly strained InGaAs quantum wells and a large detuning of the cavity resonance with respect to the gain peak. The VCSELs have an oxide aperture for current and optical confinement and an inverted surface relief for suppression of higher-order transverse modes. The inverted surface relief structure also has the advantage of suppressing oxide modes that otherwise appear in VCSELs with a large detuning between the cavity resonance and the gain peak. Under large signal, digital modulation, clear and open eyes and error free transmission over 9 km of single mode fiber have been demonstrated at the OC-48 and 10 GbE bit rates up to 85°C. Here we review these results and present results from a complementary study of the RF modulation characteristics, including second order harmonic and third order intermodulation distortion, relative intensity noise (RIN), and spurious free dynamic range (SFDR). RIN levels comparable to those of single mode VCSELs emitting at 850 nm are demonstrated, with values from -140 to -150 dB/Hz. SFDR values of 100 and 95 dB•Hz 2/3 were obtained at 2 and 5 GHz, respectively, which is in the range of those required in radio-over-fiber systems.

  5. Diffusion of In and Ga in TiN/HfO2/InGaAs nanofilms (United States)

    Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Vazquez-Lepe, M. O.; Duong, T.; Arroyave, R.; Espinosa-Magaña, F.; Herrera-Gomez, A.


    The structure of TiN/HfO2 nanofilms grown on InxGa1-xAs substrates was assessed through angular-resolved x-ray photoelectron spectroscopy. The quantitative analysis made possible determining the thickness and composition of the various layers constituting the nanofilms treated at different temperatures (un-annealed, 500 °C/120 s and 700 °C/10 s). The TiN layer is crucial to prevent oxygen desorption from the dielectric during annealing. Small amounts of oxidized gallium and metallic arsenic are located at the HfO2/InGaAs interface. The thickness of the HfO2 layer remains stable under the thermal treatments. Annealing affects the In 3d5/2 and Ga 3p signals. From the angular dependence of the peak intensities and the detailed knowledge of the structure of the films, it was possible to determine that annealing causes In and Ga out-diffusion into the metallic layer, and also to quantify the amount of transported matter. This, along with density functional theory calculations, allowed for an estimation of the activation energy of the diffusion of indium through HfO2.

  6. A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs (United States)

    Payal, M.; Singh, Y.


    In this work, a new RF power trench-gate multi-channel laterally-diffused MOSFET (TGMC-LDMOS) on InGaAs is proposed. The gate-electrodes of the new structure are placed vertically in the trenches built in the drift layer. Each gate results in the formation of two channels in the p-body region of the device. The drain metal is also placed in a trench to take contact from the n+-InGaAs region located over the substrate. In a cell length of 5 {{μ }}{{m}}, the TGMC-LDMOS structure has seven channels, which conduct simultaneously to carry drain current in parallel. The formation of multi-channels in the proposed device increases the drive current ({I}{{D}}) leading to a large reduction in the specific on-resistance ({R}{{on-sp}}). Due to better control of gates on the drain current, the new structure exhibits substantially higher transconductance ({g}{{m}}) resulting in significant improvement in cut-off frequency ({f}{{T}}) and oscillation frequency ({f}\\max ). Using two-dimensional numerical simulations, a 55 V TGMC-LDMOS is demonstrated to achieve 7 times higher {I}{{D}}, 6.2 times lower {R}{{on-sp}}, 6.3 times higher peak {g}{{m}}, 2.6 times higher {f}{{T}}, and 2.5 times increase in {f}\\max in comparison to a conventional device for the identical cell length.

  7. Toward a 1550 nm InGaAs photoconductive switch for terahertz generation. (United States)

    Williams, Kimani K; Taylor, Z D; Suen, J Y; Lu, Hong; Singh, R S; Gossard, A C; Brown, E R


    We report a terahertz (THz) photoconductive switch made from a composite of metal ErAs nanoparticles embedded in In(0.53)Ga(0.47)As and coupled to a square spiral antenna. The THz output power was measured in a 77 K cryostat by using a standard hyperhemisphere-lens package, a Golay cell outside the cryostat, and a quasi-optical filter bank for spot frequency spectral measurements. Results indicate an average output power of approximately 12 microW at 22 V bias using 140 mW of optical pump power from a subpicosecond fiber mode-locked laser. In addition, the THz spectra displayed invariance to bias voltage despite operating near impact ionization.

  8. Using strained (AlxGa1 - x)yIn1 - yAszP1 - z system materials to improve the performance of 850 nm surface- and edge-emitting lasers (United States)

    Sale, T. E.; Amamo, C.; Ohiso, Y.; Kurokawa, T.


    We compute the optical gain of various quantum wells for use in 850 nm lasers. In particular, we investigate compressively strained wells of AlGaInAs, InGaAs, or InGaAsP without any assumptions of the material quality. Reductions of up to 43% in the radiative current and 24% in the sheet carrier density can be expected, compared with GaAs/AlGaAs wells. For the case of vertical-cavity surface-emitting lasers and distributed feedback lasers, compressive strain is particularly attractive in reducing the temperature sensitivity and fabrication tolerances for low threshold and efficient operation.

  9. Path-folded infrared spectrometer consisting of 10 sub-gratings and a two-dimensional InGaAs detector. (United States)

    Liu, Ming-Hui; Pan, Su-Xing; Chen, Yu-Rui; Wu, Yun-Fei; Cai, Qing-Yuan; Mao, Peng-Hui; Zheng, Yu-Xiang; Chen, Liang-Yao


    A new compact infrared spectrometer without any mechanical moving elements has been designed and constructed using a two-dimensional InGaAs array detector and 10 sub-gratings. The instrument is compact, with a double-folded optical path configuration. The spectra are densely 10-folded to achieve 0.07-nm spectral resolution and a 2-ms data acquisition time in the 1450- to 1650-nm wavelength region, making the instrument useful for real-time spectroscopic data analyses in optical communication and many other fields. (c) 2009 Optical Society of America

  10. Preventing phase separation in MOCVD-grown InAlAs compositionally graded buffer on silicon substrate using InGaAs interlayers (United States)

    Kohen, David; Nguyen, Xuan Sang; Made, Riko I.; Heidelberger, Christopher; Lee, Kwang Hong; Lee, Kenneth Eng Kian; Fitzgerald, Eugene A.


    Compositionally graded InAlAs buffers grown by metal-organic chemical vapor deposition are impaired by phase separation occurring at In content higher than 35%. Phase separation results in rough epilayers with poor crystalline material quality. By introducing low temperature grown InGaAs interlayers in the compositionally graded InAlAs buffer, the surface roughness decreases, allowing a grading of up to In0.60Al0.40As without any phase separation occurring. This composite buffer is applied to fabricate a 200 mm diameter InP-on-Si virtual substrate with a threading dislocation density around 1 × 108 cm-2.

  11. MOCVD growth of InGaAs/GaAs QDs for long wavelength lasers and VCSELs


    Kaiander, Ilia


    In Rahmen dieser Arbeit wurden das Wachstum und die Eigenschaften von selbstorganisierten InGaAs Quantenpunkten (QP) auf GaAs Substraten untersucht. Das Ziel war die QP mit guter optischer Qualität herzustellen, um sie als aktives Medium für kanten- und oberflächenemitierende Laser nutzen zu können. Die QP wurden mittels metallorganischer Gasphasenepitaxie (MOCVD) hergestellt. Der Einfluss von verschiedenen Wachstumsparametern, wie Wachstumstemperatur, V/III Verhältniss, Zusamensetzung u.a., ...

  12. Semiconductor quantum-well saturable absorbers for efficient passive Q switching of a diode-pumped 946 nm Nd:YAG laser. (United States)

    Huang, Y P; Liang, H C; Huang, J Y; Su, K W; Li, A; Chen, Y F; Huang, K F


    InGaAs quantum wells and a Bragg mirror structure are grown on a GaAs substrate to simultaneously serve as a low-loss saturable absorber and an output coupler for highly efficient Q switching of a diode-pumped Nd:YAG laser operating at 946 nm. With an incident pump power of 9.2 W, the laser produces pulses of 38 ns duration with average pulse energy of as much as 20 microJ at a pulse repetition rate of 55 kHz.

  13. Isotropic Hall effect and ''freeze-in'' of carriers in the InGaAs self-assembled quantum wires

    Energy Technology Data Exchange (ETDEWEB)

    Kunets, Vas. P.; Prosandeev, S.; Mazur, Yu. I.; Ware, M. E.; Teodoro, M. D.; Dorogan, V. G.; Lytvyn, P. M.; Salamo, G. J. [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States)


    Using molecular beam epitaxy, we prepared an anisotropic media consisting of InGaAs quantum wires epitaxially grown on GaAs (311)A. Anisotropy is observed in the lateral conductivity and photoluminescence polarization. However, an isotropic Hall effect is observed in the same samples. We show that the Hall effect in this anisotropic heterostructure remains isotropic regardless of the change of the doping in GaAs barriers and regardless of the InGaAs coverage, whereas the conductivity anisotropy experiences a strong change under these actions. In addition, we observed an anomalous increase in carrier density, ''freeze-in,'' at low temperatures. In order to explain this, we generalized the theory of Look [D. C. Look, Phys. Rev B 42, 3578 (1990)] by considering the low field magneto-transport in anisotropic media. This theory confirms that the Hall constant remains isotropic in anisotropic semiconductor heterostructures, agreeing with our experiment and explains the anomalous behavior of carriers as a result of multi-band conductivity.

  14. Transmission electron microscopy and photoluminescence characterization of InGaAs strained quantum wires on GaAs vicinal (110) substrates

    CERN Document Server

    Shim, B R; Ota, T; Kobayashi, K; Maehashi, K; Nakashima, H; Lee, S Y


    We have used transmission electron microscopy (TEM) and photoluminescence (PL) to study InGaAs/AlGaAs strained quantum wires (QWRs) grown by molecular beam epitaxy (MBE) on GaAs vicinal (110) substrates. The cross-sectional TEM image reveals that InGaAs QWRs structures are naturally formed on AlGaAs giant steps. In the plan-view TEM images, the fringe pattern in the giant-step region is observed for In sub x Ga sub 1 sub - sub x As layers with x<= 0.4 We measured the separation of the fringe in the plan-view TEM images and compared the result with the calculated fringe separation. From this result, we conclude that the fringes observed in the plan-view TEM images are moire fringes. PL spectra of the InGaAs QWRs samples reveal 80-meV shifts to lower energy with respect to the spectrum of a quantum well (QWL) grown on a (001) substrate under the same conditions. We also measured the polarization anisotropy of the PL spectra from the QWRs. The PL peak shifts systematically toward higher energy with decreasing...

  15. Comparison of MOVPE grown GaAs, InGaAs and GaAsSb covering layers for different InAs/GaAs quantum dot applications (United States)

    Zíková, Markéta; Hospodková, Alice; Pangrác, Jiří; Oswald, Jiří; Hulicius, Eduard


    InAs/GaAs quantum dot (QD) heterostructures with different covering layers (CLs) prepared by MOVPE are compared in this work. The recombination energy of a structure covered only by GaAs depends nonlinearly on CL thickness. Experimental data of photoluminescence (PL) were supported by theoretical simulations. These simulations prove that the strain plays a major role in the structures. InGaAs strain reducing layer (SRL) was studied as well. Due to the strain reduction, the recombination energy is decreased, so the structure has longer PL wavelength. By theoretical simulations it was shown that for high content of In in InGaAs covering layer (approximately 45% and more), the heterostructure is type II, which would normally be unreachable for flat layers. For the structure with GaAsSb SRL, the band alignment is highly dependent on the SRL composition. The type I/type II transition occurs for approximately 15% of Sb; this value also slightly depends on the QD size. All structures were also studied by HRTEM to show different behavior of the CLs on the interface with InAs which highly influences the structure quality.

  16. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel. (United States)

    Darling, Cynthia L; Fried, Daniel


    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  17. Low noise Raman lasers for yellow-orange spectrum coverage (United States)

    Landru, Nicolas; Rouvillain, Julien; Le Bail, Guy; Georges, Thierry


    Diode lasers have been demonstrated to operate over a great part of the visible spectrum: InGaN diodes cover the violet-blue- green part (red part (>635 nm). Some fluorophorus in biotechnology applications are excited by intermediate wavelengths, from 540 to 630 nm. Optically pumped InGaAs lasers were demonstrated from 460 nm up to 580 nm. Standard frequency doubled diode pumped solid state (DPSS) lasers lack of suitable transition to cover the 565-650nm region. It is possible to modify the semiconductor composition to extend the frequency range or to frequency mix DPSS laser wavelengths, but it comes either with a significant R&D effort or with a complexity in the design. Raman scattering can red-shift the strong transitions of Nd or Yb lasers so that many wavelengths lying in the 1080-1300 nm range can be achieved. Recently several CW diode pumped Raman lasers were demonstrated, some of them including intra-cavity frequency doubling or mixing. The problems with these Raman lasers are the high pump threshold and the high noise. Based on monolithic cavities, we have built several visible Raman lasers with a reduced loss presenting a low pump threshold (<1W) and a high slope efficiency. Output powers in excess of 100 mW were achieved at 588 nm with a 2.5W 808 nm pump. Laser emissions from 556 nm up to more than 610 nm were demonstrated. Noise of these lasers was analyzed and means to reach low noise operation will be discussed at the conference.

  18. Effect of the bimodality of a QD array on the optical properties and threshold characteristics of QD lasers

    Energy Technology Data Exchange (ETDEWEB)

    Nadtochiy, A. M., E-mail: [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Research and Education Centre (Russian Federation); Mintairov, S. A.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Rouvimov, S. S. [University of Notre Dame (United States); Shernyakov, Yu. M. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Payusov, A. S.; Maximov, M. V.; Zhukov, A. E. [Russian Academy of Sciences, St. Petersburg Academic University, Nanotechnology Research and Education Centre (Russian Federation)


    Heterostructures with InGaAs quantum dots (QDs) are synthesized on vicinal GaAs (001) substrates. The photoluminescence (PL) spectra and threshold characteristics of edge-emitting QD lasers are studied in the temperature range 10-400 K. The structural properties of QDs are examined by transmission electron microscopy. Analysis of the PL spectra demonstrates the bimodality of the QD array, which leads to an unusual temperature behavior of the PL spectra and threshold current density. A model of the population of a bimodal QD array by carriers, describing the observed phenomena, is considered.

  19. Current-injection two-color lasing in a wafer-bonded coupled multilayer cavity with InGaAs multiple quantum wells (United States)

    Minami, Yasuo; Ota, Hiroto; Lu, Xiangmeng; Kumagai, Naoto; Kitada, Takahiro; Isu, Toshiro


    Current-injection two-color lasing has been demonstrated using a GaAs/AlGaAs coupled multilayer cavity that is a good candidate for novel terahertz-emitting devices based on difference-frequency generation (DFG) inside the structure. The coupled cavity structure was fabricated by the direct wafer bonding of (001)- and (113)B-oriented epitaxial wafers for the efficient DFG of two modes in the (113)B side cavity, and two types of InGaAs multiple quantum wells (MQWs) were introduced only in the (001) side cavity as optical gain materials. The threshold behavior was clearly observed in the current-light output curve even at room temperature. Two-color lasing was successfully observed when the gain peaks of MQWs were considerably tuned to the cavity modes by the operating temperature.

  20. Characteristics of the dynamics of breakdown filaments in Al{sub 2}O{sub 3}/InGaAs stacks

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, F. [National Scientific and Technical Research Council (CONICET), Av. Rivadavia 1917, Buenos Aires (Argentina); Department of Electronic Engineering, National Technological University (UTN), Medrano 951, Buenos Aires (Argentina); GAIANN, Comisión Nacional de Energía Atómica, Gral.Paz 1499 (1650), Buenos Aires (Argentina); Shekhter, P.; Eizenberg, M. [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, 32000 Haifa (Israel); Cohen Weinfeld, K. [Solid State Institute, Technion-Israel Institute of Technology, 32000 Haifa (Israel)


    In this paper, the Al{sub 2}O{sub 3}/InGaAs interface was studied by X-ray photoelectron spectroscopy (XPS) after a breakdown (BD) event at positive bias applied to the gate contact. The dynamics of the BD event were studied by comparable XPS measurements with different current compliance levels during the BD event. The overall results show that indium atoms from the substrate move towards the oxide by an electro-migration process and oxidize upon arrival following a power law dependence on the current compliance of the BD event. Such a result reveals the physical feature of the breakdown characteristics of III-V based metal-oxide-semiconductor devices.

  1. Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector. (United States)

    Han, Sang-Pil; Ko, Hyunsung; Kim, Namje; Lee, Won-Hui; Moon, Kiwon; Lee, Il-Min; Lee, Eui Su; Lee, Dong Hun; Lee, Wangjoo; Han, Seong-Tae; Choi, Sung-Wook; Park, Kyung Hyun


    We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced.

  2. Terahertz tunable detection in self-switching diodes based on high mobility semiconductors: InGaAs, InAs and InSb

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez-de-la-Torre, I; Rodilla, H; Mateos, J; Pardo, D; Gonzalez, T [Departamento de Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Song, A M, E-mail: indy@usal.e [School of Electrical and Electronic Engineering, University of Manchester, Manchester M60 1QD (United Kingdom)


    In this work we report on the use of high mobility materials in the channel of self-switching diodes as potential candidates for terahertz operation. By means of Monte Carlo simulations we envisage the feasibility of tuneable-by-geometry detection in the terahertz range. The low effective mass of InAs and InSb in relation to InGaAs enhances ballistic transport inside the diode, thus improving the amplitude and quality factor of the resonance found in the detection spectra of self-switching diodes. The frequency of the resonant peak is also increased with the use of these narrow band gap semiconductors. The analysis of the noise spectra provides useful information about the origin of the resonance. By decreasing temperature below 300 K, a clear improvement in detection sensitivity is also achieved.

  3. Compositional bowing of band energies and their deformation potentials in strained InGaAs ternary alloys: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Khomyakov, Petr A.; Luisier, Mathieu; Schenk, Andreas [Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland)


    Using first-principles calculations, we show that the conduction and valence band energies and their deformation potentials exhibit a non-negligible compositional bowing in strained ternary semiconductor alloys such as InGaAs. The electronic structure of these compounds has been calculated within the framework of local density approximation and hybrid functional approach for large cubic supercells and special quasi-random structures, which represent two kinds of model structures for random alloys. We find that the predicted bowing effect for the band energy deformation potentials is rather insensitive to the choice of the functional and alloy structural model. The direction of bowing is determined by In cations that give a stronger contribution to the formation of the In{sub x}Ga{sub 1−x}As valence band states with x ≳ 0.5, compared to Ga cations.

  4. Low-Temperature epitaxial growth of InGaAs films on InP(100) and InP(411) A substrates (United States)

    Galiev, G. B.; Klimova, E. A.; Pushkarev, S. S.; Klochkov, A. N.; Trunkin, I. N.; Vasiliev, A. L.; Maltsev, P. P.


    The structural and electrical characteristics of In0.53Ga0.47As epitaxial films, grown in the low-temperature mode on InP substrates with (100) and (411) A crystallographic orientations at flow ratios of As4 molecules and In and Ga atoms of γ = 29 and 90, have been comprehensively studied. The use of InP(411) A substrates is shown to increase the probability of forming two-dimensional defects (twins, stacking faults, dislocations, and grain boundaries), thus reducing the mobility of free electrons, and AsGa point defects, which act as donors and increase the free-electron concentration. An increase in γ from 29 to 90 leads to transformation of single-crystal InGaAs films grown on (100) and (411) A substrates into polycrystalline ones.

  5. Highly-efficient multi-watt Yb:CaLnAlO4 microchip lasers (United States)

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Yumashev, Konstantin; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady


    Tetragonal rare-earth calcium aluminates, CaLnAlO4 where Ln = Gd or Y (CALGO and CALYO, respectively), are attractive laser crystal hosts due to their locally disordered structure and high thermal conductivity. In the present work, we report on highly-efficient power-scalable microchip lasers based on 8 at.% Yb:CALGO and 3 at.% Yb:CALYO crystals grown by the Czochralski method. Pumped by an InGaAs laser diode at 978 nm, the 6 mm-long Yb:CALGO microchip laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η = 84% (with respect to the absorbed pump power) and an optical-to-optical efficiency of ηopt = 49%. The 3 mm-long Yb:CALYO microchip laser generated 5.06 W at 1048-1056 nm corresponding to η = 91% and ηopt = 32%. Both lasers produced linearly polarized output (σ- polarization) with an almost circular beam profile and beam quality factors M2 x,y <1.1. The output performance of the developed lasers was modeled yielding a loss coefficient as low as 0.004-0.007 cm-1. The results indicate that the Yb3+- doped calcium aluminates are very promising candidates for high-peak-power passively Q-switched microchip lasers.

  6. Quantum well, beam deflecting surface emitting lasers (United States)

    Kim, Jae H. (Inventor)


    This invention relates to surface emitting semiconductor lasers (SELs), with integrated 45 deg. beam deflectors. A SEL is formed on a wafer including vertical mirrors and 45 deg. beam deflectors formed in grooves by tilted ion beam etching. A SEL is a lattice matched, or unstrained, AlGaAs/GaAs GRINSCH SQW SEL. An alternate embodiment is shown, in which a SEL is lattice mismatched, strained or pseudomorphic, or InGaAs/AlGaAs GRINSCH SQW SEL which emits radiation at a wavelength to which its substrate is transparent. Both SELs exhibit high output power, low threshold current density, and relatively high efficiency, and each are processing compatible with conventional large scale integration technology. Such SELs may be fabricated in large numbers from single wafers. The novel features of this invention include the use of tilted ion beam etching to form a pair of grooves each including vertical mirrors and 45 deg. beam deflectors. The embodiment provides substantial circuit design flexibility because radiation may be coupled both up and/or down through the substrate.

  7. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation (United States)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel


    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  8. Burr formation detector for fiber laser cutting based on a photodiode sensor system (United States)

    Schleier, Max; Adelmann, Benedikt; Neumeier, Benedikt; Hellmann, Ralf


    We report a unique sensor system based on a InGaAs photodiode to detect the formation of burr during near infrared fiber laser cutting. The sensor approach encompasses the measurement of the thermal radiation form the process zone, optical filtering, digitalized sampling at 20 kHz, digital filtering using an elliptical band-pass filter 12th order and calculation of the standard deviation. We find a linear correlation between the deduced sensor signal and the generated burr height with this functionality being experimentally confirmed for laser cutting of mild and stainless steel of different thicknesses. The underlying mechanism of this transducer concept is attributed to the melt flow dynamics inside the cut kerf.

  9. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)



    The Lasers Technology Program of IPEN is committed to the development of new lasers based on the research of optical materials and new technologies, as well to laser applications in several areas: Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. The Program is basically divided into two main areas: Material and Laser Development and Laser Applications.

  10. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    Energy Technology Data Exchange (ETDEWEB)

    Cipro, R.; Gorbenko, V. [Univ. Grenoble Alpes, LTM, F-38000 France CNRS, LTM, F-38000 Grenoble (France); Univ. Grenoble Alpes, F-38000, France CEA-LETI, MINATEC Campus, F-38054 Grenoble (France); Baron, T., E-mail:; Martin, M.; Moeyaert, J.; David, S.; Bassani, F. [Univ. Grenoble Alpes, LTM, F-38000 France CNRS, LTM, F-38000 Grenoble (France); Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N. [Univ. Grenoble Alpes, F-38000, France CEA-LETI, MINATEC Campus, F-38054 Grenoble (France); Chauvin, N. [Institut des Nanotechnologies de Lyon (INL)-UMR5270-CNRS, INSA-Lyon, Université de Lyon, 7 Avenue Jean Capelle, 69621 Villeurbanne (France); Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E. [Applied Materials, 3050 Bowers Avenue, Santa Clara, California 95054 (United States)


    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO{sub 2} cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  11. Laser principles. (United States)

    Bogdan Allemann, Inja; Kaufman, Joely


    Since the construction of the first laser in the 1960s, the role that lasers play in various medical specialities, including dermatology, has steadily increased. However, within the last 2 decades, the technological advances and the use of lasers in the field of dermatology have virtually exploded. Many treatments have only become possible with the use of lasers. Especially in aesthetic medicine, lasers are an essential tool in the treatment armamentarium. Due to better research and understanding of the physics of light and skin, there is now a wide and increasing array of different lasers and devices to choose from. The proper laser selection for each indication and treatment requires a profound understanding of laser physics and the basic laser principles. Understanding these principles will allow the laser operator to obtain better results and help avoid complications. This chapter will give an in-depth overview of the physical principles relevant in cutaneous laser surgery. Copyright © 2011 S. Karger AG, Basel.

  12. High-resolution X-ray diffraction characterisation of piezoelectric InGaAs / GaAs multiquantum wells and superlattices on (111)B GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Hervas, A.; Aguilar, M. [Madrid, Univ. (Spain). Dept. Tecnologia Electronica. E.T.S.I. Telecomunicacion; Lopez, M.; Llorente, C.; Lorenzo, R.; Abril, E. J. [Valladolid, Real de Burgos Univ. (Spain). Dept. Teoria de la Senal u Comunicaciones e Ingegneria Telematica. E.T.S.I. Telecomunicacion; Sacedon, A.; Sanchez, J. L.; Calleja, E.; Munoz, E. [Madrid, Univ. (Spain). Dept. Ingegnieria Electronica. E.T.S.I. Telecomunicacion


    In this paper the authors show some examples of strained InGaAs / GaAs multilayers on (111)B GaAs substrates studied by high-resolution X-ray diffractometry. The samples consisted of a multiquantum well or superlattice embedded in the intrinsic region of a p-i-n photodiode. They have analysed piezoelectric (111)B structures with 3, 7, 10, and 40 periods and different indium contents and compared the results with identical structures simultaneously grown on (001) substrates. The interpretation of the diffraction profiles has been carried out with a computer simulation model developed in our labs, which allows the calculation of symmetric and asymmetric reflections regardless of the substrate orientation or miscut angle. The agreement between the experimental scans and the theory was very satisfactory in all the samples, which has enabled us to determine the main structural parameters of the diodes, Asymmetric 224{+-} reflections on (111)B structures have been simulated for the first time. They have also compared the structural parameters obtained by high-resolution X-ray diffractometry with the results deduced from photoluminescence and photocurrent spectroscopies.

  13. Microchip Yb:CaLnAlO4 lasers with up to 91% slope efficiency. (United States)

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Xu, Xiaodong; Xu, Jun; Jambunathan, Venkatesan; Navratil, Petr; Lucianetti, Antonio; Mocek, Tomas; Zhang, Xuzhao; Griebner, Uwe; Petrov, Valentin; Aguiló, Magdalena; Díaz, Francesc; Major, Arkady


    Multi-watt continuous-wave (CW) operation of tetragonal rare-earth calcium aluminate Yb:CaLnAlO4(Ln=Gd,Y)) crystals in plano-plano microchip lasers was demonstrated with an almost quantum-defect-limited slope efficiency. Pumped at 978 nm by an InGaAs laser diode, a 3.4 mm long 8 at. % Yb:CaGdAlO4 laser generated 7.79 W at 1057-1065 nm with a slope efficiency of η=84% (with respect to the absorbed pump power). An even higher η=91% was achieved with a 2.5 mm long 3 at. % Yb:CaYAlO4 laser, from which 5.06 W were extracted at 1048-1056 nm. Both lasers produced linearly polarized output (σ-polarization) with an almost circular diffraction-limited beam (Mx,y2<1.1). The output performance of the developed lasers was modeled, yielding an internal loss coefficient as low as 0.004-0.007  cm-1. In addition, their spectroscopic properties were revisited.

  14. Effect of natural homointerfaces on the magnetic properties of pseudomorphic La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin film: Phase separation vs split domain structure

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Francesco [Dipartimento di Fisica e CNISM, Università di Cagliari, S.P. Monserrato-Sestu, km 0.700, I 09042 Monserrato, Cagliari (Italy); Sanna, Carla [Sardegna Ricerche, Laboratorio Energetica Elettrica, VI Strada Ovest - Z.I.Macchiareddu, I 09010 Uta, Cagliari (Italy); Maritato, Luigi [CNR-SPIN, UOS Salerno, I 84084 Fisciano, Salerno (Italy); Dipartimento di Ingegneria dell’Informazione, Ingegneria Elettrica e Matematica Applicata, Università di Salerno, I 84084 Fisciano, Salerno (Italy); Orgiani, Pasquale [CNR-SPIN, UOS Salerno, I 84084 Fisciano, Salerno (Italy); Geddo Lehmann, Alessandra, E-mail: [Dipartimento di Fisica e CNISM, Università di Cagliari, S.P. Monserrato-Sestu, km 0.700, I 09042 Monserrato, Cagliari (Italy)


    We studied the effect of naturally formed homointerfaces on the magnetic and electric transport behavior of a heavily twinned, 40 nm thick, pseudomorphic epitaxial film of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} deposited by molecular beam epitaxy on ferroelastic LaAlO{sub 3}(001) substrate. As proved by high resolution X-ray diffraction analysis, the lamellar twin structure of the substrate is imprinted in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. In spite of the pronounced thermomagnetic irreversibility in the DC low field magnetization, spin-glass-like character, possibly related to the structural complexity, was ruled out, on the base of AC susceptibility results. The magnetic characterization indicates anisotropic ferromagnetism, with a saturation magnetization M{sub s} = 3.2 μ{sub B}/Mn, slightly reduced with respect to the fully polarized value of 3.7 μ{sub B}/Mn. The low field DC magnetization vs temperature is non bulklike, with a two step increase in the field cooled M{sub FC}(T) branch and a two peak structure in the zero field cooled M{sub ZFC}(T) one. Correspondingly, two peaks are present in the resistivity vs temperature ρ(T) curve. With reference to the behavior of epitaxial manganites deposited on bicrystal substrates, results are discussed in terms of a two phase model, in which each couple of adjacent ferromagnetic twin cores, with bulklike T{sub C} = 370 K, is separated by a twin boundary with lower Curie point T{sub C} = 150 K, acting as barrier for spin polarized transport. The two phase scenario is compared with the alternative one based on a single ferromagnetic phase with the peculiar ferromagnetic domains structure inherent to twinned manganites films, reported to be split into interconnected and spatially separated regions with in-plane and out-of-plane magnetization, coinciding with twin cores and twin boundaries respectively.

  15. Hybrid InGaAs quantum well-dots nanostructures for light-emitting and photo-voltaic applications. (United States)

    Mintairov, S A; Kalyuzhnyy, N A; Lantratov, V M; Maximov, M V; Nadtochiy, A M; Rouvimov, Sergei; Zhukov, A E


    Hybrid quantum well-dots (QWD) nanostructures have been formed by deposition of 7-10 monolayers of In0.4Ga0.6As on a vicinal GaAs surface using metal-organic chemical vapor deposition. Transmission electron microscopy, photoluminescence and photocurrent analysis have shown that such structures represent quantum wells comprising three-dimensional (quantum dot-like) regions of two kinds. At least 20 QWD layers can be deposited defect-free providing high gain/absorption in the 0.9-1.1 spectral interval. Use of QWD media in a GaAs solar cell resulted in a photocurrent increment of 3.7 mA cm(-2) for the terrestrial spectrum and by 4.1 mA cm(-2) for the space spectrum. Diode lasers based on QWD emitting around 1.1 μm revealed high saturated gain and low transparency current density of about 15 cm(-1) and 37 A cm(-2) per layer, respectively.

  16. Adding GaAs Monolayers to InAs Quantum-Dot Lasers on (001) InP (United States)

    Qiu, Yueming; Chacon, Rebecca; Uhl, David; Yang, Rui


    In a modification of the basic configuration of InAs quantum-dot semiconductor lasers on (001)lnP substrate, a thin layer (typically 1 to 2 monolayer thick) of GaAs is incorporated into the active region. This modification enhances laser performance: In particular, whereas it has been necessary to cool the unmodified devices to temperatures of about 80 K in order to obtain lasing at long wavelengths, the modified devices can lase at wavelengths of about 1.7 microns or more near room temperature. InAs quantum dots self-assemble, as a consequence of the lattice mismatch, during epitaxial deposition of InAs on ln0.53Ga0.47As/lnP. In the unmodified devices, the quantum dots as thus formed are typically nonuniform in size. Strainenergy relaxation in very large quantum dots can lead to poor laser performance, especially at wavelengths near 2 microns, for which large quantum dots are needed. In the modified devices, the thin layers of GaAs added to the active regions constitute potential-energy barriers that electrons can only penetrate by quantum tunneling and thus reduce the hot carrier effects. Also, the insertion of thin GaAs layer is shown to reduce the degree of nonuniformity of sizes of the quantum dots. In the fabrication of a batch of modified InAs quantum-dot lasers, the thin additional layer of GaAs is deposited as an interfacial layer in an InGaAs quantum well on (001) InP substrate. The device as described thus far is sandwiched between InGaAsPy waveguide layers, then further sandwiched between InP cladding layers, then further sandwiched between heavily Zn-doped (p-type) InGaAs contact layer.

  17. Lunar Laser Communication System (United States)


    gallium arsenide ( InGaAs ) quad- rant detector enables fast spatial acqui- sition and coarse tracking of the optical uplink. Transmit and receive...October–November 2013 month-long demonstration of the high-data-rate transmission from a lunar-orbiting satellite. The array of transmit apertures is...located above the array of receive apertures. This work is sponsored by the National Aeronautics and Space Administration under U.S. Air Force

  18. The influence of surface preparation on low temperature HfO2 ALD on InGaAs (001) and (110) surfaces (United States)

    Kent, Tyler; Tang, Kechao; Chobpattana, Varistha; Negara, Muhammad Adi; Edmonds, Mary; Mitchell, William; Sahu, Bhagawan; Galatage, Rohit; Droopad, Ravi; McIntyre, Paul; Kummel, Andrew C.


    Current logic devices rely on 3D architectures, such as the tri-gate field effect transistor (finFET), which utilize the (001) and (110) crystal faces simultaneously thus requiring passivation methods for the (110) face in order to ensure a pristine 3D surface prior to further processing. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and correlated electrical measurement on MOSCAPs were utilized to compare the effects of a previously developed in situ pre-atomic layer deposition (ALD) surface clean on the InGaAs (001) and (110) surfaces. Ex situ wet cleans are very effective on the (001) surface but not the (110) surface. Capacitance voltage indicated the (001) surface with no buffered oxide etch had a higher Cmax hypothesized to be a result of poor nucleation of HfO2 on the native oxide. An in situ pre-ALD surface clean employing both atomic H and trimethylaluminum (TMA) pre-pulsing, developed by Chobpattana et al. and Carter et al. for the (001) surface, was demonstrated to be effective on the (110) surface for producing low Dit high Cox MOSCAPs. Including TMA in the pre-ALD surface clean resulted in reduction of the magnitude of the interface state capacitance. The XPS studies show the role of atomic H pre-pulsing is to remove both carbon and oxygen while STM shows the role of TMA pre-pulsing is to eliminate H induced etching. Devices fabricated at 120 °C and 300 °C were compared.

  19. [Research on the neas infrared focal plane array detector imaging technology used in the laser warning]. (United States)

    Wang, Zhi-Bin; Huang, Yan-Fei; Wang, Yao-Li; Zhang, Rui; Wang, Yan-Chao


    In order to achieve the incoming laser's accurate position, it is necessary to improve the detected laser's direction resolution. The InGaAs focal plane array detector with the type of FPA-320 x 256-C was selected as the core component of the diffraction grating laser warning device. The detection theory of laser wavelength and direction based on diffraction grating was introduced. The drive circuit was designed through the analysis of the detector's performance and parameters. Under the FPGA' s timing control, the detector's analog output was sampled by the high-speed AD. The data was cached to FPGA's extended SRAM, and then transferred to a PC through USB. Labview on a PC collects the raw data for processing and displaying. The imaging experiments were completed with the above method. With the wavelength of 1550 nm and 980 nm laser from different directions the diffraction images were detected. Through analysis the location of the zero order and one order can be determined. According to the grating diffraction theory, the wavelength and the direction of the two-dimensional angle can be calculated. It indicates that the wavelength error is less than 10 nm, and the angle error is less than 1 degrees.

  20. Laser Energy Monitor for Double-Pulsed 2-Micrometer IPDA Lidar Application (United States)

    Refaat, Tamer F.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong; Singh, Upendra N.


    Integrated path differential absorption (IPDA) lidar is a remote sensing technique for monitoring different atmospheric species. The technique relies on wavelength differentiation between strong and weak absorbing features normalized to the transmitted energy. 2-micron double-pulsed IPDA lidar is best suited for atmospheric carbon dioxide measurements. In such case, the transmitter produces two successive laser pulses separated by short interval (200 microseconds), with low repetition rate (10Hz). Conventional laser energy monitors, based on thermal detectors, are suitable for low repetition rate single pulse lasers. Due to the short pulse interval in double-pulsed lasers, thermal energy monitors underestimate the total transmitted energy. This leads to measurement biases and errors in double-pulsed IPDA technique. The design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on a high-speed, extended range InGaAs pin quantum detectors suitable for separating the two pulse events. Pulse integration is applied for converting the detected pulse power into energy. Results are compared to a photo-electro-magnetic (PEM) detector for impulse response verification. Calibration included comparing the three detection technologies in single-pulsed mode, then comparing the pin and PEM detectors in double-pulsed mode. Energy monitor linearity will be addressed.

  1. Exploring ultrafast negative Kerr Effect for self-mode-locking vertical external-cavity surface-emitting lasers (United States)

    Albrecht, Alexander R.; Seletskiy, Denis V.; Wang, Yi; Cederberg, Jeffrey G.; Sheik-Bahae, Mansoor


    Quasi-stable self-mode-locking of an InGaAs vertical external-cavity surface-emitting laser (VECSEL) emitting around 1020 nm has been observed, resulting in 500 fs pulses at a repetition rate of 1 GHz. The mechanism is attributed to negative ultrafast Kerr lensing in the semiconductor gain structure. Our calculations show that a mode narrowing on the order of 0.5% can be obtained at the concave cavity end-mirror or at the gain medium. This is consistent with experimental observations, as mode-locking can be achieved by placing a (hard) aperture before the concave cavity end mirror inside the VECSEL cavity, or by the soft aperture created by changing the pump spot size in relation to the lasing mode on the gain chip. The pulse train generated by the VECSEL has been analyzed by a fast InGaAs photo diode and oscilloscope, RF spectrum analyzer, and second harmonic intensity autocorrelation. The effect of dispersion on pulse width has been studied, hinting at soliton-like pulse formation.

  2. Near-IR imaging of erbium laser ablation with a water spray (United States)

    Darling, Cynthia L.; Maffei, Marie E.; Fried, William A.; Fried, Daniel


    Near-IR (NIR) imaging can be used to view the formation of ablation craters during laser ablation since the enamel of the tooth is almost completely transparent near 1310-nm1. Laser ablation craters can be monitored under varying irradiation conditions to assess peripheral thermal and transient-stress induced damage, measure the rate and efficiency of ablation and provide insight into the ablation mechanism. There are fundamental differences in the mechanism of enamel ablation using erbium lasers versus carbon dioxide laser systems due to the nature of the primary absorber and it is necessary to have water present on the tooth surface for efficient ablation at erbium laser wavelengths. In this study, sound human tooth sections of approximately 2-3-mm thickness were irradiated by free running and Q-switched Er:YAG & Er:YSGG lasers under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with a band-pass filter centered at 1310-nm combined with an InGaAs area camera with a NIR zoom microscope. Obvious differences in the crater evolution were observed between CO2 and erbium lasers. Ablation stalled after a few laser pulses without a water spray as anticipated. Efficient ablation was re-initiated by resuming the water spray. Micro-fractures were continuously produced apparently driven along prism lines during multi-pulse ablation. These fractures or fissures appeared to merge together as the crater evolved to form the leading edge of the ablation crater. These observations support the proposed thermo-mechanical mechanisms of erbium laser involving the strong mechanical forces generated by selective absorption by water.

  3. [A Methane Detection System Using Distributed Feedback Laser at 1 654 nm]. (United States)

    Li, Bin; Liu, Hui-fang; He, Qi-xin; Zhai, Bing; Pan, Jiao-qing; Zheng, Chuan-tao; Wang, Yi-ding


    A methane (CH4) detection system based on tunable diode laser absorption spectroscopy (TDLAS) technique was experimentally demonstrated. A distributed feedback (DFB) laser around 1 654 nm, an open reflective sensing probe and two InGaAs photodiodes were adopted in the system. The electrical part of the system mainly includes the laser temperature control & modulation module and the orthogonal lock-in amplifier module. Temperature and spectrum tests on the DFB laser indicate that, the laser temperature fluctuation can be limited to the range of -0.02-0.02 degrees C, the laser's emitting wavelength varies linearly with the temperature and injection current, and also good operation stability of the laser was observed through experiments. Under a constant working temperature, the center wavelength of the laser is varied linearly by adjusting the driving current. Meanwhile, a 5 kHz sine wave signal and a 10 Hz saw wave signal were provided by the driving circuit for the harmonic extraction purpose. The developed orthogonal lock-in amplifier can extract the If and 2f harmonic signals with the extraction error of 3.55% and 5% respectively. By using the open optical probe, the effective optical pass length was doubled to 40 cm. Gas detection experiment was performed to derive the relation between the harmonic amplitude and the gas concentration. As the concentration increases from 1% to 5%, the amplitudes of the 1f harmonic and the 2f harmonic signal were obtained, and good linear ration between the concentration and the amplitude ratio was observed, which proves the normal function of the developed detection system. This system is capable to detect other trace gases by using relevant DFB lasers.

  4. Regrowth of quantum cascade laser active regions on metamorphic buffer layers (United States)

    Rajeev, A.; Mawst, L. J.; Kirch, J. D.; Botez, D.; Miao, J.; Buelow, P.; Kuech, T. F.; Li, Xiaoqing; Sigler, C.; Babcock, S. E.; Earles, T.


    Metamorphic buffer layers (MBLs) were used as substrates with lattice constants selected for designing and fabricating intersubband transition sources involving strained superlattices (SLs) such as Quantum Cascade Lasers (QCLs). Chemical mechanical planarization (CMP) was used to prepare the InGaAs-based MBLs for epitaxial growth. Indium enrichment of the InGaAs layer on the MBL surfaces was observed when annealed at the regrowth temperatures. This post-anneal enhancement was eliminated by including a wet-etch treatment after CMP, which results in an epi-ready surface for regrowth. Ten stages of a QCL core region structure, designed for emission at a 3.4 μm wavelength are regrown on a surface-optimized MBL. Such structures exhibit well defined X-ray diffraction pendellösung fringes, and transmission electron microscopy confirms planar superlattice interfaces with layer thicknesses that are in good agreement with the design target.

  5. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)



    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners.

  6. Ultralow-threshold 850-nm oxide-apertured vertical-cavity lasers using AlInGaAs/AlGaAs strained active layers (United States)

    Ko, Jack; Hegblom, Eric R.; Akulova, Yuliya A.; Margalit, Near M.; Coldren, Larry A.


    Recently 850-nm wavelength has been established as the standard for local area interconnects and data-link modules using GaAs/AlGaAs vertical cavity lasers (VCLs) have become commercially available. However, the lowest threshold current (Ith) up-to-date has been obtained from 980-nm VCLs using strained InGaAs quantum wells. In this presentation we report an ultralow CW, room temperature Ith of 156 (mu) A from a 2.8 micrometers diameter VCL with three AlInGaAs quantum wells in the active region. The AlInGaAs/AlGaAs quantum well active region is used to achieve laser emission near 850 nm while maintaining the benefits of strain in lasers. Previous studies have shown that strained AlInGaAs/AlGaAs in-plane lasers exhibit the same suppression to the propagation of dark-line defects as strained InGaAs lasers. Here we have performed a preliminary burn-in study on our devices to study the reliability in AlInGaAs. AlGaAs VCLs for the first time. We found that devices showed no degradation in either output power or threshold current after 30 hours of on-wafer testing at a constant current density of 22 kA/cm2 and junction temperature of 140 degrees C. We also measured devices at various stage temperatures and found that the lowest Ith, 110 (mu) A for the 2.8 micrometers diameter VCL, occurs near 230 Kelvin, where the quantum well gain peak and the cavity mode are aligned. In addition, we examined the behavior of the external differential efficiency as a function of device size and found that due to a thicker oxide aperture than intended, optical scattering losses start to dominate for devices smaller than 4 micrometers diameter.

  7. Laser handbook

    CERN Document Server

    Bass, Michael


    Volume 4 of the Laser Handbook continues the high standard set by the first three volumes which were widely acclaimed by numerous reviewers in Science, Optical Spectra and Laser Technology, as presenting an outstanding contribution to the field of laser technology.

  8. Microchip Lasers (United States)


    USA E-mail: Abstract Microchip lasers are a rich family of solid-state lasers defined by their small size, robust integration...reliability, and potential for low-cost mass production. Continuous-wave microchip lasers cover a wide range of wavelengths, often operate single

  9. Lasers (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal


    A laser is an instrument that produces an enormously intense pencil-thin beam of light. In this booklet we shall learn what there is about the laser that gives it so much promise. We shall investigate what it is, how it works, and the different kinds of lasers there are.

  10. Laser photocoagulation - eye (United States)

    Laser coagulation; Laser eye surgery; Photocoagulation; Laser photocoagulation - diabetic eye disease; Laser photocoagulation - diabetic retinopathy; Focal photocoagulation; Scatter (or pan retinal) photocoagulation; Proliferative ...

  11. DC and RF characterization of InGaAs replacement metal gate (RMG) nFETs on SiGe-OI FinFETs fabricated by 3D monolithic integration (United States)

    Deshpande, V.; Djara, V.; O'Connor, E.; Hashemi, P.; Balakrishnan, K.; Caimi, D.; Sousa, M.; Czornomaz, L.; Fompeyrine, J.


    We report the first RF characterization of short-channel replacement metal gate (RMG) InGaAs-OI nFETs built in a 3D monolithic (3DM) CMOS process. This process features RMG InGaAs-OI nFET top layer and SiGe-OI fin pFET bottom layer. We demonstrate state-of-the-art device integration on both levels. The bottom layer SiGe-OI pFETs are fabricated with a Gate-First (GF) process with fins and featuring epitaxial raised source drain (RSD) as well as silicide contact layer. The top layer InGaAs nFETs are fabricated with a RMG process featuring a self-aligned epitaxial raised source drain (RSD). We show that the 3D monolithic integration scheme does not degrade the performance of the bottom SiGe-OI pFETs owing to an optimized thermal budget for the top InGaAs nFETs. From the RF characterizations performed (post-3D monolithic process) on multifinger-gate InGaAs-OI nFETs, we extract a cut-off frequency (Ft) of 16.4 GHz at a gate-length (Lg) of 120 nm. Measurements on various gate lengths shows increasing cut-off frequency with decreasing gate-length.

  12. Self-limiting CVD of a passivating SiOx control layer on InGaAs(001)-(2x4) with the prevention of III-V oxidation (United States)

    Edmonds, Mary; Wolf, Steven; Chagarov, Evgueni; Kent, Tyler; Park, Jun Hong; Holmes, Russell; Alvarez, Daniel; Droopad, Ravi; Kummel, Andrew C.


    A thin passivating SiOx control layer has been deposited via self-limiting CVD on the InGaAs(001)-(2x4) surface by first depositing 2 monolayers of silicon with -Clx termination using Si2Cl6,and then subsequently oxidizing the silicon seed layer by employing anhydrous HOOH(g) at a substrate temperature of 350 °C. After HOOH(g)) dosing, XPS spectra show a higher binding energy shoulder peak on Si2p indicative of SiOx bonding, while an unshifted Si 2p component remains, and In 3d, Ga 2p, and As 2p peaks show no higher binding energy components consistent with the prevention of III-V oxidation. Scanning tunneling spectroscopy (STS) measurements show after SiOx deposition on the InGaAs(001)-(2x4) surface, the bandgap broadens towards that of SiO2, with the electronic structure free of states in the bandgap leaving the surface ready for subsequent gate oxide ALD. Density functional theory calculations support the experimental STS data following TMA dosing, which shows TMA nucleates directly on the SiOx/InGaAs(001) surface and leaves an electrically passive interface with the bandgap free of defect states and the surface ready for high-K gate oxide nucleation.

  13. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver

    CERN Document Server

    Portuondo-Campa, Erwin; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve


    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the current phase-noise limitations in the system.

  14. Biocavity Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; Gourley, M.F.


    Laser technology has advanced dramatically and is an integral part of today's healthcare delivery system. Lasers are used in the laboratory analysis of human blood samples and serve as surgical tools that kill, burn or cut tissue. Recent semiconductor microtechnology has reduced the size o f a laser to the size of a biological cell or even a virus particle. By integrating these ultra small lasers with biological systems, it is possible to create micro-electrical mechanical systems that may revolutionize health care delivery.

  15. High power lasers & systems


    Chatwin, Chris; Young, Rupert; Birch, Philip


    Some laser history;\\ud Airborne Laser Testbed & Chemical Oxygen Iodine Laser (COIL);\\ud Laser modes and beam propagation;\\ud Fibre lasers and applications;\\ud US Navy Laser system – NRL 33kW fibre laser;\\ud Lockheed Martin 30kW fibre laser;\\ud Conclusions

  16. Analysis of self-organized In(Ga)As quantum structures with the scanning transmission electron microscope; Analyse selbstorganisierter In(Ga)As-Quantenstrukturen mit dem Raster-Transmissionselektronenmikroskop

    Energy Technology Data Exchange (ETDEWEB)

    Sauerwald, Andres


    Aim of this thesis was to apply the analytical methods of the scanning transmission electron microscopy to the study of self-organized In(Ga)As quantum structures. With the imaging methods Z contrast and bright field (position resolutions in the subnanometer range) and especially with the possibilities of the quantitative chemical EELS analysis of the scanning transmission electron microscope (STEM) fundamental questions concerning morphology and chemical properties of self-organized quantum structures should be answered. By the high position resolution of the STEM among others essentail morphological and structural parameters in the growth behaviour of 'dot in a well' (DWell) structures and of vertically correlated quantum dots (QDs) could be analyzed. For the optimization of DWell structures samples were studied, the nominal InAs-QD growth position was directedly varied within the embedding InGaAs quantum wells. The STEM offers in connection with the EELS method a large potential for the chemical analysis of quantum structures. Studied was a sample series of self-organized InGaAs/GaAs structures on GaAs substrate, the stress of which was changed by varying the Ga content of the INGaAs material between 2.4 % and 4.3 %. [German] Ziel dieser Arbeit war es, die analytischen Methoden der Raster-Transmissionselektronenmikroskopie zur Untersuchung selbstorganisierter In(Ga)As-Quantenstrukturen anzuwenden. Mit den abbildenden Methoden Z-Kontrast und Hellfeld (Ortsaufloesungen im Subnanometerbereich) und insbesondere mit den Moeglichkeiten der quantitativen chemischen EELS-Analyse des Raster-Transmissionselektronenmikroskops (RTEMs) sollten grundsaetzliche Fragestellungen hinsichtlich der Morphologie und der chemischen Eigenschaften selbstorganisierter Quantenstrukturen beantwortet werden. Durch die hohe Ortsaufloesung des RTEMs konnten u.a. essentielle morphologische und strukturelle Parameter im Wachstumsverhalten von 'Dot in a Well

  17. Optimization of growth conditions for InGaAs/InAlAs/InP quantum cascade lasers by metalorganic chemical vapor deposition (United States)

    Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D.; Pflügl, Christian; Capasso, Federico; Sun, Kewei; Fischer, Alec M.; Ponce, Fernando A.


    We investigate the growth conditions for lattice-matched InGaAs/InAlAs/InP quantum cascade lasers (QCLs) by metalorganic chemical vapor deposition (MOCVD). Effect of substrate misorientation, growth temperature, and V/III ratios of InGaAs and InAlAs layers on the surface morphology, optical quality, and impurity incorporation were systematically studied. It was found that epitaxial layers and multi-quantum-well structures grown at 720 °C with V/III ratios of 116 for InGaAs and 21 for InAlAs on InP substrates with an off-cut angle of ˜0.06° exhibit a stable step-flow growth and low oxygen and carbon contamination. Using these conditions, a ˜11.3-μm-thick QCL with an emission wavelength at ˜9.2 μm was grown and fabricated, which demonstrated excellent structural quality and operated at room temperature in pulsed mode with a threshold current density of 2.0 kA/cm 2 and a slope efficiency of 550 mW/A.

  18. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)



    The Lasers Technology Program of IPEN is strongly committed to the study of Laser Applications on several areas: Nuclear, Medicine and Dentistry, Industry, Environment and Advanced research, aiming not only research but diffusion and innovation in association with Brazilian universities and commercial partners.

  19. Fabrication and room temperature operation of semiconductor nano-ring lasers using a general applicable membrane transfer method (United States)

    Fan, Fan; Yu, Yueyang; Amiri, Seyed Ebrahim Hashemi; Quandt, David; Bimberg, Dieter; Ning, C. Z.


    Semiconductor nanolasers are potentially important for many applications. Their design and fabrication are still in the early stage of research and face many challenges. In this paper, we demonstrate a generally applicable membrane transfer method to release and transfer a strain-balanced InGaAs quantum-well nanomembrane of 260 nm in thickness onto various substrates with a high yield. As an initial device demonstration, nano-ring lasers of 1.5 μm in outer diameter and 500 nm in radial thickness are fabricated on MgF2 substrates. Room temperature single mode operation is achieved under optical pumping with a cavity volume of only 0.43λ03 (λ0 in vacuum). Our nano-membrane based approach represents an advantageous alternative to other design and fabrication approaches and could lead to integration of nanolasers on silicon substrates or with metallic cavity.

  20. Laser device (United States)

    Scott, Jill R.; Tremblay, Paul L.


    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  1. Laser instrument

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera, R.J.; Eagar, T.W.


    An instrument is described for intercepting a carbon dioxide incident laser beam after it has energized a desired surgical target site but before it energizes material adjacent to the surgical target site. The instrument consists of: a substrate means for transmitting energy received from a laser beam away from a surgical target site, the substrate means having a high thermal conductivity and an exterior surface; a coating means for absorbing laser energy at the wavelength of a carbon dioxide laser, the coating means covering substantially the entirety of the exterior surface of the substrate means and having a high absorptivity for energy at the wavelength of the incident laser beam; and, the coating means having thickness which is large enough to provide high absorptivity but small enough to permit absorbed energy to be readily transferred to the high conductivity substrate means, and the thickness of the coating means being not greater than 0.001 inch.

  2. High throughput laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John


    A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.

  3. Comparison of experimental and theoretical X-ray intensities from (In)GaAs specimens investigated by energy-dispersive X-ray spectroscopy in a transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Walther, T, E-mail: [Department of Electronic and Electrical Engineering, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom)


    Experimental measurements of X-ray line intensity ratios in a transmission electron microscope are compared over several orders of magnitude of sample thicknesses, from the nm- to the mm- range, with Monte-Carlo simulations using two different software packages. It is shown that the form of the thickness dependence of the K/L ratio of characteristic X-ray lines for GaAs is reproduced qualitatively, but the numerical differences between software packages are large. A scheme is presented for improving the simple k-factor method, taking explicitly into account the thickness dependence that remains even after application of the usual absorption and fluorescence corrections. This is done in first-order approximation by linear regression. The improvement in determining the correct indium concentration in specimens of InGaAs is calculated to be 1at%.

  4. Progress in ultra-compact green frequency doubled optically pumped surface emitting lasers (United States)

    Steegmueller, Ulrich; Kuehnelt, Michael; Unold, Heiko; Schwarz, Thomas; Schmitt, Michael; Auen, Karsten; Schulz, Roland; Walter, Christoph; Pietzonka, Ines; Illek, Stefan; Lindberg, Hans; Gomez-Iglesias, Alvaro; Furitsch, Michael; Lauer, Christian; Strauss, Uwe; Hoefer, Thomas


    Compact, stable and efficient green lasers are of great interest for many applications like mobile video projection, sensing, distance measurement and instrumentation. Those applications require medium values of output power in the 50mW range, good wall-plug efficiency above 5 % and stable operation over a wide temperature range. In this paper we present latest results from experimental investigations on ultra-compact green intracavity frequency doubled optically pumped semiconductor InGaAs disk lasers. The green laser setup has been limited to a few micro optical and semiconductor components built on a silicon backplane and fits within an envelope of less than 0.4 cc. An optical frequency looking scheme in order to fix the fundamental wavelength over varying operating conditions like changing output power and ambient temperature has been applied. The cavity has been optimized for fast modulation response and high efficiency using quasi-phase matching non-linear material. Recent data from cw and high-frequency characterization is presented.

  5. Photodiode-based cutting interruption sensor for near-infrared lasers. (United States)

    Adelmann, B; Schleier, M; Neumeier, B; Hellmann, R


    We report on a photodiode-based sensor system to detect cutting interruptions during laser cutting with a fiber laser. An InGaAs diode records the thermal radiation from the process zone with a ring mirror and optical filter arrangement mounted between a collimation unit and a cutting head. The photodiode current is digitalized with a sample rate of 20 kHz and filtered with a Chebyshev Type I filter. From the measured signal during the piercing, a threshold value is calculated. When the diode signal exceeds this threshold during cutting, a cutting interruption is indicated. This method is applied to sensor signals from cutting mild steel, stainless steel, and aluminum, as well as different material thicknesses and also laser flame cutting, showing the possibility to detect cutting interruptions in a broad variety of applications. In a series of 83 incomplete cuts, every cutting interruption is successfully detected (alpha error of 0%), while no cutting interruption is reported in 266 complete cuts (beta error of 0%). With this remarkable high detection rate and low error rate, the possibility to work with different materials and thicknesses in combination with the easy mounting of the sensor unit also to existing cutting machines highlight the enormous potential for this sensor system in industrial applications.

  6. Accelerated aging tests of radiation damaged lasers and photodiodes for the CMS tracker optical links

    CERN Document Server

    Gill, K; Batten, J; Cervelli, G; Grabit, R; Jensen, F; Troska, Jan K; Vasey, F


    The combined effects of radiation damage and accelerated ageing in COTS lasers and p-i-n photodiodes are presented. Large numbers of these devices are employed in future High Energy Physics experiments and it is vital that these devices are confirmed to be sufficiently robust in terms of both radiation resistance and reliability. Forty 1310 nm InGaAsP edge-emitting lasers (20 irradiated) and 30 InGaAs p- i-n photodiodes (19 irradiated) were aged for 4000 hours at 80 degrees C with periodic measurements made of laser threshold and efficiency, in addition to p-i-n leakage current and photocurrent. There were no sudden failures and there was very little wearout- related degradation in either unirradiated or irradiated sample groups. The results suggest that the tested devices have a sufficiently long lifetime to operate for at least 10 years inside the Compact Muon Solenoid experiment despite being exposed to a harsh radiation environment. (13 refs).

  7. Laser spectroscopy

    CERN Document Server

    Demtröder, Wolfgang


    Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.

  8. Failure mode analysis of degraded InGaAs-AlGaAs strained quantum well multi-mode vertical-cavity surface-emitting lasers (United States)

    Sin, Yongkun; Lingley, Zachary; Brodie, Miles; Huang, Michael; Bushmaker, Adam; Theiss, Jesse; Presser, Nathan; Foran, Brendan; Moss, Steven C.


    Remarkable progress made in vertical cavity surface emitting lasers (VCSELs) emitting at 850 and 980 nm has led them to find an increasing number of applications in high speed data communications as well as in potential space satellite systems. However, little has been reported on reliability and failure modes of InGaAs VCSELs emitting at ~980 nm although it is crucial to understand failure modes and underlying degradation mechanisms in developing these VCSELs that exceed lifetime requirements for space missions. The active layer of commercial VCSELs that we studied consisted of two or three InGaAs quantum wells. The laser structures were fabricated into deep mesas followed by a steam oxidation process to form oxide-apertures for current and optical confinements. Our multi- mode VCSELs showed a laser threshold of ~ 0.5 mA at RT. Failures were generated via accelerated life-testing of VCSELs. For the present study, we report on failure mode analysis of degraded oxide-VCSELs using various techniques. We employed nondestructive techniques including electroluminescence (EL), optical beam induced current (OBIC), and electron beam induced current (EBIC) techniques as well as destructive techniques including focused ion beam (FIB) and high-resolution TEM techniques to study VCSELs that showed different degradation behaviors. Especially, we employed FIB systems to locally remove a portion of top-DBR mirrors of degraded VCSELs, which made it possible for our subsequent EBIC and OBIC techniques to locate damaged areas that were generated as a result of degradation processes and also for our HR-TEM technique to prepare TEM cross sections from damaged areas. Our nondestructive and destructive physical analysis results are reported including defect and structural analysis results from pre-aged VCSELs as well as from degraded VCSELs life-tested under different test conditions.

  9. Novel ytterbium and thulium lasers based on the monoclinic KLu(WO 4) II crystalline host (United States)

    Petrov, Valentin; Mateos, Xavier; Rivier, Simon; Silvestre, Oscar; Aguilò, Magdalena; Sole, Rosa; Pujol, Maria Cinta; Liu, Junhai; Griebner, Uwe; Diaz, Francesc


    High-quality crystals of KLu(WO 4) II, shortly KLuW, were grown with sizes sufficient for characterization of the thermomechanical and optical properties, and substantial progress was achieved in the field of spectroscopy and laser operation with Yb 3+- and Tm 3+-doping. We review the properties of flux grown KLuW, the Yb 3+ and Tm 3+ spectroscopy, and present laser results obtained in several operational regimes both with Ti:sapphire and direct diode laser pumping using InGaAs and AlGaAs diodes near 980 and 800 nm, respectively. The slope efficiencies with respect to the absorbed pump power achieved with continuous-wave (CW) bulk and epitaxial Yb:KLuW lasers under Ti:sapphire laser pumping were ~57 and ~66%, respectively. Output powers as high as 3.28 W were obtained with diode pumping in a simple two-mirror cavity where the slope efficiency with respect to the incident pump power reached ~78%. Passively Q-switched laser operation of bulk Yb:KLuW was realized with a Cr:YAG saturable absorber resulting in oscillation at ~1031 nm with a repetition rate of 28 kHz and simultaneous Raman conversion to ~1138 nm with maximum energies of 32.4 and 14.4 μJ, respectively. The corresponding pulse durations were 1.41 and 0.71 ns. Passive mode-locking by a semiconductor saturable absorber mirror (SESAM) resulted in bandwidth-limited pulses with duration of 81 fs (1046 nm, 95 MHz) and 114 fs (1030 nm, 101 MHz) for bulk and epitaxial Yb:KLuW lasers, respectively. Slope efficiency as high as 69% with respect to the absorbed power and an output power of 4 W at 1950 nm were achieved with a diode-pumped Tm:KLuW laser. The tunability of this laser, under Ti:sapphire laser pumping, extended from 1800 to 1987 nm. An epitaxial Tm:KLuW laser provided slope efficiency as high as 64% and a tuning range from 1894 to 2039 nm when pumped by a Ti:sapphire laser.

  10. Laser endoscopy. (United States)

    McElvein, R B


    A carbon dioxide laser operating in the invisible infrared range (10.6 mu) generates a beam of energy that is almost completely absorbed by biological tissue with release of intense heat and rapid destruction. A laser attached to a rigid bronchoscope has been used in 18 patients ranging in age from 21 to 62 years to treat a variety of causes of airway obstruction. These include tracheal stenosis and granulation tissue (6 patients), adenoma (1), web (2), and carcinoma (9). The results were good in 15 and poor in 3 patients. However, all patients had an improved airway after laser treatment with the best results occurring in patients with benign, inflammatory disease. The advantages of the laser are a lack of bleeding, minimal edema after treatment, and minimal scar formation. The disadvantages are the expense of the machine, and the need for general anesthesia and direct visualization of the lesion.

  11. Laser Refractography

    CERN Document Server

    Rinkevichyus, B.S; Raskovskaya, I.L


    This book describes the basic principles of laser refractography, a flexible new diagnostic tool for measuring optically inhomogeneous media and flows. Laser refractography is based on digital imaging and computer processing of structured laser beam refraction (SLR) in inhomogeneous transparent media. Laser refractograms provide both qualitative and quantitative measurements and can be used for the study of fast and transient processes. In this book, the theoretical basis of refractography is explored in some detail, and experimental setups are described for measurement of transparent media using either 2D (passed radiation) or 3D (scattered radiation) refractograms. Specific examples and applications are discussed, including visualization of the boundary layer near a hot or cold metallic ball in water, and observation of edge effects and microlayers in liquids and gases. As the first book to describe this new and exciting technique, this monograph has broad cross-disciplinary appeal and will be of interest t...

  12. Il laser

    CERN Document Server

    Smith, William V


    Verso il 1960, il laser era ancora "una soluzione alla ricerca di un problema", ma fin dagli anni immediatamente successivi si è rivelato uno strumento insostituibile per le applicazioni più svariate.

  13. Green lasers

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin


    Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range......Well over a dozen papers at this year's Photonics West meeting in San Francisco boasted improvements in harmonic generation to produce visible laser beams, most of them in the green spectral range...

  14. Laser weapons (United States)

    Tsipis, K.


    The potential for deploying lasers as an effective antimissile system is assessed. High intensity and precise collimation are noted as essential for lasers as weapons, although size and material properties determine the actual performance. Gas-dynamic, electron, and chemical lasers are reviewed as prime weapons candidates. Space-, ground-, and ship-based uses are considered; each demands precision pointing, involving movable mirrors, target tracking and condition sensors, and central processing for target choice, along with large capacity power generation and storage. Laser propagation in the atmosphere is degraded by absorption, scattering, thermal blooming, turbulence (causes diffraction), and plasma formation ahead of the beam. Different modes of damaging missiles are reviewed, and it is found that mirrored surfaces, ablative coatings, and fluid layers have significant abilities to protect a missile in-flight. Destroying an ICBM in the boost phase is calculated to require a one million MW generator, far beyond current power engineering capabilities. Conventional weapons are viewed as more effective than lasers, although high energy laser research may have definite applications in areas such as chemical engineering

  15. Laser therapy for cancer (United States)

    ... this page: // Laser therapy for cancer To use the sharing features on ... Lasers are also used on the skin. How Laser Therapy is Used Laser therapy can be used to: ...

  16. Laser material processing

    CERN Document Server

    Steen, William


    This text moves from the basics of laser physics to detailed treatments of all major materials processing techniques for which lasers are now essential. New chapters cover laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing.

  17. Laser acceleration (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.


    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  18. Laser barometer (United States)

    Abercrombie, Kevin R.; Shiels, David; Rash, Tim


    A pressure measuring instrument that utilizes the change of the refractive index of a gas as a function of pressure and the coherent nature of a laser light to determine the barometric pressure within an environment. As the gas pressure in a closed environment varies, the index of refraction of the gas changes. The amount of change is a function of the gas pressure. By illuminating the gas with a laser light source, causing the wavelength of the light to change, pressure can be quantified by measuring the shift in fringes (alternating light and dark bands produced when coherent light is mixed) in an interferometer.

  19. Laser Heterodyning

    CERN Document Server

    Protopopov, Vladimir V


    Laser heterodyning is now a widespread optical technique, based on interference of two waves with slightly different frequencies within the sensitive area of a photo-detector. Its unique feature – preserving phase information about optical wave in the electrical signal of the photo-detector – finds numerous applications in various domains of applied optics and optoelectronics: in spectroscopy, polarimetry, radiometry, laser radars and Lidars, microscopy and other areas. The reader may be surprised by a variety of disciplines that this book covers and satisfied by detailed explanation of the phenomena. Very well illustrated, this book will be helpful for researches, postgraduates and students, working in applied optics.

  20. High speed gain coupled DFB laser diode integrated with MQW electroabsorption modulator

    CERN Document Server

    Kim, M G; Park, S S; Oh, D K; Lee, H T; Kim, H M; Pyun, K E


    We have demonstrated stable modulation characteristics of the gain coupled distributed feedback(GC-DFB) laser diode integrated with butt-coupled InGaAsP/InGaAsP strain compensated MQW(multiple-Quantum-well) modulator for high speed optical transmission. For this purpose, we have adopted the InGaAsP/InGaAsP strain compensated MQW structure for the EA modulator and n-doped InGaAs absorptive grating for DFB laser. The typical threshold current and slope efficiency were about 15 mA and 0.1 mW/mA, respectively. The extinction ratio of fabricated integrated device was about 15 dB at -2 V, and the small signal bandwidth was shown to be around 17GHz. We also found that the alpha parameter becomes negative at below a -0.6 V bias voltage. We transmitted 10 Gbps NRZ electrical signal over 90 km of standard single mode optical fiber (SMF). A clearly opened eye diagram was observed in the modulated output.

  1. Laser yellowing

    Indian Academy of Sciences (India)

    References. [1] P Maravelaki-Kalaitzaki et al, Appl. Surf. Sci. 148, 92 (1999). [2] Th Skoulikidis et al, LACONA, Workshop on Lasers in Conservation of Artworks,. (1995). [3] Veronique Verges-Belmin et al, J. Cultural Heritage 4, 238s (2003). [4] V Zafiropulos et al, LACONA V Springer Proceedings in Physics 100, 313 (2003).

  2. Mirrorless lasers

    Indian Academy of Sciences (India)

    Abstract. Experimental realization of mirrorless lasers in the last decade have resulted in hectic activity in this field, due to their novelty, simplicity and ruggedness and their great potential for application. In this article, I will review the various developments in this field in roughly chronological order, and discuss some possible ...

  3. Dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kuder, J.E.; McGinnis, J.L.; Goldberg, H.A.; Hart, T.R.; Che, T.M.


    This patent describes a dye laser. It consists of a composite composition of an inorganic oxide glass monolith with a microporous structure containing an incorporated solution comprising a solvent component and a lasable dye component. Wherein the glass monolith has sealed outer surfaces.

  4. Laser Dyes

    Indian Academy of Sciences (India)

    tions to be treated with laser radiation. They are congenital malformations consisting of superficial and deep dilated capillar- ies in the skin. The swollen blood vessels cause a reddish discol- oration of the skin. Although PWS can appear in any part of the body, they occur more often on the face and persist throughout life. N.

  5. Laser Dyes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 9. Laser Dyes. G S Shankarling K J Jarag. General Article Volume 15 Issue 9 September ... Author Affiliations. G S Shankarling1 K J Jarag1. Dyestuff Technology, Department Institute of Chemical Technology, Matunga Mumbai 400 019, India.

  6. Laser device

    DEFF Research Database (Denmark)


    The present invention provides a light source for light circuits on a silicon platform. A vertical laser cavity is formed by a gain region arranged between a first mirror structure and a second mirror structure, both acting as mirrors, by forming a grating region including an active material in a...

  7. Laser yellowing

    Indian Academy of Sciences (India)


    Nov 27, 2015 ... Author Affiliations. M B Sai Prasad1 Salvatore Siano2. Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; CNR-IFAC, Polo Scientifico di Sesto Fiorentino, Via Madonna del Piano, 10, Sesto Fiorentino (FI)-50019, Italy ...

  8. excimer laser

    Indian Academy of Sciences (India)


    Jan 7, 2014 ... Excimer laser; krypton chloride; UV pre-ionization; gas circulation. PACS No 42.55.Lt. 1. ... active discharge volume is by spark UV radiation created adjacent to both sides of the. Figure 4. Output ... HV electrode, all along its length and spatially modulated to ensure uniform irradiation of the gas volume.

  9. Nanowire Lasers

    Directory of Open Access Journals (Sweden)

    Couteau C.


    Full Text Available We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs, solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.

  10. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk


    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  11. Laser Physics and Laser Spectroscopy. (United States)


    Introduction A basic idea for achieving short wavelength lasers is to work with multiply-ionized atoms. Such ions generally have larger energy differences... generacion , characterization and applications over the next graduate student generation. - 71- *1* . . . . . . - o - - ° ... VII. PUBLICATIONS AND

  12. Catastrophic optical bulk damage (COBD) in high power multi-mode InGaAs-AlGaAs strained quantum well lasers (United States)

    Sin, Yongkun; Ives, Neil; LaLumondiere, Stephen; Presser, Nathan; Moss, Steven C.


    State-of-the-art broad-area InGaAs-AlGaAs strained quantum well (QW) lasers show an optical output power of over 20 W and a power conversion efficiency of over 70% under CW operation. Unlike broad-area (Al)GaAs QW lasers, broad-area InGaAs strained QW lasers show two failure types including facet catastrophic optical damage (COD) and bulk failure. Optimization of facet passivation processes has led to significant reduction in occurrence of facet COD (or COMD), but bulk failure (or COBD) has received little attention although it is crucial to understand degradation processes responsible for COBD and then develop COBD-free lasers for high reliability applications including potential satellite systems. Our group recently proposed a model for the COBD process and this paper further investigates the root causes of COBD in the broad-area lasers. We performed accelerated life-tests of MOCVD-grown broad-area strained InGaAs-AlGaAs single QW lasers at ~975 nm, which predominantly yielded catastrophic bulk failures. We employed various non-destructive techniques to study pre- and post-stressed lasers. Time resolved electroluminescence (TR-EL) was employed to observe formation and progression of dark spots and dark lines through windowed n-contacts during entire life-tests that eventually led to COBD. Deep level transient spectroscopy (DLTS) was employed to investigate trap characteristics in degraded devices at different stages of degradation to study the role that non-radiative recombination centers (NRCs) play in COBD processes. Time resolved photoluminescence (TR-PL) was employed to measure carrier lifetimes from both undamaged and damaged active areas to find correlation between dark line defects in degraded lasers and non-radiative recombination processes.

  13. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application (United States)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong


    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  14. RILIS laser room HD

    CERN Multimedia


    Footage of the RILIS laser room at ISOLDE. The Resonance Ionization Laser Ion Source (RILIS) is a chemically selective ion source which relies on resonant excitation of atomic transitions using tunable laser radiation. This video shows you the laser table with the different lenses and optics as well as an overview of the RILIS laser setup. It also shows laser light with different colors and operation by the RILIS laser experts. The last part of the video shows you the laser path from the RILIS laser room into the ISOLDE GPS separator room where it enters the GPS separator magnet.

  15. RILIS laser room

    CERN Multimedia


    Footage of the RILIS laser room at ISOLDE. The Resonance Ionization Laser Ion Source (RILIS) is a chemically selective ion source which relies on resonant excitation of atomic transitions using tunable laser radiation. This video shows you the laser table with the different lenses and optics as well as an overview of the RILIS laser setup. It also shows laser light with different colors and operation by the RILIS laser experts. The last part of the video shows you the laser path from the RILIS laser room into the ISOLDE GPS separator room where it enters the GPS separator magnet.

  16. Si and InGaAs Spatial Wavefunction-Switched (SWS) FETs with II-VI Gate Insulators: An Approach to the Design and Integration of Two-Bit SRAMs and Binary CMOS Logic (United States)

    Jain, F.; Chan, P.-Y.; Lingalugari, M.; Kondo, J.; Suarez, E.; Gogna, P.; Chandy, J.; Heller, E.


    Electron wavefunctions are switched spatially from one quantum well to another by varying the gate voltage V g in spatial wavefunction-switched (SWS) field-effect transistors (FETs), which comprise two or more coupled quantum wells serving as the transport channel. This is shown for Si/SiGe and InGaAs/AlInAs quantum well systems. The presence of charge in a particular well or channel is used to encode four states 00, 01, 10, 11. This unique property is used for two-bit processing, resulting in compact two-bit static random-access memory devices. Experimental data including capacitance-voltage peaks in Si and InGaAs multiple quantum well SWS-FETs has verified the SWS phenomenon. Replacing quantum wells by an array of cladded quantum dots, forming a quantum dot superlattice (QDSL) layer, enhances the contrast and noise margin in SWS-FETs. This paper reports I- V and C- V characteristics for a fabricated twin-drain SWS-quantum dot channel (QDC) FET comprising four layers of self-assembled SiO x -Si quantum dots. SWS-QDC-FETs are shown to be scalable to ˜9 nm, and comprise four layers of cladded quantum dots with an array of 3 × 3 forming the channel.

  17. Lasers and medicine

    Energy Technology Data Exchange (ETDEWEB)

    Deren, Przemyslaw J. [Institute of Low Temperatures and Structure Researches, Polish Academy of Sciences, P.O.Box 1410, 50-950 Wroclaw (Poland)


    This paper presents physical bases of laser light interaction with biological tissue. Invasive and non-invasive laser applications like laser knife (scalpel), biostymulation - Low Level Laser Therapy, laser diagnosis and therapy especially Photodynamic Diagnosis and Therapy are reviewed. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Advanced laser sensors


    Ebert, R.


    The paper presents the status of laser sensors based on direct and coherent detection technology. Potential and limitations of 3D- laser radar, laser vibrometer, and gated viewing systems will be described.

  19. Laser therapy (image) (United States)

    A laser is used for many medical purposes. Because the laser beam is so small and precise, it enables ... without injuring surrounding tissue. Some uses of the laser are retinal surgery, excision of lesions, and cauterization ...

  20. Laser Research Lab (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  1. Degradation mechanisms in high-power multi-mode InGaAs-AlGaAs strained quantum well lasers for high-reliability applications (United States)

    Sin, Yongkun; Presser, Nathan; Brodie, Miles; Lingley, Zachary; Foran, Brendan; Moss, Steven C.


    Laser diode manufacturers perform accelerated multi-cell lifetests to estimate lifetimes of lasers using an empirical model. Since state-of-the-art laser diodes typically require a long period of latency before they degrade, significant amount of stress is applied to the lasers to generate failures in relatively short test durations. A drawback of this approach is the lack of mean-time-to-failure data under intermediate and low stress conditions, leading to uncertainty in model parameters (especially optical power and current exponent) and potential overestimation of lifetimes at usage conditions. This approach is a concern especially for satellite communication systems where high reliability is required of lasers for long-term duration in the space environment. A number of groups have studied reliability and degradation processes in GaAs-based lasers, but none of these studies have yielded a reliability model based on the physics of failure. The lack of such a model is also a concern for space applications where complete understanding of degradation mechanisms is necessary. Our present study addresses the aforementioned issues by performing long-term lifetests under low stress conditions followed by failure mode analysis (FMA) and physics of failure investigation. We performed low-stress lifetests on both MBE- and MOCVD-grown broad-area InGaAs- AlGaAs strained QW lasers under ACC (automatic current control) mode to study low-stress degradation mechanisms. Our lifetests have accumulated over 36,000 test hours and FMA is performed on failures using our angle polishing technique followed by EL. This technique allows us to identify failure types by observing dark line defects through a window introduced in backside metal contacts. We also investigated degradation mechanisms in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various FMA techniques. Since it is a challenge to control defect densities during the growth of laser structures, we chose to

  2. Correlation effects of excited charge carriers in semiconductor nanostructures on the example of InGaAs quantum dots and atomic MoS{sub 2} monolayers; Korrelationseffekte angeregter Ladungstraeger in Halbleiter-Nanostrukturen am Beispiel von InGaAs-Quantenpunkten und atomaren MoS{sub 2}-Monolagen

    Energy Technology Data Exchange (ETDEWEB)

    Steinhoff, Alexander


    Semiconductor nanostructures are applied in various electronic and optoelectronic devices. As miniaturization of these devices progresses, a microscopic treatment of correlations between excited carriers is essential for understanding and describing the governing physics. We investigate two different types of semiconductor nanostructures, which have each received considerable attention over the last years. These are self-assembled InGaAs quantum dots (QDs) on the one hand and atomic monolayers of MoS{sub 2} on the other hand. Self-assembled semiconductor QDs are used as active material in conventional lasers and as efficient non-classical light sources with applications in quantum information. As they can confine a small number of carriers in localized stats with discrete energies, it is questionable to neglect correlations between the carriers when describing their dynamics. We analyze the influence of carrier correlations in a single QD on Coulomb scattering processes, which are due to the contact with a quasi-continuum of wetting-layer (WL) states. Results obtained from a Boltzmann equation are compared with the fully correlated dynamics governed by a von-Neumann-Lindblad equation. In a first step, we take into account correlations generated by the exact treatment of Pauli blocking due to the contributing QD carrier configurations. Subsequently, we include correlations generated by energy renormalizations due to Coulomb interaction between the QD carriers. It is shown that at low WL carrier densities, neither Pauli correlations nor Coulomb correlations can be safely neglected, if the dynamics of single-particle states in the QD are to be predicted qualitatively and quantitatively. In the high-density regime, both types of correlations play a lesser role and thus a description of carrier dynamics by a Boltzmann equation becomes reliable. Furthermore, the efficiency of WL-assisted scattering processes as well as scattering-induced dephasing rates depending on the

  3. Laser accidents: Being Prepared

    Energy Technology Data Exchange (ETDEWEB)

    Barat, K


    The goal of the Laser Safety Officer and any laser safety program is to prevent a laser accident from occurring, in particular an injury to a person's eyes. Most laser safety courses talk about laser accidents, causes, and types of injury. The purpose of this presentation is to present a plan for safety offices and users to follow in case of accident or injury from laser radiation.

  4. Laser Protection TIL (United States)

    Federal Laboratory Consortium — The Laser Protection TIL conducts research and analysis of laser protection materials along with integration schemes. The lab's objectives are to limit energy coming...

  5. Laser satellite power systems

    Energy Technology Data Exchange (ETDEWEB)

    Walbridge, E.W.


    A laser satellite power system (SPS) converts solar power captured by earth-orbiting satellites into electrical power on the earth's surface, the satellite-to-ground transmission of power being effected by laser beam. The laser SPS may be an alternative to the microwave SPS. Microwaves easily penetrate clouds while laser radiation does not. Although there is this major disadvantage to a laser SPS, that system has four important advantages over the microwave alternative: (1) land requirements are much less, (2) radiation levels are low outside the laser ground stations, (3) laser beam sidelobes are not expected to interfere with electromagnetic systems, and (4) the laser system lends itself to small-scale demonstration. After describing lasers and how they work, the report discusses the five lasers that are candidates for application in a laser SPS: electric discharge lasers, direct and indirect solar pumped lasers, free electron lasers, and closed-cycle chemical lasers. The Lockheed laser SPS is examined in some detail. To determine whether a laser SPS will be worthy of future deployment, its capabilities need to be better understood and its attractiveness relative to other electric power options better assessed. First priority should be given to potential program stoppers, e.g., beam attenuation by clouds. If investigation shows these potential program stoppers to be resolvable, further research should investigate lasers that are particularly promising for SPS application.

  6. Semiconductor Laser Measurements Laboratory (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  7. [Laser physics]. (United States)

    Banús Gassol, J M


    The commission of this article plunged me into doubt. First I should confess that I don't find excuse to escape this part if somebody wants to minimally deepen in the knowledge of the biological effects of this energy source. Secondly, when we talk about results, we use terms made and defined by Physics. Often we have polemics about results, and what really happens is that we don't reach agreements because we refer to different terms to explain the same observation; in conclusion we cannot understand each other because we do not know the adequate terms; for example, hypoxemia as oxygen deficit, which is true in an anemic patient as well as in a low oxygen saturation rate. In consequence, a good review of these concepts seems necessary to me. The third reason is the confusion that exists in our environment, I think sometimes of interest, about properties and effects of different types of laser. Only a minimal knowledge of physics will help us to state the scientific basis for understanding. The problems, nevertheless, accumulate due to the fact that the universe to which this article is directed is formed by urologists. What Physics education should we suppose they have? Superficial? Medium? Is it a collective with a uniform knowledge, being it whatever it is? The implication is clear. The article depth will depend on the answers to these questions. Nevertheless, the aim of the authors is to give a base enough to know what the laser is and how it acts. For that, the answer I gave to my questions is that the reader should understand the article and have enough base for, at least, reading critically the articles about laser published in urological journals.

  8. Time resolved Faraday rotation and ellipticity experiments with two pump excitation of electrons and holes in InGaAs QDs

    Energy Technology Data Exchange (ETDEWEB)

    Barmscheid, Dennis; Varwig, Steffen; Greilich, Alex; Schwan, Alexander; Mueller, Crispin; Yakovlev, Dmitri R.; Bayer, Manfred [Experimentelle Physik II, TU Dortmund, D-44221 Dortmund (Germany); Yugova, Irina A. [Experimentelle Physik II, TU Dortmund, D-44221 Dortmund (Germany); Institute of Physics, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Reuter, Dirk; Wieck, Andreas D. [Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)


    The investigation of charge carrier spin dynamics in quantum dots plays an important role for the developement of spintronics. For this we perform pump-probe Faraday rotation and ellipticity experiments on self-assembled (In,Ga)As/GaAs quantum dot ensembles. Due to an excitation with a train of pump pulses, the phase of the spin precessions in the inhomogeneous QD-ensemble is synchronized to the laser repetition time T{sub R}. By two pump excitation scheme, with pumps separated by delay T{sub D}, the spins have to fulfill two phase synchronization conditions simultaneously and show rephasing within T{sub D} and T{sub R}-T{sub D}. This leads to increases of the signal amplitude, called bunches, every multiple of T{sub D}. It can be shown, that these bunches are different phenomena than the spin echoes, which occur after spin rotations. We show how this method provides an additional opportunity to study the interaction of electrons and holes with the nuclei.

  9. Terahertz-radiation generation in low-temperature InGaAs epitaxial films on (100) and (411) InP substrates

    Energy Technology Data Exchange (ETDEWEB)

    Galiev, G. B., E-mail: [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation); Grekhov, M. M. [National Research Nuclear University “MEPhI” (Russian Federation); Kitaeva, G. Kh. [Moscow State University, Faculty of Physics (Russian Federation); Klimov, E. A.; Klochkov, A. N. [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation); Kolentsova, O. S. [National Research Nuclear University “MEPhI” (Russian Federation); Kornienko, V. V.; Kuznetsov, K. A. [Moscow State University, Faculty of Physics (Russian Federation); Maltsev, P. P.; Pushkarev, S. S. [Russian Academy of Sciences, Institute of Ultra-High Frequency Semiconductor Electronics (Russian Federation)


    The spectrum and waveforms of broadband terahertz-radiation pulses generated by low-temperature In{sub 0.53}Ga{sub 0.47}As epitaxial films under femtosecond laser pumping are investigated by terahertz time-resolved spectroscopy. The In{sub 0.53}Ga{sub 0.47}As films are fabricated by molecular-beam epitaxy at a temperature of 200°C under different arsenic pressures on (100)-oriented InP substrates and, for the first time, on (411)A InP substrates. The surface morphology of the samples is studied by atomic-force microscopy and the structural quality is established by high-resolution X-ray diffraction analysis. It is found that the amplitude of terahertz radiation from the LT-InGaAs layers on the (411)A InP substrates exceeds that from similar layers formed on the (100) InP substrates by a factor of 3–5.

  10. High-Quality Growth of GaInNAs for Application to Near-Infrared Laser Diodes

    Directory of Open Access Journals (Sweden)

    Masahiko Kondow


    Full Text Available GaInNAs was proposed and created in 1995. It can be grown pseudomorphically on a GaAs substrate and is a light-emitting material with a bandgap energy that corresponds to near infrared. By combining GaInNAs with GaAs, an ideal band lineup for laser-diode application is achieved. This paper presents the reproducible growth of high-quality GaInNAs by molecular beam epitaxy. Examining the effect of nitrogen introduction and its correlation with impurity incorporation, we find that Al is unintentionally incorporated into the epitaxial layer even though the Al cell shutter is closed, followed by the concomitant incorporation of O and C. A gas-phase-scattering model can explain this phenomenon, suggesting that a large amount of N2 gas causes the scattering of residual Al atoms with occasional collisions resulting in the atoms being directed toward the substrate. Hence, the reduction of the sublimated Al beam during the growth period can suppress the incorporation of unintentional impurities, resulting in a highly pure epitaxial layer.

  11. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N. S., E-mail:; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)


    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  12. Bottom-up and top-down fabrication of nanowire-based electronic devices: In situ doping of vapor liquid solid grown silicon nanowires and etch-dependent leakage current in InGaAs tunnel junctions (United States)

    Kuo, Meng-Wei

    Semiconductor nanowires are important components in future nanoelectronic and optoelectronic device applications. These nanowires can be fabricated using either bottom-up or top-down methods. While bottom-up techniques can achieve higher aspect ratio at reduced dimension without having surface and sub-surface damage, uniform doping distributions with abrupt junction profiles are less challenging for top-down methods. In this dissertation, nanowires fabricated by both methods were systematically investigated to understand: (1) the in situ incorporation of boron (B) dopants in Si nanowires grown by the bottom-up vapor-liquid-solid (VLS) technique, and (2) the impact of plasma-induced etch damage on InGaAs p +-i-n+ nanowire junctions for tunnel field-effect transistors (TFETs) applications. In Chapter 2 and 3, the in situ incorporation of B in Si nanowires grown using silane (SiH4) or silicon tetrachloride (SiCl4) as the Si precursor and trimethylboron (TMB) as the p-type dopant source is investigated by I-V measurements of individual nanowires. The results from measurements using a global-back-gated test structure reveal nonuniform B doping profiles on nanowires grown from SiH4, which is due to simultaneous incorporation of B from nanowire surface and the catalyst during VLS growth. In contrast, a uniform B doping profile in both the axial and radial directions is achieved for TMBdoped Si nanowires grown using SiCl4 at high substrate temperatures. In Chapter 4, the I-V characteristics of wet- and dry-etched InGaAs p+-i-n+ junctions with different mesa geometries, orientations, and perimeter-to-area ratios are compared to evaluate the impact of the dry etch process on the junction leakage current properties. Different post-dry etch treatments, including wet etching and thermal annealing, are performed and the effectiveness of each is assessed by temperaturedependent I-V measurements. As compared to wet-etched control devices, dry-etched junctions have a significantly

  13. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.


    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  14. Lasers in cosmetic dentistry. (United States)

    Pang, Peter


    Lasers have become a necessary instrument in the esthetic restorative armamentarium. This article presents smile design guidelines for soft tissue lasers, as well as an overview of hard tissue procedures that may be performed using all-tissue lasers. The goal is to help dentists determine the appropriate laser for a given clinical situations.

  15. Laser Wire Stripper (United States)


    NASA-developed space shuttle technology is used in a laser wire stripper designed by Raytheon Company. Laser beams cut through insulation on a wire without damaging conductive metal, because laser radiation that melts plastic insulation is reflected by the metal. The laser process is fast, clean, precise and repeatable. It eliminates quality control problems and the expense of rejected wiring.

  16. High Power Vanadate lasers

    CSIR Research Space (South Africa)

    Strauss, HJ


    Full Text Available This presentation aims at the following: to develop new techniques to mount laser crystals; compare the laser properties of two equally doped, high power Nd:YVO4 and Nd: GdVO4 lasers; build a 1um vanadate laser with average output power exceeding...

  17. Image-guided removal of occlusal caries lesions with a λ= 9.3-μm CO2 laser using near-IR transillumination (United States)

    Chung, Leon C.; Tom, Henry; Chan, Kenneth H.; Simon, Jacob C.; Fried, Daniel; Darling, Cynthia L.


    Previous studies have shown that near-IR transillumination is well suited for imaging deep occlusal lesions. The purpose of this study was to determine if near-IR images can be used to guide a CO2 laser for the selective removal of natural occlusal lesions on extracted teeth. Near-IR occlusal transillumination images of extracted human teeth with natural occlusal caries lesions were acquired using an InGaAs camera and near-IR light at wavelengths from 1290 to 1470-nm from a filtered tungsten halogen source. A CO2 laser operating at 9.3-μm with a pulse duration of 10-15-μs and a pulse repetition rate of 100-300-Hz was used for caries removal. Optical Coherence tomography was used to confirm lesion presence and serial scans were used to assess selective removal. Teeth were also sectioned for histological examination using polarized light microscopy. This study suggests that near-infrared transillumination is a promising method for the image guided laser ablation of occlusal caries lesions but the use of serial near-IR transillumination imaging for monitoring lesion removal was limited.

  18. A laser radar experiment (United States)

    Stiglitz, Martin R.; Blanchard, Christine


    An experiment demonstrating the feasibility of using a laser radar for long-range target acquisition and tracking is discussed. A CO2 laser was used to collect range Doppler images, while a medium-power argon ion laser was employed for angular tracking. Laser-radar operation is outlined with emphasis on isotopic laser radars. Laser-radar imaging is covered, and a laser-radar range equation is given. Experimental laser-radar transmitter, receiver, and telescope are described. A 35-foot long surface-to-air missile and payload were tracked in the experiment, with the laser radar acquiring the targets as they reached 480 km in altitude, 750 km from the radar site. The 4-ft-diameter aperture laser-radar telescope provided the resolution and range accuracy equivalent to that of a 120-ft microwave radar antenna.

  19. Multibeam fiber laser cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Hansen, Klaus Schütt; Nielsen, Jakob Skov


    The appearance of the high power high brilliance fiber laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating Cutting laser, the CO2 laser. However, quality problems in fiber......-laser cutting have until now limited its application to metal cutting. In this paper the first results of proof-of-principle Studies applying a new approach (patent pending) for laser cutting with high brightness and short wavelength lasers will be presented. In the approach, multibeam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from two single mode fiber lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W...

  20. Multibeam Fibre Laser Cutting

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    The appearance of the high power high brilliance fibre laser has opened for new possibilities in laser materials processing. In laser cutting this laser has demonstrated high cutting performance compared to the dominating cutting laser, the CO2-laser. However, quality problems in fibre......-laser cutting have until now limited its application in metal cutting. In this paper the first results of proof-of-principle studies applying a new approach (patent pending) for laser cutting with high brightness short wavelength lasers will be presented. In the approach, multi beam patterns are applied...... to control the melt flow out of the cut kerf resulting in improved cut quality in metal cutting. The beam patterns in this study are created by splitting up beams from 2 single mode fibre lasers and combining these beams into a pattern in the cut kerf. The results are obtained with a total of 550 W of single...

  1. The laser in urology (United States)

    Hofstetter, Alfons G.


    Laser is an acronym for a physical principle and means: Light Amplification by stimulated Emission of Radiation. This principle offers a lot of tissue/light effects caused by the parameters: power density/time and the special qualities of the laser light. Nowadays for diagnosis and therapy following lasers are used in urology: Krypton- and Dye-lasers as well as the Neodymium-YAG- (nd:YAG-), Holmium-YAG (Ho:YAG-), Diode-, Argon- and the CO2-lasers.

  2. Laser ablation principles and applications

    CERN Document Server


    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  3. Laser illumination and EO systems for covert surveillance from NIR to SWIR and beyond (United States)

    Dvinelis, Edgaras; Žukauskas, Tomas; Kaušylas, Mindaugas; Vizbaras, Augustinas; Vizbaras, Kristijonas; Vizbaras, Dominykas


    One of the most important factor of success in battlefield is the ability to remain undetected by the opposing forces while also having an ability to detect all possible threats. Illumination and pointing systems working in NIR and SWIR bands are presented. Wavelengths up to 1100 nm can be registered by newest generation image intensifier tubes, CCD and EMCCD sensors. Image intensifier tubes of generation III or older are only limited up to wavelength of 900 nm [1]. Longer wavelengths of 1550 nm and 1625 nm are designed to be used with SWIR electro-optical systems and they cannot be detected by any standard night vision system. Long range SWIR illuminators and pointers have beam divergences down to 1 mrad and optical powers up to 1.5 W. Due to lower atmospheric scattering SWIR illuminators and pointers can be used at extremely long distances up to 10s of km and even further during heavy weather conditions. Longer wavelengths of 2100 nm and 2450 nm are also presented, this spectrum band is of great interest for direct infrared countermeasure (DIRCM) applications. State-of-the-art SWIR and LWIR electro-optical systems are presented. Sensitive InGaAs sensors coupled with "fast" (low F/#) optical lenses can provide complete night vision, detection of all NIR and SWIR laser lines, penetration through smoke, dust and fog. Finally beyond-state-of-the-art uncooled micro-bolometer LWIR systems are presented featuring ultra-high sensor sensitivities of 20 mK.

  4. Ceramic Laser Materials

    Directory of Open Access Journals (Sweden)

    Guillermo Villalobos


    Full Text Available Ceramic laser materials have come a long way since the first demonstration of lasing in 1964. Improvements in powder synthesis and ceramic sintering as well as novel ideas have led to notable achievements. These include the first Nd:yttrium aluminum garnet (YAG ceramic laser in 1995, breaking the 1 KW mark in 2002 and then the remarkable demonstration of more than 100 KW output power from a YAG ceramic laser system in 2009. Additional developments have included highly doped microchip lasers, ultrashort pulse lasers, novel materials such as sesquioxides, fluoride ceramic lasers, selenide ceramic lasers in the 2 to 3 μm region, composite ceramic lasers for better thermal management, and single crystal lasers derived from polycrystalline ceramics. This paper highlights some of these notable achievements.

  5. Raman fiber lasers

    CERN Document Server


    This book serves as a comprehensive, up-to-date reference about this cutting-edge laser technology and its many new and interesting developments. Various aspects and trends of Raman fiber lasers are described in detail by experts in their fields. Raman fiber lasers have progressed quickly in the past decade, and have emerged as a versatile laser technology for generating high power light sources covering a spectral range from visible to mid-infrared. The technology is already being applied in the fields of telecommunication, astronomy, cold atom physics, laser spectroscopy, environmental sensing, and laser medicine. This book covers various topics relating to Raman fiber laser research, including power scaling, cladding and diode pumping, cascade Raman shifting, single frequency operation and power amplification, mid-infrared laser generation, specialty optical fibers, and random distributed feedback Raman fiber lasers. The book will appeal to scientists, students, and technicians seeking to understand the re...

  6. Laser-surface interactions

    CERN Document Server

    Ganeev, Rashid A


    This book is about the interaction of laser radiation with various surfaces at variable parameters of radiation. As a basic principle of classification we chose the energetic or intensity level of interaction of laser radiation with the surfaces. These two characteristics of laser radiation are the most important parameters defining entire spectrum of the processes occurring on the surfaces during interaction with electromagnetic waves. This is a first book containing a whole spectrum of the laser-surface interactions distinguished by the ranges of used laser intensity. It combines the surface response starting from extremely weak laser intensities (~1 W cm-2) up to the relativistic intensities (~1020 W cm-2 and higher). The book provides the basic information about lasers and acquaints the reader with both common applications of laser-surface interactions (laser-related printers, scanners, barcode readers, discs, material processing, military, holography, medicine, etc) and unusual uses of the processes on t...

  7. Double conjugate laser amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, S.; Daunt, G.H.


    This paper describes a double conjugate laser amplifier system for producing a stable output laser beam in line with a laser oscillator input beam. It comprises: a laser oscillator which produces a low energy oscillator laser beam therefrom directly along a laser beam axis of the system; an amplification means comprised of double conjugate laser amplifiers further comprised of a first and a second singly phase conjugate amplifiers laterally opposite each other about the laser beam axis; polarizers with one of the polarizers positioned between each of the first and second singly phase conjugate amplifiers on the laser beam axis; Pockels cells with on of the Pockels cells positioned on the laser beam axis immediately prior to one of the polarizers; and a means for selectively switching the amplifier means comprised of applying a half-wave voltage at each of the Pockels cells to provide a polarization rotation of the input beam through 90{degrees} for routing of the oscillator laser beam directly through or reflected off the polarizes as an input beam to the amplification means wherein the amplification means amplifies the input beam twice in each of the first and second singly phase conjugate amplifiers and reflects the amplified laser beam off the polarizers as an amplified laser output beam in exactly the same direction as the input laser beam.

  8. Ultra-Low Noise Quad Photoreceiver for Space Based Laser Interferometric Gravity Wave Detection Project (United States)

    National Aeronautics and Space Administration — We propose to design and develop 2x2 quad p-i-n InGaAs Photoreceivers having the following characteristics: (a) Active area diameter 0.75 mm; (b) Wavelength coverage...

  9. Sensitivity of Heterointerfaces on Emission Wavelength in Quantum Cascade Lasers (United States)


    strain -balanced stacks of InGaAs /GaAsP multiple quantum wells ," Journal of Crystal Growth, vol. 315, pp. 1-4, 2011. [16] S. Ma, Y. Wang, H. Sodabanlu...of a coupled quantum - well structure, where the energy separation for a given material system and strain state is dependent on the thickness of the... InGaAs /GaAs quantum wells ," Applied Physics Letters, vol. 61, pp. 557-559, 1992. [23] A. A. Marmalyuk, O. I. Govorkov, A. V. Petrovsky, D. B

  10. Lasers in periodontics. (United States)

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie


    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20(th) century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  11. Laser materials processing with diode lasers


    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.


    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  12. Espesores críticos de relajación en pozos cuánticos de InGaAs/ GaAs sobre sustratos de GaAs (001 y (111B

    Directory of Open Access Journals (Sweden)

    Gutiérrez, M.


    Full Text Available A study of critical layer thickness (CLT in single quantum wells of InGaAs/GaAs on GaAs substrates with (001 and (111B orientations is presented. The results obtained by Transmission Electronic Microscopy (TEM and Photoluminescence (PL show that the decrease of the luminescent signal is due to different relaxation mechanisms for each substrate orientation. Thus, in (001 substrates, the CLT is defined by the transition from a plane growth front (2D to a rough one (3D. However, the plastic relaxation due to a misfit dislocation array (DD determines the CLT in (111B substrates. The analysis by TEM of this dislocation array shows a new DD configuration different to the previously described in the bibliography. The new observed configuration allows us to explain the experimental results obtained for the case of SQW of InGaAs/GaAs (111B using the classic CLT models of the first DD formation.

    Se presenta un estudio mediante Microscopía Electrónica de Transmisión (TEM y Fotoluminiscencia (PL de espesores críticos de epicapa (CLT en pozos cuánticos simples de InGaAs/GaAs crecidos sobre substratos de GaAs con orientaciones (001 y (111B. Los resultados obtenidos demuestran que la disminución de la señal luminiscente del espectro de PL se debe a distintos mecanismos de relajación para cada orientación de sustrato. Así, en sustratos orientados (001, el CLT viene definido por la transición desde un frente de crecimiento plano (2D a otro ondulado (3D. Sin embargo, la relajación plástica debida a una red de dislocaciones de desajuste (DD determina el CLT en sustratos orientados (111B. El análisis por TEM de esta red de dislocaciones muestra la existencia de una nueva configuración de DD distinta a la anteriormente descrita en la bibliografía. La nueva configuración observada permite explicar los resultados experimentales obtenidos para el caso de SQW de InGaAs/ GaAs (111B utilizando los modelos clásicos de CLT de formación de la

  13. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.


    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  14. Laser surgery - skin (United States)

    Surgery using a laser ... used is directly related to the type of surgery being performed and the color of the tissue ... Laser surgery can be used to: Close small blood vessels to reduce blood loss Remove warts , moles , sunspots, and ...

  15. Laser in operative dentistry

    Directory of Open Access Journals (Sweden)

    E. Yasini


    Full Text Available Today laser has a lot of usage in medicine and dentistry. In the field of dentistry, laser is used in soft tissue surgery, sterilization of canals (in root canal therapy and in restorative dentistry laser is used for cavity preparation, caries removal, sealing the grooves (in preventive dentistry, etching enamel and dentin, composite polymerization and removal of tooth sensitivity. The use of Co2 lasers and Nd: YAG for cavity preparation, due to creating high heat causes darkness and cracks around the region of laser radiation. Also due to high temperature of these lasers, pulp damage is inevitable. So today, by using the Excimer laser especially the argon floride type with a wavelength of 193 nm, the problem of heat stress have been solved, but the use of lasers in dentistry, especially for cavity preparation needs more researches and evaluations.

  16. Wavelength sweepable laser source

    DEFF Research Database (Denmark)


    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  17. Laser safety in dentistry. (United States)

    Sweeney, Caroline


    Although many regulations and standards relating to laser safety are in effect, there continue to be an average of 35 laser injuries per year. Laser safety professionals believe that this number under-represents the actual number of injuries and that many more accidents per year occur that are not documented with federal agencies. A review of these accidents has determined that failing to wear available eye protection is one of the most frequent contributing factors to laser injuries. As the purchase and use of lasers in dentistry continues to grow, so must concern for laser safety. This article provides basic information to advance the safe use of lasers in dentistry and to help establish laser safety protocols for the dental office.

  18. Transmyocardial Laser Revascularization (United States)

    ... Vascular Access for Hemodialysis Ventricular Assist Devices Transmyocardial Laser Revascularization Like every other organ or tissue in ... bypass surgery, there is a procedure called transmyocardial laser revascularization, also called TMLR or TMR. TMLR cannot ...

  19. Laser particle sorter (United States)

    Martin, J.C.; Buican, T.N.


    Method and apparatus are provided for sorting particles, such as biological particles. A first laser is used to define an optical path having an intensity gradient which is effective to propel the particles along the path but which is sufficiently weak that the particles are not trapped in an axial direction. A probe laser beam is provided for interrogating the particles to identify predetermined phenotypical characteristics of the particles. A second laser beam is provided to intersect the driving first laser beam, wherein the second laser beam is activated by an output signal indicative of a predetermined characteristic. The second laser beam is switchable between a first intensity and a second intensity, where the first intensity is effective to displace selected particles from the driving laser beam and the second intensity is effective to propel selected particles along the deflection laser beam. The selected particles may then be propelled by the deflection beam to a location effective for further analysis. 2 figs.

  20. Laser-assisted electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, D.F.


    The effect of laser irradiation on electrodeposition processes has been investigated. These studies demonstrated that the addition of laser irradiation to an electroplating process can dramatically enhance plating rates and current efficiencies, as well as improve the morphology of the resultant electrodeposit. During the course of these investigations, the mechanism for the laser enhancement of electrodeposition processes was determined. Experimental evidence was obtained to show that laser irradiation of the substrate results in increased metal ion concentrations at the surface of the electrode due to a laser-induced Soret effect. The laser-induced Soret effect has important implications for laser-assisted electrochemical processing. The increase in the surface concentration of ions allows efficient electrodeposition from dilute solutions. As such, laser- assisted electrodeposition may develop into an environmentally conscious manufacturing process by reducing waste and limiting worker exposure to toxic chemicals.

  1. Laser Processing and Chemistry

    CERN Document Server

    Bäuerle, Dieter


    This book gives an overview of the fundamentals and applications of laser-matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas-solid, liquid-solid, and solid-solid interfaces. Starting with the background physics, the book proceeds to examine applications of lasers in “standard” laser machining and laser chemical processing (LCP), including the patterning, coating, and modification of material surfaces. This fourth edition has been enlarged to cover the rapid advances in the understanding of the dynamics of materials under the action of ultrashort laser pulses, and to include a number of new topics, in particular the increasing importance of lasers in various different fields of surface functionalizations and nanotechnology. In two additional chapters, recent developments in biotechnology, medicine, art conservation and restoration are summarized. Graduate students, physicists, chemists, engineers, a...

  2. Lasers in Electronic Warfare (United States)

    Manke, Gerald C.


    The use of lasers for Electronic Warfare applications will be discussed and reviewed. Specific examples of deployed EW systems which include lasers will be presented along with a discussion of their most salient features.

  3. LASIK - Laser Eye Surgery (United States)

    ... Uveitis Focus On Pediatric Ophthalmology Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center ... Glaucoma Education Center Pediatric Ophthalmology Education Center Oculofacial Plastic ... Center Laser Surgery Education Center Redmond Ethics Center ...

  4. Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy. (United States)

    Krichevtsov, Boris B; Gastev, Sergei V; Suturin, Sergey M; Fedorov, Vladimir V; Korovin, Alexander M; Bursian, Viktor E; Banshchikov, Alexander G; Volkov, Mikhail P; Tabuchi, Masao; Sokolov, Nikolai S


    Thin (4-20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner-Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD.

  5. Laser Micromachining of Ceramics


    SCITI, Diletta; Bellosi, Alida


    Laser surface processing of ceramics is an area of considerable technological importance for several structural, tribological, optical and electronic applications. The laser beam behaves as a heat source that induces a temperature rise on the surface and within the bulk of the material. Depending on laser parameters and material characteristics, lasers can be used for fabricating microholes at designated locations, for cutting, scribing, for surface modifications In this work different types ...

  6. Tunable laser optics

    CERN Document Server

    Duarte, FJ


    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  7. Lasers in periodontics


    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie


    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20 th century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging imp...

  8. Tunable high pressure lasers (United States)

    Hess, R. V.


    Atmospheric transmission of high energy CO2 lasers is considerably improved by high pressure operation which, due to pressure broadening, permits tuning the laser lines off atmospheric absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers and for vertical transmission through the entire atmosphere. Applications of tunable high pressure CO2 lasers to energy transmission and to remote sensing are discussed along with initial efforts in tuning high pressure CO2 lasers.

  9. Laser cutting system (United States)

    Dougherty, Thomas J


    A workpiece cutting apparatus includes a laser source, a first suction system, and a first finger configured to guide a workpiece as it moves past the laser source. The first finger includes a first end provided adjacent a point where a laser from the laser source cuts the workpiece, and the first end of the first finger includes an aperture in fluid communication with the first suction system.

  10. Photonic bandgap fiber lasers and multicore fiber lasers for next generation high power lasers

    DEFF Research Database (Denmark)

    Shirakawa, A.; Chen, M.; Suzuki, Y.


    Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA.......Photonic bandgap fiber lasers are realizing new laser spectra and nonlinearity mitigation that a conventional fiber laser cannot. Multicore fiber lasers are a promising tool for power scaling by coherent beam combination. © 2014 OSA....

  11. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter...

  12. LaserFest Celebration

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Alan Chodos; Elizabeth A. Rogan


    LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.

  13. Lasers for nonlinear microscopy. (United States)

    Wise, Frank


    Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.

  14. Fiber Lasers V

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes


    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser ...

  15. Laser Programs Highlights 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, H.; Cassady, C.


    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  16. ALMDS laser system (United States)

    Kushina, Mark E.; Heberle, Geoff; Hope, Michael; Hall, David; Bethel, Michael; Calmes, Lonnie K.


    The ALMDS (Airborne Laser Mine Detection System) has been developed utilizing a solid-state laser operating at 532nm for naval mine detection. The laser system is integrated into a pod that mounts externally on a helicopter. This laser, along with other receiver systems, enables detailed underwater bathymetry. CEO designs and manufactures the laser portion of this system. Arete Associates integrates the laser system into the complete LIDAR package that utilizes sophisticated streak tube detection technology. Northrop Grumman is responsible for final pod integration. The laser sub-system is comprised of two separate parts: the LTU (Laser Transmitter Unit) and the LEU (Laser Electronics Unit). The LTU and LEU are undergoing MIL-STD-810 testing for vibration, shock, temperature storage and operation extremes, as well as MIL-STD-704E electrical power testing and MIL-STD-461E EMI testing. The Nd:YAG MOPA laser operates at 350 Hz pulse repetition frequency at 45 Watts average 532nm power and is controlled at the system level from within the helicopter. Power monitor circuits allow real time laser health monitoring, which enables input parameter adjustments for consistent laser behavior.

  17. Compact Hybrid Laser Rod and Laser System (United States)

    Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor); Pierrottet, Diego F. (Inventor)


    A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.

  18. Laser in ophthalmology. Laser i oftalmologien

    Energy Technology Data Exchange (ETDEWEB)

    Syrdalen, P. (Rikshospitalet, Oslo (Norway))


    The article presents a brief history of the use of laser in ophthalmology in Norway, from the introduction of the first argon-photocoalulator in 1972 to the excimer laser in 1990. The argon-photocoagulator is in daily us in all Eye Departments in Norway and the main group of patients treated are those with diabetic retionopathy. Glaucoma has been treated with argon-laser with good results for the last ten years. YAG-laser, introduced in Norway in 1985, is used to treat secondary cataracts which occur after extracapsular cataract extractions and implantation of artificial lenses. In 1990, the excimer laser was introduced for refractive surgery (myopia, astigmatism). 4 refs., 6 figs., 1 tab.

  19. Diode laser and endoscopic laser surgery. (United States)

    Sullins, Kenneth E


    Two functionally important differences exist between the diode laser and the carbon dioxide (CO2) laser (used more commonly in small animal surgery). Diode laser energy is delivered through a quartz fiber instead of being reflected through an articulated arm or waveguide. Quartz fibers are generally more flexible and resilient than waveguides and can be inserted through an endoscope for minimally invasive procedures. Laser-tissue interaction is the other significant difference. The CO2 laser is completely absorbed by water, which limits the effect to visible tissue. The diode wavelength is minimally absorbed by water and may affect tissue as deep as 10 mm below the surface in the free-beam mode. With proper respect for the tissue effect, these differences can be used to the advantage of the patient.

  20. Quantum-Dot Laser for Wavelengths of 1.8 to 2.3 micron (United States)

    Qiu, Yueming


    The figure depicts a proposed semiconductor laser, based on In(As)Sb quantum dots on a (001) InP substrate, that would operate in the wavelength range between 1.8 and 2.3 m. InSb and InAsSb are the smallest-bandgap conventional III-V semiconductor materials, and the present proposal is an attempt to exploit the small bandgaps by using InSb and InAsSb nanostructures as midinfrared emitters. The most closely related prior III-V semiconductor lasers are based, variously, on strained InGaAs quantum wells and InAs quantum dots on InP substrates. The emission wavelengths of these prior devices are limited to about 2.1 m because of critical quantum-well thickness limitations for these lattice mismatched material systems. The major obstacle to realizing the proposed laser is the difficulty of fabricating InSb quantum dots in sufficient density on an InP substrate. This difficulty arises partly because of the weakness of the bond between In and Sb and partly because of the high temperature needed to crack metalorganic precursor compounds during the vapor-phase epitaxy used to grow quantum dots: The mobility of the weakly bound In at the high growth temperature is so high that In adatoms migrate easily on the growth surface, resulting in the formation of large InSb islands at a density, usually less than 5 x 10(exp 9) cm(exp -2), that is too low for laser operation. The mobility of the In adatoms could be reduced by introducing As atoms to the growth surface because the In-As bond is about 30 percent stronger than is the In-Sb bond. The fabrication of the proposed laser would include a recently demonstrated process that involves the use of alternative supplies of precursors to separate group-III and group-V species to establish local non-equilibrium process conditions, so that In(As)Sb quantum dots assemble themselves on a (001) InP substrate at a density as high as 4 x 10(exp 10) cm(exp -2). Room-temperature photoluminescence spectra of quantum dots formed by this process

  1. Effect of potential barrier height on the carrier transport in InGaAs/GaAsP multi-quantum wells and photoelectric properties of laser diode. (United States)

    Dong, Hailiang; Sun, Jing; Ma, Shufang; Liang, Jian; Lu, Taiping; Jia, Zhigang; Liu, Xuguang; Xu, Bingshe


    The growth and strain-compensation behaviour of InGaAs/GaAsP multi-quantum wells, which were fabricated by metal-organic chemical vapor deposition, have been studied towards the application of these quantum wells in high-power laser diodes. The effect of the height of the potential barrier on the confined level of carrier transport was studied by incorporating different levels of phosphorus content into the GaAsP barrier. The crystal quality and interface roughness of the InGaAs/GaAsP multi-quantum wells with different phosphorus contents were evaluated by high resolution X-ray diffraction and in situ optical surface reflectivity measurements during the growth. The surface morphology and roughness were characterized by atomic force microscopy, which indicates the variation law of surface roughness, terrace width and uniformity with increasing phosphorus content, owing to strain accumulation. Moreover, the defect generation and structural disorder of the multi-quantum wells were investigated by Raman spectroscopy. The optical properties of the multi-quantum wells were characterized by photoluminescence, which shows that the spectral intensity increases as the phosphorus content increases. The results suggest that more electrons are well bound in InGaAs because of the high potential barrier. Finally, the mechanism of the effect of the height of the potential barrier on laser performance was proposed on the basis of simulation calculations and experimental results.

  2. Quantum well lasers

    CERN Document Server

    Zory, Jr, Peter S; Kelley, Paul


    This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment

  3. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff; Hitz, C Breck; John Wiley & Sons


    Electrical Engineering Introduction to Laser Technology , Third Edition. Would you like to know how a laser works, and how it can be modified for your own specific tasks? This intuitive third edition-previously published as Understanding Laser Technology , First and Second Editions-introduces engineers, scientists, technicians, and novices alike to the world of modern lasers, without delving into the mathematical details of quantum electronics. It is the only introductory text on the market today that explains the underlying physics and engineering applicable to all lasers. A unique combinatio.

  4. Tunable laser applications

    CERN Document Server

    Duarte, FJ


    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  5. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud


    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  6. Lasers in otorhinolaryngology (United States)

    Pais Clemente, Manuel P.


    Lasers are now commonly accepted and widely used surgical instruments in otorhinolaryngology. There have been a great number of technological advances with lasers that have contributed to the expansion of this new surgical modality with an increased number of medical applications. Surgical strategies have also changed and are more favorable toward conservative surgery in which less tissues is removed than with more radical resections. This combination of improving technology and medical attitudes has changed the field of otorhinolaryngology, and resulted in an expanding use of laser surgery. Since 1973 we have been using the carbon dioxide laser in the treatment of diseases of the upper aero digestive systems, learning this new surgical technique from the pioneer work of Strong, Jako, and Vaughan. It is our conviction that a laser surgeon must have a thorough knowledge of laser biophysics, instrumentation, safety protocols, and surgical indications, and have the technical skills to perform laser surgery. Laser technology continues to improve at an increased speed, and it is imperative to update knowledge of current and potential applications of lasers in our specialty. It is the purpose of this article to present our clinical experience of 18 years with the use of lasers in surgery of ORL, emphasizing the carbon dioxide laser.

  7. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid


    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  8. [Navigated retinal laser therapy]. (United States)

    Kernt, M; Ulbig, M; Kampik, A; Neubauer, A S


    Navigated laser therapy introduces for the first time computerized assistance systems for retinal laser therapy. The Navilas system offers high precision and safety and provides additional benefits regarding standardization of planning, execution, documentation and quality assurance. The current focus of clinical application for navigated laser therapy besides laser treatment after retinal vein occlusion and panretinal laser photocoagulation in proliferative diabetic retinopathy (PDR) is diabetic macular edema. Recent data indicate that combined initial anti-vascular endothelial growth factor (anti-VEGF) and navigated macular laser therapy allows achievement and maintenance of treatment success with a minimum number of interventions. Despite very promising results the current assessment of navigated laser therapy is still limited by the evidence available worldwide.

  9. Laser beam shaping techniques

    Energy Technology Data Exchange (ETDEWEB)



    Industrial, military, medical, and research and development applications of lasers frequently require a beam with a specified irradiance distribution in some plane. A common requirement is a laser profile that is uniform over some cross-section. Such applications include laser/material processing, laser material interaction studies, fiber injection systems, optical data image processing, lithography, medical applications, and military applications. Laser beam shaping techniques can be divided into three areas: apertured beams, field mappers, and multi-aperture beam integrators. An uncertainty relation exists for laser beam shaping that puts constraints on system design. In this paper the authors review the basics of laser beam shaping and present applications and limitations of various techniques.

  10. Laser safety in dentistry (United States)

    Wigdor, Harvey A.


    One of the major causes of anxiety in the dental clinic is the dental handpiece. Because dentists wish to provide a method which can replace the drill there has often been a premature use of the laser in dentistry. Various lasers have been introduced into the clinic before research has shown the laser used is of clinical benefit. Any new treatment method must not compromise the health of the patient being treated. Thus a method of evaluating the clinical abilities of dentists and their understanding the limitations of the laser used must be developed. Dentist must be trained in the basic interaction of the laser on oral tissues. The training has to concentrate on the variation of the laser wavelength absorption in the different tissues of the oral cavity. Because of the differences in the optical properties of these tissues great care must be exercised by practitioners using lasers on patients.

  11. Lasers in periodontology. (United States)

    Mavrogiannis, M; Thomason, J M; Seymour, R A


    Since the development of the ruby laser by Maiman in 1960, lasers have been widely employed in medicine for a number of years. The purpose of this paper is to summarize potential applications for lasers in dentistry, with special regard to periodontology. This article briefly describes clinical applications of lasers and laser safety. Particularly, the use of a diode laser seems to be promising, especially in already compromised transplant patients, who need to be treated with a technique where the operative and post-operative blood loss, post-operative discomfort and the recurrence of drug-induced gingival overgrowth need to be kept to a minimum or eliminated. Therefore, the use of lasers in periodontology may lead to an alteration in present clinical practice and help to establish the best management strategy because, by maintaining periodontal health, the life quality of patients can be improved.

  12. Lasers in oral surgery (United States)

    Keller, Ulrich; Hibst, Raimund


    The indications of lasers in oral surgery are defined by the laser-tissue interaction types. These are mainly thermal effects depending especially on the absorption of laser light in varying biological tissues. In histological sections different laser effects are demonstrated on oral mucosa, bone and cartilage, which have a great influence on wound healing and subsequently on clinical indications of the different wavelengths. On the one hand the good coagulation effect of the Nd:YAG laser is wanted for hemostasis in soft tissue surgery. On the other hand, for the treatment of precancerous dysplasias or neoplasias an effective cutting with a coagulation effect like using the CO2 laser is necessary. However, the excision of benign mucosal lesions as well as performing osteotomies or shaping of cartilage should be undertaken with the Er:YAG laser without greater coagulation and consequently without any delay of wound healing.

  13. Lasers in orthodontics (United States)

    Nalcaci, Ruhi; Cokakoglu, Serpil


    Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necessary precautions to prevent possible tissue damage when using laser dental systems. Here, we reviewed the main types and characteristics of laser systems used in dental practice and discuss the applications of lasers in orthodontics, harmful effects and laser system safety. PMID:24966719

  14. Laser Applications in Orthodontics (United States)

    Heidari, Somayeh; Torkan, Sepideh


    A laser is a collimated single wavelength of light which delivers a concentrated source of energy. Soon after different types of lasers were invented, investigators began to examine the effects of different wavelengths of laser energy on oral tissues, routine dental procedures and experimental applications. Orthodontists, along with other specialist in different fields of dentistry, can now benefit from several different advantages that lasers provide during the treatment process, from the beginning of the treatment, when separators are placed, to the time of resin residues removal from the tooth surface at the end of orthodontic treatment. This article outlines some of the most common usages of laser beam in orthodontics and also provides a comparison between laser and other conventional method that were the standard of care prior to the advent of laser in this field. PMID:25606324

  15. Flexible Laser Metal Cutting

    DEFF Research Database (Denmark)

    Villumsen, Sigurd; Jørgensen, Steffen Nordahl; Kristiansen, Morten


    This paper describes a new flexible and fast approach to laser cutting called ROBOCUT. Combined with CAD/CAM technology, laser cutting of metal provides the flexibility to perform one-of-a-kind cutting and hereby realises mass production of customised products. Today’s laser cutting techniques...... possess, despite their wide use in industry, limitations regarding speed and geometry. Research trends point towards remote laser cutting techniques which can improve speed and geometrical freedom and hereby the competitiveness of laser cutting compared to fixed-tool-based cutting technology...... such as punching. This paper presents the concepts and preliminary test results of the ROBOCUT laser cutting technology, a technology which potentially can revolutionise laser cutting....

  16. Mode selection laser

    DEFF Research Database (Denmark)


    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  17. Laser system using ultra-short laser pulses (United States)

    Dantus, Marcos [Okemos, MI; Lozovoy, Vadim V [Okemos, MI; Comstock, Matthew [Milford, MI


    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  18. Frequency comb swept lasers. (United States)

    Tsai, Tsung-Han; Zhou, Chao; Adler, Desmond C; Fujimoto, James G


    We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free spectral range frequency comb filter in the swept lasers causes the lasers to generate a series of well defined frequency steps. The narrow bandwidth (0.015nm) of the frequency comb filter enables a approximately -1.2dB sensitivity roll off over approximately 3mm range, compared to conventional swept source and FDML lasers which have -10dB and -5dB roll offs, respectively. Measurements at very long ranges are possible with minimal sensitivity loss, however reflections from outside the principal measurement range of 0-3mm appear aliased back into the principal range. In addition, the frequency comb output from the lasers are equally spaced in frequency (linear in k-space). The filtered laser output can be used to self-clock the OCT interference signal sampling, enabling direct fast Fourier transformation of the fringe signals, without the need for fringe recalibration procedures. The design and operation principles of FC swept lasers are discussed and designs for short cavity lasers for OCT and interferometric measurement applications are proposed.

  19. Photobiomodulation in laser surgery (United States)

    Liu, Timon Cheng-Yi; Rong, Dong-Liang; Huang, Jin; Deng, Xiao-Yuan; Liu, Song-Hao


    Laser surgery provides good exposure with clear operating fields and satisfactory preliminary functional results. In contrast to conventional excision, it was found that matrix metalloproteinases and the tissue inhibitors of metalloproteinases -1 mRNA expression is higher, myofibroblasts appeared and disappeared slower in laser excision wounds. It has been suggested that the better anatomical and functional results achieved following laser cordectomy may be explained by the fact that such procedures result in better, more rapid healing processes to recover vocal cord for early glottic tumors and better. In this paper, the role of photobiomodulation in laser surgery will be discussed by the cultured monolayer normal human skin fibroblast model of the photobiomodulation of marginal irradiation of high intensity laser beam, the photobiomodulation related to the irradiated tissue, the biological information model of photobiomodulation and the animal models of laser surgery. Although high intensity laser beam is so intense that it destroys the irradiated cells or tissue, its marginal irradiation intensity is so low that there is photobiomodulation on non-damage cells to modulate the regeneration of partly damaged tissue so that the surgery of laser of different parameters results in different post-surgical recovery. It was concluded that photobiomodulation might play an important role in the long-term effects of laser surgery, which might be used to design laser surgery.

  20. Laser treatment in gynecology (United States)

    de Riese, Cornelia


    This presentation is designed as a brief overview of laser use in gynecology, for non-medical researchers involved in development of new laser techniques. The literature of the past decade is reviewed. Differences in penetration, absorption, and suitable delivery media for the beams dictate clinical application. The use of CO2 laser in the treatment of uterine cervical intraepithelial lesions is well established and indications as well as techniques have not changed over 30 years. The Cochrane Systematic Review from 2000 suggests no obviously superior technique. CO2 laser ablation of the vagina is also established as a safe treatment modality for VAIN. CO2 laser permits treatment of lesions with excellent cosmetic and functional results. The treatment of heavy menstrual bleeding by destruction of the endometrial lining using various techniques has been the subject of a 2002 Cochran Database Review. Among the compared treatment modalities are newer and modified laser techniques. Conclusion by reviewers is that outcomes and complication profiles of newer techniques compare favorably with the gold standard of endometrial resection. The ELITT diode laser system is one of the new successful additions. CO2 laser is also the dominant laser type used with laparoscopy for ablation of endometriotic implants. Myoma coagulation or myolysis with Nd:Yag laser through the laparoscope or hysteroscope is a conservative treatment option. Even MRI guided percutaneous approaches have been described. No long-term data are available.

  1. Laser scanning laser diode photoacoustic microscopy system. (United States)

    Erfanzadeh, Mohsen; Kumavor, Patrick D; Zhu, Quing


    The development of low-cost and fast photoacoustic microscopy systems enhances the clinical applicability of photoacoustic imaging systems. To this end, we present a laser scanning laser diode-based photoacoustic microscopy system. In this system, a 905 nm, 325 W maximum output peak power pulsed laser diode with 50 ns pulsewidth is utilized as the light source. A combination of aspheric and cylindrical lenses is used for collimation of the laser diode beam. Two galvanometer scanning mirrors steer the beam across a focusing aspheric lens. The lateral resolution of the system was measured to be ∼21 μm using edge spread function estimation. No averaging was performed during data acquisition. The imaging speed is ∼370 A-lines per second. Photoacoustic microscopy images of human hairs, ex vivo mouse ear, and ex vivo porcine ovary are presented to demonstrate the feasibility and potentials of the proposed system.

  2. Lasers in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Peng Qian [Department of Pathology, Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo (Norway); Juzeniene, Asta; Moan, Johan [Department of Radiation Biology, Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo (Norway); Chen Jiyao [State Key Laboratory for Advanced Photonic Materials and Devices, Fudan University, 200433 Shanghai (China); Svaasand, Lars O [Department of Electronics and Telecommunications, Norwegian University of Science and Technology, O.S. Bragstads Plass 2A, 7491 Trondheim (Norway); Warloe, Trond; Giercksky, Karl-Erik [Department of Surgical Oncology, Norwegian Radium Hospital, University of Oslo, Montebello, 0310 Oslo (Norway)], E-mail:


    It is hard to imagine that a narrow, one-way, coherent, moving, amplified beam of light fired by excited atoms is powerful enough to slice through steel. In 1917, Albert Einstein speculated that under certain conditions atoms could absorb light and be stimulated to shed their borrowed energy. Charles Townes coined the term laser (light amplification by stimulated emission of radiation) in 1951. Theodore Maiman investigated the glare of a flash lamp in a rod of synthetic ruby, creating the first human-made laser in 1960. The laser involves exciting atoms and passing them through a medium such as crystal, gas or liquid. As the cascade of photon energy sweeps through the medium, bouncing off mirrors, it is reflected back and forth, and gains energy to produce a high wattage beam of light. Although lasers are today used by a large variety of professions, one of the most meaningful applications of laser technology has been through its use in medicine. Being faster and less invasive with a high precision, lasers have penetrated into most medical disciplines during the last half century including dermatology, ophthalmology, dentistry, otolaryngology, gastroenterology, urology, gynaecology, cardiology, neurosurgery and orthopaedics. In many ways the laser has revolutionized the diagnosis and treatment of a disease. As a surgical tool the laser is capable of three basic functions. When focused on a point it can cauterize deeply as it cuts, reducing the surgical trauma caused by a knife. It can vaporize the surface of a tissue. Or, through optical fibres, it can permit a doctor to see inside the body. Lasers have also become an indispensable tool in biological applications from high-resolution microscopy to subcellular nanosurgery. Indeed, medical lasers are a prime example of how the movement of an idea can truly change the medical world. This review will survey various applications of lasers in medicine including four major categories: types of lasers, laser

  3. Dermatological laser treatment. Dermatologisk laserbehandling

    Energy Technology Data Exchange (ETDEWEB)

    Moerk, N.J.; Austad, J. (Rikshospitalet, Oslo (Norway)); Helland, S. (Haukeland Sykehus, Bergen (Norway)); Thune, P. (Ullevaal Sykehus, Oslo (Norway)); Volden, G. (University and Regional Hospital, Trondheim (Norway)); Falk, E. (University and Regional Hospital, Tromsoe (Norway))


    The article reviews the different lasers used in dermatology. Special emphasis is placed on the treatment of naevus flammeus (''portwine stain'') where lasers are the treatment of choice. Argon laser and pulsed dye laser are the main lasers used in vascular skin diseases, and the article focuses on these two types. Copper-vapour laser, neodymium-YAG laser and CO{sub 2} laser are also presented. Information is provided about the availability of laser technology in the different health regions in Norway. 5 refs., 2 figs.

  4. High power lasers in manufacturing


    Chatwin, Chris R


    Lecture covers a brief history of lasers and the important beam parameters for manufacturing applications. It introduces the main laser types that are appropriate for manufacturing: carbon dioxide lasers, Nd YAG, Diode and fibre lasers, excimer lasers. It then looks at applications to different products and also micro-engineering

  5. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark


    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  6. Power Laser Ablation Symposia

    CERN Document Server

    Phipps, Claude


    Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficu...

  7. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui


    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  8. Lasers in periodontics

    Directory of Open Access Journals (Sweden)

    Sugumari Elavarasu


    Full Text Available Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20 th century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics.

  9. Nanofabrication with Pulsed Lasers

    Directory of Open Access Journals (Sweden)

    Kabashin AV


    Full Text Available Abstract An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3, is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  10. Principles of Lasers

    CERN Document Server

    Svelto, Orazio


    This new Fifth Edition of Principles of Lasers incorporates corrections to the previous edition. The text’s essential mission remains the same: to provide a wide-ranging yet unified description of laser behavior, physics, technology, and current applications. Dr. Svelto emphasizes the physical rather than the mathematical aspects of lasers, and presents the subject in the simplest terms compatible with a correct physical understanding. Praise for earlier editions: "Professor Svelto is himself a longtime laser pioneer and his text shows the breadth of his broad acquaintance with all aspects of the field … Anyone mastering the contents of this book will be well prepared to understand advanced treatises and research papers in laser science and technology." (Arthur L. Schawlow, 1981 Nobel Laureate in Physics) "Already well established as a self-contained introduction to the physics and technology of lasers … Professor Svelto’s book, in this lucid translation by David Hanna, can be strongly recommended for...

  11. Lasers in periodontics (United States)

    Elavarasu, Sugumari; Naveen, Devisree; Thangavelu, Arthiie


    Laser is one of the most captivating technologies in dental practice since Theodore Maiman in 1960 invented the ruby laser. Lasers in dentistry have revolutionized several areas of treatment in the last three and a half decades of the 20th century. Introduced as an alternative to mechanical cutting device, laser has now become an instrument of choice in many dental applications. Evidence suggests its use in initial periodontal therapy, surgery, and more recently, its utility in salvaging implant opens up a wide range of applications. More research with better designs are a necessity before lasers can become a part of dental armamentarium. This paper gives an insight to laser in periodontics. PMID:23066266

  12. Laser rocket system analysis (United States)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.


    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  13. Laser/tissue interaction. (United States)

    Dederich, D N


    When laser light impinges on tissue, it can reflect, scatter, be absorbed, or transmit to the surrounding tissue. Absorption controls to a great degree the extent to which reflection, scattering and transmission occur, and wavelength is the primary determinant of absorption. The CO2 laser is consistently absorbed by most materials and tissues and the Nd-YAG laser wavelength is preferentially absorbed in pigmented tissues. The factors which determine the initial tissue effect include the laser wavelength, laser power, laser waveform, tissue optical properties, and tissue thermal properties. There are almost an infinite number of combinations of these factors possible, many of which would result in unacceptable damage to the tissues. This underscores the need to thoroughly test any particular combination of these factors on the conceptual, in-vitro, and in-vivo level before a treatment is offered.

  14. Strong field laser physics

    CERN Document Server


    Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.

  15. Atomic iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.


    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program.

  16. Laser In Veterinary Medicine (United States)

    Newman, Carlton; Jaggar, David H.


    Lasers have been used for some time now on animals for experimental purposes prior to their use in human medical and surgical fields. However the use of lasers in veterinary medicine and surgery per se is a recent development. We describe the application of high and low intensity laser technology in a general overview of the current uses, some limitations to its use and future needs for future inquiry and development.

  17. Lasers in orthodontics


    Nalcaci, Ruhi; Cokakoglu, Serpil


    Many types of dental lasers are currently available that can be efficiently used for soft and hard tissue applications in the field of orthodontics. For achieving the desired effects in the target tissue, knowledge of laser characteristics such as power, wavelength and timing, is necessary. Laser therapy is advantageous because it often avoids bleeding, can be pain free, is non-invasive and is relatively quick. The high cost is its primary disadvantage. It is very important to take the necess...

  18. Polarization feedback laser stabilization (United States)

    Esherick, P.; Owyoung, A.


    A system for locking two Nd:YAG laser oscillators includes an optical path for feeding the output of one laser into the other with different polarizations. Elliptical polarization is incorporated into the optical path so that the change in polarization that occurs when the frequencies coincide may be detected to provide a feedback signal to control one laser relative to the other. 4 figs.

  19. Laser precision microfabrication

    CERN Document Server

    Sugioka, Koji; Pique, Alberto


    Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.

  20. Infrared diode lasers (United States)

    Lo, Wayne


    This paper reviews the development of infrared diode lasers for automobile exhaust gas analysis and high resolution spectroscopy at the General Motors Research Laboratories. Advances in lead-salt crystal growth technology and laser fabrication techniques to achieve high temperature operation and wide frequency tuning range will be discussed. Recent developments in improving the long-term reliability of the laser will also be reviewed.

  1. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff


    The only introductory text on the market today that explains the underlying physics and engineering applicable to all lasersAlthough lasers are becoming increasingly important in our high-tech environment, many of the technicians and engineers who install, operate, and maintain them have had little, if any, formal training in the field of electro-optics. This can result in less efficient usage of these important tools. Introduction to Laser Technology, Fourth Edition provides readers with a good understanding of what a laser is and what it can and cannot do. The book explains what types of las.

  2. Gigashot Optical Laser Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    The Gigashot Optical Laser Demonstrator (GOLD) project has demonstrated a novel optical amplifier for high energy pulsed lasers operating at high repetition rates. The amplifier stores enough pump energy to support >10 J of laser output, and employs conduction cooling for thermal management to avoid the need for expensive and bulky high-pressure helium subsystems. A prototype amplifier was fabricated, pumped with diode light at 885 nm, and characterized. Experimental results show that the amplifier provides sufficient small-signal gain and sufficiently low wavefront and birefringence impairments to prove useful in laser systems, at repetition rates up to 60 Hz.

  3. Lasers for Onychomycosis. (United States)

    Gupta, Aditya K; Foley, Kelly A; Versteeg, Sarah G

    Many studies that have been recently published investigate the efficacy of laser treatment for onychomycosis. These studies support the current US Food and Drug Administration (FDA) approval of lasers for the 'temporary increase in clear nail'. Clear nail growth is an important treatment goal for patients; however, many do not realise that laser treatment is not a cure for onychomycosis. The current article briefly reviews why lasers may be theoretically effective in treating onychomycosis and critically reviews published laser studies for onychomycosis in light of the standards employed in drug trials. Treatment regimens, efficacy endpoints, and the unit of analysis (nails vs patients) vary widely among published laser studies. Complete cure, mycological cure, and clinical improvement rates in laser studies are not reported or use such disparate criteria that comparison among studies is not possible. The US FDA has recently published guidelines for the use of medical devices in clinical trial design for onychomycosis. Future laser studies should adopt the FDA's guidelines to allow for more consistency within the field and focus on the efficacy of lasers as monotherapy for onychomycosis.

  4. X-ray lasers

    CERN Document Server

    Elton, Raymond C


    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  5. High power lasers

    CERN Document Server

    Niku-Lari, A


    The use of lasers for the working and treatment of materials is becoming increasingly common in industry. However, certain laser applications, for example, in welding, cutting and drilling, are more widely exploited than others. Whilst the potential of lasers for the surface treatment of metals is well recognised, in practice, this particular application is a relative newcomer. The 24 papers in this volume present the latest research and engineering developments in the use of lasers for processes such as surface melting, surface alloying and cladding, and machining, as well as discussing th

  6. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W


    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  7. Principles of laser dynamics

    CERN Document Server

    Khanin, YI


    This monograph summarizes major achievements in laser dynamics over the past three decades. The book begins with two introductory Chapters. Chapter 1 offers general considerations on quantum oscillators, formulates the requirements for the laser key elements and shows how these requirements are met in different laser systems. The second Chapter proposes the mathematical models used in semiclassical laser theory, discusses the approximations and simplifications in particular cases, and specifies the range of applicability of these models. In Chapters 3-5 attention is given primarily to the stea

  8. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter


    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  9. Transscleral laser for ophthalmology (United States)

    Pekarik, Alexander S.; Linnik, Leonid A.; Kadan, Victor N.


    Transscleral laser (YAG:Nd, (lambda) equals 1.06 micrometers ) for ophthalmology has been developed and assembled for pulse laser transscleral treatment of eyes structures by means of adaptive optical fibers tip. `Adaptivity' means that we have used some exactly defined levels of optical fiber tip contact pressure to eyes surface to replace intertissues liquid. Such kind of fiber tip permit us apply more laser irradiation power due to decreasing of laser beam absorption in the liquid of eyes tissue. The different laser power levels, pulse duration, exposure time have been considered in correspondence with many types of adaptive fiber optical tips to optimize both transscleral coagulation and cutting process. To exactly determine the dependencies of laser irradiation spatial distributions behind sclera via contact tips pressure levels we have used as a adequate enough model He-Ne laser and eyes tissue samples. Laser system consist of power supply, control unit, laser head with cooling system, adapter for different kind of optical fibers tips. All of the above has been mounted as one case.

  10. Lasers for Frontier Spectroscopy (United States)

    Baldacchini, Giuseppe

    The first laser has been invented in 1960 by using the red light from a ruby crystal, and since then the laser field exploded almost exponentially, and thousands of different materials, in the state of solids, liquids, vapors, gases, plasmas, and elementary particles have lased up to now from less than I Å to more than 1 mm. Many of them have been used with outstanding results both in basic science, and in industrial and commercial applications, by changing for ever the same lifestyle of humankind. As far as spectroscopy is concerned, the laser light has started an unprecedented revolution because of its unique properties as monochromaticity, coherence, power, brightness and short-pulse regime, unrivaled by any other natural and artificial light source. Spectroscopy applications increased qualitatively and quantitatively with the laser sources themselves, and they are still proceeding in parallel with the moving of the laser field towards new territories. Apart the opening up of new regions of the electromagnetic spectrum, like the terahertz gap, and the outstanding increase of the output power which is giving rise to completely new spectroscopic effects, the improvement of laser sources and auxiliary equipment is producing a growth of traditional laser spectroscopy with superior resolution and sensitivity. Moreover, spectroscopic techniques and laser light contributed to the development of new chemical and physical processes which have been used to fabricate photonic materials with new spectroscopic properties enriching the laser field itself, in a virtuous cycle spectroscopy→aser→material and back to spectroscopy with no end in sight.

  11. Lasers in materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.I.; Rockower, E.B.


    A status report on the uranium Laser Isotope Separation (LIS) Program at the Lawrence Livermore National Laboratory is presented. Prior to this status report, process economic analysis is presented so as to understand how the unique properties of laser photons can be best utilized in the production of materials and components despite the high cost of laser energy. The characteristics of potential applications that are necessary for success are identified, and those factors that have up to now frustrated attempts to find commercially viable laser induced chemical and physical process for the production of new or existing materials are pointed out.

  12. Laser adaptive holographic hydrophone

    Energy Technology Data Exchange (ETDEWEB)

    Romashko, R V; Kulchin, Yu N; Bezruk, M N; Ermolaev, S A [Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation)


    A new type of a laser hydrophone based on dynamic holograms, formed in a photorefractive crystal, is proposed and studied. It is shown that the use of dynamic holograms makes it unnecessary to use complex optical schemes and systems for electronic stabilisation of the interferometer operating point. This essentially simplifies the scheme of the laser hydrophone preserving its high sensitivity, which offers the possibility to use it under a strong variation of the environment parameters. The laser adaptive holographic hydrophone implemented at present possesses the sensitivity at a level of 3.3 mV Pa{sup -1} in the frequency range from 1 to 30 kHz. (laser hydrophones)

  13. Laser Program annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    O' Neal, E.M.; Murphy, P.W.; Canada, J.A.; Kirvel, R.D.; Peck, T.; Price, M.E.; Prono, J.K.; Reid, S.G.; Wallerstein, L.; Wright, T.W. (eds.)


    This report discusses the following topics: target design and experiments; target materials development; laboratory x-ray lasers; laser science and technology; high-average-power solid state lasers; and ICF applications studies.

  14. [Characteristics of laser light]. (United States)

    Takac, S; Stojanović, S


    Laser is one of the greatest technical discoveries of the 20th century. It is important in basic sciences, but particularly in diagnosis and therapy of various pathologic conditions of human organism. It is electromagnetic radiation, not X-irradiation and, as such, it is not expected to produce new generation of iatrogenic malignancies. Laser falls between infrared and ultraviolet on the spectrum mainly in the visible light spectrum. Properties of laser light are: monochromacity (the same color), coherence (all of the light waves are in phase both spatially and temporally), collimation (all rays are parallel to each other and do not diverge significantly even over long distances). Lasers were first conceived by Einstein in 1917 when he wrote his "Zur Quantum Theorie der Strahlung" (the quantum theory of radiation) which enumerated concepts of stimulated and spontaneous emission and absorption. Drs. Arthur Schawlow and Charles Townes, in 1956, extended lasers into the optical frequency range and Maiman, in 1960, operated the first laser using ruby as the active medium (ruby laser). Laser is an acronym for Light Amplification by Stimulated Emission of Radiation. To understand the acronym, it is necessary to understand the basic physics of the atom. However, if the atom that is in the excited state is struck by another photon of energy before it returns to the ground state, two photons of equal frequency and energy, travelling in the same direction and in perfect spatial and temporal harmony, are produced. This phenomenon is termed stimulated emission of radiation. An external power source hyperexcites the atoms in the laser medium so that the number of atoms possessing upper energy levels exceeds the number of atoms in a power energy level, a condition termed a population inversion. This "pumping system" which imparts additional energy to the atoms may be optical, mechanical, or chemical. These atoms in a hyperexcited state spontaneously emit photons of light. The

  15. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting the nonli......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting...... the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  16. New laser amplifier improves laser Doppler interferometry (United States)


    The design of a laser light amplifier developed to improve the ability of a laser Doppler interferometry system to measure the high velocities of explosion-driven objects or targets is described. The amplifier increases the laser light intensity and S/N ratio. A green coumarin dye is utilized as if the lasing medium for an argon-ion laser and a blue dye as the frequency shifter to improve coupling between the light-pump power source and lasing medium. The arrangement of amplifier components and the frequency characteristics of the flash lamps and dyes are examined. The design requirements for eliminating chirping and achieving acoustic isolation are discussed. The control of the thermal gradients which produce lens effect is analyzed. The selection of a proper dye concentration for uniform excitation across the active volume of the amplifier is studied; an excitation absorption length of three diameters of active cross section is utilized. In order to increase the amount of pumping light reaching the laser dye and to reduce the number of unwanted wavelengths a optical frequency shifter is employed. The amplifier produces enough light to observe two or more spots on the target, record data for up to 12 microsec, and have an accuracy of 0.5 pct.

  17. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil


    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  18. Laser safety tools and training

    CERN Document Server

    Barat, Ken


    Lasers perform many unique functions in a plethora of applications, but there are many inherent risks with this continually burgeoning technology. Laser Safety: Tools and Training presents simple, effective ways for users in a variety of facilities to evaluate the hazards of any laser procedure and ensure they are following documented laser safety standards.Designed for use as either a stand-alone volume or a supplement to Laser Safety Management, this text includes fundamental laser and laser safety information and critical laser use information rarely found in a single source. The first lase

  19. Laser Wakefield Accelerators


    Najmudin, Z.


    The one-dimensional wakefield generation equations are solved for increasing levels of non-linearity, to demonstrate how they contribute to the overall behaviour of a non-linear wakefield in a plasma. The effect of laser guiding is also studied as a way to increase the interaction length of a laser wakefield accelerator.

  20. Fine welding with lasers. (United States)

    MacLellan, D


    The need for micro joining metallic alloys for surgical instruments, implants and advanced medical devices is driving a rapid increase in the implementation of laser welding technology in research, development and volume production. This article discusses the advantages of this welding method and the types of lasers used in the process.

  1. Learning about Lasers (United States)

    Roberts, Larry


    The word laser is an acronym. It stands for Light Amplification by Stimulated Emission of Radiation. Lasers, invented in 1958, are used to cut and fuse materials, accurately survey long distances, communicate across fiber-optic phone lines, produce 3D pictures, make special effects, help navigation, and read bar codes for cash registers. A laser…

  2. (308 nm) excimer laser

    Indian Academy of Sciences (India)

    The UV lasers with high quantum energy photons directly break the atomic and molecular bonds within material. The photons in this spectral range are also capable of inducing photo- chemical reactions. Most solid materials have high absorption in the UV. The short pulses result in reducing interaction time between laser ...

  3. Laser applications in surgery. (United States)

    Azadgoli, Beina; Baker, Regina Y


    In modern medicine, lasers are increasingly utilized for treatment of a variety of pathologies as interest in less invasive treatment modalities intensifies. The physics behind lasers allows the same basic principles to be applied to a multitude of tissue types using slight modifications of the system. Multiple laser systems have been studied within each field of medicine. The term "laser" was combined with "surgery," "ablation," "lithotripsy," "cancer treatment," "tumor ablation," "dermatology," "skin rejuvenation," "lipolysis," "cardiology," "atrial fibrillation (AF)," and "epilepsy" during separate searches in the PubMed database. Original articles that studied the application of laser energy for these conditions were reviewed and included. A review of laser therapy is presented. Laser energy can be safely and effectively used for lithotripsy, for the treatment of various types of cancer, for a multitude of cosmetic and reconstructive procedures, and for the ablation of abnormal conductive pathways. For each of these conditions, management with lasers is comparable to, and potentially superior to, management with more traditional methods.

  4. Coherent Polariton Laser (United States)

    Kim, Seonghoon; Zhang, Bo; Wang, Zhaorong; Fischer, Julian; Brodbeck, Sebastian; Kamp, Martin; Schneider, Christian; Höfling, Sven; Deng, Hui


    The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  5. Coherent Polariton Laser

    Directory of Open Access Journals (Sweden)

    Seonghoon Kim


    Full Text Available The semiconductor polariton laser promises a new source of coherent light, which, compared to conventional semiconductor photon lasers, has input-energy threshold orders of magnitude lower. However, intensity stability, a defining feature of a coherent state, has remained poor. Intensity noise many times the shot noise of a coherent state has persisted, attributed to multiple mechanisms that are difficult to separate in conventional polariton systems. The large intensity noise, in turn, limits the phase coherence. Thus, the capability of the polariton laser as a source of coherence light is limited. Here, we demonstrate a polariton laser with shot-noise-limited intensity stability, as expected from a fully coherent state. This stability is achieved by using an optical cavity with high mode selectivity to enforce single-mode lasing, suppress condensate depletion, and establish gain saturation. Moreover, the absence of spurious intensity fluctuations enables the measurement of a transition from exponential to Gaussian decay of the phase coherence of the polariton laser. It suggests large self-interaction energies in the polariton condensate, exceeding the laser bandwidth. Such strong interactions are unique to matter-wave lasers and important for nonlinear polariton devices. The results will guide future development of polariton lasers and nonlinear polariton devices.

  6. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten


    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  7. Lasers in dental traumatology

    National Research Council Canada - National Science Library

    Olivi, G; Caprioglio, C; Genovese, M D


    ... connected to dental trauma, particularly in children. Furthermore, laser-assisted therapies drastically reduce the need for analgesics and anti- inflammatory medications compared with conventional procedures. Using laser equipment to obtain anaesthesia is another challenge, while the use of low power setting for desensitising tissue and to obtain anaesthesia is also an open field.

  8. Levitated droplet dye laser

    DEFF Research Database (Denmark)

    Azzouz, H.; Alkafadiji, L.; Balslev, Søren


    a high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine 6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser, and the dye laser emission is analyzed by a fixed grating...

  9. Laser processing of materials

    Indian Academy of Sciences (India)

    Light amplification by stimulated emission of radiation (laser) is a coherent and monochromatic beam of electromagnetic radiation that can propagate in a straight line with negligible divergence and occur in a wide range of wavelength, energy/power and beam-modes/configurations. As a result, lasers find wide applications ...

  10. Lasers in Orthodontics

    Directory of Open Access Journals (Sweden)

    Rajesh Jayantilal Kamdar


    Summary and conclusion: Incorporation of lasers in an orthodontic practice requires thorough learning process on the part of the orthodontist. Attending various workshops and certification programs will help in mastering the science and art of laser dentistry. Needless to say, proper case selection will pave way for the successful long-term result.

  11. CO2 laser resurfacing. (United States)

    Fitzpatrick, R E


    The CO2 Laser offers a variety of unique features in resurfacing facial photodamage and acne scarring. These include hemostasis, efficient removal of the epidermis in a single pass, thermally induced tissue tightening, and safe, predictable tissue interaction. Knowledge of these mechanisms will result in the capability of using the CO2 laser effectively and safely whether the goal is superficial or deep treatment.

  12. Laser Interference Lithography

    NARCIS (Netherlands)

    van Wolferen, Hendricus A.G.M.; Abelmann, Leon; Hennessy, Theodore C.

    In this chapter we explain how submicron gratings can be prepared by Laser Interference Lithography (LIL). In this maskless lithography technique, the standing wave pattern that exists at the intersection of two coherent laser beams is used to expose a photosensitive layer. We show how to build the

  13. Laser biostimulation in pediatrics (United States)

    Utz, Irina A.; Lagutina, L. E.; Tuchin, Valery V.


    In the present paper the method and apparatus for percutaneous laser irradiation of blood (PLIB) in vessels (veins) are described. Results of clinical investigations of biostimulating effects under PLIB by red laser light (633 nm) in Cubiti and Saphena Magna veins are presented.

  14. Laser energy conversion (United States)

    Jalufka, N. W.


    The conversion of laser energy to other, more useful, forms is an important element of any space power transmission system employing lasers. In general the user, at the receiving sight, will require the energy in a form other than laser radiation. In particular, conversion to rocket power and electricity are considered to be two major areas where one must consider various conversion techniques. Three systems (photovoltaic cells, MHD generators, and gas turbines) have been identified as the laser-to-electricity conversion systems that appear to meet most of the criteria for a space-based system. The laser thruster also shows considerable promise as a space propulsion system. At this time one cannot predict which of the three laser-to-electric converters will be best suited to particular mission needs. All three systems have some particular advantages, as well as disadvantages. It would be prudent to continue research on all three systems, as well as the laser rocket thruster. Research on novel energy conversion systems, such as the optical rectenna and the reverse free-electron laser, should continue due to their potential for high payoff.

  15. Exciton laser rate equations

    Directory of Open Access Journals (Sweden)

    Garkavenko A. S.


    Full Text Available The rate equations of the exciton laser in the system of interacting excitons have been obtained and the inverted population conditions and generation have been derived. The possibility of creating radically new gamma-ray laser has been shown.

  16. Solid state laser (United States)

    Rines, Glen A. (Inventor); Moulton, Peter F. (Inventor); Harrison, James (Inventor)


    A wavelength-tunable, injection-seeded, dispersion-compensated, dispersively-pumped solid state laser includes a lasing medium; a highly reflective mirror; an output coupler; at least one isosceles Brewster prism oriented to the minimum deviation angle between the medium and the mirror for directing light of different wavelengths along different paths; means for varying the angle of the highly reflective mirror relative to the light from at least one Brewster angle for selecting a predetermined laser operating wavelength; a dispersion compensation apparatus associated with the lasing medium; a laser injection seeding port disposed between the dispersion compensation apparatus and one of the mirror and coupler and including a reflective surface at an acute non-Brewster angle to the laser beam for introducing a seed input; a dispersion compensation apparatus associated with the laser medium including opposite chirality optical elements; the lasing medium including a pump surface disposed at an acute angle to the laser beam to define a discrete path for the pumping laser beam separate from the pumped laser beam.

  17. Laser hair removal pearls. (United States)

    Tierney, Emily P; Goldberg, David J


    A number of lasers and light devices are now available for the treatment of unwanted hair. The goal of laser hair removal is to damage stem cells in the bulge of the follicle through the targeting of melanin, the endogenous chromophore for laser and light devices utilized to remove hair. The competing chromophores in the skin and hair, oxyhemoglobin and water, have a decreased absorption between 690 nm and 1000 nm, thus making this an ideal range for laser and light sources. Pearls of laser hair removal are presented in this review, focusing on four areas of recent development: 1 treatment of blond, white and gray hair; 2 paradoxical hypertrichosis; 3 laser hair removal in children; and 4 comparison of lasers and IPL. Laser and light-based technologies to remove hair represents one of the most exciting areas where discoveries by dermatologists have led to novel treatment approaches. It is likely that in the next decade, continued advancements in this field will bring us closer to the development of a more permanent and painless form of hair removal.

  18. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.


    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several

  19. Ceramic laser materials (United States)

    Ikesue, Akio; Aung, Yan Lin


    The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material - polycrystalline ceramic - can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

  20. Regenerative similariton laser

    Directory of Open Access Journals (Sweden)

    Thibault North


    Full Text Available Self-pulsating lasers based on cascaded reshaping and reamplification (2R are capable of initiating ultrashort pulses despite the accumulation of large amounts of nonlinearities in all-fiber resonators. The spectral properties of pulses in self-similar propagation are compatible with cascaded 2R regeneration by offset filtering, making parabolic pulses suitable for the design of a laser of this recently introduced class. A new type of regenerative laser giving birth to similaritons is numerically investigated and shows that this laser is the analog of regenerative sources based solely on self-phase modulation and offset filtering. The regenerative similariton laser does not suffer from instabilities due to excessive nonlinearities and enables ultrashort pulse generation in a simple cavity configuration.

  1. Femtosecond Laser Filamentation

    CERN Document Server

    Chin, See Leang


    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  2. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove


    The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  3. Laser controlled flame stabilization (United States)

    Early, James W.; Thomas, Matthew E.


    A method and apparatus is provided for initiating and stabilizing fuel combustion in applications such as gas turbine electrical power generating engines and jet turbine engines where it is desired to burn lean fuel/air mixtures which produce lower amounts of NO.sub.x. A laser induced spark is propagated at a distance from the fuel nozzle with the laser ignitor being remotely located from the high temperature environment of the combustion chamber. A laser initiating spark generated by focusing high peak power laser light to a sufficiently tight laser spot within the fuel to cause the ionization of air and fuel into a plasma is unobtrusive to the flow dynamics of the combustion chamber of a fuel injector, thereby facilitating whatever advantage can be taken of flow dynamics in the design of the fuel injector.

  4. Auricular Acupuncture with Laser (United States)

    Bahr, Frank


    Auricular acupuncture is a method which has been successfully used in various fields of medicine especially in the treatment of pain relief. The introduction of lasers especially low-level lasers into medicine brought besides the already existing stimulation with needles and electricity an additional technique to auricular acupuncture. This literature research looks at the historical background, the development and the anatomical and neurological aspects of auricular acupuncture in general and auricular laser acupuncture in detail. Preliminary scientific findings on auricular acupuncture with laser have been described in detail and discussed critically in this review article. The results of the studies have shown evidence of the effect of auricular laser acupuncture. However, a comparison of these studies was impossible due to their different study designs. The most important technical as well as study parameters were described in detail in order to give more sufficient evidence and to improve the quality of future studies. PMID:23935695

  5. NASA Space Laser Technology (United States)

    Krainak, Michael A.


    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  6. Teradiode's high brightness semiconductor lasers (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz


    TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.

  7. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)


    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  8. Laser autodyne angioscopy (United States)

    Gordov, Eugeni P.; Makogon, Michail M.; Pekarskii, Vikentii V.; Shipulin, Vladimir M.


    A novel approach to imagination of inner surface of arteria during performing laser and balloon angioplasty is suggested. To this end the laser light was transmitted via fiber to the zone of interest and radiation diffused by the walls of the vessel was adopted by receiver. Known technique to determine of contours of an object by measuring the time of the laser pulse propagation is unusable due to the small geometrical scales. Using the CW laser and feeding a portion of the backscattered signal power into the laser cavity (this kind of device was referred to as laser autodyne coherent receiver), the authors have been able to measure the object contour with spatial resolution of up to 2 microns. Such resolution and high sensitivity inherent to this technique should allows one to detect early in the development of the atherosclerosis. To obtain the 3D image of the vessel inside surface we offer two methods. In the first case the vessel side is scanned by moving the end of light quid. In the second one multimode laser is used and the image is drawing by scanning the transverse modes of this laser. The vessel side and atherosclerotic plaques have the different reflectivity spectrum and this fact can be used to increase the image contrast. The correct selection of the laser wavelength makes possible to work into the vessel with circulation of the blood. The calculation of laser autodyne intrascope performance and tentative experimental results are presented in this report. The advantages of this method for the angiography are in speed and adequately of control during performing angioplasty.

  9. Comparative shock wave analysis during corneal ablation with an excimer laser, picosecond laser, and femtosecond laser (United States)

    Krueger, Ronald R.; Juhasz, Tibor


    With the event of topographic steep central islands following excimer laser surgery and the potential damage to the corneal endothelium, shock waves are playing an increasingly important role in laser refractive surgery. With this in mind, we performed a comparative shock wave analysis in corneal tissue using an excimer laser, picosecond laser, and femtosecond laser. We used a Lambda Physik excimer laser at 308 nm wavelength, a Nd:YLF picosecond laser at 1053 nm wavelength and a synchronously pumped linear cavity femtosecond laser at 630 nm wavelength. The pulse widths of the corresponding lasers were 8 ns, 18 ps, 150 fs, respectively. The energy density of irradiation was 2.5 to 8 times the threshold level being 2 J/cm2 (excimer laser), 86 J/cm2 (picosecond laser) and 10.3 J/cm2 (femtosecond laser). Shock wave dynamics were analyzed using time-resolved photography on a nanosecond time scale using the picosecond laser in corneal tissue, water and air. Shock wave dynamics using the femtosecond laser were studied in water only while the excimer laser induced shock wave during corneal ablation was studied in air only. We found the dynamics of shock waves to be similar in water and corneal tissue indicating that water is a good model to investigate shock wave effects in the cornea. The magnitude of the shock wave velocity and pressure decays over time to that of a sound wave. The distance over which it decays is 3 mm in air with the excimer laser and 600 - 700 micrometers in air with the picosecond laser. In water, the picosecond laser shock wave decays over a distance of 150 micrometers compared to the femtosecond laser shock wave which decays over a distance of 30 micrometers . Overall the excimer laser shock wave propagates 5 times further than that of the picosecond laser and the picosecond laser shock wave propagates 5 times further than that of the femtosecond laser. In this preliminary comparison, the time and distance for shock wave decay appears to be directly

  10. Direct Laser Acceleration in Laser Wakefield Accelerators (United States)

    Shaw, J. L.; Froula, D. H.; Marsh, K. A.; Joshi, C.; Lemos, N.


    The direct laser acceleration (DLA) of electrons in a laser wakefield accelerator (LWFA) has been investigated. We show that when there is a significant overlap between the drive laser and the trapped electrons in a LWFA cavity, the accelerating electrons can gain energy from the DLA mechanism in addition to LWFA. The properties of the electron beams produced in a LWFA, where the electrons are injected by ionization injection, have been investigated using particle-in-cell (PIC) code simulations. Particle tracking was used to demonstrate the presence of DLA in LWFA. Further PIC simulations comparing LWFA with and without DLA show that the presence of DLA can lead to electron beams that have maximum energies that exceed the estimates given by the theory for the ideal blowout regime. The magnitude of the contribution of DLA to the energy gained by the electron was found to be on the order of the LWFA contribution. The presence of DLA in a LWFA can also lead to enhanced betatron oscillation amplitudes and increased divergence in the direction of the laser polarization. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. History and principle of lasers; Histoire et principe des lasers

    Energy Technology Data Exchange (ETDEWEB)

    Townes, Ch.H. [Universite de Californie, Berkeley (United States); Schwob, C. [Institut de Nanosciences de Paris, UPMC/CNRS, 75 - Paris (France); Julien, L. [Lab. Kastler Brossel ENS/UPMC/CNRS, 75 - Paris (France); Forget, S. [Lab. de Physique des Lasers, Paris-13 Univ., 93 - Villetaneuse (France); Robert-Philip, I. [Lab. de Photonique et de anostructures, CNRS, 91 - Marcoussis (France); Balcou, Ph. [Centre des lasers Intenses et Applications, Bordeaux-1 Univ., 33 - Talence (France)


    This document gathers 3 short articles: in the first one, C.H. Townes, the inventor of the laser, presents the genesis of the laser, while the principle of the laser is described in the second and the different types of lasers are reviewed in the third. The most important technological progress is expected in ultra-intense lasers that will be used in inertial fusion in gigantic facilities

  12. [Lasers in dentistry 1. What is special about lasers?]. (United States)

    ten Bosch, J J


    Diagnosis and treatment with lasers is becoming widely spread in dentistry. This article is an introduction to a series of articles that deal with the many dental applications of lasers. The article contains a summary of presently used lasers. It also describes the pertinent features of laser radiation: parallelism of the beam and narrow line shape in the spectrum of electromagnetic radiation. Finally, it summarizes the relevant processes of interaction of laser radiation with tissue: scattering, absorption, fluorescence and frequency-doubling.

  13. An open-path tunable diode laser absorption spectrometer for detection of carbon dioxide at the Bonanza Creek Long-Term Ecological Research Site near Fairbanks, Alaska (United States)

    Bailey, D. Michelle; Adkins, Erin M.; Miller, J. Houston


    We have developed a low-power, open-path, near-infrared (NIR) tunable diode laser sensor for the measurement of near ground-level concentrations of greenhouse gases. Here, we report on instrument design, characterization, and initial measurements of carbon dioxide concentrations during deployment to a thermokarst collapse scar bog near Fairbanks, AK (USA). The optics "launch-box" portion of the instrument couples radiation from an NIR, distributed feedback diode laser operating near 1572 nm with a visible laser for alignment purposes. The outgoing beam is directed through a 3.2-mm hole in a parabolic mirror and the launch-box is oriented using a two axis, altitude-azimuth telescope mount such that the beam strikes a retroreflector target at a set distance downfield. The beam then retraces the path back to the launch-box where the light is collected on the surface of the parabolic mirror and focused onto a multimode fiber that transfers the radiation to an InGaAs detector. Sweeps over a 1.6 cm-1 spectral region were collected at a rate of 500 scans per second and were typically stored as 10 s sweep averages. These averaged sweeps could be individually spectrally fit for CO2 concentration or averaged into a single spectrum for fitting (after correction for slight frequency drift). Field data reported here was averaged for 2.5 min and was found to follow trends in diurnal cycles of CO2 concentration cycles reported by sensors located nearby in the field site.

  14. 1982 laser program annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, C.D.; Grow, G.R. (eds.)


    This annual report covers the following eight sections: (1) laser program review, (2) laser systems and operation, (3) target design, (4) target fabrication, (5) fusion experiments program, (6) Zeus laser project, (7) laser research and development, and (8) energy applications. (MOW)

  15. Femtosecond petawatt laser

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Tae Moon; Lee, Jongmin [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (Korea, Republic of)


    The high-power femtosecond laser has now become an excellent scientific tool for the study of not only relativistic laser-matter interactions but also scientific applications. The high-power femtosecond laser depends on the Kerr-lens modelocking (KLM) and chirped-pulse amplification (CPA) technique. An all-Ti:sapphire-based 30-fs PW CPA laser, which is called the PULSER (Petawatt Ultrashort Laser System for Extreme Science Research) has been recently constructed and is being used for accelerating the charged particles (electrons and protons) and generating ultrashort high-energy photon (X-ray and γ-ray) sources. In this review, the world-wide PW-level femtosecond laser systems are first summarized, the output performances of the PULSER-I and II are described, and the future upgrade plan of the PULSER to the multi-PW level is also discussed. Then, several experimental results on particle (electron and proton) acceleration and X-ray generation in the intensity range of mid-10{sup 18} W/cm{sup 2} to mid-10{sup 20} W/cm{sup 2} are described. Experimental demonstrations for the newly proposed phenomena and the understanding of physical mechanisms in relativistic and ultrarelativistic regimes are highly expected as increasing the laser peak intensity up to over 10{sup 22} W/cm{sup 2} ∝10{sup 23} W/cm{sup 2}. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Laser scar revision. (United States)

    Lupton, Jason R; Alster, Tina S


    A variety of lasers can be used to treat scars and striae effectively. It is of paramount importance that the type of scar be properly classified on initial examination so that the most appropriate method of treatment can be chosen. Classification also allows the laser surgeon to discuss with the patient the anticipated response to treatment. The 585-nm pulsed dye laser (PDL) is the most appropriate system for treating hypertrophic scars, keloids, erythematous scars, and striae. The PDL carries a low risk of side effects and complications when operated at appropriate treatment parameters and time intervals. Atrophic scars are best treated with ablative CO2 and Er:YAG lasers; however, proliferative keloids and hypertrophic scars should not be vaporized because of the high risk of scar recurrence or progression. The appropriate choice and use of lasers can significantly improve most scars. As research in laser-skin interaction continues, further refinements in laser technology coupled with the addition of alternate treatment procedures will allow improved clinical efficacy and predictability.

  17. Novel laser ion sources

    CERN Document Server

    Fournier, P; Kugler, H; Lisi, N; Scrivens, R; Rodríguez, F V; Düsterer, S; Sauerbrey, R; Schillinger, H; Theobald, W; Veisz, L; Tisch, J W G; Smith, R A


    Development in the field of high-power laser systems with repetition rates of several Hz and energies of few joules is highly active and opening, giving new possibilities for the design of laser ions sources. Preliminary investigations on the use of four different laser and target configurations are presented: (1) A small CO/sub 2/ laser (100 mJ, 10.6 mu m) focused onto a polyethylene target to produce C ions at 1 Hz repetition rate (CERN). (2) An excimer XeCl laser (6 J, 308 nm) focused onto solid targets (Frascati). (3) A femtosecond Ti: sapphire laser (250 mJ, 800 nm) directed onto a solid targets (Jena). (4) A picosecond Nd: yttrium-aluminum-garnet (0.3 J, 532 nm) focused into a dense medium of atomic clusters and onto solid targets (London). The preliminary experimental results and the most promising schemes will be discussed with respect to the scaling of the production of high numbers of highly charged ions. Different lasers are compared in terms of current density at 1 m distance for each charge state...

  18. Ultra-intense lasers

    CERN Document Server

    Mourou, G


    This article reviews the applications of ultra-intense lasers in domains like particle acceleration, gamma-gamma collisions, cancer diagnostic, eye surgery and inertial fusion. The main characteristic of such lasers is to deliver impulses carrying the same amount of energy as did previous generations of lasers but in a far shorter time which increases their power dramatically. Typically an ultra-intense laser releases 1 joule through an impulse that lasts 100 femtoseconds which means a power of 10 sup 1 sup 3 Watt. The method of the amplification of impulses through frequency shift (CPA) has allowed power lasers to reach power levels that were beyond the technological limits of amplifying equipment (10 sup 9 W). The powerful electrical field of a femtosecond laser impulse make electrons oscillate with speeds nearing the speed of light while its magnetic field accelerates them in the perpendicular direction of the oscillation plane. Ultra-intense lasers generate electric fields from 10 sup 1 sup 2 to 10 sup 1 ...

  19. Color Laser Microscope (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.


    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  20. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul


    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  1. Color speckle in laser displays (United States)

    Kuroda, Kazuo


    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  2. Organic solid-state lasers

    CERN Document Server

    Forget, Sébastien


    Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.

  3. Physics of semiconductor laser devices

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.H.B.


    Aspects of laser design and development are considered along with semiconductor materials for lasers, problems of device fabrication, crystal growth, the degradation of lasers, and the integration of semiconductor lasers with other optical components. A description is presented of light emission processes and laser action in semiconductors, taking into account electronic radiative transitions, the relation between emission and absorption processes, transition probabilities, the density of electron states in the highly doped semiconductor, carrier recombination and spontaneous emission, the gain/current relation, light-current characteristics, optical modes, and the evolution of mode spectrum and intensity with current. Attention is given to laser heterostructures and the properties of heterojunctions, optical waveguides, the performance of heterostructure lasers, stripe geometry lasers, and the dynamic response of lasers. Lasers with distributed feedback and Bragg reflectors are also discussed.

  4. Monoenergetic laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    N. E. Andreev


    Full Text Available Three dimensional test particle simulations are applied to optimization of the plasma-channeled laser wakefield accelerator (LWFA operating in a weakly nonlinear regime. Electron beam energy spread, emittance, and luminosity depend upon the proportion of the electron bunch size to the plasma wavelength. This proportion tends to improve with the laser wavelength increase. We simulate a prospective two-stage ∼1GeV LWFA with controlled energy spread and emittance. The input parameters correspond to realistic capabilities of the BNL Accelerator Test Facility that features a picosecond-terawatt CO_{2} laser and a high-brightness electron gun.

  5. Lasers In Dental Diagnosis (United States)

    Everse, K. E.; Sinor, T. W.; Menzel, E. R.


    We have investigated the potential of lasers for real time in situ dental diagnosis via transillumination of teeth and gums and via fluorescence. Not surprisingly, absorption and/or scattering of light by teeth was found to be insensitive to light color. However, monochromatic transillumination revealed detail better than white light. Transillumination of gums was best performed with orange-red light because of tissue absorption. Illumination of oral structures by 488 nm Ar-laser light was effective in revealing diagnosis detail by fluorescence. Incipient caries and fine tooth fracture lines that are generally not revealed by radiography were observable by laser.

  6. Laser undulator radiation

    CERN Document Server

    Kawamura, Y; Ruschin, S; Tanabé, T; Toyoda, K


    Various characteristics such as the number of photons, the wavelength, and the solid angle of the laser undulator radiation have been measured quantitatively. It was performed in the visible wavelength region using the interaction between a high-power pulsed CO sub 2 laser and a high-quality electron beam having an energy of 0.65-0.85 MeV. The experimental results were in good agreement with the theoretical calculations. A criterion to determine the limitation to the number of periods of the laser undulator was also proposed.

  7. Optimising laser tattoo removal

    Directory of Open Access Journals (Sweden)

    Kabir Sardana


    Full Text Available Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal.

  8. Optimising Laser Tattoo Removal (United States)

    Sardana, Kabir; Ranjan, Rashmi; Ghunawat, Sneha


    Lasers are the standard modality for tattoo removal. Though there are various factors that determine the results, we have divided them into three logical headings, laser dependant factors such as type of laser and beam modifications, tattoo dependent factors like size and depth, colour of pigment and lastly host dependent factors, which includes primarily the presence of a robust immune response. Modifications in the existing techniques may help in better clinical outcome with minimal risk of complications. This article provides an insight into some of these techniques along with a detailed account of the factors involved in tattoo removal. PMID:25949018

  9. Laser propulsion: a review

    CSIR Research Space (South Africa)

    Michaelis, MM


    Full Text Available is that the Crookes radiometer rotates due to photon rather than gas pressure. In fact, the very first pure photon pendulum experiment was carried out by American laser propulsion enthusiasts Myrabo, Knowles, Bagford, Siebert and Harris.31 The photon pressure... is minute: the photon force on a 10-cm2 target illuminated by a 9-kW CO2 laser is found from: hence the need for an ultra-delicate pendulum equipment, as well as for a high-power laser source! In marked contrast to the Myrabo experiment...

  10. Laser in manufacturing

    CERN Document Server

    Davim, J Paulo


    Generally a laser (light amplification by stimulated emission of radiation) is defined as "a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape". Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds an

  11. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude


    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  12. Laser applications in neurosurgery (United States)

    Cerullo, Leonard J.


    The "false start" of the laser in neurosurgery should not be misconstrued as a denial of the inherent advantages of precision and gentleness in dealing with neural tissue. Rather, early investigators were frustrated by unrealistic expectations, cumbersome equipment, and a general ignorance of microtechnique. By the early 70s, microneurosurgery was well established, surgical laser equipment for free hand and microlinked application had been developed, and a more realistic view of the limitations of the laser had been established. Consequently, the late 70s really heralded the renaissance of the laser in neurosurgery. Since then, there has been an overwhelming acceptance of the tool in a variety of clinical situations, broadly categorized in five groups. 1)|Perhaps the most generally accepted area is in the removal of extra-axial tumors of the brain and spinal cord. These tumors, benign by histology but treacherous by location, do not present until a significant amount of neurological compensation has already occurred. The application of additional trauma to the neural tissue, whether by further tumor growth or surgical manipulation, frequently results in irreversible damage. Here, the ability of the laser to vaporize tissue, in a fairly hemostatic fashion, without mechanical or thermal damage to sensitive surrounding tissues, is essential. 2)|The ability to incise delicate neural tissue with minimal spread of thermal destruction to adjacent functioning tissue makes the laser the ideal instrument when tumors deep under the surface are encountered in the brain or spinal cord. Thus, the second group of applications is in the transgression of normal neural structures to arrive at deeper pathological tissue. 3)|The third area of benefit for the laser in neurosurgery has been in the performance of neuroablative procedures, calling for deliberate destruction of functioning neural tissue in a controlled fashion. Again, the precision and shape confinement of the destructive

  13. Pyrometry applications in laser machining (United States)

    Smurov, Igor


    Special techniques of non-contact optical diagnostics under actual industrial conditions is required for accurate temperature monitoring and control in a wide range of laser applications. The set of pyrometers was developed and applied for surface temperature monitoring in pulsed periodic Nd:YAG laser welding and surface treatment, deep penetration welding by CO2 and Nd:YAG lasers, and electron beam; laser assisted machining; laser cladding, etc.

  14. Laser forming and welding processes

    CERN Document Server

    Yilbas, Bekir Sami; Shuja, Shahzada Zaman


    This book introduces model studies and experimental results associated with laser forming and welding such as laser induced bending, welding of sheet metals, and related practical applications. The book provides insight into the physical processes involved with laser forming and welding. The analytical study covers the formulation of laser induced bending while the model study demonstrates the simulation of bending and welding processes using the finite element method. Analytical and numerical solutions for laser forming and welding problems are provided.

  15. [Experimental and clinical experiences with bronchologic lasers]. (United States)

    Knoth, E; Wiesner, B; Dürschmied, H


    Bronchological application of lasers is based on differences of their biophysical effects, which were confirmed in experimental investigations. There were early reepithelizations and rapid healing after laser tracheotomy and lung resections without signs secondary stenoses by hypergranulation. Argon laser is of limited use in bronchology for HpD-coupled tumor fluorescence diagnostic. Nd-YAG-laser is the "classic" laser for palliative bronchial tumor therapy. Improvements of laser applications (laser thoracoscopy, perthoracic laser punction therapy) are new therapeutic laser methods.

  16. Nano-polymer-dispersed liquid crystal as phase modulator for a tunable vertical-cavity surface-emitting laser at 1.55 mum. (United States)

    Levallois, C; Caillaud, B; de Bougrenet de la Tocnaye, J-L; Dupont, L; Lecorre, A; Folliot, H; Dehaese, O; Loualiche, S


    We demonstrate what we believe is the first nonmechanical tunable vertical-cavity surface-emitting laser operating in the C band. This was achieved as a result of the combination of an InGaAs quantum well structure with a 6lambda thickness tunable index nano-polymer-dispersed liquid-crystal material. Experimental results exhibited a potential tunable range close to 10 nm, in the preliminary version, and excellent single mode locking due to the side-mode suppression ratio (more than 20 dB) over the whole spectral range. Another decisive advantage, compared to mechanical solutions, was the tuning response time of a few tens of microseconds (>30 micros) to scan the full spectral range (10 nm), making this device appropriate for some access network functions, as well as being robust and low cost. The voltage values are the main limitation to wavelength range extension. We present a first version of the device optically pumped. The next version will be electrically pumped as required for the access network applications targeted here.

  17. Multispot fiber laser welding

    DEFF Research Database (Denmark)

    Schutt Hansen, Klaus

    This dissertation presents work and results achieved in the field of multi beam fiber laser welding. The project has had a practical approach, in which simulations and modelling have been kept at a minimum. Different methods to produce spot patterns with high power single mode fiber lasers have...... been examined and evaluated. It is found that both diamond turned DOE’s in zinc sulphide and multilevel etched DOE’s (Diffractive Optical Elements) in fused silica have a good performance. Welding with multiple beams in a butt joint configuration has been tested. Results are presented, showing it has...... been possible to control the welding width in incremental steps by adding more beams in a row. The laser power was used to independently control the keyhole and consequently the depth of fusion. An example of inline repair of a laser weld in butt joint configuration was examined. Zinc powder was placed...

  18. Jupiter Laser Facility (United States)

    Federal Laboratory Consortium — The Jupiter Laser Facility is an institutional user facility in the Physical and Life Sciences Directorate at LLNL. The facility is designed to provide a high degree...

  19. Foundations of laser spectroscopy

    CERN Document Server

    Stenholm, Stig


    A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.

  20. Beamlet laser diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Burkhart, S.C.; Behrendt, W.C.; Smith, I.


    Beamlet is instrumented extensively to monitor the performance of the overall laser system and many of its subsystems. Beam diagnostics, installed in key locations, are used to fully characterize the beam during its propagation through the multipass cavity and the laser`s output section. This article describes the diagnostics stations located on Beamlet and discusses the design, calibration, and performance of the Beamlet calorimeters. The authors used Nova`s diagnostics packages to develop the Beamlet design to determine beam energy, spatial profile, temporal profile, and other beam parameters. Technologic improvements within the last several years in controls, charge-coupled device (CCD) cameras, and fast oscilloscopes have allowed the authors to obtain more accurate measurements on the Beamlet laser system. They briefly cover some of these techniques, including a description of their LabVIEW based data acquisition system.

  1. Laser Guidance Analysis Facility (United States)

    Federal Laboratory Consortium — This facility, which provides for real time, closed loop evaluation of semi-active laser guidance hardware, has and continues to be instrumental in the development...

  2. Excimer Laser Etching

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A [ORNL; Longmire, Hu Foster [ORNL; Rouleau, Christopher M [ORNL; Gray, Allison S [ORNL


    Excimer laser radiation at a wavelength of = 248 nm represents a new etching method for the preparation of metallographic specimens. The method is shown to be particularly effective for enhancing the contrast between different phases in a multiphase metallographic specimen.

  3. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel


    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  4. Lasers and optical engineering

    CERN Document Server

    Das, P


    A textbook on lasers and optical engineering should include all aspects of lasers and optics; however, this is a large undertaking. The objective of this book is to give an introduction to the subject on a level such that under­ graduate students (mostly juniors/seniors), from disciplines like electrical engineering, physics, and optical engineering, can use the book. To achieve this goal, a lot of basic background material, central to the subject, has been covered in optics and laser physics. Students with an elementary knowledge of freshman physics and with no formal courses in electromagnetic theory should be able to follow the book, although for some sections, knowledge of electromagnetic theory, the Fourier transform, and linear systems would be highly beneficial. There are excellent books on optics, laser physics, and optical engineering. Actually, most of my knowledge was acquired through these. However, when I started teaching an undergraduate course in 1974, under the same heading as the title of th...

  5. Erbium lasers in dentistry. (United States)

    van As, Glenn


    Erbium hard tissue lasers have the capability to prepare enamel, dentin, caries, cementum, and bone in addition to cutting soft tissue. The ability of hard tissue lasers to reduce or eliminate vibrations, the audible whine of drills, microfractures, and some of the discomfort that many patients fear and commonly associate with high-speed handpieces is impressive. In addition, these lasers can be used with a reduced amount of local anesthetic for many procedures. Today, these instruments have evolved from their initial use for all classes of cavity preparations to their ability for removing soft tissue, their usefulness in the disinfection of bacteria within endodontic canals, and most recently, as an alternative to the high speed handpiece for the removal of bone in oral and maxillofacial surgery. In addition, recent research has centered on the value of the erbium family of laser wavelengths in periodontics, including the removal of calculus.

  6. Laser therapy for periodontitis (United States)

    Efanov, O. I.


    An investigation was made of applying pulsed (lambda) equals 0.89 micrometers laser radiation in the treatment for early diagnosed periodontitis. The investigation was made on 65 patients (47 patients constituted the experimental group and 18 patients constituted a control group) affected by periodontitis. Clinical and functional tests revealed that laser therapy produced a string effect on the course of the illness. It reduced bleeding, inflammation, and pruritus. However, it did not produce an affect on electroexcitation. Biomicroscopic examinations and periodontium rheography revealed that the gingival blood flow became normal after the course of laser therapy. The capillary permeability and venous congestion decreased, which was confirmed by the increased time of vacuum tests, raised gingival temperature, reduced tissue clearance, and increased oxygen tension. Apart from that, laser therapy subsided fibrinolysis, proteolytic tissue activity, and decreased the exudative inflammation of periodontium.

  7. Lasers in dental traumatology. (United States)

    Olivi, G; Caprioglio, C; Genovese, M D


    Dental traumas are frequent in children. They can be complex events and sometimes real emergencies. Since very little attention is devoted to this topic in the international literature and there are no well-coded laser guidelines for these specific clinical events, our aim is to consider and present those situations in which laser-assisted therapy can offer new treatment possibilities. The authors' aim is to stimulate more extensive scientific research in this area, which might not only increase the use of these technologies, but also improve outcomes and reduce complications connected to dental trauma, particularly in children. Furthermore, laser-assisted therapies drastically reduce the need for analgesics and anti- inflammatory medications compared with conventional procedures. Using laser equipment to obtain anaesthesia is another challenge, while the use of low power setting for desensitising tissue and to obtain anaesthesia is also an open field.

  8. [Lasers in dentistry. Epilogue]. (United States)

    ten Bosch, J J


    Laser use in the dental clinic requires scientifically demonstrated improvement for patient and/or dentist, easily obtainable equipment, adequate training and safety. These aspects are summarized for all laser applications. Improvement has not been shown for all applications. In the Netherlands manufacturer-independent training is little available. Safety requires care, but not a large investment. Economical aspects include an adequate compensation for the necessary investment. For only a few applications laser treatment leads to decreased cost or time of treatment. However, also increased compensation by insurers or patients may be possible; some patients will be willing to pay more when laser treatment is less unpleasant than traditional treatment or, in the case of diagnosis, leads to better information.

  9. Lasers in aesthetic dentistry. (United States)

    Adams, Timothy C; Pang, Peter K


    This article focuses on lasers and aesthetic dentistry and their unique parallel in history from their early development to their present day usage and application. The demand for aesthetic dentistry has had a major impact not only on treatment planning but also on the choice of materials, techniques, and equipment. It is this demand that has married the use of lasers with aesthetic dentistry. A short literature review on the five basic laser types precedes the basic premise of smile design and its critical importance in attaining the desirable aesthetic end result. A short review on biologic width and biologic zone reinforces their importance when manipulating gingival tissue. Four case reports highlight the use of diode, erbium, and carbon dioxide lasers. The end results show the power of proper treatment planning and the use of a smile design guide when using these instruments and confirm a conservative, aesthetic treatment without compromising the health and function of the patients.

  10. Electra Laser Facility (United States)

    Federal Laboratory Consortium — FUNCTION: The Electra Laser Facility is used to develop the science and technology needed to develop a reliable, efficient, high-energy, repetitively pulsed krypton...

  11. Paint removal using lasers. (United States)

    Liu, K; Garmire, E


    Experiments to investigate the potential for practical laser graffiti-removal systems are reported. A universal engineering curve for the time needed for removal of paint from nonconductive substrates that was valid over a range of 10(7) in intensity was measured with a variety of lasers. Comparable times were measured for conductive substrates, when pulses shorter than the thermal conduction times were used. Analysis suggests that Q-switched Nd:YAG lasers may be the most efficient means for removing graffiti and other unwanted paint. An 1-m(2) area of paint 14 µm thick can be removed in approximately 10 min with a 50-Hz laser system of 15-W average power.

  12. Lasers and holography

    CERN Document Server

    Kock, Winston E


    Accessible, illustrated introduction covers wave patterns and coherence, summarizes the development of lasers and the phenomenon of wave diffraction, and describes zone plates and properties of holograms. 1981 edition.

  13. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes


    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... systems require specially designed fibers with large cores and good power handling capabilities - requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...

  14. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes


    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... require reliable fibers with large cores, stable mode quality, and good power handling capabilities-requirements that are all met by the airclad fiber technology. In the present paper we go through many of the building blocks needed to build high-power systems and we show an example of a complete airclad...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...

  15. Blackbody metamaterial lasers

    KAUST Repository

    Liu, Changxu


    We investigate both theoretically and experimentally a new type of laser, which exploits a broadband light "condensation" process sustained by the stimulated amplification of an optical blackbody metamaterial. © 2014 Optical Society of America.

  16. High-energy molecular lasers self-controlled volume-discharge lasers and applications

    CERN Document Server

    Apollonov, V V


    This book displays the physics and design of high-power molecular lasers. The lasers described are self-controlled volume-discharge lasers. The book explains self-sustained discharge lasers, self-initiated discharge lasers and technical approaches to laser design. Important topics discussed are laser efficiency, laser beam quality and electric field homogeneity. The book contains many new innovative applications.

  17. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.


    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser-machine...

  18. Laser Processed Heat Exchangers (United States)

    Hansen, Scott


    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  19. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM


    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  20. Laser space propulsion overview (United States)

    Phipps, Claude; Luke, James; Helgeson, Wesley


    In this paper, we review the history of laser space propulsion from its earliest theoretical conceptions to modern practical applicatons. Applications begin with the "Lightcraft" flights of Myrabo and include practical thrusters for satellites now completing development as well as proposals for space debris removal and direct launch of payloads into orbit. We consider laser space propulsion in the most general sense, in which laser radiation is used to propel a vehicle in space. In this sense, the topic includes early proposals for pure photon propulsion, laser ablation propulsion, as well as propulsion using lasers to detonate a gas, expel a liquid, heat and expel a gas, or even to propagate power to a remote conventional electric thruster. We also discuss the most recent advances in LSP. For the first time, it is possible to consider space propulsion engines which exhibit thrust of one to several newtons while simultaneously delivering 3,000 seconds, or greater, specific impulse. No other engine concept can do both in a compact format. These willl use onboard, rather than remote, lasers. We will review the concept of chemically augmented electric propulsion, which can provide overall thrust efficiency greater than unity while maintaining very low mass to power ratio, high mean time to failure and broad operating range. The main advantage of LSP is exhaust velocity which can be instantaneously varied from 2km/s to 30km/s, simply by varying laser pulsewidth and focal spot size on target. The laser element will probably be a diode-pumped, fiber master-oscillator-power-amplifier (MOPA) system. Liquid fuels are necessary for volumetric efficiency and reliable performance at the multi-kW optical power levels required for multi-N thrust.

  1. Laser Journal (Selected Articles), (United States)


    comparision on the ovary function of a sterile patient due to inflammation of related organs and on the state and fertility of the animal ovary. It is...Lightbulb Factory, Xinhu Glass Factory, etc. A clinical application based on animal tests has yielded some results, especially for treating diseases...Zhang Yifan Wang Yi Pan Zheng (Laser Laboratory, Shanghai Sailor’s Hospital) We used a HeNe laser in acupuncture for patients with neural double

  2. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper


    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  3. Lasers in pediatric dentistry. (United States)

    Kotlow, Lawrence A


    Pediatric dentistry's mission in delivering care to our young patients is simple: provide optimal preventive, interceptive, and restorative dental care in a stress-free environment. Lasers such as argon, diode, Nd:YAG, CO2, and now the erbium family enable minimally invasive dentistry for hard- and soft-tissue procedures. This article offers an understanding of treatment planning in the pediatric practice and demonstrates the procedures that dental lasers can perform on younger patients.

  4. Insulator for laser housing (United States)

    Duncan, David B.


    The present invention provides a heat-resistant electrical insulator adapted for joining laser housing portions, which insulator comprises: an annulus; a channel in the annulus traversing the circumference and length of the housing; at least two ports, each communicating with the channel and an outer surface of the housing; and an attachment for securely attaching each end of the annulus to a laser housing member.

  5. Laser Initiated Actuator study

    Energy Technology Data Exchange (ETDEWEB)

    Watson, B.


    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.


    African Journals Online (AJOL)

    9 mai 2013 ... Les complications post opératoires étaient rares (1 cas). Conclusion : : Le Laser n'est qu'un instrument qu'on ... toujours été respectées pour éviter les accidents. RÉSULTATS. L'âge moyen était de 34 ans. ... Fin de l'intervention. Fig. 2 : Vue endoscopique per opératoire : Cordectomie postérieure au Laser.

  7. Ceramic Laser Materials

    Energy Technology Data Exchange (ETDEWEB)

    Soules, T F; Clapsaddle, B J; Landingham, R L; Schaffers, K I


    Transparent ceramic materials have several major advantages over single crystals in laser applications, not the least of which is the ability to make large aperture parts in a robust manufacturing process. After more than a decade of working on making transparent YAG:Nd, Japanese workers have recently succeeded in demonstrating samples that performed as laser gain media as well as their single crystal counterparts. Since then several laser materials have been made and evaluated. For these reasons, developing ceramic laser materials is the most exciting and futuristic materials topic in today's major solid-state laser conferences. We have established a good working relationship with Konoshima Ltd., the Japanese producer of the best ceramic laser materials, and have procured and evaluated slabs designed by us for use in our high-powered SSHCL. Our measurements indicate that these materials will work in the SSHCL, and we have nearly completed retrofitting the SSHCL with four of the largest transparent ceramic YAG:Nd slabs in existence. We have also begun our own effort to make this material and have produced samples with various degrees of transparency/translucency. We are in the process of carrying out an extensive design-of-experiments to establish the significant process variables for making transparent YAG. Finally because transparent ceramics afford much greater flexibility in the design of lasers, we have been exploring the potential for much larger apertures, new materials, for example for the Mercury laser, other designs for SSHL, such as, edge pumping designs, slabs with built in ASE suppression, etc. This work has just beginning.

  8. Femtosecond laser materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, B. C., LLNL


    Femtosecond lasers enable materials processing of most any material with extremely high precision and negligible shock or thermal loading to the surrounding area Applications ranging from drilling teeth to cutting explosives to making high-aspect ratio cuts in metals with no heat-affected zone are made possible by this technology For material removal at reasonable rates, we developed a fully computer-controlled 15-Watt average power, 100-fs laser machining system.

  9. Competition Effects in Lasers. (United States)


    Laser", L. Mandel, in Optica Hoy Y Manana-ICO-ll, eds. J. Bescos, A. Hidalgo, L. Plaza and J. Santamaria ( Sociedad Espanola de Optica, Madrid, 1979) pp...previously derived equations for two-mode lasers. 24. " Inversion Problem in Photon Counting with Dead Time", L. Mandel, J. Opt. Soc. Am. 70, 873-874 (1980...temporal variation of atomiz inversion on the fluctuation proper- ties have been investigated in the coherent state diagonal representation of the

  10. Laser therapy for onychomycosis. (United States)

    Gupta, Aditya K; Simpson, Fiona C


    Laser therapy is a rapidly expanding new treatment modality for onychomycosis. To review current and prospective laser systems for the treatment of onychomycosis. We searched the PubMed database, the Food and Drug Administration 510(k) database,, and Google Scholar for in vitro studies, peer-reviewed clinical trials, manufacturers' white papers, and registered clinical trials of laser systems indicated for the treatment of onychomycosis. All published clinical trials were assessed on a 20-point methodological quality scale. We identified three basic science articles, five peer-reviewed articles, three white papers, and four pending clinical trials, as well as numerous gray literature documents. The overall methodological score for the clinical trials was 9.1 ± 1.1, with peer-reviewed studies showing a higher score (9.8 ± 1.5) than white papers (7.5 ± 0.7). We also identified 11 commercial laser device systems of varying global availability. Laser therapy has been tested and approved as a cosmetic treatment only for onychomycosis. It cannot be recommended as a therapeutic intervention to eradicate fungal infection at this time as more rigorous randomized, controlled trials are required to determine if laser therapy is efficacious on par with oral and topical interventions.

  11. Laser prostate enucleation techniques. (United States)

    Lerner, Lori B; Rajender, Archana


    Laser treatment of benign prostatic hyperplasia (BPH) through enucleation techniques has become increasingly more utilized in the field of urology. Laser enucleation of the prostate (LEP) is a transurethral procedure that employs several different types of lasers to dissect the adenoma from the surgical capsule in a retrograde fashion. We review basic laser physics and current laser prostate enucleation techniques. Holmium-LEP (HoLEP), Thulium-LEP (ThuLEP), Greenlight-LEP (GreenLEP) and Diode-LEP (DiLEP) applications are discussed. We summarize the current literature with respect to functional outcomes and complications. Although each laser device used for prostate enucleation has the same goal of removal of the adenoma from the surgical capsule, each has unique characteristics (i.e. wavelength, absorption rates) that must be understood by the practicing surgeon. Mastery of one LEP technique does not necessarily translate into facile use of an alternative enucleation energy source and/or approach. The various LEP techniques have demonstrated similar, if not superior, postoperative results to transurethral resection of the prostate (TURP), the current gold standard in the treatment of BPH. This article outlines the current LEP techniques and should serve as a quick reference for the practicing urologist.

  12. Underwater laser detection system (United States)

    Gomaa, Walid; El-Sherif, Ashraf F.; El-Sharkawy, Yasser H.


    The conventional method used to detect an underwater target is by sending and receiving some form of acoustic energy. But the acoustic systems have limitations in the range resolution and accuracy; while, the potential benefits of a laserbased underwater target detection include high directionality, high response, and high range accuracy. Lasers operating in the blue-green region of the light spectrum(420 : 570nm)have a several applications in the area of detection and ranging of submersible targets due to minimum attenuation through water ( less than 0.1 m-1) and maximum laser reflection from estimated target (like mines or submarines) to provide a long range of detection. In this paper laser attenuation in water was measured experimentally by new simple method by using high resolution spectrometer. The laser echoes from different targets (metal, plastic, wood, and rubber) were detected using high resolution CCD camera; the position of detection camera was optimized to provide a high reflection laser from target and low backscattering noise from the water medium, digital image processing techniques were applied to detect and discriminate the echoes from the metal target and subtract the echoes from other objects. Extraction the image of target from the scattering noise is done by background subtraction and edge detection techniques. As a conclusion, we present a high response laser imaging system to detect and discriminate small size, like-mine underwater targets.

  13. Laser radiation bracket debonding (United States)

    Dostálová, Tat'jana; Jelínková, Helena; Šulc, Jan; Koranda, Petr; Nemec, Michal; Racek, Jaroslav; Miyagi, Mitsunobu


    Ceramic brackets are an aesthetic substitute for conventional stainless steel brackets in orthodontic patients. However, ceramic brackets are more brittle and have higher bond strengths, which can lead to bracket breakage and enamel damage during classical type of debonding. This study examined the possibility of laser radiation ceramic brackets removing as well as the possible damage of a surface structure of hard dental tissue after this procedure. Two types of lasers were used for the experiments - a laser diode LIMO HLU20F400 generating a wavelength of 808 nm with the maximum output power 20W at the end of the fiber (core diameter 400 μm, numerical aperture 0.22). As a second source, a diode-pumped Tm:YAP laser system generating a wavelength of 1.9 μm, with up to 3.8 W maximum output power was chosen. For the investigation, extracted incisors with ceramic brackets were used. In both cases, laser radiation was applied for 0.5 minute at a maximum power of 1 W. Temperature changes of the irradiated tissue was registered by camera Electrophysics PV320. After the interaction experiment, the photo-documentation was prepared by the stereomicroscope Nikon SMZ 2T, Japan. The surface tissue analysis was processed in "low vacuum" (30 Pa) regime without desiccation. This technique was used to record back-scattered electron images. Selecting the appropriate laser, resin, and bracket combination can minimize risks of enamel degradation and make debonding more safe.

  14. CO2 laser cutting

    CERN Document Server

    Powell, John


    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  15. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson


    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  16. Laser Ablation for Medical Applications (United States)

    Hayashi, Ken-Ichi

    Medical applications of laser are measurement, laser surgery, in-situ monitoring, and processing of medical devices. In this paper, author briefly reviews the trends of medical applications, describes some new applications, and then discuss about the future trends and problems of medical applications. At present, the domestic market of laser equipment for medical applications is nearly 1/10 of that for industrial applications, which has registered significant growth continuously. Laser surgery as a minimum invasive surgery under arthroscope is expected to decrease the pain of patients. Precise processing such as cutting and welding is suitable for manufacturing medical devices. Pulsed laser deposition has been successfully applied to the thin film coating. The corneal refractive surgery by ArF excimer laser has been widely accepted for its highly safe operation. Laser ablation for retinal implant in the visual prosthesis is one of the promising applications of laser ablation in medicine. New applications with femtosecond laser are expected in the near future.

  17. [Lasers in dentistry 6. The soft laser]. (United States)

    ten Bosch, J J


    A soft laser is a low-power laser emitting in the red and near-infrared part of the spectrum. Studies with cell cultures have shown that radiation from a soft laser, when used under proper conditions, promotes cell function and cell proliferation. However, wavelength and dose should be carefully adjusted to an optimum value: too low a dose does not work and neither does a high dose. The dose should be adjusted within an interval of about 10%. In a few animal studies a positive effect on wound healing has been demonstrated, although other studies did not show such an effect. Of the human studies done in the dental field, many do not meet scientific standards because there was no control group or the study was not double-blind. A few studies showed a positive effect but most did not. Perhaps the large variation in results may be explained by the required accuracy of adjustment of the dose, combined with the complicated processes that relate the incident dose to the dose to cells lying on or in tissue. More research, in particular studies in which the dose and wave length are varied systematically, are needed before responsible clinical use can be recommended.

  18. High precision laser photometer for laser optics (United States)

    Zhao, Yuan'an; Hu, Guohang; Cao, Zhen; Liu, Shijie; Zhu, Meiping; Shao, Jianda


    Development of laser systems requires optical components with high performance, and a high-precision double-beam laser photometer was designed and established to measure the optical performance at 1064nm. Double beam design and lock-in technique was applied to decrease the impact of light energy instability and electric noise. Pairs of samples were placed symmetrically to eliminate beam displacement, and laser scattering imaging technique was applied to determine the influence of surface defect on the optical performance. Based on the above techniques, transmittance and reflection of pairs of optics were obtained, and the measurement precision was improved to 0.06%. Different types of optical loss, such as total loss, volume loss, residual reflection and surface scattering loss, were obtained from the transmittance and reflection measurement of samples with different thickness. Comparison of optical performance of the test points with and without surface defects, the influence of surface defects on optical performance was determined. The optical performance of Nd-glass at 1064nm were measured as an example. Different types of optical loss and the influence of surface defects on the optical loss was determined.

  19. Lasers in endodontics: an overview (United States)

    Frentzen, Matthias; Braun, Andreas; Koort, Hans J.


    The interest in endodontic use of dental laser systems is increasing. Developing laser technology and a better understanding of laser effects widened the spectrum of possible endodontic indications. Various laser systems including excimer-, argon+-, diode-, Nd:YAG-, Er:YAG- and CO2-lasers are used in pulp diagnosis, treatment of hypersensitivity, pulp capping, sterilization of root canals, root canal shaping and obturation or apicoectomy. With the development of new delivery systems - thin and flexible fibers - for many different wavelengths laser applications in endodontics may increase. Since laser devices are still relatively costly, access to them is limited. Most of the clinical applications are laser assisted procedures such as the removing of pulp remnants and debris or disinfection of infected root canals. The essential question is whether a laser can provide improved treatment over conventional care. To perform laser therapy in endodontics today different laser types with adopted wavelengths and pulse widths are needed, each specific to a particular application. Looking into the future we will need endodontic laser equipment providing optimal laser parameters for different treatment modalities. Nevertheless, the quantity of research reports from the last decade promises a genuine future for lasers in endodontics.

  20. Design, fabrication and characterization of high- performance native-oxide confined InGaAs/GaAs quantum- well edge-emitting and surface-emitting lasers (United States)

    Cheng, Yong


    This thesis presents design, fabrication and characterization of high-performance InGaAs-GaAs edge- emitting and surface-emitting lasers confined by AlAs native-oxide, and discusses the confinement effects of AlAs native oxide as a current constriction layer. The edge-emitting lasers utilizing AlAs native-oxide layers above and below waveguide region to form narrow- stripe lasers demonstrate CW threshold currents of a few mAs, external quantum efficiencies higher than 80%. The folded-cavity surface-emitting lasers (FCSEL's) structure in our study minimizes the additional losses introduced by folded-cavity to allow high performance operation. A simplified process to fabricate FCSEL's involves a stop etch to position the surface emitting output mirror close to the waveguide and ion-beam-etching (IBE) to form the 45o deflecting mirror. FCSEL's of both broad- area and native-oxide confined narrow-stripe structures have been demonstrated here with the best performance ever reported. Uniform 2D arrays of FCSEL's have been achieved as well. AlAs native-oxide apertured vertical- cavity surface-emitting lasers (VCSEL's), utilizing InGaAs single-quantum-well λ-cavity, an intracavity p-contact, and DBR's composed of AlAs/GaAs have been fabricated with threshold currents ranging from 220 μA to 100 μA for various aperture sizes from 10 × 10 μm2 to <2 × 2 μm2. An experiment to characterize the dependence of round-trip loss and internal quantum efficiency on aperture size is carried out and discussed. Based on the device data of AlAs native-oxide apertured edge-emitting lasers and VCSEL's, the analysis of threshold current and modal properties of native-oxide shows that loss of current and carrier confinement in small aperture NSEEL's results from lateral carrier loss owing to current spreading and carrier diffusion, while both carrier loss and optical diffraction loss contribute to limit performance of VCSEL's with small aperture sizes. The scaling of threshold current on

  1. Research on an FM/cw ladar system using a 64 × 64 InGaAs metal-semiconductor-metal self-mixing focal plane array of detectors. (United States)

    Gao, Jian; Sun, Jianfeng; Cong, Mingyu


    Frequency-modulated/continuous-wave imaging systems are a focal plane array (FPA) ladar architecture that is applicable to smart munitions, reconnaissance, face recognition, robotic navigation, etc. In this paper, we report a 64×64 pixel FPA ladar system we built using a 1550 nm amplified laser diode transmitter and an InAlAs/InGaAs metal-semiconductor-metal self-mixing detector array and the test results attained over the years it was constructed. Finally, we gained 4D imaging (3D range + 1D intensity) of the target with the range of 220 m.

  2. Laser safety in the lab

    CERN Document Server

    Barat, Ken L


    There is no more challenging setting for laser use than a research environment. In almost every other setting the laser controls count on engineering controls, and human exposure is kept to a minimum. In research, however, the user often manipulates the optical layout and thereby places him or herself in peril, but this does not mean that accidents and injury are unavoidable. On the contrary, laser accidents can be avoided by following a number of simple approaches. [i]Laser Safety in the Lab[/i] provides the laser user and laser safety officer with practical guidelines from housekeeping to ey

  3. Laser use in veterinary dentistry. (United States)

    Bellows, Jan


    Lasers have been used in human dentistry since the 1960's. Lasers can provide a veterinary dentist access to difficult to reach areas with a relatively bloodless surgical field. Due to vaporization of nerve endings, human patients undergoing laser dental treatment reveal less pain compared to scalpel driven procedures. Dental applications for the commonly used lasers are discussed, as are special safety precautions. Many dental procedures enhanced by a carbon dioxide laser are covered. Future applications for the laser in veterinary dentistry are also discussed.

  4. High power ultrashort pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M.D.


    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  5. Surgical Lasers In Gynecology (United States)

    Schellhas, Helmut F.; Barnes, Alfonso E.


    Multipurpose surgical CO2 lasers marketed in the USA have been developed to be applicable to a variety of surgical procedures in many surgical fields. They are all suited for endoscopic surgical procedures and can be fitted to all standard surgical microscopes. They all can adjust the focal length of the laser beam to the different standard focal lengths of the surgical microscope which for instance in laryngoscopy is 400 mm and in colposcopy 300 mm. One laser instrument can even change the spot size in a given focal distance which is very advantageous for some microsurgical procedures (Merrimack Laboratories 820). All multipurpose surgical CO2 laser systems provide a multi-articulated surgical arm for free-hand surgery. The surgical arms are cumbersome to use but they are adapted to the surgeons needs with ingenuity. The practicality of the multi-articulated surgical arms depends mostly on the distance of the handpiece from the surgical console which now is also overbridged by the laser tube in most surgical laser system. The spot size of the beam is variable in most handpieces by interchangeable lenses which modify the focal distance of the beam and the power density. Another common feature in all systems is a coaxial He-Ne pilot light which provides a red spot which unfortunately becomes invisible in a bleeding surgical field. Most surgical laser systems have a spacial mode of TEM 00 which is essential for incisional surgery. The continuous mode of beam delivery is used for incisional surgery and also for most endoscopic procedures.

  6. Spectral and Radiometric Calibration Using Tunable Lasers (United States)

    McCorkel, Joel (Inventor)


    A tunable laser system includes a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, and a controller operable to simultaneously control parameters of at least the tunable laser, the first optical parametric oscillator, and the adjustable laser cavity to produce a range of wavelengths emitted from the tunable laser system. A method of operating a tunable laser system includes using a controller to simultaneously control parameters of a tunable laser, an adjustable laser cavity for producing one or more modes of laser light emitted from the tunable laser, and a first optical parametric oscillator positioned in a light path of the adjustable laser cavity, to produce a range of wavelengths emitted from the tunable laser system.

  7. Laser-based additive manufacturing of metals

    CSIR Research Space (South Africa)

    Kumar, S


    Full Text Available For making metallic products through Additive Manufacturing (AM) processes, laser-based systems play very significant roles. Laser-based processes such as Selective Laser Melting (SLM) and Laser Engineered Net Shaping (LENS) are dominating processes...

  8. A High Power Frequency Doubled Fiber Laser (United States)

    Thompson, Rob; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute


    This slide presentation reviews the power frequencies for the doubled fiber laser. It includes information on the 780 nm laser, second harmonic generation in one crystal, cascading crystals, the tenability of laser systems, laser cooling, and directions for future work.

  9. Laser scattering measurement for laser removal of graffiti (United States)

    Tearasongsawat, Watcharawee; Kittiboonanan, Phumipat; Luengviriya, Chaiya; Ratanavis, Amarin


    In this contribution, a technical development of the laser scattering measurement for laser removal of graffiti is reported. This study concentrates on the removal of graffiti from metal surfaces. Four colored graffiti paints were applied to stainless steel samples. Cleaning efficiency was evaluated by the laser scattering system. In this study, an angular laser removal of graffiti was attempted to examine the removal process under practical conditions. A Q-switched Nd:YAG laser operating at 1.06 microns with the repetition rate of 1 Hz was used to remove graffiti from stainless steel samples. The laser fluence was investigated from 0.1 J/cm2 to 7 J/cm2. The laser parameters to achieve the removal effectiveness were determined by using the laser scattering system. This study strongly leads to further development of the potential online surface inspection for the removal of graffiti.

  10. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich


    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  11. [The use of lasers in dermatology]. (United States)

    Lecocq, C; Pirard, D; del Marmol, V; Berlingin, E


    Albert Einstein is undoubtedly the father of lasers. But it is not until 1964 that the first dermatological lasers were introduced. The Nd-YAG laser, the CO2 laser were developed by Kumar Patel. In a 40 year period lasers not only were diversified but have also become safer and miniaturized. This article hopes to strengthen general practionners' and specialist's knowledge of the different categories of available lasers. The most frequently used ones are ablative lasers (CO2-Erbium), vascular lasers (Nd-YAG, KTP, pulsed dye laser) and the pigment lasers (Q-Switched Nd-YAG, Alexandrite). A description of these lasers and their indications in dermatology will be discussed.

  12. Laser Science and Applications (United States)

    El-Nadi, Lotfia M.; Mansour, Mohy S.


    Attosecond high harmonic pulses: generation and characterization / C. H. Nam and K. T. Kim -- High power lasers and interactions / C. Chatwin and R. Young -- Laser accelerators / L. M. El-Nadi ... [et al.] -- Energy levels, oscillator strengths, lifetimes, and gain distributions of S VII, CI VIII, and Ar IX / Wessameldin. S. Abdelaziz and Th. M. El-Sherbini -- The gain distribution according to theoretical level structure and decay dynamics of W[symbol] / H. M. Hamed ... [et al.] -- Raman spectroscopy and low temperature photoluminescence ZnSe[symbol]Te[symbol] ternary alloys / A. Salah ... [et al.] -- Automated polarization-discrimination technique to minimize lidar detected skylight background noise, part I / Y. Y. Hassebo, K. Elsayed and S. Ahmed -- Laser interferometric measurements of the physical properties for He, Ne gases and their mixture / N. M. Abdel-Moniem ... [et al.] -- Analytical studies of laser beam propagation through the atmosphere / M. I. El-Saftawy, A. M. Abd El-Hamed and N. Sh. Kalifa -- Laser techniques in conservation of artworks: problems and breakthroughs / R. Salimbeni and S. Siano -- Technology-aided heritage conservation laser cleaning for buildings / M. S. Nada -- Technology significance in conservation of the built heritage 3D visualization impact / M. S. Nada -- Simulation of optical resonators for Vertical-Cavity Surface-Emitting Lasers (VCSEL) / M. S. Mansour ... [et al.] -- Optical design alternatives: a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Materials for digital optical design; a survey study / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Proposed design for optical digital circuits / A. A. K. Ismail, I. A. S. Ismail and S. H. Ahmed -- Photo-induced effect on bacterial cells / M. H. El Batanouny ... [et al.] -- Laser and non-coherent light effect on peripheral blood normal and acute lymphoblastic leukemic cells by using different types of photosensitizers / M. H. El Batanouny ... [et al

  13. Laser treatment of enamel and dentine by different Er lasers (United States)

    Altshuler, Gregory B.; Belikov, Andrei V.; Erofeev, Andrew V.


    The results of primary comparative investigation of possible application of lasers based on four different Er-doped crystals (YAG, YLF, YSGG, YAP) are presented. The influence of laser wavelength and temporal structure of laser radiation on efficiency of hard tooth tissues treatment is considered. The experimental data on damage thresholds and efficiency of enamel and dentine removal under influence of submillisecond pulses of all four types of lasers are obtained.

  14. Laser And Nonlinear Optical Materials For Laser Remote Sensing (United States)

    Barnes, Norman P.


    NASA remote sensing missions involving laser systems and their economic impact are outlined. Potential remote sensing missions include: green house gasses, tropospheric winds, ozone, water vapor, and ice cap thickness. Systems to perform these measurements use lanthanide series lasers and nonlinear devices including second harmonic generators and parametric oscillators. Demands these missions place on the laser and nonlinear optical materials are discussed from a materials point of view. Methods of designing new laser and nonlinear optical materials to meet these demands are presented.

  15. Laser Photon Force Measurements using a CW Laser (United States)

    Gray, Perry; Edwards, David L.; Carruth, M. Ralph, Jr.; Munafo, Paul M. (Technical Monitor)


    The photon force resulting from the non-damaging impact of laser derived photons on a metallic target was measured using a vacuum compatible microbalance. This experiment quantitatively verified that the force resulting from laser photons impacting a reflective surface is measurable and predictable. The photon wavelength is 1064 mn and the laser is a multi-mode 30OW Nd YAG continuous wave (CW) laser.

  16. Laser tissue interactions: an update for otolaryngology (United States)

    Reinisch, Lou


    We review the laser, characteristics of laser light, the delivery of laser light, pulse lengths and laser tissue interactions. We review these parameters and how they have changed over the history of the laser and how we expect them to change in the future. This survey of laser use is targeted to the otolaryngologist. Very little background in lasers is necessary to follow the discussion. This is intended to introduce and reintroduce laser technology.

  17. Photonic Molecule Lasers Revisited (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.


    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  18. Electroluminescence from a forward-biased Schottky barrier diode on modulation Si {delta}-doped GaAs/InGaAs/AlGaAs heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Babinski, Adam; Witczak, P.; Twardowski, A.; Baranowski, J. M.


    Electroluminescence (EL) from a forward-biased Schottky barrier diode on modulation Si {delta}-doped pseudomorphic GaAs/InGaAs/AlGaAs heterostructure with high mobility electron gas is investigated in this work. It has been found that the EL from the InGaAs quantum well can be observed at temperatures up to 90 K. The EL line shape depends on the current density, which reflects the filling of the InGaAs channel with electrons. The total integrated EL intensity depends linearly on the current density. We propose that hole diffusion from an inversion layer at the Schottky barrier is responsible for the observed optical recombination with electrons in the InGaAs quantum well. {copyright} 2001 American Institute of Physics.

  19. Apparatus for performing oil field laser operations (United States)

    Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.


    A system, apparatus and methods for delivering high power laser energy to perform laser operations in oil fields and to form a borehole deep into the earth using laser energy. A laser downhole assembly for the delivery of high power laser energy to surfaces and areas in a borehole, which assembly may have laser optics and a fluid path.

  20. Excimer lasers for refractive surgery (United States)

    Vartapetov, Serge K.


    Over the last decade excimer lasers have been broadly used for technological and medical processes. One of the most widespread applications of excimer laser is the clinical use for refractive surgery. Refractive surgery with excimer lasers is the prevalent method for the eye acuity correction. Operation at 193 nanometers, the excimer laser is able to precisely sculpt the corneal surface to correct refractive errors. Both the increase in the accuracy of sculpturing and the predictability of procedures are the key elements of the excimer laser designed for refractive surgery. The novel excimer laser for refractive surgery is offered for small aberration treatment. The excimer laser with both a full aperture Gaussian beam and fly spot system is described. The comparison of different systems of laser correction is reviewed.

  1. Laser sources for object illumination

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, G.F. [Lawrence Livermore National Lab., CA (United States)


    The considerations which formulate the specifications for a laser illuminator are explained, using the example of an underwater object. Depending on the parameters which define the scenario, widely varying laser requirements result.

  2. Coupled optical resonance laser locking. (United States)

    Burd, S C; du Toit, P J W; Uys, H


    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  3. Polymer laser bio-sensors

    DEFF Research Database (Denmark)

    Kristensen, Anders; Vannahme, Christoph; Hermannsson, Pétur Gordon


    Organic dye based distributed feed-back lasers, featuring narrow linewidth and thus high quality spectral resolution, are used as highly sensitive refractive index sensors. The design, fabrication and application of the laser intra-cavity sensors are discussed....

  4. NASA's laser-propulsion project (United States)

    Jones, L. W.; Keefer, D. R.


    Design concepts, study results, and research directions toward development of CW laser heating of remotely flying spacecraft fuels to provide high impulse thrust are presented. The incident laser radiation would be absorbed by hydrogen through a medium of a laser-supported plasma. The laser energy could be furnished from an orbiting solar-powered laser platform and used to drive the engines of an orbital transfer vehicle (OTV) at costs less than with a chemical propulsion system. The OTV propulsion chamber would be reduced in size comparable to the volume addition of the incident laser energy absorber. The temperatures in the hydrogen-fueled system could reach 5000-15,000 K, and studies have been done to examine the feasibility of ion-electron recombination. Kinetic performance, temperature field, and power necessary to sustain a laser thrust augmented system modeling results are discussed, along with near-term 30 kW CO2 laser system tests.

  5. Energy Conversion in Laser Propulsion

    National Research Council Canada - National Science Library

    Larson, C


    Analysis of energy conversion in laser propulsion is reported and compared to experimental studies of a laboratory scale propulsion device that absorbs laser energy and converts that energy to propellant kinetic energy...

  6. Femtosecond laser spectroscopy

    CERN Document Server

    Hannaford, Peter


    As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. The field has recently exploded with the announcement of a series of remarkable new developments and advances. This volume surveys this recent growth in eleven chapters written by leading international researchers in the field. It includes sections on femtosecond optical frequency combs, soft x-ray femtosecond laser sources, and attosecond laser sources. In addition, the contributors address real-time spectroscopy of molecular vibrations with sub-5-fs pulses and multidimensional femtosecond coherent spectroscopies for studying molecular and electron dynamics. Novel methods for measuring and characterizing ultrashort laser pulses and ultrashort pulses of light are also described. The topics covered are revolutionizing the field...

  7. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro


    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  8. Visible laser dazzle (United States)

    Eberle, B.; Forster, D.


    The presented work gives an overview on the efforts of the NATO SET-198 research task group. It comprises nonrestricted material, which is already published or is to be published in journals. Main topics are the development and validation of computer models in order to understand the impact of laser dazzling on the detection of objects in a scene but also on the accomplishment of visual-based tasks. The work includes laboratory and field dazzling tests on sensors and humans, computer eye-dazzle modeling, automatic character recognition and laboratory observer trials for validation purposes of the used algorithms. The impact of dazzling is studied in dependence of laser wavelength, laser power and camera type.

  9. Pulsed laser ablation of copper (United States)

    Jordan, R.; Cole, D.; Lunney, J. G.; Mackay, K.; Givord, D.


    The laser ablation of copper with a 532 nm, 6 ns laser has been investigated in the regime normally used for pulsed laser deposition. The ablation depth per pulse and the flux and energy distribution of the ions in the plume were measured and compared to the deposition rate as measured by a quartz microbalance. These measurements were compared with an analytic model of ablation via a laser sustained plasma. It is shown that self-sputtering of the growing film is significant.

  10. Laser vaccine adjuvants (United States)

    Kashiwagi, Satoshi; Brauns, Timothy; Gelfand, Jeffrey; Poznansky, Mark C


    Immunologic adjuvants are essential for current vaccines to maximize their efficacy. Unfortunately, few have been found to be sufficiently effective and safe for regulatory authorities to permit their use in vaccines for humans and none have been approved for use with intradermal vaccines. The development of new adjuvants with the potential to be both efficacious and safe constitutes a significant need in modern vaccine practice. The use of non-damaging laser light represents a markedly different approach to enhancing immune responses to a vaccine antigen, particularly with intradermal vaccination. This approach, which was initially explored in Russia and further developed in the US, appears to significantly improve responses to both prophylactic and therapeutic vaccines administered to the laser-exposed tissue, particularly the skin. Although different types of lasers have been used for this purpose and the precise molecular mechanism(s) of action remain unknown, several approaches appear to modulate dendritic cell trafficking and/or activation at the irradiation site via the release of specific signaling molecules from epithelial cells. The most recent study, performed by the authors of this review, utilized a continuous wave near-infrared laser that may open the path for the development of a safe, effective, low-cost, simple-to-use laser vaccine adjuvant that could be used in lieu of conventional adjuvants, particularly with intradermal vaccines. In this review, we summarize the initial Russian studies that have given rise to this approach and comment upon recent advances in the use of non-tissue damaging lasers as novel physical adjuvants for vaccines. PMID:25424797

  11. Laser ablation of concrete.

    Energy Technology Data Exchange (ETDEWEB)

    Savina, M.


    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  12. Lasers in clinical ophthalmology (United States)

    Ribeiro, Paulo A.


    The clinical application of lasers in ophthalmology is schematized, showing for each anatomic eye structure, pathologies that may be treated through this procedure. In the cornea, the unusual laser practice for suture removals and the promising possibility of the excimer laser in refractive surgery are discussed. In the iris, the camerular angle, and the ciliary body, the laser application is essentially used to treat the glaucoma and other situations that are not so frequent. The capsulotomy with YAG LASER is used in the treatment of structures related with crystalline and, at least, the treatment of the retina and choroid pathology is expanded. A. A. explained the primordial interest and important of laser in the diabetic retinopathy treatment and some results in patients with more than 5 years of evolution are: 55 of the patients with proliferative diabetic retinopathy (RDP) treated for more than 5 years noticed their vision improved or stabilized; 5 years after treating patients with PDR, 49.3 had their vision stabilized or even improved, provided the diabetics had declared itself more than 20 years ago, versus 61.7 provided the diabetics had declared itself less than 20 years before; finally, 53.8 of the patients under 40-years-old when the diabetics was diagnosed, had their vision improved or at least stabilized 5 years after the beginning of the treatment. On the other side, when patients were over 40 years old when the diabetics was diagnosed percentage increased to 55.9. This study was established in the follow-up of 149 cases over 10 years.


    African Journals Online (AJOL)

    9 mai 2013 ... laryngotrachéales, traités et suivis par Laser diode au service d'ORL et de chirurgie cervico-faciale de l'hôpital Habib. Thameur de Tunis. Résultats : L'âge moyen de nos patients était de 34 ans. Le sex-ratio était de 1,58. Les différentes pathologies laryngées traitées par Laser ont été classées de la façon ...

  14. Laser rangefinders - Recent developments (United States)

    Guyot, J.


    An evaluation is made of recent developments in the miniaturization and cost reduction of 1.06-micron laser rangefinders (LRFs) such as those employed in the control of firearms. LRFs can now be designed to furnish both target illumination and designation. In addition, the advantages of CO2 lasers operating in the 9-11 micron range have led to the design of devices capable of simultaneous target ranging and radial velocity measurements, coupling with FLIR imagers, frequency-hopping rangefinding, and the remote sensing of such battlefield gases as nerve agents.

  15. Lasers in oral implantology (United States)

    Arnabat-Domingeuz, Josep


    Nowadays the use of implants as a increasing therapy in dentistry and it has become a usual treatment in dental offices. More and more dentists have dental implants included in treatment plans for patients with missing teeth. Therefore is necessary that all dentists know all the possibilities of these treatments. Together with the emergence of dental implants, it is also beginning to see an increase in the onset of lasers in dentistry. These two new techniques in dentistry can be supplemented because as we will see the use of lasers in different cases can improve implant treatment.

  16. Study of Molecular Lasers (United States)


    in the relaxation of Br(2P1/2) by HC1 and HBr. However, these processes are not resonant. The spin-orbit splitting in Br(2J>1/2-> 8p3 /2=:3685 cm...1) or DF(/; = 1) by the parent molecule (Xa), [X] is the atom concentraiioa, TD is the laser induced fluores- cence decay time of HF(DF) in the...measurement of four quantities 0clz , T0, TD , [X]). The rate constant for relaxation by the parent mole- cule is found by a laser induced fluorescence

  17. Optics, light and lasers

    CERN Document Server

    Meschede, Dieter


    Starting from the concepts of classical optics, Optics, Light and Lasers introduces in detail the phenomena of linear and nonlinear light matter interaction, the properties of modern laser sources, and the concepts of quantum optics. Several examples taken from the scope of modern research are provided to emphasize the relevance of optics in current developments within science and technology. The text has been written for newcomers to the topic and benefits from the author's ability to explain difficult sequences and effects in a straightforward and easily comprehensible way. To this second, c

  18. Ultrafast laser patterning of graphene (United States)

    Bobrinetskiy, Ivan I.; Emelianov, Alexey V.; Lin, Chih-Lang; Otero, Nerea; Romero, Pablo M.


    This paper describes the recent results in ultrafast (femtoseconds and picoseconds) pulsed laser patterning of graphene films (single layer graphene, graphene oxide (GO)). We investigated such effects of nonlinear optical interaction like selective laser ablation of graphene, laser reduction of graphene oxide and local functionalization (oxidation) of graphene based on multiphoton absorption for microelectrode patterning. The graphene oxide and reduction was demonstrated under femtosecond laser pulses as well as fine ablation for monolayer GO films under ps laser pulses. We demonstrated the patterned laser reduction over the GO film leads to minimum in resistance for laser fluence because of interplay of chemical and thermal effects in carbon lattice and photons. The micro-scale patterns in graphene on SiO2 substrates were fabricated using ultrashort 515 nm laser pulses. For both picosecond and femtosecond laser pulses two competitive processes, based on photo-thermal (ablation) and photochemical (oxidation/etching) effects, were observed. The laser-induced etching of graphene starts just below the threshold energy of graphene ablation. The mechanisms of ultrafast laser interaction with graphene are discussed. Patterned graphene was investigated by AFM, microRaman, SEM and sheet resistance measurements and other techniques. The mechanisms of ultrafast laser interaction with graphene are discussed. The comprehensive models of graphene oxidation/reduction are suggested.

  19. Laser and nonlinear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    De Shazer, L.G.


    This book contains 21 papers. Some of the titles are: Frequency conversion materials from a device perspective; Recent developments in area; Recent developments in barium borate; Growth of laser crystals at Airtron; Crystal growth and the future of solid state lasers; Faraday rotator materials for laser systems; and Mechanical properties of single crystal ceramics.

  20. Diode laser applications in urology (United States)

    Sam, Richard C.; Esch, Victor C.


    Diode lasers are air-cooled, efficient, compact devices which have the potential of very low cost when produced in quantity. The characteristics of diode lasers are discussed. Their applications in interstitial thermal treatment of the prostate, and laser ablation of prostate tissues, will be presented.