WorldWideScience

Sample records for pseudolite pulse signals

  1. Electromagnetic compatibility of ground system of near navigation, based on the use of GNSS and pseudolites

    Science.gov (United States)

    Kartsan, I. N.; Dmitriev, D. D.; Sokolovskii, A. V.; Ratushnyak, V. N.; Gladyshev, A. B.; Kovalev, I. V.

    2017-10-01

    Article describes the results of modeling the allowable power pseudolites in the ground system of near navigation, working together with GLONASS. Was justified pulsed operation of pseudolites and using weighting windows to improve electromagnetic compatibility of pseudolites signals with GNSS signals.

  2. GPS pseudolites: Theory, design, and applications

    Science.gov (United States)

    Cobb, H. Stewart

    Pseudolites (ground-based pseudo-satellite transmitters) can initialize carrier-phase differential GPS (CDGPS) navigation systems in seconds to perform real-time dynamic positioning with one-sigma errors as low as 1 cm. Previous CDGPS systems were rarely used due to cumbersome initialization procedures requiring up to 30 minutes; initialization of the carrier-phase integer ambiguities via pseudolite removes these constraints. This work describes pseudolites optimized for this application which cost two orders of magnitude less than previous pseudolites. Synchrolites (synchronized pseudolites) which derive their timing from individual Global Positioning System (GPS) satellites are also described. Synchrolites can replace the CDGPS reference station and datalink, while simultaneously serving to initialize CDGPS navigation. A cluster of well-placed synchrolites could enable CDGPS navigation even if only one GPS satellite signal is available. A prototype CDGPS system initialized by pseudolites and synchrolites was designed and tested. The goal of this system, known as the Integrity Beacon Landing System (IBLS), was to provide navigation accurate and reliable enough to land aircraft in bad weather. Flight test results for prototype pseudolite and synchrolite systems, including results from 110 fully automatic landings of a Boeing 737 airliner controlled by IBLS, are presented. Existing pseudolite applications are described, including simulation of the GPS constellation for indoor navigation experiments. Synchrolite navigation algorithms are developed and analyzed. New applications for pseudolites and synchrolites are proposed. Theoretical and practical work on the near/far problem is presented.

  3. The Positioning Performance Analysis of BeiDou/Pseudolites Collaboration by CNMC Method

    Directory of Open Access Journals (Sweden)

    FU Jingyang

    2017-05-01

    Full Text Available At present, the number of orbit satellites is limited for the Beidou satellite navigation system. In special terrain like “city Canyon” and other special circumstances, the signal of Beidou is easy to be blocked, which reduces positioning accuracy or interrupts positioning continuity of users. Joining pseudolites can effectively solve the problem of the insufficient number of BeiDou satellites visible to users. During cooperative positioning of Beidou satellites and pseudolites, the multi-path problem in pseudo-range observation values of the BeiDou satellite and the pseudolite shall be properly handled to obtain better positioning accuracy. The CNMC method (Code Noise and Multi-path Correction can effectively reduce the multi-path effect of the BeiDou satellite's pseudo-range observation value, but cannot be applied directly to pseudo-range data processing of the pseudolite due to different observation error characteristics caused by different signal propagation paths. To solve the multi-path processing problem of pseudolites, the CNMC method is improved in this paper. The BeiDou/Pseudolite dynamic cooperative positioning experiments were conducted in the actual field of pseudolites. The test results show that the three-dimensional positioning accuracy is increased from 2.326 m to 1.936 m with enhanced positioning stability after pseudo-range observation values of the BeiDou satellite and the ground pseudolite are processed by the CNMC method.

  4. A New Method for Single-Epoch Ambiguity Resolution with Indoor Pseudolite Positioning.

    Science.gov (United States)

    Li, Xin; Zhang, Peng; Guo, Jiming; Wang, Jinling; Qiu, Weining

    2017-04-21

    Ambiguity resolution (AR) is crucial for high-precision indoor pseudolite positioning. Due to the existing characteristics of the pseudolite positioning system, such as the geometry structure of the stationary pseudolite which is consistently invariant, the indoor signal is easy to interrupt and the first order linear truncation error cannot be ignored, and a new AR method based on the idea of the ambiguity function method (AFM) is proposed in this paper. The proposed method is a single-epoch and nonlinear method that is especially well-suited for indoor pseudolite positioning. Considering the very low computational efficiency of conventional AFM, we adopt an improved particle swarm optimization (IPSO) algorithm to search for the best solution in the coordinate domain, and variances of a least squares adjustment is conducted to ensure the reliability of the solving ambiguity. Several experiments, including static and kinematic tests, are conducted to verify the validity of the proposed AR method. Numerical results show that the IPSO significantly improved the computational efficiency of AFM and has a more elaborate search ability compared to the conventional grid searching method. For the indoor pseudolite system, which had an initial approximate coordinate precision better than 0.2 m, the AFM exhibited good performances in both static and kinematic tests. With the corrected ambiguity gained from our proposed method, indoor pseudolite positioning can achieve centimeter-level precision using a low-cost single-frequency software receiver.

  5. Global positioning system pseudolite-based relative navigation.

    Energy Technology Data Exchange (ETDEWEB)

    Monda, Eric W. (University of Texas, Austin, TX)

    2004-03-01

    Though the Global Positioning System has revolutionized navigation in the modern age, it is limited in its capability for some applications because an unobstructed line of sight to a minimum of four satellites is required. One way of augmenting the system in small areas is by employing pseudolites to broadcast additional signals that can be used to improve the user's position solution. At the Navigation Systems Testing Laboratory (NSTL) at NASA's Johnson Space Center in Houston, TX, research has been underway on the use of pseudolites to perform precision relative navigation. Based on the findings of previous research done at the NSTL, the method used to process the pseudolite measurements is an extended Kalman filter of the double differenced carrier phase measurements. By employing simulations of the system, as well as processing previously collected data in a real time manner, sub-meter tracking of a moving receiver with carrier phase measurements in the extended Kalman filter appears to be possible.

  6. A hardware-software complex for modelling and research of near navigation based on pseudolites

    Science.gov (United States)

    Gladyshev, A. B.; Dmitriev, D. D.; Veysov, E. A.; Tyapkin, V. N.

    2017-01-01

    The paper considers a hardware-software complex for research of characteristics of accuracy and noise immunity of a near navigation system based on pseudolites. The complex is implemented on the basis of the “National Instruments” hardware platform and “LabView” coding environment. It provides a simulated navigation field, the analysis of the received signals, the determination of the errors of measurement of navigation parameters for pseudolites signals, comparing the measured error with the characteristics of a standard GNSS receiver.

  7. [Dynamic pulse signal acquisition and processing].

    Science.gov (United States)

    Zhang, Aihua; Chou, Yongxin

    2012-03-01

    In order to obtain and process pulse signal in real-time, the integer coefficients notch, low-pass filters and an envelope filtering method were designed in consideration of the characteristics of disturbances in pulse signal and then were verified by MATLAB. The pulse signal was processed on DSP in time domain and frequency domain after simplifying the programming. The pulse wave height and pulse rate were calculated in real-time, and the pulse signal's spectrum was illustrated by FFT. The results show that the filters can effectively suppress the interference in pulse signal, and the system can detect and analyze the dynamic pulse signal in real-time.

  8. One laser pulse generates two photoacoustic signals

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2016-01-01

    Photoacoustic sensing and imaging techniques have been studied widely to explore optical absorption contrast based on nanosecond laser illumination. In this paper, we report a long laser pulse induced dual photoacoustic (LDPA) nonlinear effect, which originates from unsatisfied stress and thermal confinements. Being different from conventional short laser pulse illumination, the proposed method utilizes a long square-profile laser pulse to induce dual photoacoustic signals. Without satisfying the stress confinement, the dual photoacoustic signals are generated following the positive and negative edges of the long laser pulse. More interestingly, the first expansion-induced photoacoustic signal exhibits positive waveform due to the initial sharp rising of temperature. On the contrary, the second contraction-induced photoacoustic signal exhibits exactly negative waveform due to the falling of temperature, as well as pulse-width-dependent, signal amplitude which is caused by the concurrent heat accumulation and ...

  9. Airborne Pseudolites in a Global Positioning System (GPS) Degraded Environment

    Science.gov (United States)

    2011-03-01

    of the ION GPS 2000 Meeting. School of Geomatic Engineering University of New South Wales, Sydney, NSW 2052, Australia, September 2000. 95 12...56, July 2002. 35. Wang, Jinling and Hung-Kyu Lee. “Impact of Pseudolite Location Errors in Positioning”. Geomatics Research Australasia, 81–94

  10. Generation of synchronized signal and pump pulses for an optical ...

    Indian Academy of Sciences (India)

    Abstract. Synchronized signal (650 ps) and pump (1.3 ns) pulses were generated using. 4-pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse ...

  11. Registration and identification of pulse signal for medical diagnostics

    Science.gov (United States)

    Buldakova, Tatyana I.; Suyatinov, Sergey I.

    2002-07-01

    Registration and identification of pulse signal requires the development and the use of special diagnostic equipment and modern methods of processing of the registered data. There are recognized that photoelectric and piezoelectric gauges are the most perspective converters for measurement of pulse signal. In this paper the approach to registration of pulse curves on the basis of the optical gauge is developed. The problem of identification of pulse signal is considered as the problem of recognition of images. The system of identification of pulse waves is offered. It is functioning as a visual system of recognition of images of the man and is based on artificial neural networks.

  12. [Dynamic Pulse Signal Processing and Analyzing in Mobile System].

    Science.gov (United States)

    Chou, Yongxin; Zhang, Aihua; Ou, Jiqing; Qi, Yusheng

    2015-09-01

    In order to derive dynamic pulse rate variability (DPRV) signal from dynamic pulse signal in real time, a method for extracting DPRV signal was proposed and a portable mobile monitoring system was designed. The system consists of a front end for collecting and wireless sending pulse signal and a mobile terminal. The proposed method is employed to extract DPRV from dynamic pulse signal in mobile terminal, and the DPRV signal is analyzed both in the time domain and the frequency domain and also with non-linear method in real time. The results show that the proposed method can accurately derive DPRV signal in real time, the system can be used for processing and analyzing DPRV signal in real time.

  13. A new design of low sidelobe pulse compression signals

    Science.gov (United States)

    Ma, Lin; Zou, Chongzu

    By studying how the biphase coded signals reduce the range sidelobe, a new type of pulse amplitude modulation signal - the Nonlinear Programming Code - is presented in this paper. With regard to sidelobe level and energy utilization, it is better than the Huffman code with equal code length and real coefficients. Finally, quantative calculations of the Doppler mismatching effects are done and the improvement method is discussed.

  14. Ultrashort Optical Pulse Propagation in terms of Analytic Signal

    Directory of Open Access Journals (Sweden)

    Sh. Amiranashvili

    2011-01-01

    Full Text Available We demonstrate that ultrashort optical pulses propagating in a nonlinear dispersive medium are naturally described through incorporation of analytic signal for the electric field. To this end a second-order nonlinear wave equation is first simplified using a unidirectional approximation. Then the analytic signal is introduced, and all nonresonant nonlinear terms are eliminated. The derived propagation equation accounts for arbitrary dispersion, resonant four-wave mixing processes, weak absorption, and arbitrary pulse duration. The model applies to the complex electric field and is independent of the slowly varying envelope approximation. Still the derived propagation equation posses universal structure of the generalized nonlinear Schrödinger equation (NSE. In particular, it can be solved numerically with only small changes of the standard split-step solver or more complicated spectral algorithms for NSE. We present exemplary numerical solutions describing supercontinuum generation with an ultrashort optical pulse.

  15. Signal processing issues for the exploitation of pulse-to-pulse encoding SAR transponders

    DEFF Research Database (Denmark)

    Merryman Boncori, John Peter; Schiavon, Giovanni

    2008-01-01

    -encoding point scatterers and distributed ones. A time-domain processing algorithm and a code synchronization procedure are proposed and validated on simulated data and on a European Remote Sensing Satellite-2 data set containing prototypes of such a device. The interaction of the transponder signal with terrain......Synthetic aperture radar signal processing issues related to the exploitation of a pulse-to-pulse encoding transponder using pseudorandom codes discussed analytically. Namely the focusing algorithm, the code synchronization procedure and the properties of the code induced gain against non...

  16. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization.

    Science.gov (United States)

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-09-30

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system.

  17. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    Directory of Open Access Journals (Sweden)

    Kenjirou Fujii

    2015-09-01

    Full Text Available A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters. A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system.

  18. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diwakar, P.K., E-mail: pdiwakar@purdue.edu; Harilal, S.S.; Freeman, J.R.; Hassanein, A.

    2013-09-01

    Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm. - Highlights: • Role of pre-pulse wavelength and inter-pulse delay on LIBS sensitivity was studied. • For NIR:NIR combination, dual peaks in signal enhancement were observed. • UV:NIR combination resulted in maximum absolute signal intensity. • Persistence of neutral species was increased for double pulse.

  19. A New Indoor Positioning System Architecture Using GPS Signals.

    Science.gov (United States)

    Xu, Rui; Chen, Wu; Xu, Ying; Ji, Shengyue

    2015-04-29

    The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS) receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding) by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  20. Fractal Reference Signals in Pulse-Width Modulation

    Science.gov (United States)

    Lurie, Boris; Lurie, Helen

    2005-01-01

    A report proposes the use of waveforms having fractal shapes reminiscent of sawteeth (in contradistinction to conventional regular sawtooth waveforms) as reference signals for pulse-width modulation in control systems for thrusters of spacecraft flying in formation. Fractal reference signals may also be attractive in some terrestrial control systems - especially those in which pulse-width modulation is used for precise control of electric motors. The report asserts that the use of fractal reference signals would enable the synchronous control of several variables of a spacecraft formation, such that consumption of propellant would be minimized, intervals between thruster firings would be long (as preferred for performing scientific observations), and delays in controlling large-thrust maneuvers for retargeting would be minimized. The report further asserts that whereas different controllers would be needed for different modes of operation if conventional pulsewidth modulation were used, the use of fractal reference signals would enable the same controller to function nearly optimally in all regimes of operation, so that only this one controller would be needed.

  1. Intrapulse modulation type recognition for pulse compression radar signal

    Science.gov (United States)

    Fan, Xiaolei; Li, Tao; Su, Shaoying

    2017-07-01

    The existing modulation recognition algorithms for a pulse compression radar (PCR) signal can hardly adapt to complex modulation types and low signal-to-noise ratio (SNR). To solve the problems, with respect to the seven kinds of widely used PCR signals-including linear frequency modulation signal, Baker code, Frank code, P1 code, P2 code, P3 code, and P4 code-a modulation type recognition algorithm based on integrated quadratic phase function (IQPF) and fractional Fourier transform (FrFT) is proposed. First, signals are preclassified according to their chirp rates (CRs) estimated through IQPF. Then, FrFT is carried out depending on the order, which is correlated to the estimated CR. Finally, signals in each class are subdivided and modulation recognition is accomplished according to the features of the FrFT spectrum. The simulation results validate the feasibility of the algorithm. They also demonstrate that, compared against existing research, the proposal achieves better correct recognition performance for various modulation types under low SNR condition.

  2. Generation of synchronized signal and pump pulses for an optical ...

    Indian Academy of Sciences (India)

    2015-11-27

    pass geometry in a grating pair based pulse stretcher unit. The pump pulse has been further amplified in a high gain regenerative amplifier. This amplified pulse was used as the pump in an optical parametric chirped pulse ...

  3. Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Diwakar, P. K.; Harilal, S. S.; Freeman, J. R.; Hassanein, A.

    2013-09-01

    Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.

  4. Programming microbes using pulse width modulation of optical signals.

    Science.gov (United States)

    Davidson, Eric A; Basu, Amar S; Bayer, Travis S

    2013-11-15

    Cells transmit and receive information via signalling pathways. A number of studies have revealed that information is encoded in the temporal dynamics of these pathways and has highlighted how pathway architecture can influence the propagation of signals in time and space. The functional properties of pathway architecture can also be exploited by synthetic biologists to enable precise control of cellular physiology. Here, we characterised the response of a bacterial light-responsive, two-component system to oscillating signals of varying frequencies. We found that the system acted as a low-pass filter, able to respond to low-frequency oscillations and unable to respond to high-frequency oscillations. We then demonstrate that the low-pass filtering behavior can be exploited to enable precise control of gene expression using a strategy termed pulse width modulation (PWM). PWM is a common strategy used in electronics for information encoding that converts a series of digital input signals to an analog response. We further show how the PWM strategy extends the utility of bacterial optogenetic control, allowing the fine-tuning of expression levels, programming of temporal dynamics, and control of microbial physiology via manipulation of a metabolic enzyme. © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Design and Characteristic Analysis of Multicarrier Chaotic Phase Coded Radar Pulse Train Signal

    Directory of Open Access Journals (Sweden)

    Qiongdan Huang

    2014-01-01

    Full Text Available By introducing phase code into multicarrier orthogonal frequency division multiplex signal, the multicarrier phase coded (MCPC radar signal possesses a good spectrum utilization rate and can achieve a good combination of narrowband and wideband processing. Radar pulse train signal not only reserves the high range resolution of monopulse signal, but also has the same velocity resolution performance as continuous wave signal does. In this study, we use the chaotic biphase code generated by Chebyshev mapping to conduct a phase modulation on MCPC pulse train so as to design two different types of multicarrier chaotic phase coded pulse train signal. The ambiguity functions of the two pulse train signals are compared with that of P4 code MCPC pulse train. In addition, we analyze the influences of subcarrier number, phase-modulated bit number, and period number on the pulse train’s autocorrelation performance. The low probability of intercept (LPI performance of the two signals is also discussed. Simulation results show that the designed pulse train signals have a thumbtack ambiguity function, a periodic autocorrelation side lobe lower than P4 code MCPC pulse train, and excellent LPI performance, as well as the feature of waveform diversity.

  6. A Quantitative Analysis of Pulsed Signals Emitted by Wild Bottlenose Dolphins.

    Directory of Open Access Journals (Sweden)

    Ana Rita Luís

    Full Text Available Common bottlenose dolphins (Tursiops truncatus, produce a wide variety of vocal emissions for communication and echolocation, of which the pulsed repertoire has been the most difficult to categorize. Packets of high repetition, broadband pulses are still largely reported under a general designation of burst-pulses, and traditional attempts to classify these emissions rely mainly in their aural characteristics and in graphical aspects of spectrograms. Here, we present a quantitative analysis of pulsed signals emitted by wild bottlenose dolphins, in the Sado estuary, Portugal (2011-2014, and test the reliability of a traditional classification approach. Acoustic parameters (minimum frequency, maximum frequency, peak frequency, duration, repetition rate and inter-click-interval were extracted from 930 pulsed signals, previously categorized using a traditional approach. Discriminant function analysis revealed a high reliability of the traditional classification approach (93.5% of pulsed signals were consistently assigned to their aurally based categories. According to the discriminant function analysis (Wilk's Λ = 0.11, F3, 2.41 = 282.75, P < 0.001, repetition rate is the feature that best enables the discrimination of different pulsed signals (structure coefficient = 0.98. Classification using hierarchical cluster analysis led to a similar categorization pattern: two main signal types with distinct magnitudes of repetition rate were clustered into five groups. The pulsed signals, here described, present significant differences in their time-frequency features, especially repetition rate (P < 0.001, inter-click-interval (P < 0.001 and duration (P < 0.001. We document the occurrence of a distinct signal type-short burst-pulses, and highlight the existence of a diverse repertoire of pulsed vocalizations emitted in graded sequences. The use of quantitative analysis of pulsed signals is essential to improve classifications and to better assess the

  7. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  8. Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation

    Science.gov (United States)

    Xue, Yuan; Su, Yong; Zhang, Chi; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan; Zhang, Qingchuan; Wu, Xiaoping

    2017-11-01

    Pulse diagnosis is an essential part in four basic diagnostic methods (inspection, listening, inquiring and palpation) in traditional Chinese medicine, which depends on longtime training and rich experience, so computerized pulse acquisition has been proposed and studied to ensure the objectivity. To imitate the process that doctors using three fingertips with different pressures to feel fluctuations in certain areas containing three acupoints, we established a five dimensional pulse signal acquisition system adopting a non-contacting optical metrology method, 3D digital image correlation, to record the full-field displacements of skin fluctuations under different pressures. The system realizes real-time full-field vibration mode observation with 10 FPS. The maximum sample frequency is 472 Hz for detailed post-processing. After acquisition, the signals are analyzed according to the amplitude, pressure, and pulse wave velocity. The proposed system provides a novel optical approach for digitalizing pulse diagnosis and massive pulse signal data acquisition for various types of patients.

  9. Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking

    Science.gov (United States)

    Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan; Chan, Hoyin

    2017-08-01

    Human pulse signal tracking is an emerging technology that is needed in traditional Chinese medicine. However, soft actuation with multi-frequency tracking capability is needed for tracking human pulse signal. Dielectric elastomer (DE) is one type of soft actuating that has great potential in human pulse signal tracking. In this paper, a DE diaphragm actuator was designed and fabricated to track human pulse pressure signal. A physics-based and control-oriented model has been developed to capture the dynamic behavior of DE diaphragm actuator. Using the physical model, an H-infinity robust control was designed for the actuator to reject high-frequency sensing noises and disturbances. The robust control was then implemented in real-time to track a multi-frequency signal, which verified the tracking capability and robustness of the control system. In the human pulse signal tracking test, a human pulse signal was measured at the City University of Hong Kong and then was tracked using DE actuator at Wichita State University in the US. Experimental results have verified that the DE actuator with its robust control is capable of tracking human pulse signal.

  10. Cavity-less sub-picosecond pulse generation for the demultiplexing of a 640 Gbaud OTDM signal

    DEFF Research Database (Denmark)

    Kong, Deming; Guan, Pengyu; Hu, Hao

    2015-01-01

    A 703 fs cavity-less pulse source based on pulse carving and pulse compression is demonstrated and utilized for demultiplexing a 640 Gbaud OTDM signal. Timing jitter is found to be the main limiting factor.......A 703 fs cavity-less pulse source based on pulse carving and pulse compression is demonstrated and utilized for demultiplexing a 640 Gbaud OTDM signal. Timing jitter is found to be the main limiting factor....

  11. Investigation of the input signal frequency effect on the formed pulse of the hydraulic-powered pulse machine

    OpenAIRE

    Novoseltseva, Maria Viktorovna; Masson, I. A.

    2016-01-01

    Nowadays, a special emphasis is placed on an output signal curve during the analysis of well drilling machines since these machines should have as high energy efficiency as it is possible. This work proposes factors that have an impact of input signal frequency on the formed pulse that are used to find the most efficient frequency for its further applying in the machine. Results of the conducted experiment are obtained by using a mathematical model that is created in Simulink Matlab.

  12. Design and Characteristic Analysis of Multicarrier Chaotic Phase Coded Radar Pulse Train Signal

    OpenAIRE

    Qiongdan Huang; Yong Li; Yaoping Zeng; Yinjuan Fu

    2014-01-01

    By introducing phase code into multicarrier orthogonal frequency division multiplex signal, the multicarrier phase coded (MCPC) radar signal possesses a good spectrum utilization rate and can achieve a good combination of narrowband and wideband processing. Radar pulse train signal not only reserves the high range resolution of monopulse signal, but also has the same velocity resolution performance as continuous wave signal does. In this study, we use the chaotic biphase code generated by Che...

  13. Quadrature demodulation based circuit implementation of pulse stream for ultrasonic signal FRI sparse sampling

    Science.gov (United States)

    Shoupeng, Song; Zhou, Jiang

    2017-03-01

    Converting ultrasonic signal to ultrasonic pulse stream is the key step of finite rate of innovation (FRI) sparse sampling. At present, ultrasonic pulse-stream-forming techniques are mainly based on digital algorithms. No hardware circuit that can achieve it has been reported. This paper proposes a new quadrature demodulation (QD) based circuit implementation method for forming an ultrasonic pulse stream. Elaborating on FRI sparse sampling theory, the process of ultrasonic signal is explained, followed by a discussion and analysis of ultrasonic pulse-stream-forming methods. In contrast to ultrasonic signal envelope extracting techniques, a quadrature demodulation method (QDM) is proposed. Simulation experiments were performed to determine its performance at various signal-to-noise ratios (SNRs). The circuit was then designed, with mixing module, oscillator, low pass filter (LPF), and root of square sum module. Finally, application experiments were carried out on pipeline sample ultrasonic flaw testing. The experimental results indicate that the QDM can accurately convert ultrasonic signal to ultrasonic pulse stream, and reverse the original signal information, such as pulse width, amplitude, and time of arrival. This technique lays the foundation for ultrasonic signal FRI sparse sampling directly with hardware circuitry.

  14. Signal to Noise Ratios of Pulsed and Sinewave Modulated Direct Detection Lidar for IPDA Measurements

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    The signal-to-noise ratios have been derived for IPDA lidar using a direct detection receiver for both pulsed and sinewave laser modulation techniques, and the results and laboratory measurements are presented

  15. 125-GHz Microwave Signal Generation Employing an Integrated Pulse Shaper

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2017-01-01

    We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...... of the generated microwave waveforms is larger than 100 GHz, and it has wide bandwidth when changing the time delay of the adjacent taps and compactness, capability for integration with electronics and small power consumption are also its merits....

  16. Extracting nanosecond pulse signals via stochastic resonance generated by surface plasmon bistability.

    Science.gov (United States)

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu; Li, Shaopeng

    2015-11-15

    A technology is investigated to extract nanosecond pulse noise hidden signals via stochastic resonance, which is based on surface plasmon bistability. A theoretical model for recovering nanosecond pulse signals is derived to describe the nonlinear process. It is found that the incident angle, polarization state, medium properties, and input noise intensity all determine the efficiency and fidelity of the output signal. The bistable behavior of the output intensity can be accurately controlled to obtain a cross-correlation gain larger than 6 in a wide range of input signal-to-noise ratio from 1∶5 to 1∶30. Meanwhile, the distortion in the time domain induced by phase shift can be reduced to a negligible level. This work provides a potential method for detecting low-level or hidden pulse signals in various communication fields.

  17. A Sensor-Based Wrist Pulse Signal Processing and Lung Cancer Recognition.

    Science.gov (United States)

    Zhang, Zhichao; Zhang, Yuan; Song, Houbing; Yao, Lina; Kos, Anton

    2018-02-08

    Pulse diagnosis is an efficient method in traditional Chinese medicine for detecting the health status of a person in a non-invasive and convenient way. Jin's pulse diagnosis (JPD) is a very efficient recent development that is gradually recognized and well validated by the medical community in recent years. However, no acceptable results have been achieved for lung cancer recognition in the field of biomedical signal processing using JPD. More so, there is no standard JPD pulse feature defined with respect to pulse signals. Our work is designed mainly for care giving service conveniently at home to the people having lung cancer by proposing a novel wrist pulse signal processing method, having an insight from JPD. We developed an iterative slide window (ISW) algorithm to segment the de-noised signal into single periods. We analyzed the characteristics of the segmented pulse waveform and for the first time summarized 26 features to classify the pulse waveforms of healthy individuals and lung cancer patients using a cubic support vector machine (CSVM). The result achieved by the proposed method is found to be 78.13% accurate. Copyright © 2018. Published by Elsevier Inc.

  18. Nanosecond pulse signals restoration via stochastic resonance in the Fabry-Perot cavity with graphene

    Science.gov (United States)

    Chang, Zheng; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-07-01

    We investigate a technology for reconstructing nanosecond pulse noise hidden signals via stochastic resonance, which is based on optical bistability in the Fabry-Perot (F-P) cavity with graphene. The bistable properties are analyzed with different initial wavelengths and Fermi energies. The system is tunable and the bistable behavior of the output intensity can be accurately controlled to obtain a cross-correlation gain larger than 10 in a wide range of input signal-to-noise (SNR) ratio from 1:8 to 1:45. Meanwhile, the distortion of the output signal and the pulse tailing caused by the phase delay can be reduced to a negligible level. This work provides a potential method for detecting low-level or hidden pulse signals in various communication fields.

  19. Event Recognition Using Signal Spectrograms in Long Pulse Experiments

    OpenAIRE

    Gonzalez, J.; Ruiz González, Mariano; Vega, Jesús; Barrera Lopez de Turiso, Eduardo; Arcas Castro, Guillermo de; López Navarro, Juan Manuel

    2010-01-01

    As discharge duration increases, real-time complex analysis of the signal becomes more important. In this context, data acquisition and processing systems must provide models for designing experiments which use event oriented plasma control. One example of advanced data analysis is signal classification. The off-line statistical analysis of a large number of discharges provides information to develop algorithms for the determination of the plasma parameters from measurements of magnetohydrodi...

  20. Determining the alarm signal in pulse interferometric fibre sensor by two independent criteria

    Science.gov (United States)

    Życzkowski, Marek; Karol, Mateusz

    2017-04-01

    The article describes the construction and operation principle of the fibre optic pulse interferometer, which allows detection of mechanical disorders in fibre optic transmission line. Operation of this system is based on the optical pulses interference. Configuration of the system allows stable work of pulse interferometer over distances of several kilometres, with compensation impact of environmental conditions. Unique system detection capabilities obtained by using two independent criteria for alarm signal excitation. The aim of the research was to determine the usefulness of the proposed system to protection of information transmission via fibre-optic transmission networks.

  1. Tree shoot bending generates hydraulic pressure pulses: a new long-distance signal?

    Science.gov (United States)

    Lopez, Rosana; Badel, Eric; Peraudeau, Sebastien; Leblanc-Fournier, Nathalie; Beaujard, François; Julien, Jean-Louis; Cochard, Hervé; Moulia, Bruno

    2014-05-01

    When tree stems are mechanically stimulated, a rapid long-distance signal is induced that slows down primary growth. An investigation was carried out to determine whether the signal might be borne by a mechanically induced pressure pulse in the xylem. Coupling xylem flow meters and pressure sensors with a mechanical testing device, the hydraulic effects of mechanical deformation of tree stem and branches were measured. Organs of several tree species were studied, including gymnosperms and angiosperms with different wood densities and anatomies. Bending had a negligible effect on xylem conductivity, even when deformations were sustained or were larger than would be encountered in nature. It was found that bending caused transient variation in the hydraulic pressure within the xylem of branch segments. This local transient increase in pressure in the xylem was rapidly propagated along the vascular system in planta to the upper and lower regions of the stem. It was shown that this hydraulic pulse originates from the apoplast. Water that was mobilized in the hydraulic pulses came from the saturated porous material of the conduits and their walls, suggesting that the poroelastic behaviour of xylem might be a key factor. Although likely to be a generic mechanical response, quantitative differences in the hydraulic pulse were found in different species, possibly related to differences in xylem anatomy. Importantly the hydraulic pulse was proportional to the strained volume, similar to known thigmomorphogenetic responses. It is hypothesized that the hydraulic pulse may be the signal that rapidly transmits mechanobiological information to leaves, roots, and apices.

  2. Bi-alphabetic pulse compression radar signal design

    Indian Academy of Sciences (India)

    These two interpretations provide a coincidence detection scheme for efficient target detection provided that the corresponding signal design problem is solved. Such an algorithm is developed by taking the merit factor as desideratum and the Hamming scan as optimization technique. Merit factor values obtained in some ...

  3. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    Science.gov (United States)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  4. Accurate step-FMCW ultrasound ranging and comparison with pulse-echo signaling methods

    Science.gov (United States)

    Natarajan, Shyam; Singh, Rahul S.; Lee, Michael; Cox, Brian P.; Culjat, Martin O.; Grundfest, Warren S.; Lee, Hua

    2010-03-01

    This paper presents a method setup for high-frequency ultrasound ranging based on stepped frequency-modulated continuous waves (FMCW), potentially capable of producing a higher signal-to-noise ratio (SNR) compared to traditional pulse-echo signaling. In current ultrasound systems, the use of higher frequencies (10-20 MHz) to enhance resolution lowers signal quality due to frequency-dependent attenuation. The proposed ultrasound signaling format, step-FMCW, is well-known in the radar community, and features lower peak power, wider dynamic range, lower noise figure and simpler electronics in comparison to pulse-echo systems. In pulse-echo ultrasound ranging, distances are calculated using the transmit times between a pulse and its subsequent echoes. In step-FMCW ultrasonic ranging, the phase and magnitude differences at stepped frequencies are used to sample the frequency domain. Thus, by taking the inverse Fourier transform, a comprehensive range profile is recovered that has increased immunity to noise over conventional ranging methods. Step-FMCW and pulse-echo waveforms were created using custom-built hardware consisting of an arbitrary waveform generator and dual-channel super heterodyne receiver, providing high SNR and in turn, accuracy in detection.

  5. Pulse Edge-Only Signaling Method Comparison for Wireline Interconnects

    Directory of Open Access Journals (Sweden)

    Dmitriy Garmatyuk

    2014-01-01

    Full Text Available Typical high-speed electrical transmission lines use a variety of precoding and equalization techniques to counter the frequency-dependent channel loss and environmental conditions such as ISI. In this paper, we suggest a relatively narrow-band signaling method that is resilient to the effects of ISI and crosstalk and can be implemented with existing technology. Alternative modulation schemes are analyzed in terms of effectiveness, performance, and cost. In particular, line-encoded and on-off keyed modulation methods are evaluated in simulations of transmission lines to gauge effectiveness in high-speed conditions with limiting ISI.

  6. Observation of small sub-pulses out of the delayed-interference signal-wavelength converter

    DEFF Research Database (Denmark)

    Sakaguchi, J.; Nielsen, Mads Lønstrup; Ohira, T.

    2005-01-01

    The generation of small sub-pulses in the delayed-interference signal-wavelength converter (DISC), which has been studied for use in future 160-Gb/s optical time division multiplexing-wavelength division multiplexing (OTDM-WDM) communication systems, was recently predicted as a potential problem....

  7. A technique based on pulse shape comparison for linearizing compressed signals

    CERN Document Server

    Cattaneo, P W

    2002-01-01

    A nuclear electronics system designed to perform high precision energy measurement on a large dynamic range through high speed sampling of the output might be impossible to match to an adequate ADC. A solution consists in compressing the signal before digitization and linearizing it after with a look-up table, encoding the inverse of the compression function. This look-up table can be constructed using test pulses, the smallest of which is in the linear part and the largest spans the whole dynamic range. Reconstructing these pulse shapes and requiring them to be omothetic generates the look-up table providing a minimal distortion in the RMS sense.

  8. Tolerance analysis of the pulse signal of a novel lateral deformable optical NEMS grating transducer

    Science.gov (United States)

    Wang, Chen; Bai, Jian; Wang, Kaiwei

    2015-08-01

    This paper discusses the pulse signal of a novel opto-mechanical zeroth-order grating transducer based on an anomalous diffraction phenomenon, Wood's type anomaly and its corresponding tolerance analysis. In this device, tiny changes in the displacement of the nanostructured grating elements lead to a dramatic increase or decrease of the optical reflection amplitude. With this special feature, this structure is ideal to measure very small displacement. Unexpectedly, the original sinusoidal signal of the device develops into a new signal form, i.e. pulse signal with the decrease of the air gap between two layers of gratings. Thus the sensitivity of the structure is improved 8 times higher, as the slope of the pulse signal, namely 2.5%/nm, i.e. 0.65dB/nm, is 8 times higher than that of the original signal form, namely 0.3%/nm, i.e. 0.03dB/nm. However, this device is very sensitive to parameters including wavelength, period, duty ratio, air gap as well as thickness of the gratings. Thus, in this paper the performance of the structures with different parameter settings is analyzed and optimized through rigorous coupled wavelength analysis (RCWA) and 3-D finite difference time domain (FDTD) method. All the calculated data enables us to apply the structure into fields required for different sensitivities with different values of grating parameters and thus broadens the further usage of such novel structure. In addition, a synthetic tolerance analysis of the pulse signal is conducted and indicates the possibility of achieving an actual device with the highest slope superior to 0.5%/nm is close to 85% and the possibility that the highest slope of an actual device falls in the interval ranging from 1.0%/nm to 2.0%/nm is 64%. All the simulated data enables us to get a better understanding of the tolerance of the pulse signal and a guidance of successful realization of an actual device.

  9. A New Indoor Positioning System Architecture Using GPS Signals

    Directory of Open Access Journals (Sweden)

    Rui Xu

    2015-04-01

    Full Text Available The pseudolite system is a good alternative for indoor positioning systems due to its large coverage area and accurate positioning solution. However, for common Global Positioning System (GPS receivers, the pseudolite system requires some modifications of the user terminals. To solve the problem, this paper proposes a new pseudolite-based indoor positioning system architecture. The main idea is to receive real-world GPS signals, repeat each satellite signal and transmit those using indoor transmitting antennas. The transmitted GPS-like signal can be processed (signal acquisition and tracking, navigation data decoding by the general receiver and thus no hardware-level modification on the receiver is required. In addition, all Tx can be synchronized with each other since one single clock is used in Rx/Tx. The proposed system is simulated using a software GPS receiver. The simulation results show the indoor positioning system is able to provide high accurate horizontal positioning in both static and dynamic situations.

  10. Clicks, whistles and pulses: Passive and active signal use in dolphin communication

    Science.gov (United States)

    Herzing, Denise L.

    2014-12-01

    The search for signals out of noise is a problem not only with radio signals from the sky but in the study of animal communication. Dolphins use multiple modalities to communicate including body postures, touch, vision, and most elaborately sound. Like SETI radio signal searches, dolphin sound analysis includes the detection, recognition, analysis, and interpretation of signals. Dolphins use both passive listening and active production to communicate. Dolphins use three main types of acoustic signals: frequency modulated whistles (narrowband with harmonics), echolocation (broadband clicks) and burst pulsed sounds (packets of closely spaced broadband clicks). Dolphin sound analysis has focused on frequency-modulated whistles, yet the most commonly used signals are burst-pulsed sounds which, due to their graded and overlapping nature and bimodal inter-click interval (ICI) rates are hard to categorize. We will look at: 1) the mechanism of sound production and categories of sound types, 2) sound analysis techniques and information content, and 3) examples of lessons learned in the study of dolphin acoustics. The goal of this paper is to provide perspective on how animal communication studies might provide insight to both passive and active SETI in the larger context of searching for life signatures.

  11. Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Diwakar, P. K.; Hassanein, A. [Center for Materials Under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-07-22

    We investigated the emission properties of collinear double-pulse compared to single-pulse ultrafast laser induced breakdown spectroscopy. Our results showed that the significant signal enhancement noticed in the double pulse scheme is strongly correlated to the characteristic electron-ion relaxation time and hence to the inter-pulse delays. Spectroscopic excitation temperature analysis showed that the improvement in signal enhancement is caused by the delayed pulse efficient reheating of the pre-plume. The signal enhancement is also found to be related to the upper excitation energy of the selected lines, i.e., more enhancement noticed for lines originating from higher excitation energy levels, indicating reheating is the major mechanism behind the signal improvement.

  12. Electron-ion relaxation time dependent signal enhancement in ultrafast double-pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Harilal, S. S.; Diwakar, P. K.; Hassanein, A.

    2013-07-01

    We investigated the emission properties of collinear double-pulse compared to single-pulse ultrafast laser induced breakdown spectroscopy. Our results showed that the significant signal enhancement noticed in the double pulse scheme is strongly correlated to the characteristic electron-ion relaxation time and hence to the inter-pulse delays. Spectroscopic excitation temperature analysis showed that the improvement in signal enhancement is caused by the delayed pulse efficient reheating of the pre-plume. The signal enhancement is also found to be related to the upper excitation energy of the selected lines, i.e., more enhancement noticed for lines originating from higher excitation energy levels, indicating reheating is the major mechanism behind the signal improvement.

  13. Pulse compression of harmonic chirp signals using the fractional fourier transform.

    Science.gov (United States)

    Arif, M; Cowell, D M J; Freear, S

    2010-06-01

    In ultrasound harmonic imaging with chirp-coded excitation, a harmonic matched filter (HMF) is typically used on the received signal to perform pulse compression of the second harmonic component (SHC) to recover signal axial resolution. Designing the HMF for the compression of the SHC is a problematic issue because it requires optimal window selection. In the compressed second harmonic signal, the sidelobe level may increase and the mainlobe width (MLW) widen under a mismatched condition, resulting in loss of axial resolution. We propose the use of the fractional Fourier transform (FrFT) as an alternative tool to perform compression of the chirp-coded SHC generated as a result of the nonlinear propagation of an ultrasound signal. Two methods are used to experimentally assess the performance benefits of the FrFT technique over the HMF techniques. The first method uses chirp excitation with central frequency of 2.25 MHz and bandwidth of 1 MHz. The second method uses chirp excitation with pulse inversion to increase the bandwidth to 2 MHz. In this study, experiments were performed in a water tank with a single-element transducer mounted coaxially with a hydrophone in a pitch-catch configuration. Results are presented that indicate that the FrFT can perform pulse compression of the second harmonic chirp component, with a 14% reduction in the MLW of the compressed signal when compared with the HMF. Also, the FrFT provides at least 23% reduction in the MLW of the compressed signal when compared with the harmonic mismatched filter (HMMF). The FrFT maintains comparable peak and integrated sidelobe levels when compared with the HMF and HMMF techniques. Copyright 2010 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  14. Designing hyperbolic secant excitation pulses to reduce signal dropout in gradient-echo echo-planar imaging.

    Science.gov (United States)

    Wastling, Stephen J; Barker, Gareth J

    2015-09-01

    To design hyperbolic secant (HS) excitation pulses to reduce signal dropout in the orbitofrontal and inferior temporal regions in gradient-echo echo-planar imaging (GE-EPI) for functional MRI (fMRI) applications. An algorithm based on Bloch simulations optimizes the HS pulse parameters needed to give the desired signal response across the range of susceptibility gradients observed in the human head (approximately ±250 μT·m(-1) ). The impact of the HS pulse on the signal, temporal signal-to-noise ratio, blood oxygen level-dependent (BOLD) sensitivity, and ability to detect resting state BOLD signal changes was assessed in six healthy male volunteers at 3T. The optimized HS pulse (μ = 4.25, β = 3040 Hz, A0 = 12.3 μT, Δf = 4598 Hz) had a near uniform signal response for through-plane susceptibility gradients in the range ±250 μT·m(-1) . Signal, temporal signal-to-noise ratio, BOLD sensitivity, and the detectability of resting state networks were all partially recovered in the orbitofrontal and inferior temporal regions; however, there were signal losses of up to 50% in regions of homogeneous field (and signal loss from in-plane susceptibility gradients remained). The HS pulse reduced signal dropout and could be used to acquire task and resting state fMRI data without loss of spatial coverage or temporal resolution. © 2014 Wiley Periodicals, Inc.

  15. Optical spectral reshaping for directly modulated 4-pulse amplitude modulation signals

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Da Ros, Francesco; Cristofori, Valentina

    2017-01-01

    of the optical filter for optical spectral reshaping in case of pulse amplitude modulation and(ii) an experimental demonstration of real-time dispersion-uncompensated transmission of 10-GBd and 14-GBd 4-PAM signals up to 10- and 26-km SSMF. This is achieved by combining a commercial 10-Gb/s DML with optical...... spectral shaping, thus removing the need for any complex off-line DSP and improving dispersion tolerance. These achievements are enabled by OSR based on a passive microring resonator fabricated on the SOI platform [4]. Significant improvement in receiver sensitivities was observed for both a 10-GBd signal...

  16. Pulse shaping for all-optical signal processing of ultra-high bit rate serial data signals

    DEFF Research Database (Denmark)

    Palushani, Evarist

    ) between dispersed OTDM data and linearly chirped pump pulses. This resulted in spectral compression, enabling the OTDM tributaries to be converted directly onto a dense wavelength division multiplexing (DWDM) grid. The serial-to-parallel conversion was successfully demonstrated for up to 640-GBd OTDM...... signals, reaching DWDM grids ranging from 100 GHz down to 25 GHz spacing, compliant with ITU-T specications in terms of wavelength spacing and allocation. The final part of this thesis presents the latest results in OTDM transmission systems in combination with digital coherent detection, which enabled...

  17. Enhanced Refocusing of Fat Signals using Optimized Multi-pulse Echo Sequences

    Science.gov (United States)

    Stokes, Ashley M.; Feng, Yesu; Mitropoulos, Tanya; Warren, Warren S.

    2012-01-01

    Endogenous magnetic resonance contrast based on the localized composition of fat in vivo can provide functional information. We found that the unequal pulse timings of the Uhrig’s Dynamical Decoupling (UDD) multipulse echo sequences significantly alter the signal intensity compared to conventional, equal-spaced Carr-Purcell-Meiboom-Gill (CPMG) sequences. The signal increases and decreases depending on the tissue and sequence parameters, as well as on the interpulse spacings; particularly strong differences were observed in fatty tissues, which have a highly structured morphology and a wide range of chemical shifts and J-couplings. We found that the predominant mechanism for fat refocusing under multipulse echo sequences is the chemical structure, with stimulated echoes playing a pivotal role. As a result, specialized pulse sequences can be designed to optimize refocusing of the fat chemical shifts and J-couplings, where the degree of refocusing can be tailored to specific types of fats. To determine the optimal time delays, we simulated various UDD and CPMG pulse sequence timings, and these results are compared to experimental results obtained on excised and in vivo fatty tissue. Applications to intermolecular multiple-quantum coherence (iMQC) imaging, where the improved echo refocusing translates directly into signal enhancements, are presented as well. PMID:22627966

  18. Development of Filtering Methods for PET Signals Contaminated by RF Pulses for Combined PET-MRI

    Science.gov (United States)

    Huh, Yoonsuk; Choi, Yong; Hong, Key Jo; Hu, Wei; Kang, Jihoon; Jung, Jin Ho; Song, Myung Sung; Park, Hyun-wook; Kim, Byung-Tae

    2013-10-01

    This paper presents the development of filtering methods for positron emission tomography (PET) signals contaminated by radio frequency (RF) pulses for combined PET and clinical 3-T magnetic resonance imaging (MRI). The filtering methods include software, hardware, and hybrid correction methods. In the software correction method, PET signals are assessed, and valid signals are identified based on the characteristics of a typical PET signal using Field-Programmable Gate Array (FPGA)-based programming. The hardware correction method makes use of differential-to-single-ended and low-pass filter circuits for PET analog signals. The hybrid correction method involves the sequential application of both the hardware and software methods. Both valid and contaminated PET signals are measured with an oscilloscope. An evaluation is then made of the performance (energy resolution, photopeak channel, total counts, and coincidence timing resolution) of the PET detector modules with and without various MR sequences (gradient echo, spin echo T1 sequence). For all correction methods, the energy resolution, photopeak position, and coincidence timing resolution with MR sequences are similar (noise signals and reduce count loss while preserving the valid analog signals of MR sequences, is reliable and useful for the development of simultaneous PET-MRI.

  19. The influence of active warming on signal quality of pulse oximetry in prehospital trauma care.

    Science.gov (United States)

    Kober, Alexander; Scheck, Thomas; Lieba, Frank; Barker, Renate; Vlach, Wolfgang; Schramm, Wolfgang; Hoerauf, Klaus

    2002-10-01

    Victims of trauma such as contusions and simple fractures are usually transported by paramedics. Because many victims are intoxicated with alcohol or other drugs, they are vulnerable to some risk of inadequate respiration. Thus, their oxygenation is monitored by noninvasive pulse oximetry. We tested the hypothesis that active warming of the whole body during transport to the hospital can improve the reliability of arterial oxygen saturation (SpO(2)) monitoring. Twenty-four trauma patients transported to hospital were included in the study and randomly assigned to two groups: one group (n = 12) was covered with normal wool blankets, and the other group (n = 12) was treated with resistive heating blankets during transport. We recorded core temperature, shivering, skin temperature at the forearm and finger, SpO(2), and hemodynamic variables. Before randomization, both groups were comparable. On arrival at the hospital, the actively warmed patients had significantly warmer core (36.1 +/- 0.3 degrees C versus 35.5 +/- 0.3 degrees C; P warmed group, the pulse oximeter had significantly fewer alerts (31 versus 58) and a significantly less time of malfunction (146 +/- 42 s versus 420 +/- 256 s) and provided more constant measurements in the actively warmed group (P warming improves pulse oximeter monitoring quality in trauma patients during transport to the hospital. Clinical trials show that pulse oximeter signal quality is limited by hypothermia. In this study we show that active whole-body warming of trauma victims improves monitoring quality during transport to the hospital.

  20. Bayesian signal processing of pulse shapes for background rejection in the Majorana Demonstrator

    Science.gov (United States)

    Shanks, Benjamin; Majorana Collaboration

    2015-10-01

    The Majorana Demonstrator uses high purity germanium (HPGe) detectors in the p-type point contact (PPC) geometry to search for neutrinoless double-beta decay (0 νββ) in 76Ge. Due to the unique electric potential created within the PPC geometry, the detailed pulse shape depends on the number of energy depositions contained within a given event. Pulse shape analysis (PSA) techniques can be used to estimate the number of separate depositions which combine to form a single pulse. This information can be used to discriminate between 0 νββ candidate events, which deposit energy at a single detector site, and gamma ray background, which can scatter and deposit energy in multiple locations. The problem of determining whether a pulse is single- or multi-site is well suited to Bayesian classifiers. Once trained via supervised machine learning, these algorithms can perform nonlinear cuts against multi-site events using the estimated probability function as a discriminator. The Bayesian approach can also be naturally extended to incorporate a model of the physical process responsible for signal generation within the detector. Presented here is an overview of the Bayesian classifier developed for use on the Demonstrator. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics Program of the National Science Foundation, and the Sanford Underground Research Facility.

  1. Design and simulation of fast-pulse control signal generator for the electro-holographic optical switch

    Science.gov (United States)

    Song, Yansheng; Ji, Jiarong; Dou, Wenhua; Wen, Changli

    2010-10-01

    The electro-holographic optical switch based on the quadratic electro-optic effect in paraelectric photorefractive crystals requires driving signal of fast pulse. The pulse rise/fall time and voltage are 10-10-10-8s and 102-103V, respectively, depending on the applications. A pulse control signal generator for the electro-holographic optical switch was designed and simulated. Considering the integration of pulse signal generator and the switch, the circuit employs three stages compact Marx generators utilizing parallel avalanche bipolar junction transistors series operated in the avalanche mode in each stage. These transistors and the crystals are mounted on printed circuit board. According to the simulated results, the output voltage ranged from 1.2kV to 1.5kV. The rise/fall time of this pulse is less than 3 nanoseconds. The pulse width is 20 nanoseconds, and trigger delay is about 1 nanosecond. The repetition rate is less than 50MHz which can be increased by reducing the pulse width of the trigger. The simulation results indicate that the pulse control signals from the designed generator can match the application of electro-holographic optical switch well.

  2. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    Science.gov (United States)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  3. Jitter model and signal processing techniques for pulse width modulation optical recording

    Science.gov (United States)

    Liu, Max M.-K.

    1991-01-01

    A jitter model and signal processing techniques are discussed for data recovery in Pulse Width Modulation (PWM) optical recording. In PWM, information is stored through modulating sizes of sequential marks alternating in magnetic polarization or in material structure. Jitter, defined as the deviation from the original mark size in the time domain, will result in error detection if it is excessively large. A new approach is taken in data recovery by first using a high speed counter clock to convert time marks to amplitude marks, and signal processing techniques are used to minimize jitter according to the jitter model. The signal processing techniques include motor speed and intersymbol interference equalization, differential and additive detection, and differential and additive modulation.

  4. Numerical investigations of signal-spectrum shaping based on conformal profile theory in optical parametric chirped pulse amplification

    Science.gov (United States)

    Li, Wenqi; Yu, Lianghong; Peng, Chun; Liang, Xiaoyan

    2017-11-01

    We proposed a theoretical description and numerical model of signal-spectrum shaping based on conformal profile theory and the three-dimensional coupling wave equations for improving the performance of optical parametric chirped pulse amplification (OPCPA). Using our model, we executed quantitative simulations of signal-spectrum shaping and compared the differences of spatiotemporal amplification characteristics between a shaped signal-spectrum and Gaussian signal-spectrum of an OPCPA based on LiB3O5 near 800 nm. By comparison, we found that the conversion efficiency from pump to signal can be dramatically boosted via signal-spectrum shaping. Meanwhile the amplified-spectrum profile, as well as the Fourier-limited pulse, can be improved significantly. We also found that the spatial spot profiles, for injecting a shaped signal or a Gaussian signal in OPCPA, are nearly the same before the saturation regime and at the maximum conversion efficiency or output energy.

  5. The indole pulse: a new perspective on indole signalling in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hannah Gaimster

    Full Text Available Indole has diverse signalling roles, including modulation of biofilm formation, virulence and stress responses. Changes are induced by indole concentrations of 0.5-1.0 mM, similar to those found in the supernatant of Escherichia coli stationary phase culture. Here we describe an alternative mode of indole signalling that promotes the survival of E. coli cells during long-term stationary phase. A mutant that has lost the ability to produce indole demonstrates reduced survival under these conditions. Significantly, the addition of 1 mM indole to the culture supernatant is insufficient to restore long-term survival to the mutant. We provide evidence that the pertinent signal in this case is not 1 mM indole in the culture supernatant but a transient pulse of intra-cellular indole at the transition from exponential growth to stationary phase. During this pulse the cell-associated indole reaches a maximum of approximately 60 mM. We argue that this is sufficient to inhibit growth and division by an ionophore-based mechanism and causes the cells to enter stationary phase before resources are exhausted. The unused resources are used to repair and maintain cells during the extended period of starvation.

  6. Photonic approach to the simultaneous measurement of the frequency, amplitude, pulse width, and time of arrival of a microwave signal.

    Science.gov (United States)

    Pan, Shilong; Fu, Jianbin; Yao, Jianping

    2012-01-01

    A photonic approach to the simultaneous measurement of the frequency, pulse amplitude (PA), pulse width (PW), and time of arrival (TOA) of an unknown pulsed microwave signal is proposed and demonstrated. The measurement is performed based on optical carrier-suppressed modulation, complementary optical filtering, low-speed photodetection, and electrical signal processing. A proof-of-concept experiment is carried out. A frequency measurement range of 2-11 GHz with a measurement error for frequency, PA, PW, and TOA within ±0.1 GHz, ±0.05 V, ±1 ns, and ±0.16 ns is achieved. © 2012 Optical Society of America

  7. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity

    Directory of Open Access Journals (Sweden)

    Alon Kalo

    2015-04-01

    Full Text Available The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

  8. Change of the pulsed eddy Current signals by the variation of the thickness of an aluminum specimen

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Ki; Shu, Dong Man [Center of Environment and Safty Measurement, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Lee, Seung Seok [R and D Center, RAYNAR Co,. Ltd, Daejeon (Korea, Republic of)

    2004-11-15

    Eddy current testing has been used for detecting the defect like fatigue crack in the conductive materials such as aluminum. The conventional eddy current testing uses a sinusoidal signal with very narrow frequency bandwidth. Whereas, the pulsed eddy current method uses a pulse signal with a broad frequency bandwidth. This allows multi-frequency eddy current testing, and the penetration depth is greater than that of the conventional eddy current testing. In this work, the pulsed eddy current instrument was developed for evaluating the metal loss. The developed instrument was consist of the pulse generator generating the square pulse of maximum 40 V, the amplifier controlled to 52 dB, the A/D converter of 16 bit 20 MHz, and the industrial personal computer for operating with Windows program. And, the probe for the pulsed eddy current was designed as the pancake type in which the sensing coil was located in the driving coil. The peak voltage did not linearly increase with the voltage of the step pulse. For the driving coil with inductance of 670 H, the peak voltage linearly increased with the step pulse voltage to 30 V. But, for the other driving coils with the inductance of 1.7 mH, 2.7 mH, 3.6 mH, 22 mH, the peak voltage linearly increased with the step pulse voltage to 20 V. The output signals of the sensing coil rapidly increased when the step pulse driving voltage was off, and the latter part of the sensing coil output voltage exponentially decreased with a time. The decrement value of tile output signals of sensing coil increased with the thickness of the aluminum test piece.

  9. Study of characteristic point identification and preprocessing method for pulse wave signals.

    Science.gov (United States)

    Sun, Wei; Tang, Ning; Jiang, Guiping

    2015-02-01

    Characteristics in pulse wave signals (PWSs) include the information of physiology and pathology of human cardiovascular system. Therefore, identification of characteristic points in PWSs plays a significant role in analyzing human cardiovascular system. Particularly, the characteristic points show personal dependent features and are easy to be affected. Acquiring a signal with high signal-to-noise ratio (SNR) and integrity is fundamentally important to precisely identify the characteristic points. Based on the mathematical morphology theory, we design a combined filter, which can effectively suppress the baseline drift and remove the high-frequency noise simultaneously, to preprocess the PWSs. Furthermore, the characteristic points of the preprocessed signal are extracted according to its position relations with the zero-crossing points of wavelet coefficients of the signal. In addition, the differential method is adopted to calibrate the position offset of characteristic points caused by the wavelet transform. We investigated four typical PWSs reconstructed by three Gaussian functions with tunable parameters. The numerical results suggested that the proposed method could identify the characteristic points of PWSs accurately.

  10. Effect of object size and acoustic wavelength on pulsed ultrasound modulated fluorescence signals

    Science.gov (United States)

    Huynh, Nam T.; Ruan, Haowen; He, Diwei; Hayes-Gill, Barrie R.; Morgan, Stephen P.

    2012-07-01

    Detection of ultrasound (US)-modulated fluorescence in turbid media is a challenge because of the low level of fluorescent light and the weak modulation of incoherent light. A very limited number of theoretical and experimental investigations have been performed, and this is, to our knowledge, the first demonstration of pulsed US-modulated fluorescence tomography. Experimental results show that the detected signal depends on the acoustic frequency and the fluorescent target's size along the ultrasonic propagation axis. The modulation depth of the detected signal is greatest when the length of the object along the acoustic axis is an odd number of half wavelengths and is weakest when the object is an integer multiple of an acoustic wavelength. Images of a fluorescent tube embedded within a 22- by 13- by 30 mm scattering gel phantom (μs~15 cm-1, g=0.93) with 1-, 1.5-, and 2 MHz frequency US are presented. The modulation depth of the detected signal changes by a factor of 5 depending on the relative size of the object and the frequency. The approach is also verified by some simple experiments in a nonscattering gel and using a theoretical model.

  11. Resolution function of nonsinusoidal radar signals. I - Range-velocity resolution with rectangular pulses

    Science.gov (United States)

    Mohamed, Nasser J.

    1990-05-01

    A generalization of a previously published ambiguity function that applies to radar known as large-relative-bandwidth radar, carrier-free radar, impulse radar, or nonsinusoidal radar is discussed. This radar has recently attracted attention because of its ability to penetrate absorbing materials used in the stealth technology. Another good application is the detection of moving targets with a small radar cross section by a look-down radar, which calls for a thumbtack ambiguity function. Since a small radar cross section in this application is typically due to the small size of the target that is coated with absorbing material, the antistealth feature of the nonsinusoidal radar is implicitly being used. The principle is presented of a resolution function (tentatively called the range-velocity or the range-Doppler resolution function) based on processing a nonsinusoidal signal consisting of N characters with a time separation TD and each character consisting of a sequence of L binary pulses of duration T. It is shown that range-velocity resolution functions approaching the ideal thumbtack function are easy to obtain. The blind speeds of the pulse-Doppler radar with sinusoidal carrier do not inherently occur, and all velocities are observed as true velocities rather than as velocities modulo the first blind speed (velocity ambiguity).

  12. Using pulse width modulation for wireless transmission of neural signals in multichannel neural recording systems.

    Science.gov (United States)

    Yin, Ming; Ghovanloo, Maysam

    2009-08-01

    We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5- mum standard CMOS process and consumes 4.5 mW from +/-1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of approximately 2.56 Mb/s.

  13. LIF and Simplified SRM Neurons Encode Signals Into Spikes via a Form of Asynchronous Pulse Sigma-Delta Modulation.

    Science.gov (United States)

    Yoon, Young C

    2017-05-01

    We show how two spiking neuron models encode continuous-time signals into spikes (action potentials, time-encoded pulses, or point processes) using a special form of sigma-delta modulation (SDM). In particular, we show that the well-known leaky integrate-and-fire (LIF) neuron and the simplified spike response model (SRM0) neuron encode the continuous-time signals into spikes via a proposed asynchronous pulse SDM (APSDM) scheme. The encoder is clock free using level-crossing sampling with a single-level quantizer, unipolar signaling, differential coding, and pulse-shaping filters. The decoder, in the form of a low-pass filter or bandpass smoothing filter, can be fed with the spikes to reconstruct an estimate of the signal. The density of the spikes reflects the amplitude of the encoded signal. Numerical examples illustrating the concepts and the signaling efficiency of APSDM vis-à-vis SDM for comparable reconstruction accuracies are presented. We anticipate these results will facilitate the design of spiking neurons and spiking neural networks as well as cross fertilizations between the fields of neural coding and the SDM.

  14. Verification of Non-Invasive Blood Glucose Measurement Method Based on Pulse Wave Signal Detected by FBG Sensor System.

    Science.gov (United States)

    Kurasawa, Shintaro; Koyama, Shouhei; Ishizawa, Hiroaki; Fujimoto, Keisaku; Chino, Shun

    2017-11-23

    This paper describes and verifies a non-invasive blood glucose measurement method using a fiber Bragg grating (FBG) sensor system. The FBG sensor is installed on the radial artery, and the strain (pulse wave) that is propagated from the heartbeat is measured. The measured pulse wave signal was used as a collection of feature vectors for multivariate analysis aiming to determine the blood glucose level. The time axis of the pulse wave signal was normalized by two signal processing methods: the shortest-time-cut process and 1-s-normalization process. The measurement accuracy of the calculated blood glucose level was compared with the accuracy of these signal processing methods. It was impossible to calculate a blood glucose level exceeding 200 mg/dL in the calibration curve that was constructed by the shortest-time-cut process. In the 1-s-normalization process, the measurement accuracy of the blood glucose level was improved, and a blood glucose level exceeding 200 mg/dL could be calculated. By verifying the loading vector of each calibration curve to calculate the blood glucose level with a high measurement accuracy, we found the gradient of the peak of the pulse wave at the acceleration plethysmogram greatly affected.

  15. Pulse shaping using the optical Fourier transform technique - for ultra-high-speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment.......This paper reports on the generation of a 1.6 ps FWHM flat-top pulse using the optical Fourier transform technique. The pulse is validated in a 320 Gbit/s demultiplexing experiment....

  16. Flat-top pulse generation by the optical Fourier transform technique for ultrahigh speed signal processing

    DEFF Research Database (Denmark)

    Palushani, Evarist; Oxenløwe, Leif Katsuo; Galili, Michael

    2009-01-01

    This paper reports on the generation of 1.6-ps fullwidth at half-maximum flat-top pulses by the optical Fourier transform technique, and the utilization of these pulses in a 320-Gb/s demultiplexing experiment. It is demonstrated how a narrow pulse having a 15-nm wide third-order super...

  17. Response Analysis on Electrical Pulses under Severe Nuclear Accident Temperature Conditions Using an Abnormal Signal Simulation Analysis Module

    Directory of Open Access Journals (Sweden)

    Kil-Mo Koo

    2012-01-01

    Full Text Available Unlike design basis accidents, some inherent uncertainties of the reliability of instrumentations are expected while subjected to harsh environments (e.g., high temperature and pressure, high humidity, and high radioactivity occurring in severe nuclear accident conditions. Even under such conditions, an electrical signal should be within its expected range so that some mitigating actions can be taken based on the signal in the control room. For example, an industrial process control standard requires that the normal signal level for pressure, flow, and resistance temperature detector sensors be in the range of 4~20 mA for most instruments. Whereas, in the case that an abnormal signal is expected from an instrument, such a signal should be refined through a signal validation process so that the refined signal could be available in the control room. For some abnormal signals expected under severe accident conditions, to date, diagnostics and response analysis have been evaluated with an equivalent circuit model of real instruments, which is regarded as the best method. The main objective of this paper is to introduce a program designed to implement a diagnostic and response analysis for equivalent circuit modeling. The program links signal analysis tool code to abnormal signal simulation engine code not only as a one body order system, but also as a part of functions of a PC-based ASSA (abnormal signal simulation analysis module developed to obtain a varying range of the R-C circuit elements in high temperature conditions. As a result, a special function for abnormal pulse signal patterns can be obtained through the program, which in turn makes it possible to analyze the abnormal output pulse signals through a response characteristic of a 4~20 mA circuit model and a range of the elements changing with temperature under an accident condition.

  18. Digital signal processing of the wideband external pulse recorded during cuff deflation: a new way to measure blood pressure.

    Science.gov (United States)

    Yeol, Joe W; Ryu, Yeong S; Blank, Seymour G

    2006-01-01

    Aa new method of measuring blood pressure (BP) is presented. This technique involves automatic analysis of the wideband external pulse (WEP) recorded by a pressure sensor positioned over the brachial artery during standard BP cuff deflation. Three distinct components of this "K" or "WEP" signal can be defined: K1, K2, and K3 [1]. Each component has a different shape and "appearance/disappearance property. K1 is a low frequency inaudible signal present with cuff pressure above systolic. The K2 signal appears at SP and disappears at Dp (K2-algorithm) and can be used to measure BP. Using this property, the "K2-algorithm" has been shown to be more accurate than the auscultatory technique [1]. To implement an automatic measurement using the K2-algorithm, signal processing techniques are applied to K signals.

  19. Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals.

    Science.gov (United States)

    Yu, Lianchun; Liu, Liwei

    2014-03-01

    The generation and conduction of action potentials (APs) represents a fundamental means of communication in the nervous system and is a metabolically expensive process. In this paper, we investigate the energy efficiency of neural systems in transferring pulse signals with APs. By analytically solving a bistable neuron model that mimics the AP generation with a particle crossing the barrier of a double well, we find the optimal number of ion channels that maximizes the energy efficiency of a neuron. We also investigate the energy efficiency of a neuron population in which the input pulse signals are represented with synchronized spikes and read out with a downstream coincidence detector neuron. We find an optimal number of neurons in neuron population, as well as the number of ion channels in each neuron that maximizes the energy efficiency. The energy efficiency also depends on the characters of the input signals, e.g., the pulse strength and the interpulse intervals. These results are confirmed by computer simulation of the stochastic Hodgkin-Huxley model with a detailed description of the ion channel random gating. We argue that the tradeoff between signal transmission reliability and energy cost may influence the size of the neural systems when energy use is constrained.

  20. An Analysis of CONUS Based Deployment of Pseudolites for Positioning, Navigation and Timing (PNT) Systems

    Science.gov (United States)

    2015-09-17

    failing to account for antenna height, the landscape (i.e. urban , sub- urban , rural), and other factors that could attenuate the signal, such as...provide PNT for ground users. In a complex urban environment with constantly changing city landscapes and few distinct terrain features, ground users...is required to ensure the PNT data generated in these systems is accurate. This research studies a potential architecture for deploying a nationwide

  1. Unipolar pulse and bipolar noise testing of wideband signal noise conditioner (MC476-0132-0034)

    Science.gov (United States)

    Harris, J. E.

    1977-01-01

    Information is presented on performance characteristics of the shuttle orbiter wideband signal conditioner when subjected to special types of input signals. Design analysis of the signal flow path through the signal conditioning amplifier was performed followed by acutal testing of the amplifier with various signal inputs. Results indicate that the signal conditioner should perform acceptably if the shuttle orbiter flight vibration signal levels are in accord with preflight predictions.

  2. Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors

    NARCIS (Netherlands)

    Velchev, I.; Ubachs, W.M.G.

    2005-01-01

    Spontaneous scattering noise is incorporated as a build-up source in a fully transient stimulated Brillouin scattering (SBS) model. This powerful simulation tool is successfully applied for a quantitative investigation of the fluctuations in the output pulse duration of SBS pulse compressors. The

  3. Complex extreme learning machine applications in terahertz pulsed signals feature sets.

    Science.gov (United States)

    Yin, X-X; Hadjiloucas, S; Zhang, Y

    2014-11-01

    This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed

  4. Radial position of single-site gamma-ray interactions from a parametric pulse shape analysis of germanium detector signals

    CERN Document Server

    Orrell, J L; Cooper, M W; Kephart, J D; Seifert, C E; Orrell, John L.; Aalseth, Craig E.; Cooper, Matthew W.; Kephart, Jeremy D.; Seifert, Carolyn E.

    2007-01-01

    Pulse shape analysis of germanium gamma-ray spectrometer signals can yield information on the radial position of individual gamma-ray interactions within the germanium crystal. A parametric pulse shape analysis based on calculation of moments of the reconstructed current pulses from a closed-ended coaxial germanium detector is used to preferentially select single-site gamma-ray interactions. The double escape peak events from the 2614.5 keV gamma-ray of 208-Tl are used as a training set to optimize the single-site event selection region in the pulse shape parameter space. A collimated source of 320.1 keV gamma-rays from 51-Cr is used to scan different radial positions of the same semi-coaxial germanium detector. The previously trained single-site selection region is used to preferentially identify the single-site photoelectric absorption events from the 320.1 keV full-energy peak. From the identified events, a comparison of the pulse shape parameter space distributions between different scan positions allows ...

  5. Pulse height distribution of signals produced by exposing a thin GEM chamber to beta rays from an Sr-90 source

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, B. J.; Ha, Y. J.; Hahn, C. H. [Changwon National University, Changwon (Korea, Republic of); Park, S. T. [University of Texas at Arlington, Texas (United States); Yi, C. Y. [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Lee, R. [Ewha Womans University, Seoul (Korea, Republic of)

    2014-05-15

    Researchers at Changwon National University's Radiation Detector Development Laboratory(RDD) fabricated a single-channel double-GEM (gas electron multiplier) chamber and measured the pulse height distribution of signals produced by exposing the chamber to an Sr-90 source provided by the Korea Research Institute of Standards and Science(KRISS). A beta-ray electron incident on the GEM chamber ionizes gaseous molecules in the drift region of the chamber by means of electromagnetic interactions. After the leased electrons are amplified by electron avalanches in the GEM stages, the multiplied electrons go from the lowest GEM foil toward the anode of the chamber and induce one signal pulse, corresponding to the incident electron, on the readout pad. The charge signal distribution measured during Sr-90 radioactive source irradiation was compared with the simulation done by using a Landau probability distribution. The energy loss distribution of beta-ray electrons, which deposited part of their energy in a thin GEM chamber while traversing gases within the drift region of that chamber, was in good agreement with the calculation of the Landau probability distribution. The pulse height distributions for energy losses of beta-ray electrons incident on the chamber due to Sr-90 disintegrations were observed in order to select a suitable gas mixture for the chamber. The ratios of the Ar/CO{sub 2} gas were 75/25, 80/20, 85/15, and 90/10.

  6. Automatic Frequency Identification under Sample Loss in Sinusoidal Pulse Width Modulation Signals Using an Iterative Autocorrelation Algorithm

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2016-08-01

    Full Text Available In this work, we present a simple algorithm to calculate automatically the Fourier spectrum of a Sinusoidal Pulse Width Modulation Signal (SPWM. Modulated voltage signals of this kind are used in industry by speed drives to vary the speed of alternating current motors while maintaining a smooth torque. Nevertheless, the SPWM technique produces undesired harmonics, which yield stator heating and power losses. By monitoring these signals without human interaction, it is possible to identify the harmonic content of SPWM signals in a fast and continuous manner. The algorithm is based in the autocorrelation function, commonly used in radar and voice signal processing. Taking advantage of the symmetry properties of the autocorrelation, the algorithm is capable of estimating half of the period of the fundamental frequency; thus, allowing one to estimate the necessary number of samples to produce an accurate Fourier spectrum. To deal with the loss of samples, i.e., the scan backlog, the algorithm iteratively acquires and trims the discrete sequence of samples until the required number of samples reaches a stable value. The simulation shows that the algorithm is not affected by either the magnitude of the switching pulses or the acquisition noise.

  7. A review of signal processing used in the implementation of the pulse oximetry photoplethysmographic fluid responsiveness parameter.

    Science.gov (United States)

    Addison, Paul S

    2014-12-01

    ΔPOP is a physiological parameter derived from the respiration-induced change in the pulse oximetry plethysmographic (POP) waveform or "pleth." It has been proposed as a proxy for pulse pressure variation used in the determination of the response to intravascular volume expansion in hypovolemic patients. Many studies have now reported on the parameter, and many research groups have constructed algorithms for its computation from the first principles where the implementation details have been described. This review focuses on the signal processing aspects of ΔPOP, as reported in the literature, and aims to provide a comprehensive summary of the wide-ranging algorithmic strategies that have been attempted in its computation. A search was conducted for articles concerning the use of ΔPOP as a fluid responsiveness parameter. In particular, articles concerning the correlation between ΔPOP and pulse pressure variation were targeted. Comments and replies to comments by the authors in which signal processing aspects were discussed were also included in the review. The parameter is first defined, and a history of the early work surrounding pleth-based fluid responsiveness parameters is presented. This is followed by an overview of the signal processing methods used in the reported studies, including details of exclusion criteria, manual filtering (preprocessing), gain change issues, acquisition details, selection of registration periods, averaging methods, physiological influences on the pleth, and comments by the investigators themselves. It is concluded that to develop a robust, fully automated ΔPOP algorithm for use in the clinical environment, more rigorous signal processing is required. Specifically, signals should be evaluated over significant periods of time, with emphasis on the quality and temporal relevance of the information.

  8. Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat.

    Directory of Open Access Journals (Sweden)

    Xiao-Feng Li

    2009-12-01

    Full Text Available Kisspeptin and its G protein-coupled receptor (GPR 54 are essential for activation of the hypothalamo-pituitary-gonadal axis. In the rat, the kisspeptin neurons critical for gonadotropin secretion are located in the hypothalamic arcuate (ARC and anteroventral periventricular (AVPV nuclei. As the ARC is known to be the site of the gonadotropin-releasing hormone (GnRH pulse generator we explored whether kisspeptin-GPR54 signalling in the ARC regulates GnRH pulses.We examined the effects of kisspeptin-10 or a selective kisspeptin antagonist administration intra-ARC or intra-medial preoptic area (mPOA, (which includes the AVPV, on pulsatile luteinizing hormone (LH secretion in the rat. Ovariectomized rats with subcutaneous 17beta-estradiol capsules were chronically implanted with bilateral intra-ARC or intra-mPOA cannulae, or intra-cerebroventricular (icv cannulae and intravenous catheters. Blood samples were collected every 5 min for 5-8 h for LH measurement. After 2 h of control blood sampling, kisspeptin-10 or kisspeptin antagonist was administered via pre-implanted cannulae. Intranuclear administration of kisspeptin-10 resulted in a dose-dependent increase in circulating levels of LH lasting approximately 1 h, before recovering to a normal pulsatile pattern of circulating LH. Both icv and intra-ARC administration of kisspeptin antagonist suppressed LH pulse frequency profoundly. However, intra-mPOA administration of kisspeptin antagonist did not affect pulsatile LH secretion.These data are the first to identify the arcuate nucleus as a key site for kisspeptin modulation of LH pulse frequency, supporting the notion that kisspeptin-GPR54 signalling in this region of the mediobasal hypothalamus is a critical neural component of the hypothalamic GnRH pulse generator.

  9. A digital signal processor-based pulse programmer with performance of run-time information handling for magnetic resonance imaging

    Science.gov (United States)

    Xiao, Liang; Li, Lin; Nie, Wei; Xie, Xiaoming; Wan, Hongjie

    2015-06-01

    A pulse programmer for magnetic resonance imaging based on a digital signal processor (DSP) is described. The pulse programmer not only implements event triggering and control line generation, but also performs the run-time information handling. The DSP, which has features that include a 32-bit data bus, a 24-bit address bus and a clock rate of 60 MHz, is used as the sequence operator. The DSP connects the field programmable gate array (FPGA) devices of all the spectrometer modules via its external bus, and manipulates the operation of each module via setting the control port of the corresponding FPGA. In addition, the run-time information of the spectrometer, which includes the operation status of each module and the external triggers, can be obtained easily using the read instruction, and the operation exceptions of the spectrometer can be treated quickly via the DSP’s interrupt mechanism. Up to 32 control lines can be generated simultaneously in an event, and the minimum interval between successive events is 50 ns. The pulse sequence program is written in the C++ language and is mainly composed of several predefined procedures. The performance of the proposed pulse programmer is validated by multiple imaging experiments.

  10. Evaluation of arterial stiffness by finger-toe pulse wave velocity: optimization of signal processing and clinical validation.

    Science.gov (United States)

    Obeid, Hasan; Khettab, Hakim; Marais, Louise; Hallab, Magid; Laurent, Stéphane; Boutouyrie, Pierre

    2017-08-01

    Carotid-femoral pulse wave velocity (PWV) (cf-PWV) is the gold standard for measuring aortic stiffness. Finger-toe PWV (ft-PWV) is a simpler noninvasive method for measuring arterial stiffness. Although the validity of the method has been previously assessed, its accuracy can be improved. ft-PWV is determined on the basis of a patented height chart for the distance and the pulse transit time (PTT) between the finger and the toe pulpar arteries signals (ft-PTT). The objective of the first study, performed in 66 patients, was to compare different algorithms (intersecting tangents, maximum of the second derivative, 10% threshold and cross-correlation) for determining the foot of the arterial pulse wave, thus the ft-PTT. The objective of the second study, performed in 101 patients, was to investigate different signal processing chains to improve the concordance of ft-PWV with the gold-standard cf-PWV. Finger-toe PWV (ft-PWV) was calculated using the four algorithms. The best correlations relating ft-PWV and cf-PWV, and relating ft-PTT and carotid-femoral PTT were obtained with the maximum of the second derivative algorithm [PWV: r = 0.56, P signal processing chain. Selecting the maximum of the second derivative algorithm for detecting the foot of the pressure waveform, and combining it with an optimized signal processing chain, improved the accuracy of ft-PWV measurement in the current population sample. Thus, it makes ft-PWV very promising for the simple noninvasive determination of aortic stiffness in clinical practice.

  11. Single-resonance diffraction gratings for time-domain pulse transformations: integration of optical signals.

    Science.gov (United States)

    Bykov, Dmitry A; Doskolovich, Leonid L; Soifer, Victor A

    2012-08-01

    A general transformation of the optical pulse envelope implemented by a single-resonance diffraction grating is studied. The particular cases considered include optical pulse integration and differentiation implemented by the grating in the Wood anomalies and the fractional integration and differentiation of order 1/2 implemented in the Rayleigh-Wood anomalies. The extraordinary-optical-transmission plasmonic gratings are shown to be well suited for the integration in the transmission. Diffraction gratings to perform the integration and semi-integration of optical pulses with temporal features in the picosecond range are designed. Numerical simulations based on the rigorous coupled-wave analysis of Maxwell's equations are in good agreement with presented theoretical analysis.

  12. Design and array signal suggestion of array type pulsed eddy current probe for health monitoring of metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)

    2015-10-15

    An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

  13. Enhancing acoustic signal quality by rapidly switching between pulse-echo and through-transmission using diplexers

    Science.gov (United States)

    Valencia, Juan D.; Diaz, Aaron A.; Tucker, Brian J.

    2008-03-01

    The increase of terrorism and its global impact has made the screening of the contents of liquid-filled containers a necessity. The ability to evaluate the contents of a container rapidly and accurately is a critical tool in maintaining global safety and security. Due to the immense quantities and large variety of containers shipped worldwide, there is a need for a technology that enables rapid and effective ways of conducting non-intrusive container inspections. Such inspections can be performed utilizing "through-transmission" or "pulse-echo" acoustic techniques, in combination with multiple frequency excitation pulses or waveforms. The challenge is combining and switching between the different acoustic techniques without distorting the excitation pulse or waveform, degrading or adding noise to the receive signal; while maintaining a portable, low-power, low-cost, and easy to use system. The Pacific Northwest National Laboratory (PNNL) has developed a methodology and prototype device focused on this challenge. The prototype relies on an advanced diplexer circuit capable of rapidly switching between both "through-transmission" and "pulse-echo" detection modes. This type of detection requires the prototype to isolate the pulsing circuitry from the receiving circuitry to prevent damage and reduce noise. The results of this work demonstrate that an advanced diplexer circuit can be effective; however, some bandwidth issues exist. This paper focuses on laboratory measurements and test results acquired with the PNNL prototype device as applied to several types of liquid-filled containers. Results of work conducted in the laboratory will be presented and future measurement platform enhancements will be discussed.

  14. [Simulation Analysis of the Pulse Signal on the Electricity Network of Cardiovascular System].

    Science.gov (United States)

    Liu, Ying; Yin, Yanfei; Zhang, Defa; Wang, Menghong; Bi, Yongqiang

    2015-12-01

    Pulse waves contain abundant physiological and pathological information of human body. Research of the relationship between pulse wave and human cardiovascular physiological parameters can not only help clinical diagnosis and treatment of cardiovascular diseases, but also contribute to develop many new medical instruments. Based on the traditional double elastic cavity model, the human cardiovascular system was established by using the electric network model in this paper. The change of wall pressure and blood flow in artery was simulated. And the influence of the peripheral resistance and vessel compliance to the distribution of blood flow in artery was analyzed. The simulation results were compared with the clinical monitoring results to predict the physiological and pathological state of human body. The result showed that the simulation waveform of arterial wall pressure and blood flow was stabile after the second cardiac cycle. With the increasing of peripheral resistance, the systolic blood pressure of artery increased, the diastolic blood pressure had no significant change, and the pulse pressure of artery increased gradually. With the decreasing of vessel compliance, the vasoactivity became worse and the pulse pressure increased correspondingly. The simulation results were consistent with the clinical monitoring results. The increasing of peripheral resistance and decreasing of vascular compliance indicated that the incidence of hypertension and atherosclerosis was increased.

  15. Oxygen-enhanced lung magnetic resonance imaging: influence of inversion pulse slice selectivity on inversion recovery half-Fourier single-shot turbo spin-echo signal.

    Science.gov (United States)

    Takenaka, Daisuke; Puderbach, Michael; Ohno, Yoshiharu; Risse, Frank; Ley, Sebastian; Sugimura, Kazuro; Kauczor, Hans-Ulrich

    2011-05-01

    The purpose of this study was to evaluate in vivo the influence of inversion pulse slice selectivity on oxygen-enhanced magnetic resonance imaging (MRI). Thirteen healthy volunteers were studied with a two-dimensional cardiac- and respiratory-gated adiabatic inversion-recovery half-Fourier single-shot turbo spin-echo (HASTE) sequence with either slice-selective or non-slice-selective inversion recovery (IR) pulse at inversion times increasing from 300 to 1400 ms. The signal-to-noise ratio (SNR) at every inversion time (TI), real signal difference (ΔSI), and relative enhancement ratio of lung parenchyma at TI ≥ 800 ms were statistically compared for oxygen-enhanced and non-oxygen-enhanced MR images with slice-selective or non-slice-selective IR pulses. The SNRs of acquisitions with slice-selective IR pulses were significantly higher than those of non-slice-selective IR pulses (P < 0.05). At TI 800 ms, the ΔSI of lung parenchyma on IR-HASTE images with slice-selective inversion pulse type was significantly higher than on that with the non-slice-selective type (P < 0.05). Relative enhancement ratios of the slice-selective IR pulses were significantly lower than those of non-slice-selective IR pulses at TIs between 800 and 1400 ms (P < 0.05). Slice selectivity of inversion pulse type affects oxygen-enhanced MRI in vivo.

  16. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils

    Energy Technology Data Exchange (ETDEWEB)

    Nicolodelli, Gustavo, E-mail: gunicolodelli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Senesi, Giorgio Saverio, E-mail: giorgio.senesi@imip.cnr.it [Institute of Inorganic Methodologies and Plasmas, CNR, Bari, 70126 Bari (Italy); Romano, Renan Arnon, E-mail: renan.romano@gmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Physics Institute of São Carlos, University of São Paulo, IFSC-USP, Av. Trabalhador são-carlense, 400 Pq. Arnold Schimid, 13566-590 São Carlos, SP (Brazil); Oliveira Perazzoli, Ivan Luiz de, E-mail: ivanperazzoli@hotmail.com [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil); Milori, Débora Marcondes Bastos Pereira, E-mail: debora.milori@embrapa.br [Embrapa Instrumentation, Rua XV de Novembro, 1452, CEP 13560-970 São Carlos, SP (Brazil)

    2015-09-01

    Laser-induced breakdown spectroscopy (LIBS) is a well-known consolidated analytical technique employed successfully for the qualitative and quantitative analysis of solid, liquid, gaseous and aerosol samples of very different nature and origin. Several techniques, such as dual-pulse excitation setup, have been used in order to improve LIBS's sensitivity. The purpose of this paper was to optimize the key parameters as excitation wavelength, delay time and interpulse, that influence the double pulse (DP) LIBS technique in the collinear beam geometry when applied to the analysis at atmospheric air pressure of soil samples of different origin and texture from extreme regions of Brazil. Additionally, a comparative study between conventional single pulse (SP) LIBS and DP LIBS was performed. An optimization of DP LIBS system, choosing the correct delay time between the two pulses, was performed allowing its use for different soil types and the use of different emission lines. In general, the collinear DP LIBS system improved the analytical performances of the technique by enhancing the intensity of emission lines of some elements up to about 5 times, when compared with conventional SP-LIBS, and reduced the continuum emission. Further, the IR laser provided the best performance in re-heating the plasma. - Highlights: • The correct choice of the delay time between the two pulses is crucial for the DP system. • An optimization of DP LIBS system was performed allowing its use for different soil and the use of different emission lines. • The DP LIBS system improved the analytical performances of the technique up to about 5 times, when compared with SP LIBS. • The IR laser provided the best performance in re-heating the plasma.

  17. Gaussian Pulse-Based Two-Threshold Parallel Scaling Tone Reservation for PAPR Reduction of OFDM Signals

    Directory of Open Access Journals (Sweden)

    Lei Guan

    2011-01-01

    Full Text Available Tone Reservation (TR is a technique proposed to combat the high Peak-to-Average Power Ratio (PAPR problem of Orthogonal Frequency Division Multiplexing (OFDM signals. However conventional TR suffers from high computational cost due to the difficulties in finding an effective cancellation signal in the time domain by using only a few tones in the frequency domain. It also suffers from a high cost of hardware implementation and long handling time delay issues due to the need to conduct multiple iterations to cancel multiple high signal peaks. In this paper, we propose an efficient approach, called two-threshold parallel scaling, for implementing a previously proposed Gaussian pulse-based Tone Reservation algorithm. Compared to conventional approaches, this technique significantly reduces the hardware implementation complexity and cost, while also reducing signal processing time delay by using just two iterations. Experimental results show that the proposed technique can effectively reduce the PAPR of OFDM signals with only a very small number of reserved tones and with limited usage of hardware resources. This technique is suitable for any OFDM-based communication systems, especially for Digital Video Broadcasting (DVB systems employing large IFFT/FFT transforms.

  18. Noninvasive probing of the human body with electromagnetic pulses: Modeling of the signal path

    Science.gov (United States)

    Thiel, F.; Seifert, F.

    2009-02-01

    The biomedical applications of ultrawideband (UWB) radar promise a very important means to remotely monitor physiological signatures such as myocardial deformation and respiration. Accurate numerical and analytical techniques to predict the propagation of UWB signals in biological tissue are of great interests to researchers as an aid in developing signal processing algorithms. We propose applying an analytic transmit/receive signal path model considering the antennas, the human body, and the signal processing part of the UWB unit. Furthermore, the frequency dependency of the different biological tissues' dielectric properties and the individual continuous motion of intrathoracic tissue layers are incorporated.

  19. Detection of spontaneous pulse using the acceleration signals acquired from CPR feedback sensor in a porcine model of cardiac arrest.

    Directory of Open Access Journals (Sweden)

    Liang Wei

    Full Text Available Reliable detection of return of spontaneous circulation with minimal interruptions of chest compressions is part of high-quality cardiopulmonary resuscitation (CPR and routinely done by checking pulsation of carotid arteries. However, manual palpation was time-consuming and unreliable even if performed by expert clinicians. Therefore, automated accurate pulse detection with minimal interruptions of chest compression is highly desirable during cardiac arrest especially in out-of-hospital settings.To investigate whether the acceleration (ACC signals acquired from accelerometer-based CPR feedback sensor can be used to distinguish perfusing rhythm (PR from pulseless electrical activity (PEA in a porcine model of cardiac arrest.Cardiac arrest was induced in 49 male adult pigs. ECG, arterial blood pressure (ABP and ACC waveforms were simultaneously recorded during CPR. 3-second segments containing compression-free signals during chest compression pauses were extracted and only those segments with organized rhythm were used for analysis. PR was defined as systolic arterial pressure >60 mmHg and pulse pressure >10 mmHg, while PEA was defined as an organized rhythm that does not meet the above criteria for PR. Peak correlation coefficient (CCp of the cross-correlation function between pre-processed ECG and ACC, was used to discriminate PR and PEA.63 PR and 153 PEA were identified from the total of 1025 extracted segments. CCp was significantly higher for PR as compared to PEA (0.440±0.176 vs. 0.067±0.042, p<0.01 and highly correlated with ABP (r = 0.848, p<0.001. The area under the receiver operating characteristic curve, sensitivity, specificity and accuracy were 0.965, 93.6%, 97.5% and 96.7% for the ACC-based automatic spontaneous pulse detection.In this animal model, the ACC signals acquired from an accelerometer-based CPR feedback sensor can be used to detect the presence of spontaneous pulse with high accuracy.

  20. Detection of spontaneous pulse using the acceleration signals acquired from CPR feedback sensor in a porcine model of cardiac arrest.

    Science.gov (United States)

    Wei, Liang; Chen, Gang; Yang, Zhengfei; Yu, Tao; Quan, Weilun; Li, Yongqin

    2017-01-01

    Reliable detection of return of spontaneous circulation with minimal interruptions of chest compressions is part of high-quality cardiopulmonary resuscitation (CPR) and routinely done by checking pulsation of carotid arteries. However, manual palpation was time-consuming and unreliable even if performed by expert clinicians. Therefore, automated accurate pulse detection with minimal interruptions of chest compression is highly desirable during cardiac arrest especially in out-of-hospital settings. To investigate whether the acceleration (ACC) signals acquired from accelerometer-based CPR feedback sensor can be used to distinguish perfusing rhythm (PR) from pulseless electrical activity (PEA) in a porcine model of cardiac arrest. Cardiac arrest was induced in 49 male adult pigs. ECG, arterial blood pressure (ABP) and ACC waveforms were simultaneously recorded during CPR. 3-second segments containing compression-free signals during chest compression pauses were extracted and only those segments with organized rhythm were used for analysis. PR was defined as systolic arterial pressure >60 mmHg and pulse pressure >10 mmHg, while PEA was defined as an organized rhythm that does not meet the above criteria for PR. Peak correlation coefficient (CCp) of the cross-correlation function between pre-processed ECG and ACC, was used to discriminate PR and PEA. 63 PR and 153 PEA were identified from the total of 1025 extracted segments. CCp was significantly higher for PR as compared to PEA (0.440±0.176 vs. 0.067±0.042, pfeedback sensor can be used to detect the presence of spontaneous pulse with high accuracy.

  1. Reduction of MRI signal distortion from titanium intracavitary brachytherapy applicator by optimizing pulse sequence parameters.

    Science.gov (United States)

    Sullivan, Thomas P; Harkenrider, Matthew M; Surucu, Murat; Wood, Abbie M; Yacoub, Joseph H; Shea, Steven M

    2017-11-22

    To demonstrate that optimized pulse sequence parameters for a T2-weighted (T2w) fast spin echo acquisition reduced artifacts from a titanium brachytherapy applicator compared to conventional sequence parameters. Following Institutional Review Board approval and informed consent, seven patients were successfully imaged with both standard sagittal T2w fast spin echo parameters (voxel size of 0.98 × 0.78 × 4.0 mm 3 ; readout bandwidth of 200 Hz/px; repetition time of 2800 ms; echo time of 91 ms; echo train length of 15; 36 slices; and imaging time of 3:16 min) and an additional optimized T2w sequence (voxel size of 0.98 × 0.98 × 4.0 mm 3 ; readout bandwidth of 500 Hz/px; repetition time of 3610 ms; echo time of 91 ms; echo train length of 25; 18-36 slices; and imaging time of 1:15-2:30 min), which had demonstrated artifact reduction in prior phantom work. Visualized intracavitary tandem was hand-segmented by two of the authors. Three body imaging radiologists assessed image quality and intraobserver agreement scores were analyzed. The average segmented volume of the intracavitary applicator significantly (p parameters as compared to the standard pulse sequence. Comparison of experimental and standard T2w sequence qualitative scores for each reviewer showed no significant differences between the two techniques. This study demonstrated that pulse sequence parameter optimization can significantly reduce distortion artifact from titanium applicators while maintaining image quality and reasonable imaging times. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Novel computation of pulse transit time from multi-channel PPG signals by wavelet transform

    Directory of Open Access Journals (Sweden)

    Pielmuş Alexandru-Gabriel

    2016-09-01

    Full Text Available Being able to accurately monitor blood pressure in a reliable, truly non-invasive manner is a highly sought after goal within the biomedical community. In this paper we propose and assess a system, methodology and algorithm for unobtrusively obtaining true pulse transit time data from readily accessible peripheral locations, such as the hand, using a highly synchronous body-sensor-network encompassing an electrocardiogram- and dual mode photoplethysmogram sensor node. The results suggest the feasibility of acquiring such data, which strongly correlates with the recorded reference blood pressure, and can therefore be further employed to track changes thereof.

  3. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS.

    Science.gov (United States)

    Diwakar, Prasoon K; Harilal, Sivanandan S; LaHaye, Nicole L; Hassanein, Ahmed; Kulkarni, Pramod

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes.

  4. Optimization of Contrast-to-Tissue Ratio by Adaptation of Transmitted Ternary Signal in Ultrasound Pulse Inversion Imaging

    Directory of Open Access Journals (Sweden)

    Sébastien Ménigot

    2013-01-01

    Full Text Available Ultrasound contrast imaging has provided more accurate medical diagnoses thanks to the development of innovating modalities like the pulse inversion imaging. However, this latter modality that improves the contrast-to-tissue ratio (CTR is not optimal, since the frequency is manually chosen jointly with the probe. However, an optimal choice of this command is possible, but it requires precise information about the transducer and the medium which can be experimentally difficult to obtain, even inaccessible. It turns out that the optimization can become more complex by taking into account the kind of generators, since the generators of electrical signals in a conventional ultrasound scanner can be unipolar, bipolar, or tripolar. Our aim was to seek the ternary command which maximized the CTR. By combining a genetic algorithm and a closed loop, the system automatically proposed the optimal ternary command. In simulation, the gain compared with the usual ternary signal could reach about 3.9 dB. Another interesting finding was that, in contrast to what is generally accepted, the optimal command was not a fixed-frequency signal but had harmonic components.

  5. Pulsed IRSL: A stable and fast bleaching luminescence signal from feldspar for dating Quaternary sediments

    DEFF Research Database (Denmark)

    Tsukamoto, Sumiko; Kondo, Reisuke; Lauer, Tobias

    2017-01-01

    Elevated temperature post-infrared infrared stimulated luminescence (post-IR IRSL; pIRIR) dating method using feldspar has led to a significant advancement in dating Quaternary sediments, as this signal has been shown to be stable on geological time scales. In comparison to the conventional IRSL,...

  6. Intense pulsed light enhances transforming growth factor beta1/Smad3 signaling in acne-prone skin.

    Science.gov (United States)

    Ali, Musheera M; Porter, Rebecca M; Gonzalez, Maria L

    2013-09-01

    Recently, much interest has been generated in the use of intense pulsed light (IPL) sources in the treatment of various skin conditions. However, the underlying mechanism for its therapeutic action has not been elucidated. To investigate the effect of IPL on the in vivo expression of transforming growth factor beta1 (TGF-β1) and on the immunolocalization of Smad3 in biopsies obtained from perilesional skin in patients with mild-to-moderate inflammatory acne vulgaris. Biopsies obtained from 20 patients with inflammatory acne vulgaris at baseline (B1) and post-IPL treatment (B2 = 48 h after first treatment and B3 = 1 week after final treatment) were immunohistochemically analyzed to determine the expression of TGF-β1 and the immunolocalization of Smad3. Digital images were semiquantitatively assessed using image analysis software. Intense pulsed light elicited a consistent increase in epidermal TGF-β1 expression (B2 vs. B1: P = 0.004 and B3 vs. B1: P = 0.007). Furthermore, it resulted in enhanced nuclear immunolocalization of Smad3 (B2 vs. B1: epidermis, P = 0.000055 and dermis, P = 0.014; B3 vs. B1: epidermis, P = 0.00024 and dermis, P = 0.008). Intense pulsed light upregulates TGF-β1/Smad3 signaling in perilesional skin obtained from patients with mild-to-moderate inflammatory acne vulgaris. Further experiments on lesional skin and downstream effects are warranted to determine whether it may play a role in IPL-induced resolution of acne vulgaris. © 2013 Wiley Periodicals, Inc.

  7. Isotopic identification using Pulse Shape Analysis of current signals from silicon detectors: Recent results from the FAZIA collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, G., E-mail: pastore@fi.infn.it [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Gruyer, D. [INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Ottanelli, P. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Le Neindre, N. [LPC Caen, Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen (France); Pasquali, G. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Alba, R. [INFN LNS, Via S.Sofia 62, 95123 Catania (Italy); Barlini, S.; Bini, M. [Dipartimento di Fisica, Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Bonnet, E. [SUBATECH, EMN-IN2P3/CNRS-Université de Nantes, Nantes (France); GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); Borderie, B. [Institut de Physique Nucléaire, CNRS-IN2P3, Univ. Paris-Sud, Université Paris-Saclay, F-91406 Orsay Cedex (France); Bougault, R. [LPC Caen, Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen (France); Bruno, M. [INFN, Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Casini, G. [INFN Sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Italy); Chbihi, A. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); and others

    2017-07-11

    The FAZIA apparatus exploits Pulse Shape Analysis (PSA) to identify nuclear fragments stopped in the first layer of a Silicon-Silicon-CsI(Tl) detector telescope. In this work, for the first time, we show that the isotopes of fragments having atomic number as high as Z∼20 can be identified. Such a remarkable result has been obtained thanks to a careful construction of the Si detectors and to the use of low noise and high performance digitizing electronics. Moreover, optimized PSA algorithms are needed. This work deals with the choice of the best algorithm for PSA of current signals. A smoothing spline algorithm is demonstrated to give optimal results without requiring too much computational resources.

  8. A pulsing electric field (PEF) increases human chondrocyte proliferation through a transduction pathway involving nitric oxide signaling.

    Science.gov (United States)

    Fitzsimmons, Robert J; Gordon, Stephen L; Kronberg, James; Ganey, Timothy; Pilla, Arthur A

    2008-06-01

    A potential treatment modality for joint pain due to cartilage degradation is electromagnetic fields (EMF) that can be delivered, noninvasively, to chondrocytes buried within cartilage. A pulsed EMF in clinical use for recalcitrant bone fracture healing has been modified to be delivered as a pulsed electric field (PEF) through capacitive coupling. It was the objective of this study to determine whether the PEF signal could have a direct effect on chondrocytes in vitro. This study shows that a 30-min PEF treatment can increase DNA content of chondrocyte monolayer by approximately 150% at 72 h poststimulus. Studies intended to explore the biological mechanism showed this PEF signal increased nitric oxide measured in culture medium and cGMP measured in cell extract within the 30-min exposure period. Increasing calcium in the culture media or adding the calcium ionophore A23187, without PEF treatment, also significantly increased short-term nitric oxide production. The inhibitor W7, which blocks calcium/calmodulin, prevented the PEF-stimulated increase in both nitric oxide and cGMP. The inhibitor L-NAME, which blocks nitric oxide synthase, prevented the PEF-stimulated increase in nitric oxide, cGMP, and DNA content. An inhibitor of guanylate cyclase (LY83583) blocked the PEF-stimulated increase in cGMP and DNA content. A nitric oxide donor, when present for only 30 min, increased DNA content 72 h later. Taken together, these results suggest the transduction pathway for PEF-stimulated chondrocyte proliferation involves nitric oxide and the production of nitric oxide may be the result of a cascade that involves calcium, calmodulin, and cGMP production. (c) 2008 Orthopaedic Research Society.

  9. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    Science.gov (United States)

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-01-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  10. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging.

    Science.gov (United States)

    Pursley, Randall H; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C; Pohida, Thomas J

    2006-02-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (L(f)) of 300MHz to facilitate in vivo studies. This relatively low frequency L(f), in conjunction with our approximately 10MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented.

  11. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.

  12. Energy shadowing correction of ultrasonic pulse-echo records by digital signal processing

    Science.gov (United States)

    Kishoni, D.; Heyman, J. S.

    1986-01-01

    Attention is given to a numerical algorithm that, via signal processing, enables the dynamic correction of the shadowing effect of reflections on ultrasonic displays. The algorithm was applied to experimental data from graphite-epoxy composite material immersed in a water bath. It is concluded that images of material defects with the shadowing corrections allow for a more quantitative interpretation of the material state. It is noted that the proposed algorithm is fast and simple enough to be adopted for real time applications in industry.

  13. Analysis of the computational requirements of a pulse-doppler radar signal processor

    CSIR Research Space (South Africa)

    Broich, R

    2012-05-01

    Full Text Available H z to 10 GH z Fig. 1. Radar signal processor (RSP) flow of operations purpose computer architectures [3]. An abstract machine, in which only memory reads, writes, additions and multiplica- tions are considered to be significant operations..., is chosen for the model of computation. For each algorithm, a pseudo-code listing is used to find an expression for the required number of additions/subtractions, multiplications/divisions, as well as memory reads and writes. Based on the parameters...

  14. Transient radon signals driven by fluid pressure pulse, micro-crack closure, and failure during granite deformation experiments

    Science.gov (United States)

    Girault, Frédéric; Schubnel, Alexandre; Pili, Éric

    2017-09-01

    In seismically active fault zones, various crustal fluids including gases are released at the surface. Radon-222, a radioactive gas naturally produced in rocks, is used in volcanic and tectonic contexts to illuminate crustal deformation or earthquake mechanisms. At some locations, intriguing radon signals have been recorded before, during, or after tectonic events, but such observations remain controversial, mainly because physical characterization of potential radon anomalies from the upper crust is lacking. Here we conducted several month-long deformation experiments under controlled dry upper crustal conditions with a triaxial cell to continuously monitor radon emission from crustal rocks affected by three main effects: a fluid pressure pulse, micro-crack closure, and differential stress increase to macroscopic failure. We found that these effects are systematically associated with a variety of radon signals that can be explained using a first-order advective model of radon transport. First, connection to a source of deep fluid pressure (a fluid pressure pulse) is associated with a large transient radon emission increase (factor of 3-7) compared with the background level. We reason that peak amplitude is governed by the accumulation time and the radon source term, and that peak duration is controlled by radioactive decay, permeability, and advective losses of radon. Second, increasing isostatic compression is first accompanied by an increase in radon emission followed by a decrease beyond a critical pressure representing the depth below which crack closure hampers radon emission (150-250 MPa, ca. 5.5-9.5 km depth in our experiments). Third, the increase of differential stress, and associated shear and volumetric deformation, systematically triggers significant radon peaks (ca. 25-350% above background level) before macroscopic failure, by connecting isolated cracks, which dramatically enhances permeability. The detection of transient radon signals before rupture

  15. Some considerations for different time-domain signal processing of pulse compression radar

    Directory of Open Access Journals (Sweden)

    Maria Graciela Molina

    2010-06-01

    Full Text Available Radar technology has for a long time used various systems that allow detection under high-resolution conditions, while emitting at the same time low peak power. Among these systems, transmitted pulse encoding by means of biphasic codes has been used for the advanced ionospheric sounder that was developed by the AIS-INGV ionosonde. In the receiving process, suitable decoding of the signal must be accomplished. This can be achieved in both the time and the frequency domains. Focusing on the time domain, different approaches are possible. In this study, two of these approaches have been compared, using data acquired by the AIS-INGV and processed by means of software tools (mainly Mathcad©. The analysis reveals the differences under both noiseless and noisy conditions, although this does not allow the conclusive establishment as to which method is better, as each of them has benefits and drawbacks.

  1. The effect of pulsed electric fields on the electrotactic migration of human neural progenitor cells through the involvement of intracellular calcium signaling.

    Science.gov (United States)

    Hayashi, Hisamitsu; Edin, Fredrik; Li, Hao; Liu, Wei; Rask-Andersen, Helge

    2016-12-01

    Endogenous electric fields (EFs) are required for the physiological control of the central nervous system development. Application of the direct current EFs to neural stem cells has been studied for the possibility of stem cell transplantation as one of the therapies for brain injury. EFs generated within the nervous system are often associated with action potentials and synaptic activity, apparently resulting in a pulsed current in nature. The aim of this study is to investigate the effect of pulsed EF, which can reduce the cytotoxicity, on the migration of human neural progenitor cells (hNPCs). We applied the mono-directional pulsed EF with a strength of 250mV/mm to hNPCs for 6h. The migration distance of the hNPCs exposed to pulsed EF was significantly greater compared with the control not exposed to the EF. Pulsed EFs, however, had less of an effect on the migration of the differentiated hNPCs. There was no significant change in the survival of hNPCs after exposure to the pulsed EF. To investigate the role of Ca 2+ signaling in electrotactic migration of hNPCs, pharmacological inhibition of Ca 2+ channels in the EF-exposed cells revealed that the electrotactic migration of hNPCs exposed to Ca 2+ channel blockers was significantly lower compared to the control group. The findings suggest that the pulsed EF induced migration of hNPCs is partly influenced by intracellular Ca 2+ signaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-09-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

  3. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    Science.gov (United States)

    Welchko, Brian A [Torrance, CA

    2012-02-14

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  4. Features of the propagation of pseudorandom pulse signals from the shelf to deep water in the presence of gyre formation on the acoustic track

    Science.gov (United States)

    Akulichev, V. A.; Burenin, A. V.; Ladychenko, S. Yu.; Lobanov, V. B.; Morgunov, Yu. N.

    2017-08-01

    The paper discusses the results of an experiment conducted in the Sea of Japan in March 2016 on an acoustic track 194 km long in winter hydrological conditions. The most complex case of propagation of pseudorandom pulse signals from the shelf to deep water in the presence of gyre formation on the acoustic track. An analysis of the experimentally obtained pulse characteristics show that at all points, a maximum, in terms of amplitude, first arrival of acoustic energy is recorded. This is evidence that at a given depth horizon, pulses that have passed the shortest distance through a near-surface sound channel at small angles close to zero are received first. The calculation method of mean sound velocity on the track, based on the satellite data of surface temperature monitoring, is proposed. We expect that the results obtained with this method can be successfully used for the purposes of acoustic range finding and navigation.

  5. Performance analysis of variable code rate signals transmitted over frequency-nonselective, slowly fading channels in a pulse-interference environment

    OpenAIRE

    Shih, Wan-Chun

    2005-01-01

    Wireless systems, including wireless local area networks (WLAN) and cellular networks, are increasingly being used for both commercial and military applications. For military applications, it is important to analyze the effect of interference on wireless communications systems. The objective of this research is to investigate the performance of variable code rate signals transmitted over frequency-nonselective, slowly fading channels in a worst case, pulse-noise interference environment. ...

  6. Increased signal intensity on fat-suppressed three-dimensional T1-weighted pulse sequences in patellar tendon: magic angle effect?

    Energy Technology Data Exchange (ETDEWEB)

    Karantanas, A.H.; Zibis, A.H. [CT-MRI Dept., Larissa General Hospital, Larissa (Greece); Papanikolaou, N. [Radiology Dept., University of Crete, Heraklion (Greece)

    2001-02-01

    Objective. To assess the frequency of increased signal intensity in the patellar tendon using three-dimensional T1-weighted MRI pulse sequences. Design and patients. Sixty patients were examined with a 1.0 T scanner (15mT/m gradient strength) using a quadrature coil. Three pulse sequences were applied in the sagittal plane: PD turbo spin echo (PD-TSE), 3D T1-weighted gradient echo with fat suppression (3D-T1-FFE-FS) and 3D T1-weighted echo planar imaging with fat suppression (3D-T1-EPI-FS). The high signal intensity areas were measured in their maximum length. The angle of the patellar tendon relative to the main field position was measured in the same slice. In eight patients with anterior knee pain, and in 11 with no anterior knee pain, a fourth T2-weighted TSE pulse sequence (T2-TSE) was obtained to rule out patellar tendinitis. Results. The correlation of the high signal intensity areas with the relative position of the tendon was found to be significant with the 3D sequences (P=0.03 for 3D-T1-FFE-FS and P=0.003 for 3D-T1-EPI-FS). The length of the high signal intensity area in the tendon was 5.4 mm with 3D-T1-FFE-FS, 4.9 mm with 3D-T1-EPI-FS and 3.1 mm with PD-TSE images. No patellar tendinitis was demonstrated on the T2-TSE images. Conclusion. The magic angle effect is commonly observed in the 3D based T1-weighted pulse sequences with fat suppression. The presence of the above sign must be recognized by radiologists, so that misdiagnosis of patellar tendinitis is avoided. (orig.)

  7. Initial evaluation of prospective cardiac triggering using photoplethysmography signals recorded with a video camera compared to pulse oximetry and electrocardiography at 7T MRI.

    Science.gov (United States)

    Spicher, Nicolai; Kukuk, Markus; Maderwald, Stefan; Ladd, Mark E

    2016-11-24

    Accurate synchronization between magnetic resonance imaging data acquisition and a subject's cardiac activity ("triggering") is essential for reducing image artifacts but conventional, contact-based methods for this task are limited by several factors, including preparation time, patient inconvenience, and susceptibility to signal degradation. The purpose of this work is to evaluate the performance of a new contact-free triggering method developed with the aim to eventually replace conventional methods in non-cardiac imaging applications. In this study, the method's performance is evaluated in the context of 7 Tesla non-enhanced angiography of the lower extremities. Our main contribution is a basic algorithm capable of estimating in real-time the phase of the cardiac cycle from reflection photoplethysmography signals obtained from skin color variations of the forehead recorded with a video camera. Instead of finding the algorithm's parameters heuristically, they were optimized using videos of the forehead as well as electrocardiography and pulse oximetry signals that were recorded from eight healthy volunteers in and outside the scanner, with and without active radio frequency and gradient coils. Based on the video characteristics, synthetic signals were generated and the "best available" values of an objective function were determined using mathematical optimization. The performance of the proposed method with optimized algorithm parameters was evaluated by applying it to the recorded videos and comparing the computed triggers to those of contact-based methods. Additionally, the method was evaluated by using its triggers for acquiring images from a healthy volunteer and comparing the result to images obtained using pulse oximetry triggering. During evaluation of the videos recorded inside the bore with active radio frequency and gradient coils, the pulse oximeter triggers were labeled in 62.5% as "potentially usable" for cardiac triggering, the electrocardiography

  8. Lung Parenchymal Signal Intensity in MRI: A Technical Review with Educational Aspirations Regarding Reversible Versus Irreversible Transverse Relaxation Effects in Common Pulse Sequences.

    Science.gov (United States)

    Mulkern, Robert; Haker, Steven; Mamata, Hatsuho; Lee, Edward; Mitsouras, Dimitrios; Oshio, Koichi; Balasubramanian, Mukund; Hatabu, Hiroto

    2014-03-01

    Lung parenchyma is challenging to image with proton MRI. The large air space results in ~l/5th as many signal-generating protons compared to other organs. Air/tissue magnetic susceptibility differences lead to strong magnetic field gradients throughout the lungs and to broad frequency distributions, much broader than within other organs. Such distributions have been the subject of experimental and theoretical analyses which may reveal aspects of lung microarchitecture useful for diagnosis. Their most immediate relevance to current imaging practice is to cause rapid signal decays, commonly discussed in terms of short T2* values of 1 ms or lower at typical imaging field strengths. Herein we provide a brief review of previous studies describing and interpreting proton lung spectra. We then link these broad frequency distributions to rapid signal decays, though not necessarily the exponential decays generally used to define T2* values. We examine how these decays influence observed signal intensities and spatial mapping features associated with the most prominent torso imaging sequences, including spoiled gradient and spin echo sequences. Effects of imperfect refocusing pulses on the multiple echo signal decays in single shot fast spin echo (SSFSE) sequences and effects of broad frequency distributions on balanced steady state free precession (bSSFP) sequence signal intensities are also provided. The theoretical analyses are based on the concept of explicitly separating the effects of reversible and irreversible transverse relaxation processes, thus providing a somewhat novel and more general framework from which to estimate lung signal intensity behavior in modern imaging practice.

  9. Simultaneous recording of pulsed wave Doppler signals in the innominate vein and transverse aortic arch: a new technique to evaluate AV conduction and fetal heart rhythm.

    Science.gov (United States)

    Howley, Lisa W; Schuchardt, Eleanor; Park, Dawn; Gilbert, Lisa; Gruenwald, Jeanine; Cuneo, Bettina F

    2018-02-02

    Fetal heart rhythm abnormalities are common. Simultaneous pulsed Doppler interrogation of the superior vena cava (SVC) and ascending aorta (AAo) is widely used to analyze fetal arrhythmias. However, the SVC/AAo Doppler technique can be limited by a suboptimal angle of interrogation and poor visualization of atrial systole in the SVC. We present our experience with a novel Doppler technique using simultaneously recorded pulsed wave Doppler signals in the innominate vein (InnV) and transverse aortic arch (Ao) from an axial view of the fetal thorax. Advantages of the InnV/Ao Doppler technique include improved acquisition feasibility and a near 0-degree angle of insonation of the InnV, improving visualization of atrial systolic events. This article is protected by copyright. All rights reserved.

  10. Measurement of Power Density in a Lossy Material by means of Electromagnetically induced acoustic signals for non-invasive determination of spatial thermal absorption in connection with pulsed hyperthermia

    CERN Document Server

    Caspers, Friedhelm

    1982-01-01

    For non-invasive determination of the spatial power density distribution during RF- and microwave hyperthermia it is proposed to apply the electromagnetic energy as short, high intensity pulses. This pulsed signal should have the same average power and thus give the same temperature elevation as the CW source usually applied. Due to the high peak power of the equivalent pulsed signal, with a duty cycle < 1:100, externally measurable thermoacoustic oscillations are induced in the irradiated object. They can be evaluated for the reconstruction of a spatial power density profile.

  11. Statistics of Acoustic Pulse Signals Through Nonlinear Internal Waves on the Continental Shelf of the Northeastern South China Sea

    National Research Council Canada - National Science Library

    Reeves, Justin M

    2008-01-01

    ...) was conducted from 13 - 15 April 2005 on the continental shelf in the northeast portion of the South China Sea to study the effects of nonlinear internal waves on the transmission of a 400-Hz signal...

  12. Influence of acquisition frame-rate and video compression techniques on pulse-rate variability estimation from vPPG signal.

    Science.gov (United States)

    Cerina, Luca; Iozzia, Luca; Mainardi, Luca

    2017-11-14

    In this paper, common time- and frequency-domain variability indexes obtained by pulse rate variability (PRV) series extracted from video-photoplethysmographic signal (vPPG) were compared with heart rate variability (HRV) parameters calculated from synchronized ECG signals. The dual focus of this study was to analyze the effect of different video acquisition frame-rates starting from 60 frames-per-second (fps) down to 7.5 fps and different video compression techniques using both lossless and lossy codecs on PRV parameters estimation. Video recordings were acquired through an off-the-shelf GigE Sony XCG-C30C camera on 60 young, healthy subjects (age 23±4 years) in the supine position. A fully automated, signal extraction method based on the Kanade-Lucas-Tomasi (KLT) algorithm for regions of interest (ROI) detection and tracking, in combination with a zero-phase principal component analysis (ZCA) signal separation technique was employed to convert the video frames sequence to a pulsatile signal. The frame-rate degradation was simulated on video recordings by directly sub-sampling the ROI tracking and signal extraction modules, to correctly mimic videos recorded at a lower speed. The compression of the videos was configured to avoid any frame rejection caused by codec quality leveling, FFV1 codec was used for lossless compression and H.264 with variable quality parameter as lossy codec. The results showed that a reduced frame-rate leads to inaccurate tracking of ROIs, increased time-jitter in the signals dynamics and local peak displacements, which degrades the performances in all the PRV parameters. The root mean square of successive differences (RMSSD) and the proportion of successive differences greater than 50 ms (PNN50) indexes in time-domain and the low frequency (LF) and high frequency (HF) power in frequency domain were the parameters which highly degraded with frame-rate reduction. Such a degradation can be partially mitigated by up-sampling the measured

  13. SNMR pulse sequence phase cycling

    Science.gov (United States)

    Walsh, David O; Grunewald, Elliot D

    2013-11-12

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  14. Pulsed electromagnetic fields improve bone microstructure and strength in ovariectomized rats through a Wnt/Lrp5/β-catenin signaling-associated mechanism.

    Directory of Open Access Journals (Sweden)

    Da Jing

    Full Text Available Growing evidence has demonstrated that pulsed electromagnetic field (PEMF, as an alternative noninvasive method, could promote remarkable in vivo and in vitro osteogenesis. However, the exact mechanism of PEMF on osteopenia/osteoporosis is still poorly understood, which further limits the extensive clinical application of PEMF. In the present study, the efficiency of PEMF on osteoporotic bone microarchitecture and bone quality together with its associated signaling pathway mechanisms was systematically investigated in ovariectomized (OVX rats. Thirty rats were equally assigned to the Control, OVX and OVX+PEMF groups. The OVX+PEMF group was subjected to daily 8-hour PEMF exposure with 15 Hz, 2.4 mT (peak value. After 10 weeks, the OVX+PEMF group exhibited significantly improved bone mass and bone architecture, evidenced by increased BMD, Tb.N, Tb.Th and BV/TV, and suppressed Tb.Sp and SMI levels in the MicroCT analysis. Three-point bending test suggests that PEMF attenuated the biomechanical strength deterioration of the OVX rat femora, evidenced by increased maximum load and elastic modulus. RT-PCR analysis demonstrated that PEMF exposure significantly promoted the overall gene expressions of Wnt1, LRP5 and β-catenin in the canonical Wnt signaling, but did not exhibit obvious impact on either RANKL or RANK gene expressions. Together, our present findings highlight that PEMF attenuated OVX-induced deterioration of bone microarchitecture and strength in rats by promoting the activation of Wnt/LRP5/β-catenin signaling rather than by inhibiting RANKL-RANK signaling. This study enriches our basic knowledge to the osteogenetic activity of PEMF, and may lead to more efficient and scientific clinical application of PEMF in inhibiting osteopenia/osteoporosis.

  15. Pulsed Electromagnetic Field Regulates MicroRNA 21 Expression to Activate TGF-β Signaling in Human Bone Marrow Stromal Cells to Enhance Osteoblast Differentiation

    Directory of Open Access Journals (Sweden)

    Nagarajan Selvamurugan

    2017-01-01

    Full Text Available Pulsed electromagnetic fields (PEMFs have been documented to promote bone fracture healing in nonunions and increase lumbar spinal fusion rates. However, the molecular mechanisms by which PEMF stimulates differentiation of human bone marrow stromal cells (hBMSCs into osteoblasts are not well understood. In this study the PEMF effects on hBMSCs were studied by microarray analysis. PEMF stimulation of hBMSCs’ cell numbers mainly affected genes of cell cycle regulation, cell structure, and growth receptors or kinase pathways. In the differentiation and mineralization stages, PEMF regulated preosteoblast gene expression and notably, the transforming growth factor-beta (TGF-β signaling pathway and microRNA 21 (miR21 were most highly regulated. PEMF stimulated activation of Smad2 and miR21-5p expression in differentiated osteoblasts, and TGF-β signaling was essential for PEMF stimulation of alkaline phosphatase mRNA expression. Smad7, an antagonist of the TGF-β signaling pathway, was found to be miR21-5p’s putative target gene and PEMF caused a decrease in Smad7 expression. Expression of Runx2 was increased by PEMF treatment and the miR21-5p inhibitor prevented the PEMF stimulation of Runx2 expression in differentiating cells. Thus, PEMF could mediate its effects on bone metabolism by activation of the TGF-β signaling pathway and stimulation of expression of miR21-5p in hBMSCs.

  16. Zeptosecond precision pulse shaping.

    Science.gov (United States)

    Köhler, Jens; Wollenhaupt, Matthias; Bayer, Tim; Sarpe, Cristian; Baumert, Thomas

    2011-06-06

    We investigate the temporal precision in the generation of ultrashort laser pulse pairs by pulse shaping techniques. To this end, we combine a femtosecond polarization pulse shaper with a polarizer and employ two linear spectral phase masks to mimic an ultrastable common-path interferometer. In an all-optical experiment we study the interference signal resulting from two temporally delayed pulses. Our results show a 2σ-precision of 300 zs = 300 × 10(-21) s in pulse-to-pulse delay. The standard deviation of the mean is 11 zs. The obtained precision corresponds to a variation of the arm's length in conventional delay stage based interferometers of 0.45 Å. We apply these precisely generated pulse pairs to a strong-field quantum control experiment. Coherent control of ultrafast electron dynamics via photon locking by temporal phase discontinuities on a few attosecond timescale is demonstrated.

  17. Effect of Pulsed Electromagnetic Field on Bone Formation and Lipid Metabolism of Glucocorticoid-Induced Osteoporosis Rats through Canonical Wnt Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2016-01-01

    Full Text Available Pulsed electromagnetic field (PEMF has been suggested as a promising method alternative to drug-based therapies for treating osteoporosis (OP, but the role of PEMF in GIOP animal models still remains unknown. This study was performed to investigate the effect of PEMF on bone formation and lipid metabolism and further explored the several important components and targets of canonical Wnt signaling pathway in GIOP rats. After 12 weeks of intervention, bone mineral density (BMD level of the whole body increased significantly, serum lipid levels decreased significantly, and trabeculae were thicker in GIOP rats of PEMF group. PEMF stimulation upregulated the mRNA and protein expression of Wnt10b, LRP5, β-catenin, OPG, and Runx2 and downregulated Axin2, PPAR-γ, C/EBPα, FABP4, and Dkk-1. The results of this study suggested that PEMF stimulation can prevent bone loss and improve lipid metabolism disorders in GIOP rats. Canonical Wnt signaling pathway plays an important role in bone formation and lipid metabolism during PEMF stimulation.

  18. Using a pulsed laser beam to investigate the feasibility of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors

    Science.gov (United States)

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; Cheng, S.; De Geronimo, G.; McGilloway, A.; Fried, J.; Hodges, D.; Hossain, A.; Ünlü, K.; Petryk, M.; Vidal, V.; Vernon, E.; Yang, G.; James, R. B.

    2017-09-01

    We evaluated the X-Y position resolution achievable in 3D pixelated detectors by processing the signal waveforms readout from neighboring pixels. In these measurements we used a focused light beam, down to 10 μm, generated by a 1 mW pulsed laser (650 nm) to carry out raster scans over selected 3×3 pixel areas, while recording the charge signals from the 9 pixels and the cathode using two synchronized digital oscilloscopes.

  19. Real-time parallel implementation of Pulse-Doppler radar signal processing chain on a massively parallel machine based on multi-core DSP and Serial RapidIO interconnect

    Science.gov (United States)

    Klilou, Abdessamad; Belkouch, Said; Elleaume, Philippe; Le Gall, Philippe; Bourzeix, François; Hassani, Moha M'Rabet

    2014-12-01

    Pulse-Doppler radars require high-computing power. A massively parallel machine has been developed in this paper to implement a Pulse-Doppler radar signal processing chain in real-time fashion. The proposed machine consists of two C6678 digital signal processors (DSPs), each with eight DSP cores, interconnected with Serial RapidIO (SRIO) bus. In this study, each individual core is considered as the basic processing element; hence, the proposed parallel machine contains 16 processing elements. A straightforward model has been adopted to distribute the Pulse-Doppler radar signal processing chain. This model provides low latency, but communication inefficiency limits system performance. This paper proposes several optimizations that greatly reduce the inter-processor communication in a straightforward model and improves the parallel efficiency of the system. A use case of the Pulse-Doppler radar signal processing chain has been used to illustrate and validate the concept of the proposed mapping model. Experimental results show that the parallel efficiency of the proposed parallel machine is about 90%.

  20. Statistical approach of measurement of signal to noise ratio in according to change pulse sequence on brain MRI meningioma and cyst images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eul Kyu [Inje Paik University Hospital Jeo-dong, Seoul (Korea, Republic of); Choi, Kwan Woo [Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [The Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [The Soonchunhyang University, Asan (Korea, Republic of); Kim, Ki Won [Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Son, Soon Yong [The Wonkwang Health Science University, Iksan (Korea, Republic of); Min, Jung Whan; Son, Jin Hyun [The Shingu University, Sungnam (Korea, Republic of)

    2016-09-15

    The purpose of this study was to needed basis of measure MRI CAD development for signal to noise ratio (SNR) by pulse sequence analysis from region of interest (ROI) in brain magnetic resonance imaging (MRI) contrast. We examined images of brain MRI contrast enhancement of 117 patients, from January 2005 to December 2015 in a University-affiliated hospital, Seoul, Korea. Diagnosed as one of two brain diseases such as meningioma and cysts SNR for each patient's image of brain MRI were calculated by using Image J. Differences of SNR among two brain diseases were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p < 0.05). We have analysis socio-demographical variables, SNR according to sequence disease, 95% confidence according to SNR of sequence and difference in a mean of SNR. Meningioma results, with the quality of distributions in the order of T1CE, T2 and T1, FLAIR. Cysts results, with the quality of distributions in the order of T2 and T1, T1CE and FLAIR. SNR of MRI sequences of the brain would be useful to classify disease. Therefore, this study will contribute to evaluate brain diseases, and be a fundamental to enhancing the accuracy of CAD development.

  1. Prefire identification for pulse power systems

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, Jerry L. (Los Alamos, NM); Thuot, Michael E. (Espanola, NM); Warren, David S. (Los Alamos, NM)

    1985-01-01

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  2. Prefire identification for pulse power systems

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, J. L.; Thuot, M. E.; Warren, D. S.

    1985-04-09

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  3. Prefire identification for pulse-power systems

    Energy Technology Data Exchange (ETDEWEB)

    Longmire, J.L.; Thuot, M.E.; Warren, D.S.

    1982-08-23

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  4. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... (flickering light bulbs; polyrhythmic layers). Taking our point of departure in a discussion of Gilles Deleuze’s concepts of modulation and signaletic material in relation to electronic media, we examine how the complex orchestration of pulsation between signification and material modulation produces...

  5. A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals

    DEFF Research Database (Denmark)

    Lasri, J.; Bilenca, A.; Dahan, D.

    2002-01-01

    In this letter, we describe a self-starting optical pulse source generating ultra low noise 15-ps-wide pulses at 10 GHz. It is based on a hybrid optoelectronic oscillator comprising a fiber extended cavity mode-locked diode laser which injection locks a self-oscillating heterojunction bipolar...

  6. SHORT PULSE STRETCHER

    Science.gov (United States)

    Branum, D.R.; Cummins, W.F.

    1962-12-01

    >A short pulse stretching circuit capable of stretching a short puise to enable it to be displayed on a relatively slow sweeping oscilloscope is described. Moreover, the duration of the pulse is increased by charging a capacitor through a diode and thereafter discharging the capacitor at such time as is desired. In the circuit the trigger pulse alone passes through a delay line, whereas the main signal passes through the diode only, and results in over-all circuit losses which are proportional to the low losses of the diode only. (AEC)

  7. Pulse Dispersion in Phased Arrays

    Directory of Open Access Journals (Sweden)

    Randy L. Haupt

    2017-01-01

    Full Text Available Phased array antennas cause pulse dispersion when receiving or transmitting wideband signals, because phase shifting the signals does not align the pulse envelopes from the elements. This paper presents two forms of pulse dispersion that occur in a phased array antenna. The first results from the separation distance between the transmit and receive antennas and impacts the definition of far field in the time domain. The second is a function of beam scanning and array size. Time delay units placed at the element and/or subarrays limit the pulse dispersion.

  8. Pulse detection by gated synchronous demodulation

    OpenAIRE

    Efthymiou, Spyros; Ozanyan, Krikor B.

    2013-01-01

    Synchronous demodulation (SD) is the signal recovery method of choice when the input envelope signal is modulated by either a pure sine wave or a square wave. SD is less efficient for pulsed periodic signals with a low duty factor. For the latter signals, we introduce data processing that applies gating on a part of the signal period to achieve optimum conditions for recovering the pulse amplitude by quadrature SD. The proposed method is evaluated for signal-to-noise performance against Boxca...

  9. Regulation of intracellular signaling cascades by GNRH pulse frequency in the rat pituitary: roles for CaMK II, ERK, and JNK activation.

    Science.gov (United States)

    Burger, Laura L; Haisenleder, Daniel J; Aylor, Kevin W; Marshall, John C

    2008-11-01

    Pulsatile GnRH (GNRH) differentially regulates LH and FSH subunit genes, with faster frequencies favoring Lhb transcription and slower favoring Fshb. Various intracellular pathways mediate the effects of GNRH, including CaMK II (CAMK2), ERK, and JNK. We examined whether activation of these pathways is regulated by GNRH pulse frequency in vivo. GNRH-deficient rats received GNRH pulses (25 ng i.v. every 30 or 240 min for 8 h, vehicle to controls). Pituitaries were collected 5 min after the last pulse, bisected, and one half processed for RNA (to measure beta subunit primary transcripts [PTs]) and the other for protein. Phosphorylated CAMK2 (phospho-CAMK2), ERK (mitogen-activated protein kinase 1/3 [MAPK1/3], also known as p42 ERK2 and p44 ERK1, respectively), and JNK (MAPK8/9, also known as p46 JNK1 and p54 JNK2, respectively) were determined by Western blotting. The 30-min pulses maximally stimulated Lhb PT (8-fold), whereas 240 min was optimal for Fshb PT (3-fold increase). Both GNRH pulse frequencies increased phospho-CAMK2 4-fold. Activation of MAPK1/3 was stimulated by both 30- and 240-min pulses, but phosphorylation of MAPK3 was significantly greater following slower GNRH pulses (240 min: 4-fold, 30 min: 2-fold). MAPK8/9 activation was unchanged by pulsatile GNRH in this paradigm, but as previous results showed that GNRH-induced activation of MAPK8/9 is delayed, 5 min after GNRH may not be optimal to observe MAPK8/9 activation. These data show that CAMK2 is activated by GNRH, but not in a frequency-dependant manner, whereas MAPK3 is maximally stimulated by slow-frequency GNRH pulses. Thus, the ERK response to slow pulse frequency is part of the mechanisms mediating Fhb transcriptional responses to GNRH.

  10. Regulation of Intracellular Signaling Cascades by GNRH Pulse Frequency in the Rat Pituitary: Roles for CaMK II, ERK, and JNK Activation1

    Science.gov (United States)

    Burger, Laura L.; Haisenleder, Daniel J.; Aylor, Kevin W.; Marshall, John C.

    2008-01-01

    Pulsatile GnRH (GNRH) differentially regulates LH and FSH subunit genes, with faster frequencies favoring Lhb transcription and slower favoring Fshb. Various intracellular pathways mediate the effects of GNRH, including CaMK II (CAMK2), ERK, and JNK. We examined whether activation of these pathways is regulated by GNRH pulse frequency in vivo. GNRH-deficient rats received GNRH pulses (25 ng i.v. every 30 or 240 min for 8 h, vehicle to controls). Pituitaries were collected 5 min after the last pulse, bisected, and one half processed for RNA (to measure beta subunit primary transcripts [PTs]) and the other for protein. Phosphorylated CAMK2 (phospho-CAMK2), ERK (mitogen-activated protein kinase 1/3 [MAPK1/3], also known as p42 ERK2 and p44 ERK1, respectively), and JNK (MAPK8/9, also known as p46 JNK1 and p54 JNK2, respectively) were determined by Western blotting. The 30-min pulses maximally stimulated Lhb PT (8-fold), whereas 240 min was optimal for Fshb PT (3-fold increase). Both GNRH pulse frequencies increased phospho-CAMK2 4-fold. Activation of MAPK1/3 was stimulated by both 30- and 240-min pulses, but phosphorylation of MAPK3 was significantly greater following slower GNRH pulses (240 min: 4-fold, 30 min: 2-fold). MAPK8/9 activation was unchanged by pulsatile GNRH in this paradigm, but as previous results showed that GNRH-induced activation of MAPK8/9 is delayed, 5 min after GNRH may not be optimal to observe MAPK8/9 activation. These data show that CAMK2 is activated by GNRH, but not in a frequency-dependant manner, whereas MAPK3 is maximally stimulated by slow-frequency GNRH pulses. Thus, the ERK response to slow pulse frequency is part of the mechanisms mediating Fhb transcriptional responses to GNRH.. PMID:18716286

  11. Pulsed Corona Discharge Generated By Marx Generator

    Science.gov (United States)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  12. A Study of New Pulse Auscultation System

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study presents a new type of pulse auscultation system, which uses a condenser microphone to measure pulse sound waves on the wrist, captures the microphone signal for filtering, amplifies the useful signal and outputs it to an oscilloscope in analog form for waveform display and storage and delivers it to a computer to perform a Fast Fourier Transform (FFT and convert the pulse sound waveform into a heartbeat frequency. Furthermore, it also uses an audio signal amplifier to deliver the pulse sound by speaker. The study observed the principles of Traditional Chinese Medicine’s pulsing techniques, where pulse signals at places called “cun”, “guan” and “chi” of the left hand were measured during lifting (100 g, searching (125 g and pressing (150 g actions. Because the system collects the vibration sound caused by the pulse, the sensor itself is not affected by the applied pressure, unlike current pulse piezoelectric sensing instruments, therefore, under any kind of pulsing pressure, it displays pulse changes and waveforms with the same accuracy. We provide an acquired pulse and waveform signal suitable for Chinese Medicine practitioners’ objective pulse diagnosis, thus providing a scientific basis for this Traditional Chinese Medicine practice. This study also presents a novel circuit design using an active filtering method. An operational amplifier with its differential features eliminates the interference from external signals, including the instant high-frequency noise. In addition, the system has the advantages of simple circuitry, cheap cost and high precision.

  13. A Chaotic Pulse-Time Modulation Method for Digital Communication

    OpenAIRE

    Nguyen Xuan Quyen; Vu Van Yem; Thang Manh Hoang

    2012-01-01

    We present and investigate a method of chaotic pulse-time modulation (PTM) named chaotic pulse-width-position modulation (CPWPM) which is the combination of pulse-position-modulation (PPM) and pulse-width modulation (PWM) with the inclusion of chaos technique for digital communications. CPWPM signal is in the pulse train format, in which binary information is modulated onto chaotically-varied intervals of position and width of pulses, and therefore two bits are encoded on a single pulse. The ...

  14. Assessment of pulse rate variability by the method of pulse frequency demodulation

    Science.gov (United States)

    Hayano, Junichiro; Barros, Allan Kardec; Kamiya, Atsunori; Ohte, Nobuyuki; Yasuma, Fumihiko

    2005-01-01

    Background Due to its easy applicability, pulse wave has been proposed as a surrogate of electrocardiogram (ECG) for the analysis of heart rate variability (HRV). However, its smoother waveform precludes accurate measurement of pulse-to-pulse interval by fiducial-point algorithms. Here we report a pulse frequency demodulation (PFDM) technique as a method for extracting instantaneous pulse rate function directly from pulse wave signal and its usefulness for assessing pulse rate variability (PRV). Methods Simulated pulse wave signals with known pulse interval functions and actual pulse wave signals obtained from 30 subjects with a trans-dermal pulse wave device were analyzed by PFDM. The results were compared with heart rate and HRV assessed from simultaneously recorded ECG. Results Analysis of simulated data revealed that the PFDM faithfully demodulates source interval function with preserving the frequency characteristics of the function, even when the intervals fluctuate rapidly over a wide range and when the signals include fluctuations in pulse height and baseline. Analysis of actual data revealed that individual means of low and high frequency components of PRV showed good agreement with those of HRV (intraclass correlation coefficient, 0.997 and 0.981, respectively). Conclusion The PFDM of pulse wave signal provides a reliable assessment of PRV. Given the popularity of pulse wave equipments, PFDM may open new ways to the studies of long-term assessment of cardiovascular variability and dynamics. PMID:16259639

  15. Low-Intensity Pulsed Ultrasound Treatment at an Early Osteoarthritis Stage Protects Rabbit Cartilage From Damage via the Integrin/Focal Adhesion Kinase/Mitogen-Activated Protein Kinase Signaling Pathway.

    Science.gov (United States)

    Xia, Peng; Shen, Shihao; Lin, Qiang; Cheng, Kai; Ren, Shasha; Gao, Mingxia; Li, Xueping

    2015-11-01

    To investigate whether low-intensity pulsed ultrasound (US) has different protective effects on early and late rabbit osteoarthritis cartilage via the integrin/focal adhesion kinase (FAK)/mitogen-activated protein kinase (MAPK) signaling pathway. Thirty-six New Zealand White rabbits were divided into early control, early osteoarthritis, early treatment, late control, late osteoarthritis, and late treatment groups. The early and late osteoarthritis and treatment groups underwent anterior cruciate ligament transection. The remaining groups underwent sham operations with knee joint exposure. The early and late treatment groups were exposed to low-intensity pulsed US 4 and 8 weeks after surgery. After 6 weeks of US exposure, pathologic changes on the articular surface of the femoral condyle were assessed by modified Mankin scores. Expression of type II collagen, matrix metalloproteinase, integrin β1, phosphorylated FAK, and MAPKs (including extracellular signal-regulated kinase 1/2, MAPK 38, and c-Jun N-terminal kinase) was assessed by Western blot analysis. Cartilage damage was less severe in the early treatment group than the early osteoarthritis group. The Mankin score was significantly lower in the early treatment group than the early osteoarthritis group (P treatment and late osteoarthritis groups. There was a significant increase in type II collagen expression but a significant decrease in matrix metalloproteinase 13 expression in the early treatment group compared to the early osteoarthritis group, whereas no significant difference was found between the late treatment and late osteoarthritis groups. Integrin β1 and phosphorylated FAK expression was significantly higher, and phosphorylated extracellular signal-regulated kinase 1/2 and phosphorylated MAPK 38 expression was significantly lower in the early treatment group than the early osteoarthritis group. Our findings indicate that low-intensity pulsed US protects cartilage from damage in early

  16. Root-flipped multiband refocusing pulses.

    Science.gov (United States)

    Sharma, Anuj; Lustig, Michael; Grissom, William A

    2016-01-01

    To design low peak power multiband refocusing radiofrequency pulses, with application to simultaneous multislice spin echo MRI. Multiband Shinnar-Le Roux β polynomials were designed using convex optimization. A Monte Carlo algorithm was used to determine patterns of β polynomial root flips that minimized the peak power of the resulting refocusing pulses. Phase-matched multiband excitation pulses were also designed to obtain linear-phase spin echoes. Simulations compared the performance of the root-flipped pulses with time-shifted and phase-optimized pulses. Phantom and in vivo experiments at 7T validated the function of the root-flipped pulses and compared them to time-shifted spin echo signal profiles. Averaged across number of slices, time-bandwidth product, and slice separation, the root-flipped pulses have 46% shorter durations than time-shifted pulses with the same peak radiofrequency amplitude. Unlike time-shifted and phase-optimized pulses, the root-flipped pulses' excitation errors do not increase with decreasing band separation. Experiments showed that the root-flipped pulses excited the desired slices at the target locations, and that for equivalent slice characteristics, the shorter root-flipped pulses allowed shorter echo times, resulting in higher signal than time-shifted pulses. The proposed root-flipped multiband radiofrequency pulse design method produces low peak power pulses for simultaneous multislice spin echo MRI. © 2015 Wiley Periodicals, Inc.

  17. Fiber Optical Parametric Chirped Pulse Amplification of Sub-Picosecond Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Da Ros, Francesco

    2013-01-01

    We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs.......We demonstrate experimentally, for the first time to our knowledge, fiber optical parametric chirped pulse amplification of 400-fs pulses. The 400-fs signal is stretched, amplified by 26 dB and compressed back to 500 fs....

  18. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  19. Global synchronization of parallel processors using clock pulse width modulation

    Science.gov (United States)

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  20. Pulses and waves of contractility.

    Science.gov (United States)

    Wu, Min

    2017-12-04

    The nature of signal transduction networks in the regulation of cell contractility is not entirely clear. In this study, Graessl et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201706052) visualized and characterized pulses and waves of Rho activation in adherent cells and proposed excitable Rho signaling networks underlying cell contractility. © 2017 Wu.

  1. New pulse modulator with low switching frequency

    Directory of Open Access Journals (Sweden)

    Golub V. S.

    2014-12-01

    Full Text Available The author presents an integrating pulse modulator (analog signal converter with the pulse frequency and duration modulation similar to sigma-delta modulation (with low switching frequency, without quantization. The modulator is characterized by the absence of the quantization noise inherent in sigma-delta modulator, and a low switching frequency, unlike the pulse-frequency modulator. The modulator is recommended, in particular, to convert signals at the input of the class D power amplifier.

  2. Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part I: Vapor bubble, shockwaves and plasma

    Science.gov (United States)

    Lazic, V.; Laserna, J. J.; Jovicevic, S.

    2013-04-01

    Plasma and vapor bubble formation and evolution after a nanosecond laser pulse delivered to aluminum targets inside water were studied by fast photography. This technique was also applied to monitor the plasma produced by a second laser pulse and for different interpulse delays. The bubble growth was evident only after 3 μs from the first laser pulse and the bubble shape changed during expansion and collapse cycles. The evolution and propagation of the initial shockwave and its reflections both from the back sample surface and cell walls were detected by Schlieren photography. The primary plasma develops in two phases: violent particle expulsion and ionization during the first μs, followed by slow plasma growth from the ablation crater into the evolving vapor bubble. The shape of the secondary plasma strongly depends on the inner bubble pressure whereas the particle expulsion into the expanded bubble is much less evident. Both the primary and secondary plasma have similar duration of about 30 μs. Detection efficiency of the secondary plasma is much reduced by light refraction at the curved bubble-water interface, which behaves as a negative lens; this leads to an apparent reduction of the plasma dimensions. Defocusing power of the bubble lens increases with its expansion due to the lowering of the vapor's refraction index with respect to that of the surrounding liquid (Lazic et al., 2012 [1]). Smell's reflections of secondary plasma radiation at the expanded bubble wall redistribute the detected intensity on a wavelength-dependent way and allow gathering of the emission also from the external plasma layer that otherwise, would not enter into the optical system.

  3. Pulse Oximetry

    Science.gov (United States)

    ... people need more oxygen when asleep than when awake. Some need more oxygen with activity than when ... oxygen saturation levels (below 80%) or with very dark skin. When should I use a pulse oximeter? ...

  4. Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part I: Vapor bubble, shockwaves and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lazic, V., E-mail: violeta.lazic@enea.it [ENEA (UTAPRAD-DIM), Via. E. Fermi 45, 00044 Frascati (RM) (Italy); Laserna, J.J. [Dept. of Analytical Chemistry, Faculty of Sciences, University of Málaga, Málaga (Spain); Jovicevic, S. [Institute of Physics, University of Belgrade, Belgrade (Serbia)

    2013-04-01

    Plasma and vapor bubble formation and evolution after a nanosecond laser pulse delivered to aluminum targets inside water were studied by fast photography. This technique was also applied to monitor the plasma produced by a second laser pulse and for different interpulse delays. The bubble growth was evident only after 3 μs from the first laser pulse and the bubble shape changed during expansion and collapse cycles. The evolution and propagation of the initial shockwave and its reflections both from the back sample surface and cell walls were detected by Schlieren photography. The primary plasma develops in two phases: violent particle expulsion and ionization during the first μs, followed by slow plasma growth from the ablation crater into the evolving vapor bubble. The shape of the secondary plasma strongly depends on the inner bubble pressure whereas the particle expulsion into the expanded bubble is much less evident. Both the primary and secondary plasma have similar duration of about 30 μs. Detection efficiency of the secondary plasma is much reduced by light refraction at the curved bubble–water interface, which behaves as a negative lens; this leads to an apparent reduction of the plasma dimensions. Defocusing power of the bubble lens increases with its expansion due to the lowering of the vapor's refraction index with respect to that of the surrounding liquid (Lazic et al., 2012 [1]). Smell's reflections of secondary plasma radiation at the expanded bubble wall redistribute the detected intensity on a wavelength-dependent way and allow gathering of the emission also from the external plasma layer that otherwise, would not enter into the optical system. - Highlights: ► Primary plasma during the first μs is irregular due to particle expulsion. ► Later the plasma grows into the evolving bubble, its emission lasts more than 30 μs. ► The initial shockwave and its echoes alter locally the refraction index. ► Defocusing by the bubble

  5. Accuracy of laser measurements improved by pulse autocorrelator electronic system

    Science.gov (United States)

    Campanella, S. J.

    1967-01-01

    Pulse autocorrelator electronic system discriminates between the dispersion effect of a disturbed laser signal and background noise by detecting multipath arrivals of Gaussian-shaped signal pulses. The autocorrelation function is time-dependent and can be determined by integrating the product of a received pulse and its delayed replicas.

  6. Circuit multiplies pulse width modulation, exhibits linear transfer function

    Science.gov (United States)

    Carlson, A. W.; Furciniti, A.

    1967-01-01

    Modulation multiplier provides a simple means of multiplying the width modulation of a pulse train by a constant factor. It operates directly on a pulse width modulated input signal to generate an output pulse train having a greater degree of width modulation than the input signal.

  7. Choice of the pulse sequence and parameters for improved signal-to-noise ratio in T1-weighted study of MRI.

    Science.gov (United States)

    Amin, Naima; Afzal, Muhammad; Yousaf, Muhammad; Javid, Muhammad Arshad

    2015-05-01

    To investigate the practical impact of alteration of imaging parameters on signal-to-noise ratio for the most commonly used T1-weighted magnetic resonance sequences. The study was conducted in the Department of Medical Physics, Ninewells Hospital and Medical School, Dundee, UK, in 2007. Magnetic resonance images of a tissue-equivalent material were generated with a set of T1 and T2 values. Experimental variations in the imaging parameters were performed in echo time and repetition time. Quantitative analysis consisted of signal-to-noise ratio. Percentage inaccuracy in signal-to-noise ratio was the result of inappropriate choice of parameters. We have investigated conventional spin echo, fast spin echo and fast fluid attenuated inversion recovery with one of corresponding percentage errors 28.68%, -36.65% and -40.34%, respectively. Conventional spin echo presented moderately low percentage error with the choice of repetition time and echo time. Factual error in fast spin echo was slightly higher than conventional spin echo. Fast fluid attenuated inversion recovery could create outstanding signal-to-noise ratio of high T1/T2 value phantoms in T1-weighted images. The role of repetition time and echo time in T1-weighted images was crucial to sustain the image quality.

  8. Optical pulses, lasers, measuring techniques

    CERN Document Server

    Früngel, Frank B A

    1965-01-01

    High Speed Pulse Technology: Volume II: Optical Pulses - Lasers - Measuring Techniques focuses on the theoretical and engineering problems that result from the capacitor discharge technique.This book is organized into three main topics: light flash production from a capacitive energy storage; signal transmission and ranging systems by capacitor discharges and lasers; and impulse measuring technique. This text specifically discusses the air spark under atmospheric conditions, industrial equipment for laser flashing, and claims for light transmitting system. The application of light impulse sign

  9. Pulse plating

    CERN Document Server

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  10. Coherent combining pulse bursts in time domain

    Energy Technology Data Exchange (ETDEWEB)

    Galvanauskas, Almantas

    2018-01-09

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies using a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.

  11. Treatment Pulse Application for Magnetic Stimulation

    Directory of Open Access Journals (Sweden)

    Sun-Seob Choi

    2011-01-01

    Full Text Available Treatment and diagnosis can be made in difficult areas simply by changing the output pulse form of the magnetic stimulation device. However, there is a limitation in the range of treatments and diagnoses of a conventional sinusoidal stimulation treatment pulse because the intensity, width, and form of the pulse must be changed according to the lesion type. This paper reports a multidischarge method, where the stimulation coils were driven in sequence via multiple switching control. The limitation of the existing simple sinusoidal pulse form could be overcome by changing the intensity, width, and form of the pulse. In this study, a new sequential discharge method was proposed to freely alter the pulse width. The output characteristics of the stimulation treatment pulse were examined according to the trigger signal delay applied to the switch at each stage by applying a range of superposition pulses to the magnetic simulation device, which is widely used in industry and medicine.

  12. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility.

    Science.gov (United States)

    Solek, Przemyslaw; Majchrowicz, Lena; Bloniarz, Dominika; Krotoszynska, Ewelina; Koziorowski, Marek

    2017-05-01

    The impact of electromagnetic field (EMF) on the human health and surrounding environment is a common topic investigated over the years. A significant increase in the electromagnetic field concentration arouses public concern about the long-term effects of EMF on living organisms associated with many aspects. In the present study, we investigated the effects of pulsed and continuous electromagnetic field (PEMF/CEMF) on mouse spermatogenic cell lines (GC-1 spg and GC-2 spd) in terms of cellular and biochemical features in vitro. We evaluated the effect of EMF on mitochondrial metabolism, morphology, proliferation rate, viability, cell cycle progression, oxidative stress balance and regulatory proteins. Our results strongly suggest that EMF induces oxidative and nitrosative stress-mediated DNA damage, resulting in p53/p21-dependent cell cycle arrest and apoptosis. Therefore, spermatogenic cells due to the lack of antioxidant enzymes undergo oxidative and nitrosative stress-mediated cytotoxic and genotoxic events, which contribute to infertility by reduction in healthy sperm cells pool. In conclusion, electromagnetic field present in surrounding environment impairs male fertility by inducing p53/p21-mediated cell cycle arrest and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  14. Digital gate pulse generator for cycloconverter control

    Science.gov (United States)

    Klein, Frederick F.; Mutone, Gioacchino A.

    1989-01-01

    The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.

  15. Pulsed Power Bibliography. Volume 2. Annotated Bibliography.

    Science.gov (United States)

    1983-08-01

    inoestigated at different pressures and generating signal nacimum peak pouer; One flow rote and sturate volume detereine amplitudes. 22 Refs. mauimumrunn...and Local Thermodyvasic Equilibrium INTERUPTION (LTE) of the arc planna. .srical solutions for the field variables T.E. Browne Jr. are obtained by...complete high current pulse amplifier were fabricated and teste forSwpplTss. Pulse Ognerater; S inductsr DiOedes; diode sturation charsctettcs and pulse

  16. Pulsed feedback defers cellular differentiation.

    Directory of Open Access Journals (Sweden)

    Joe H Levine

    2012-01-01

    Full Text Available Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable "polyphasic" positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a "timer" that operates over timescales much longer than a cell cycle.

  17. Modeling Pilot Pulse Control

    Science.gov (United States)

    Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal

    2017-01-01

    In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).

  18. Suppression of high-frequency perturbations in pulse-width modulation

    DEFF Research Database (Denmark)

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may...

  19. Suppression of high-frequency perturbations in pulse-width modulation

    OpenAIRE

    Knott, Arnold

    2008-01-01

    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may then be filtered and combined.

  20. Pulsed Laser Spectroscopy: An Inexpensive Approach

    Science.gov (United States)

    Daly, J. G.; Hastings, R.; Schmidt, J. A.

    1982-10-01

    The assembly of a pulsed laser spectroscopy laboratory is presented. The authors describe how they constructed pulsed lasers, fast photodetectors, a boxcar signal averager, and associated equipment. A molecular nitrogen laser operating up to 50 Hz with an ultraviolet (337.1 nm) 700 kW pulse was used to optically pump an organic dye laser. The resulting output could be tuned from 360.0 to 680.0 nm. This pulse was typically 30 kW and 8 nsec, which makes it ideally suited to selective excitation and fluorescence studies. By constructing this equipment, it is estimated that the investment was one-tenth the cost of commercial components.

  1. Phase-coded pulse expander-compressor

    Science.gov (United States)

    Lewis, B. L.

    1985-04-01

    A pulse expansion and compression system, especially useful for radar ranging, comprising a pulse coder for expanding an input pulse and a pulse compressor of the matched-filter type. The coder consists of a plurality of delay stages into which the input pulse is fed, a discrete Fourier transform (DFT) circuit to which the output signals of the delay stages are fed by way of respective phase weights and for which every other frequency port is inverted prior to entry to a time-dispersion-means (TDM) comprising an arrangement of adders interconnected by delay stages for differently delaying the output signals from the DFT. The adders are connected in N/2-fold cyclically permutated order to the frequency ports, where N is the number of frequency ports if that number is even, and N is the number of frequency ports less one if that number is odd. The TDM output is fed to a phase modulator and then to the transmitter. The echo signals are conjugated, time-inverted, and passed through the same DFT as the input pulse signal by way of the phase weights. The outputs of the DFT are then inverted at every other frequency port and passed through the TDM, but this time in time-inverted order. The outputs of the TDM are fed through an envelope detector to provide a cross-correlated facsimile of the original input pulse.

  2. Phase coded pulse expander-compressor

    Science.gov (United States)

    Lewis, B. L.

    1985-06-01

    A pulse expansion and compression system, especially useful for radar ranging, comprising a pulse coder for expanding an input pulse and a pulse compressor of the matched-filter type. The coder consists of a plurality of delay stages into which the input pulse is fed, a discrete Fourier transform (DFT) circuit to which the output signals of the delay stages are fed by way of respective phase weights and for which every other frequency port is inverted prior to entry to a time-dispersion means (TDM) comprising an arrangement of adders interconnected by delay stages for differently delaying the output signals from the DFT. The TDM output is fed to a phase modulator and then to the transmitter. The echo signals are conjugated, time-inverted, and passed through the same DFT as the input pulse signal by way of the phase weights. The outputs of the DFT are then inverted at every other frequency port and passed through the TDM, but this time in time-inverted order. The outputs of the TDM are fed through an envelope detector to provide a cross-correlated facsimile of the original input pulse.

  3. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow ab...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics.......The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...

  4. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  5. Optic fiber pulse-diagnosis sensor of traditional Chinese medicine

    Science.gov (United States)

    Ni, J. S.; Jin, W.; Zhao, B. N.; Zhang, X. L.; Wang, C.; Li, S. J.; Zhang, F. X.; Peng, G. D.

    2013-09-01

    The wrist-pulse is a kind of signals, from which a lot of physiological and pathological status of patients are deduced according to traditional Chinese medicine theories. This paper designs a new optic fiber wrist-pulse sensor that based on a group of FBGs. Sensitivity of the optic fiber wrist-pulse measurement system reaches 0.05% FS and the range reaches 50kPa. Frequency response is from 0 Hz to 5 kHz. A group of typical pulse signal is given out in the paper to compare different status of patient. It will improve quantification of pulse diagnosis greatly.

  6. Finite pulse effects in CPMG pulse trains on paramagnetic materials.

    Science.gov (United States)

    Leskes, Michal; Grey, Clare P

    2015-09-14

    The Carr-Purcell-Meiboom-Gill (CPMG) sequence is commonly used in high resolution NMR spectroscopy and in magnetic resonance imaging for the measurement of transverse relaxation in systems that are subject to diffusion in internal or external gradients and is superior to the Hahn echo measurement, which is more sensitive to diffusion effects. Similarly, it can potentially be used to study dynamic processes in electrode materials for lithium ion batteries. Here we compare the (7)Li signal decay curves obtained with the CPMG and Hahn echo sequences under static conditions (i.e., in the absence of magic angle spinning) in paramagnetic materials with varying transition metal ion concentrations. Our results indicate that under CPMG pulse trains the lifetime of the (7)Li signal is substantially extended and is correlated with the strength of the electron-nuclear interaction. Numerical simulations and analytical calculations using Floquet theory suggest that the combination of large interactions and a train of finite pulses, results in a spin locking effect which significantly slows the signal's decay. While these effects complicate the interpretation of CPMG-based investigations of diffusion and chemical exchange in paramagnetic materials, they may provide a useful approach to extend the signal's lifetime in these often fast relaxing systems, enabling the use of correlation experiments. Furthermore, these results highlight the importance of developing a deeper understanding of the effects of the large paramagnetic interactions during multiple pulse experiments in order to extend the experimental arsenal available for static and in situ NMR investigations of paramagnetic materials.

  7. Use of the Frank sequence in pulsed EPR

    DEFF Research Database (Denmark)

    Tseitlin, Mark; Quine, Richard W.; Eaton, Sandra S.

    2011-01-01

    The Frank polyphase sequence has been applied to pulsed EPR of triarylmethyl radicals at 256MHz (9.1mT magnetic field), using 256 phase pulses. In EPR, as in NMR, use of a Frank sequence of phase steps permits pulsed FID signal acquisition with very low power microwave/RF pulses (ca. 1.5m......W in the application reported here) relative to standard pulsed EPR. A 0.2mM aqueous solution of a triarylmethyl radical was studied using a 16mm diameter cross-loop resonator to isolate the EPR signal detection system from the incident pulses. Keyword: Correlation spectroscopy,Multi-pulse EPR,Low power pulses...

  8. Diagnostics of pulse contrast for petawatt laser in SGII

    Science.gov (United States)

    Ouyang, Xiaoping; Liu, Daizhong; Zhu, Baoqiang; Zhu, Jian; Zhu, Jianqiang

    2015-02-01

    Pulse contrast is an important parameter for ultrafast pulses. It shall be 108 or higher in order to avoid effect from noise before main pulse. Diagnostics with cross-correlation can achieve high temporal resolution such as ~7fs. Cross-correlation has advantage in pulse contrast measurement than autocorrelation because it can distinguish noise before or after main pulse. High dynamic range is also essential in pulse contrast measurement. Cross-correlation signal from a single shot is converted into a signal series through fiber array, which can be analyzed by a set of a PMT and an oscilloscope. Noise from nonlinear crystal and scatter needs decrease to improve dynamic range. And pulse power is also discussed in pulse contrast experiments. Time delay τ is generated by travel stage in measurement for repetition pulses. Then energy instability will generate error in this measurement. In measurement for single shot pulse, time delay τ is generated by slant angle of beams. The scanning procession is completed with thousands parts of beam section within a single shot, and error will generated from no uniformity in near field. Performance test of pulse contrast measurement is introduced in subsequent sections. Temporal resolution is testified by self-calibration. Dynamic range is judged by a parallel flat. At last pulse contrast of petawatt laser is diagnosed by a single shot cross-correlator with high confidence. The ratio is 10-6 at 50ps before main pulse, and 10-4 at 10ps before main pulse.

  9. Dynamic characterization and amplification of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We show a first-time demonstration of amplification of 400 fs pulses in a fiber optical parametric amplifier. The 400 fs signal is stretched in time, amplified by 26 dB and compressed back to 500 fs. A significant broadening of the pulses is experimentally shown due to dispersion and limited gain...... bandwidth both in saturated and unsaturated gain regimes....

  10. Real-time energy measurement of high repetition rate ultrashort laser pulses using pulse integration and FPGA processing

    Science.gov (United States)

    Tang, Qi-jie; Yang, Dong-xu; Wang, Jian; Feng, Yi; Zhang, Hong-fei; Chen, Teng-yun

    2016-11-01

    Real-time energy measurement using pulse integration method for high repetition rate ultrashort laser pulses based on FPGA (Field-Programmable Gate Array) and high-speed pipeline ADC (Analog-to-Digital Convertor) is introduced in this paper. There are two parts contained in this method: pulse integration and real-time data processing. The pulse integration circuit will convert the pulse to the step type signals which are linear to the laser pulse energy. Through the real-time data processing part, the amplitude of the step signals will be obtained by ADC sampling and conducting calculation in real time in FPGA. The test result shows that the method with good linearity (4.770%) and without pulse measurement missing is suitable for ultrashort laser pulses with high repetition rate up to 100 MHz.

  11. Signal processing for radiation detectors

    CERN Document Server

    Nakhostin, Mohammad

    2018-01-01

    This book provides a clear understanding of the principles of signal processing of radiation detectors. It puts great emphasis on the characteristics of pulses from various types of detectors and offers a full overview on the basic concepts required to understand detector signal processing systems and pulse processing techniques. Signal Processing for Radiation Detectors covers all of the important aspects of signal processing, including energy spectroscopy, timing measurements, position-sensing, pulse-shape discrimination, and radiation intensity measurement. The book encompasses a wide range of applications so that readers from different disciplines can benefit from all of the information. In addition, this resource: * Describes both analog and digital techniques of signal processing * Presents a complete compilation of digital pulse processing algorithms * Extrapolates content from more than 700 references covering classic papers as well as those of today * Demonstrates concepts with more than 340 origin...

  12. Development of pulse diagnostic devices in Korea

    Directory of Open Access Journals (Sweden)

    Hyunho Kim

    2013-03-01

    Full Text Available In Korean medicine, pulse diagnosis is one of the important methods for determining the health status of a patient. For over 40 years, electromechanical pulse diagnostic devices have been developed to objectify and quantify pulse diagnoses. In this paper, we review previous research and development for pulse diagnostic devices according to various fields of study: demand analysis and current phase, literature studies, sensors, actuators, systems, physical quantity studies, clinical studies, and the U-health system. We point out some confusing issues that have been naively accepted without strict verification: original pressure pulse waveform and derivative pressure pulse waveform, pressure signals and other signal types, and minutely controlled pressure exertion issues. We then consider some technical and clinical issues to achieve the development of a pulse diagnostic device that is appropriate both technically and in terms of Korean medicine. We hope to show the history of pulse diagnostic device research in Korea and propose a proper method to research and develop these devices.

  13. Phase Modulator Programming to Get Flat Pulses with Desired Length and Power from the CTF3 Pulse Compressors

    CERN Document Server

    Shaker, Seyd Hamed; Skowronski, Piotr; Syratchev, Igor; Tecker, Frank

    2010-01-01

    The pulse compressor is located after the klystron to increase the power peak by storing the energy at the beginning and releasing it near the end of klystron output pulse. In the CTF3 pulse compressors a doubling of the peak power is achieved according to our needs and the machine parameters. The magnitude of peak power, pulse length and flatness can be controlled by using a phase modulator for the input signal of klystrons. A C++ code is written to simulate the pulse compressor behaviour according to the klystron output pulse power. By manually changing the related parameters in the code for the best match, the quality factor and the filling time of pulse compressor cavities can be determined. This code also calculates and sends the suitable phase to the phase modulator according to the klystron output pulse power and the desired pulse length and peak power

  14. Error probability for RFID SAW tags with pulse position coding and peak-pulse detection.

    Science.gov (United States)

    Shmaliy, Yuriy S; Plessky, Victor; Cerda-Villafaña, Gustavo; Ibarra-Manzano, Oscar

    2012-11-01

    This paper addresses the code reading error probability (EP) in radio-frequency identification (RFID) SAW tags with pulse position coding (PPC) and peak-pulse detection. EP is found in a most general form, assuming M groups of codes with N slots each and allowing individual SNRs in each slot. The basic case of zero signal in all off-pulses and equal signals in all on-pulses is investigated in detail. We show that if a SAW-tag with PPC is designed such that the spurious responses are attenuated by more than 20 dB below on-pulses, then EP can be achieved at the level of 10(-8) (one false read per 108 readings) with SNR >17 dB for any reasonable M and N. The tag reader range is estimated as a function of the transmitted power and EP.

  15. Inductive Pulse Generation

    OpenAIRE

    Lindblom, Adam

    2006-01-01

    Pulsed power generators are a key component in compact systems for generation of high-power microwaves (HPM). HPM generation by virtual cathode devices such as Vircators put high demands on the source. The rise time and the pulse length of the source voltage are two key issues in the generation of HPM radiation. This thesis describes the construction and tests of several inductive high power pulse generators. The pulse generators were designed with the intent to deliver a pulse with fast rise...

  16. Pulsed water jet generated by pulse multiplication

    Czech Academy of Sciences Publication Activity Database

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high-pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  17. Electromagnetic pulses bone healing booster

    Science.gov (United States)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  18. Advanced Pulse Oximetry System for Remote Monitoring and Management

    Directory of Open Access Journals (Sweden)

    Ju Geon Pak

    2012-01-01

    Full Text Available Pulse oximetry data such as saturation of peripheral oxygen (SpO2 and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient’s pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time.

  19. Advanced pulse oximetry system for remote monitoring and management.

    Science.gov (United States)

    Pak, Ju Geon; Park, Kee Hyun

    2012-01-01

    Pulse oximetry data such as saturation of peripheral oxygen (SpO(2)) and pulse rate are vital signals for early diagnosis of heart disease. Therefore, various pulse oximeters have been developed continuously. However, some of the existing pulse oximeters are not equipped with communication capabilities, and consequently, the continuous monitoring of patient health is restricted. Moreover, even though certain oximeters have been built as network models, they focus on exchanging only pulse oximetry data, and they do not provide sufficient device management functions. In this paper, we propose an advanced pulse oximetry system for remote monitoring and management. The system consists of a networked pulse oximeter and a personal monitoring server. The proposed pulse oximeter measures a patient's pulse oximetry data and transmits the data to the personal monitoring server. The personal monitoring server then analyzes the received data and displays the results to the patient. Furthermore, for device management purposes, operational errors that occur in the pulse oximeter are reported to the personal monitoring server, and the system configurations of the pulse oximeter, such as thresholds and measurement targets, are modified by the server. We verify that the proposed pulse oximetry system operates efficiently and that it is appropriate for monitoring and managing a pulse oximeter in real time.

  20. Pulse code modulation telemetry - Properties of various binary modulation types

    Science.gov (United States)

    Law, E. L.

    The present investigation is concerned with a comparison of the performance of methods for the transmission of digital data, taking into account aspects of performance under simulated range conditions. Attention is given to radio frequency spectra, bit error rate performance, peak carrier deviation, premodulation filtering, receiver IF bandpass filtering, receiver/demodulator video bandwidth, pulse code modulation (PCM) codes, phase shift keying, and four major methods for recording PCM signals. It is found that pulse code modulation/phase modulation (PCM/PM) signals can achieve better data quality than pulse code modulation/frequency modulation (PCM/FM) signals with the same radiated power if wide bandwidths are available.

  1. System and process for pulsed multiple reaction monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  2. Pulse-to-pulse variations in accreting X-ray pulsars

    Directory of Open Access Journals (Sweden)

    Kretschmar Peter

    2014-01-01

    Full Text Available In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  3. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  4. Cavitation pulse extraction and centrifugal pump analysis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong Lind Shaoran [University of Electronic Science and Technology of China, Chengdu (China); Yu, Bo; Qing, Biao [Xihua University, Chengdu (China)

    2017-03-15

    This study extracted cavitation pulses from hydrophone signals sampled in a centrifugal pump and analyzed their characteristics. The modified and simplified Empirical mode decomposition (EMD) algorithm was proposed for extracting cavitation pulses from strong background noise. Experimental results showed that EMD can effectively suppress noise and obtain clear cavitation pulses, facilitating the identification of the number of pulses associated with the degree of cavitation. The cavitation characteristics were modeled to predict the value of incipient cavitation. Then, we proposed a method for detecting the wear of the impeller surface. That is, the information on the impeller surface of the centrifugal pump, including the roughness of the impeller surface and its wear trends, were quantified based on the net positive suction head available of incipient cavitation. The findings indicate that the proposed technique is suitable for condition monitoring of the pump.

  5. Binary Pulse Compression Techniques for MST Radars

    Science.gov (United States)

    Woodman, R. F.; Sulzer, M. P.; Farley, D. T.

    1984-01-01

    In most mesosphere-stratosphere-troposphere (MST) applications pulsed radars are peak power limited and have excess average power capability. Short pulses are required for good range resolution but the problem of range biguity (signals received simultaneously from more than one altitude) sets a minimum limit on the interpulse period (IPP). Pulse compression is a echnique which allows more of the transmitter average power capacity to be used without scarificing range resolution. Binary phase coding methods for pulse compression are discussed. Many aspects of codes and decoding and their applications to MST experiments are addressed; this includes Barker codes and longer individual codes, and then complementary codes and other code sets. Software decoding, hardware decoders, and coherent integrators are also discussed.

  6. Nonresonant Multiple-Pulse Control of Molecular Motions in Liquid

    Directory of Open Access Journals (Sweden)

    Nikiforov V.G.

    2015-01-01

    Full Text Available We propose the implementation of the multiple-pulse excitation for manipulation of the molecular contributions to the optically-heterodyne-detected optical-Kerr-effect. The key parameters controlling the specificity of the multiple-pulse excitation scenarios are the pulses durations, the delays between pulses, the relation between the pump pulses amplitudes and the pulses polarizations. We model the high-order optical responses and consider some principles of the scenarios construction. We show that it is possible to adjust the excitation scenario in such a way that the some responses can be removed from detected signal along with the enhancement of the interested response amplitude. The theoretical analysis and first experimental data reveal that the multiple-pulse excitation technique can be useful for the selective spectroscopy of the molecular vibrations and rotations in liquid.

  7. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler imaging... features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended to... include signal analysis and display equipment, patient and equipment supports, component parts, and...

  8. A computer controlled pulse penerator for an ST Radar System ...

    African Journals Online (AJOL)

    A computer controlled pulse genarator for an ST radar system is described. It uses a highly flexible software and a hardware with a small IC count, making the system compact and highly programmable. The parameters of the signals of the pulse generator are initially entered from the keyboard. The computer then generates ...

  9. Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, K.

    1966-07-15

    For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used.

  10. Coherent pulse position modulation quantum cipher

    Energy Technology Data Exchange (ETDEWEB)

    Sohma, Masaki; Hirota, Osamu [Quantum ICT Research Institute, Tamagawa University, 6-1-1 Tamagawa-gakuen, Machida, Tokyo 194-8610 (Japan)

    2014-12-04

    On the basis of fundamental idea of Yuen, we present a new type of quantum random cipher, where pulse position modulated signals are encrypted in the picture of quantum Gaussian wave form. We discuss the security of our proposed system with a phase mask encryption.

  11. Synthesizing genetic sequential logic circuit with clock pulse generator

    National Research Council Canada - National Science Library

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-01-01

    .... This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse...

  12. Pulse-Width-Modulating Driver for Brushless dc Motor

    Science.gov (United States)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  13. Upconversion imaging using short-wave infrared picosecond pulses

    DEFF Research Database (Denmark)

    Mathez, Morgan David; Rodrigo, Peter John; Tidemand-Lichtenberg, Peter

    2017-01-01

    To the best of our knowledge, we present the first demonstration of short-wavelength infrared image upconversion that employs intense picosecond signal and pump beams. We use a fiber laser that emits a signal beam at 1877 nm and a pump beam at 1550 nm—both with a pulse width of 1 ps and a pulse...... by an improved model that considers the combined image blurring effect due to finite pump beam size, thick nonlinear crystal, and polychromatic infrared illumination....

  14. Respiration signals from photoplethysmography.

    Science.gov (United States)

    Nilsson, Lena M

    2013-10-01

    Pulse oximetry is based on the technique of photoplethysmography (PPG) wherein light transmitted through tissues is modulated by the pulse. In addition to variations in light modulation by the cardiac cycle, the PPG signal contains a respiratory modulation and variations associated with changing tissue blood volume of other origins. Cardiovascular, respiratory, and neural fluctuations in the PPG signal are of different frequencies and can all be characterized according to their sinusoidal components. PPG was described in 1937 to measure blood volume changes. The technique is today increasingly used, in part because of developments in semiconductor technology during recent decades that have resulted in considerable advances in PPG probe design. Artificial neural networks help to detect complex nonlinear relationships and are extensively used in electronic signal analysis, including PPG. Patient and/or probe-tissue movement artifacts are sources of signal interference. Physiologic variations such as vasoconstriction, a deep gasp, or yawn also affect the signal. Monitoring respiratory rates from PPG are often based on respiratory-induced intensity variations (RIIVs) contained in the baseline of the PPG signal. Qualitative RIIV signals may be used for monitoring purposes regardless of age, gender, anesthesia, and mode of ventilation. Detection of breaths in adult volunteers had a maximal error of 8%, and in infants the rates of overdetected and missed breaths using PPG were 1.5% and 2.7%, respectively. During central apnea, the rhythmic RIIV signals caused by variations in intrathoracic pressure disappear. PPG has been evaluated for detecting airway obstruction with a sensitivity of 75% and a specificity of 85%. The RIIV and the pulse synchronous PPG waveform are sensitive for detecting hypovolemia. The respiratory synchronous variation of the PPG pulse amplitude is an accurate predictor of fluid responsiveness. Pleth variability index is a continuous measure of the

  15. Pulse Tube Refrigerator

    Science.gov (United States)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  16. Ultrashort Laser Pulse Phenomena

    CERN Document Server

    Diels, Jean-Claude

    2006-01-01

    Ultrashort Laser Pulse Phenomena, 2e serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond (""faster than electronics"") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic

  17. Subharmonic emissions from microbubbles: effect of the driving pulse shape.

    Science.gov (United States)

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2006-11-01

    The aims of this work are to investigate the response of the ultrasonic contrast agents (UCA) insonified by different arbitrary-shaped pulses at different acoustic pressures and concentration of the contrast agent focusing on subharmonic emission. A transmission setup was developed in order to insonify the contrast agent contained in a measurement chamber. The transmitted ultrasonic signals were generated by an arbitrary wave generator connected to a linear power amplifier able to drive a single-element transducer. The transmitted ultrasonic pulses that passed through the contrast agent-filled chamber were received by a second transducer or a hydrophone aligned with the first one. The radio frequency (RF) signals were acquired by fast echographic multiparameters multi-image novel apparatus (FEMMINA), which is an echographic platform able to acquire ultrasonic signals in a real-time modality. Three sets of ultrasonic signals were devised in order to evaluate subharmonic response of the contrast agent respect with sinusoidal burst signals used as reference pulses. A decreasing up to 30 dB in subharmonic response was detected for a Gaussian-shaped pulse; differences in subharmonic emission up to 21 dB were detected for a composite pulse (two-tone burst) for different acoustic pressures and concentrations. Results from this experimentation demonstrated that the transmitted pulse shape strongly affects subharmonic emission in spite of a second harmonic one. In particular, the smoothness of the initial portion of the shaped pulses can inhibit subharmonic generation from the contrast agents respect with a reference sinusoidal burst signal. It also was shown that subharmonic generation is influenced by the amplitude and the concentration of the contrast agent for each set of the shaped pulses. Subharmonic emissions that derive from a nonlinear mechanism involving nonlinear coupling among different oscillation modes are strongly affected by the shape of the ultrasonic

  18. Semi-classical signal analysis

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2012-09-30

    This study introduces a new signal analysis method, based on a semi-classical approach. The main idea in this method is to interpret a pulse-shaped signal as a potential of a Schrödinger operator and then to use the discrete spectrum of this operator for the analysis of the signal. We present some numerical examples and the first results obtained with this method on the analysis of arterial blood pressure waveforms. © 2012 Springer-Verlag London Limited.

  19. Study on cathode high voltage pulse control in image intensifier

    Science.gov (United States)

    Yang, Ye; Yan, Bo; Ni, Xiao-bing; Zhi, Qiang; Li, Jun-guo; Yao, Ze; Deng, Guang-xu

    2016-03-01

    This paper briefly introduces the basic working principle of auto-gating power source. Due to the presence of noise in the circuit, the cathode pulse signal generated by the AD converter is unstable. In this paper, the circuit of the AD converter is adjusted to improve the instability of the cathode high voltage pulse signal, especially in the case of low light and high illumination to avoid the jitter of the pulse. The experiment was carried out. And it could guide the implementation of this part of the circuit.

  20. High stability breakdown of noble gases with femtosecond laser pulses.

    Science.gov (United States)

    Heins, A M; Guo, Chunlei

    2012-02-15

    In the past, laser-induced breakdown spectroscopy (LIBS) signals have been reported to have a stability independent of the pulse length in solids. In this Letter, we perform the first stability study of femtosecond LIBS in gases (to our best knowledge) and show a significant improvement in signal stability over those achieved with longer pulses. Our study shows that ultrashort-pulse LIBS has an intrinsically higher stability in gas compared to nanosecond-pulse LIBS because of a deterministic ionization process at work in the femtosecond pulse. Relative standard deviations below 1% are demonstrated and are likely only limited by our laser output fluctuations. This enhanced emission stability may open up possibilities for a range of applications, from monitoring rapid gas dynamics to high-quality broadband light sources.

  1. Pulse Response Measurement and Processing by Six-Port Reflectometr

    Directory of Open Access Journals (Sweden)

    Norbert Majer

    2008-01-01

    Full Text Available In this paper the pulse response estimation of radio channel by Six-port reflectometer (SPR is described. The measurement of pulse response is in real time, with baseband conversion and without demodulation. This system is simple, small, exact and inexpensive. In the present, it is insisted on signal processing in real time. In present time it is requested touse faster systems of signal processing, so the using of high performance digital devices is needed. Pulse response of radio channel, six-port reflectometer and radio channel are simulated in program language Delphi 7. In this work the pulse response measurement of MIMO radio channel by Six-port reflectometer technique. A pulse response matrix, Rayleighfading in the radio channel, SPR technology, AWGN radio channel has been simulated in program language Delphi 7.

  2. Fiber-Optical Parametric Amplification of Sub-Picosecond Pulses for High-Speed Optical Communications

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Rottwitt, Karsten

    2015-01-01

    This article reviews recent results of amplification of short optical pulses using fiber-optical parametric amplifiers. This includes chirped-pulse amplification of 400 fs pulses, error-free amplification of a 640-Gbit/s optical time-division multiplexed signal with less than a 1-dB power penalty...

  3. Composite pulses for RF phase encoded MRI: A simulation study.

    Science.gov (United States)

    Salajeghe, Somaie; Babyn, Paul; Sarty, Gordon E

    2017-02-01

    In B1 encoded MRI, a realistic non-linear phase RF encoding coil will generate an inhomogeneous B1 field that leads to spatially dependent flip angles. The non-linearity of the B1 phase gradient can be compensated for in the reconstruction, but B1 inhomogeneity remains a problem. The effect of B1 inhomogeneity on tip angles for conventional, B0 encoded MRI, may be minimized using composite pulses. The objective of this study was to explore the feasibility of using composite pulses with non-linear RF phase encoding coils and to identify the most appropriate composite pulse scheme. RF encoded signals were simulated via the Bloch equation for various symmetric, asymmetric and antisymmetric composite pulses. The simulated signals were reconstructed using a constrained least squares method. Root mean square reconstruction errors varied from 6% (for an asymmetric composite pulse) to 9.7% (for an antisymmetric composite pulse). An asymmetric composite pulse scheme created images with fewer artifacts than other composite pulse schemes in inhomogeneous B0 and B1 fields making it the best choice for decreasing the effects of spatially varying flip angles. This is contrary to the conclusion that antisymmetric composite pulses are the best ones to use for spin echo sequences in conventional, B0 encoded, MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    DEFF Research Database (Denmark)

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  5. A novel pulse processing scheme using embedded pulsed reset charge sensitive preamplifier

    Science.gov (United States)

    Prasanna, G.; Jayapandian, J.; Sheela, O. K.; Amarendra, G.

    2016-05-01

    A novel, cost effective pulse height digitization scheme for spectroscopy applications, utilizing a CMOS analog switch as reset element in the feedback of preamplifier stage is designed. The CMOS switch resistance is controlled by a signal generated from a firmware, run in parallel with a digitizer. While the very high open-state resistance of the switch reduces the thermal noise in the preamplifier output, eliminating the need for pulse shaping, it increases the probability of pulse pile-up. A state machine run in conjunction with the firmware eliminates the pile-up event error contribution by prompting the firmware to prevent the piled-up pulse levels from getting registered. The Pulse height digitization and pile up elimination functions are implemented on a single-chip Programmable System on Chip (PSoC) mixed signal platform from Cypress Semiconductor. The digitized pulse heights are communicated to a PC based virtual instrument graphical user interface developed using National Instruments Lab VIEW. The new scheme is functionally verified with Planar PIN diode detectors in obtaining alpha particle spectra.

  6. Chaotic Pulse Trains

    CERN Document Server

    Balmforth, N J; Spiegel, E A

    1993-01-01

    Abstract: We study a third-order nonlinear ordinary differential equation whose solutions, under certain specific conditions, are individual pulses. These correspond to homoclinic orbits in the phase space of the equation and we study the possible pulse types in some detail. Sufficiently close to the conditions under which a homoclinic orbit exists, the solutions take the form of trains of well-separated pulses. A measure of closeness to homoclinic conditions provides a small parameter for the development of an asymptotic solution consisting of superposed, isolated pulses. The solvability condition in the resulting singular perturbation theory is a {\\its timing map} relating successive pulse spacings. This map of the real line onto itself, together with the known form of the homoclinic orbit, provides a concise and accurate solution of the equation.

  7. Slow light and pulse propagation in semiconductor waveguides

    DEFF Research Database (Denmark)

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  8. Femtosecond-Laser-Pulse Characterization and Optimization for CARS Microscopy.

    Directory of Open Access Journals (Sweden)

    Vincenzo Piazza

    Full Text Available We present a simple method and its experimental implementation to determine the pulse durations and linear chirps of the pump-and-probe pulse and the Stokes pulse in a coherent anti-Stokes Raman scattering microscope at sample level without additional autocorrelators. Our approach exploits the delay line, ubiquitous in such microscopes, to perform a convolution of the pump-and-probe and Stokes pulses as a function of their relative delay and it is based on the detection of the photons emitted from an appropriate non-linear sample. The analysis of the non-resonant four-wave-mixing and sum-frequency-generation signals allows for the direct retrieval of the pulse duration on the sample and the linear chirp of each pulse. This knowledge is crucial in maximizing the spectral-resolution and contrast in CARS imaging.

  9. Sandia Pulsed Reactor Facility (SPRF) calculator-assisted pulse analysis and display system

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.F.; Berry, D.T.

    1980-02-01

    Two solid-metal fast burst type reactors (SPR II and SPR III) are operated at the Sandia Pulsed Reactor Facility. Since startup of the reactors, oscilloscope traces have been used to record (by camera) the pulse (power) shape while log N systems have measured initial reactor period. Virtually no other pulse information is available. A decision was made to build a system that could collect the basic input data available from the reactor - fission chambers, photodiodes, and thermocouples - condition the signals and output the various parameters such as power, energy, temperature, period and lifetime on hard copy that would provide a record for operations personnel as well as the experimenter. Because the reactors operate in short time frames - pulse operation - it is convenient to utilize the classical Nordheim-Fuchs approximation of the diffusion equation to describe reactor behavior. This report describes the work performed to date in developing the calculator system and analytical models for computing the desired parameters.

  10. Single-pulse coherent anti-Stokes Raman scattering microscopy employing an octave spanning pulse.

    Science.gov (United States)

    Isobe, Keisuke; Suda, Akira; Tanaka, Masahiro; Hashimoto, Hiroshi; Kannari, Fumihiko; Kawano, Hiroyuki; Mizuno, Hideaki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2009-07-06

    We demonstrate two complementary types of microscopy using an identical setup for single-pulse coherent anti-Stokes Raman scattering (CARS) imaging, which employs an ultrabroadband laser pulse with a spectral bandwidth of 4800 cm(-1) and enables the suppression of nonresonant CARS signals. One is a novel type of microscopy that uses spectral phase modulation for the selective excitation of a single Raman mode. The selective excitation is achieved by the modulated pulse focusing its difference-frequency spectrum into a narrow spectral region. Another type is Fourier-transform CARS (FT-CARS) microspectroscopy based on the measurement of the CARS spectrum obtained from the Fourier-transform of the interferometric autocorrelation (IAC) signal. Vibrational spectral imaging of chemical and biological samples is demonstrated using the two types of microscopy.

  11. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  12. Pulse energy measurement at the SXR instrument.

    Science.gov (United States)

    Moeller, Stefan; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J; Wallace, Alex; Jastrow, Ulf; Kreis, Svea; Sorokin, Andrey A; Tiedtke, Kai

    2015-05-01

    A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.

  13. Searching for Single Pulses Using Heimdall

    Science.gov (United States)

    Walsh, Gregory; Lynch, Ryan

    2018-01-01

    In radio pulsar surveys, the interstellar medium causes a frequency dependent dispersive delay of a pulsed signal across the observing band. If not corrected, this delay substantially lowers S/N and makes most pulses undetectable. The delay is proportional to an unknown dispersion measure (DM), which must be searched over with many trial values. A number of new, GPU-accelerated codes are now available to optimize this dedispersion task, and to search for transient pulsed radio emission. We report on the use of Heimdall, one such GPU-accelerated tree dedispersion utility, to search for transient radio sources in a Green Bank Telescope survey of the Cygnus Region and North Galactic Plane. The survey is carried out at central frequency of 820 MHz with a goal of finding Fast Radio Bursts, Rotating Radio Transients, young pulsars, and millisecond pulsars. We describe the the survey, data processing pipeline, and follow-up of candidate sources.

  14. High performance pulse generator

    Science.gov (United States)

    Grothaus, Michael G.; Moran, Stuart L.; Hardesty, Leonard W.

    1992-06-01

    The device is a compact Marx-type generator capable of producing a high-voltage burst of pulses having risetimes less than 10 nanoseconds at repetition rates up to 10 kHz. High-pressure hydrogen switches are used as the switching elements to achieve high rep-rate. A small coaxial design provides low inductance and a fast risetime. The device may be used as a high-rep-rate high-voltage trigger generator, or as a high-voltage pulse source capable of producing up to 1 MV pulses at high repetition rates.

  15. Pulse joining cartridges

    Energy Technology Data Exchange (ETDEWEB)

    Golovashchenko, Sergey Fedorovich; Bonnen, John Joseph Francis

    2017-09-26

    A pulsed joining tool includes a tool body that defines a cavity that receives an inner tubular member and an outer tubular member and a pulse joining cartridge. The tubular members are nested together with the cartridge being disposed around the outer tubular member. The cartridge includes a conductor, such as a wire or foil, that extends around the outer tubular member and is insulated to separate a supply segment from a return segment. A source of stored electrical energy is discharged through the conductor to join the tubular members with an electromagnetic force pulse.

  16. DogPulse

    DEFF Research Database (Denmark)

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  17. Parallel adaptive sparse approximation methods for analysis of geoacoustic pulses

    Science.gov (United States)

    Kim, Alina; Lukovenkova, Olga; Marapulets, Yuri; Tristanov, Alexander

    2017-10-01

    The article is devoted to a new approach in the analysis of geoacoustic pulses. The authors proposed a mathematical model based on a sparse representation of the signal. An adaptive matching pursuit method has been developed to identify model parameters. A parallel implementation of this algorithm is proposed on the CUDA platform. This allows real-time processing and modeling of signals.

  18. Apparatus and method for characterizing ultrafast polarization varying optical pulses

    Science.gov (United States)

    Smirl, A.; Trebino, R.P.

    1999-08-10

    Practical techniques are described for characterizing ultrafast potentially ultraweak, ultrashort optical pulses. The techniques are particularly suited to the measurement of signals from nonlinear optical materials characterization experiments, whose signals are generally too weak for full characterization using conventional techniques. 2 figs.

  19. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  20. Waveform design considerations for modulated pulse lidar

    Science.gov (United States)

    O'Connor, Shawn; Lee, Robert; Mullen, Linda; Cochenour, Brandon

    2014-05-01

    Techniques have been developed to mitigate many of the issues associated with underwater imaging in turbid environments. However, as targets get smaller and better camouflaged, new techniques are needed to enhance system sensitivity. Researchers at NAVAIR have been developing several techniques that use RF modulation to suppress background clutter and enhance target detection. One approach in particular uses modulation to encode a pulse in a synchronous line scan configuration. Previous results have shown this technique to be effective at both forward and backscatter suppression. Nearly a perfect analog to modulated pulse radar, this technique can leverage additional signal processing and pulse encoding schemes to further suppress background clutter, pull signals out of noise, and improve image resolution. Additionally, using a software controlled transmitter, we can exploit this flexibility without the need to change out expensive hardware. Various types of encoding schemes were tested and compared. We report on their comparative effectiveness relative to a more conventional non-coded pulse scheme to suppress background clutter and improved target detection.

  1. Femtosecond Timing Distribution Using Optical Pulses

    CERN Document Server

    Winter, A; Winter, A

    2005-01-01

    Fourth-generation light sources, such as the European X-ray Free Electron Laser (XFEL) require timing signals distributed over distances of several kilometers with a stability in the order of femtoseconds. A promising approach is the use of a mode-locked laser that generates sub-picosecond pulses which are distributed in timing stabilized optical fiber links. A good candidate for a laser master oscillator (LMO) is a mode-locked Erbium-doped fiber laser, featuring extremely low phase noise far from the carrier. Results on the development of the LMO locked to an external reference microwave oscillator to suppress low frequency jitter, the distribution via timing stabilized optical fiber links and the reconversion of the optical pulses to a low phase noise microwave RF signals with overall femtosecond stability are presented.

  2. AMXP Pulse variability wih NICER

    Science.gov (United States)

    Bult, Peter

    2017-08-01

    Accreting millisecond X-ray pulsars show a diverse scope variability, including coherent pulsations from the stellar surface and quasi-periodic oscillations attributed to the accretion flow. Because the pulsations are ultimately powered by accreting material, it may be expected that these periodic and quasi-periodic signals show coupled behavior. Observing and characterizing such coupling then gives a unique view of the flow of matter in the closest vicinity of the neutron star surface. In this contribution I will present recently developed specialized methods that can detect such coupling, and discuss how high quality X-ray observations by NICER may enable pulse amplitude modulation studies, and their potential to constrain the physics of accretion.

  3. Pulse oximetry: fundamentals and technology update

    Directory of Open Access Journals (Sweden)

    Nitzan M

    2014-07-01

    Full Text Available Meir Nitzan,1 Ayal Romem,2 Robert Koppel31Department of Physics/Electro-Optics, Jerusalem College of Technology, Jerusalem, Israel; 2Pulmonary Institute, Shaare Zedek Medical Center, Jerusalem, Israel; 3Neonatal/Perinatal Medicine, Cohen Children's Medical Center of New York/North Shore-LIJ Health System, New Hyde Park, NY, United StatesAbstract: Oxygen saturation in the arterial blood (SaO2 provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oximeter sensor, utilizing in vitro measurement of SaO2 in extracted arterial blood by means of co-oximetry. Due to the discrepancy between the measurement of SaO2 by pulse oximetry and the invasive technique, the former is denoted as SpO2. Manufacturers of pulse oximeters generally claim an accuracy of 2%, evaluated by the standard deviation (SD of the differences between SpO2 and SaO2, measured simultaneously in healthy subjects. However, an SD of 2% reflects an expected error of 4% (two SDs or more in 5% of the examinations, which is in accordance with an error of 3%–4%, reported in clinical studies. This level of accuracy is sufficient for the detection of a significant decline in respiratory function in patients, and pulse oximetry has been accepted as a reliable technique for that purpose. The accuracy of SpO2 measurement is insufficient in several situations, such as critically ill patients receiving supplemental oxygen, and can be hazardous if it leads to elevated values of oxygen partial pressure in blood. In particular, preterm newborns are vulnerable to retinopathy of prematurity induced by high oxygen concentration in the blood. The low accuracy of SpO2 measurement in critically ill patients and newborns

  4. A Computer Controlled Pulse Programmer for Pulsed NQR Experiments

    OpenAIRE

    Horiuchi, Keizo; 堀内, 敬三

    1987-01-01

    We constructed a computer controlled pulse programmer for the measurement of nuclear quadrupole resonance relaxation times. Programmable interval timer 8253 was used as device for pulse programming. The circuit is very simple and construction is also easy in comparison with the usual pulse programmer. This programmer is sufficiently useful concerning the pulse programming of slimple pulse sequences such as π-τ-π/2 and π/2-τ-π, which are usually used in the measurement of relaxation times. We ...

  5. Construction of ion beam pulse radiolysis system

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, Norihisa; Katsumura, Yosuke; Domae, Masafumi; Ishigure, Kenkichi; Murakami, Takeshi [Tokyo Univ. (Japan)

    1996-10-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24 MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3} and KSCN, were irradiated and the absorption signals were observed. (author)

  6. A photodiode amplifier system for pulse-by-pulse intensity measurement of an x-ray free electron laser.

    Science.gov (United States)

    Kudo, Togo; Tono, Kensuke; Yabashi, Makina; Togashi, Tadashi; Sato, Takahiro; Inubushi, Yuichi; Omodani, Motohiko; Kirihara, Yoichi; Matsushita, Tomohiro; Kobayashi, Kazuo; Yamaga, Mitsuhiro; Uchiyama, Sadayuki; Hatsui, Takaki

    2012-04-01

    We have developed a single-shot intensity-measurement system using a silicon positive-intrinsic-negative (PIN) photodiode for x-ray pulses from an x-ray free electron laser. A wide dynamic range (10(3)-10(11) photons/pulse) and long distance signal transmission (>100 m) were required for this measurement system. For this purpose, we developed charge-sensitive and shaping amplifiers, which can process charge pulses with a wide dynamic range and variable durations (ns-μs) and charge levels (pC-μC). Output signals from the amplifiers were transmitted to a data acquisition system through a long cable in the form of a differential signal. The x-ray pulse intensities were calculated from the peak values of the signals by a waveform fitting procedure. This system can measure 10(3)-10(9) photons/pulse of ~10 keV x-rays by direct irradiation of a silicon PIN photodiode, and from 10(7)-10(11) photons/pulse by detecting the x-rays scattered by a diamond film using the silicon PIN photodiode. This system gives a relative accuracy of ~10(-3) with a proper gain setting of the amplifiers for each measurement. Using this system, we succeeded in detecting weak light at the developmental phase of the light source, as well as intense light during lasing of the x-ray free electron laser. © 2012 American Institute of Physics

  7. Digital Signal Processing Based Biotelemetry Receivers

    Science.gov (United States)

    Singh, Avtar; Hines, John; Somps, Chris

    1997-01-01

    This is an attempt to develop a biotelemetry receiver using digital signal processing technology and techniques. The receiver developed in this work is based on recovering signals that have been encoded using either Pulse Position Modulation (PPM) or Pulse Code Modulation (PCM) technique. A prototype has been developed using state-of-the-art digital signal processing technology. A Printed Circuit Board (PCB) is being developed based on the technique and technology described here. This board is intended to be used in the UCSF Fetal Monitoring system developed at NASA. The board is capable of handling a variety of PPM and PCM signals encoding signals such as ECG, temperature, and pressure. A signal processing program has also been developed to analyze the received ECG signal to determine heart rate. This system provides a base for using digital signal processing in biotelemetry receivers and other similar applications.

  8. Ion beam pulse radiolysis system at HIMAC

    Energy Technology Data Exchange (ETDEWEB)

    Chitose, N.; Katsumura, Y.; Domae, M.; Ishigure, K. [Tokyo Univ. (Japan); Murakami, T.

    1997-03-01

    An ion beam pulse radiolysis system has been constructed at HIMAC facility. Ion beam of 24MeV He{sup 2+} with the duration longer than 1 {mu}s is available for irradiation. Three kinds of aqueous solutions, (C{sub 6}H{sub 5}){sub 2}CO, NaHCO{sub 3}, and KSCN, were irradiated and the absorption signals corresponding to (C{sub 6}H{sub 5}){sub 2}CO{sup -}, CO{sub 3}{sup -}, and (SCN){sub 2}{sup -} respectively were observed. Ghost signals which interfere with the measurement are also discussed. (author)

  9. Pulse shaping with transmission lines

    Science.gov (United States)

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  10. Parabolic similariton Yb-fiber laser with triangular pulse evolution

    Science.gov (United States)

    Wang, Sijia; Wang, Lei

    2016-04-01

    We propose a novel mode-locked fiber laser design which features a passive nonlinear triangular pulse formation and self-similar parabolic pulse amplification intra cavity. Attribute to the nonlinear reshaping progress in the passive fiber, a triangular-profiled pulse with negative-chirp is generated and paved the way for rapid and efficient self-similar parabolic evolution in a following short-length high-gain fiber. In the meanwhile, the accompanied significantly compressed narrow spectrum from this passive nonlinear reshaping also gives the promise of pulse stabilization and gain-shaping robustness without strong filtering. The resulting short average intra-cavity pulse duration, low amplified spontaneous emission (ASE) and low intra-cavity power loss are essential for the low-noise operation. Simulations predict this modelocked fiber laser allows for high-energy ultra-short transform-limited pulse generation exceeding the gain bandwidth. The output pulse has a de-chirped duration (full-width at half maximum, FWHM) of 27 fs. In addition to the ultrafast laser applications, the proposed fiber laser scheme can support low-noise parabolic and triangular pulse trains at the same time, which are also attractive in optical pulse shaping, all-optical signal processing and high-speed communication applications.

  11. Tgf Pulse and Radio Properties Detected at Close Range

    Science.gov (United States)

    Cohen, M.; Gross, N. C.; Zoghzoghy, F. G.; Briggs, M. S.; Stanboro, M.; Fitzpatrick, G.

    2014-12-01

    Terrestrial Gamma-ray Flashes (TGFs) are short (10s to 100s of us) energetic (100s to 10000s of keV) discharges originating from the tops of thunderclouds. TGFs have long been associated with radio pulses detected at VLF receivers, but recent evidence indicates that the radio pulse may be from the TGF itself, rather than from a stroke or pulse that either precedes or follows the TGFs. Unfortunately, subionospheric propagation of VLF/LF smooths the radio pulse and destroys in particular the high frequency content, so that the radio signal looks similar to those from ordinary lightning strokes. Since TGFs have a broad range of durations as detected by satellites, these variations should be apparent in the LF radio pulse from the TGF, which may confirm that the TGF is the dominant source of the associated radio pulse and identify a distinguishing feature of TGF-associated pulses. We report on an effort to detect and characterize the LF radio pulses associated with TGFs at close range (luck and time since TGFs, at least those detectable by satellites, are not especially common. We directly compare the temporal shape of the TGF source to the radio source, after accounting for dead time and Compton scattering to interpret the satellite TGF data, as well as propagation of the LF pulse along the ground to the receiver.

  12. Tonometric arterial pulse sensor with noise cancellation.

    Science.gov (United States)

    Ciaccio, Edward J; Drzewiecki, Gary M

    2008-10-01

    Arterial tonometry provides for the continuous and noninvasive recording of the arterial pressure waveform. However, tonometers are affected by motion artifact that degrades the signal. An arterial tonometer was constructed using two piezoelectric transducers centered within a solid base. In two subjects, one transducer was positioned over the radial pulse (p) and the other was positioned on the wrist not overlying the pulse (n). The presence of induced motion artifact and any noise was removed after signal digitization by noise cancellation. Besides fixed weighting, two adaptive algorithms were used for cancellation-LMS and differential steepest descent (DSD). Criteria were developed for comparison of the adaptive techniques. The best fixed weighting for noise cancellation was w=0.6. For fixed-weighting, LMS, and DSD, the mean peak-to-peak errors were 1.22+/-0.54, 1.18+/-0.30, and 1.16+/-0.23 V, respectively, and the mean point-to-point errors were 15.86+/-3.15, 11.40+/-1.96, and 10.13+/-1.25 V, respectively. Noise cancellation using a common-mode reference input substantially reduces motion artifact and other noise from the acquired tonometric arterial pulse signal. Adaptive weighting provides better cancellation than fixed weighting, likely because the mechanical gain at the transducer-skin interface is time-varying.

  13. SIGNAL DETECTION WITH UNKNOWN PARAMETERS

    Directory of Open Access Journals (Sweden)

    Y. A. Sidorkina

    2015-01-01

    Full Text Available The likelihood ratio of the pulse signal with unknown time position while detecting and detecting the signal with unknown frequency, are considered. Is shown that an FFT algorithm should be performed while detecting the signal with unknown frequency, the maximum value of all spectral samples should be found and compared to the detection threshold. Upon detection of a pulse signal with unknown time position a fast convolution algorithm should be performed, the maximum value of all the spectral inverse FFT samples should be found and compared to the detection threshold. The effectiveness of this algorithm is determined by the sampling distribution of the maximum values of random variables distributed according to Rayleigh.

  14. Systolic time intervals measured by pulsed ultrasound-Doppler.

    Science.gov (United States)

    Lang-Jensen, T

    1981-12-01

    A new method for measuring systolic time intervals (STI) is presented. By using a pulsed ultrasound Doppler-velocity-meter, which is able to differentiate the velocity signals, it is possible to pick up signals just above the aortic valve. Combining the velocity signals and an ECG, the STI can be measured. The STI measured by this method were compared with STI measured by using a phonocardiograph. The results showed no significant difference.

  15. Various Effects of Embedded Intrapulse Communications on Pulsed Radar

    Science.gov (United States)

    2017-06-01

    impact of an interfering communications signal on the range-Doppler map of a pulse Doppler radar is investigated. The perspective of a radar operator in a...perspective of a radar operator in a maritime environment is also considered. In all cases, the communications signal is parameterized by the radar - to...utilize the S-band of around 3 GHz, where many maritime radars operate [1]. The two broad categories for how these two signals could be separated from

  16. [Pulse oximetry in pediatric practice].

    Science.gov (United States)

    Brackel, H J; van Essen-Zandvliet, E E; de Jongste, J C; Kerrebijn, K F

    1990-02-01

    Pulse oximetry is a reliable technique for continuous, transcutaneous measurement of oxygen saturation and pulse frequency. Common indications for pulse oximetry in general pediatrics include: monitoring of oxygenation during an asthma attack, detection of apnea or hypoventilation, diagnosis of hypoxemia in patients with chronic respiratory insufficiency and monitoring of oxygen suppletion. In this article we discuss the various applications and limitations of pulse oximetry in clinical practice and describe a method to store, analyse and present pulse oximeter-results.

  17. Feedback optimization of pulse width in the SORC sequence.

    Science.gov (United States)

    Schiano, J L; Routhier, T; Blauch, A J; Ginsberg, M D

    1999-09-01

    A method for increasing the signal-to-noise ratio (SNR) of nuclear quadrupole resonance (NQR) measurements by automatically adjusting a pulse parameter in real-time is presented. This approach is useful in situations where the optimal pulse parameters cannot be chosen beforehand due to lack of knowledge regarding the system. For example, NQR provides a means for detecting explosives by revealing the presence of (14)N. In this particular application, the distance between the search coil and the explosive, as well as the temperature of the explosive, is unknown. As a result, a fixed set of pulse parameters will not yield the largest SNR for all possible search applications. This paper describes a feedback algorithm that uses measurements of the NQR signal to automatically adjust the pulse width in the strong off-resonant comb sequence to maximize the SNR of the NQR measurement. Experimental results obtained using a sample of sodium nitrite are presented. Copyright 1999 Academic Press.

  18. Investigation of an angular spectrum approach for pulsed ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2013-01-01

    An Angular Spectrum Approach (ASA)is formulated and employed to simulate linear pulsed ultra sound fields for high bandwidth signals. Ageometrically focused piston transducer is used as the acoustic source. Signals are cross-correlated to findthe true sound speed during the measurement to make...... the simulated and measured pulses in phase for comparisons. The calculated sound speed in the measurement is varied between 1487.45 m/s and 1487.75 m/s by using different initial values in the ASA simulation. Results from the pulsed ASA simulation susing both Field II simulated and hydrophone measured acoustic...... sources are compared to the Field II simulated and hydroph one measure dpulses, respectively. The total relative root mean squar e(RMS)errors of the pulsed ASA are investigated by using different time-point, zero-padding factors, spatial sampling interval and temporal sampling frequency in the sim ulation...

  19. Bandpass calibration of a wideband spectrometer using coherent pulse injection

    Science.gov (United States)

    Patra, Nipanjana; Bray, Justin D.; Roberts, Paul; Ekers, Ron D.

    2017-04-01

    We present a relatively simple time domain method for determining the bandpass response of a system by injecting a nanosecond pulse and capturing the system voltage output. A pulse of sub-nanosecond duration contains all frequency components with nearly constant amplitude up to 1 GHz. Hence, this method can accurately determine the system bandpass response to a broadband signal. In a novel variation on this impulse response method, a train of pulses is coherently accumulated providing precision calibration with a simple system. The basic concept is demonstrated using a pulse generator-accumulator setup realised in a Bedlam board which is a high speed digital signal processing unit. The same system was used at the Parkes radio telescope between 2-13 October 2013 and we demonstrate its powerful diagnostic capability. We also present some initial test data from this experiment.

  20. Classification of Pulse Waveforms Using Edit Distance with Real Penalty

    Directory of Open Access Journals (Sweden)

    Zhang Dongyu

    2010-01-01

    Full Text Available Abstract Advances in sensor and signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis (TCPD. Because of the inevitable intraclass variation of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. In this paper, by referring to the edit distance with real penalty (ERP and the recent progress in -nearest neighbors (KNN classifiers, we propose two novel ERP-based KNN classifiers. Taking advantage of the metric property of ERP, we first develop an ERP-induced inner product and a Gaussian ERP kernel, then embed them into difference-weighted KNN classifiers, and finally develop two novel classifiers for pulse waveform classification. The experimental results show that the proposed classifiers are effective for accurate classification of pulse waveform.

  1. Estimation of pulses in ultrasound B-scan images

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1991-01-01

    It is shown, based on an expression for the received pressure field in pulsed medical ultrasound systems, that a common one-dimensional pulse can be estimated from individual A-lines. An autoregressive moving average (ARMA) model is suggested for the pulse, and an estimator based on the prediction...... error method is derived. The estimator is used on a segment of an A-line, assuming that the pulse does not change significantly inside the segment. Several examples of the use of the estimator on synthetic data measured from a tissue phantom and in vitro data measured from a calf's liver are given....... They show that a pulse can be estimated even at moderate signal-to-noise ratios...

  2. TDR Using Autocorrelation and Varying-Duration Pulses

    Science.gov (United States)

    Lucena, Angel; Mullinex, Pam; Huang, PoTien; Santiago, Josephine; Mata, Carlos; Zavala, Carlos; Lane, John

    2008-01-01

    In an alternative to a prior technique of time-domain-reflectometry (TDR) in which very short excitation pulses are used, the pulses have very short rise and fall times and the pulse duration is varied continuously between a minimum and a maximum value. In both the present and prior techniques, the basic idea is to (1) measure the times between the generation of excitation pulses and the reception of reflections of the pulses as indications of the locations of one or more defects along a cable and (2) measure the amplitudes of the reflections as indication of the magnitudes of the defects. In general, an excitation pulse has a duration T. Each leading and trailing edge of an excitation pulse generates a reflection from a defect, so that a unique pair of reflections is associated with each defect. In the present alternative technique, the processing of the measured reflection signal includes computation of the autocorrelation function R(tau) identical with fx(t)x(t-tau)dt where t is time, x(t) is the measured reflection signal at time t, and taus is the correlation interval. The integration is performed over a measurement time interval short enough to enable identification and location of a defect within the corresponding spatial interval along the cable. Typically, where there is a defect, R(tau) exhibits a negative peak having maximum magnitude for tau in the vicinity of T. This peak can be used as a means of identifying a leading-edge/trailing-edge reflection pair. For a given spatial interval, measurements are made and R(tau) computed, as described above, for pulse durations T ranging from the minimum to the maximum value. The advantage of doing this is that the effective signal-to-noise ratio may be significantly increased over that attainable by use of a fixed pulse duration T.

  3. Generation of short electrical pulses based on bipolar transistorsny

    Directory of Open Access Journals (Sweden)

    M. Gerding

    2004-01-01

    Full Text Available A system for the generation of short electrical pulses based on the minority carrier charge storage and the step recovery effect of bipolar transistors is presented. Electrical pulses of about 90 ps up to 800 ps duration are generated with a maximum amplitude of approximately 7V at 50Ω. The bipolar transistor is driven into saturation and the base-collector and base-emitter junctions become forward biased. The resulting fast switch-off edge of the transistor’s output signal is the basis for the pulse generation. The fast switching of the transistor occurs as a result of the minority carriers that have been injected and stored across the base-collector junction under forward bias conditions. If the saturated transistor is suddenly reverse biased the pn-junction will appear as a low impedance until the stored charge is depleted. Then the impedance will suddenly increase to its normal high value and the flow of current through the junction will turn to zero, abruptly. A differentiation of the output signal of the transistor results in two short pulses with opposite polarities. The differentiating circuit is implemented by a transmission line network, which mainly acts as a high pass filter. Both the transistor technology (pnp or npn and the phase of the transfer function of the differentating circuit influence the polarity of the output pulses. The pulse duration depends on the transistor parameters as well as on the transfer function of the pulse shaping network. This way of generating short electrical pulses is a new alternative for conventional comb generators based on steprecovery diodes (SRD. Due to the three-terminal structure of the transistor the isolation problem between the input and the output signal of the transistor network is drastically simplified. Furthermore the transistor is an active element in contrast to a SRD, so that its current gain can be used to minimize the power of the driving signal.

  4. Pulsed welding plasma source

    Science.gov (United States)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  5. Discharge pulse phenomenology

    Science.gov (United States)

    Frederickson, A. R.

    1985-01-01

    A model was developed which places radiation induced discharge pulse results into a unified conceptual framework. Only two phenomena are required to interpret all space and laboratory results: (1) radiation produces large electrostatic fields inside insulators via the trapping of a net space charge density; and (2) the electrostatic fields initiate discharge streamer plasmas similar to those investigated in high voltage electrical insulation materials; these streamer plasmas generate the pulsing phenomena. The apparent variability and diversity of results seen is an inherent feature of the plasma streamer mechanism acting in the electric fields which is created by irradiation of the dielectrics. The implications of the model are extensive and lead to constraints over what can be done about spacecraft pulsing.

  6. Pre-Earthquake Unipolar Electromagnetic Pulses

    Science.gov (United States)

    Scoville, J.; Freund, F.

    2013-12-01

    required for observable electromagnetic ground signals, Ann. Geophys., 28, 1615-1624. [4] Bleier, T., C. Dunson, M. Maniscalco, N. Bryant, R. Bambery, and F. Freund (2009), Investigation of ULF magnetic pulsations, air conductivity changes, infrared signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake, Nat. Hazards Earth Syst. Sci., 9, 585-603. [5] Heraud, J. A., V, A. Centa, T. Bleier, and C. Dunson (2013), Determining future epicenters by triangulation of magnetometer pulses in Peru, AGU Fall Meeting, Session NH014

  7. Two pulse recoupling

    Science.gov (United States)

    Khaneja, Navin; Kumar, Ashutosh

    2017-08-01

    The paper describes a family of novel recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, called two pulse recoupling. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (π)ϕ(π) - ϕ where ϕ =π/4n, and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ(π) - ϕ(π) π + ϕ(π) π - ϕ . The heteronuclear recoupling pulse sequence consists of a building block (π)ϕ1(π)-ϕ1 and (π)ϕ2(π)-ϕ2 on channel I and S, where ϕ1 = 3π/8n, ϕ2 = π/8n and n is number of blocks in a rotor period. The recoupling block is made robust to rf-inhomogeneity by extending it to (π)ϕ1(π)-ϕ1(π) π +ϕ1(π) π -ϕ1 and (π)ϕ2(π)-ϕ2(π) π +ϕ2(π) π -ϕ2 on two channels respectively. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα-13CO homonuclear recoupling in a sample of Glycine and 15N-13Cα heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (MLF). Compared to R-sequences (Levitt, 2002), these sequences are more robust to rf-inhomogeneity and give better sensitivity, as shown in Fig. 3.

  8. High-Precision Spectroscopy with Counterpropagating Femtosecond Pulses

    Science.gov (United States)

    Barmes, Itan; Witte, Stefan; Eikema, Kjeld S. E.

    2013-07-01

    An experimental realization of high-precision direct frequency comb spectroscopy using counterpropagating femtosecond pulses on two-photon atomic transitions is presented. The Doppler broadened background signal, hampering precision spectroscopy with ultrashort pulses, is effectively eliminated with a simple pulse shaping method. As a result, all four 5S-7S two-photon transitions in a rubidium vapor are determined with both statistical and systematic uncertainties below 10-11, which is an order of magnitude better than previous experiments on these transitions.

  9. Decomposition of a UWB Pulse in Structures with Facial Feedback

    Science.gov (United States)

    Gazizov, A. T.; Zabolotsky, A. M.; Gazizov, T. R.

    2017-07-01

    The urgency of protection of radio-electronic equipment from UWB pulses is indicated. The principle of modal filtration based on the application of the physical phenomenon of signal decomposition in transmission lines is shortly described. An asymmetric modal filter with facial feedback is analyzed. Its models with different parameters have been developed and manufactured. A field experiment and a computer simulation of the time response to a 1 ns pulse width have been performed. The agreement between the experimental and simulation results is demonstrated. For a modal filter with optimal parameters, the input pulse attenuation by 5 times is demonstrated in a 50-Ω channel.

  10. Signal Words

    Science.gov (United States)

    SIGNAL WORDS TOPIC FACT SHEET NPIC fact sheets are designed to answer questions that are commonly asked by the ... making decisions about pesticide use. What are Signal Words? Signal words are found on pesticide product labels, ...

  11. Radiofrequency pulse design for the selective excitation of dissolved 129Xe.

    Science.gov (United States)

    Leung, General; Norquay, Graham; Schulte, Rolf F; Wild, Jim M

    2015-01-01

    To optimize radiofrequency (RF) pulses for the selective excitation of dissolved phase (129)Xe that take into account the very short T2*, while simultaneously, minimally exciting the much larger gas signal. Numerical simulations of Shinnar le-Roux pulses and binomial coefficient composite-element pulses were performed and experimentally implemented on a 1.5 Tesla (T) clinical scanner. These were compared with pulses commonly used for short T2* imaging from the literature. The pulses were then experimentally tested in vivo with healthy volunteers inhaling hyperpolarized (129)Xe using nuclear MR spectroscopy on a 1.5T clinical scanner. Standard RF excitation pulses inadvertently excite the gas compartment, or are long enough that the T2* of the dissolved compartment deteriorates the received signal. Amplitude modulated binomial composite pulses perform well being short and having high selectivity, however, deteriorate at high amplifier gain setting. Composite pulses using pulse width modulation provide the desired frequency response even in these nonlinear, high gain regimes. Composite pulses provide a means of very narrow band frequency selectivity in a short duration pulse that is well suited to dissolved (129)Xe imaging. Pulse width modulation maintains the desired frequency response even in the presence of amplitude distortion. © 2014 Wiley Periodicals, Inc.

  12. Nonselective excitation of pulsed ELDOR using multi-frequency microwaves

    Science.gov (United States)

    Asada, Yuki; Mutoh, Risa; Ishiura, Masahiro; Mino, Hiroyuki

    2011-12-01

    The use of a polychromatic microwave pulse to expand the pumping bandwidth in pulsed electron-electron double resonance (PELDOR) was investigated. The pumping pulse was applied in resonance with the broad (˜100 mT) electron paramagnetic resonance (EPR) signal of the manganese cluster of photosystem II in the S 2 state. The observation pulses were in resonance with the narrow EPR signal of the tyrosine radical, YDrad . It was found that in the case of the polychromatic pumping pulse containing five harmonics with the microwave frequencies between 8.5 and 10.5 GHz the PELDOR effect corresponding to the dipole interaction between the Mn cluster and YDrad was about 2.9 times larger than that achieved with a monochromatic pulse. In addition to the dipolar modulation, the nuclear modulation effects were observed. The effects could be suppressed by averaging the PELDOR trace over the time interval between the observation microwave pulses. The polychromatic excitation technique described will be useful for improving the PELDOR sensitivity in the measurements of long distances in biological samples, where the pair consists of a radical with a narrow EPR spectrum and slow phase relaxation, and a metal center that has a broad EPR spectrum and a short phase relaxation time.

  13. Millimicrosecond pulse techniques

    CERN Document Server

    Lewis, Ian A D

    1959-01-01

    Millimicrosecond Pulse Techniques, Second Edition focuses on millimicrosecond pulse techniques and the development of devices of large bandwidth, extending down to comparatively low frequencies (1 Mc/s). Emphasis is on basic circuit elements and pieces of equipment of universal application. Specific applications, mostly in the field of nuclear physics instrumentation, are considered. This book consists of eight chapters and opens with an introduction to some of the terminology employed by circuit engineers as well as theoretical concepts, including the laws of circuit analysis, Fourier analysi

  14. Pulsed ESP handles AFBC

    Energy Technology Data Exchange (ETDEWEB)

    Larva, J.; Wilkomm, T.; Lugar, T.; Follett, R.E.

    1988-08-01

    The Black Dog 2 retrofit AFBC at Burnsville, Minnesota started coal firing in June 1986 using the units' existing precipitators for particulate control. The effects of various fuel blends, bed material, pulse power supplies and air atomized water injection flue gas conditioning were studied. The plant has been used for tests in the following areas: fired clay bed material, higher sulfur coal blends, ash recycle optimization, improved boiler operation, improved air heater thermal performance, improved rapper effectiveness, barbed wire electrodes, intermittent energization controls, pulse energization, and water injection. 4 refs., 4 figs., 1 tab.

  15. Effects of modulated pulse format on spontaneous Brillouin scattering spectrum and BOTDR sensing system

    Science.gov (United States)

    Hao, Yunqi; Ye, Qing; Pan, Zhengqing; Cai, Haiwen; Qu, Ronghui; Yang, Zhongmin

    2013-03-01

    The signal noise ratio (SNR) enhancement effects of spontaneous Brillouin scattering spectrum on Brilloluin optical time domain reflectometry (BOTDR) sensing system have been analyzed theoretically and demonstrated experimentally through changing the modulated pulse format. With the same pulse width or same spatial resolution, the SNR is larger for triangular pulse. Take the width of 200 ns as an illustration, the SNRs of the coherent detection power spectrum for trapezoidal pulse and triangular pulse increase 3 dB and 4.8 dB relative to that of rectangular pulse respectively. The corresponding spectral linewidthes are narrowed and the sensing distances are also increased by about two times from the rectangular pulse to the triangular pulse. This phenomenon will be helpful to improve the spatial resolution or achieve longer sensing distance in the BOTDR sensing system at the same systemic conditions.

  16. A pulsed single-longitudinal-mode fiber laser based on gain control of pulse-injection-locked cavity

    Science.gov (United States)

    Wan, Hongdan; Wu, Zhongwei; Sun, Xiaohan

    2013-06-01

    We achieve a pulsed fiber laser based on injecting a pulsed-seed into a high power fiber ring cavity consisting of two-stage amplifier chain. Through gain control of the fiber amplifier chain and adjustment of a variable optical coupler in the cavity, locking condition is satisfied which produce mode-hopping free, single-longitudinal-mode optical spectrum with 38 dB optical signal to noise ratio. The noise-free lasing RF spectrum has a 7.0 kHz 3 dB linewidth. The nanosecond lasing pulses are jittering-free with 40 W peak power at 1550 nm wavelength.

  17. Magnetic resonance advection imaging of cerebrovascular pulse dynamics.

    Science.gov (United States)

    Voss, Henning U; Dyke, Jonathan P; Tabelow, Karsten; Schiff, Nicholas D; Ballon, Douglas J

    2017-04-01

    We analyze the pulsatile signal component of dynamic echo planar imaging data from the brain by modeling the dependence between local temporal and spatial signal variability. The resulting magnetic resonance advection imaging maps depict the location of major arteries. Color direction maps allow for visualization of the direction of blood vessels. The potential significance of magnetic resonance advection imaging maps is demonstrated on a functional magnetic resonance imaging data set of 19 healthy subjects. A comparison with the here introduced pulse coherence maps, in which the echo planar imaging signal is correlated with a cardiac pulse signal, shows that the magnetic resonance advection imaging approach results in a better spatial definition without the need for a pulse reference. In addition, it is shown that magnetic resonance advection imaging velocities can be estimates of pulse wave velocities if certain requirements are met, which are specified. Although for this application magnetic resonance advection imaging velocities are not quantitative estimates of pulse wave velocities, they clearly depict local pulsatile dynamics. Magnetic resonance advection imaging can be applied to existing dynamic echo planar imaging data sets with sufficient spatiotemporal resolution. It is discussed whether magnetic resonance advection imaging might have the potential to evolve into a biomarker for the health of the cerebrovascular system.

  18. Optogenetic light pulses generator

    Science.gov (United States)

    Erofeev, A. I.; Matveev, M. V.; Zakharova, O. A.; Terekhin, S. G.; Kilimnik, V. A.; Bezprozvanny, I. B.; Vlasova, O. L.

    2017-11-01

    To date, optogenetics is one of the most popular methods in the world in neuroscience. There are new equipment and devices created to keep the progress of this method. This article describes a light pulse generator developed at the Laboratory of Molecular Neurodegeneration, designed for optogenetic experiments.

  19. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  20. Multiband RF pulses with improved performance via convex optimization.

    Science.gov (United States)

    Shang, Hong; Larson, Peder E Z; Kerr, Adam; Reed, Galen; Sukumar, Subramaniam; Elkhaled, Adam; Gordon, Jeremy W; Ohliger, Michael A; Pauly, John M; Lustig, Michael; Vigneron, Daniel B

    2016-01-01

    Selective RF pulses are commonly designed with the desired profile as a low pass filter frequency response. However, for many MRI and NMR applications, the spectrum is sparse with signals existing at a few discrete resonant frequencies. By specifying a multiband profile and releasing the constraint on "don't-care" regions, the RF pulse performance can be improved to enable a shorter duration, sharper transition, or lower peak B1 amplitude. In this project, a framework for designing multiband RF pulses with improved performance was developed based on the Shinnar-Le Roux (SLR) algorithm and convex optimization. It can create several types of RF pulses with multiband magnitude profiles, arbitrary phase profiles and generalized flip angles. The advantage of this framework with a convex optimization approach is the flexible trade-off of different pulse characteristics. Designs for specialized selective RF pulses for balanced SSFP hyperpolarized (HP) (13)C MRI, a dualband saturation RF pulse for (1)H MR spectroscopy, and a pre-saturation pulse for HP (13)C study were developed and tested. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Generation of picosecond optical pulse based on chirp compensation

    Science.gov (United States)

    Sun, Xiaofeng; Yang, Jiaqian; Li, Shangyuan; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun

    2017-10-01

    Picosecond optical pulses are widely used in optical communication systems, such as the optical time division multiplexing (OTDM) and photonic analog-to-digital converter (ADC). We have proposed and demonstrated a simple method to generate picosecond optical pulse using the mach-zehnder modulator (MZM), phase modulator (PM) and single model fiber (SMF). The phase modulator is used to generate a frequency chirp which varies periodically with time. The MZM is used to suppress the pedestal of the pulse and improve the performance of the pulse. The SMF is used to compensate the frequency chirp. We have carried out theoretical analysis and numerical simulation for the generation process of the picosecond optical pulse. The influence of phase shift between the modulation signals loaded on the MZM and PM is analyzed by numerical simulation and the conditions for the generation of picosecond optical pulse are given. The formula for calculating the optimum length of SMF which is used to compensate the linear chirp is given. The optical pulses with a repetition frequency of 10 GHz and a pulse width of 8.5 ps were obtained. The time-bandwidth product was as small as 1.09 and the timing jitter is as low as 83 fs.

  2. Research on the Transient Characteristics of Microgrid with Pulsed Load

    Directory of Open Access Journals (Sweden)

    Jianke Li

    2015-01-01

    Full Text Available Unlike traditional load, pulsed load typically features small average power and large peak power. In this paper, the mathematic models of microgrid consisting of synchronous generator and pulsed load are established. Average Magnitude Difference Compensate Function (AMDCF is proposed to calculate the frequency of synchronous generator, and, based on AMDCF, relative deviation rate (RDR which characterizes the impact of pulsed load on the AC side of grid is firstly defined and this paper describes calculation process in detail. Insulated Gate Bipolar Transistor (IGBT is used as DC switch to control the on/off state of resistive load for simulating pulsed load, the period and duty-cycle of the pulsed load are simulated by setting the gate signal of IGBT, and the peak power of the pulsed load is simulated by setting the resistance. The system dynamic characteristics under pulsed load are analyzed in detail, and the influence of duty-cycle, period, peak power, and filter capacitance of the pulsed load on system dynamic indicators is studied and validated experimentally.

  3. On the trade-off between mainlobe width and peak sidelobe level of mismatched pulse compression filters for linear chirp waveforms

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2009-09-01

    Full Text Available In previous paper the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in an Lp norm sense. It was shown...

  4. Nadi Tarangini: a pulse based diagnostic system.

    Science.gov (United States)

    Joshi, Aniruddha; Kulkarni, Anand; Chandran, Sharat; Jayaraman, V K; Kulkarni, B D

    2007-01-01

    Ayurveda is a traditional medicine and natural healing system in India. Nadi-Nidan (pulse-based diagnosis) is a prominent method in Ayurveda, and is known to dictate all the salient features of a human body. In this paper, we provide details of our procedure for obtaining the complete spectrum of the nadi pulses as a time series. The system Nadi Tarangini1 contains a diaphragm element equipped with strain gauge, a transmitter cum amplifier, and a digitizer for quantifying analog signal. The system acquires the data with 16-bit accuracy with practically no external electronic or interfering noise. Prior systems for obtaining the nadi pulses have been few and far between, when compared to systems such as ECG. The waveforms obtained with our system have been compared with these other similar equipment developed earlier, and is shown to contain more details. The pulse waveform is also shown to have the desirable variations with respect to age of patients, and the pressure applied at the sensing element. The system is being evaluated by Ayurvedic practitioners as a computer-aided diagnostic tool.

  5. Pulse energy measurement at the SXR instrument

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Stefan, E-mail: smoeller@slac.stanford.edu; Brown, Garth; Dakovski, Georgi; Hill, Bruce; Holmes, Michael; Loos, Jennifer; Maida, Ricardo; Paiser, Ernesto; Schlotter, William; Turner, Joshua J.; Wallace, Alex [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Jastrow, Ulf; Kreis, Svea [Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Sorokin, Andrey A. [Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, D-22603 Hamburg (Germany); Ioffe Physico-Technical Institute, Polytekhnicheskaya 26, 194021 St Petersburg (Russian Federation); Tiedtke, Kai [Deutsches Elektronen-Synchrotron, DESY, Notkestrasse 85, D-22603 Hamburg (Germany)

    2015-04-14

    A gas monitor detector was implemented and characterized at the Soft X-ray Research instrument (SXR) to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. A gas monitor detector was implemented and characterized at the Soft X-ray Research (SXR) instrument to measure the average, absolute and pulse-resolved photon flux of the LCLS beam in the energy range between 280 and 2000 eV. The detector is placed after the monochromator and addresses the need to provide reliable absolute pulse energy as well as pulse-resolved measurements for the various experiments at this instrument. This detector provides a reliable non-invasive measurement for determining flux levels on the samples in the downstream experimental chamber and for optimizing signal levels of secondary detectors and for the essential need of data normalization. The design, integration into the instrument and operation are described, and examples of its performance are given.

  6. Complete compensation of pulse broadening in an amplifier-based slow light system using a nonlinear regeneration element.

    Science.gov (United States)

    Chin, Sanghooon; Gonzalez-Herraez, Miguel; Thévenaz, Luc

    2009-11-23

    We experimentally demonstrate complete compensation of pulse broadening in an amplifier-based slow light system. The configuration of the delay line basically consists of two stages: a conventional Brillouin slow light system and a nonlinear regeneration element. Signal pulses experienced both time delay and temporal broadening through the Brillouin delay line and then the delayed pulses were delivered into a nonlinear optical loop mirror. Due to the nonlinear response of the transmission of the fiber loop, the inevitably broadened pulses were moderately compressed in the output of the loop, without loss in the capacity to delay the pulses. The overall result is that, for the maximum delay, the width of the pulse could be kept below the input width while the time delays introduced by the slow light element were preserved. Using this delay line, a signal pulse with duration of 27 ns at full width at half maximum was delayed up to 1.3-bits without suffering from signal distortion.

  7. A compact nanosecond pulse modulator

    Science.gov (United States)

    Sha, Jizhang; Xue, Jianchao; Qiang, Bohan

    Two circuits of nanosecond pulse modulator which generate two different width rectangular pulses respectively are described. The basic configuration of the modulator is the Marx circuit, in which avalanche transistors are used as switching devices. In order to obtain the rectangular pulses a pulse-forming network (PFN) is introduced and fitted into the Marx. A multi-parallel arrangement of the Marx is used to satisfy the broad pulse requirement. Experiments have shown that the two different width rectangular pulses which have 130 V amplitudes and 30 and 200 ns widths respectively can be obtained at a 50 ohms load. The two pulses have steep front edges (3.6 ns and 10 ns respectively) and flat tops with less than + or - 5 percent ripples. Therefore, the modulator can meet the requirements of the nanosecond pulse radar.

  8. Wide spectrum microwave pulse measurement

    Energy Technology Data Exchange (ETDEWEB)

    King, R.J.

    1986-01-01

    Various techniques are postulated as diagnostics for wide band microwave pulses. The diagnostics include determinations of both the instantaneous amplitude and the frequency content of one-shot pulses. 6 refs., 11 figs. (WRF)

  9. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper

    1999-01-01

    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  10. Sequentially pulsed traveling wave accelerator

    Science.gov (United States)

    Caporaso, George J [Livermore, CA; Nelson, Scott D [Patterson, CA; Poole, Brian R [Tracy, CA

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  11. Bacterial inactivation using pulsed light

    OpenAIRE

    Elmnasser, Noura; Ritz, Magali; Leroi, Francoise; Orange, Nicole; Bakhrouf, Amina; Federighi, Michel

    2007-01-01

    Pulsed light is a new method intended for the decontamination of food surfaces using short, high frequency pulses of an intense broad spectrum. The effects of broad spectrum pulsed light on the survival of Listeria monocytogenes Scott A, Listeria monocytogenes CNL, Pseudomonas fluorescens MF37 and Photobacterium phosphoreum SF680 populations on agar and in a liquid medium were investigated during this study. The sterilisation system generated 1.5 J cm(-2) per pulse with eight lamps for 300 mu...

  12. Superhigh-frequency radiometer with post-detector pulse-duration modulation

    CERN Document Server

    Filatov, A V

    2002-01-01

    Paper describes a superhigh-frequency radiometer with extra pulse-duration modulation of reference signal by low frequency. Pulse-duration modulation is realized due to various coefficients of reference signal sharing in resistive attenuators of a low-frequency unit. Design of radiometer makes use of modification of zero measurement method when automatic control is realized by variation of pulse-duration signal duration. Radiometer switching to zero balance in a low-frequency section enables to use high-frequency units of any modulating radiometer with symmetry modulation

  13. Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study

    Energy Technology Data Exchange (ETDEWEB)

    Valverde-Alva, M.A., E-mail: azbmiguel@gmail.com [Posgrado en Ciencia e Ingeniería de Materiales, Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); García-Fernández, T. [Universidad Autónoma de la Ciudad de México (UACM), Prolongación San Isidro 151, Col. San Lorenzo Tezonco, México D.F., C.P. 09790, México (Mexico); Villagrán-Muniz, M.; Sánchez-Aké, C.; Castañeda-Guzmán, R. [CCADET Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); Esparza-Alegría, E. [Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), México D.F., C.P. 04510, México (Mexico); Sánchez-Valdés, C.F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a sección, San Luis Potosí, S.L.P., C.P. 78216, México (Mexico); and others

    2015-11-15

    Graphical abstract: - Highlights: • Pulsed photoacoustic technique allowed to determine the production rate of NPs. • Pulsed photoacoustic technique allows to determine the Ag concentration in colloids. • The nanoparticles production rate drops quickly during the first laser pulses. • Nanoparticles production rate is almost constant after few hundreds of laser shots. • Photoacoustic signal amplitude was proportional to fluence on the target surface. - Abstract: The pulsed photoacoustic (PA) technique was used to study the synthesis by laser ablation of silver nanoparticles (Ag-NPs) in ethanol. PA technique allowed to determine the production rate per laser pulse and concentration of synthesized Ag-NPs. The samples were produced by using a pulsed Nd:YAG laser with 1064 nm of wavelength and 7 ns of pulse duration. The laser pulse energy varied from 10 to 100 mJ. Transmission electron microscopy micrographs demonstrated that the obtained nanoparticles were spherical with an average size close to 10 nm. The absorption spectra of the colloids showed a plasmon absorption peak around 400 nm. The PA analyses showed a significant reduction of the production rate of Ag-NPs during the first hundreds of laser pulses. For a higher number of pulses this rate was kept almost constant. Finally, we found that the root mean square (RMS) value of the PA signal was proportional to the laser pulse fluence on the target surface. Thus PA technique was useful to monitor the ablation process.

  14. Pulse oximeter for cyclists in smartphone

    Science.gov (United States)

    Martins, L.; Gaidos, O.; dos Santos, I.

    2015-01-01

    The monitoring of cyclists during physical activity is an important factor to improve their performance. We discuss a new approaches based on smartphone for monitoring physiological signal wirelessly for cyclists, using a pulse oximeter sensor attached to the rider's forehead. This paper presents a wireless pulse Oximeter that was developed with a Nellcor's module, which uses the Standard Host Interface Protocol (SHIP) for communication with the Bluetooth module and sends data for a Smartphone with Android O.S. Then these data are shown in the screen: the heartbeat and saturation percentage. The application was created with App Inventor and the data are sent to Google Maps via Twitter. The results demonstrate the possibility of developing a successful prototype.

  15. International magnetic pulse compression

    Science.gov (United States)

    Kirbie, H. C.; Newton, M. A.; Siemens, P. D.

    1991-04-01

    Although pulsed-power engineering traditionally has been practiced by a fairly small, close community in the areas of defense and energy research, it is becoming more common in high-power, high-energy commercial pursuits such as material processing and lasers. This paper is a synopsis of the Feb. 12-14, 1990 workshop on magnetic switching as it applies primarily to pulse compression (power transformation). During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card - its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  16. PULSE Pilot Certification Results

    Directory of Open Access Journals (Sweden)

    Pamela Pape-Lindstrom

    2015-08-01

    Full Text Available The pilot certification process is an ambitious, nationwide endeavor designed to motivate important changes in life sciences education that are in line with the recommendations of the 2011 Vision and Change Report: A Call to Action (American Association for the Advancement of Science [AAAS], 2011.  It is the goal of the certification process to acknowledge departments that have progressed towards full implementation of the tenets of Vision and Change and to motivate departments that have not begun to adopt the recommendations to consider doing so.  More than 70 life science departments applied to be part of the pilot certification process, funded by a National Science Foundation grant, and eight were selected based on initial evidence of transformed and innovative educational practices.  The programs chosen represent a wide variety of schools, including two-year colleges, liberal-arts institutions, regional comprehensive colleges, research universities and minority serving institutions.  Outcomes from this pilot were released June 1, 2015 (www.pulsecommunity.org, with all eight programs being recognized as having progressed along a continuum of change.  Five levels of achievement were defined as PULSE Pilot Progression Levels.  Of the eight departments in the pilot, one achieved “PULSE Progression Level III: Accomplished”.  Six departments achieved “PULSE Progression Level II: Developing” and one pilot department achieved “PULSE Progression Level I: Beginning”.  All of the schools have made significant movement towards the recommendations of Vision and Change relative to a traditional life sciences curriculum.  Overall, the response from the eight pilot schools has been positive. 

  17. STUCTURE OF PULSED BED

    Directory of Open Access Journals (Sweden)

    I. A. Bokun

    2014-01-01

    Full Text Available The structure of pulsed layer is proposed which can be suggested as a state of particulates that is blown by intermittent gas flow with speed which has the force to start material moving. Layer during one cycle is in a suspension, falling down and immobile state resulting in changes of particles arrangement as well as ways of gas flowing through layer. Moreover, it allows carrying out effective interphase heat exchange even adamant real granulation.The process of formation of impact flows is considered aw well as their influence on formation of air bubbles in pulsed layer. At startup of air blast the balance between the force of hydro-dynamic resistance is broken, on one side, and forces of gravity, particles inertia and their links with walls on the other side. The layer is transferred in the state of pulsed pseudo-fluidization, and presents gas-disperse mixture, inside of which impulse of pressure increasing is spreading to all sides as pressure waves (compression. These waves are the sources of impact flows’ formation, the force of which is two times more than during the stationary flow.The waves of pressure are divided into weak and strong ones depending on movement velocity within gas-disperse system. Weak waves are moving with a sound speed and strong ones in active phase of pulsed layer are moving over the speed of sound limit within gas-disperse system. The peculiarity of strong wave is that parameters of system (pressure, density and others are changing in discrete steps.The article describes the regime of layer’s falling down in the passive stage of cycle, which begins after finishing of gas impulse action. And suspension layer of moving up granular material is transferred in the state of falling resulting in change of the layer structure.

  18. Evaluation of dynamic range for LLNL streak cameras using high contrast pulses and pulse podiatry'' on the Nova laser system

    Energy Technology Data Exchange (ETDEWEB)

    Richards, J.B.; Weiland, T.L.; Prior, J.A.

    1990-07-01

    A standard LLNL streak camera has been used to analyze high contrast pulses on the Nova laser facility. These pulses have a plateau at their leading edge (foot) with an amplitude which is approximately 1% of the maximum pulse height. Relying on other features of the pulses and on signal multiplexing, we were able to determine how accurately the foot amplitude was being represented by the camera. Results indicate that the useful single channel dynamic range of the instrument approaches 100:1. 1 ref., 4 figs., 1 tab.

  19. Development of micro pulse lidar system for atmospheric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Lee, Jong Min; Lee, Yong Ju; Kim, Duk Hyeon; Nam, Sung Mo; Go, Do Kyung; Yang, Gi Ho; Hong, Kyang He

    1999-12-01

    A compact small micro pulse lidar system is developed for atmospheric monitoring. The developed system can be operated during 24 hrs for four seasons. The maximum detection distance is 5 km at day time and 10 km at night. Specially, the problem of eye safety is solved by using diode pumped low pulse-energy Nd:YAG laser. Two rotational axis, vertical and horizontal, is chosen for 3D mapping of the atmospheric aerosol. The spatial resolution can be optionally changed from 5 m to 300 m, but time resolution which changes from several sec to several minutes depends on the detection distance and background signal. To analyze the obtained lidar signal, processing software is developed and applied to the lidar signal obtained near the chimney. Vertical lidar signal is also obtained and from this data we can find the thickness and change of cloud. (author)

  20. Microprocessor-based boxcar signal averager

    Science.gov (United States)

    Bano, S. S.; Reddy, P. N.; Reddy, B. P. N.; Eswara Reddy, N. C.

    1987-10-01

    A boxcar signal averager using Intel 8085AH, an 8-bit microprocessor developed for processing free-induction decay (FID) signals from a pulsed nuclear-magnetic-resonance (NMR) spectrometer, is described. The boxcar signal averager works either in single-point mode or in scan mode. In addition to the software developed, the constructional features, circuit details, and the operation of the boxcar are discussed in detail.

  1. Petawatt pulsed-power accelerator

    Science.gov (United States)

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  2. Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding

    OpenAIRE

    Soto, M A; Bolognini, G.; Di Pasquale, F.

    2009-01-01

    In this work, we propose the use of optical pulse coding techniques for simultaneous strain and temperature sensing based on spontaneous Brillouin scattering. Optical pulse coding provides a significant receiver signal-to-noise ratio enhancement, allowing for accurate Brillouin intensity and frequency shift measurements at low peak power levels. Due to the cross-sensitivity of these two parameters on both temperature and strain, optical pulse coding improves the temperature and strain resolut...

  3. Pulse duration and wavelength stability measurements of a midinfrared free-electron laser

    OpenAIRE

    Qin, Yu; Zen, Heishun; Wang, Xiaolong; Kii, Toshiteru; Nakajima, Takashi; Ohgaki, Hideaki

    2013-01-01

    We report the pulse duration and wavelength stability measurements of a midinfrared free-electron laser (FEL) where the wavelength fluctuation may not be negligible. The technique we employ is a fringe-resolved autocorrelation (FRAC) method that has good sensitivity on not only the pulse duration and the chirp but also the wavelength stability. By the simple manipulation of experimental FRAC signals, we can obtain the pulse duration even if the amounts of the chirp and the wavelength stabilit...

  4. Foundations of pulsed power technology

    CERN Document Server

    Lehr, Janet

    2018-01-01

    Pulsed power technologies could be an answer to many cutting-edge applications. The challenge is in how to develop this high-power/high-energy technology to fit current market demands of low-energy consuming applications. This book provides a comprehensive look at pulsed power technology and shows how it can be improved upon for the world of today and tomorrow. Foundations of Pulsed Power Technology focuses on the design and construction of the building blocks as well as their optimum assembly for synergetic high performance of the overall pulsed power system. Filled with numerous design examples throughout, the book offers chapter coverage on various subjects such as: Marx generators and Marx-like circuits; pulse transformers; pulse-forming lines; closing switches; opening switches; multi-gigawatt to multi-terawatt systems; energy storage in capacitor banks; electrical breakdown in gases; electrical breakdown in solids, liquids and vacuum; pulsed voltage and current measurements; electromagnetic interferen...

  5. Generation of a chirp-free optical pulse train with tunable pulse width based on a polarization modulator and an intensity modulator.

    Science.gov (United States)

    Pan, Shilong; Yao, Jianping

    2009-07-15

    A simple method for the generation of a chirp-free optical pulse train with tunable pulse width using a polarization modulator (PolM) and a zero-chirp intensity modulator (IM) is proposed and demonstrated. In the proposed system, a light wave with its polarization direction oriented at an angle of 45 degrees with respect to the principal axis of the PolM is polarization modulated by a sinusoidal drive signal. An optical polarizer is connected after the PolM to convert the polarization-modulated signals to a pulse train with the main peaks having a narrow pulse width. Then, the main peaks are selected by the IM, leading to the generation of a short optical pulse train with a repetition rate that is identical to or twice the frequency of the sinusoidal drive signal, depending on the dc bias of the IM. The pulse width of the generated pulse is easily tuned by adjusting the phase modulation index of the PolM. An experiment is carried out, and a pulse train with a duty cycle as small as 8.16% is generated.

  6. Signal processing devices and networks

    Science.gov (United States)

    Graveline, S. W.

    1985-02-01

    According to an axiom employed with respect to electronic warfare (EW) behavior, system effectiveness increases directly with the amount of information recovered from an intercepted signal. The evolution in EW signal processing capability has proceeded accordingly. After an initiation of EW systems as broadband receivers, the most significant advance was related to the development of digital instantaneous frequency measurement (DIFM) devices. The use of such devices provides significant improvements regarding signal identification and RF measurement to within a few MHz. An even more accurate processing device, the digital RF memory (DRFM), allows frequency characterization to within a few Hz. This invention was made in response to the need to process coherent pulse signals. Attention is given to the generic EW system, the modern EW system, and the generic receiver function for a modern EW system showing typical output signals.

  7. Parallel adaptive sparse approximation methods for analysis of geoacoustic pulses

    Directory of Open Access Journals (Sweden)

    Kim Alina

    2017-01-01

    Full Text Available The article is devoted to a new approach in the analysis of geoacoustic pulses. The authors proposed a mathematical model based on a sparse representation of the signal. An adaptive matching pursuit method has been developed to identify model parameters. A parallel implementation of this algorithm is proposed on the CUDA platform. This allows real-time processing and modeling of signals.

  8. HARMONIC ANALYSIS OF SVPWM INVERTER USING MULTIPLE-PULSES METHOD

    Directory of Open Access Journals (Sweden)

    Mehmet YUMURTACI

    2009-01-01

    Full Text Available Space Vector Modulation (SVM technique is a popular and an important PWM technique for three phases voltage source inverter in the control of Induction Motor. In this study harmonic analysis of Space Vector PWM (SVPWM is investigated using multiple-pulses method. Multiple-Pulses method calculates the Fourier coefficients of individual positive and negative pulses of the output PWM waveform and adds them together using the principle of superposition to calculate the Fourier coefficients of the all PWM output signal. Harmonic magnitudes can be calculated directly by this method without linearization, using look-up tables or Bessel functions. In this study, the results obtained in the application of SVPWM for values of variable parameters are compared with the results obtained with the multiple-pulses method.

  9. Frequency Stepped Pulse Train Modulated Wind Sensing Lidar

    DEFF Research Database (Denmark)

    Olesen, Anders Sig; Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2011-01-01

    In this paper a wind sensing lidar utilizing a Frequency Stepped Pulse Train (FSPT) is demonstrated. One of the advantages in the FSTP lidar is that it enables direct measurement of wind speed as a function of distance from the lidar. Theoretically the FSPT lidar continuously produces measurements...... as is the case with a CW lidar, but at the same time with a spatial resolution, and without the range ambiguity originating from e.g. clouds. The FSPT lidar utilizes a frequency sweeping source for generation of the FSPT. The source generates a pulse train where each pulse has an optical carrier frequency...... shifted a set quantity relative to the carrier frequency of the previous pulse. In the scheme presented here, the measured frequency depends on the distance from which the signal originates. The measured frequency is related to the Doppler frequency shift induced by the wind and an integer number...

  10. Generation of Quasi-Gaussian Pulses Based on Correlation Techniques

    Directory of Open Access Journals (Sweden)

    POHOATA, S.

    2012-02-01

    Full Text Available The Gaussian pulses have been mostly used within communications, where some applications can be emphasized: mobile telephony (GSM, where GMSK signals are used, as well as the UWB communications, where short-period pulses based on Gaussian waveform are generated. Since the Gaussian function signifies a theoretical concept, which cannot be accomplished from the physical point of view, this should be expressed by using various functions, able to determine physical implementations. New techniques of generating the Gaussian pulse responses of good precision are approached, proposed and researched in this paper. The second and third order derivatives with regard to the Gaussian pulse response are accurately generated. The third order derivates is composed of four individual rectangular pulses of fixed amplitudes, being easily to be generated by standard techniques. In order to generate pulses able to satisfy the spectral mask requirements, an adequate filter is necessary to be applied. This paper emphasizes a comparative analysis based on the relative error and the energy spectra of the proposed pulses.

  11. UWB pulse detection and TOA estimation using GLRT

    Science.gov (United States)

    Xie, Yan; Janssen, Gerard J. M.; Shakeri, Siavash; Tiberius, Christiaan C. J. M.

    2017-12-01

    In this paper, a novel statistical approach is presented for time-of-arrival (TOA) estimation based on first path (FP) pulse detection using a sub-Nyquist sampling ultra-wide band (UWB) receiver. The TOA measurement accuracy, which cannot be improved by averaging of the received signal, can be enhanced by the statistical processing of a number of TOA measurements. The TOA statistics are modeled and analyzed for a UWB receiver using threshold crossing detection of a pulse signal with noise. The detection and estimation scheme based on the Generalized Likelihood Ratio Test (GLRT) detector, which captures the full statistical information of the measurement data, is shown to achieve accurate TOA estimation and allows for a trade-off between the threshold level, the noise level, the amplitude and the arrival time of the first path pulse, and the accuracy of the obtained final TOA.

  12. Doppler Ambiguity Resolution Based on Random Sparse Probing Pulses

    Directory of Open Access Journals (Sweden)

    Yunjian Zhang

    2015-01-01

    Full Text Available A novel method for solving Doppler ambiguous problem based on compressed sensing (CS theory is proposed in this paper. A pulse train with the random and sparse transmitting time is transmitted. The received signals after matched filtering can be viewed as randomly sparse sampling from the traditional fixed-pulse repetition frequency (PRF echo signals. The whole target echo could be reconstructed via CS recovery algorithms. Through refining the sensing matrix, which is equivalent to increase the sampling frequency of target characteristic, the Doppler unambiguous range is enlarged. In particular, Complex Approximate Message Passing (CAMP algorithm is developed to estimate the unambiguity Doppler frequency. Cramer-Rao lower bound expressions are derived for the frequency. Numerical simulations validate the effectiveness of the proposed method. Finally, compared with traditional methods, the proposed method only requires transmitting a few sparse probing pulses to achieve a larger Doppler frequency unambiguous range and can also reduce the consumption of the radar time resources.

  13. Analysis of intra-pulse frequency-modulated, low probability of ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 42; Issue 7. Analysis of intra-pulse ... Volume 42 Issue 7 July 2017 pp 1037-1050 ... In the present work, a method based on match filterbank localization and Taylor's seriesapproximation for analysing the entire family of intra-pulse FM radar signals is proposed. The method involves ...

  14. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves

    NARCIS (Netherlands)

    M.H.N. van Velzen (M. H N); A.J. Loeve (Arjo J.); S.P. Niehof (Sjoerd); E.G. Mik (Egbert)

    2017-01-01

    textabstractPhotoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of

  15. Increasing accuracy of pulse transit time measurements by automated elimination of distorted photoplethysmography waves

    NARCIS (Netherlands)

    van Velzen, M.H.N.; Loeve, A.J.; Niehof, S.P.; Mik, E.G.

    2017-01-01

    Photoplethysmography (PPG) is a widely available non-invasive optical technique to visualize pressure pulse waves (PWs). Pulse transit time (PTT) is a physiological parameter that is often derived from calculations on ECG and PPG signals and is based on tightly defined characteristics of the PW

  16. Attenuation characteristic of UWB signals propagation in free space

    Science.gov (United States)

    Li, Meng; Huang, Zhonghua

    2016-10-01

    Researching attenuation characteristic of UWB signals propagation in free-space is necessary for ultra-wideband (UWB) radio fuze optimized design. Research attenuation characteristic of UWB signals propagation in free space can be achieved by learning attenuation characteristic of radio waves propagation in free-space and UWB signal power spectral density. 50ps, 100ps and 200ps of pulse width UWB fuze transmission narrow pulse signal propagation in free-space are simulated and analyzed. The attenuation of UWB signals at 3m, 6m and 9m are contrasted. The simulation, analysis and contrast is theoretical basis of UWB radio fuze optimized design.

  17. Pulse radiolysis apparatus for monitoring at 2000 Å

    DEFF Research Database (Denmark)

    Christensen, H.C.; Nilsson, G.; Pagsberg, Palle Bjørn

    1969-01-01

    increased luminance; (2) a fast electronic switch that cut out the signal due to the Cerenkov radiation; (3) a secondary emission chamber that allowed the simultaneous measurement of the current and the direction of the pulsed electron beam; and (4) a system for remote controlled change of liquid samples...

  18. Hypercapnic normalization of BOLD fMRI: comparison across field strengths and pulse sequences

    DEFF Research Database (Denmark)

    Cohen, Eric R.; Rostrup, Egill; Sidaros, Karam

    2004-01-01

    size, as well as experimental, such as pulse sequence and static magnetic field strength (B(0)). Thus, it is difficult to compare task-induced fMRI signals across subjects, field strengths, and pulse sequences. This problem can be overcome by normalizing the neural activity-induced BOLD fMRI response...... to be more accurately localized and quantified based on changes in venous blood oxygenation alone. The normalized BOLD signal induced by the motor task was consistent across different magnetic fields and pulse sequences, and corresponded well with cerebral blood flow measurements. Our data suggest...... that the hypercapnic normalization approach can improve the spatial specificity and interpretation of BOLD signals, allowing comparison of BOLD signals across subjects, field strengths, and pulse sequences. A theoretical framework for this method is provided...

  19. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  20. Microwave and Pulsed Power

    Energy Technology Data Exchange (ETDEWEB)

    Freytag, E.K.

    1993-03-01

    The goals of the Microwave and Pulsed Power thrust area are to identify realizable research and development efforts and to conduct high-quality research in those pulse power and microwave technologies that support existing and emerging programmatic requirements at Lawrence Livermore National Laboratory (LLNL). Our main objective is to work on nationally important problems while enhancing our basic understanding of enabling technologies such as component design and testing, compact systems packaging, exploratory physics experiments, and advanced systems integration and performance. During FY-92, we concentrated our research efforts on the six project areas described in this report. (1) We are investigating the superior electronic and thermal properties of diamond that may make it an ideal material for a high-power, solid-state switch. (2) We are studying the feasibility of using advanced Ground Penetrating Imaging Radar technology for reliable non-destructive evaluation of bridges and other high-value concrete structures. These studies include conceptual designs, modeling, experimental verifications, and image reconstruction of simulated radar data. (3) We are exploring the efficiency of pulsed plasma processing techniques used for the removal of NO{sub x} from various effluent sources. (4) We have finished the investigation of the properties of a magnetically delayed low-pressure gas switch, which was designed here at LLNL. (5) We are applying statistical electromagnetic theory techniques to help assess microwave effects on electronic subsystems, by using a mode stirred chamber as our measurement tool. (6) We are investigating the generation of perfluoroisobutylene (PFIB) in proposed CFC replacement fluids when they are subjected to high electrical stresses and breakdown environments.

  1. A Comparative Study of Single-pulse and Double-pulse Laser-Induced Breakdown Spectroscopy with Uranium-containing Samples

    Energy Technology Data Exchange (ETDEWEB)

    Skrodzki, P. J.; Becker, J. R.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.

    2016-01-25

    Laser-induced breakdown spectroscopy (LIBS) holds potential advantages in special nuclear material (SNM) sensing and nuclear forensics which require rapid analysis, minimal sample preparation and stand-off distance capability. SNM, such as U, however, result in crowded emission spectra with LIBS, and characteristic emission lines are challenging to discern. It is well-known that double-pulse LIBS (DPLIBS) improves the signal intensity for analytes over conventional single-pulse LIBS (SPLIBS). This study investigates U signal in a glass matrix using DPLIBS and compares to signal features obtained using SPLIBS. DPLIBS involves sequential firing of 1.06 µm Nd:YAG pre-pulse and 10.6 µm TEA CO2 heating pulse in near collinear geometry. Optimization of experimental parameters including inter-pulse delay and energy follows identification of characteristic lines and signals for bulk analyte Ca and minor constituent analyte U for both DPLIBS and SPLIBS. Spatial and temporal coupling of the two pulses in the proposed DPLIBS technique yields improvements in analytical merits with negligible further damage to the sample compared to SPLIBS. Subsequently, the study discusses optimum plasma emission conditions of U lines and relative figures of merit in both SPLIBS and DPLIBS. Investigation into plasma characteristics also addresses plausible mechanisms related to observed U analyte signal variation between SPLIBS and DPLIBS.

  2. Robust NMR water signal suppression for demanding analytical applications.

    Science.gov (United States)

    Aguilar, Juan A; Kenwright, Simon J

    2016-01-07

    We describe the design and application of robust, general-purpose water signal suppression pulse sequences well suited to chemometric work. Such pulse sequences need to deal well with pulse mis-calibrations, radiation damping, chemical exchange, and the presence of sample inhomogeneities, as well as with significant variations in sample characteristics such as pH, ionic strength, relaxation characteristics and molecular weight. Of course, such pulse sequences should produce un-distorted lineshapes and baselines and work well both under automation and in the hands of non-experts. As an example, one such pulse sequences, Robust-5, will be presented. This new pulse sequence meets those criteria and is able to reduce a 50 M proteo water signal down to a 0.9 mM level, without fine tuning, and under automation, and it is therefore well suited to the most demanding of analytical applications.

  3. Intense pulsed light therapy.

    Science.gov (United States)

    Soltes, Barbara

    2010-12-01

    Intense Pulsed Light (IPL) is an FDA-approved photo therapy for the treatment of a variety of conditions such as acne and hirsutism. It utilizes the principle of selective photothermolysis. Photothermolysis allows a specific wavelength to be delivered to a chromophore of a designated tissue while leaving the surrounding tissue unaffected. The results of IPL are similar to that of laser treatments but it offers the advantage of a relative low cost. It is a safe and rapid treatment with minimal discomfort to the patient. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. A Pulsed Sphere Tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Dermott E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-01-30

    Here I attempt to explain what physically happens when we pulse an object with neutrons, specifically what we expect the time dependent behavior of the neutron population to look like. Emphasis is on the time dependent emission of both prompt and delayed neutrons. I also describe how the TART Monte Carlo transport code models this situation; see the appendix for a complete description of the model used by TART. I will also show that, as we expect, MCNP and MERCURY, produce similar results using the same delayed neutron model (again, see the appendix).

  5. Africa's Pulse, October 2014

    OpenAIRE

    Punam, Chuhan-Pole; Ferreira, Francisco H. G.

    2014-01-01

    Africa’s Pulse is a biannual publication containing an analysis of the near-term macro-economic outlook for the region. It also includes a section focusing on a topic that represents a particular development challenges for the continent. It is produced by the Office of the Chief Economist for the Africa Region.This issue is an analysis of issues shaping Africa's economic future. Growth remains stable in Sub-Saharan Africa. Some countries are seeing a slowdown, but the region's economic pros...

  6. Real-Time Signal Processor for Pulsar Studies

    Indian Academy of Sciences (India)

    It also folds the pulses coherently over the period and integrates adjacent samples in time and frequency to enhance the signal-to-noise ratio. The resulting data are recorded for further off-line analysis of the characteristics of pulsars and the intervening medium. The signal processing for analysis of pulsar signals is quite ...

  7. Scattering-initiated parametric noise in optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Wang, Jing; Ma, Jingui; Yuan, Peng; Tang, Daolong; Zhou, Binjie; Xie, Guoqiang; Qian, Liejia

    2015-07-15

    We experimentally study a new kind of parametric noise that is initiated from signal scattering and enhanced through optical parametric amplification. Such scattering-initiated parametric noise behaves similarly to parametric super-fluorescence in the spatial domain, yet is typically much stronger. In the time domain it inherits the chirp of signal pulses and can be well compressed. We demonstrate that scattering-initiated parametric noise has little influence on the pulse contrast but can degrade the energy conversion efficiency substantially.

  8. Characterization of dynamic behavior of short circuit in pulsed gas metal arc welding of aluminum

    OpenAIRE

    Praveen, P.; Kang, M.J.; K.D.V. P. Yarlagadda

    2005-01-01

    Purpose: This paper studies dynamic characteristics of short circuit in the pulsed current gas metal arc welding (GMAW-P).Design/methodology/approach: Welding experiments with different values of pulsing parameter and simultaneous recording of high speed camera pictures and welding signals (such as current and voltage) were used to identify different short circuit conditions in GMAW-P. The investigation is based on the synchronization of welding signals and high speed camera to characterize d...

  9. Bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A.

    2008-10-21

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  10. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  11. Assembly delay line pulse generators

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  12. Bi-alphabetic pulse compression radar signal design

    Indian Academy of Sciences (India)

    , Claasen T A C M, Heime P W C 1985 Binary sequences with a maximally flat amplitude spectrum. Phillips J. Res. 40: 289±304. Bernasconi J 1987 Low autocorrelation binary sequences: statistical mechanics and configuration space analysis ...

  13. Analysis of Pulse Modulated Control Systems (Ⅲ) Stability of Systems with Pulse Frequency Modulation and Systems with Combined Pulse Frequency and Pulse Width Modulation

    OpenAIRE

    OI,Shigemitsu

    1993-01-01

    Sufficient conditions for finite pulse stability of interconnected systems with combined pulse frequency and pulse width modulation are developed in this paper using a direct method. The stability criteria established provide upper bounds on the number of pulses emitted by each modulator. The results are also applicable to those systems which contain a finite number of pulse frequency modulators and a finite number of combined pulse frequency and pulse width modulators

  14. Signaling aggression.

    Science.gov (United States)

    van Staaden, Moira J; Searcy, William A; Hanlon, Roger T

    2011-01-01

    From psychological and sociological standpoints, aggression is regarded as intentional behavior aimed at inflicting pain and manifested by hostility and attacking behaviors. In contrast, biologists define aggression as behavior associated with attack or escalation toward attack, omitting any stipulation about intentions and goals. Certain animal signals are strongly associated with escalation toward attack and have the same function as physical attack in intimidating opponents and winning contests, and ethologists therefore consider them an integral part of aggressive behavior. Aggressive signals have been molded by evolution to make them ever more effective in mediating interactions between the contestants. Early theoretical analyses of aggressive signaling suggested that signals could never be honest about fighting ability or aggressive intentions because weak individuals would exaggerate such signals whenever they were effective in influencing the behavior of opponents. More recent game theory models, however, demonstrate that given the right costs and constraints, aggressive signals are both reliable about strength and intentions and effective in influencing contest outcomes. Here, we review the role of signaling in lieu of physical violence, considering threat displays from an ethological perspective as an adaptive outcome of evolutionary selection pressures. Fighting prowess is conveyed by performance signals whose production is constrained by physical ability and thus limited to just some individuals, whereas aggressive intent is encoded in strategic signals that all signalers are able to produce. We illustrate recent advances in the study of aggressive signaling with case studies of charismatic taxa that employ a range of sensory modalities, viz. visual and chemical signaling in cephalopod behavior, and indicators of aggressive intent in the territorial calls of songbirds. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Application of laser pulse stretching scheme for efficiently delivering laser energy in photoacoustic imaging

    Science.gov (United States)

    Wang, Tianheng; Kumavor, Patrick D.; Zhu, Quing

    2012-06-01

    High-energy and short-duration laser pulses are desirable to improve the photoacoustic image quality when imaging deeply seated lesions. In many clinical applications, the high-energy pulses are coupled to tissue using optical fibers. These pulses can damage fibers if the damage threshold is exceeded. While keeping the total energy under the Food and Drug Administration limit for avoiding tissue damage, it is necessary to reduce the peak intensity and increase the pulse duration for minimizing fiber damage and delivering sufficient light for imaging. We use laser-pulse-stretching to address this problem. An initial 17-ns pulse was stretched to 27 and 37 ns by a ring-cavity laser-pulse-stretching system. The peak power of the 37-ns stretched pulse reduced to 42% of the original, while the fiber damage threshold was increased by 1.5-fold. Three ultrasound transducers centered at 1.3-, 3.5-, and 6-MHz frequencies were simulated, and the results showed that the photoacoustic signal of a 0.5-mm-diameter target obtained with 37-ns pulse was about 98, 91, and 80%, respectively, using the same energy as the 17-ns pulse. Simulations were validated using a broadband hydrophone. Quantitative comparisons of photoacoustic images obtained with three corresponding transducers showed that the image quality was not affected by stretching the pulse.

  16. Design and application of pulse information acquisition and analysis system with dynamic recognition in traditional Chinese medicine.

    Science.gov (United States)

    Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong

    2014-09-01

    To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.

  17. A new coding concept for fast ultrasound imaging using pulse trains

    DEFF Research Database (Denmark)

    Misaridis, T.; Jensen, Jørgen Arendt

    2002-01-01

    delay from element to element, long enough to assure no pulse overlapping for all depths in the image. Frequency shift keying is used for "per element" coding. The received signals from a point scatterer are staggered pulse trains which are beamformed for all beam directions and further processed...... with a bank of matched filters (one for each beam direction). Filtering compresses the pulse train to a single pulse at the scatterer position with a number of spike axial sidelobes. Cancellation of the ambiguity spikes is done by applying additional phase modulation from one emission to the next and summing...

  18. Temporary tattoo for wireless human pulse measurement

    Science.gov (United States)

    Pepłowski, Andrzej; Janczak, Daniel; Krzemińska, Patrycja; Jakubowska, Małgorzata

    2016-09-01

    Screen-printed sensor for measuring human pulse was designed and first tests using a demonstrator device were conducted. Various materials and sensors' set ups were compared and the results are presented as the starting point for fabrication of fully functional device. As a screen printing substrate, commercially available temporary tattoo paper was used. Using previously developed nanomaterials-based pastes design of a pressure sensor was printed on the paper and attached to the epidermis. Measurements were aimed at determining sensors impedance constant component and its variability due to pressure wave caused by the human pulse. The constant component was ranging from 2kΩ to 6kΩ and the variations of the impedance were ranging from +/-200Ω to +/-2.5kΩ, depending on the materials used and the sensor's configuration. Calculated signal-to-noise ratio was 3.56:1 for the configuration yielding the highest signal level. As the device's net impedance influences the effectiveness of the wireless communication, the results presented allow for proper design of the sensor for future health-monitoring devices.

  19. An explanation of trans-ionospheric pulse pairs

    CERN Document Server

    Wu, H -C

    2016-01-01

    Trans-ionospheric pulse pairs are the most powerful natural radio signals on the Earth and associated with lightning. They have been discovered for two decades by satellites, but their origin still remains elusive. Here we attribute these radio signals to relativistic electrons produced by cloud-to-ground lightning. When these electrons strike the ground, radio bursts are emitted towards space in a narrow cone. This model naturally explains the interval, duration, polarization, coherence and bimodal feature of the pulse pairs. Based on electron parameters inferred from x-ray observation of lightning, the calculated signal intensity agrees with the measurement of satellites. Our results are useful to develop global warning system of storms and hurricane based on GPS satellites.

  20. Real-time data compression of broadcast video signals

    Science.gov (United States)

    Shalkauser, Mary Jo W. (Inventor); Whyte, Wayne A., Jr. (Inventor); Barnes, Scott P. (Inventor)

    1991-01-01

    A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time.

  1. Extremely High Peak Power Pulsed RF and UWB EMR Effects on Genomic Transcription - Microarray Assessment

    Science.gov (United States)

    2008-06-26

    increases and decreases for each signal type, with the 10ns PEF signal exposures causing larger numbers of changes. Below is a list of tables of...compared to sham controls (GeneSpring analysis, 2 fold cutoff) TABLE 3a List of Genes Increasing at 2hr post 3 pulse 10ns PEF exposure (200 kV/cm...pulse 10ns PEF exposure (200 kV/cm) in Pulsed samples compared to sham controls (200kV/cm) (GeneSpring analysis, 2 fold 14 TABLE 4a List of

  2. Measurement of amplifier pulse shapes in SCT modules using a laser setup

    CERN Document Server

    Gadomski, S

    2001-01-01

    We have developed a technique to measure the shape of an average pulse at an output of the front-end amplifier in the SCT binary electronics (ABCD chips) in response to a laser signal. Using the technique we can measure the pulse shapes for charges generated by a laser at various positions on detectors of SCT modules. The method can reveal changes of pulse shape, and potentially also a delay caused by signal propagation along the strips. We report our measurements done on one end-cap and one barrel module.

  3. Single-photon technique for the detection of periodic extraterrestrial laser pulses.

    Science.gov (United States)

    Leeb, W R; Poppe, A; Hammel, E; Alves, J; Brunner, M; Meingast, S

    2013-06-01

    To draw humankind's attention to its existence, an extraterrestrial civilization could well direct periodic laser pulses toward Earth. We developed a technique capable of detecting a quasi-periodic light signal with an average of less than one photon per pulse within a measurement time of a few tens of milliseconds in the presence of the radiation emitted by an exoplanet's host star. Each of the electronic events produced by one or more single-photon avalanche detectors is tagged with precise time-of-arrival information and stored. From this we compute a histogram displaying the frequency of event-time differences in classes with bin widths on the order of a nanosecond. The existence of periodic laser pulses manifests itself in histogram peaks regularly spaced at multiples of the-a priori unknown-pulse repetition frequency. With laser sources simulating both the pulse source and the background radiation, we tested a detection system in the laboratory at a wavelength of 850 nm. We present histograms obtained from various recorded data sequences with the number of photons per pulse, the background photons per pulse period, and the recording time as main parameters. We then simulated a periodic signal hypothetically generated on a planet orbiting a G2V-type star (distance to Earth 500 light-years) and show that the technique is capable of detecting the signal even if the received pulses carry as little as one photon on average on top of the star's background light.

  4. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  5. Pulsed depressed collector

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Mark A

    2015-11-03

    A high power RF device has an electron beam cavity, a modulator, and a circuit for feed-forward energy recovery from a multi-stage depressed collector to the modulator. The electron beam cavity include a cathode, an anode, and the multi-stage depressed collector, and the modulator is configured to provide pulses to the cathode. Voltages of the electrode stages of the multi-stage depressed collector are allowed to float as determined by fixed impedances seen by the electrode stages. The energy recovery circuit includes a storage capacitor that dynamically biases potentials of the electrode stages of the multi-stage depressed collector and provides recovered energy from the electrode stages of the multi-stage depressed collector to the modulator. The circuit may also include a step-down transformer, where the electrode stages of the multi-stage depressed collector are electrically connected to separate taps on the step-down transformer.

  6. Nanofabrication with Pulsed Lasers

    Directory of Open Access Journals (Sweden)

    Kabashin AV

    2010-01-01

    Full Text Available Abstract An overview of pulsed laser-assisted methods for nanofabrication, which are currently developed in our Institute (LP3, is presented. The methods compass a variety of possibilities for material nanostructuring offered by laser–matter interactions and imply either the nanostructuring of the laser-illuminated surface itself, as in cases of direct laser ablation or laser plasma-assisted treatment of semiconductors to form light-absorbing and light-emitting nano-architectures, as well as periodic nanoarrays, or laser-assisted production of nanoclusters and their controlled growth in gaseous or liquid medium to form nanostructured films or colloidal nanoparticles. Nanomaterials synthesized by laser-assisted methods have a variety of unique properties, not reproducible by any other route, and are of importance for photovoltaics, optoelectronics, biological sensing, imaging and therapeutics.

  7. Capacitor discharge pulse analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  8. Multichannel computerized control system of current pulses in LIU-30 electron accelerator

    CERN Document Server

    Gerasimov, A I; Kulgavchuk, V V; Pluzhnikov, A V

    2002-01-01

    In LIU-30 power linear pulsed induction electron accelerator (40 MeV, 10 kA, 25 ns) 288 radial lines with water insulation serve as energy accumulators and shapers of accelerating voltage pulses. The lines are charged simultaneously up to 500 kV using a system comprising 72 Arkadiev-Marx screened generators. To control parameter of synchronous pulses of charging current with up to 60 kA amplitude and 0.85 mu s duration in every of 72 charging circuits one applies a computer-aided system. Current pulse is recorded at output of every generator using the Rogowski coil signal from which via a cable line is transmitted to an analog-digital converter, is processed with 50 ns sampling and is recorded to a memory unit. Upon actuation of accelerator the signals are sequentially or selectively displayed and are compared with pulse typical shape

  9. Use of SPAM and FAM pulses in high-resolution MAS NMR spectroscopy of quadrupolar nuclei.

    Science.gov (United States)

    Ball, Thomas J; Wimperis, Stephen

    2007-08-01

    The merits of SPAM and FAM pulses for enhancing the conversion of triple- to single-quantum coherences in the two-dimensional MQMAS experiment are compared using (87)Rb (spin I=3/2) and (27)Al (I=5/2) NMR of crystalline and amorphous materials. Although SPAM pulses are more easily optimized, our experiments and simulations suggest that FAM pulses yield greater signal intensity in all cases. In conclusion, we argue that, as originally suggested, SPAM and FAM pulses are best implemented in phase-modulated whole-echo MQMAS experiments and that the use of SPAM pulses to record separate echo and antiecho data sets, which are then combined, generally yields lower signal-to-noise ratios.

  10. Digital pulse compression and its application in reducing radar interference

    Science.gov (United States)

    Blanchette, Martin

    1992-07-01

    Pulse compression is a technique which allows improvement in detecting radar targets while preserving a good resolution power at a distance. This technique consists in transmitting a longer coded pulse and receiving it with a filter adapted to the code transmitted. Digital systems of pulse compression can possess a wider variety of codes than analog systems and can use a new code at each transmission. These two advantages are combined to reduce radar noise. The performance of digital pulse compression is evaluated for different types of radar interference. To counter certain types of interference such as replication of code, it is necessary to use a new code at each transmission. Two types of codes are studied: biphase pseudorandom codes and polyphase codes derived from linear frequency modulated signals or chirp. Supplementary methods, such as cumulative detection and coherent integration of a salvo of pulses, are sometimes needed to supress interference residuals. Digital pulse compression was also applied in real time and the results are supported by computer simulations and by tests on an experimental prototype.

  11. RF-photonic wideband measurements of energetic pulses on NIF enhanced by compressive sensing algorithms

    Science.gov (United States)

    Chou, Jason; Valley, George C.; Hernandez, Vincent J.; Bennett, Corey V.; Pelz, Larry; Heebner, John; Di Nicola, J. M.; Rever, Matthew; Bowers, Mark

    2014-03-01

    At the National Ignition Facility (NIF), home of the world's largest laser, a critical pulse screening process is used to ensure safe operating conditions for amplifiers and target optics. To achieve this, high speed recording instrumentation up to 34 GHz measures pulse shape characteristics throughout a facility the size of three football fields—which can be a time consuming procedure. As NIF transitions to higher power handling and increased wavelength flexibility, this lengthy and extensive process will need to be performed far more frequently. We have developed an accelerated highthroughput pulse screener that can identify nonconforming pulses across 48 locations using a single, real-time 34-GHz oscilloscope. Energetic pulse shapes from anywhere in the facility are imprinted onto telecom wavelengths, multiplexed, and transported over fiber without distortion. The critical pulse-screening process at high-energy laser facilities can be reduced from several hours just seconds—allowing greater operational efficiency, agility to system modifications, higher power handling, and reduced costs. Typically, the sampling noise from the oscilloscope places a limit on the achievable signal-to-noise ratio of the measurement, particularly when highly shaped and/or short duration pulses are required by target physicists. We have developed a sophisticated signal processing algorithm for this application that is based on orthogonal matching pursuit (OMP). This algorithm, developed for recovering signals in a compressive sensing system, enables high fidelity single shot screening even for low signal-to-noise ratio measurements.

  12. Specialty fibers for 160, 320 and 640 Gb/s signal processing

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Berg, Kim Skaalum; Clausen, Anders

    2004-01-01

    Specialty highly non-linear fibers are experimentally characterized as signal processing components in ultra high-speed OTDM systems. Pulse compression to 359 fs and demultiplexing of 160, 320 and 640 Gb/s signals are demonstrated.......Specialty highly non-linear fibers are experimentally characterized as signal processing components in ultra high-speed OTDM systems. Pulse compression to 359 fs and demultiplexing of 160, 320 and 640 Gb/s signals are demonstrated....

  13. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  14. Electrode cartridge for pulse welding

    Energy Technology Data Exchange (ETDEWEB)

    Bonnen, John Joseph Francis; Golovashchenko, Sergey Fedorovich; Mamutov, Alexander; Maison, Lloyd Douglas

    2017-06-14

    A cartridge assembly for a tool includes a cartridge body or casing that contains a conductor. A conductor is connected to a pulse generator or source of stored charge that is discharged to vaporize the conductor and create an electro-hydraulic or electro-magnetic shockwave that is used to impact or pulse weld two parts together.

  15. Pulse Characteristic Curves of Vidicons,

    Science.gov (United States)

    microamps, and in vidicons with heterotransition screens, up to 10 microamps. The use of static modulation characteristic curves of vidicons for the...determination of the pulse beam current can lead to an error > 100%. With the help of pulse-modulation characteristic curves, it is possible to obtain the

  16. Probing attosecond pulse structures by XUV-induced hole dynamics

    CERN Document Server

    You, Jhih-An; Dahlström, Jan Marcus

    2015-01-01

    We investigate a two-photon ionization process in neon by an isolated attosecond pump pulse and two coherent extreme ultraviolet probe fields. The probe fields, tuned to the 2s-2p transition in the residual ion, allow for coherent control of the photoelectron via indirect interactions with the hole. We show that the photoelectron-ion coincidence signal contains an interference pattern that can be used to reconstruct the temporal structure of attosecond pump pulses. Our results are supported by simulations based on time-dependent configuration-interaction singles and lowest-order perturbation theory within second quantization.

  17. Pulsed beam dosimetry using fiber-coupled radioluminescence detectors

    DEFF Research Database (Denmark)

    Andersen, Claus Erik

    2012-01-01

    The objective of this work was to review and discuss the potential application of fiber-coupled radioluminescence detectors for dosimetry in pulsed MV photon beams. Two types of materials were used: carbon-doped aluminium oxide (Al2O3:C) and organic plastic scintillators. Special consideration...... was given to the discrimination between radioluminescence signals from the phosphors and unwanted light induced in the optical fiber cables during irradiation (Cerenkov and fluorescence). New instrumentation for dose-per-pulse measurements with organic plastic scintillators was developed....

  18. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Science.gov (United States)

    Pedarnig, J. D.; Haslinger, M. J.; Bodea, M. A.; Huber, N.; Wolfmeir, H.; Heitz, J.

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe2O3 powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe2O3 pellets and Fe3O4 ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λL). The UV pulses (λL = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λL = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of td ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency.

  19. Study of problems arising from the use of thermal neutron detectors in a pulsed regime. Application to the development of a digital transferometer adapted to receive signals from these detectors; Etude des problemes poses par l'utilisation des detecteurs de neutrons thermiques fonctionnant en regime impulsionnel. Application a la realisation d'un transferometre numerique adapte aux signaux fournis par ces detecteurs

    Energy Technology Data Exchange (ETDEWEB)

    Le Tilly, Y. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-12-01

    The instantaneous value of the counting rate of the pulses given by a fission detector settled in a reactor follows the neutron flux, but it is shown that the counter adds a white noise to the measured signal. This report deals with some possibilities of on line numerical handling afforded by this kind of signals. One considers first the influence of a by N numerical divider and one shows that, acting like a quantifier, it adds to the signal a white noise with the power N{sup 2}/{sub 12}. One, studies afterwards the principle of a digital filter aimed to Fourier analyse the signal. The realization of this device is described. It can be used in transfer function measurements at frequencies below 125 kHz. Some examples of experiments performed with this apparatus are presented. One discusses finally the design, according to the same principle, of a power spectral density analyser in the frequency range 0,01 - 10 000 Hz for random signal of the same kind. (author) [French] La valeur instantanee de la frequence de recurrence des impulsions issues d'un detecteur a fission place dans un reacteur est proportionnelle au flux neutronique. Apres avoir montre que le detecteur ajoute un bruit blanc au signal mesure, on etudie clans ce rapport certaines possibilites de traitement numerique en temps reel offertes par ce type de signaux. On examine d'abord l'influence d'un diviseur numerique par N, et l'on montre que son action, semblable a une quantification, ajoute au signal un bruit blanc de puissance N{sup 2}/{sub 12}. On, etudie ensuite le principe d'un filtre numerique destine a effectuer l'analyse de Fourier du signal, et l'on decrit la realisation de cet appareil qui peut etre utilise pour mesurer des fonctions de transfert a une frequence quelconque inferieure a 10 kHz. Des exemples de mesures faites avec cet appareil sont presentes. On discute enfin la possibilite de realiser suivant le meme principe un analyseur de densite

  20. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Science.gov (United States)

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  1. Compression of Linearly Chirped Gaussian Optical Pulses Induced by Microwave Magneto-Static Waves

    Science.gov (United States)

    Wu, Bao-Jian; Gao, Xiang

    2009-04-01

    According to the coupled-mode theory of magneto-optic (MO) effects as a perturbation, the coupling equations for optical pulses with microwave magneto-static waves (MSWs) in MO film waveguides are presented, which can be used to analyze MSW-based optical pulse signal processing. For the case of a continuous MSW, the analytic expression for the complex amplitudes of diffracted and undiffracted optical pulses is obtained in frequency domain and then the compression characteristics of linearly chirped Gaussian optical pulses are studied in detail. The peak intensity of diffracted optical pulses is approximately proportional to the matching diffraction efficiency. With the increase of chirp parameters, the diffracted pulse waveforms go through two stages: single peak compression and multi-peak expansion.

  2. Subsiding OOB Emission and ICI Power Using iPOWER Pulse in OFDM Systems

    Directory of Open Access Journals (Sweden)

    KAMAL, S.

    2016-02-01

    Full Text Available A novel family of Nyquist-I pulses called iPOWER is proposed with a new design parameter that provides an extra degree of freedom for a certain roll-off factor. The proposed pulse is examined and compared with other existing pulses in terms of out-of-band (OOB power, intercarrier interference (ICI power, signal-to-interference ratio (SIR power, and bit-error-rate (BER in orthogonal frequency division multiplexing (OFDM systems. The BER was analyzed in the presence of carrier frequency offset (CFO, which introduces ICI in OFDM-based systems. Eye diagram tool is also used to visually analyze the performance of the proposed pulse. Simulation results show that the iPOWER pulse performs better in terms of OOB power, ICI power, SIR power, and improving BER in comparison to other existing pulses in OFDM-based systems.

  3. The Role of Plasma Shielding in Double-Pulse Femtosecond Laser-Induced Breakdown Spectroscopy

    CERN Document Server

    Penczak, John S; Bar, Ilana; Gordon, Robert J

    2013-01-01

    It is well known that optical emission produced by femtosecond laser-induced breakdown on a surface may be enhanced by using a pair of laser pulses separated by a suitable delay. Here we elucidate the mechanism for this effect both experimentally and theoretically. Using a bilayer sample consisting of a thin film of Ag deposited on an Al substrate as the ablation target and measuring the breakdown spectrum as a function of fluence and pulse delay, it is shown experimentally that the enhanced signal is not caused by additional ablation initiated by the second pulse. Rather, particle-in-cell calculations show that the plasma produced by the first pulse shields the surface from the second pulse for delays up to 100 ps. These results indicate that the enhancement is the result of excitement of particles entrained in the plasma produced by the first pulse.

  4. ±25ppm repeatable measurement of trapezoidal pulses with 5MHz bandwidth

    CERN Document Server

    AUTHOR|(SzGeCERN)712364; Arpaia, Pasquale; Cerqueira Bastos, Miguel; Martino, Michele

    2015-01-01

    High-quality measurements of pulses are nowadays widely used in fields such as radars, pulsed lasers, electromagnetic pulse generators, and particle accelerators. Whilst literature is mainly focused on fast systems for nanosecond regime with relaxed metrological requirements, in this paper, the high-performance measurement of slower pulses in microsecond regime is faced. In particular, the experimental proof demonstration for a 15 MS/s,_25 ppm repeatable acquisition system to characterize the flat-top of 3 ms rise-time trapezoidal pulses is given. The system exploits a 5MHz bandwidth circuit for analogue signal processing based on the concept of flat-top removal. The requirements, as well as the conceptual and physical designs are illustrated. Simulation results aimed at assessing the circuit performance are also presented. Finally, an experimental case study on the characterization of a pulsed power supply for the klystrons modulators of the Compact Linear Collider (CLIC) under study at CERN is reported. In ...

  5. MOSFET-based high voltage double square-wave pulse generator with an inductive adder configuration

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Qiaogen, E-mail: hvzhang@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Long, Jinghua [College of Physics, Shenzhen University, Shenzhen 518060 (China); Lei, Yunfei; Liu, Jinyuan [Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-09-01

    This paper presents a fast MOSFET-based solid-state pulse generator for high voltage double square-wave pulses. The generator consists mainly of an inductive adder system stacked of 20 solid-state modules. Each of the modules has 18 power MOSFETs in parallel, which are triggered by individual drive circuits; these drive circuits themselves are synchronously triggered by a signal from avalanche transistors. Our experiments demonstrate that the output pulses with amplitude of 8.1 kV and peak current of about 405 A are available at a load impedance of 20 Ω. The pulse has a double square-wave form with a rise and fall time of 40 ns and 26 ns, respectively and bottom flatness better than 12%. The interval time of the double square-wave pulses can be adjustable by varying the interval time of the trigger pulses.

  6. Self-enhancement and suppression of optical pulses by use of photochromism in elastomer.

    Science.gov (United States)

    Saito, Mitsunori; Hamazaki, Takamasa

    2016-10-03

    When violet or green pulses were launched into an elastomer containing photochromic diarylethene, two competitive absorption bands emerged at around 400 and 520 nm. The violet pulses suppressed the former and enhanced the latter, whereas the green pulses induced the opposite reaction. Consequently, these signals self-formed their optical path in the elastomer (self-enhancement). By contrast, blue pulses exhibited either a self-enhancement or suppression characteristic depending on whether the elastomer had been irradiated by the violet or green signal before the blue signal transmission. Measurement of the transient spectra during the irradiation process revealed that the blue photons were absorbed by both 400 and 520 nm bands inducing two competitive photochromic isomerizations simultaneously.

  7. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    Science.gov (United States)

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Extracting oscillometric pulses from the cuff pressure: does it affect the pressures determined by oscillometric blood pressure monitors?

    Science.gov (United States)

    Amoore, John N

    2006-10-01

    Oscillometric noninvasive blood pressure measurement devices determine the pressures by analysing the relationship between the pressure in an occluding cuff and low-amplitude pressure pulses (oscillometric pulses) induced in the cuff by the arterial pressure wave. This paper examines the effects on the pulses and oscillometric pulse amplitude envelope of the filters that extract the pulses from the cuff pressure. The cuff pressure and oscillometric pulses extracted by the filter were recorded from a Critikon DINAMAP and a Datex Cardiocap, chosen because of accessibility of the filtered and unfiltered signals. The unfiltered oscillometric pulses were determined by subtracting the cuff pressure from a baseline constructed to represent either the Critikon's step deflation cuff pressure or the Datex's gradual pressure decrease. Waveforms were recorded from a noninvasive blood pressure test simulator and three volunteers. The filter alters the shape of oscillometric pulses causing a shift in the oscillometric pulse amplitude envelope drawn from the filtered pulses compared with that drawn from the unfiltered pulses in human subjects, but not the test simulator. The pulse shape distortion is dependent on the filter characteristics and the oscillometric pulse shape. Further work is required to explore whether this may help explain why simulators with artificial waveforms cannot validate noninvasive blood pressure monitors and why noninvasive blood pressure monitors may not be accurate in all patient groups.

  9. New strategies for designing robust universal rotation pulses: Application to broadband refocusing at low power

    Science.gov (United States)

    Skinner, Thomas E.; Gershenzon, Naum I.; Nimbalkar, Manoj; Bermel, Wolfgang; Luy, Burkhard; Glaser, Steffen J.

    2012-03-01

    Optimizing pulse performance often requires a compromise between maximizing signal amplitude and minimizing spectral phase errors. We consider methods for the de novo design of universal rotation pulses, applied specifically but not limited to refocusing pulses. Broadband inversion pulses that rotate all magnetization components 180° about a given fixed axis are necessary for refocusing and mixing in high-resolution NMR spectroscopy. The relative merits of various methodologies for generating pulses suitable for broadband refocusing are considered. The de novo design of 180° universal rotation pulses 180UR° using optimal control can provide improved performance compared to schemes which construct refocusing pulses as composites of existing pulses. The advantages of broadband universal rotation by optimized pulses (BURBOP) are most evident for pulse design that includes tolerance to RF inhomogeneity or miscalibration. Nearly ideal refocusing is possible over a resonance offset range of ± 170% relative to the nominal pulse B1 field, concurrent with tolerance to B1 inhomogeneity/miscalibration of ± 33%. We present new modifications of the optimal control algorithm that incorporate symmetry principles (S-BURBOP) and relax conservative limits on peak RF pulse amplitude for short time periods that pose no threat to the probe. We apply them to generate a set of low-power 180BURBOP° pulses suitable for widespread use in 13C spectroscopy on the majority of available probes. A quantitative measure for the reduced spectral phase error provided by these symmetry principles is also derived. For pulses designed according to this symmetry, refocusing phase errors are virtually eliminated upon application of EXORCYCLE or an equivalent G-180S-BURBOP°-G gradient sandwich, independent of resonance offset and RF inhomogeneity. The magnitude of the refocused component is not significantly compromised in achieving such ideal phase performance.

  10. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  11. Comparison of the effectiveness of saturation pulses in the heart at 3T.

    Science.gov (United States)

    Kim, Daniel; Gonen, Oded; Oesingmann, Niels; Axel, Leon

    2008-01-01

    Cardiac MRI at 3T provides a means to increase the contrast-to-noise ratio (CNR) for first-pass perfusion MRI. However, both the static magnetic field (B(0)) and radio frequency (RF) field (B(1)) variations within the heart are comparatively higher at 3T than at 1.5T. The increased field variations can degrade the performance of a single rectangular saturation pulse that is conventionally used for magnetization preparation. The accuracy of T(1)-weighted signal measurement depends on the uniformity of the magnetization saturation. The purpose of this study was to assess the relative effectiveness of the rectangular, pulse train, and adiabatic composite (BIR-4) saturation pulses in the human heart at 3T. In volunteers, after nominal saturation, the mean residual magnetization within the left ventricle (LV) was different between all three pulses (0.13 +/- 0.06 vs. 0.03 +/- 0.02 vs. 0.03 +/- 0.01, respectively; P < 0.001). Within paired groups, the mean residual magnetization was significantly higher for the rectangular pulse than for either the pulse train and BIR-4 pulses (P < 0.001), but not different between the pulse train and BIR-4 pulses. The performances of all three saturation pulses were comparatively poorer in the right ventricle (RV) than in the LV, respectively. 2007 Wiley-Liss, Inc

  12. Pulse source requirements for OTDM systems

    DEFF Research Database (Denmark)

    Clausen, Anders; Poulsen, Henrik Nørskov; Oxenløwe, Leif Katsuo

    2003-01-01

    A simulation model for investigating the impact of incoherent crosstalk due to pulse tail overlapping is proposed. Requirements to pulse width and pulse tail extinction ratio introducing a maximum of 1 dB penalty is extracted.......A simulation model for investigating the impact of incoherent crosstalk due to pulse tail overlapping is proposed. Requirements to pulse width and pulse tail extinction ratio introducing a maximum of 1 dB penalty is extracted....

  13. Bomb pulse biology

    Energy Technology Data Exchange (ETDEWEB)

    Falso, Miranda J. Sarachine [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Buchholz, Bruce A., E-mail: buchholz2@llnl.gov [Center for Accelerator Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States)

    2013-01-15

    The past decade has seen an explosion in use of the {sup 14}C bomb pulse to do fundamental cell biology. Studies in the 1960s used decay counting to measure tissue turnover when the atmospheric {sup 14}C/C concentration was changing rapidly. Today bulk tissue measurements are of marginal interest since most of the carbon in the tissue resides in proteins, lipids and carbohydrates that turn over rapidly. Specific cell types with specialized functions are the focus of cell turnover investigations. Tissue samples need to be fresh or frozen. Fixed or preserved samples contain petroleum-derived carbon that has not been successfully removed. Cell or nuclear surface markers are used to sort specific cell types, typically by fluorescence-activated cell sorting (FACS). Specific biomolecules need to be isolated with high purity and accelerator mass spectrometry (AMS) measurements must accommodate samples that generally contain less than 40 {mu}g of carbon. Furthermore, all separations must not add carbon to the sample. Independent means such as UV absorbance must be used to confirm molecule purity. Approaches for separating specific proteins and DNA and combating contamination of undesired molecules are described.

  14. Development of advanced radiation monitors for pulsed neutron fields

    CERN Document Server

    AUTHOR|(CDS)2081895

    The need of radiation detectors capable of efficiently measuring in pulsed neutron fields is attracting widespread interest since the 60s. The efforts of the scientific community substantially increased in the last decade due to the increasing number of applications in which this radiation field is encountered. This is a major issue especially at particle accelerator facilities, where pulsed neutron fields are present because of beam losses at targets, collimators and beam dumps, and where the correct assessment of the intensity of the neutron fields is fundamental for radiation protection monitoring. LUPIN is a neutron detector that combines an innovative acquisition electronics based on logarithmic amplification of the collected current signal and a special technique used to derive the total number of detected neutron interactions, which has been specifically conceived to work in pulsed neutron fields. Due to its special working principle, it is capable of overcoming the typical saturation issues encountere...

  15. Experimental validation of a high voltage pulse measurement method.

    Energy Technology Data Exchange (ETDEWEB)

    Cular, Stefan; Patel, Nishant Bhupendra; Branch, Darren W.

    2013-09-01

    This report describes X-cut lithium niobates (LiNbO3) utilization for voltage sensing by monitoring the acoustic wave propagation changes through LiNbO3 resulting from applied voltage. Direct current (DC), alternating current (AC) and pulsed voltage signals were applied to the crystal. Voltage induced shift in acoustic wave propagation time scaled quadratically for DC and AC voltages and linearly for pulsed voltages. The measured values ranged from 10 - 273 ps and 189 ps 2 ns for DC and non-DC voltages, respectively. Data suggests LiNbO3 has a frequency sensitive response to voltage. If voltage source error is eliminated through physical modeling from the uncertainty budget, the sensors U95 estimated combined uncertainty could decrease to ~0.025% for DC, AC, and pulsed voltage measurements.

  16. Pulse-shaping based two-photon FRET stoichiometry

    Science.gov (United States)

    Flynn, Daniel C.; Bhagwat, Amar R.; Brenner, Meredith H.; Núñez, Marcos F.; Mork, Briana E.; Cai, Dawen; Swanson, Joel A.; Ogilvie, Jennifer P.

    2015-01-01

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor. PMID:25836193

  17. Pulsed ultrasonic stir welding method

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  18. Analysis of intra-pulse frequency-modulated, low probability of ...

    Indian Academy of Sciences (India)

    A R SACHIN

    ulations, multi-octave frequency range, wide signal bandwidth, long pulse width, vast and multi-parametric ... aspects of LPI radars, signal design and analysis. .... This gives an overview of the complexity of the problem being addressed, design phi- losophy followed and qualitative content of the proposed architecture.

  19. Pulsed light and pulsed electric field for foods and eggs.

    Science.gov (United States)

    Dunn, J

    1996-09-01

    Two new technologies for use in the food industry are described. The first method discussed uses intense pulse of light. This pulsed light (PureBright) process uses short duration flashes of broad spectrum "white" light to kill all exposed microorganisms, including vegetative bacteria, microbial and fungal spores, viruses, and protozoan oocysts. Each pulse, or flash, of light lasts only a few hundred millionths of a second (i.e., a few hundred microseconds). The intensity of each flash of light is about 20,000 times the intensity of sunlight at the earth's surface. The flashes are typically applied at a rate of about one to tens of flashes per second. For most applications, a few flashes applied in a fraction of a second provide an effective treatment. High microbial kill can be achieved, for example, on the surfaces of packaging materials, on packaging and processing equipment, foods, and medical devices as well as on many other surfaces. In addition, some bulk materials such as water and air that allow penetration of the light can be sterilized. The results of tests to measure the effects of pulsed light on Salmonella enteritiditis on eggs are presented. The second method discussed uses multiple, short duration, high intensity electric field pulses to kill vegetative microorganisms in pumpable products. This pulsed electric field (or CoolPure) process can be applied at modest temperatures at which no appreciable thermal damage occurs and the original taste, color, texture, and functionality of products can be retained.

  20. Signal processing aspects of windshear detection

    Science.gov (United States)

    Aalfs, David D.; Baxa, Ernest G., Jr.; Bracalente, Emedio M.

    1993-01-01

    Low-altitude windshear (LAWS) has been identified as a major hazard to aircraft, particularly during takeoff and landing. The Federal Aviation Administration (FAA) has been involved with developing technology to detect LAWS. A key element in this technology is high resolution pulse Doppler weather radar equipped with signal and data processing to provide timely information about possible hazardous conditions.

  1. Task-Level Control for a Full Semi-Autonomous Mission: Test Platform Development and Demonstration

    Science.gov (United States)

    Rock, Stephen M.; LeMaster, Edward A.

    2001-01-01

    Pseudolites can extend the availability of GPS-type positioning systems to a wide range of applications not possible with satellite-only GPS, including indoor and deep-space applications. Conventional GPS pseudolite arrays require that the devices be pre-calibrated through a survey of their locations, typically to sub-centimeter accuracy. This can sometimes be a difficult task, especially in remote or hazardous environments. By using the GPS signals that the pseudolites broadcast, however, it is possible to have the array self-survey its own relative locations, creating a Self-Calibrating Pseudolite Array (SCPA). In order to provide the bi-directional ranging signals between devices necessary for array self-calibration, pseudolite transceivers must be used. The basic principles behind the use of transceivers to create an SCPA were first presented in paper presented to the Institute of Navigation GPS-98 Conference. This paper begins with a brief review of the transceiver architecture and the fundamental direct-ranging algorithm presented in that paper. This is followed by a description of a prototype self-differencing transceiver system that has been constructed, and a presentation of experimental code- and carrier-phase ranging data obtained using that system. A second algorithm is then described which uses these fundamental range measurements between transceiver pairs to self-calibrate a larger stationary array and to provide positioning information for a vehicle moving within that array. Simulation results validating the accuracy and effective convergence of this algorithm are also presented.

  2. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval

    Directory of Open Access Journals (Sweden)

    Liu Zhen

    2012-03-01

    Full Text Available Blind zones and ambiguities in range and velocity measurement are two important issues in traditional pulse-Doppler radar. By generating random deviations with respect to a mean Pulse Repetition Interval (PRI, this paper proposes a novel algorithm of Moving Target Detection (MTD based on the Compressed Sensing (CS theory, in which the random deviations of the PRIare converted to the Restricted Isometry Property (RIP of the observing matrix. The ambiguities of range and velocity are eliminated by designing the signal parameters. The simulation results demonstrate that this scheme has high performance of detection, and there is no ambiguity and blind zones as well. It can also shorten the coherent processing interval compared to traditional staggered PRI mode because only one pulse train is needed instead of several trains.

  3. Localized wave pulses in the keyport experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D.H.; Lewis, D.K.

    1998-02-17

    Localized wave (LW) pulses were produced using a standard Navy array in the anechoic tank at Navy Underwater Weapons Center (NUWC) Keyport. The LW pulses used were the MPS pulse first derived by Ziolkowski, and a new type of pulse based on a superposition of Gaussian beam modes. This new type is motivated by a desire to make a comparison of the MPS pulse with another broad band pulse built from solutions to the wave equation. The superposed Gaussian pulse can be described by parameters which are analogous to those describing the MPS pulse. We compare the directivity patternsand the axial energy decay between the pulses. We find the behavior of the pulses to be similar so that the superposed Gaussian could be another candidate in the class of low diffractive pulses known as localized waves.

  4. Luminal pulse velocity in a superluminal medium

    Science.gov (United States)

    Amano, Heisuke; Tomita, Makoto

    2015-12-01

    To investigate the physical meaning of pulse peak in fast and slow light media, we investigated propagation of differently shaped pulses experimentally, controlling the sharpness of the pulse peak. Symmetric behavior with respect to fast and slow light was observed in traditional Gaussian pulses; that is, propagated pulses were advanced or delayed, respectively, whereas the pulse shape remained unchanged. This symmetry broke down when the pulse peak was sharpened; in the fast light medium, the sharp pulse peak propagated with luminal velocity, and the transmitted pulse deformed into a characteristic asymmetric profile. In contrast, in the slow light medium, a time-delayed smooth peak appeared with a bending point at t =0 . This symmetry breaking with respect to fast and slow light is a universal characteristic of pulse propagation in causal dispersive systems. The sharp pulse peak can be recognized as a bending nonanalytical point and may be capable of transferring information.

  5. Enabling surface nuclear magnetic resonance at high-noise environments using a pre-polarization pulse

    Science.gov (United States)

    Lin, Tingting; Yang, Yujing; Teng, Fei; Müller-Petke, Mike

    2018-02-01

    The technique of surface nuclear magnetic resonance (SNMR) has been widely used for hydrological investigations in recent years. Unfortunately, the detected SNMR signals are limited to tens of nanovolts and are thus susceptible to environmental noise. While pre-polarization pulses to enhance the detected signal amplitudes are common in laboratory applications, SNMR field testing has only utilized excitation pulses until now. In conducting measurements in China, we demonstrate that adding a pre-polarization field to the SNMR pulse sequence is feasible and allows for the reliable detection of SNMR signals in noisy scenarios that otherwise prohibit signal detection. We introduce a forward modelling for pre-polarization using SNMR and present a three-layer model obtained from inverse modelling that satisfies the observed data from the field experiment. We expect this development to open up new applications for SNMR technology, especially in high-noise level places, such as active mines.

  6. Pulse oximetry for perioperative monitoring

    DEFF Research Database (Denmark)

    Pedersen, Tom; Nicholson, Amanda; Hovhannisyan, Karen

    2014-01-01

    of hypoxaemia reduce morbidity and mortality in the perioperative period.3. Use of pulse oximetry per se reduces morbidity and mortality in the perioperative period.4. Use of pulse oximetry reduces unplanned respiratory admissions to the intensive care unit (ICU), decreases the length of ICU readmission or both....... SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 5), MEDLINE (1966 to June 2013), EMBASE (1980 to June 2013), CINAHL (1982 to June 2013), ISI Web of Science (1956 to June 2013), LILACS (1982 to June 2013) and databases of ongoing trials; we also....... Results indicated that hypoxaemia was reduced in the pulse oximetry group, both in the operating theatre and in the recovery room. During observation in the recovery room, the incidence of hypoxaemia in the pulse oximetry group was 1.5 to three times less. Postoperative cognitive function was independent...

  7. All about Heart Rate (Pulse)

    Science.gov (United States)

    ... result of taking a drug such as a beta blocker . A lower heart rate is also common for ... 100. Medication use: Meds that block your adrenaline (beta blockers) tend to slow your pulse, while too much ...

  8. Next generation Chirped Pulse Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nees, J.; Biswal, S.; Mourou, G. [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  9. A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring.

    Science.gov (United States)

    Yang, Tingting; Jiang, Xin; Zhong, Yujia; Zhao, Xuanliang; Lin, Shuyuan; Li, Jing; Li, Xinming; Xu, Jianlong; Li, Zhihong; Zhu, Hongwei

    2017-07-28

    Profuse medical information about cardiovascular properties can be gathered from pulse waveforms. Therefore, it is desirable to design a smart pulse monitoring device to achieve noninvasive and real-time acquisition of cardiovascular parameters. The majority of current pulse sensors are usually bulky or insufficient in sensitivity. In this work, a graphene-based skin-like sensor is explored for pulse wave sensing with features of easy use and wearing comfort. Moreover, the adjustment of the substrate stiffness and interfacial bonding accomplish the optimal balance between sensor linearity and signal sensitivity, as well as measurement of the beat-to-beat radial arterial pulse. Compared with the existing bulky and nonportable clinical instruments, this highly sensitive and soft sensing patch not only provides primary sensor interface to human skin, but also can objectively and accurately detect the subtle pulse signal variations in a real-time fashion, such as pulse waveforms with different ages, pre- and post-exercise, thus presenting a promising solution to home-based pulse monitoring.

  10. Neutron generator burst timing measured using a pulse shape discrimination plastic scintillator with silicon photomultiplier readout

    Science.gov (United States)

    Preston, R. M.; Eberhardt, J. E.; Tickner, J. R.

    2013-12-01

    An EJ-299-34 plastic scintillator with silicon photomultiplier (SiPM) readout was used to measure the fast neutron output of a pulsed Thermo-Fisher A-325 Deuterium-Tritium sealed tube neutron generator (STNG). The SiPM signals were handled by a prototype digital pulse processing system, based on a free-running analogue to digital converter feeding a digital signal processor (DSP). Pulse shape discrimination was used to distinguish between detected fast-neutrons and gammas. Pulse detection, timing, energy and shape were all processed by the DSP in real-time. The time-dependency of the neutron output of the STNG was measured for various pulsing schemes. The switch-on characteristics of the tube strongly depended on the operating settings, with the delay between pulse turn-on and the production of neutrons ranging between 13 μs to 74 μs for the tested pulse rates and duty cycles. This work will facilitate the optimization and modeling of apparatus that use the neutron generator's pulsing abilities.

  11. Pulsed ultrasonic stir welding system

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  12. Artistic Representation with Pulsed Holography

    Science.gov (United States)

    Ishii, S.

    2013-02-01

    This thesis describes artistic representation through pulsed holography. One of the prevalent practical problems in making holograms is object movement. Any movement of the object or film, including movement caused by acoustic vibration, has the same fatal results. One way of reducing the chance of movement is by ensuring that the exposure is very quick; using a pulsed laser can fulfill this objective. The attractiveness of using pulsed laser is based on the variety of materials or objects that can be recorded (e.g., liquid material or instantaneous scene of a moving object). One of the most interesting points about pulsed holograms is that some reconstructed images present us with completely different views of the real world. For example, the holographic image of liquid material does not appear fluid; it looks like a piece of hard glass that would produce a sharp sound upon tapping. In everyday life, we are unfamiliar with such an instantaneous scene. On the other hand, soft-textured materials such as a feather or wool differ from liquids when observed through holography. Using a pulsed hologram, we can sense the soft touch of the object or material with the help of realistic three-dimensional (3-D) images. The images allow us to realize the sense of touch in a way that resembles touching real objects. I had the opportunity to use a pulsed ruby laser soon after I started to work in the field of holography in 1979. Since then, I have made pulsed holograms of activities, including pouring water, breaking eggs, blowing soap bubbles, and scattering feathers and popcorn. I have also created holographic art with materials and objects, such as silk fiber, fabric, balloons, glass, flowers, and even the human body. Whenever I create art, I like to present the spectator with a new experience in perception. Therefore, I would like to introduce my experimental artwork through those pulsed holograms.

  13. Pulsed laser ablation of copper

    Science.gov (United States)

    Jordan, R.; Cole, D.; Lunney, J. G.; Mackay, K.; Givord, D.

    1995-02-01

    The laser ablation of copper with a 532 nm, 6 ns laser has been investigated in the regime normally used for pulsed laser deposition. The ablation depth per pulse and the flux and energy distribution of the ions in the plume were measured and compared to the deposition rate as measured by a quartz microbalance. These measurements were compared with an analytic model of ablation via a laser sustained plasma. It is shown that self-sputtering of the growing film is significant.

  14. Video Pulses: User-Based Modeling of Interesting Video Segments

    Directory of Open Access Journals (Sweden)

    Markos Avlonitis

    2014-01-01

    Full Text Available We present a user-based method that detects regions of interest within a video in order to provide video skims and video summaries. Previous research in video retrieval has focused on content-based techniques, such as pattern recognition algorithms that attempt to understand the low-level features of a video. We are proposing a pulse modeling method, which makes sense of a web video by analyzing users' Replay interactions with the video player. In particular, we have modeled the user information seeking behavior as a time series and the semantic regions as a discrete pulse of fixed width. Then, we have calculated the correlation coefficient between the dynamically detected pulses at the local maximums of the user activity signal and the pulse of reference. We have found that users' Replay activity significantly matches the important segments in information-rich and visually complex videos, such as lecture, how-to, and documentary. The proposed signal processing of user activity is complementary to previous work in content-based video retrieval and provides an additional user-based dimension for modeling the semantics of a social video on the web.

  15. Flexible rectangular wave-breaking-free pulse generation in actively mode-locked ytterbium-doped fiber laser.

    Science.gov (United States)

    Chen, He; Chen, Sheng-Ping; Jiang, Zong-Fu; Hou, Jing

    2014-11-03

    We demonstrate nanosecond scale rectangular wave-breaking-free pulse generation in an actively mode locked Yb-doped fiber laser based on a combined action of active periodic cavity loss modulation and nonlinear polarization rotation effect. The pulse width of the laser can be controlled in the range of 890 ps to above 124 ns instantaneously by adjusting the electrical signal applied on the modulator. As high as 19.8 nJ wave-breaking-free pulse is achieved with maximum available pump power. The output pulse temporal dynamics exhibit various distinct characteristics under different modulation and polarization control. The laser presents unusually flexible tunabilities in pulse width, pulse energy and pulse shape.

  16. Measurement and modeling of pulsed microchannel plate operation (invited).

    Science.gov (United States)

    Rochau, G A; Wu, M; Kruschwitz, C; Joseph, N; Moy, K; Bailey, J; Krane, M; Thomas, R; Nielsen, D; Tibbitts, A

    2008-10-01

    Microchannel plates (MCPs) are a standard detector for fast-framing x-ray imaging and spectroscopy of high-temperature plasmas. The MCP is coated with conductive striplines that carry short duration voltage pulses to control the timing and amplitude of the signal gain. This gain depends on the voltage to a large exponent so that small reflections or impedance losses along the striplines can have a significant impact on the position-dependent amplitude and pulse width of the gain. Understanding the pulsed gain response therefore requires careful measurements of the position- and time-dependent surface voltage coupled with detailed modeling of the resulting electron cascade. We present measurements and modeling of the time- and space-dependent gain response of MCP detectors designed for use at Sandia National Laboratories' Z facility. The pulsed gain response is understood through measurements using a high impedence probe to determine the voltage pulse propagating along the stripline surface. Coupling the surface voltage measurements with Monte Carlo calculations of the electron cascade in the MCP provides a prediction of the time- and position-dependent gain that agrees with measurements made on a subpicosecond UV laser source to within the 25% uncertainty in the simulations.

  17. Plasma Diagnostics on a Pulsed Argon ICP Source

    Science.gov (United States)

    Dejoseph, , Jr.; Guo, Wei

    2001-10-01

    A planar inductively coupled plasma (ICP) source is characterized using current and voltage probes, a commercially-built Langmuir probe system, and a fast photomultiplier with narrow band filter. The rf supply operates at 13.56 MHz and can be 100% power modulated to allow pulsed operation of the source. By digitally recording long current and voltage waveforms and using accurate phase correction for the electronics, time resolved rf power and complex impedance are measured during a pulse. With the Langmuir probe operated in boxcar mode, time resolved electron and ion densities along with electron temperatures are also measured. Data will be presented for rep rates between 1 KHz and 10 KHz and duty cycles of 10% and 25% with average powers (during a pulse) from 50 to 500 watts. It will be shown from the behavior of the complex impedance that the discharge is capacitively coupled at the beginning of a pulse and later becomes inductively coupled. During a single pulse the plasma exhibits a sharp peak in power loading which is also seen in the photomultiplier signal and the plasma density. Peak plasma densities on the order of 10^12 cm-3 have been measured.

  18. Gibberellin signaling.

    Science.gov (United States)

    Hartweck, Lynn M

    2008-12-01

    This review covers recent advances in gibberellin (GA) signaling. GA signaling is now understood to hinge on DELLA proteins. DELLAs negatively regulate GA response by activating the promoters of several genes including Xerico, which upregulates the abscisic acid pathway which is antagonistic to GA. DELLAs also promote transcription of the GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and indirectly regulate GA biosynthesis genes enhancing GA responsiveness and feedback control. A structural analysis of GID1 provides a model for understanding GA signaling. GA binds within a pocket of GID1, changes GID1 conformation and increases the affinity of GID1 for DELLA proteins. GA/GID1/DELLA has increased affinity for an F-Box protein and DELLAs are subsequently degraded via the proteasome. Therefore, GA induces growth through degradation of the DELLAs. The binding of DELLA proteins to three of the PHYTOCHROME INTERACTING FACTOR (PIF) proteins integrates light and GA signaling pathways. This binding prevents PIFs 3, 4, and 5 from functioning as positive transcriptional regulators of growth in the dark. Since PIFs are degraded in light, these PIFs can only function in the combined absence of light and presence of GA. New analyses suggest that GA signaling evolved at the same time or just after the plant vascular system and before plants acquired the capacity for seed reproduction. An analysis of sequences cloned from Physcomitrella suggests that GID1 and DELLAs were the first to evolve but did not initially interact. The more recently diverging spike moss Selaginella has all the genes required for GA biosynthesis and signaling, but the role of GA response in Selaginella physiology remains a mystery.

  19. Terahertz pulsed imaging study of dental caries

    Science.gov (United States)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  20. Quantum nondemolition measurement by pulsed oscillation

    Science.gov (United States)

    Zhang, Gui-Ying; Zhao, Kai-Feng

    2016-03-01

    Paramagnetic Faraday rotation is a quantum nondemolition measurement method that can generate spin squeezing and improve the measurement precision of a collective spin component beyond the standard quantum limit. In practice, a constant bias magnetic field is used to drive the spin precessing at sufficiently high frequency in order to lift the signal out of low-frequency technical noises. However, continuous measurement of precessing spins introduces back-action noise (BAN) due to the light-shift effect. Two types of back-action-evading (BAE) measurement of collective spin components have been demonstrated recently: continuous measurement of a two-ensemble system and stroboscopic measurement of a single ensemble. Here we propose another single ensemble BAE measurement by periodically modulating the bias field with π pulses. Our theoretical calculation shows that under experimental settings where pulse-field modulation does not introduce significant decoherences, the proposed method can suppress the BAN and generate spin squeezing faster than the stroboscopic one at the same probe light power. Moreover, if it is combined with synchronous stroboscopic probing, light-shift BAN can be completely eliminated.

  1. On the effects of quantization on mismatched pulse compression filters designed using L-p norm minimization techniques

    CSIR Research Space (South Africa)

    Cilliers, Jacques E

    2007-10-01

    Full Text Available In [1] the authors introduced a technique for generating mismatched pulse compression filters for linear frequency chirp signals. The technique minimizes the sum of the pulse compression sidelobes in a p L –norm sense. It was shown that extremely...

  2. Pulse Shaping for High Capacity Impulse Radio Ultra-Wideband Wireless Links Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Two pulse shapes for IR-UWB transmission under the Russian spectral emission mask are proposed and their potential experimentally demonstrated. Pulses based on the hyperbolic secant square function and the frequency B-spline wavelet are shown to enable transmission of 1.25 Gbit/s signals, reachin...

  3. Towards optical attosecond pulses: broadband phase coherence between an ultrafast laser and OPO using lock-tozero CEO stabilization

    Directory of Open Access Journals (Sweden)

    Reid D. T.

    2013-03-01

    Full Text Available The carrier-envelope-offset frequencies of the pump, signal, idler and related sum-frequency mixing pulses have been locked to 0 Hz in a 20-fs-Ti:sapphire-pumped optical parametric oscillator, satisfying a critical prerequisite for optical attosecond pulse synthesis.

  4. Sensitive detection of chlorine in iron oxide by single pulse and dual pulse laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Haslinger, M.J.; Bodea, M.A.; Huber, N. [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Wolfmeir, H. [voestalpine Stahl GmbH, A-4031 Linz (Austria); Heitz, J. [Christian Doppler Laboratory for Laser-assisted Diagnostics, Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2014-11-01

    The halogen chlorine is hard to detect in laser-induced breakdown spectroscopy (LIBS) mainly due to its high excited state energies of 9.2 and 10.4 eV for the most intense emission lines at 134.72 nm and 837.59 nm, respectively. We report on sensitive detection of Cl in industrial iron oxide Fe{sub 2}O{sub 3} powder by single-pulse (SP) and dual-pulse (DP) LIBS measurements in the near infrared range in air. In compacted powder measured by SP excitation (Nd:YAG laser, 532 nm) Cl was detected with limit of detection LOD = 440 ppm and limit of quantitation LOQ = 720 ppm. Orthogonal DP LIBS was studied on pressed Fe{sub 2}O{sub 3} pellets and Fe{sub 3}O{sub 4} ceramics. The transmission of laser-induced plasma for orthogonal Nd:YAG 1064 nm and ArF 193 nm laser pulses showed a significant dependence on interpulse delay time (ipd) and laser wavelength (λ{sub L}). The UV pulses (λ{sub L} = 193 nm) were moderately absorbed in the plasma and the Cl I emission line intensity was enhanced while IR pulses (λ{sub L} = 1064 nm) were not absorbed and Cl signals were not enhanced at ipd = 3 μs. The UV laser enhancement of Cl signals is attributed to the much higher signal/background ratio for orthogonal DP excitation compared to SP excitation and to the increased plasma temperature and electron number density. This enabled measurement at a very short delay time of t{sub d} ≥ 0.1 μs with respect to the re-excitation pulse and detection of the very rapidly decaying Cl emission with higher efficiency. - Highlights: • Chlorine in iron oxide is measured by LIBS with LOD = 440 ppm and LOQ = 720 ppm. • The LOD of Cl is among the best values achieved on solid samples by LIBS. • Enhanced emission of Cl is observed by orthogonal UV laser re-excitation of plasma. • Cl signals are enhanced at long interpulse delays and short detector gate delays. • Measured LIBS signals of Cl and Fe qualitatively agree with calculated emissions.

  5. Pulse code modulation telemetry: Properties of various binary modulation types

    Science.gov (United States)

    Law, E. L.

    1984-06-01

    This report describes the results of a study that was conducted to determine the properties of several binary pulse code modulation types. The topics addressed include: (1) Radio frequency spectral occupancy, (2) Bit error rate versus intermediate frequency signal-to-noise ratio in a bandwidth equal to the bit rate, (3) Peak carrier deviation, (4) Effect of filtering on data quality, and (5) Frequency and phase modulation.

  6. Square pulse linear transformer driver

    Directory of Open Access Journals (Sweden)

    A. A. Kim

    2012-04-01

    Full Text Available The linear transformer driver (LTD technological approach can result in relatively compact devices that can deliver fast, high current, and high-voltage pulses straight out of the LTD cavity without any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The usual LTD architecture [A. A. Kim, M. G. Mazarakis, V. A. Sinebryukhov, B. M. Kovalchuk, V. A. Vizir, S. N Volkov, F. Bayol, A. N. Bastrikov, V. G. Durakov, S. V. Frolov, V. M. Alexeenko, D. H. McDaniel, W. E. Fowler, K. LeCheen, C. Olson, W. A. Stygar, K. W. Struve, J. Porter, and R. M. Gilgenbach, Phys. Rev. ST Accel. Beams 12, 050402 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050402; M. G. Mazarakis, W. E. Fowler, A. A. Kim, V. A. Sinebryukhov, S. T. Rogowski, R. A. Sharpe, D. H. McDaniel, C. L. Olson, J. L. Porter, K. W. Struve, W. A. Stygar, and J. R. Woodworth, Phys. Rev. ST Accel. Beams 12, 050401 (2009PRABFM1098-440210.1103/PhysRevSTAB.12.050401] provides sine shaped output pulses that may not be well suited for some applications like z-pinch drivers, flash radiography, high power microwaves, etc. A more suitable power pulse would have a flat or trapezoidal (rising or falling top. In this paper, we present the design and first test results of an LTD cavity that generates such a type of output pulse by including within its circular array a number of third harmonic bricks in addition to the main bricks. A voltage adder made out of a square pulse cavity linear array will produce the same shape output pulses provided that the timing of each cavity is synchronized with the propagation of the electromagnetic pulse.

  7. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  8. Short-pulse propagation in fiber optical parametric amplifiers

    DEFF Research Database (Denmark)

    Cristofori, Valentina

    Fiber optical parametric amplifiers (FOPAs) are attractive because they can provide large gain over a broad range of central wavelengths, depending only on the availability of a suitable pump laser. In addition, FOPAs are suitable for the realization of all-optical signal processing functionalities...... is implemented to obtain an all-fiber system. The advantages of all fiber-systems are related to their reliability, long-term stability and compactness. Fiber optical parametric chirped pulse amplification is promising for the amplification of such signals thanks to the inherent compatibility of FOPAs with fiber...

  9. An Acoustic Demonstration Model for CW and Pulsed Spectrosocopy Experiments

    Science.gov (United States)

    Starck, Torben; Mäder, Heinrich; Trueman, Trevor; Jäger, Wolfgang

    2009-06-01

    High school and undergraduate students have often difficulties if new concepts are introduced in their physics or chemistry lectures. Lecture demonstrations and references to more familiar analogues can be of great help to the students in such situations. We have developed an experimental setup to demonstrate the principles of cw absorption and pulsed excitation - emission spectroscopies, using acoustical analogues. Our radiation source is a speaker and the detector is a microphone, both controlled by a computer sound card. The acoustical setup is housed in a plexiglas box, which serves as a resonator. It turns out that beer glasses are suitable samples; this also helps to keep the students interested! The instrument is controlled by a LabView program. In a cw experiment, the sound frequency is swept through a certain frequency range and the microphone response is recorded simultaneously as function of frequency. A background signal without sample is recorded, and background subtraction yields the beer glass spectrum. In a pulsed experiment, a short sound pulse is generated and the microphone is used to record the resulting emission signal of the beer glass. A Fourier transformation of the time domain signal gives then the spectrum. We will discuss the experimental setup and show videos of the experiments.

  10. Behavioral studies of the auditory discrimination of paired pulses with identical pulse spacings by a dolphin

    Science.gov (United States)

    Sukhoruchenko, M. N.

    2008-11-01

    For a bottlenose dolphin, the thresholds of discrimination of paired pulses with pulse spacings of 50 1000 μs and different peak values of the second pulse in the test pair are investigated. It is shown that the pair discrimination thresholds depend on both the absolute level of pulses and the ratio between the pulse levels in the standard pair. As the pulse delay in a pair increases, the thresholds monotonically decrease. A possibility of the paired pulse discrimination by the total energy of pulses in a pair is considered for the case of pulse delays both within the critical interval (300 μs) and beyond it.

  11. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  12. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification.

    Science.gov (United States)

    Fu, Yuxi; Takahashi, Eiji J; Midorikawa, Katsumi

    2015-11-01

    We demonstrate high-energy infrared femtosecond pulse generation by a dual-chirped optical parametric amplification (DC-OPA) scheme [Opt. Express19, 7190 (2011)]. By employing a 100 mJ pump laser, a signal pulse energy exceeding 20 mJ at a wavelength of 1.4 μm was achieved before dispersion compensation. A total output energy of 33 mJ was recorded. Under a further energy scaling condition, the signal pulse was compressed to an almost transform-limited duration of 27 fs using a fused silica prism compressor. Since the DC-OPA scheme is efficient and energy scalable, design parameters for obtaining 100 mJ level infrared pulses are presented, which are suitable as driver lasers for the energy scaling of high-order harmonic generation with sub-keV photon energy.

  13. Fuzzy entropy based motion artifact detection and pulse rate estimation for fingertip photoplethysmography.

    Science.gov (United States)

    Paradkar, Neeraj; Chowdhury, Shubhajit Roy

    2014-01-01

    The paper presents a fingertip photoplethysmography (PPG) based technique to estimate the pulse rate of the subject. The PPG signal obtained from a pulse oximeter is used for the analysis. The input samples are corrupted with motion artifacts due to minor motion of the subjects. Entropy measure of the input samples is used to detect the motion artifacts and estimate the pulse rate. A three step methodology is adapted to identify and classify signal peaks as true systolic peaks or artifact. CapnoBase database and CSL Benchmark database are used to analyze the technique and pulse rate estimation was performed with positive predictive value and sensitivity figures of 99.84% and 99.32% respectively for CapnoBase and 98.83% and 98.84% for CSL database respectively.

  14. Storage and retrieval of light pulses in a fast-light medium via active Raman gain

    Science.gov (United States)

    Xu, Datang; Bai, Zhengyang; Huang, Guoxiang

    2016-12-01

    We propose a scheme to realize the storage and retrieval of light pulses in a fast-light medium via a mechanism of active Raman gain (ARG). The system under consideration is a four-level atomic gas interacting with three (pump, signal, and control) laser fields. We show that a stable propagation of signal light pulses with superluminal velocity (i.e., fast-light pulses) is possible in such a system through the ARG contributed by the pump field and the quantum interference effect induced by the control field. We further show that a robust storage and retrieval of light pulses in such a fast-light medium can be implemented by switching on and off the pump and the control fields simultaneously. The results reported here may have potential applications for light information processing and transmission using fast-light media.

  15. Low Rate Sampling of Pulse Streams with Application to Ultrasound Imaging

    CERN Document Server

    Tur, Ronen; Friedman, Zvi

    2010-01-01

    Signals comprised of a stream of short pulses appear in many applications including bio-imaging, radar, and ultrawideband communication. Recently, a new framework, referred to as finite rate of innovation, has paved the way to low rate sampling of such pulses by exploiting the fact that only a small number of parameters per unit time are needed to fully describe these signals. Unfortunately, for high rates of innovation, existing approaches are numerically unstable. In this paper we propose a general sampling approach which leads to stable recovery even in the presence of many pulses. We begin by deriving a condition on the sampling kernel which allows perfect reconstruction of periodic streams of pulses from a minimal number of samples. This extends previous work which assumes that the sampling kernel is an ideal low-pass filter. A compactly supported class of filters, satisfying the mathematical condition, is then introduced, leading to a sampling framework based on compactly supported kernels. We then exte...

  16. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  17. Nonparametric Interference Suppression Using Cyclic Wiener Filtering: Pulse Shape Design and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Anass Benjebbour

    2008-02-01

    Full Text Available In the future, there will be a growing need for more flexible but efficient utilization of radio resources. Increased flexibility in radio transmission, however, yields a higher likelihood of interference owing to limited coordination among users. In this paper, we address the problem of flexible spectrum sharing where a wideband single carrier modulated signal is spectrally overlapped by unknown narrowband interference (NBI and where a cyclic Wiener filter is utilized for nonparametric NBI suppression at the receiver. The pulse shape design for the wideband signal is investigated to improve the NBI suppression capability of cyclic Wiener filtering. Specifically, two pulse shaping schemes, which outperform existing raised cosine pulse shaping schemes even for the same amount of excess bandwidth, are proposed. Based on computer simulation, the interference suppression capability of cyclic Wiener filtering is evaluated for both the proposed and existing pulse shaping schemes under several interference conditions and over both AWGN and Rayleigh fading channels.

  18. Suppression of probe background signals via B1 field inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jian; Reimer, Jeffrey

    2011-01-27

    A new approach combining a long pulse with the DEPTH sequence (Cory and Ritchey, Journal of Magnetic Resonance, 1988) greatly improves the efficiency for suppressing probe background signals arising from spinning modules. By applying a long initial excitation pulse in the DEPTH sequence, instead of a {pi}/2 pulse, the inhomogeneous B{sub 1} fields outside the coil can dephase the background coherence in the nutation frame. The initial long pulse and the following two consecutive EXORCYCLE {pi} pulses function complementarily and prove most effective in removing background signals from both strong and weak B{sub 1} fields. Experimentally, the length of the long pulse can be optimized around odd multiples of the {pi}/2 pulse, depending on the individual probe design, to preserve signals inside the coil while minimizing those from probe hardware. This method extends the applicability of the DEPTH sequence to probes with small differences in B{sub 1} field strength between the inside and outside of the coil, and can readily combine with well-developed double resonance experiments for quantitative measurement. In general, spin systems with weak internal interactions are required to attain efficient and uniform excitation for powder samples, and the principles to determine the applicability are discussed qualitatively in terms of the relative strength of spin interactions, r.f. power and spinning rate.

  19. Pulse Shape Analysis and Discrimination for Silicon-Photomultipliers in Helium-4 Gas Scintillation Neutron Detector

    Science.gov (United States)

    Barker, Cathleen; Zhu, Ting; Rolison, Lucas; Kiff, Scott; Jordan, Kelly; Enqvist, Andreas

    2018-01-01

    Using natural helium (helium-4), the Arktis 180-bar pressurized gas scintillator is capable of detecting and distinguishing fast neutrons and gammas. The detector has a unique design of three optically separated segments in which 12 silicon-photomultiplier (SiPM) pairs are positioned equilaterally across the detector to allow for them to be fully immersed in the helium-4 gas volume; consequently, no additional optical interfaces are necessary. The SiPM signals were amplified, shaped, and readout by an analog board; a 250 MHz, 14-bit digitizer was used to examine the output pulses from each SiPMpair channel. The SiPM over-voltage had to be adjusted in order to reduce pulse clipping and negative overshoot, which was observed for events with high scintillation production. Pulse shaped discrimination (PSD) was conducted by evaluating three different parameters: time over threshold (TOT), pulse amplitude, and pulse integral. In order to differentiate high and low energy events, a 30ns gate window was implemented to group pulses from two SiPM channels or more for the calculation of TOT. It was demonstrated that pulses from a single SiPM channel within the 30ns window corresponded to low-energy gamma events while groups of pulses from two-channels or more were most likely neutron events. Due to gamma pulses having lower pulse amplitude, the percentage of measured gamma also depends on the threshold value in TOT calculations. Similarly, the threshold values were varied for the optimal PSD methods of using pulse amplitude and pulse area parameters. Helium-4 detectors equipped with SiPMs are excellent for in-the-field radiation measurement of nuclear spent fuel casks. With optimized PSD methods, the goal of developing a fuel cask content monitoring and inspection system based on these helium-4 detectors will be achieved.

  20. Pulse oximetry in pediatric practice.

    Science.gov (United States)

    Fouzas, Sotirios; Priftis, Kostas N; Anthracopoulos, Michael B

    2011-10-01

    The introduction of pulse oximetry in clinical practice has allowed for simple, noninvasive, and reasonably accurate estimation of arterial oxygen saturation. Pulse oximetry is routinely used in the emergency department, the pediatric ward, and in pediatric intensive and perioperative care. However, clinically relevant principles and inherent limitations of the method are not always well understood by health care professionals caring for children. The calculation of the percentage of arterial oxyhemoglobin is based on the distinct characteristics of light absorption in the red and infrared spectra by oxygenated versus deoxygenated hemoglobin and takes advantage of the variation in light absorption caused by the pulsatility of arterial blood. Computation of oxygen saturation is achieved with the use of calibration algorithms. Safe use of pulse oximetry requires knowledge of its limitations, which include motion artifacts, poor perfusion at the site of measurement, irregular rhythms, ambient light or electromagnetic interference, skin pigmentation, nail polish, calibration assumptions, probe positioning, time lag in detecting hypoxic events, venous pulsation, intravenous dyes, and presence of abnormal hemoglobin molecules. In this review we describe the physiologic principles and limitations of pulse oximetry, discuss normal values, and highlight its importance in common pediatric diseases, in which the principle mechanism of hypoxemia is ventilation/perfusion mismatch (eg, asthma exacerbation, acute bronchiolitis, pneumonia) versus hypoventilation (eg, laryngotracheitis, vocal cord dysfunction, foreign-body aspiration in the larynx or trachea). Additional technologic advancements in pulse oximetry and its incorporation into evidence-based clinical algorithms will improve the efficiency of the method in daily pediatric practice.

  1. Pulse waveform classification using support vector machine with Gaussian time warp edit distance kernel.

    Science.gov (United States)

    Jia, Danbing; Zhang, Dongyu; Li, Naimin

    2014-01-01

    Advances in signal processing techniques have provided effective tools for quantitative research in traditional Chinese pulse diagnosis. However, because of the inevitable intraclass variations of pulse patterns, the automatic classification of pulse waveforms has remained a difficult problem. Utilizing the new elastic metric, that is, time wrap edit distance (TWED), this paper proposes to address the problem under the support vector machines (SVM) framework by using the Gaussian TWED kernel function. The proposed method, SVM with GTWED kernel (GTWED-SVM), is evaluated on a dataset including 2470 pulse waveforms of five distinct patterns. The experimental results show that the proposed method achieves a lower average error rate than current pulse waveform classification methods.

  2. Interferometric autocorrelation of an attosecond pulse train in the single-cycle regime.

    Science.gov (United States)

    Nabekawa, Yasuo; Shimizu, Toshihiko; Okino, Tomoya; Furusawa, Kentaro; Hasegawa, Hirokazu; Yamanouchi, Kaoru; Midorikawa, Katsumi

    2006-10-13

    We report on the direct observation of the phase locking of the attosecond pulse train (APT) via interferometric autocorrelation in the extreme ultraviolet region. APT is formed with Fourier synthesis of high-order harmonic fields of a femtosecond laser pulse. Time-of-flight mass spectra of N+, resulting from the Coulomb explosion of N2 absorbing two photons of APT, efficiently yield correlated signals of APT. The measured autocorrelation trace exhibits that the duration of the pulse should be only 1.3 periods of the extreme ultraviolet carrier frequency. A few interference fringes within the short pulse duration clearly show two types of symmetry, which ensure the phase locking between pulses in APT.

  3. Experimental set-up for a pulsed CO2 laser rangefinder with heterodyne detection

    Science.gov (United States)

    Bloem, J.

    1990-08-01

    The creation of a pulsed CO2 laser range finder with heterodyne detection is described. The range finder uses a hybrid CW-TEA (Continuous Wave-Transversely Excited Atmospheric pressure) laser as emitter and an RF laser as local oscillator. The laser stabilization is described. The frequency offset between the transmitted laser pulse and the local oscillator laser is locked at 20 MHz. The long term (20 to 30 min) variation of this offset frequency is limited to 50 kHz. The effects of pulsing on this stabilization were eliminated. The signal processing was started. A rough model of the laser pulse and its frequency characteristics was developed. An AM demodulator was developed to determine the envelope of the reflected pulses. The system created can be used to measure the range to (and in the future also the speed of) diffuse reflecting targets.

  4. Investigation of FPGA-Based Real-Time Adaptive Digital Pulse Shaping for High-Count-Rate Applications

    Science.gov (United States)

    Saxena, Shefali; Hawari, Ayman I.

    2017-07-01

    Digital signal processing techniques have been widely used in radiation spectrometry to provide improved stability and performance with compact physical size over the traditional analog signal processing. In this paper, field-programmable gate array (FPGA)-based adaptive digital pulse shaping techniques are investigated for real-time signal processing. National Instruments (NI) NI 5761 14-bit, 250-MS/s adaptor module is used for digitizing high-purity germanium (HPGe) detector's preamplifier pulses. Digital pulse processing algorithms are implemented on the NI PXIe-7975R reconfigurable FPGA (Kintex-7) using the LabVIEW FPGA module. Based on the time separation between successive input pulses, the adaptive shaping algorithm selects the optimum shaping parameters (rise time and flattop time of trapezoid-shaping filter) for each incoming signal. A digital Sallen-Key low-pass filter is implemented to enhance signal-to-noise ratio and reduce baseline drifting in trapezoid shaping. A recursive trapezoid-shaping filter algorithm is employed for pole-zero compensation of exponentially decayed (with two-decay constants) preamplifier pulses of an HPGe detector. It allows extraction of pulse height information at the beginning of each pulse, thereby reducing the pulse pileup and increasing throughput. The algorithms for RC-CR2 timing filter, baseline restoration, pile-up rejection, and pulse height determination are digitally implemented for radiation spectroscopy. Traditionally, at high-count-rate conditions, a shorter shaping time is preferred to achieve high throughput, which deteriorates energy resolution. In this paper, experimental results are presented for varying count-rate and pulse shaping conditions. Using adaptive shaping, increased throughput is accepted while preserving the energy resolution observed using the longer shaping times.

  5. Comparison of the Electromagnetic Properties of Lightning and EMP (Electromagnetic Pulse) -- Results of Recent Lightning Studies.

    Science.gov (United States)

    1983-06-30

    Properties and Interaction With Aircraft Systems. As discussed earlier in this report, the radiated field from the high - altitude nuclear . .- EMP ( HEMP ...effect on the radiated field predicted at the higher altitudes . In particular, the high -amplitude, sharp leading edge of the radiated pulse is...consists of one major transient event per burst . Since the pulse rise time may be 10 ns or less, the signal is rich in high -frequency energy. As a result

  6. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    Science.gov (United States)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  7. Radial flow pulse jet mixer

    Science.gov (United States)

    VanOsdol, John G.

    2013-06-25

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  8. All-optical UWB pulse generation using sum-frequency generation in a PPLN waveguide.

    Science.gov (United States)

    Wang, Jian; Sun, Qizhen; Sun, Junqiang; Zhang, Weiwei

    2009-03-02

    We propose and demonstrate a novel approach to optically generate ultrawideband (UWB) monocycle pulses by exploiting the parametric attenuation effect of sum-frequency generation (SFG) in a periodically poled lithium niobate (PPLN) waveguide. The SFG process changes the continuous-wave pump into dark optical pulse pump with undershoot, resulting in the generation of UWB monocycle through the combination of input signal and output pump with proper relative time advance/delay. Pairs of polarity-inverted UWB monocycle pulses meeting the UWB definition of U. S. Federal Communications Commission (FCC, part 15) are successfully obtained in the experiment.

  9. Highly efficient THG in TiO2 nanolayers for third-order pulse characterization.

    Science.gov (United States)

    Das, Susanta Kumar; Schwanke, Christoph; Pfuch, Andreas; Seeber, Wolfgang; Bock, Martin; Steinmeyer, Günter; Elsaesser, Thomas; Grunwald, Ruediger

    2011-08-29

    Third harmonic generation (THG) of femtosecond laser pulses in sputtered nanocrystalline TiO2 thin films is investigated. Using layers of graded thickness, the dependence of THG on the film parameters is studied. The maximum THG signal is observed at a thickness of 180 nm. The corresponding conversion efficiency is 26 times larger compared to THG at the air-glass interface. For a demonstration of the capabilities of such a highly nonlinear material for pulse characterization, third-order autocorrelation and interferometric frequency-resolved optical gating (IFROG) traces are recorded with unamplified nanojoule pulses directly from a broadband femtosecond laser oscillator.

  10. Producing High Intense Attosecond Pulse Train by Interaction of Three-Color Pulse and Overdense Plasma

    Science.gov (United States)

    Salehi, M.; Mirzanejad, S.

    2017-05-01

    Amplifying the attosecond pulse by the chirp pulse amplification method is impossible. Furthermore, the intensity of attosecond pulse is low in the interaction of laser pulse and underdense plasma. This motivates us to propose using a multi-color pulse to produce the high intense attosecond pulse. In the present study, the relativistic interaction of a three-color linearly-polarized laser-pulse with highly overdense plasma is studied. We show that the combination of {{ω }}1, {{ω }}2 and {{ω }}3 frequencies decreases the instance full width at half maximum reflected attosecond pulse train from the overdense plasma surface. Moreover, we show that the three-color pulse increases the intensity of generated harmonics, which is explained by the relativistic oscillating mirror model. The obtained results demonstrate that if the three-color laser pulse interacts with overdense plasma, it will enhance two orders of magnitude of intensity of ultra short attosecond pulses in comparison with monochromatic pulse.

  11. Improvements in discrimination of bulk and trace elements in long-wavelength double pulse LIBS

    Science.gov (United States)

    Freeman, J. R.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.

    2014-12-01

    In this work we study the effectiveness of long-wavelength heating in double pulse (DP) LIBS, quantitatively comparing figures of merit with those from traditional single pulse (SP) LIBS. The first laser pulse serves as the source of sample ablation, creating an aerosol-like plume that is subsequently reheated by the second laser pulse. At power densities used, the long-wavelength CO2 laser pulse does not ablate any of the solid sample in the atmospheric conditions investigated, meaning plasma emission and enhanced signal can be entirely attributed to the reheated plume rather than increased sample ablation. The signal discrimination was improved significantly using long-wavelength DP-LIBS. For bulk elemental analysis, DP-LIBS provided maximum enhancements of about 14 and 15 times for S/N and S/B, respectively, compared to SP-LIBS using the same quantity of ablated sample. For trace elemental analysis, maximum enhancements of about 7 and 4 times for S/N and S/B, respectively, were observed. These improvements are attributed to effective coupling between the second heating pulse and expanding plume and more efficient excitation of plume species than from the single pulse alone. Most significant improvements were observed in the case of low prepulse energy and minimal sample ablation. While bulk elemental analysis observed improvements for all prepulse energies studied, trace element discrimination only significantly improved for the lowest prepulse energy studied.

  12. Influence of potential pulses amplitude sequence in a voltammetric electronic tongue (VET) applied to assess antioxidant capacity in aliso.

    Science.gov (United States)

    Fuentes, Esteban; Alcañiz, Miguel; Contat, Laura; Baldeón, Edwin O; Barat, José M; Grau, Raúl

    2017-06-01

    Four signals configurations were studied, two of them built by small increases of potential and two with bigger increments. The highest current values were obtained when pulses with bigger change of potential were used although the best results were shown by the pulse sequence which included an intermediate pulse before the relevant pulse. A mathematical model based on trolox pattern was developed to predict antioxidant capacity of aliso, employing information obtained from all the electrodes, although model validation could be done only employing the information from gold electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Application of pulsed OSL to the separation of the luminescence components from a mixed quartz/feldspar sample

    DEFF Research Database (Denmark)

    Denby, Phil M.; Bøtter-Jensen, L.; Murray, A.S.

    2006-01-01

    with a feldspar signal. We have developed instrumentation for the study of high-speed pulse stimulated OSL. Our system uses the standard blue/IR LED stimulation unit of a Riso reader (allowing stimulation pulses down to 1-2 mu s duration) and can thus be applied to the routine analysis of samples. Using...... this stimulation source, and hi.-h-speed photon timing, the OSL yield can be monitored throughout the pulsing cycle and subsequent OSL decay. It is found that the total photon yield per unit stimulation power in pulsed mode is, for quartz, twice and, for feldspar, nearly four times, that in continuous wave mode...

  14. Phase engineered wavelength conversion of ultra-short optical pulses in TI:PPLN waveguides

    Science.gov (United States)

    Babazadeh, Amin; Nouroozi, Rahman; Sohler, Wolfgang

    2016-02-01

    A phase engineered all-optical wavelength converter for ultra-short pulses (down to 140 fs) in a Ti-diffused, periodically poled lithium niobate (Ti:PPLN) waveguide is proposed. The phase engineering, due to the phase conjugation between signal and idler (converted signal) pulses which takes place in the cascaded second harmonic generation and difference frequency generation (cSHG/DFG) based wavelength conversion, already leads to shorter idler pulses. The proposed device consists of an unpoled (passive) waveguide section beside of the PPLN waveguide section in order to compensate pulse broadening and phase distortion of the idler pulses induced by the wavelength conversion (in the PPLN section). For example numerical analysis shows that a 140 fs input signal pulse is only broadened by 1.6% in a device with a combination of 20 mm and 6 mm long periodically poled and unpoled waveguide sections. Thus, cSHG/DFG based wavelength converters of a bandwidth of several Tbits/s can be designed.

  15. High power ultrashort pulse lasers

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M.D.

    1994-10-07

    Small scale terawatt and soon even petawatt (1000 terawatt) class laser systems are made possible by application of the chirped-pulse amplification technique to solid-state lasers combined with the availability of broad bandwidth materials. These lasers make possible a new class of high gradient accelerators based on the large electric fields associated with intense laser-plasma interactions or from the intense laser field directly. Here, we concentrate on the laser technology to produce these intense pulses. Application of the smallest of these systems to the production of high brightness electron sources is also introduced.

  16. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  17. 35 Volt, 180 Ampere Pulse Generator with Droop Control for Pulsing Xenon Arcs

    DEFF Research Database (Denmark)

    Hviid, T.; Nielsen, S. O.

    1972-01-01

    The pulse generator described works as a combined switch and series current regulator and allows the shape of the current pulse to be adjusted at each optical wavelength to produce a flat pulse of monochromatic light.......The pulse generator described works as a combined switch and series current regulator and allows the shape of the current pulse to be adjusted at each optical wavelength to produce a flat pulse of monochromatic light....

  18. Dynamic Characterization of Fiber Optical Chirped Pulse Amplification for Sub-ps Pulses

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Lali-Dastjerdi, Zohreh; Rishøj, Lars Søgaard

    2013-01-01

    We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation.......We investigate experimentally the propagation of sub-picosecond pulses in fiber optical parametric chirped pulse amplifiers, showing a significant broadening of the pulses from 450 fs up to 720 fs due to dispersion and self-phase modulation....

  19. Femtosecond pulse shaping using the geometric phase.

    Science.gov (United States)

    Gökce, Bilal; Li, Yanming; Escuti, Michael J; Gundogdu, Kenan

    2014-03-15

    We demonstrate a femtosecond pulse shaper that utilizes polarization gratings to manipulate the geometric phase of an optical pulse. This unique approach enables circular polarization-dependent shaping of femtosecond pulses. As a result, it is possible to create coherent pulse pairs with orthogonal polarizations in a 4f pulse shaper setup, something until now that, to our knowledge, was only achieved via much more complex configurations. This approach could be used to greatly simplify and enhance the functionality of multidimensional spectroscopy and coherent control experiments, in which multiple coherent pulses are used to manipulate quantum states in materials of interest.

  20. Pulse image recognition using fuzzy neural network.

    Science.gov (United States)

    Xu, L S; Meng, Max Q -H; Wang, K Q

    2007-01-01

    The automatic recognition of pulse images is the key in the research of computerized pulse diagnosis. In order to automatically differentiate the pulse patterns by using small samples, a fuzzy neural network to classify pulse images based on the knowledge of experts in traditional Chinese pulse diagnosis was designed. The designed classifier can make hard decision and soft decision for identifying 18 patterns of pulse images at the accuracy of 91%, which is better than the results that achieved by back-propagation neural network.

  1. Prosocial Signalling

    DEFF Research Database (Denmark)

    Kahsay, Goytom Abraha

    In contrast to the standard economic theory predictions, it seems clear that people do spend their time and resource to benefit others. Many lab and field experiment studies show that people display prosocial preferences such as altruism, reciprocity and conditional cooperation, fairness, etc...... signalling can cause reverse price reactions resembling the crowding-out of pre-existing motives for prosocial behavior seen in situations of volunteering and charitable giving. Using a unique combination of questionnaire and purchase panel data, it presents evidence of such reputation-driven reverse price...

  2. Presynaptic calcium signalling in cerebellar mossy fibres

    DEFF Research Database (Denmark)

    Thomsen, Louiza Bohn; Jörntell, Henrik; Midtgaard, Jens

    2010-01-01

    Whole-cell recordings were obtained from mossy fibre terminals in adult turtles in order to characterize the basic membrane properties. Calcium imaging of presynaptic calcium signals was carried out in order to analyse calcium dynamics and presynaptic GABA B inhibition. A tetrodotoxin (TTX....... Calcium imaging using Calcium-Green dextran revealed a stimulus-evoked all-or-none TTX-sensitive calcium signal in simple and complex rosettes. All compartments of a complex rosette were activated during electrical activation of the mossy fibre, while individual simple and complex rosettes along an axon...... appeared to be isolated from one another in terms of calcium signalling. CGP55845 application showed that GABA B receptors mediated presynaptic inhibition of the calcium signal over the entire firing frequency range of mossy fibres. A paired-pulse depression of the calcium signal lasting more than 1 s...

  3. Pulsed Laser Annealing of Carbon

    Science.gov (United States)

    Abrahamson, Joseph P.

    This dissertation investigates laser heating of carbon materials. The carbon industry has been annealing carbon via traditional furnace heating since at least 1800, when Sir Humphry Davy produced an electric arc with carbon electrodes made from carbonized wood. Much knowledge has been accumulated about carbon since then and carbon materials have become instrumental both scientifically and technologically. However, to this day the kinetics of annealing are not known due to the slow heating and cooling rates of furnaces. Additionally, consensus has yet to be reached on the cause of nongraphitizability. Annealing trajectories with respect to time at temperature are observed from a commercial carbon black (R250), model graphitizable carbon (anthracene coke) and a model nongraphitizable carbon (sucrose char) via rapid laser heating. Materials were heated with 1064 nm and 10.6 im laser radiation from a Q-switched Nd:YAG laser and a continuous wave CO2 laser, respectively. A pulse generator was used reduce the CO2 laser pulse width and provide high temporal control. Time-temperature-histories with nanosecond temporal resolution and temperature reproducibility within tens of degrees Celsius were determined by spectrally resolving the laser induced incandescence signal and applying multiwavelength pyrometry. The Nd:YAG laser fluences include: 25, 50, 100, 200, 300, and 550 mJ/cm2. The maximum observed temperature ranged from 2,400 °C to the C2 sublimation temperature of 4,180 °C. The CO2 laser was used to collect a series of isothermal (1,200 and 2,600 °C) heat treatments versus time (100 milliseconds to 30 seconds). Laser heated samples are compared to furnace annealing at 1,200 and 2,600 °C for 1 hour. The material transformation trajectory of Nd:YAG laser heated carbon is different than traditional furnace heating. The traditional furnace annealing pathway is followed for CO2 laser heating as based upon equivalent end structures. The nanostructure of sucrose char

  4. 500 MW peak power degenerated optical parametric amplifier delivering 52 fs pulses at 97 kHz repetition rate.

    Science.gov (United States)

    Rothhardt, J; Hädrich, S; Röser, F; Limpert, J; Tünnermann, A

    2008-06-09

    We present a high peak power degenerated parametric amplifier operating at 1030 nm and 97 kHz repetition rate. Pulses of a state-of-the art fiber chirped-pulse amplification (FCPA) system with 840 fs pulse duration and 410 microJ pulse energy are used as pump and seed source for a two stage optical parametric amplifier. Additional spectral broadening of the seed signal in a photonic crystal fiber creates enough bandwidth for ultrashort pulse generation. Subsequent amplification of the broadband seed signal in two 1 mm BBO crystals results in 41 microJ output pulse energy. Compression in a SF 11 prism compressor yields 37 microJ pulses as short as 52 fs. Thus, pulse shortening of more than one order of magnitude is achieved. Further scaling in terms of average power and pulse energy seems possible and will be discussed, since both concepts involved, the fiber laser and the parametric amplifier have the reputation to be immune against thermo-optical effects.

  5. Selective generation of two pulse modes in a single all normal dispersion fiber laser oscillator and analysis of their optical characteristics

    Science.gov (United States)

    Kim, S.; Choi, M.; Song, J. Y.; Lee, J. H.; Kim, Y.

    2017-02-01

    Fiber ultrafast pulses such as mode-locked and noise-like pulses have useful optical characteristics for high precision metrology applications. In this study, we develop an ytterbium doped fiber laser with all normal dispersion which can selectively generate two pulse modes, mode-locked and noise-like pulses, by a turn-key system including polarization control and selective detection parts. The spectral and temporal characteristics of two pulses generated from the single oscillator are analyzed and compared with each other through optical spectrum, RF spectrum and autocorrelation. Furthermore, spectral coherence characteristics are verified through interference signals generated by balanced and unbalanced arm interferometers.

  6. Pulsed holographic system for imaging through spatially extended scattering media

    Science.gov (United States)

    Kanaev, A. V.; Judd, K. P.; Lebow, P.; Watnik, A. T.; Novak, K. M.; Lindle, J. R.

    2017-10-01

    Imaging through scattering media is a highly sought capability for military, industrial, and medical applications. Unfortunately, nearly all recent progress was achieved in microscopic light propagation and/or light propagation through thin or weak scatterers which is mostly pertinent to medical research field. Sensing at long ranges through extended scattering media, for example turbid water or dense fog, still represents significant challenge and the best results are demonstrated using conventional approaches of time- or range-gating. The imaging range of such systems is constrained by their ability to distinguish a few ballistic photons that reach the detector from the background, scattered, and ambient photons, as well as from detector noise. Holography can potentially enhance time-gating by taking advantage of extra signal filtering based on coherence properties of the ballistic photons as well as by employing coherent addition of multiple frames. In a holographic imaging scheme ballistic photons of the imaging pulse are reflected from a target and interfered with the reference pulse at the detector creating a hologram. Related approaches were demonstrated previously in one-way imaging through thin biological samples and other microscopic scale scatterers. In this work, we investigate performance of holographic imaging systems under conditions of extreme scattering (less than one signal photon per pixel signal), demonstrate advantages of coherent addition of images recovered from holograms, and discuss image quality dependence on the ratio of the signal and reference beam power.

  7. A Clinical Study of the Pulse Wave Characteristics at the Three Pulse Diagnosis Positions of Chon, Gwan and Cheok

    Directory of Open Access Journals (Sweden)

    Young J. Jeon

    2011-01-01

    Full Text Available In this work, we analyze the baseline, signal strength, aortic augmentation index (AIx, radial AIx, time to reflection and P_T2 at Chon, Gwan, and Cheok, which are the three pulse diagnosis positions in Oriental medicine. For the pulse measurement, we used the SphygmoCor apparatus, which has been widely used for the evaluation of the arterial stiffness at the aorta. By two-way repeated measures analysis of variance, we tested two independent measurements for repeatability and investigated their mean differences among Chon, Gwan and Cheok. To characterize further the parameters that were shown to be different between each palpation position, we carried out Duncan's test for the multiple comparisons. The baseline and signal strength were statistically different (<.05 among Chon, Gwan and Cheok, respectively, which supports the major hypothesis of Oriental medicine that all of the three palpation positions contain different clinical information. On the other hand, aortic AIx and time to reflection were found to be statistically different between Chon and the others, and radial AIx and P_T2 did not show any difference between pulse positions. In the clinical sense, however, the aortic AIx at each palpation position was found to fall within the 90% confidence interval of normal arterial compliance. The results of the multiple comparisons indicate that the parameters of arterial stiffness were independent of the palpation positions. This work is the first attempt to characterize quantitatively the pulse signals at Chon, Gwan and Cheok with some relevant parameters extracted from the SphygmoCor apparatus.

  8. Spectrum Compensation for Time Reversal Method on Ultrasonic Target Detection Using Pulse Compression.

    Science.gov (United States)

    Chimura, Dai; Toh, Ryo; Motooka, Seiichi

    2017-09-04

    This paper discusses a method of time reversal (TR) for target detection using a signal with a higher signal-to-noise ratio (SNR) and higher resolution. To acquire a signal with a higher SNR and broader spectrum, we have proposed a sensitivity-compensated (SC) signal. In this study, we propose three types of sensitivity-compensated-for-time-reversal (SC-for-TR) signals. A sensitivity-compensated-amplitude-modulated-for-time-reversal signal and a sensitivity-compensated-frequency-modulated-for-time-reversal signal are calculated using squared spectrum compensation. Moreover, to enhance the transmitting energy of a time reversed wave for higher SNR, we propose a sensitivity-compensated-amplitude-and-frequency-modulated-for -time-reversal (SCAFM-for-TR) signal. The SCAFM-for-TR signal is calculated by amplitude modulation and frequency modulation for deriving a time reversed wave with a constant envelope waveform and compensated spectrum. In this study, the efficiency of the SC-for-TR signals is investigated on target ranging in water using pulse compression. Accordingly, the SC-for-TR signals derive a pulse compressed signal with higher resolution. In addition, the precision of target ranging using the SCAFM-for-TR signal is greater than that using the other SC-for-TR signals at an arrangement when a target was fixed at a position where a signal with a lower SNR is received. These results show that the measurements using the SC-for-TR signals improve time resolution and the measurements using the SCAFM-for-TR signal improve the SNR.

  9. Wave equations for pulse propagation

    Science.gov (United States)

    Shore, B. W.

    1987-06-01

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.

  10. Anaesthetic Monitoring - the Pulse Oximeter

    African Journals Online (AJOL)

    the pulse oximeter: 1. It is a teaching tool showing the physiology of oxygen delivery. 2. It is especially useful to evaluate the efficacy of oxygen therapy during recovery from an- aesthesia and surgery and on the ward. 3. It shows when tracheal intubation is too slow. It shows when the tube is in the wrong place or blocked or ...

  11. Nonparametric estimation of ultrasound pulses

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Leeman, Sidney

    1994-01-01

    An algorithm for nonparametric estimation of 1D ultrasound pulses in echo sequences from human tissues is derived. The technique is a variation of the homomorphic filtering technique using the real cepstrum, and the underlying basis of the method is explained. The algorithm exploits a priori...

  12. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  13. Determination of pulse profile characteristics of multi spot retinal photocoagulation lasers.

    Science.gov (United States)

    Clarkson, Douglas McG; Makhzoum, Osama; Blackburn, John

    2015-10-01

    A system is described for determination of discrete pulse train characteristics of multi spot laser delivery systems for retinal photocoagulation. While photodiodes provide an ideal detection mechanism, measurement artifacts can potentially be introduced by the spatial pattern of the delivered beam relative to a discrete photodiode element. This problem was overcome by use of an integrating sphere to produce a uniform light field at the site of the photodiode detector. A basic current driven photodiode detection circuit incorporating an operational amplifier was used to generate a signal captured by a commercially available USB interface device at a rate of 10 kHz. Studies were undertaken of a Topcon Pascal Streamline laser system with output at a wavelength of 577 nm (yellow). This laser features the proprietary feature of 'Endpoint Management' ™ where pulses can be delivered as 100% of set energy levels with visible reaction on the retina and also at a reduced energy level to create potentially non visible but clinically effective lesions. Using the pulse train measurement device it was identified that the 'Endpoint Management' ™ delivery mode of pulses of lower energy was achieved by reducing the pulse duration of pulses for non-visible effect pulses while maintaining consistent beam power levels within the delivered pulse profile. The effect of eye geometry in determining safety and effectiveness of multi spot laser delivery for retinal photocoagulation is discussed. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  14. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis

    Science.gov (United States)

    Vasquez, Claudia G.; Tworoger, Mike

    2014-01-01

    Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis. PMID:25092658

  15. Frequency-time diagram of partial discharge pulses recorded on large generators

    Directory of Open Access Journals (Sweden)

    Kartalović Nenad

    2015-01-01

    Full Text Available This paper analyses the use of equivalent frequency-equivalent time diagram (FT diagram of partial discharge (PD pulses, regarding voltage and charge pulses. The described approach is widely used for large generators insulation testing purposes. For sake of clarity the certain types of partial discharge phenomena in insulation of electric machines are described and explained. The contemporary FT analysis of PD pulses is based on equivalent frequency and equivalent pulse time width derived by signal processing techniques and calculations. The numerical simulation derived and experimentally derived results are compared and evaluated for each kind of PD pulses (voltage or charge pulses. Next, the high voltage (HV device with distributed parameters connected to HV voltage source is simulated. The parameters used in the simulation correspond to one real large synchronous generator. The obtained results lead us to the conclusion that the processing of the strain of PD charge pulses gives much more accurate results than the processing of the strain of PD voltage pulses. The experiment conducted on a large hydro generator confirmed the previous conclusions. At a same time, the sources of recorded results dispersion are shown and explained.

  16. Pulses production in Italy: trade, marketing and policy issues

    Directory of Open Access Journals (Sweden)

    Rino Ghelfi

    2017-09-01

    Full Text Available Italian pulses production has sharply fallen since the middle of the last century and the role that pulses played has diminished at both the agricultural and food levels. This is the result of several factors that are analysed in this article, among which the most important can be identified in the low profitability compared to other crops, mainly cereals, the historic collapse of domestic consumption and a strong competition from foreign producers. Conversely, in recent years, different signals appear to delineate a possible framework for recovery for legumes: the first of these is represented by the recent reversal trend in domestic consumption, due to healthy reasons and a fall in meat consumption. The favourable trend of organic consumption can also be considered as a positive factor for pulses. However, the focus point for pulses future perspective is the recent development of the European policy (2014-2020 that planned several actions in support of them, such as coupled payments and the provisions of greening rules. These policies aim to support the training effort needed to bring home to producers the importance of legumes in a proper crop rotation that maintains soil fertility and therefore better yields and profitability. In light of this and based on the general crisis in cereals prices, it is possible to be reasonably optimistic regarding the future of the legumes sector in Italy.

  17. Width-modulated square-wave pulses for ultrasound applications.

    Science.gov (United States)

    Smith, Peter R; Cowell, David M J; Freear, Steven

    2013-11-01

    A method of output pressure control for ultrasound transducers using switched excitation is described. The method generates width-modulated square-wave pulse sequences that are suitable for driving ultrasound transducers using MOSFETs or similar devices. Sequences are encoded using an optimized level-shifted, carrier-comparison, pulse-width modulation (PWM) strategy derived from existing PWM theory, and modified specifically for ultrasound applications. The modifications are: a reduction in carrier frequency so that the smallest number of pulses are generated and minimal switching is necessary; alteration of a linear carrier form to follow a trigonometric relationship in accordance with the expected fundamental output; and application of frequency modulation to the carrier when generating frequency-modulated, amplitude- tapered signals. The PWM method permits control of output pressure for arbitrary waveform sequences at diagnostic frequencies (approximately 5 MHz) when sampled at 100 MHz, and is applicable to pulse shaping and array apodization. Arbitrary waveform generation capability is demonstrated in simulation using convolution with a transducer's impulse response, and experimentally with hydrophone measurement. Benefits in coded imaging are demonstrated when compared with fixed-width square-wave (pseudo-chirp) excitation in coded imaging, including reduction in image artifacts and peak side-lobe levels for two cases, showing 10 and 8 dB reduction in peak side-lobe level experimentally, compared with 11 and 7 dB reduction in simulation. In all cases, the experimental observations correlate strongly with simulated data.

  18. Inverse Modelling to Obtain Head Movement Controller Signal

    Science.gov (United States)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  19. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  20. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  1. Wave equations for pulse propagation

    Energy Technology Data Exchange (ETDEWEB)

    Shore, B.W.

    1987-06-24

    Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.

  2. Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model.

    Directory of Open Access Journals (Sweden)

    Andrej Čokl

    Full Text Available Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls.

  3. LET dependence of bubbles evaporation pulses in superheated emulsion detectors

    Science.gov (United States)

    Di Fulvio, Angela; Huang, Jean; Staib, Lawrence; d'Errico, Francesco

    2015-06-01

    Superheated emulsion detectors are suspensions of metastable liquid droplets in a compliant inert medium. Upon interaction with ionizing radiation, the droplets evaporate, generating visible bubbles. Bubble expansion associated with the boiling of the droplets is accompanied by pressure pulses in both the sonic and ultrasonic frequency range. In this work, we analyzed the signal generated by bubble evaporation in the frequency and time domain. We used octafluoropropane (R-218) based emulsions, sensitive to both photons and neutrons. The frequency content of the detected pulses appears to extend well into the hundreds of kHz, beyond the range used in commercial devices to count bubbles as they are formed (typically 1-10 kHz). Kilohertz components characterize the early part of the waveforms, potentially containing information about the energetics of the explosive bubble initial growth phase. The power spectral density of the acoustic signal produced by neutron-induced evaporation shows a characteristic frequency pattern in the 200-400 kHz range, which is not observed when bubbles evaporate upon gamma ray-induced irradiation. For practical applications, detection of ultrasonic pulses associated with the boiling of the superheated drops can be exploited as a fast readout method, negligibly affected by mechanical ambient noise.

  4. Mathematics of pulsed vocalizations with application to killer whale biphonation.

    Science.gov (United States)

    Brown, Judith C

    2008-05-01

    Formulas for the spectra of pulsed vocalizations for both the continuous and discrete cases are rigorously derived from basic formulas for Fourier analysis, a topic discussed qualitatively in Watkins' classic paper on "the harmonic interval" ["The harmonic interval: Fact or artifact in spectral analysis of pulse trains," in Marine Bioacoustics 2, edited by W. N. Tavogla (Pergamon, New York, 1967), pp. 15-43]. These formulas are summarized in a table for easy reference, along with most of the corresponding graphs. The case of a "pulse tone" is shown to involve multiplication of two temporal wave forms, corresponding to convolution in the frequency domain. This operation is discussed in detail and shown to be equivalent to a simpler approach using a trigonometric formula giving sum and difference frequencies. The presence of a dc component in the temporal wave form, which implies physically that there is a net positive pressure at the source, is discussed, and examples of the corresponding spectra are calculated and shown graphically. These have application to biphonation (two source signals) observed for some killer whale calls and implications for a source mechanism. A MATLAB program for synthesis of a similar signal is discussed and made available online.

  5. Applied digital signal processing systems for vortex flowmeter with digital signal processing.

    Science.gov (United States)

    Xu, Ke-Jun; Zhu, Zhi-Hai; Zhou, Yang; Wang, Xiao-Fen; Liu, San-Shan; Huang, Yun-Zhi; Chen, Zhi-Yuan

    2009-02-01

    The spectral analysis is combined with digital filter to process the vortex sensor signal for reducing the effect of disturbance at low frequency from pipe vibrations and increasing the turndown ratio. Using digital signal processing chip, two kinds of digital signal processing systems are developed to implement these algorithms. One is an integrative system, and the other is a separated system. A limiting amplifier is designed in the input analog condition circuit to adapt large amplitude variation of sensor signal. Some technique measures are taken to improve the accuracy of the output pulse, speed up the response time of the meter, and reduce the fluctuation of the output signal. The experimental results demonstrate the validity of the digital signal processing systems.

  6. Simulation of Silicon Photomultiplier Signals

    Science.gov (United States)

    Seifert, Stefan; van Dam, Herman T.; Huizenga, Jan; Vinke, Ruud; Dendooven, Peter; Lohner, Herbert; Schaart, Dennis R.

    2009-12-01

    In a silicon photomultiplier (SiPM), also referred to as multi-pixel photon counter (MPPC), many Geiger-mode avalanche photodiodes (GM-APDs) are connected in parallel so as to combine the photon counting capabilities of each of these so-called microcells into a proportional light sensor. The discharge of a single microcell is relatively well understood and electronic models exist to simulate this process. In this paper we introduce an extended model that is able to simulate the simultaneous discharge of multiple cells. This model is used to predict the SiPM signal in response to fast light pulses as a function of the number of fired cells, taking into account the influence of the input impedance of the SiPM preamplifier. The model predicts that the electronic signal is not proportional to the number of fired cells if the preamplifier input impedance is not zero. This effect becomes more important for SiPMs with lower parasitic capacitance (which otherwise is a favorable property). The model is validated by comparing its predictions to experimental data obtained with two different SiPMs (Hamamatsu S10362-11-25u and Hamamatsu S10362-33-25c) illuminated with ps laser pulses. The experimental results are in good agreement with the model predictions.

  7. Optimal Pulse Processing, Pile-Up Decomposition, and Applications of Silicon Drift Detectors at LCLS

    Science.gov (United States)

    Blaj, G.; Kenney, C. J.; Dragone, A.; Carini, G.; Herrmann, S.; Hart, P.; Tomada, A.; Koglin, J.; Haller, G.; Boutet, S.; Messerschmidt, M.; Williams, G.; Chollet, M.; Dakovski, G.; Nelson, S.; Pines, J.; Song, S.; Thayer, J.

    2017-11-01

    Silicon drift detectors (SDDs) revolutionized spectroscopy in fields as diverse as geology and dentistry. For a subset of experiments at ultra-fast, x-ray free-electron lasers (FELs), SDDs can make substantial contributions. Often the unknown spectrum is interesting, carrying science data, or the background measurement is useful to identify unexpected signals. Many measurements involve only several discrete photon energies known a priori. We designed a pulse function (a combination of gradual step and exponential decay function) and demonstrated that for individual pulses the signal amplitude, peaking time, and pulse amplitude are interrelated and the signal amplitude and peaking time are obtained for each pulse by fitting. Avoiding pulse shaping reduced peaking times to tens of nanoseconds, resulting in reduced pulse pile-up and allowing decomposition of remaining pulse pile-up at photon separation times down to 100~ns while yielding time-of-arrival information with precision of 10~nanoseconds. At pulsed sources or high photon rates, photon pile-up still occurs. We showed that the area of one photon peaks is not suitable for estimating high photon rates while pile-up spectrum fitting is relatively simple and preferable to pile-up spectrum deconvolution. We developed a photon pile-up model for constant intensity sources, extended it to variable intensity sources (typical for FELs) and used it to fit a complex pile-up spectrum, demonstrating its accuracy. Based on the pile-up model, we developed a Bayesian pile-up decomposition method that allows decomposing pile-up of single events with up to 6 photons from 6 monochromatic lines with 99% accuracy. The usefulness of SDDs will continue into the x-ray FEL era of science. Their successors, the ePixS hybrid pixel detectors, already offer hundreds of pixels, each with similar performance to an SDD, in a compact, robust and affordable package.

  8. Design of spectral-spatial phase prewinding pulses and their use in small-tip fast recovery steady-state imaging.

    Science.gov (United States)

    Williams, Sydney N; Nielsen, Jon-Fredrik; Fessler, Jeffrey A; Noll, Douglas C

    2017-07-03

    Spectrally selective "prewinding" radiofrequency pulses can counteract B0 inhomogeneity in steady-state sequences, but can only prephase a limited range of off-resonance. We propose spectral-spatial small-tip angle prewinding pulses that increase the off-resonance bandwidth that can be successfully prephased by incorporating spatially tailored excitation patterns. We present a feasibility study to compare spectral and spectral-spatial prewinding pulses. These pulses add a prephasing term to the target magnetization pattern that aims to recover an assigned off-resonance bandwidth at the echo time. For spectral-spatial pulses, the design bandwidth is centered at the off-resonance frequency for each spatial location in a field map. We use these pulses in the small-tip fast recovery steady-state sequence, which is similar to balanced steady-state free precession. We investigate improvement of spectral-spatial pulses over spectral pulses using simulations and small-tip fast recovery scans of a gel phantom and human brain. In simulation, spectral-spatial pulses yielded lower normalized root mean squared excitation error than spectral pulses. For both experiments, the spectral-spatial pulse images are also qualitatively better (more uniform, less signal loss) than the spectral pulse images. Spectral-spatial prewinding pulses can prephase over a larger range of off-resonance than their purely spectral counterparts. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Linear transformer driver for pulse generation

    Science.gov (United States)

    Kim, Alexander A; Mazarakis, Michael G; Sinebryukhov, Vadim A; Volkov, Sergey N; Kondratiev, Sergey S; Alexeenko, Vitaly M; Bayol, Frederic; Demol, Gauthier; Stygar, William A

    2015-04-07

    A linear transformer driver includes at least one ferrite ring positioned to accept a load. The linear transformer driver also includes a first power delivery module that includes a first charge storage devices and a first switch. The first power delivery module sends a first energy in the form of a first pulse to the load. The linear transformer driver also includes a second power delivery module including a second charge storage device and a second switch. The second power delivery module sends a second energy in the form of a second pulse to the load. The second pulse has a frequency that is approximately three times the frequency of the first pulse. The at least one ferrite ring is positioned to force the first pulse and the second pulse to the load by temporarily isolating the first pulse and the second pulse from an electrical ground.

  10. Peak holding circuit for extremely narrow pulses

    Science.gov (United States)

    Oneill, R. W. (Inventor)

    1975-01-01

    An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.

  11. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    Science.gov (United States)

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  12. Pulse Tube Interference in Cryogenic Sensor Resonant Circuits - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Tyler [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise, it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.

  13. Pulse Tube Interference in Cryogenic Sensors - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Tyler [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-24

    Transition edge sensors (TES) are extremely sensitive superconducting sensors, operating at 100 mK, which can be used to detect X-rays and Cosmic Microwave Background. The goal of our project is to design the electronics to read out an array of 10000 of these sensors by using microwave signals. However, we noticed the pulse tube used to maintain cryogenic temperatures caused interference in our readout. To determine the cause of the signal distortions, we used a detector with a 370 MHz sampling rate to collect and analyze sensor data. Although this data provided little information towards the nature of the noise, it was determined through a maintenance procedure than the 0.3 mm stainless steel wires were being vibrated due to acoustic waves, which distorted the signal. Replacing this wire appeared to cease the interference from the sensor data.

  14. Digital liquid-scintillation counting and effective pulse-shape discrimination with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Langrock, Gert; Wiehl, Norbert; Kling, Hans-Otto; Mendel, Matthias; Naehler, Andrea; Tharun, Udo; Eberhardt, Klaus; Trautmann, Norbert; Kratz, Jens Volker [Mainz Univ. (Germany). Inst. fuer Kernchemie; Omtvedt, Jon-Petter [Oslo Univ. (Norway). Dept. of Chemistry; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2015-05-01

    A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambiguously assigned. However, the availability of instruments for the digital recording of LS pulses changes the situation and provides possibilities for new approaches in the treatment of LS pulse shapes. In a SISAK experiment performed at PSI, Villigen, a fast transient recorder, a PC card with oscilloscope characteristics and a sampling rate of 1 giga samples s{sup -1} (1 ns per point), was used for the first time to record LS signals. It turned out, that the recorded signals were predominantly α β-β and β-γ pile up, and fission events. This paper describes the subsequent development and use of artificial neural networks (ANN) based on the method of 'back-propagation of errors' to automatically distinguish between different pulse shapes. Such networks can 'learn' pulse shapes and classify hitherto unknown pulses correctly after a learning period. The results show that ANN in combination with fast digital recording of pulse shapes can be a powerful tool in LS spectrometry even at high background count rates.

  15. Pulsed lasers in speckle photography: error owing to pulse width.

    Science.gov (United States)

    Joenathan, C; Blair, S M; Ganesan, A R

    1993-01-10

    The effect of the pulse width of a pulsed laser in the studies of speckle velocimetry and transient vibration analysis is discussed. Because of the motion of the object during an exposure, a sine function is obtained by using the pointwise filtering method. This function modulates the halo along with the Young's fringes. It is shown that for high object velocities the sinc function modifies the halo distribution; as a result, the error in calculating the fringe position increases. An aperture geometry for which the autocorrelation halo is made constant in certain regions is proposed in which the intensity variation in this region is the result of the modulating sinc function only. A closed-form solution for the shift in the position of the fringes in this region is obtained. Experimental results of the simulation are presented.

  16. Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact.

    Science.gov (United States)

    Tomasevic, Leo; Takemi, Mitsuaki; Siebner, Hartwig Roman

    2017-01-01

    Electroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS. Removing this artefact remains a challenge. We delivered monophasic and biphasic TMS to a melon as head phantom and to four healthy participants and recorded the pulse artefact at 5 kHz with a TMS-compatible EEG system. Pulse delivery was either synchronized or non-synchronized to the clock of the EEG recording system. The effects of synchronization were tested at 10 and 20 kHz using the head phantom. We also tested the effect of a soft sheet placed between the stimulation coil and recording electrodes in both human and melon. Synchronizing TMS and data acquisition markedly reduced trial-to-trial variability of the pulse artefact in recordings from the phantom or from the scalp. Reduced trial-to-trial variability was also observed at high sampling frequencies. The use of a soft sheet reduced the variability in recordings on the head phantom, but not in human participants. Effective reduction of the trial-to-trial variability renders it possible to create an artefact template for off-line filtering. Template-based subtraction of the artefact from the EEG signals is a prerequisite to effectively recover the immediate physiological response in the stimulated cortex and inter-connected areas.

  17. Sensors and Methods for Electromagnetic Pulse Identification

    OpenAIRE

    Pavel FIALA; Drexler, Petr

    2006-01-01

    There are some suitable methods for the measurement of ultra-short solitary electromagnetic pulses that can be generated by high power pulsed generators. The measurement methods properties have to correspond to the fact whether we want to measure pulses of voltage, current or free-space electromagnetic wave. The need for specific measurement methods occurred by the development of high power microwave pulse generator. Applicable methods are presented in this paper. The method utilizing Faraday...

  18. <3> OMEGA pulse-forming network

    CERN Multimedia

    1974-01-01

    Adjustement of the 3 W pulse-forming network of the SPS beam dumping system. When charged at 60 kV, this PFN gives 10 kA, 25 ms current pulses, with oscillations, superimposed on the pulse flat top, of an amplitude of +/- 1 Ka.

  19. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  20. Third Harmonic Imaging using a Pulse Inversion

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    The pulse inversion (PI) technique can be utilized to separate and enhance harmonic components of a waveform for tissue harmonic imaging. While most ultrasound systems can perform pulse inversion, only few image the 3rd harmonic component. PI pulse subtraction can isolate and enhance the 3rd...

  1. High speed, high current pulsed driver circuit

    Science.gov (United States)

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  2. Double pulse Thomson scattering system at RTP

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Chu, C.C.; Donne, A. J. H.; Herranz, J. A.; Cardozo, N. J. L.; van der Meiden, H. J.; Pijper, F.J.

    1997-01-01

    In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10-800 mu s, max. 2x12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator

  3. Numerical and experimental study of an annular pulse tube used in the pulse tube cooler

    Science.gov (United States)

    Pang, Xiaomin; Chen, Yanyan; Wang, Xiaotao; Dai, Wei; Luo, Ercang

    2017-12-01

    Multi-stage pulse tube coolers normally use a U-type configuration. For compactness, it is attractive to build a completely co-axial multi-stage pulse tube cooler. In this way, an annular shape pulse tube is inevitable. Although there are a few reports about previous annular pulse tubes, a detailed study and comparison with a circular pulse tube is lacking. In this paper, a numeric model based on CFD software is carried out to compare the annular pulse tube and circular pulse tube used in a single stage in-line type pulse tube cooler with about 10 W of cooling power at 77 K. The length and cross sectional area of the two pulse tubes are kept the same. Simulation results show that the enthalpy flow in the annular pulse tube is lower by 1.6 W (about 11% of the enthalpy flow) compared to that in circular pulse tube. Flow and temperature distribution characteristics are also analyzed in detail. Experiments are then conducted for comparison with an in-line type pulse tube cooler. With the same acoustic power input, the pulse tube cooler with a circular pulse tube obtains 7.88 W of cooling power at 77 K, while using an annular pulse tube leads to a cooling power of 7.01 W, a decrease of 0.9 W (11.4%) on the cooling performance. The study sets the basis for building a completely co-axial two-stage pulse tube cooler.

  4. Patterns of digital volume pulse waveform and pulse transit time in ...

    African Journals Online (AJOL)

    Introduction: Arterial wall changes underlie many disorders of aging and the complications of diseases like hypertension and diabetes mellitus. Analyzing the pulse wave is an easy, noninvasive method used to assess vessel wall stiffness and pulse changes. In this study the digital volume pulse wave and the pulse transit ...

  5. LED power reduction trade-offs for ambulatory pulse oximetry.

    Science.gov (United States)

    Peláez, Eduardo Aguilar; Villegas, Esther Rodríguez

    2007-01-01

    The development of ambulatory arterial pulse oximetry is key to longer term monitoring and treatment of cardiovascular and respiratory conditions. The investigation presented in this paper will assist the designer of an ambulatory pulse oximetry monitor in minimizing the overall LED power consumption (P LED,TOT) levels by analyzing the lowest achievable limit as constrained by the optical components, circuitry implementation and final SpO2 reading accuracy required. LED duty cycle (D LED) reduction and light power (P LED,ON) minimization are proposed as methods to reduce P LED,TOT. Bandwidth and signal quality calculations are carried out in order to determine the required P LED,TOT as a function of the different noise sources.

  6. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  7. Overcoming High Energy Backgrounds at Pulsed Spallation Sources

    CERN Document Server

    Cherkashyna, Nataliia; DiJulio, Douglas D.; Khaplanov, Anton; Pfeiffer, Dorothea; Scherzinger, Julius; Cooper-Jensen, Carsten P.; Fissum, Kevin G.; Ansell, Stuart; Iverson, Erik B.; Ehlers, Georg; Gallmeier, Franz X.; Panzner, Tobias; Rantsiou, Emmanouela; Kanaki, Kalliopi; Filges, Uwe; Kittelmann, Thomas; Extegarai, Maddi; Santoro, Valentina; Kirstein, Oliver; Bentley, Phillip M.

    2015-01-01

    Instrument backgrounds at neutron scattering facilities directly affect the quality and the efficiency of the scientific measurements that users perform. Part of the background at pulsed spallation neutron sources is caused by, and time-correlated with, the emission of high energy particles when the proton beam strikes the spallation target. This prompt pulse ultimately produces a signal, which can be highly problematic for a subset of instruments and measurements due to the time-correlated properties, and different to that from reactor sources. Measurements of this background have been made at both SNS (ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The background levels were generally found to be low compared to natural background. However, very low intensities of high-energy particles have been found to be detrimental to instrument performance in some conditions. Given that instrument performance is typically characterised by S/N, improvements in backgrounds can both improve instrument pe...

  8. Real-time evolvable pulse shaper for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lanchares, Juan, E-mail: julandan@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Garnica, Oscar, E-mail: ogarnica@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Risco-Martín, José L., E-mail: jlrisco@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Ignacio Hidalgo, J., E-mail: hidalgo@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Regadío, Alberto, E-mail: alberto.regadio@insa.es [Área de Tecnologías Electrónicas, Instituto Nacional de Técnica Aeroespacial (INTA), 28850 Torrejón de Ardoz, Madrid (Spain)

    2013-11-01

    In the last two decades, recursive algorithms for real-time digital pulse shaping in pulse height measurements have been developed and published in number of articles and textbooks. All these algorithms try to synthesize in real time optimum or near optimum shapes in the presence of noise. Even though some of these shapers can be considered effective designs, some side effects like aging cannot be ignored. We may observe that after sensors degradation, the signal obtained is not valid. In this regard, we present in this paper a novel technique that, based on evolvable hardware concepts, is able to evolve the degenerated shaper into a new design with better performance than the original one under the new sensor features.

  9. The Mechanisms of the Ecdysone Pulses that Cause Metamorphosis

    DEFF Research Database (Denmark)

    Møller, Morten Erik

    , which we chose to name “stuck in Traffic” (sit), that codes for a very long-chain fatty acid elongase homolog. We found that the knock down of this gene resulted in an abnormal accumulation of cholesterol, caused by a blockage of the endosomal transport, which is required to make cholesterol available......Maturation in both mammals and insects is caused by pulses of steroid hormones released from glands in response to a brain-derived signal. The timing of this developmental transition is secured by the integration of many developmental cues, such as size, external environment and nutritional...... condition, with hardwired genetic programs. In holometabolous insects, pulses of the steroid hormone ecdysone cause the transition between the larval stages and the initiation of the metamorphosis, which transforms the juvenile larva to a sexually mature adult. Ecdysone is produced in the prothoracic gland...

  10. CW seeded optical parametric amplifier providing wavelength and pulse duration tunable nearly transform limited pulses.

    Science.gov (United States)

    Hädrich, S; Gottschall, T; Rothhardt, J; Limpert, J; Tünnermann, A

    2010-02-01

    An optical parametric amplifier that delivers nearly transform limited pulses is presented. The center wavelength of these pulses can be tuned between 993 nm and 1070 nm and, at the same time, the pulse duration is varied between 206 fs and 650 fs. At the shortest pulse duration the pulse energy was increased up to 7.2 microJ at 50 kHz repetition rate. Variation of the wavelength is achieved by applying a tunable cw seed while the pulse duration can be varied via altering the pump pulse duration. This scheme offers superior flexibility and scaling possibilities.

  11. Spatial resolution and maximum compensation factor of two-dimensional selective excitation pulses for MRI of objects containing conductive implants

    Directory of Open Access Journals (Sweden)

    Taeseong Woo

    2017-05-01

    Full Text Available A quantitative diagnosis using magnetic resonance imaging (MRI can be disturbed by radiofrequency (RF field inhomogeneity induced by the conductive implants. This inhomogeneity causes a local decrease of the signal intensity around the conductor, resulting in a deterioration of the accurate quantification. In a previous study, we developed an MRI imaging method using a two-dimensional selective excitation pulse (2D pulse to mitigate signal inhomogeneity induced by metallic implants. In this paper, the effect of 2D pulse was evaluated quantitatively by numerical simulation and MRI experiments. We introduced two factors for evaluation, spatial resolution and maximum compensation factor. Numerical simulations were performed with two groups. One group was composed of four models with different signal loss width, to evaluate the spatial resolution of the 2D pulse. The other group is also composed of four models with different amounts of signal loss for evaluating maximum compensation factor. In MRI experiments, we prepared phantoms containing conductors, which have different electrical conductivities related with the amounts of signal intensity decrease. The recovery of signal intensity was observed by 2D pulses, in both numerical simulations and experiments.

  12. Method for detecting and distinguishing between specific types of environmental radiation using a high pressure ionization chamber with pulse-mode readout

    Energy Technology Data Exchange (ETDEWEB)

    Degtiarenko, Pavel V.

    2017-12-19

    An environmental radiation detector for detecting and distinguishing between all types of environmental radiation, including photons, charged particles, and neutrons. A large volume high pressure ionization chamber (HPIC) includes BF.sub.3 gas at a specific concentration to render the radiation detector sensitive to the reactions of neutron capture in Boron-10 isotope. A pulse-mode readout is connected to the ionization chamber capable of measuring both the height and the width of the pulse. The heavy charged products of the neutron capture reaction deposit significant characteristic energy of the reaction in the immediate vicinity of the reaction in the gas, producing a signal with a pulse height proportional to the reaction energy, and a narrow pulse width corresponding to the essentially pointlike energy deposition in the gas. Readout of the pulse height and the pulse width parameters of the signals enables distinguishing between the different types of environmental radiation, such as gamma (x-rays), cosmic muons, and neutrons.

  13. Pulse Propagation on close conductors

    CERN Document Server

    Dieckmann, A

    2001-01-01

    The propagation and reflection of arbitrarily shaped pulses on non-dispersive parallel conductors of finite length with user defined cross section is simulated employing the discretized telegraph equation. The geometry of the system of conductors and the presence of dielectric material determine the capacities and inductances that enter the calculation. The values of these parameters are found using an iterative Laplace equation solving procedure and confirmed for certain calculable geometries including the line charge inside a box. The evolving pulses and the resulting crosstalk can be plotted at any instant and - in the Mathematica notebook version of this report - be looked at in an animation. As an example a differential pair of microstrips as used in the ATLAS vertex detector is analysed.

  14. Unsplit bipolar pulse forming line

    Science.gov (United States)

    Rhodes, Mark A [Pleasanton, CA

    2011-05-24

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  15. Sub-10 fs deep-ultraviolet pulses generated by chirped-pulse four-wave mixing.

    Science.gov (United States)

    Kida, Yuichiro; Liu, Jun; Teramoto, Takahiro; Kobayashi, Takayoshi

    2010-06-01

    We propose and demonstrate experimentally a novel way of generating sub-10fs deep-UV pulses. The technique is based on chirped-pulse four-wave mixing induced by a broadband near-IR (NIR) pulse and a near-UV pulse. The broadband IR pulse is prepared by preliminarily broadening the spectral width of an NIR pulse by self-phase modulation. The positively chirped broadband IR pulse is suitable for generating a negatively chirped deep-UV pulse, which can be compressed by normal group-velocity dispersion in a transparent medium. Self-compression of the generated deep-UV pulse in air has been demonstrated to produce sub-10fs deep-UV pulses with excellent temporal and spectral profiles for ultrafast spectroscopy in the deep UV.

  16. LUPIN, a new instrument for pulsed neutron fields

    Science.gov (United States)

    Caresana, M.; Ferrarini, M.; Manessi, G. P.; Silari, M.; Varoli, V.

    2013-06-01

    A number of studies focused in the last decades on the development of survey meters to be used in pulsed radiation fields. This is a topic attracting widespread interest for applications such as radiation protection and beam diagnostics in accelerators. This paper describes a new instrument specifically conceived for applications in pulsed neutron fields (PNF). The detector, called LUPIN, is a rem counter type instrument consisting of a 3He proportional counter placed inside a spherical moderator. It works in current mode with a front-end electronics consisting of a current-voltage logarithmic amplifier, whose output signal is acquired with an ADC and processed on a PC. This alternative signal processing allows the instrument to be used in PNF without being affected by saturation effects. Moreover, it has a measurement capability ranging over many orders of burst intensity. Despite the fact that it works in current mode, it can measure a single neutron interaction. The LUPIN was first calibrated in CERN's calibration laboratory with a PuBe source. Measurements were carried out under various experimental conditions at the Helmholtz-Zentrum in Berlin, in the stray field at various locations of the CERN Proton Synchrotron complex and around a radiotherapy linear accelerator at the S. Raffaele hospital in Milan. The detector can withstand single bursts with values of H*(10) up to 16 nSv/burst without showing any saturation effect. It efficiently works in pulsed stray fields, where a conventional rem-counter underestimates by a factor of 2. It is also able to reject the very intense and pulsed photon contribution that often accompanies the neutron field with good reliability.

  17. Pulsed Scophony laser projection system

    Science.gov (United States)

    Lowry, J. B.; Welford, W. T.; Humphries, M. R.

    1988-10-01

    A novel laser TV projection display has been developed by PA Technology employing the Scophony system with acousto-optic modulators and pulsed lasers. This results in a projection system with greater optical simplicity, higher reliability and reduced power and cooling requirements over similar laser projectors. The technique has been successfully implemented in British Aerospace's Microdome missile training simulator. This paper describes the underlying principles of the design, its operational features and its implementation in the Microdome.

  18. Metal silicides with energetic pulses

    Science.gov (United States)

    D'Anna, E.; Leggieri, G.; Luches, A.; Majni, G.; Nava, F.; Ottaviani, G.

    1986-07-01

    Samples formed of a thin metal film deposited on silicon single crystal were annealed with electron and laser (ruby and excimer) pulses over a wide range of fluences. From a comparison of the experimental results with the temperature profiles of the irradiated samples, it turns out that suicide formation starts when the metal/silicon interface reaches the lowest eutectic temperature of the binary metal/silicon system. The growth rate of reacted layers is of the order of 1 m/s.

  19. Pulse amplitude modulated chlorophyll fluorometer

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  20. High Voltage Nanosecond Pulse Generator.

    Science.gov (United States)

    1978-11-01

    pulse to a laser load was desiqned , built , and tested . —- -~~~-~~~~----j ‘~ ~~ _)— ~ --. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CoIx ~r 1 I