WorldWideScience

Sample records for pseudo-single domain magnetite

  1. Effect of maghemization on the magnetic properties of nonstoichiometric pseudo-single-domain magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Kasama, Takeshi

    2015-01-01

    The effect of maghemization on the magnetic properties of magnetite (Fe3O4) grains in the pseudo-single-domain (PSD) size range is investigated as a function of annealing temperature. X-ray diffraction and transmission electron microscopy confirm the precursor grains as Fe3O4 ranging from 150...... to 250 nm in diameter, whilst Mössbauer spectrometry suggests the grains are initially near-stoichiometric. The Fe3O4 grains are heated to increasing reaction temperatures of 120–220°C to investigate their oxidation to maghemite (γ-Fe2O3). High-angle annular dark field imaging and localized electron......-energy loss spectroscopy reveal slightly oxidized Fe3O4 grains, heated to 140°C, exhibit higher oxygen content at the surface. Off-axis electron holography allows for construction of magnetic induction maps of individual Fe3O4 and γ-Fe2O3 grains, revealing their PSD (vortex) nature, which is supported...

  2. Visualized effect of oxidation on magnetic recording fidelity in pseudo-single-domain magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording...... of environmental transmission electron microscopy and off-axis electron holography to induce and visualize the effects of oxidation on the magnetization of individual nanoscale Fe3O4 particles as they transform towards γ-Fe2O3. Magnetic induction maps demonstrate a change in both strength and direction of remanent...... fidelity of Fe3O4 particles is greatly diminished over time by progressive oxidation to less magnetic iron oxides, such as maghemite (γ-Fe2O3), with consequent alteration of remanent magnetization potentially having important geological significance. Here we use the complementary techniques...

  3. What does it mean to be pseudo single domain? Demystifying the PSD state

    Science.gov (United States)

    Lascu, I.; Harrison, R. J.; Einsle, J. F.; Ball, M.

    2016-12-01

    Until recently, non-interacting stable single domain grains were thought to be the sole reliable paleomagnetic recorders. However most natural samples contain so-called "non-ideal" paleomagnetic recorders, which are either interacting single domain particles, or magnetic grains larger than single domain grains, but smaller than proper multi domain grains, which are poor paleomagnetic recorders. The grain size range for these recorders, which for magnetite comprises grains from 100 nm to a few μm in size, is known as the pseudo single domain (PSD) state. Natural samples containing abundant PSD grains have been shown time and again to reliably record thermomagnetic remanent magnetizations that are stable over billions of years. Here we attempt to shed new light on the PSD state by investigating obsidian varieties found at Glass Butte, Oregon, which present the opportunity to study simple cases of magnetic grains encapsulated in volcanic glass. We do this by combining rock magnetism, scanning electron microscopy (SEM) nanotomography, and finite-element micromagnetic modeling. Using rock magnetism we have identified PSD signatures in these samples via their fingerprint in first-order reversal curve (FORC) diagrams. Tomographic reconstructions obtained by stacking SEM images acquired via sequential milling through sample volumes of a few tens of cubic μm reveal the presence of abundant grains that span the PSD grain size interval. These grains have a variety of shapes, from simple ellipsoidal particles, to more complex morphologies attained through the coalescence of neighboring grains during crystallization, to intricate "rolling snowball" morphologies in larger grains that contain appendices formed as a result of particle growth in a dynamic environment as the flowing lava cooled. Micromagnetic modeling of the simplest morphologies reveals that these grains are in single vortex states, with the remanence controlled by irregularities in grain morphology. Coalesced

  4. Theoretical grain size limits for single-domain, pseudo-single-domain and multi-domain behavior in titanomagnetite ( x = 0.6) as a function of low-temperature oxidation

    Science.gov (United States)

    Moskowitz, Bruce M.

    1980-04-01

    A theoretical model of grain size variation of domain transitions in titanomagnetite ( x = 0.6) as a function of oxidation ( z) is presented. The superparamagnetic (SP) to single-domain (SD) transition ds, the SD to two-domain (TD) transition d0, the TD to three-domain (3D) transition and the pseudo-single domain (PSD) to multi-domain (MD) transition are calculated as a function of z. It is shown that all the transition grain sizes increase with z, except for the PSD-MD transition for z > 0.6. The calculations predict that ds increases from 0.044 to 0.197 μm, d0 increases from 0.54 to 13 μm, the TD-3D transition increases from 1.6 to 49 μm as z varies from 0 to 0.8. The PSD-MD transition increases from 42 μm at z = 0 to 150 μm at z = 0.6, whereas between z = 0.6 to z = 0.8, the PSD-MD transition decreases to 49 μm. Qualitatively, the model explains some of the trends in magnetic properties of submarine basalts with low-temperature oxidation. Quantitatively, the model does give reasonable estimates of the PSD-MD boundary and d0, which are close to the experimental values for x = 0.6 and z = 0. Furthermore, the model predicts that psarks or two-domain grains could be the major contributors to the remanence of oxidized submarine pillow basalts.

  5. Single crystalline superstructured stable single domain magnetite nanoparticles.

    Science.gov (United States)

    Reichel, Victoria; Kovács, András; Kumari, Monika; Bereczk-Tompa, Éva; Schneck, Emanuel; Diehle, Patrick; Pósfai, Mihály; Hirt, Ann M; Duchamp, Martial; Dunin-Borkowski, Rafal E; Faivre, Damien

    2017-03-30

    Magnetite nanoparticles exhibit magnetic properties that are size and organization dependent and, for applications that rely on their magnetic state, they usually have to be monodisperse. Forming such particles, however, has remained a challenge. Here, we synthesize 40 nm particles of magnetite in the presence of polyarginine and show that they are composed of 10 nm building blocks, yet diffract like single crystals. We use both bulk magnetic measurements and magnetic induction maps recorded from individual particles using off-axis electron holography to show that each 40 nm particle typically contains a single magnetic domain. The magnetic state is therefore determined primarily by the size of the superstructure and not by the sizes of the constituent sub-units. Our results fundamentally demonstrate the structure - property relationship in a magnetic mesoparticle.

  6. Observing thermomagnetic stability of nonideal magnetite particles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Kasama, Takeshi; Muxworthy, Adrian R.

    2014-01-01

    The thermomagnetic behavior of remanence-induced magnetite (Fe3O4) particles in the pseudo-single-domain (PSD) size range (similar to 0.1-10 mu m), which dominate the magnetic signature of many rock lithologies, is investigated using off-axis electron holography. Construction of magnetic induction...... maps allowed for the visualization of the vortex domain state in an individual Fe3O4 grain (similar to 200nm in diameter) as a function of temperature. Acquisition of a series of electron holograms at 100 degrees C intervals during in situ heating up to 700 degrees C demonstrates the vortex state...

  7. Formation of magnetite nanoparticles at low temperature: from superparamagnetic to stable single domain particles.

    Directory of Open Access Journals (Sweden)

    Jens Baumgartner

    Full Text Available The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20-30 nm or even multi-domain behavior (> 80 nm. The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes of these bacteria.

  8. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg, E-mail: oleg.vasylkiv@nims.go.jp

    2017-04-15

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  9. Ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition: Part II. Micromagnetic and image simulations

    DEFF Research Database (Denmark)

    Bryson, James F.J.; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2013-01-01

    Micromagnetic simulations have been used to explore the interaction between ferrimagnetic domain walls (DWs) and ferroelastic twin walls (TWs) below the Verwey transition in magnetite (Fe3O4). Simulations were performed using a thin-foil geometry in order to replicate the domain patterns observed...

  10. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Altan, Cem L. [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Gurten, Berna [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Sadza, Roel [Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Yenigul, Elcin [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey); Sommerdijk, Nico A.J.M., E-mail: n.sommerdijk@tue.nl [Laboratory of Materials and Interface Chemistry & Soft Matter cryoTEM Research Unit, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Bucak, Seyda, E-mail: seyda@yeditepe.edu.tr [Department of Chemical Engineering, Yeditepe University, Istanbul 34755 (Turkey)

    2016-10-15

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH){sub 2}) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40–50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity. - Highlights: • Stable, single domain magnetite nanoparticles are synthesized via partial oxidation. • Particles are readily stabilized in water by a biocompatible polymer. • Steric barrier is essential for the stabilization of large magnetite nanoparticles.

  11. A pseudo-single-crystalline germanium film for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, H.; Yamada, S.; Kanashima, T.; Hamaya, K., E-mail: hamaya@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kasahara, K.; Park, J.-H.; Miyao, M. [Department of Electronics, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Kudo, K.; Okamoto, H.; Moto, K.; Tsunoda, I. [Kumamoto National College of Technology, 2659-2 Suya, Koshi, Kumamoto 861-1102 (Japan)

    2015-01-26

    We demonstrate large-area (∼600 μm), (111)-oriented, and high-crystallinity, i.e., pseudo-single-crystalline, germanium (Ge) films at 275 °C, where the temperature is lower than the softening temperature of a flexible substrate. A modulated gold-induced layer exchange crystallization method with an atomic-layer deposited Al{sub 2}O{sub 3} barrier and amorphous-Ge/Au multilayers is established. From the Raman measurements, we can judge that the crystallinity of the obtained Ge films is higher than those grown by aluminum-induced-crystallization methods. Even on a flexible substrate, the pseudo-single-crystalline Ge films for the circuit with thin-film transistor arrays can be achieved, leading to high-performance flexible electronics based on an inorganic-semiconductor channel.

  12. Direct observation of ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition

    DEFF Research Database (Denmark)

    Kasama, Takeshi; Church, Nathan S.; Feinberg, Joshua M.

    2010-01-01

    . This study provides a new understanding of the low-temperature magnetic properties of magnetite that will affect a broad range of rock magnetic studies, from the interpretation of magnetic remanence in terrestrial rocks and sediments to the search for biogenic magnetite in extraterrestrial materials....

  13. Ferrimagnetic/ferroelastic domain interactions in magnetite below the Verwey transition. Part I: electron holography and Lorentz microscopy

    DEFF Research Database (Denmark)

    Kasama, Takeshi; Harrison, R. J.; Church, N. S.

    2013-01-01

    domain oriented along the monoclinic [001] axis. The nature of the interactions between the magnetic domain walls and the ferroelastic twin walls is investigated. Cooling and warming cycles through the transition temperature are used to show that a memory effect is likely to exist between the magnetic......-related crystal orientations to be distinguished. Off-axis electron holography and Lorentz electron microscopy are used to show that magnetic domains present at room temperature become subdivided into sub-micron-sized magnetic domains below the Verwey transition, with the magnetization direction in each magnetic...... states that form above and below the transition. Our results suggest that ferroelastic twin walls have a strong influence on the low temperature magnetic properties of magnetite....

  14. Effect of annealing on intrinsic magnetic properties in experimentally shocked magnetite

    Science.gov (United States)

    Kontny, Agnes; Reznik, Boris; Boubnov, Alexey; Göttlicher, Jörg; Steininger, Ralph

    2017-04-01

    Magnetite is an important magnetic carrier on planetary bodies and one of the most significant magnetic minerals in shocked crustal rocks on Earth. This study focuses on the intrinsic magnetic properties and chemical stability of magnetite, shocked experimentally between 5 and 30 GPa and subsequently heated in argon atmosphere up to 700°C. From pre-shocked, shocked and afterwards annealed samples temperature-dependent magnetic susceptibility and saturation isothermal magnetization as well as the Curie and Verwey transition temperature were measured. Shocked magnetite used for the heating experiments is characterized by decreasing magnetic susceptibility, increasing SIRM, a multidomain to pseudo single domain transition, and a decrease in apparent crystallite size seen in X-ray diffraction pattern with increasing shock pressure (Reznik et al., 2016). All these features are in agreement with magnetic domain size reduction caused either by grain fragmentation or a pinning of domain walls at crystal defects and dislocations. However, an increasing width and temperature of the Verwey transition, along with a very small expansion in the lattice cell parameter indicates also distortion of the tetrahedral and octahedral crystal sites. Annealing of the shocked samples strongly modifies the intrinsic magnetic properties and suggests a significant amount of non-permanent magnetic changes in impacted rocks. Therefore, special attention was given to the identification of the iron oxidation state and its coordination geometry in shocked and annealed magnetite using synchrotron-assisted X-ray absorption spectroscopy. In addition to defect healing, the ordering of ferric and ferrous iron on tetrahedral and octahedral sites seems to play a crucial role in the interpretation of the intrinsic magnetic properties modifications in shocked and annealed magnetite. Reznik, B., Kontny, A., Fritz, J., Gerhards, U., 2016, Shock-induced deformation phenomena in magnetite and their

  15. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Science.gov (United States)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg

    2017-04-01

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9-18 nm), rice-seed-like (75-290 nm) and lumpy (75-150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9-15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan.

  16. Stability of equidimensional pseudo–single-domain magnetite over billion-year timescales

    Science.gov (United States)

    Nagy, Lesleis; Williams, Wyn; Muxworthy, Adrian R.; Fabian, Karl; Almeida, Trevor P.; Conbhuí, Pádraig Ó.; Shcherbakov, Valera P.

    2017-09-01

    Interpretations of paleomagnetic observations assume that naturally occurring magnetic particles can retain their primary magnetic recording over billions of years. The ability to retain a magnetic recording is inferred from laboratory measurements, where heating causes demagnetization on the order of seconds. The theoretical basis for this inference comes from previous models that assume only the existence of small, uniformly magnetized particles, whereas the carriers of paleomagnetic signals in rocks are usually larger, nonuniformly magnetized particles, for which there is no empirically complete, thermally activated model. This study has developed a thermally activated numerical micromagnetic model that can quantitatively determine the energy barriers between stable states in nonuniform magnetic particles on geological timescales. We examine in detail the thermal stability characteristics of equidimensional cuboctahedral magnetite and find that, contrary to previously published theories, such nonuniformly magnetized particles provide greater magnetic stability than their uniformly magnetized counterparts. Hence, nonuniformly magnetized grains, which are commonly the main remanence carrier in meteorites and rocks, can record and retain high-fidelity magnetic recordings over billions of years.

  17. Striped domains of coarse-grained magnetite observed by X-ray photoemission electron microscopy as a source of the high remanence of granites in the Vredefort dome

    Directory of Open Access Journals (Sweden)

    Hiroto eKubo

    2015-06-01

    Full Text Available The characteristics of a coarse-grained high-remanence magnetite obtained from shocked Vredefort granite were investigated by X-ray magnetic circular dichroism (XMCD analysis and X-ray absorption spectroscopy (XAS. The study utilized a spectroscopic photoelectron low-energy electron emission microscope (SPELEEM and was conducted in the SPring-8 large-synchrotron radiation facility. It is generally believed that the strong and stable bulk remanence of Vredefort granites is due to the presence of minerals that have been strongly magnetized by either an impact-generated magnetic field or terrestrial lightning strikes. Although coarse-grained magnetite is traditionally characterized by weak coercivity and remanence, the specimen used in the present study exhibited high coercivity and an intense remanent magnetization. The presence of hematite lamellae observed on the partially oxidized magnetite specimen indicated an array of striped domains, intensifying a remanence and coercivity. We also conducted XAS and XMCD analyses on a natural lodestone permanent magnet produced by lightning strikes; while maghemite was found to be present, no magnetic domain structures were observed. Considering that the nucleation of hematite lamellae on magnetite/maghemite grains is due to high-temperature oxidation, we attribute the intense remanent magnetization and magnetic hardening of Vredefort granites to post-impact hydrothermal activity.

  18. Magnetic domain structures and stray fields of individual elongated magnetite grains revealed by magnetic force microscopy (MFM)

    DEFF Research Database (Denmark)

    Frandsen, Cathrine; Stipp, S. L. S.; McEnroe, S. A.

    2004-01-01

    In order to clarify the relationship between microscopic and macroscopic magnetic features of a rock, we applied magnetic force microscopy (MFM) as a local probe on a sample with an intense natural remanent magnetisation, a norite from Heskestad, Norway. We studied in detail seven magnetite (Fe3O...

  19. Biogenic magnetite as a primary remanence carrier in limestone deposits

    Science.gov (United States)

    Chang, Shih-Bin R.; Kirschvink, Joseph L.; Stolz, John F.

    1987-06-01

    Studies on the microbial communities and magnetic phases of samples collected from carbonate oozes at Sugarloaf Key, FL, U.S.A. and calcareous laminated sediments from Laguna Figueroa, Baja California, Mexico have revealed the existence of magnetotactic bacteria and ultrafine-grained single domain magnetite in both environments. Magnetotactic bacteria were identified by light and electron microscopy. The single domain magnetite was detected by coercivity spectra analysis with a SQUID magnetometer and examined under the transmission electron microscope. The similarity, in terms of size and shape, between the single domain magnetite found in these sediments and the magnetite observed in the bacterial magnetosome from enriched cultures indicates the ultrafine-grained magnetite in these two marine environments was biologically formed. These results, combined with the common occurrences of ultrafine-grained magnetite in limestone deposits detected rock magnetically, suggest biogenic magnetite may be present and contribute to the magnetic remanence in these rocks. Several Cambrian limestone samples, separately collected from Siberia, China, and Kazakhstan, were examined for the presence of bacterial magnetite. Samples from the Lower Cambrian Sinskian Formation at Siberia Platform were found to contain both a large amount of apparently bacterial magnetite particles and a very stable primary magnetic component. Post-Cambrian diagenesis does not seem to affect the microgranulometry of these apparently bacterial magnetite crystals or the magnetic remanence carried by them. Assessing the potential role of biogenic magnetite as a primary remanence carrier in other Phanerozoic limestone deposits ought to be further pursued.

  20. Neutron depolarization measurements of magnetite in chiton teeth

    Science.gov (United States)

    Seifert, M.; Schulz, M.; Benka, G.; Pfleiderer, C.; Gilder, S.

    2017-06-01

    Magnetite constitutes one of the most abundant magnetic minerals in the Earth's crust. In the single domain state, magnetite often carries the magnetic remanence in rocks due to its stable and strong magnetic remanence. Hence it is of keen interest to paleomagnetists who study the ancient magnetic field preserved in the rock record. The extremely small size range and vulnerability to oxidation of single domain magnetite makes synthetization and preservation virtually impossible. Consequently, most experimental work on magnetite under pressure is carried out on multidomain magnetite. The radula of the marine mollusc chiton (Polyplacophora) is one of the few natural sources of single domain magnetite. We have performed a comparative study on samples of chiton radula in a vibrating sample magnetometer (VSM) and with the newly evolving neutron depolarization imaging (NDI) technique. Despite a constant offset between the VSM and NDI data in the coercivity we find a good agreement between the two techniques.

  1. The effect of cooling rate on the intensity of thermoremanent magnetization (TRM) acquired by assemblages of pseudo-single domain, multidomain and interacting single-domain grains

    NARCIS (Netherlands)

    Biggin, A.J.; Badejo, S.; Hodgson, E.; Muxworthy, A.R.; Shaw, J.; Dekkers, M.J.

    2013-01-01

    Experiments designed to measure the absolute palaeointensity of the geomagnetic field generally do so by comparing the ancient thermoremanent magnetization (TRM) retained by an igneous rock with a new TRM imparted in the laboratory. One problem with this procedure is that the relative magnitudes of

  2. Simple and facile approach to synthesize magnetite nanoparticles and assessment of their effects on blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Cotica, Luiz F., E-mail: lfcotica@pq.cnpq.br [Department of Physics, Universidade Estadual de Maringa, Maringa, PR 87020900 (Brazil); Freitas, Valdirlei F.; Dias, Gustavo S.; Santos, Ivair A. [Department of Physics, Universidade Estadual de Maringa, Maringa, PR 87020900 (Brazil); Vendrame, Sheila C.; Khalil, Najeh M.; Mainardes, Rubiana M. [Department of Pharmacy, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040080 (Brazil); Staruch, Margo; Jain, Menka [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2012-02-15

    In this paper, a very simple and facile approach for the large scale synthesis of uniform and size-controllable single-domain magnetite nanoparticles is reported. These magnetite nanoparticles were synthesized via thermal decomposition of a ferric nitrate/ethylene glycol solution. The structural and morphological properties of the synthesized nanoparticles were carefully studied. Nearly spherical nanoparticles with inverted spinel structure and average particle and crystallite sizes smaller than 20 nm were obtained. The magnetic measurements revealed that magnetite nanoparticles have a magnetic saturation value near that of the bulk magnetite. The erythrocyte cytotoxicity assays showed no hemolytic potential of the samples containing magnetite nanoparticles, indicating no cytotoxic activity on human erythrocytes, which makes these interesting for biotechnological applications. - Highlights: > Simple and facile approach to large scale synthesis of magnetite nanoparticles. > Erythrocyte cytotoxicity assays showed no hemolytic potential of nanoparticles. > Saturation magnetization of nanoparticles reached near that of the bulk magnetite.

  3. Mechanochemical Activation of Magnetite Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sorescu, Monica [Duquesne University, Department Of Physics, Bayer School Of Natural And Environmental Sciences (United States)], E-mail: sorescu@duq.edu

    2000-09-15

    Using Moessbauer spectroscopy as a function of ball milling time, it was found that nanomagnetite behaves differently than magnetite during mechanochemical activation. The phase sequence is determined by the original particle size of the powder. Magnetite suffers a phase transformation to hematite, while nanomagnetite (d = 19 nm) gives rise to superparamagnetism as effect of prolonged milling.

  4. Mechanochemical Activation of Magnetite Nanoparticles

    Science.gov (United States)

    Sorescu, Monica

    2000-09-01

    Using Mössbauer spectroscopy as a function of ball milling time, it was found that nanomagnetite behaves differently than magnetite during mechanochemical activation. The phase sequence is determined by the original particle size of the powder. Magnetite suffers a phase transformation to hematite, while nanomagnetite ( d = 19 nm) gives rise to superparamagnetism as effect of prolonged milling.

  5. Presumed magnetic biosignatures observed in magnetite derived from abiotic reductive alteration of nanogoethite

    Science.gov (United States)

    Till, Jessica L.; Guyodo, Yohan; Lagroix, France; Morin, Guillaume; Menguy, Nicolas; Ona-Nguema, Georges

    2017-03-01

    The oriented chains of nanoscale Fe-oxide particles produced by magnetotactic bacteria are a striking example of biomineralization. Several distinguishing features of magnetite particles that comprise bacterial magnetosomes have been proposed to collectively constitute a biosignature of magnetotactic bacteria (Thomas-Keprta et al., 2001). These features include high crystallinity, chemical purity, a single-domain magnetic structure, well-defined crystal morphology, and arrangement of particles in chain structures. Here, we show that magnetite derived from the inorganic breakdown of nanocrystalline goethite exhibits magnetic properties and morphologies remarkably similar to those of biogenic magnetite from magnetosomes. During heating in reducing conditions, oriented nanogoethite aggregates undergo dehydroxylation and transform into stoichiometric magnetite. We demonstrate that highly crystalline single-domain magnetite with euhedral grain morphologies produced abiogenically from goethite meets several of the biogenicity criteria commonly used for the identification of magnetofossils. Furthermore, the suboxic conditions necessary for magnetofossil preservation in sediments are conducive to the reductive alteration of nanogoethite, as well as the preservation of detrital magnetite originally formed from goethite. The findings of this study have potential implications for the identification of biogenic magnetite, particularly in older sediments where diagenesis commonly disrupts the chain structure of magnetosomes. Our results indicate that isolated magnetofossils cannot be positively distinguished from inorganic magnetite on the basis of their magnetic properties and morphology, and that intact chain structures remain the only reliable distinguishing feature of fossil magnetosomes.

  6. Magnetite diagenesis in marine sediments from the Oregon continental margin

    Science.gov (United States)

    Karlin, Robert

    1990-04-01

    The magnetochemistry of sediments from the Oregon continental margin is examined to determine the effects of iron-sulfur diagenesis on the paleomagnetic record. Magnetic mineral dissolution and transformation into iron sulfides are a common feature in these suboxic to anoxic lutites. These processes are evidenced in rapid decreases in natural remanent magnetization intensities and stabilities, systematic changes in other rock magnetic properties, and increases in solid phase sulfur concentrations with depth. Hysteresis measurements are used to evaluate downcore changes in magnetite concentration and grain size. Magnetite abundances decrease downcore from initial values of about 0.1%, and nominal grain diameters lie within a narrow pseudosingle domain range of 0.08 to 0.6 μm. A first-order surface area reaction model, dA/dt = -kA, is proposed to explain the magnetite dissolution mechanism, where A is the total magnetite surface area and k is the rate constant. The solution of this equation predicts that the surface area and concentration decrease exponentially, and the concentration, in addition, depends on grain size. Application of this model in two cores where grain size varies with depth successfully explains the downcore profiles of both concentration and surface area. Despite extensive magnetite destruction, magnetic directions in such sediments appear to reliably record long-wavelength trends of the geomagnetic field.

  7. Effect of magnetite nanoparticle agglomerates on ultrasound induced inertial cavitation.

    Science.gov (United States)

    Smith, Moira J; Ho, Vincent H B; Darton, Nicholas J; Slater, Nigel K H

    2009-06-01

    High intensity focused ultrasound (HIFU) induced inertial cavitation has been shown to improve release and cellular uptake of drugs. The effects of magnetite nanoparticle agglomerates (290+/-10nm diameter), silica coated magnetite nanoparticle agglomerates (320+/-10nm diameter) and silica particles (320+/-10nm diameter) suspended in MilliQ water on the degree of inertial cavitation due to HIFU were investigated. The HIFU transducer was operated at a frequency of 1.1 MHz, 1.67 kHz pulse repetition frequency, with applied duty cycles (DC) between 0% and 5% and different peak negative focal pressures (PNFPs) applied up to 7.2 MPa. The inertial cavitation dose (ICD: time averaged root-mean-squared broadband noise amplitude in the frequency domain) was measured in the presence and absence of nanoparticles when subjected to HIFU. Magnetite nanoparticle agglomerates caused a significant increase in the ICD above 2.7 MPa PNFP compared with MilliQ water, silica coated magnetite agglomerates and silica particles. With the dramatic increase in ICD on introduction of these magnetite agglomerates, this technique could provide a method of HIFU triggered drug delivery by enhancing inertial cavitation. The superparamagnetic properties of these particles offer the possibility of magnetic targeting to the site of disease.

  8. MATHEMATICAL MODELLING FOR MAGNETITE (CRUDE ...

    African Journals Online (AJOL)

    The present research focuses to develop mathematical model for the removal of iron (magnetite) by ion-exchange resin from primary heat transfer loop of process industries. This mathematical model is based on operating capacities (that's provide more effective design as compared to loading capacity) from static laboratory ...

  9. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States)

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  10. Hematite Versus Magnetite as the Signature for Planetary Magnetic Anomalies?

    Science.gov (United States)

    Kletetshka, Gunther; Taylor, Patrick T.; Wasilewski, Peter J.

    1999-01-01

    Crustal magnetic anomalies are the result of adjacent geologic units having contrasting magnetization. This magnetization arises from induction and/or remanence. In a planetary context we now know that Mars has significant crustal magnetic anomalies due to remanent magnetization, while the Earth has some anomalies where remanence can be shown to be important. This picture, however, is less clear because of the nature and the magnitude of the geomagnetic field which is responsible for superimposed induced magnetization. Induced magnetization assumes a magnetite source, because of its much greater magnetic susceptibility when compared with other magnetic minerals. We investigated the TRM (thermoremanent magnetization) acquisition of hematite, in weak magnetic fields up to 1 mT, to determine if the remanent and induced magnetization of hematite could compete with magnetite. TRM acquisition curves of magnetite and hematite show that multi-domain hematite reaches TRM saturation (0.3 - 0.4 A sq m/kg) in fields as low as 100 microT. However, multi-domain magnetite reaches only a few percent of its TRM saturation in a field of 100 microT (0.02 - 0.06 A sq m/kg). These results suggest that a mineral such as hematite and, perhaps, other minerals with significant remanence and minor induced magnetization may play an important role in providing requisite magnetization contrast. Perhaps, and especially for the Mars case, we should reevaluate where hematite and other minerals, with efficient remanence acquisition, exist in significant concentration, allowing a more comprehensive explanation of Martian anomalies and better insight into the role of remanent magnetization in terrestrial crustal magnetic anomalies.

  11. Large magnetorefractive effect in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J M; Fontcuberta, J; Herranz, G [Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC Campus de la UAB, Bellaterra 08193, Catalonia (Spain); Arora, S K; Ramos, R; Shvets, I V, E-mail: gherranz@icmab.e [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2010-10-15

    We carried out a magneto-optical spectroscopic study of magnetite (Fe{sub 3}O{sub 4}) thin films and single crystals at optical wavelengths. We observed a relevant quadratic magneto-optic contribution that can be notably larger than first-order linear magneto-optics at some range of wavelengths in the visible region. These unusual quadratic effects are particularly strong at the Verwey temperature (100-120 K) and decay slowly away from this transition temperature. We attribute this remarkable magneto-optical response to a magnetorefractive effect associated with the field-dependent polaronic conductivity at optical frequencies, which interestingly enough is already noticeable at room temperature.

  12. Large magnetorefractive effect in magnetite

    Science.gov (United States)

    Caicedo, J. M.; Arora, S. K.; Ramos, R.; Shvets, I. V.; Fontcuberta, J.; Herranz, G.

    2010-10-01

    We carried out a magneto-optical spectroscopic study of magnetite (Fe3O4) thin films and single crystals at optical wavelengths. We observed a relevant quadratic magneto-optic contribution that can be notably larger than first-order linear magneto-optics at some range of wavelengths in the visible region. These unusual quadratic effects are particularly strong at the Verwey temperature (100-120 K) and decay slowly away from this transition temperature. We attribute this remarkable magneto-optical response to a magnetorefractive effect associated with the field-dependent polaronic conductivity at optical frequencies, which interestingly enough is already noticeable at room temperature.

  13. Magnetite-Based Magnetoreceptor Cells in the Olfactory Organ of Rainbow Trout and Zebrafish

    Science.gov (United States)

    Kirschvink, J. L.; Cadiou, H.; Dixson, A. D.; Eder, S.; Kobayashi, A.; McNaughton, P. A.; Muhamad, A. N.; Raub, T. D.; Walker, M. M.; Winklhofer, M.; Yuen, B. B.

    2011-12-01

    Many vertebrate and invertebrate animals have a geomagnetic sensory system, but the biophysics and anatomy of how magnetic stimuli are transduced to the nervous system is a challenging problem. Previous work in our laboratories identified single-domain magnetite chains in olfactory epithelium in cells proximal to the ros V nerve, which, in rainbow trout, responds to magnetic fields. Our objectives are to characterize these magnetite-containing cells and determine whether they form part of the mechanism of magnetic field transduction in teleost fishes, as a model for other Vertebrates. Using a combination of reflection mode confocal microscopy and a Prussian Blue technique modified to stain specifically for magnetite, our Auckland group estimated that both juvenile rainbow trout (ca. 7 cm total length) olfactory rosettes have ~200 magnetite-containing cells. The magnetite present in two types of cells within the olfactory epithelium appears to be arranged in intracellular chains. All of our groups (Munich, Auckland, Cambridge and Caltech) have obtained different types of structural evidence that magnetite chains closely associate with the plasma membrane in the cells, even in disaggregated tissues. In addition, our Cambridge group used Ca2+ imaging to demonstrate a clear response by individual magnetite-containing cells to a step change in the intensity of the external magnetic field and a slow change in Ca2+ activity when the external magnetic field was cancelled. In the teleost, zebrafish (Danio rerio), a small (~4 cm adult length in captivity) genetic and developmental biology model organism, our Caltech group detected ferromagnetic material throughout the body, but concentrated in the rostral trunk, using NRM and IRM scans of whole adults. Our analysis suggests greater than one million, 80-100 nm crystals, with Lowrie-Fuller curves strongly consistent with single-domain magnetite in 100-100,000 magnetocytes. Ferromagentic resonance (FMR) spectra show crystals

  14. Micromagnetism in (001) magnetite by spin-polarized low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); Vergara, Lucía [Instituto de Química-Física “Rocasolano”, CSIC, Madrid 28006 (Spain); N' Diaye, Alpha T. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Quesada, Adrian [Instituto de Cerámica y Vidrio, CSIC, Calle Kelsen 5, 28049, Madrid (Spain); Schmid, Andreas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2013-07-15

    Spin-polarized low-energy electron microscopy was used to image a magnetite crystal with (001) surface orientation. Sets of spin-dependent images of magnetic domain patterns observed in this surface were used to map the direction of the magnetization vector with high spatial and angular resolution. We find that domains are magnetized along the surface <110> directions, and domain wall structures include 90° and 180° walls. A type of unusually curved domain walls are interpreted as Néel-capped surface terminations of 180° Bloch walls. - Highlights: ► The (001) surface of magnetite is imaged by spin-polarized low-energy electron microscopy. ► The magnetic domain microstructure is resolved. ► Magnetic easy axes in this surface are found to be along <110> directions. ► Magnetic domain wall structures include wide Néel-caps.

  15. Magnetoresistance in magnetite film: A theoretical and experimental investigation

    Science.gov (United States)

    Zhang, Z. M.; Zhou, W. P.; Li, Q.; Wang, D. H.; Cao, Q. Q.; Du, Y. W.

    2017-11-01

    Functional dependence of magnetoresistance on external magnetic field is of great importance for not only discovering the origin of electrical transport but also tailoring materials for advanced properties in magnetic-field-controlled devices. By utilizing the magnetic domain-rotation model combined with antiphase boundary and charge carrier hopping theories, the formular description of magnetoresistance in magnetite (Fe3O4) film has been studied systematically. The calculation shows that the magnetoresistance depends linearly and quadratically on the external magnetic field when the fields are applied parallel and perpendicular to the Fe3O4 film plane, respectively. We give the experimental MR data to verify these theoretical results.

  16. Magnetite Authigenesis and the Ancient Martian Atmosphere

    Science.gov (United States)

    Tosca, N. J.; Ahmed, I.; Ashpitel, A.; Hurowitz, J. A.

    2017-10-01

    Merging new experimental constraints with geological data from Gale Crater shows that magnetite authigenesis may have provided a short-term feedback for stabilizing liquid water once it was generated on early Mars.

  17. Thermally Induced Magnetite-Haematite Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Mazo-Zuluaga, J.; Barrero, C. A. [Universidad de Antioquia, Grupo de Estado Solido, Instituto de Fisica (Colombia); Diaz-Teran, J.; Jerez, A. [Universidad Nacional de Educacion a Distancia UNED, Po Senda del Rey 9, Departamento de Quimica Inorganica y Quimica Tecnica (Spain)

    2003-06-15

    The products of thermal treatments of pure and copper doped magnetites have been investigated using Moessbauer spectrometry, XRD and thermal analysis techniques. The samples were heated in air between RT and 800{sup o}C at several heating rates. Samples treated at 520{sup o}C during 12 and 24 hours consist only of well-crystallized haematite. On the other hand, magnetites treated at 350{sup o}C consisted of mixtures of haematite, maghemite and magnetite, with relative amount of each phase depending on the presence of copper as well as on the heating time. Results show that the transformation of magnetite to haematite goes through the formation of maghemite, and that the presence of copper delays this transformation.

  18. Low-Temperature Magnetic Anomaly in Magnetite

    OpenAIRE

    Svindrych, Zdenek; Janu, Zdenek; Kozlowski, Andrzej; Honig, Jurgen M.

    2013-01-01

    We have studied experimentally the responses of high quality single crystals of stoichiometric synthetic magnetite to applied weak dc and ac magnetic fields in the range of 6 K to 60 K, far below the Verwey transition. The results can be compared to so called Magnetic After Effects (MAE) measurements, which are the most extensive magnetic measurements of magnetite at these temperatures. We present a novel point of view on the relaxation phenomena encountered at these temperatures - the Low Te...

  19. Evidence for a ubiquitous, sub-microscopic 'magnetite-like' constituent in the lunar soils

    Science.gov (United States)

    Griscom, D. L.; Friebele, E. J.; Marquardt, C. L.

    1973-01-01

    Electron spin resonance (ESR) has been employed in a study of the ferromagnetic constituents of a wide variety of soils from six sampled regions of the moon as well as glasses made to simulate lunar compositions. A significant result has been that magnetite-like phases (magnetic iron spinel) precipitated in and on simulated lunar glasses as a result of sub-solidus oxidation yield room-temperature ESR spectra virtually identical with the line shape predicted for spherical, single domain particles of metallic Fe. It is shown that such magnetite-like phases can nevertheless be distinguished from metallic iron on the basis of the temperature dependence of the ESR intensity.

  20. Magnetite pollution nanoparticles in the human brain

    Science.gov (United States)

    Maher, Barbara A.; Ahmed, Imad A. M.; Karloukovski, Vassil; MacLaren, Donald A.; Foulds, Penelope G.; Allsop, David; Mann, David M. A.; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian

    2016-09-01

    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.

  1. Synthesis of Magnetite Nanoparticles by Top-Down Approach from a High Purity Ore

    Directory of Open Access Journals (Sweden)

    Gayan Priyadarshana

    2015-01-01

    Full Text Available This study attempts to synthesize magnetite nanoparticles from a high purity natural iron oxide ore found in Panvila, Sri Lanka, following a novel top-down approach. Powder X-Ray diffraction, elemental analysis, and chemical analysis data confirmed the ore to be exclusively magnetite with Fe2+ : Fe3+ ratio of 1 : 2. Surface modified magnetite nanoparticles were synthesized by destructuring of this ore using a top-down approach in the presence of oleic acid. These oleic acid coated nanoparticles were further dispersed in ethanol resulting in stable nanomagnetite dispersion. Interestingly, the nanoparticles demonstrated a spherical morphology with a particle size ranging from 20 to 50 nm. Magnetic force microscopic data was used to confirm the topography of the nanoparticles and to study the magnetic domain structure.

  2. Nanoengineering of methylene blue loaded silica encapsulated magnetite nanospheres and nanocapsules for photodynamic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Andhariya, Nidhi [Bhavnagar University, Department of Physics (India); Chudasama, Bhupendra, E-mail: bnchudasama@gmail.com [Thapar University, School of Physics and Materials Science (India); Mehta, R. V. [Bhavnagar University, Department of Physics (India); Upadhyay, R. V. [Charotar University of Science and Technology, P.D. Patel Institute of Applied Sciences (India)

    2011-09-15

    Core-shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug 'Methylene blue' (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core-shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.

  3. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  4. Aging study of the powdered magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Umar Saeed, E-mail: omar_aps@yahoo.co.uk [Department of Physics, University of Peshawar (Pakistan); Rahim, Abdur, E-mail: rahimkhan533@gmail.com [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Nasrullah [Department of Physics, Kohat University of Science and Technology, Kohat (Pakistan); Muhammad, Nawshad; Rehman, Fozia [Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore (Pakistan); Ahmad, Khalid [Institute of Chemistry, State University of Campinas, PO Box 6154, 13083-970 Campinas, SP (Brazil); Iqbal, Jibran [College of Natural and Health Sciences, Zayed University, 144534 Abu Dhabi (United Arab Emirates)

    2017-03-01

    Magnetite nanoparticles were produced via co-precipitation method and then stored at room temperature for 6 years in aerobic atmosphere. Variations in the inherent solid phase and solid interfacial properties of the prepared magnetite nanoparticles were investigated. For this purpose the fresh and aged samples were characterized using transmission electron microscopy, vibrating sample magnetometer, X-ray diffractometer and energy dispersive X-ray spectrometer. The solid phase transformations of magnetite nanoparticles to maghemite nanoparticles as well as formation of other iron oxides were happened. After aging of 6 years, no change was occurred in the magnetic features; however increase in particle size from 9.6 to 18.5 measured by transmission electron microscopy was confirmed. The crystallite size and vibrating sample magnetometer values were measured before and after aging and found to increase from 8.98 nm and 47.23 emu/g to 16.18 nm and 58.36 emu/g respectively. The formation of other iron oxides, recrystallization and agglomeration during aging process, caused a significant decrease in the specific surface area from 124.43 to 45.00 m{sup 2}/g of the stored sample. - Highlights: • Magnetite nanoparticles (NPs) were produced via co-precipitation method. • Inherent solid phase and interfacial properties of NP were evaluated after 6 years. • The solid phase transformations of magnetite NPs to maghemite NPs was happened. • After aging of 6 years, no change was occurred in the magnetic features.

  5. Rock magnetism linked to human brain magnetite

    Science.gov (United States)

    Kirschvink, Joseph L.

    Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

  6. Immobilization of Peroxidase onto Magnetite Modified Polyaniline

    Directory of Open Access Journals (Sweden)

    Eduardo Fernandes Barbosa

    2012-01-01

    Full Text Available The present study describes the immobilization of horseradish peroxidase (HRP on magnetite-modified polyaniline (PANImG activated with glutaraldehyde. After the optimization of the methodology, the immobilization of HRP on PANImG produced the same yield (25% obtained for PANIG with an efficiency of 100% (active protein. The optimum pH for immobilization was displaced by the effect of the partition of protons produced in the microenvironment by the magnetite. The tests of repeated use have shown that PANImG-HRP can be used for 13 cycles with maintenance of 50% of the initial activity.

  7. Magnetite Nanoparticles Prepared By Spark Erosion

    Directory of Open Access Journals (Sweden)

    Maiorov M.

    2016-08-01

    Full Text Available In the present research, we study a possibility of using the electric spark erosion method as an alternative to the method of chemical co-precipitation for preparation of magnetic nanoparticles. Initiation of high frequency electric discharge between coarse iron particles under a layer of distilled water allows obtaining pure magnetite nanoparticles.

  8. Magnetite nanoparticles embedded in biodegradable porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Granitzer, P., E-mail: petra.granitzer@uni-graz.a [Institute of Physics, Karl Franzens University Graz, Universitaetsplatz 5, 8010 Graz (Austria); Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, 8010 Graz (Austria); Rumpf, K. [Institute of Physics, Karl Franzens University Graz, Universitaetsplatz 5, 8010 Graz (Austria); Roca, A.G.; Morales, M.P. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Poelt, P.; Albu, M. [Institute for Electron Microscopy, University of Technology Graz, Steyrergasse 17, 8010 Graz (Austria)

    2010-05-15

    Magnetite nanoparticles, which are coated with oleic acid in a hexane solution and exhibit an average diameter of 7.7 nm, were embedded in a porous silicon (PS) matrix by immersion under defined parameters (e.g. concentration, temperature, time). The porous silicon matrix is prepared by anodization of a highly n-doped silicon wafer in an aqueous HF-solution. Magnetic characterization of the samples has been performed by SQUID-magnetometry. The superparamagnetic behaviour of the magnetite nanoparticles is represented by temperature-dependent magnetization measurements. Zero field (ZFC)/field cooled (FC) experiments indicate magnetic interactions between the particles. For the infiltration into the PS-templates different concentrations of the magnetite nanoparticles are used and magnetization measurements are performed in respect with magnetic interactions between the particles. The achieved porous silicon/magnetite specimens are not only interesting due to their transition between superparamagnetic and ferromagnetic behaviour, and thus for magnetic applications but also because of the non-toxicity of both materials giving the opportunity to employ the system in medical applications as drug delivery or in medical diagnostics.

  9. Magnetite in Black Sea Turtles (Chelonia agassizi)

    Science.gov (United States)

    Fuentes, A.; Urrutia-Fucugauchi, J.; Garduño, V.; Sanchez, J.; Rizzi, A.

    2004-12-01

    Previous studies have reported experimental evidence for magnetoreception in marine turtles. In order to increase our knowledge about magnetoreception and biogenic mineralization, we have isolated magnetite particles from the brain of specimens of black sea turtles Chelonia agassizi. Our samples come from natural deceased organisms collected the reserve area of Colola Maruata in southern Mexico. The occurrence of magnetite particles in brain tissue of black sea turtles offers the opportunity for further studies to investigate possible function of ferrimagnetic material, its mineralogical composition, grain size, texture and its location and structural arrangement within the host tissue. After sample preparation and microscopic examination, we localized and identified the ultrafine unidimensional particles of magnetite by scanning electron microscope (SEM). Particles present grain sizes between 10.0 to 40.0Mm. Our study provides, for the first time, evidence for biogenic formation of this material in the black sea turtles. The ultrafine particles are apparently superparamagnetic. Preliminary results from rock magnetic measurements are also reported and correlated to the SEM observations. The black turtle story on the Michoacan coast is an example of formerly abundant resource which was utilized as a subsistence level by Nahuatl indigenous group for centuries, but which is collapsing because of intensive illegal commercial exploitation. The most important nesting and breeding grounds for the black sea turtle on any mainland shore are the eastern Pacific coastal areas of Maruata and Colola, in Michoacan. These beaches are characterized by important amounts of magnetic mineral (magnetites and titanomagnetites) mixed in their sediments.

  10. Dipolar structures in colloidal magnetite dispersions

    NARCIS (Netherlands)

    Klokkenburg, Mark

    2007-01-01

    Dipolar structures in liquid colloidal dispersions comprising well-defined magnetite (Fe3O4) nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). Compared to conventional ferrofluids, these

  11. Interaction of magnetite with soluble silicates and bentonite:implications for wet agglomeration of magnetite concentrate

    OpenAIRE

    Yang, Xiaofang

    2011-01-01

    Iron ore green pellets are produced by agglomeration of moist magnetite concentrates. The quality of green pellets is essential for the transportability and metallurgical benefits of the final product. The agglomeration behavior of magnetite concentrate particles is strongly influenced by its surface properties which are affected by the interactions with flotation reagents (i.e. water glass and collector) and species in process water. However, the mechanisms of these interactions and the infl...

  12. Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil

    Science.gov (United States)

    Chan, Q. H. S.; Han, J.; Zolensky, M.

    2016-01-01

    Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure

  13. Biomimetic magnetite mediated by magnetosome proteins vs. ALH84001 meteorite magnetite: Are both comparable?

    Energy Technology Data Exchange (ETDEWEB)

    Barry-Sosa, A.; Jimenez-Lopez, C.

    2016-07-01

    The suggestion in 1996 that the Martian meteorite ALH84001 could contain proof of possible biologic activity in the past have generated a huge controversy that last until today. One of the most discussed evidence is the presence of magnetite crystals that resemble those produced by a particular group of bacteria, the so called magnetotactic bacteria (MTB). These microorganisms are the only known example of biologically controlled biomineralization among the prokaryotes and exert an exquisite control over the biomineralization process of intracellular magnetite that result in crystals with very unique features that, so far, cannot be replicated by inorganic means. These unique features have been used to recognize the biological origin of natural terrestrial magnetites, but the problem arises when those same biogenecity criteria are applied to extraterrestrial magnetites. Most of the problems are caused by the fact that it is not clear whether or not some of those characteristics can be reproduced inorganically. Magnetosome protein mediated magnetite synthesis seems to be the best approach to obtain magnetosome-like magnetites, and such strategy may help clarify what is the specific biosignature of magnetotactic bacteria. (Author)

  14. Magnetite Biomineralization: Fifty years of progress, from beach-combing to the SQUID microscope

    Science.gov (United States)

    Kirschvink, J. L.; Dixson, A. D.; Raub, T.

    2012-12-01

    Magnetite biomineralization was first discovered 50 years ago as a hardening agent in the teeth of the Polyplacophoran molluscs (chitons) by the late Prof. Heinz A. Lowenstam of Caltech, when he noticed unusual erosional effects produced by their grazing in the intertidal zones of Palau (Lowenstam, 1962). Since then, biogenic magnetite has been detected in a broad range of organisms, including magnetotactic bacteria, protists, insects, fish, amphibians, reptiles, birds, and mammals including humans. In many species, the role of ferromagnetic material as a neurophysiological transducer is demonstrated clearly through the effects of pulse-remagnetization on behavior. A brief (1 uS), properly configured magnetic discharge from a rectified LC circuit, tailored to exceed the coercivity of the magnetite, will often abolish a magnetic behavioral response, or in some cases make the organism go the wrong way. This is a unique ferromagnetic effect. The genes controlling magnetite biomineralization are well characterized in several species of bacteria, and the ability of some of these bacterial genes to initiate magnetite precipitation in mammalian cell lines argues for a common descent, probably via a magnetotactic mitochondrial ancestor. Previous studies in fish reported the presence of single-domain magnetite crystals in cells near projections of the trigeminal nerve, co-located in the olfactory epithelium. Although the cells are rare, the recent development of a spinning magnetic field technique allows easy identification and isolation of these cells for individual study (Eder et al., 2012). The cells are surprisingly magnetic, with moments hundreds of times larger than typical magnetotactic bacteria. Subsequent efforts to identify the anatomical seat of magnetoreceptors have focused on the same locations in new organisms, excluding other areas. Using SQUID moment magnetometry and SQUID scanning microscopy, we report here the unexpected presence of biogenic magnetite in

  15. Characterization by electrochemical impedance spectroscopy of magnetite nanoparticles supported on carbon paste electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Lopez, A.; Torres-Torres, D.; Mojica-Gomez, J.; Estrada-Arteaga, C. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico Queretaro - Sanfandila, C.P. 76703, Pedro Escobedo, Queretaro (Mexico); Antano-Lopez, R., E-mail: rantano@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico Queretaro - Sanfandila, C.P. 76703, Pedro Escobedo, Queretaro (Mexico)

    2011-09-30

    Magnetite nanoparticles were supported on carbon paste electrode and characterized by low scan rate voltammetry and electrochemical impedance spectroscopy (EIS) to obtain mechanistic information related to its oxidation and reduction in acid media. The voltammograms showed only one reduction and one oxidation peak for the supported magnetite, which were attributed to formation of ferrous ion and ferric oxide, respectively. Both peaks are fairly wide, indicating complex mechanisms. Using EIS, a mechanism showing up to three time constants, capacitive all of them, was evidenced, both in anodic and cathodic domain. These were attributed to charge transfer at the highest frequencies, adsorption of generated species at intermediate frequencies, and proton adsorption at low frequencies. Discussion about the nature of the adsorbed species and the concerned mechanism for each domain is developed.

  16. Magnetic Dinner Salads: The Role of Biogenic Magnetite in Cryopreservation for Common Food Plants

    Science.gov (United States)

    Chaffee, T. M.; Kirschvink, J. L.; Kobayashi, A. K.

    2015-12-01

    Biogenically-precipitated magnetite has been found in organisms ranging from Bacteria, single-celled protists, and many of the animal phyla, where its major function is navigation and magnetoreception. To date there is but a single report of biogenic magnetite in plants (essentially, magnetoferritin), and that is in common grass (Festuca species, from Gajdardziska-Josifovska et. al. doi:10.1127/0935-1221/2001/0013/0863). Recent developments in cryopreservation suggest that ~ 1 mT, ~ 10 Hz oscillating magnetic fields can drastically reduce ice nucleation during freezing, promote supercooling, and minimize cellular damage in living tissues (e.g., Kaku et al., doi: 10.1016/j.cryobiol.2012.02.001). Kobayashi & Kirschvink (2014, doi:10.1016/j.cryobiol.2013.12.002) suggest that biogenic magnetite crystals could be the nucleating site for damaging ice crystals, and that they would be driven magneto-mechanically to rotate in those oscillating fields which could inhibit the ice crystal nucleation process. This prompted our investigation into the magnetite content of ordinary fruit and vegetable food products, as knowledge of the natural levels of biogenic magnetite in the human food supply could guide the selection of which foods might work for this type of cryopreservation. Our study involved a range of common foods including avocados, bananas, garlic, and apples. Samples were prepared in a clean lab environment kept free of contaminant particles, and subjected to a variety of standard rock-magnetic tests including IRM and ARM acquisition, and the corresponding Af demagnetization, on a standard 2G™ SRM. Results are consistent with moderately interacting single-domain magnetite (see figure), with moderate inter-particle interaction effects. Typical magnetite concentrations in these samples are in the range of .1 to 1 ng/g for room temperature samples, increasing to the range of 1-10 ng/g when measured frozen (to inhibit thermal rotation of small particles and clumps). If

  17. Encapsulated magnetite particles for biomedical application

    CERN Document Server

    Landfester, K

    2003-01-01

    The process of miniemulsification allows the generation of small, homogeneous, and stable droplets containing monomer or polymer precursors and magnetite which are then transferred by polymer reactions to the final polymer latexes, keeping their particular identity without serious exchange kinetics involved. It is shown that the miniemulsion process can excellently be used for the formulation of polymer-coated magnetic nanoparticles which can further be used for biomedical applications. The use of high shear, appropriate surfactants, and the addition of a hydrophobe in order to suppress the influence of Ostwald ripening are key factors for the formation of the small and stable droplets in miniemulsion and will be discussed. Two different approaches based on miniemulsion processes for the encapsulation of magnetite into polymer particles will be presented in detail.

  18. Advancing Sustainable Catalysis with Magnetite Surface ...

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heterogeneous catalysis is highlighted. Use of an oxide of earth-abundant iron for various applications in catalysis and environmental remediation.

  19. Magnesioferrite synthesized from magnesian-magnetites

    Directory of Open Access Journals (Sweden)

    Marcelo Hidemassa Anami

    2014-02-01

    Full Text Available Magnesioferrite is an important mineral due to its use in different scientific fields and by the fact that the soil through the action of weathering, can be a source of nutrients essential for plant development by the fact that in the soil. Its use in pure form or associated with other minerals is only possible through the synthesis in laboratory conditions. This study aimed to synthesize magnesioferrite and hematite from magnesian-magnetite by a co-precipitation procedure. The methodology used is an adaptation of the method of synthesis of pure magnetite, partially replacing the soluble salts of iron with soluble magnesium salts in the proportion of 30.0 mol% of Fe for Mg. The characterization of the synthetic minerals used x-rays diffraction, total chemical analysis and mass specific magnetic susceptibility. The results showed that besides the magnesian-magnetite an unprecedented muskoxita was synthesized, which upon annealing was converted to magnesioferrite and hematite and in the proportion of 93.1% and 6.9% respectively. The isomorphous substitution of Fe for Mg enhanced the thermal stability of the ferrimagnetic mineral synthesized.

  20. Experimental Shock Decomposition of Siderite to Magnetite

    Science.gov (United States)

    Bell, M. S.; Golden, D. C.; Zolensky, M. E.

    2005-01-01

    The debate about fossil life on Mars includes the origin of magnetites of specific sizes and habits in the siderite-rich portions of the carbonate spheres in ALH 84001 [1,2]. Specifically [2] were able to demonstrate that inorganic synthesis of these compositionally zoned spheres from aqueous solutions of variable ion-concentrations is possible. They further demonstrated the formation of magnetite from siderite upon heating at 550 C under a Mars-like CO2-rich atmosphere according to 3FeCO3 = Fe3O4 + 2CO2 + CO [3] and they postulated that the carbonates in ALH 84001 were heated to these temperatures by some shock event. The average shock pressure for ALH 84001, substantially based on the refractive index of diaplectic feldspar glasses [3,4,5] is some 35-40 GPa and associated temperatures are some 300-400 C [4]. However, some of the feldspar is melted [5], requiring local deviations from this average as high as 45-50 GPa. Indeed, [5] observes the carbonates in ALH 84001 to be melted locally, requiring pressures in excess of 60 GPa and temperatures > 600 C. Combining these shock studies with the above inorganic synthesis of zoned carbonates it seems possible to produce the ALH 84001 magnetites by the shock-induced decomposition of siderite.

  1. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications

    Science.gov (United States)

    Saxena, Namita; Singh, Man

    2017-05-01

    The facile co-precipitation process of synthesising Superparamagnetic Iron Oxide Nanoparticles (SPIONs) especially magnetite was investigated and simplified, to develop a reproducible and scaled up synthesis process under air, for producing particles with enhanced percentage of magnetite, thus eliminating the crucial and complicated need of using the inert atmosphere. Presence of magnetite was confirmed by XRD, TEM, and Raman spectroscopy. Efficiency of synthesising magnetite was increased up to approx. ∼58 wt%, under air with no other phases but maghemite present. Alkali concentration was optimised, and particles with better magnetisation values were synthesised. The approximate weight percentage of magnetite was calculated using the simple and rapid XRD peak deconvolution method. Higher pH values from 13 to14 were investigated in the study while alkali concentration was varied from 0.5 to 4 M. 1Molar NaOH with a final pH of 13.4 was found to be optimum. Well crystallised particles with approx. 6-12 nm size, narrow size distribution and cubo-spheroidal shape were synthesised. Particles were Superparamagnetic with high values of saturation magnetisation of up to 68 emu/g and negligible values of remanence and coercivity. A reaction yield of up to 62% was obtained. Hydrophilic coated particles were produced in a single, one step facile process for biomedical applications, using optimised parameters of pH and alkali concentration obtained in the study. Single domain particles with good magnetisation formed stable aqueous dispersions. FTIR, UV-Visible and DLS were used to confirm the coating and dispersion stabilities of the particles. These particles have the requisite properties required for application in different biomedical fields.

  2. Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Namita, E-mail: saxenanamita@yahoo.com [School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030 (India); Singh, Man, E-mail: mansingh50@hotmail.com [School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030 (India)

    2017-05-01

    The facile co-precipitation process of synthesising Superparamagnetic Iron Oxide Nanoparticles (SPIONs) especially magnetite was investigated and simplified, to develop a reproducible and scaled up synthesis process under air, for producing particles with enhanced percentage of magnetite, thus eliminating the crucial and complicated need of using the inert atmosphere. Presence of magnetite was confirmed by XRD, TEM, and Raman spectroscopy. Efficiency of synthesising magnetite was increased up to approx. ∼58 wt%, under air with no other phases but maghemite present. Alkali concentration was optimised, and particles with better magnetisation values were synthesised. The approximate weight percentage of magnetite was calculated using the simple and rapid XRD peak deconvolution method. Higher pH values from 13 to14 were investigated in the study while alkali concentration was varied from 0.5 to 4 M. 1Molar NaOH with a final pH of 13.4 was found to be optimum. Well crystallised particles with approx. 6–12 nm size, narrow size distribution and cubo-spheroidal shape were synthesised. Particles were Superparamagnetic with high values of saturation magnetisation of up to 68 emu/g and negligible values of remanence and coercivity. A reaction yield of up to 62% was obtained. Hydrophilic coated particles were produced in a single, one step facile process for biomedical applications, using optimised parameters of pH and alkali concentration obtained in the study. Single domain particles with good magnetisation formed stable aqueous dispersions. FTIR, UV-Visible and DLS were used to confirm the coating and dispersion stabilities of the particles. These particles have the requisite properties required for application in different biomedical fields.

  3. Identification of magnetite in lunar regolith breccia 60016: Evidence for oxidized conditions at the lunar surface

    Science.gov (United States)

    Joy, Katherine H.; Visscher, Channon; Zolensky, Michael E.; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Kring, David A.

    2015-07-01

    Lunar regolith breccias are temporal archives of magmatic and impact bombardment processes on the Moon. Apollo 16 sample 60016 is an "ancient" feldspathic regolith breccia that was converted from a soil to a rock at ~3.8 Ga. The breccia contains a small (70 × 50 μm) rock fragment composed dominantly of an Fe-oxide phase with disseminated domains of troilite. Fragments of plagioclase (An95-97), pyroxene (En74-75, Fs21-22,Wo3-4), and olivine (Fo66-67) are distributed in and adjacent to the Fe-oxide. The silicate minerals have lunar compositions that are similar to anorthosites. Mineral chemistry, synchrotron X-ray absorption near edge spectroscopy (XANES) and X-ray diffraction (XRD) studies demonstrate that the oxide phase is magnetite with an estimated Fe3+/ΣFe ratio of ~0.45. The presence of magnetite in 60016 indicates that oxygen fugacity during formation was equilibrated at, or above, the Fe-magnetite or wüstite-magnetite oxygen buffer. This discovery provides direct evidence for oxidized conditions on the Moon. Thermodynamic modeling shows that magnetite could have been formed from oxidization-driven mineral replacement of Fe-metal or desulphurisation from Fe-sulfides (troilite) at low temperatures (<570 °C) in equilibrium with H2O steam/liquid or CO2 gas. Oxidizing conditions may have arisen from vapor transport during degassing of a magmatic source region, or from a hybrid endogenic-exogenic process when gases were released during an impacting asteroid or comet impact.

  4. Extended release of vitamins from magnetite loaded polyanionic polymeric beads.

    Science.gov (United States)

    Sonmez, Maria; Verisan, Cristina; Voicu, Georgeta; Ficai, Denisa; Ficai, Anton; Oprea, Alexandra Elena; Vlad, Mihaela; Andronescu, Ecaterina

    2016-08-30

    Here we explore a novel approach of increasing the release duration of folic and ascorbic acid from magnetite entrapped into calcium-alginate beads. Synthesis and characterization of magnetite-vitamins complexes are reported. The magnetite-vitamins complexes were characterized by FT-IR, XRD, SEM, BET and DTA-TG. Also calcium-alginate magnetic beads were prepared by dripping a mixture of sodium alginate with magnetite-vitamins complexes into calcium chloride solution. Extended release profile of the two experimental models was evaluated and quantified by UV-vis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The study on magnetite particles coated with bilayer surfactants

    Science.gov (United States)

    Wang, Xuman; Zhang, Caining; Wang, Xiaoliang; Gu, Hongchen

    2007-07-01

    Magnetite particles were prepared by co-precipitation, then sodium oleic (SO) and sodium dodecyl benzene sulfonate (SDBS) were applied as inner and outer surfactants, respectively. IR and TG were used to study the surface adsorption of SO and SDBS on magnetite particles. The experimental results demonstrated that SO molecules were linked to the magnetite particles through chemical bond and SDBS coated on the surface of magnetite particles covered with SO by means of Van der Waals attraction. Furthermore, based on the adsorption isotherms of surfactants on the magnetite particles and the dependence of Zeta potential of particles on the surfactants concentrations, the adsorption mechanisms of these two surfactants on the magnetite particles were studied. The isotherm adsorption model for SO on magnetite particles showed excellent correlation to Langmuir type and the adsorption equation was Γ=0.162c1+0.303c (25 °C), while that for SDBS on magnetite particles coated with SO showed excellent consistence with Freundlich type and the adsorption equation was Γ = 0.32 c0.475 (25 °C). In addition, the results demonstrated that both SO and SDBS formed monolayer adsorption on the surface of magnetite particles.

  6. Mechanisms of cesium sorption onto magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Granizo, N.; Missana, T. [Environmental Impact of Energy Department. CIEMAT 28040 Madrid (Spain)

    2005-07-01

    Full text of publication follows: One of the current options for the final disposal of the high level radioactive waste is the deep geological repository. The radioactive waste canisters represent the first physical barrier to radionuclide migration to the geosphere and their corrosion products may play a significant role in sequestering radionuclide due to sorption and coprecipitation phenomena. In this work, the sorption of the fission product Cs-137 on magnetite, which is considered to be the main corrosion products under the reducing conditions expected in the repository, has been studied in a wide range of pH, ionic strength, radionuclide and sorbent concentration. The magnetite was synthesized in the laboratory and the main physico-chemical properties as microstructure, surface area and surface charge were analysed prior to sorption experiments. A measurable cesium sorption, generally never exceeding 20 %, was found only in alkaline conditions. Linear sorption isotherms were observed within the range of Cs concentration used (up to 10{sup -6} M). A slight increase in the sorption of cesium was seen when decreasing the ionic strength and increasing the pH, probably indicating the formation of outer sphere complexes. The possible effects on sorption of silicate impurities from the experimental vessels was deeply analysed and finally discarded. The experimental data have been satisfactorily modelled supposing the formation of a monodentate outer sphere complex and considering just one type of surface site on the magnetite. The combination of the structural information derived from XAS analysis, which is ongoing, together with wet chemistry sorption data will clarify the physical and chemical structure of sorbed complex and confirm the validity of surface complexation model proposed. (authors)

  7. Mechanisms of cesium sorption onto magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Granizo, N.; Missana, T. [CIEMAT, Dept. de Medioambiente, Madrid (Spain)

    2006-07-01

    One of the current options for the final disposal of high level radioactive wastes is the deep geological repository (DGR). The metal canisters represent the first physical barrier to radionuclide migration towards the geosphere and their corrosion products may play a significant role in sequestering radionuclides by sorption and/or (co)precipitation phenomena. In this work, the sorption of {sup 137}Cs on pure nanocrystalline magnetite has been experimentally studied in a wide range of pH, ionic strength, and radionuclide and sorbent concentration. The magnetite was synthesized in laboratory under controlled conditions and its main physico-chemical properties as microstructure, surface area and surface charge were analysed previous to sorption experiments. Sorption was negligible up to pH 8.5 and maximum sorption values were reached around pH 12. A significant increase in Cs sorption was observed when decreasing the ionic strength. Linear sorption isotherms were observed within the range of Cs concentration used (up to 10{sup -6} M). As expected, Cs showed very small sorption onto the oxide, but the whole experimental results could be satisfactorily fit with a simple model. In addition, the model developed in the oxide-electrolyte system was able to reproduce fairly well the sorption of Cs onto magnetite in two more complex waters (synthetic bentonite and cement porewaters). All the possible effects on sorption that could increase the uncertainties on the (small) sorption values were analysed in depth. In addition, the possible influence of mineral trace impurities on the sorption (for example silicates from experimental vessels), already discussed in the literature, was avoided. (orig.)

  8. Electrochemical assessment of magnetite anticorrosive paints

    Directory of Open Access Journals (Sweden)

    Escobar, D. M.

    2003-12-01

    Full Text Available With the purpose of deepening in the understanding of the mechanisms of protection of anticorrosive pigments based on iron oxides, this work has been carried out on the production of pure magnetite, and copper and chromium doped magnetite, which were evaluated by different characterization techniques. The paints were prepared with a solvent less epoxy resin maintaining the Pigment Volume Content near the Practical Critical value (CPVC, established for each pigment. The paints were applied on polished steel and monitored with electrochemical techniques at total immersion conditions. Permeability and impedance measurements of free films were also done. Impedance data were simulated with the Boukamp software. Results show that the paints pigmented with doped magnetite present better behavior than a paint prepared with commercial hematite.

    Con el propósito de profundizar en el entendimiento de los mecanismos de protección de los pigmentos anticorrosivos a base de óxidos de hierro, se sintetizaron y caracterizaron magnetitas puras y dopadas con cobre y cromo, con las cuales se prepararon pinturas anticorrosivas que fueron evaluadas en ensayos acelerados de campo y laboratorio. Las pinturas fueron especialmente preparadas con una resina libre de solvente manteniendo la Concentración Pigmentaria en Volumen cercana al valor Crítico (CPVC, establecida para cada pigmento. Las pinturas fueron aplicadas sobre acero pulido y evaluadas con técnicas electroquímicas en condiciones de inmersión total. Para complementar el estudio se realizaron medidas de permeabilidad e impedancia sobre las películas libres. Los datos de impedancia se simularon con el programa Boukamp. Los resultados muestran que las pinturas pigmentadas con magnetitas dopadas presentan mejor comportamiento que las preparadas con hematita comercial.

  9. Magnetic and ultrasonic investigations on magnetite nanofluids.

    Science.gov (United States)

    Nabeel Rashin, M; Hemalatha, J

    2012-12-01

    Magnetite nanofluids of various concentrations have been prepared through co-precipitation method. The structural and magnetic properties of the magnetic nanofluids have been analyzed which respectively revealed their face centered cubic crystal structure and super paramagnetic behavior. Ultrasonic investigations have been made for the nanofluids at different temperatures and magnetic fields. Open- and close-packed water structure is considered to explain the temperature effects. The inter particle interactions of surface modified nanomagnetite particle and the cluster formation are realized through the variations in ultrasonic parameters. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Viscosity studies of water based magnetite nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Anu, K.; Hemalatha, J. [Advanced Materials Lab, Department of Physics, National Institute of Technology, Tiruchirappalli, Tamilnadu, India – 620015 (India)

    2016-05-23

    Magnetite nanofluids of various concentrations have been synthesized through co-precipitation method. The structural and topographical studies made with the X-Ray Diffractometer and Atomic Force Microscope are presented in this paper. The density and viscosity studies for the ferrofluids of various concentrations have been made at room temperature. The experimental viscosities are compared with theoretical values obtained from Einstein, Batchelor and Wang models. An attempt to modify the Rosensweig model is made and the modified Rosensweig equation is reported. In addition, new empirical correlation is also proposed for predicting viscosity of ferrofluid at various concentrations.

  11. Magnetite and Magnetotaxis in Bacteria and Algae

    Science.gov (United States)

    1987-08-15

    4JUL Gemommxit~ ft o flin 4111-W410-4 --- ef I Io_ I IIII -173 -4 Magnetite and Magnetotaxis in Bacteria and Algae R.B. Frankel Francis Bitter National...motile, magnetot ctlc algae of the genus Anisonema. 1. Introduction "--; Magnetotactic bacteria that orient and swim along magnetic field lin, s are...has been isolated and cu turdd in v chemically defined medium. Iron accounts for 2 per cent of the dry eight of the organism with most of the iron

  12. Fe atom exchange between aqueous Fe2+ and magnetite.

    Science.gov (United States)

    Gorski, Christopher A; Handler, Robert M; Beard, Brian L; Pasakarnis, Timothy; Johnson, Clark M; Scherer, Michelle M

    2012-11-20

    The reaction between magnetite and aqueous Fe(2+) has been extensively studied due to its role in contaminant reduction, trace-metal sequestration, and microbial respiration. Previous work has demonstrated that the reaction of Fe(2+) with magnetite (Fe(3)O(4)) results in the structural incorporation of Fe(2+) and an increase in the bulk Fe(2+) content of magnetite. It is unclear, however, whether significant Fe atom exchange occurs between magnetite and aqueous Fe(2+), as has been observed for other Fe oxides. Here, we measured the extent of Fe atom exchange between aqueous Fe(2+) and magnetite by reacting isotopically "normal" magnetite with (57)Fe-enriched aqueous Fe(2+). The extent of Fe atom exchange between magnetite and aqueous Fe(2+) was significant (54-71%), and went well beyond the amount of Fe atoms found at the near surface. Mössbauer spectroscopy of magnetite reacted with (56)Fe(2+) indicate that no preferential exchange of octahedral or tetrahedral sites occurred. Exchange experiments conducted with Co-ferrite (Co(2+)Fe(2)(3+)O(4)) showed little impact of Co substitution on the rate or extent of atom exchange. Bulk electron conduction, as previously invoked to explain Fe atom exchange in goethite, is a possible mechanism, but if it is occurring, conduction does not appear to be the rate-limiting step. The lack of significant impact of Co substitution on the kinetics of Fe atom exchange, and the relatively high diffusion coefficients reported for magnetite suggest that for magnetite, unlike goethite, Fe atom diffusion is a plausible mechanism to explain the rapid rates of Fe atom exchange in magnetite.

  13. Effects of oxidation on the magnetization of nanoparticulate magnetite.

    Science.gov (United States)

    Rebodos, Robert L; Vikesland, Peter J

    2010-11-16

    Synthetic nanomagnetite has been suggested as a potential reactant for the in situ treatment of contaminated groundwater. Although the application of magnetite nanoparticles for environmental remediation is promising, a full understanding of particle reactivity has been deterred by the propensity of the nanoparticles to aggregate and become colloidally unstable. Attractive magnetic interactions between particles are partially responsible for their aggregation. In this study, we characterized the magnetic behavior of magnetite by determining the saturation magnetization, coercivity, remanent magnetization, susceptibility, and blocking temperature of synthetic magnetite using a superconducting quantum interference device (SQUID). We show how these properties vary in the presence of surface-associated solutes such as tetramethylammonium (TMA(+)) and ferrous (Fe(II)) cations. More importantly, because magnetite readily reacts with O(2) to produce maghemite, we analyzed the effect of oxidation on the magnetic properties of the particles. Because maghemite has a reported magnetic saturation that is less than that of magnetite, we hypothesized that oxidation would decrease the magnitude of the magnetic attractive force between adjacent particles. The presence of TMA(+) and Fe(II) caused a change in the magnetic properties of magnetite potentially because of alterations in its crystalline order. Magnetite oxidation caused a decrease in saturation magnetization, resulting in less significant magnetic interactions between particles. Oxidation, therefore, could lead to the decreased aggregation of magnetite nanoparticles and a potential enhancement of their colloidal stability.

  14. Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS

    Science.gov (United States)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges

    2015-06-01

    The El Laco magnetite deposits consist of more than 98 % magnetite but show field textures remarkably similar to mafic lava flows. Therefore, it has long been suggested that they represent a rare example of an effusive Fe oxide liquid. Field and petrographic evidence, however, suggest that the magnetite deposits represent replacement of andesite flows and that the textures are pseudomorphs. We determined the trace element content of magnetite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from various settings at El Laco and compared them with magnetite from both igneous and hydrothermal environments. This new technique allows us to place constraints on the conditions under which magnetite in these supposed magnetite "lava flows" formed. The trace element content of magnetite from the massive magnetite samples is different to any known magmatic magnetite, including primary magnetite phenocrysts from the unaltered andesite host rocks at El Laco. Instead, the El Laco magnetite is most similar in composition to hydrothermal magnetite from high-temperature environments (>500 °C), such as iron oxide-copper-gold (IOCG) and porphyry-Cu deposits. The magnetite trace elements from massive magnetite are characterised by (1) depletion in elements considered relatively immobile in hydrothermal fluids (e.g. Ti, Al, Cr, Zr, Hf and Sc); (2) enrichment in elements that are highly incompatible with magmatic magnetite (rare earth elements (REE), Si, Ca, Na and P) and normally present in very low abundance in magmatic magnetite; (3) high Ni/Cr ratios which are typical of magnetite from hydrothermal environments; and (4) oscillatory zoning of Si, Ca, Mg, REE and most high field strength elements, and zoning truncations indicating dissolution, similar to that formed in hydrothermal Fe skarn deposits. In addition, secondary magnetite in altered, brecciated host rock, forming disseminations and veins, has the same composition as magnetite from the massive

  15. A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent - Magnetic separation and recycling of magnetite.

    Science.gov (United States)

    Baek, Gahyun; Jung, Heejung; Kim, Jaai; Lee, Changsoo

    2017-10-01

    Promotion of direct interspecies electron transfer (DIET) between exoelectrogenic bacteria and electron-utilizing methanogens has recently been discussed as a new method for enhanced biomethanation. This study evaluated the effect of magnetite-promoted DIET in continuous anaerobic digestion of dairy effluent and tested the magnetic separation and recycling of magnetite to avoid continuous magnetite addition. The applied magnetite recycling method effectively supported enhanced DIET activity and biomethanation performance over a long period (>250days) without adding extra magnetite. DIET via magnetite particles as electrical conduits was likely the main mechanism for the enhanced biomethanation. Magnetite formed complex aggregate structures with microbes, and magnetite recycling also helped retain more biomass in the process. Methanosaeta was likely the major methanogen group responsible for DIET-based methanogenesis, in association with Proteobacteria and Chloroflexi populations as syntrophic partners. The recycling approach proved robust and effective, highlighting the potential of magnetite recycling for high-rate biomethanation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Degradation of magnetite nanoparticles in biomimetic media

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, Sarah; Hernandez, Ana C.; Sojo, Juan [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Materiales, Centro de Ingeniería de Materiales y Nanotecnología (Venezuela, Bolivarian Republic of); Lascano, Luis [Dpto. Física, Escuela Politécnica Nacional (Ecuador); Gonzalez, Gema, E-mail: gemagonz@ivic.gob.ve, E-mail: gema.gonzalez@epn.edu.ec [Escuela Nacional Politécnica (Ecuador)

    2017-04-15

    Magnetic nanoparticles (NPs) of magnetite Fe{sub 3}O{sub 4} obtained by coprecipitation (COP), thermal decomposition (DT), and commercial sample (CM) have been degraded in similar conditions to physiological medium at pH 4.7 and in simulated body fluid (SBF) at pH 7.4. The formation of the nanoparticles was confirmed by FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In view of medical and environmental applications, the stability of the particles was measured with dynamic light scattering. The degradation processes were followed with atomic absorption spectroscopy (EAA) and TEM. Magnetic measurements were carried out using vibrating sample magnetometry (VSM). Our results revealed that the structural and magnetic properties of the remaining nanoparticles after the degradation process were significantly different to those of the initial suspension. The degradation kinetics is affected by the pH, the coating, and the average particle size of the nanoparticles.

  17. Refractory Behaviors of Magnetite-Kaolin Bricks

    Science.gov (United States)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Taiwo, O. O.; Eke, I. J.

    2016-11-01

    In this work, the suitability of using kaolin-magnetite-plastic clay to produce refractory bricks has been experimentally explored. Thirty bricks of different compositions were produced and fired at 1200°C. The density, shrinkage moisture content, loss on ignition, porosity and permeability of the bricks were examined. Results show that the bricks remained stable during firing and thus possess good insulating characteristics. The highest (2.23 g/cm3) and lowest (2.00 g/cm3) bulk densities obtained in this study are higher than the highest bulk density reported for Al dross-filled refractories (1.23 g/cm3). The bricks also possessed very low effective moisture content (10-23%) and very high compression modulus (16-100 MPa) desirable in insulating refractory bricks with high resistance to abrasion.

  18. Degradation of magnetite nanoparticles in biomimetic media

    Science.gov (United States)

    Briceño, Sarah; Hernandez, Ana C.; Sojo, Juan; Lascano, Luis; Gonzalez, Gema

    2017-04-01

    Magnetic nanoparticles (NPs) of magnetite Fe3O4 obtained by coprecipitation (COP), thermal decomposition (DT), and commercial sample (CM) have been degraded in similar conditions to physiological medium at pH 4.7 and in simulated body fluid (SBF) at pH 7.4. The formation of the nanoparticles was confirmed by FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). In view of medical and environmental applications, the stability of the particles was measured with dynamic light scattering. The degradation processes were followed with atomic absorption spectroscopy (EAA) and TEM. Magnetic measurements were carried out using vibrating sample magnetometry (VSM). Our results revealed that the structural and magnetic properties of the remaining nanoparticles after the degradation process were significantly different to those of the initial suspension. The degradation kinetics is affected by the pH, the coating, and the average particle size of the nanoparticles.

  19. Porphyrin-magnetite nanoconjugates for biological imaging

    Directory of Open Access Journals (Sweden)

    Conroy Jennifer

    2011-04-01

    Full Text Available Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS. Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent porphyrin magnetic nanoparticle composite (PMNC. Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  20. Porphyrin-magnetite nanoconjugates for biological imaging

    LENUS (Irish Health Repository)

    Nowostawska, Malgorzata

    2011-04-08

    Abstract Background The use of silica coated magnetic nanoparticles as contrast agents has resulted in the production of highly stable, non-toxic solutions that can be manipulated via an external magnetic field. As a result, the interaction of these nanocomposites with cells is of vital importance in understanding their behaviour and biocompatibility. Here we report the preparation, characterisation and potential application of new "two-in-one" magnetic fluorescent nanocomposites composed of silica-coated magnetite nanoparticles covalently linked to a porphyrin moiety. Method The experiments were performed by administering porphyrin functionalised silica-coated magnetite nanoparticles to THP-1 cells, a human acute monocytic leukaemia cell line. Cells were cultured in RPMI 1640 medium with 25 mM HEPES supplemented with heat-inactivated foetal bovine serum (FBS). Results We have synthesised, characterised and analysed in vitro, a new multimodal (magnetic and fluorescent) porphyrin magnetic nanoparticle composite (PMNC). Initial co-incubation experiments performed with THP-1 macrophage cells were promising; however the PMNC photobleached under confocal microscopy study. β-mercaptoethanol (β-ME) was employed to counteract this problem and resulted not only in enhanced fluorescence emission, but also allowed for elongated imaging and increased exposure times of the PMNC in a cellular environment. Conclusion Our experiments have demonstrated that β-ME visibly enhances the emission intensity. No deleterious effects to the cells were witnessed upon co-incubation with β-ME alone and no increases in background fluorescence were recorded. These results should present an interest for further development of in vitro biological imaging techniques.

  1. Refinement of Magnetite Nanoparticles by Coating with Organic Stabilizers.

    Science.gov (United States)

    Cîrcu, Monica; Nan, Alexandrina; Borodi, Gheorghe; Liebscher, Jürgen; Turcu, Rodica

    2016-11-29

    Magnetite nanoparticles are of great importance in nanotechnology and nanomedicine and have found manifold applications. Here, the effect of coating of magnetite nanoparticles with organic stabilizers, such as O -phosphoryl ethanolamine, glycerol phosphate, phospho-l-ascorbic acid, phospho-d,l-serine, glycolic acid, lactic acid, d,l-malic acid, and d,l-mandelic acid was studied. Remarkably, this procedure led to an improvement of saturation magnetization in three cases rather than to an unfavorable decrease as usually observed. Detailed X-ray powder diffraction investigations revealed that changes in the average crystallite occurred in the coating process. Surprisingly, changes of the average crystallite sizes in either direction were further observed, when the exposure time to the stabilizer was increased. These results imply a new mechanism for the well-known coating of magnetite nanoparticles with stabilizers. Instead of the hitherto accepted simple anchoring of the stabilizers to the magnetite nanoparticle surfaces, a more complex recrystallization mechanism is likely, wherein partial re-dispersion of magnetite moieties from the nanoparticles and re-deposition are involved. The results can help producers and users of magnetite nanoparticles to obtain optimal results in the production of core shell magnetite nanoparticles.

  2. Magnetite contamination of urban soils in European Russia

    Directory of Open Access Journals (Sweden)

    Yu. N. Vodyanitskii

    2017-06-01

    Full Text Available Urban soils are enriched in magnetite (Fe3O4, thanks to aerial emissions of industry, energy and cars emission. Magnetite contamination of urban soils in Russia has both common features of the world and its specificity. The magnetite content through the magnetic susceptibility is used as an indirect indicator of the contamination degree of urban soils with some heavy metals. In the cities of Russia: Moscow, Cherepovets, Perm and Chusovoy, magnetite soil pollution is in agreement with some of the heavy metals pollution. The correlation coefficients between magnetic susceptibility and mobile forms contents are higher than coefficients with a total contents of heavy metals. The volume magnetic susceptibility, measured in the field conditions, is less correlated with the pollution of urban soils with heavy metals than an express specific magnetic susceptibility, which is determined in the laboratory. In Moscow and Chusovoy, magnetic susceptibility of soils is high in the territory of the old town and it is the lowest in the field of new buildings. Soil magnetic susceptibility is indicator of Cu, Zn and Pb in Moscow. Soil magnetic susceptibility is indicator of Pb, Zn and Cr in Cherepovets. In Chusovoy, the oxidation degree of the magnetite is low, and a stoichiometric index of magnetite is high; soil magnetic susceptibility is indicator of Mn, Zn and Cr. In Perm, the magnetic susceptibility of magnetite in the soils is low, but it is highly variable; soil magnetic susceptibility is indicator of Ni, Zn and Cr.

  3. LA-ICP-MS of magnetite: Methods and reference materials

    Science.gov (United States)

    Nadoll, P.; Koenig, A.E.

    2011-01-01

    Magnetite (Fe3O4) is a common accessory mineral in many geologic settings. Its variable geochemistry makes it a powerful petrogenetic indicator. Electron microprobe (EMPA) analyses are commonly used to examine major and minor element contents in magnetite. Laser ablation ICP-MS (LA-ICP-MS) is applicable to trace element analyses of magnetite but has not been widely employed to examine compositional variations. We tested the applicability of the NIST SRM 610, the USGS GSE-1G, and the NIST SRM 2782 reference materials (RMs) as external standards and developed a reliable method for LA-ICP-MS analysis of magnetite. LA-ICP-MS analyses were carried out on well characterized magnetite samples with a 193 nm, Excimer, ArF LA system. Although matrix-matched RMs are sometimes important for calibration and normalization of LA-ICP-MS data, we demonstrate that glass RMs can produce accurate results for LA-ICP-MS analyses of magnetite. Cross-comparison between the NIST SRM 610 and USGS GSE-1G indicates good agreement for magnetite minor and trace element data calibrated with either of these RMs. Many elements show a sufficiently good match between the LA-ICP-MS and the EMPA data; for example, Ti and V show a close to linear relationship with correlation coefficients, R2 of 0.79 and 0.85 respectively. ?? 2011 The Royal Society of Chemistry.

  4. Refinement of Magnetite Nanoparticles by Coating with Organic Stabilizers

    Directory of Open Access Journals (Sweden)

    Monica Cîrcu

    2016-11-01

    Full Text Available Magnetite nanoparticles are of great importance in nanotechnology and nanomedicine and have found manifold applications. Here, the effect of coating of magnetite nanoparticles with organic stabilizers, such as O-phosphoryl ethanolamine, glycerol phosphate, phospho-l-ascorbic acid, phospho-d,l-serine, glycolic acid, lactic acid, d,l-malic acid, and d,l-mandelic acid was studied. Remarkably, this procedure led to an improvement of saturation magnetization in three cases rather than to an unfavorable decrease as usually observed. Detailed X-ray powder diffraction investigations revealed that changes in the average crystallite occurred in the coating process. Surprisingly, changes of the average crystallite sizes in either direction were further observed, when the exposure time to the stabilizer was increased. These results imply a new mechanism for the well-known coating of magnetite nanoparticles with stabilizers. Instead of the hitherto accepted simple anchoring of the stabilizers to the magnetite nanoparticle surfaces, a more complex recrystallization mechanism is likely, wherein partial re-dispersion of magnetite moieties from the nanoparticles and re-deposition are involved. The results can help producers and users of magnetite nanoparticles to obtain optimal results in the production of core shell magnetite nanoparticles.

  5. Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes: Insights from the Handan-Xingtai iron district, North China Craton

    Science.gov (United States)

    Wen, Guang; Li, Jian-Wei; Hofstra, Albert H.; Koenig, Alan E.; Lowers, Heather A.; Adams, David

    2017-09-01

    Magnetite is a common mineral in igneous rocks and has been used as an important petrogenetic indicator as its compositions and textures reflect changing physiochemical parameters such as temperature, oxygen fugacity and melt compositions. In upper crustal settings, igneous rocks are often altered by hydrothermal fluids such that the original textures and compositions of igneous magnetite may be partly or completely obliterated, posing interpretive problems in petrological and geochemical studies. In this paper, we present textural and compositional data of magnetite from variably albitized granitoid rocks in the Handan-Xingtai district, North China Craton to characterize the hydrothermal reequilibration of igneous magnetite. Four types of magnetite have been identified in the samples studied: pristine igneous magnetite (type 1), reequilibrated porous magnetite (type 2), reequilibrated nonporous magnetite (type 3), and hydrothermal magnetite (type 4). Pristine igneous magnetite contains abundant well-developed ilmenite exsolution lamellae that are largely replaced by titanite during subsequent hydrothermal alteration. The titanite has a larger molar volume than its precursor ilmenite and thus causes micro-fractures in the host magnetite grains, facilitating dissolution and reprecipitation of magnetite. During sodic alteration, the igneous magnetite is extensively replaced by type 2 and type 3 magnetite via fluid-induced dissolution and reprecipitation. Porous type 2 magnetite is the initial replacement product of igneous magnetite and is subsequently replaced by the nonoporous type 3 variety as its surface area is reduced and compositional equilibrium with the altering fluid is achieved. Hydrothermal type 4 magnetite is generally euhedral and lacks exsolution lamellae and porosity, and is interpreted to precipitate directly from the ore-forming fluids. Hydrothermal reequilibration of igneous magnetite has led to progressive chemical purification, during which trace

  6. Synthesis of magnetite nanoparticles in the presence of aminoacids

    Science.gov (United States)

    Marinescu, Gabriela; Patron, Luminita; Culita, Daniela C.; Neagoe, Cristian; Lepadatu, Costinel I.; Balint, Ioan; Bessais, Lotfi; Cizmas, Corneliu Bazil

    2006-12-01

    A new synthesis route to prepare magnetite nanoparticles in only one step is described. The precipitation of magnetite is performed in the presence of aminoacid solution. The experimental protocol is original and the nanomagnetites are characterized by XRD, FTIR, TEM and SQUID magnetometry. A theoretical study of the consistent experimental results was performed using QSPR (Quantitative Structure Property Relationsheep). According with these studies the synthesized nanoparticles seem to be organized into a core-shell system, where the inner-core is formed from unit cells of magnetite. A way to control the self-assembly and the physical properties of the synthesized nanoparticles consists in their correlation with descriptors representing the aminoacid chemical structures. Using quantum chemical as well as the other simplest original descriptors it was found a relationship between the used aminoacids and the magnetization, nanoparticles diameter, magnetite core diameter and the (Fe3O4)8 cells in each nanoparticle core.

  7. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Science.gov (United States)

    Soshnikova, Yulia M.; Roman, Svetlana G.; Chebotareva, Natalia A.; Baum, Olga I.; Obrezkova, Mariya V.; Gillis, Richard B.; Harding, Stephen E.; Sobol, Emil N.; Lunin, Valeriy V.

    2013-11-01

    The paper presents preparation and characterization of starch-modified Fe3O4 nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non-stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  8. Magnetite Plaquettes Provide an Extraterrestrial Source of Asymmetric Components

    Science.gov (United States)

    Chan, Q. H. S.; Zolensky, M. E.; Martinez, J. E.

    2015-01-01

    Molecular selectivity is a crucial criterion for life. A possible abiotic mechanism that can produce chiral asymmetry in meteoritic amino acids is their formation with the presence of asymmetric catalysts. Magnetite (Fe3O4), a common mineral in some carbonaceous chondrites (CCs), has been shown to be an effective catalyst for the formation of amino acids that are commonly found in these meteorites. Magnetite sometimes takes the form of plaquettes that consist of barrel-shaped stacks of magnetite disks that resemble a spiral. However, a widely accepted description of the internal morphology of this particular magnetite form is still lacking, which is necessary in order to confirm or disprove the spiral configuration.

  9. Preparation of a ferrofluid using cyclodextrin and magnetite

    Directory of Open Access Journals (Sweden)

    Bocanegra-Diaz Alberto

    2003-01-01

    Full Text Available A ferrofluid has been obtained from magnetite and beta-cyclodextrin, with the formation of an inclusion complex. The magnetite and beta-cyclodextrin complex was characterized by FTIR spectroscopy, X-ray diffraction, thermal analysis (TG/DTA, transmission electron microscopy (TEM and atomic absorption spectroscopy. As far as we know, this is the first report on an inclusion compound between a metal oxide and cyclodextrins.

  10. Hydrothermal synthesis of magnetite particles with uncommon crystal facets

    OpenAIRE

    Sato, Junki; Kobayashi, Makoto; Kato, Hideki; Miyazaki, Takamichi; Kakihana, Masato

    2014-01-01

    Hydrothermal synthesis of Fe3O4 (magnetite) particles was carried out using organic compounds as morphology control agents to obtain magnetite crystals with uncommon facets. It was established that the morphology of Fe3O4 crystals obtained by hydrothermal treatment of an aqueous solution containing Fe2+ and organic compounds depended on the organic compound used. The shape of the Fe3O4 particles obtained when no additives were used was quasi-octahedral. In contrast, the addition of picolinic ...

  11. A pure magnetite hydrogel: synthesis, properties and possible applications.

    Science.gov (United States)

    Anastasova, Elizaveta I; Ivanovski, Vladimir; Fakhardo, Anna F; Lepeshkin, Artem I; Omar, Suheir; Drozdov, Andrey S; Vinogradov, Vladimir V

    2017-11-22

    A magnetite-only hydrogel was prepared for the first time by weak base mediated gelation of stable magnetite hydrosols at room temperature. The hydrogel consists of 10 nm magnetite nanoparticles linked by interparticle Fe-O-Fe bonds and has the appearance of a dark-brown viscous thixotropic material. The water content in the hydrogel could be up to 93.6% by mass while volume fraction reaches 99%. The material shows excellent biocompatibility and minor cytotoxic effects at concentrations up to 207 μg mL-1. The gel shows excellent sorption capacity for heavy metal adsorption such as chrome and lead ions, which is 225% more than the adsorption capacity of magnetite nanoparticles. Due to thixotropic nature, the gel demonstrates mechanical stimuli-responsive release behavior with up to 98% release triggered by ultrasound irradiation. The material shows superparamagnetic behavior with a coercivity of 65 emu g-1 at 6000 Oe. The magnetite gels prepared could be used for the production of magnetite aerogels, magnetic drug delivery systems with controlled release and highly efficient sorbents for hydrometallurgy.

  12. Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites.

    Science.gov (United States)

    Gu, Hongbo; Tadakamalla, Sruthi; Huang, Yudong; Colorado, Henry A; Luo, Zhiping; Haldolaarachchige, Neel; Young, David P; Wei, Suying; Guo, Zhanhu

    2012-10-24

    Magnetic epoxy polymer nanocomposites (PNCs) reinforced with magnetite (Fe(3)O(4)) nanoparticles (NPs) have been prepared at different particle loading levels. The particle surface functionality tuned by conductive polyaniline (PANI) is achieved via a surface initiated polymerization (SIP) approach. The effects of nanoparticle loading, surface functionality, and temperature on both the viscosity and storage/loss modulus of liquid epoxy resin suspensions and the physicochemical properties of the cured solid PNCs are systematically investigated. The glass transition temperature (T(g)) of the cured epoxy filled with the functionalized NPs has shifted to the higher temperature in the dynamic mechanical analysis (DMA) compared with that of the cured pure epoxy. Enhanced mechanical properties of the cured epoxy PNCs filled with the functionalized NPs are observed in the tensile test compared with that of the cured pure epoxy and cured epoxy PNCs filled with as-received NPs. The uniform NP distribution in the cured epoxy PNCs filled with functionalized NPs is observed by scanning electron microscope (SEM). These magnetic epoxy PNCs show the good magnetic properties and can be attached by a permanent magnet. Enhanced interfacial interaction between NPs and epoxy is revealed in the fracture surface analysis. The PNCs formation mechanism is also interpreted from the comprehensive analysis based on the TGA, DSC, and FTIR in this work.

  13. Bismuth mineral inclusions in gold-bearing magnetite from the giant Beiya gold deposit, SW China: insights into mineralization process

    Science.gov (United States)

    Zhou, Haoyang; Sun, Xiaoming

    2017-04-01

    Bismuth minerals are commonly found in a wide range of gold deposits and could offer valuable information on the process of gold mineralization. This is because Bi minerals always show immediate association with gold and are sensitive to chemical-physical variations (Afifi et al., 1988). Specifically, native bismuth has a melting point of 271°C and could melt at lower temperatures when gold is added (Okamoto et al,, 1983). It has been verified that Bi melt could efficiently scavenge gold from hydrothermal fluids (Tooth et al., 2008, 2011). The Beiya deposit, situated in the Sanjiang Tethyan tectonic domain in the southwestern China, is one of the largest gold deposits in China 10.4 Moz Au @ 2.47g/t). Located along the contacts between a 36 Ma quartz syenite porphyry and the Triassic limestones, the deposit contains abundant massive Au-bearing magnetite ores, which are considered as a product of skarn mineralization. However, the pivotal processes accounting for the huge accumulation of gold resource at Beiya area are poorly constrained. In the massive magnetite ores, abundant native gold was observed to be present as submicron-scale inclusions hosted by magnetite (Zhou et al., 2017). We also noted that abundant Bi minerals occur within these ores (Zhou et al., 2016), which provide critical clues to reveal the processes of gold mineralization. An assemblage of Bi minerals, composed of native bismuth, maldonite and bismuthinite, is present as tiny inclusions in these Au-bearing magnetite grains. Mineralogical study illustrates the encapsulation of native bismuth and maldonite as melts during magnetite growth, which is also supported by the ore-forming temperatures over 300°C derived from previous fluid inclusions study (He et al., 2016). Our thermodynamic modeling demonstrates that Bi melts scavenged gold from hydrothermal fluids. Subsequently, sulfidation of Bi melts resulted in precipitation of gold, which was captured by growing magnetite. We thus propose that

  14. Origins of Magnetite Nanocrystals in Martian Meteorite ALH84001

    Science.gov (United States)

    Thomas-Keprta, Kathie L.; Clemett, Simon J.; Mckay, David S.; Gibson, Everett K.; Wentworth, Susan J.

    2009-01-01

    The Martian meteorite ALH84001 preserves evidence of interaction with aqueous fluids while on Mars in the form of microscopic carbonate disks. These carbonate disks are believed to have precipitated 3.9 Ga ago at beginning of the Noachian epoch on Mars during which both the oldest extant Martian surfaces were formed, and perhaps the earliest global oceans. Intimately associated within and throughout these carbonate disks are nanocrystal magnetites (Fe3O4) with unusual chemical and physical properties, whose origins have become the source of considerable debate. One group of hypotheses argues that these magnetites are the product of partial thermal decomposition of the host carbonate. Alternatively, the origins of mag- netite and carbonate may be unrelated; that is, from the perspective of the carbonate the magnetite is allochthonous. For example, the magnetites might have already been present in the aqueous fluids from which the carbonates were believed to have been deposited. We have sought to resolve between these hypotheses through the detailed characterized of the compo- sitional and structural relationships of the carbonate disks and associated magnetites with the orthopyroxene matrix in which they are embedded. Extensive use of focused ion beam milling techniques has been utilized for sample preparation. We then compared our observations with those from experimental thermal decomposition studies of sideritic carbonates under a range of plausible geological heating scenarios. We conclude that the vast majority of the nanocrystal magnetites present in the car- bonate disks could not have formed by any of the currently proposed thermal decomposition scenarios. Instead, we find there is considerable evidence in support of an alternative allochthonous origin for the magnetite unrelated to any shock or thermal processing of the carbonates.

  15. Adherence of paclitaxel drug in magnetite chitosan nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Escobar Zapata, Edna V.; Martinez Perez, Carlos A.; Rodriguez Gonzalez, Claudia A.; Castro Carmona, Javier S. [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico); Quevedo Lopez, Manuel A. [Departamento de Polimeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora (Mexico); Garcia-Casillas, Perla E., E-mail: pegarcia@uacj.mx [Instituto de Ingenieria y Tecnologia, Universidad Autonoma de Ciudad Juarez, Ave. Del Charro 610 norte, Col. Partido Romero, C.P. 32320, Cd. Juarez Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Chitosan silica magnetite adsorbs antineoplastic drug. Black-Right-Pointing-Pointer Silica coating improve the drug adherence. - Abstract: Cancer treatment is a big challenge in medicine where chemotherapies and radiotherapies are aggressive and poorly effective having side effects as delirium, fatigue, insomnia, nausea and vomiting which are common problems for cancer patients. For this reason, during the last two decades, many researchers have developed several techniques to improve the current therapies; one of them is the functionalization of magnetic nanoparticles for drug delivery. In this work, magnetic nanoparticles with an average crystallite size 21.8 nm were covered in a core/shell type; magnetite/silica, magnetite/chitosan, and a double shell magnetite/silica/chitosan were developed for attaching an antineoplastic drug. The mechanism for the functionalization of the nanoparticles with a single and double shell was studied with Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The adherence of an antineoplastic drug, paclitaxel, onto functionalized nanoparticles was analyzed with a UV-Visible spectroscopy at a wavelength of 253 nm. It was found that the adherence of the drug is improved up to 18% when magnetite nanoparticles are coated with a single chitosan shell, and when the nanoparticles are coated with a silica/chitosan shell the adherence increases up to 29%.

  16. Magnetic Separations with Magnetite: Theory, Operation, and Limitations

    Energy Technology Data Exchange (ETDEWEB)

    G. B. Cotten

    2000-08-01

    This dissertation documents the theory development and experimental plan followed to describe how a magnetite-based column under the influence of an external magnetic field functions as a magnetic separator. Theoretical simulations predict that weekly paramagnetic particles in the sub-micron range can be magnetically separated while diamagnetic particles as large as 2 microns in diameter may pass. Magnetite-based columns were evaluated as magnetically-controllable enhanced filtration devices. There was no evidence of enhanced filtration for diamagnetic particles by the magnetite-based bed. Magnetite-based magnetic separators have proven to be effective in specific laboratory experiments, indicating a potential feasibility for scale-up operations. Column media-filter type filtration effects indicate a magnetite-based column would not be suitable for treatment of a waste stream with a high diamagnetic solids content or high volume throughput requirements. Specific applications requiring removal of sub-micron para- or ferromagnetic particles under batch or Stokes flow conditions would be most applicable.

  17. The formation of magnetite in the early Archean oceans

    Science.gov (United States)

    Li, Yi-Liang; Konhauser, Kurt O.; Zhai, Mingguo

    2017-05-01

    Banded iron formations (BIFs) are iron- and silica-rich chemical sedimentary rocks that were deposited throughout much of the Precambrian. The biological oxidation of dissolved Fe(II) led to the precipitation of a ferric oxyhydroxide phase, such as ferrihydrite, in the marine photic zone. Upon burial, ferrihydrite was either transformed into hematite through dehydration or it was reduced to magnetite via biological or abiological Fe(III) reduction coupled to the oxidation of buried microbial biomass. However, it has always been intriguing as to why the oldest BIFs are characteristically magnetite-rich, while BIFs formed after the Neoarchean are dominated by hematite. Here, we propose that some magnetite in early Archean BIF could have precipitated directly from seawater through the reaction of settling ferrihydrite and hot, Fe(II)-rich hydrothermal fluids that existed in the deeper waters. We conducted experiments that showed the reaction of Fe(II) with biogenic ferric iron mats under strict anoxic conditions lead to the formation of a metastable green rust phase that within hours transformed into magnetite. Our model further posits that with the progressive cooling and oxidation of the Earth's oceans, the above reaction shuts off, and magnetite was subsequently restricted to reactions associated with diagenesis and metamorphism.

  18. Synthesis and Properties of MPEG-Coated Superparamagnetic Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xueli Cao

    2012-01-01

    Full Text Available The magnetite nanoparticles were synthesized by the thermal decomposition of iron(III acetylacetonate in methoxy polyethylene glycol, which was used as solvent, reducing agent, and modifying agent in the reaction. The morphologies and phase compositions of the nanoparticles were determined by transmission electron microscopy and X-ray diffraction, respectively. The surface coating of the nanoparticles was recognized using Fourier transform infrared spectroscopy. Magnetic properties were measured using superconducting quantum interference device. The zeta potential and hydrodynamic size of the nanoparticles was determined using nanoparticle and zeta potential analyzer. The magnetite nanoparticles show superparamagnetic behavior in 300 K. The negatively charged methoxy polyethylene glycol-coated magnetite nanoparticles in water exhibited longer-time dispersion with small hydrodynamic size than the magnetite nanoparticles synthesized by the thermal decomposition of iron(III acetylacetonate in polyethylene glycol. The less conjunction between methoxy polyethylene glycol-coated magnetite nanoparticles due to the inert –CH3 terminal group may cause their higher stability in water dispersion.

  19. Synthesis of Stabilized Myrrh-Capped Hydrocolloidal Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2014-07-01

    Full Text Available Herein we report a new method for synthesizing stabilized magnetic nanoparticle (MNP colloids. A new class of monodisperse water-soluble magnetite nano-particles was prepared by a simple and inexpensive co-precipitation method. Iron ions and iodine were prepared by the reaction between ferric chloride and potassium iodide. The ferrous and ferric ions were hydrolyzed at low temperature at pH 9 in the presence of iodine to produce iron oxide nanoparticles. The natural product myrrh gum was used as capping agent to produce highly dispersed coated magnetite nanoparticles. The structure and morphology of the magnetic nanogel was characterized by Fourier transform infrared spectroscopy (FTIR and transmission electron microscopy (TEM, and X-ray diffraction (XRD was used to examine the crystal structure of the produced magnetite nanoparticles.

  20. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    Science.gov (United States)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  1. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    Science.gov (United States)

    Iwasaki, Tomohiro; Nakatsuka, Ryo; Murase, Kenya; Takata, Hiroshige; Nakamura, Hideya; Watano, Satoru

    2013-01-01

    This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments. PMID:23629669

  2. Evidence for artificial magnetite coating on Iberian armoury

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.; Criado, A. J.; Chamon, J.; Penco, F.; Alonso, J.; Arevalo, R.; Martinez, J. A.; Dietz, C.

    2011-07-01

    A metallographic study of two pre-roman Iberian arms, affected by a cremation process, revealed the presence of an outer magnetite layer, providing highly protective properties. This layer is extraordinarily tenacious and of very homogeneous thickness, indicating an intentional manufacturing process rather than an accidental formation during the severe heating/cooling cycles the artefact suffered. Up to date, the intentional production of these types of layers has been attributed to a welding process of three different metallic sheets, here an alternative model is proposed, allowing, as could be simulated in the laboratory, the virtually exclusive formation of a magnetite coating. (author) 39 refs.

  3. Arsenic Sorption on Mechanically Activated Magnetite and Olivine

    Directory of Open Access Journals (Sweden)

    Zdenka Bujňáková

    2012-12-01

    Full Text Available Arsenic sorption on mechanically activated minerals such as magnetite Fe3O4 (Kiruna, Sweden and olivine (Mg,Fe2SiO4 (Ǻheim,Norway has been studied and compared in this work. Experiments were carried out with non-activated and mechanically activatedsamples. The activation of both minerals was performed in a planetary mill at different milling conditions. The specific surface areaand consequent sorption activity were enhanced by mechanical activation. The using of olivine seems to be better than magnetite fromthe point of view of milling time, which is necessary for achievement of the same sorption effect.

  4. Renewable hybrid nanocatalyst from magnetite and cellulose fortreatment of textile effluents

    Science.gov (United States)

    A hybrid catalyst was prepared using cellulose nanofibrils and magnetite to degrade organic compounds. Cellulose nanofibrils were isolated by mechanical defibrillation producing a suspension used as a matrixfor magnetite particles. The solution of nanofibrils and magnetite was dried and milled resul...

  5. Mineralogy, chemistry of magnetite and genesis of Korkora-1 iron deposit, east of Takab, NW Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2014-10-01

    , respectively. Therefore, it fits in the skarn ore deposit domain in Ni/(Cr + Mn versus Ti + V and Ca + Al + Mn versus Ti + V discrimination diagrams of iron ore deposits (Beaudoin et al., 2007. High Mn in the rock samples of Korkora-1 can be resulted from substitution of Fe+2 by Mn+2 in magnetite structure that can be a sign of hydrothermal skarn. Titanium, Mn, V and Zn show a positive correlation and Al, Cu, Mg, P, Si, Ca, Ni and Cr show a negative correlation with Fe. According to the chemistry of magnetite and plotting them on V2O5 versus TiO2 and V2O5 versus Cr2O3 diagrams, it can be recognized that the samples of Korkora-1 deposit resemble exoskarn magnetite of Goto deposit. The analysis of goethite of Korkora-1 show the amount of 2.5 to 4 wt % SiO2, 76 wt % Fe, and Ni (110 ppm without Ti and Cr in its structure. Mineralographical and geochemical evidence from ore, occurrence of iron in contact with carbonates and skarn mineralogy such as garnet, pyroxene, secondary calcite, epidote and chlorite suggest iron skarn genesis for Korkora-1 deposit. Fluids generated from intrusive bodies like diorite and quartz-diorite with variations in physicochemical conditions, produced skarn in contact with carbonates and volcanic rocks. The heat from intrusive bodies caused recrystallization of carbonates and formed marbles in the footwall of the deposit. Meteoric water has also less important contribution in the ore-forming fluids. Fluid inclusion studies show existing of two types of fluids, a low salinity (10 wt % NaCl equiv. and a medium salinity (25 to 30 wt % NaCl equiv. fluid. Mixing magmatic and meteoric waters makes decreasing in the temperatures and deposition of ore fluids. The Korkora-1 deposit formed in four stages: 1 intruding the intrusive bodies, 2 entering Fe and SiO2 into Qom carbonates and forming calc-silicates, 3 mixing magmatic and meteoric fluids, hydrolysis of calc-silicates, consuming H+, instability of Fe complexes and deposition of iron oxides, 4 retrograde

  6. Particle characteristics and reduction behavior of synthetic magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Wegdan [Physics Department, Faculty of Science, Alexandria University, Alexandria 21511 (Egypt); Zaki, Mohamed I., E-mail: mizaki@link.net [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt); Fouad, Nasr E.; Mekhemer, Gamal A.H. [Chemistry Department, Faculty of Science, Minia University, El-Minia 61519 (Egypt)

    2014-04-15

    Two samples (S1 and S2) of magnetite were synthesized, using two different methods, and characterized by means of X-ray powder diffractometry, infrared and Mössbauer spectroscopy, N{sub 2} sorptiometry and electron microscopy. Particles of sample-S1 were found to be loosely agglomerated, micro-sized spheroids (200–350 nm) composed almost solely of highly aggregated (fused) crystallites (size averaged at 35 nm) of cubic-Fe{sub 3}O{sub 4}. In contrast, particles of sample-S2 were strongly agglomerated, nano-sized spheroids (25–30 nm) composed of slightly aggregated crystallites (size averaged at 11 nm) of cubic-Fe{sub 3}O{sub 4} and noncrystalline domains made-up of FeO(OH) species. Temperature-programed reduction (TPR) profiles obtained for the two samples were similar in monitoring two peaks at >450 °C assignable to a two-step reduction of Fe{sub 3}O{sub 4} (→FeO→Fe), but different in monitoring a peak at<450 °C only for the reduction of FeO(OH) (→Fe{sub 3}O{sub 4}) contained in sample-S2. However, curve fitting analysis of the TPR profiles and molecular stoichiometry calculations based on amounts of hydrogen consumed revealed that the two-step reduction of Fe{sub 3}O{sub 4} is not straightforward. That is by resolving two consecutive pathways for each step and, hence, nonstoichiometric intermediate products whose composition was found to be critically controlled by the composition of the reducing gas atmosphere (5 or 80% H{sub 2}/N{sub 2}) and characteristics of the starting sample particles (chemical and phase composition, and, but to lesser extents, the agglomeration and average size). - Highlights: • Nano or micro, pure Fe{sub 3}O{sub 4} particles are H{sub 2}-reduced in two steps (→FeO→Fe) at >450 °C. • FeO(OH)-impure particles exhibit a third reduction step (FeO(OH)→Fe{sub 3}O{sub 4}) at <450 °C. • FeO disproportion and related autocatalytic effects complicate the reduction course. • Consequently, each of the Fe{sub 3}O{sub 4

  7. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    Science.gov (United States)

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  8. Effect of magnetite nanoparticles on dye absorption properties of ...

    Indian Academy of Sciences (India)

    Magnetite@carbon (Fe 3 O 4 @C) composites were prepared using three kinds of Fe 3 O 4 nanoparticles (NPs). All the Fe 3 O 4 @C composites could be easily separated from water by an external magnet. The Fe 3 O 4 NPs synthesized by a microreactor system have the smallest size and narrowest size distribution among ...

  9. Effect of magnetite nanoparticles on dye absorption properties of ...

    Indian Academy of Sciences (India)

    , Shanghai 200090,. People's Republic of China. MS received 8 December 2015; accepted 7 July 2016. Abstract. Magnetite@carbon (Fe3O4@C) composites were prepared using three kinds of Fe3O4 nanoparticles. (NPs). All the Fe3O4@C ...

  10. Synthesis and characterization of magnetite/hydroxyapatite tubes ...

    Indian Academy of Sciences (India)

    Synthesis and characterization of magnetite/HAp tubes. 515 oxide nanoparticles on kapok fibre can be visualized under. FE-SEM. The air entrapment inside the fibre disappeared after coating with iron oxide nanoparticle. The structure became completely flattened. The overall tubular structure was retained and unbroken.

  11. Study of Preparation and Properties on Polymer-modified Magnetite ...

    African Journals Online (AJOL)

    NICOLAAS

    were also reported on the modification of magnetic nanoparticles. For example, some reports confirmed that magnetic nanoparticles were coated by chitosan for applications in biotechnology.16–18. Oleic acid was used to modify the surface of magnetite nanoparticles.19,20 PEG/PVA and Poly(4-MS-DVB-GMA) matrix.

  12. Gelatine-assisted synthesis of magnetite nanoparticles for magnetic hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Alves, André F.; Mendo, Sofia G. [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal); Ferreira, Liliana P. [Universidade de Lisboa, Biosystems and Integrative Sciences Institute, Faculdade de Ciências (Portugal); Mendonça, Maria Helena [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal); Ferreira, Paula [University of Aveiro, Department of Materials and Ceramic Engineering, CICECO - Aveiro Institute of Materials (Portugal); Godinho, Margarida; Cruz, Maria Margarida [Universidade de Lisboa, Biosystems and Integrative Sciences Institute, Faculdade de Ciências (Portugal); Carvalho, Maria Deus, E-mail: mdcarvalho@ciencias.ulisboa.pt [Universidade de Lisboa, Centro de Química e Bioquímica, Faculdade de Ciências (Portugal)

    2016-01-15

    Magnetite nanoparticles were synthesized by the co-precipitation method exploring the use of gelatine and agar as additives. For comparison, magnetite nanoparticles were also prepared by standard co-precipitation, by co-precipitation with the addition of a surfactant (sodium dodecyl sulphate) and by the thermal decomposition method. The structure and morphology of the synthesized nanoparticles were investigated by powder X-ray diffraction and transmission electron microscopy. Their magnetic properties were studied by SQUID magnetometry and {sup 57}Fe Mössbauer spectroscopy. The nanoparticles potential for applications in magnetic hyperthermia was evaluated through heating efficiency under alternating magnetic field. The results show that all synthesis methods produce Fe{sub 3−x}O{sub 4} nanoparticles with similar sizes. The nanoparticles synthesized in the gelatine medium display the narrowest particle size distribution, the lowest oxidation degree, one of the highest saturation magnetization values and the best hyperthermia efficiency, proving that this gelatine-assisted synthesis is an efficient, environmental friendly, and low-cost method to produce magnetite nanoparticles. Graphical Abstract: A new gelatine-assisted method is an efficient and low-cost way to synthesize magnetite nanoparticles with enhanced magnetic hyperthermia.

  13. Study of Preparation and Properties on Polymer-modified Magnetite ...

    African Journals Online (AJOL)

    In this paper, polyacrylamide (PAM)-modified magnetite (Fe3O4) nanoparticles were prepared by in situ polymerization in aqueous solution. The particle size, morphology, crystal phase and magnetic properties were measured utilizing scanning electron microscopy (SEM), transmission electron microscopy (TEM), ...

  14. Magnetite-sulfide-metal complexes in the Allende meteorite

    Science.gov (United States)

    Haggerty, S. E.; Mcmahon, B. M.

    1979-01-01

    A model of liquid immiscibility is presented that seemingly accounts for the sulfide-oxide-metal complexes that are present in olivine-rich chondrules in the Allende meteorite. The four major assemblages that are identified are: (1) magnetite + Ni-Fe metal; (2) magnetite + troilite + Ni-Fe metal; (3) magnetite + troilite + pentlandite + Ni-Fe metal; and (4) troilite + or - pentlandite. Specific attention is focused on oxide-metal associations and experimental data confirm earlier suggestions that magnetite results from the oxidation of an initially high-Fe-content metal alloy. Oxidation decreases the modal abundance of the Fe metal and this is accompanied by substantial increases in Ni contents which reach a maximum of approximately 70 wt % Ni. The proposed oxidation mechanism is entirely consistent with condensation of Fe-metal + olivine (Fa5) that subsequently reequilibrated at lower temperatures. Although the sulfide constituents could also have formed by the reaction of Fe-Ni metal + gaseous H2S, sulfide immiscibility under increased conditions of partial O2 pressure is the preferred process.

  15. Identification and significance of magnetite in human tissues.

    Science.gov (United States)

    Moatamed, F; Johnson, F B

    1986-07-01

    Magnetite or iron oxide has been identified in humans as well as certain animals and bacteria. With the current popularity of magnetic resonance imaging, the presence of these ferromagnetic particles in the tissues may impose biological significance. So far, identification of magnetite in tissue has been mainly based on magnetometry. Hence, a simple technique for direct identification of the magnetic particles in tissues is described. Lung tissues with abundant iron material and particles were digested in 1N sodium hydroxide solution. After rinsing, the sediments were suspended in 95% alcohol and placed on a glass slide located on a strong magnet. The iron-containing particles from the digestion procedure were aligned in a parallel manner along the north-south poles of the magnet and were confirmed to be magnetite by x-ray diffraction. No such effect was observed with hemosiderin-containing granules from the control liver tissues. The results of this experiment show that the "biological magnetite" is distinctly different from hemosiderin and has characteristic properties when subjected to a magnetic field.

  16. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  17. Wet milling versus co-precipitation in magnetite ferrofluid preparation

    Directory of Open Access Journals (Sweden)

    Almásy László

    2015-01-01

    Full Text Available Various uses of ferrofluids for technical applications continuously raise the interest in improvement and optimization of preparation methods. This paper deals with preparation of finely granulated magnetite particles coated with oleic acid in hydrocarbon suspensions following either chemical co-precipitation from iron salt precursors or wet milling of micron size magnetite powder with the goal to compare the benefits and disadvantages of each method. Microstructural measurements showed that both methods gave similar magnetite particle size of 10-15 nm. Higher saturation magnetization was achieved for the wet-milled magnetite suspension compared to relatively rapid co-precipitation synthesis. Different efficacies of ferrophase incorporation into kerosene could be related to the different mechanisms of oleic acid bonding to nanoparticle surface. The comparative data show that wet milling represents a practicable alternative to the traditional co-precipitation since despite of longer processing time, chemicals impact on environment can be avoided as well as the remnant water in the final product.

  18. Novel humic acid-bonded magnetite nanoparticles for protein immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Bayrakci, Mevlut, E-mail: mevlutbayrakci@gmail.com [Ulukisla Vocational School, Nigde University, 51100 Ulukisla, Nigde (Turkey); Gezici, Orhan [Department of Chemistry, Nigde University, 51100 Nigde (Turkey); Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra [Department of Chemistry, Selcuk University, 42031 Konya (Turkey)

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz–Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJ mol{sup −1}) and HSA bonded HA-APS-MNPs (33.42 kJ mol{sup −1}) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. - Highlights: • A new magnetite nanoparticle based humic acid was prepared for the first time. • Protein binding studies of magnetite nanoparticle based humic acid were performed. • Kinetic parameters of protein and/or humic acid bonded nanoparticles were evaluated.

  19. The effect of cobalt substitution on magnetic hardening of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M., E-mail: mozafari@sci.ui.ac.ir [Department of Physics, Faculty of Science, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Hadadian, Y. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of); Aftabi, A. [Department of Physics, University of Kurdistan, Sanandaj 66177-15175 (Iran, Islamic Republic of); Oveisy Moakhar, M. [Physics Department, Razi University, Taghebostan, Kermanshah (Iran, Islamic Republic of)

    2014-03-15

    In this work cobalt-substituted magnetite (Co{sub x}Fe{sub 1−x}Fe{sub 2}O{sub 4}, x=0, 0.25, 0.50 and 0.75) nanoparticles were synthesized by coprecipitation method and their structural and magnetic properties were investigated. X-ray diffraction was carried out and the results show that all of the samples have single phase spinel structure. Microstructure of the samples was studied using a field emission scanning electron microscope and the results show that particle sizes of the prepared nanoparticles were uniform and in the 50–55 nm range. Room temperature magnetic properties of the nanoparticles were measured by an alternating gradient force magnetometer and the results revealed that substituting cobalt for iron in magnetite structure, changes the magnetite from a soft magnetic material to a hard one. So that coercivity changes from 0 (a superparamagnetic state) to 337 Oe (a hard magnetic material), which is a remarkable change. Curie temperatures of the samples were determined by recording their susceptibility-temperature (χ–T) curves and the results show that by increasing cobalt content, Curie temperature of the samples also increases. Also χ–T curves of the samples were recorded from above Curie temperature to room temperature (first cooling), while the curves in the second heating and second cooling have the same behaviour as the first cooling curve. The results depict that all samples have different behaviour in the first cooling and in the first heating processes. This shows remarkable changes of the cation distribution in the course of first heating. - Highlights: • It is possible to get Co substituted magnetite nanoparticles by coprecipitation method. • Prepared nanoparticles have different cation distribution in comparison with that of bulk counterparts. • Co substitution increases coercivity of the magnetite.

  20. Cellular interactions of lauric acid and dextran-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Pallab [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Giri, Jyotsnendu [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India); Banerjee, Rinti [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Bellare, Jayesh [School of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai 400076 (India); Bahadur, Dhirendra [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology, Mumbai 400076 (India)]. E-mail: dhirenb@iitb.ac.in

    2007-04-15

    In vitro cytocompatibility and cellular interactions of lauric acid and dextran-coated magnetite nanoparticles were evaluated with two different cell lines (mouse fibroblast and human cervical carcinoma). Lauric acid-coated magnetite nanoparticles were less cytocompatible than dextran-coated magnetite nanoparticles and cellular uptake of lauric acid-coated magnetic nanoparticles was more than that of dextran-coated magnetite nanoparticles. Lesser cytocompatibility and higher uptake of lauric acid-coated magnetite nanoparticles as compared to dextran-coated magnetic nanoparticles may be due to different cellular interactions by coating material. Thus, coating plays an important role in modulation of biocompatibility and cellular interaction of magnetic nanoparticles.

  1. Synthesis and characterization of nanometric magnetite coated by oleic acid and the surfactant CTAB. Surfactant coated nanometric magnetite/maghemite

    Science.gov (United States)

    Celis, J. Almazán; Olea Mejía, O. F.; Cabral-Prieto, A.; García-Sosa, I.; Derat-Escudero, R.; Baggio Saitovitch, E. M.; Alzamora Camarena, M.

    2017-11-01

    Nanometric magnetite ( nm-Fe3O4) particles were prepared by the reverse co-precipitation synthesis method, obtaining particle sizes that ranged from 4 to 8.5 nm. In their synthesis, the concentration of iron salts of ferric nitrate, Fe(NO3)3ṡ9H2O, and ferrous sulfate, FeSO4ṡ7H2O, were varied relative to the chemical reaction volume and by using different surfactants such as oleic acid (OA) and hexadecyltrimethylammonium bromide (CTAB). The nm-Fe3O4 particles were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), magnetic and X-ray diffraction (XRD) measurements. Typical asymmetrical and/or broad lines shapes appeared in all Mössbauer spectra of the as prepared samples suggesting strong magnetic inter-particle interactions, reducing these interactions to some extent by gentle mechanical grinding. For the smallest particles, maghemite instead of magnetite was the main preparation product as low temperature Mössbauer and magnetic measurements indicated. For the intermediate and largest particles a mixture of magnetite and maghemite phases were produced as the saturation magnetization values of MS ˜ 60 emu/g indicated; these values were measured for most samples, independently of the coating surfactant concentration, and according to the ZFC-FC curves the blocking temperatures were 225K and 275K for the smallest and largest magnetite nanoparticles, respectively. The synthesis method was highly reproducible.

  2. Synthesis and application of surfactants coated magnetite nanoparticles for demulsification of crude oil in water emulsion

    Science.gov (United States)

    Yau, Xin Hui; Khe, Cheng Seong; Liu, Wei Wen; Lai, Chin Wei; Oo, Zeya

    2017-10-01

    Magnetite nanoparticles were synthesized through co-precipitation method, in which surfactant such as polyvinylpyrrolidone (PVP) and sodium dodecyl benzene sulfonate (SDBS) were applied as stabilizing agent. Various techniques were employed to characterize the synthesized magnetite nanoparticles. Magnetite nanoparticles with spinel structure are successfully synthesized and confirmed by X-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results proved that surface of magnetite nanoparticles were successfully coated with PVP and SDBS. From the transmission electron microscope (TEM), it showed that surfactant coated magnetite nanoparticles possess smaller particle size than that of bare magnetite nanoparticles. In comparison with SDBS, PVP has a better capping efficiency and the PVP coated magnetite nanoparticles have an average particle size of 10.8 nm. In addition, surfactant coated magnetite nanoparticles also exhibited lower value of saturation magnetization (Ms). Lower value of Ms might be attributed to the small sized nanoparticles. All magnetite nanoparticles synthesized with and without surfactant showed superparamagnetic behaviour. Bare and surfactant coated magnetite nanoparticles have been utilized as a demulsifier for crude oil in water emulsion. Those nanoparticles that produced using SDBS (ED= 87%) showed higher efficiency than that of PVP coated (ED=80%) and bare magnetite nanoparticles (ED=85%) in demulsification tests.

  3. Influence of silver content on rifampicin adsorptivity for magnetite/Ag/rifampicin nanoparticles

    Science.gov (United States)

    Ivashchenko, Olena; Coy, Emerson; Peplinska, Barbara; Jarek, Marcin; Lewandowski, Mikołaj; Załęski, Karol; Warowicka, Alicja; Wozniak, Anna; Babutina, Tatiana; Jurga-Stopa, Justyna; Dolinsek, Janez; Jurga, Stefan

    2017-02-01

    Magnetite nanoparticles (NPs) decorated with silver (magnetite/Ag) are intensively investigated due to their application in the biomedical field. We demonstrate that the increase of silver content on the surface of nanoparticles improves the adsorptivity of antibiotic rifampicin as well as antibacterial properties. The use of ginger extract allowed to improve the silver nucleation on the magnetite surface that resulted in an increase of silver content. Physicochemical and functional characterization of magnetite/Ag NPs was performed. Our results show that 5%-10% of silver content in magnetite/Ag NPs is already sufficient for antimicrobial properties against Streptococcus salivarius and Staphylococcus aureus. The rifampicin molecules on the magnetite/Ag NPs surface made the spectrum of antimicrobial activity wider. Cytotoxicity evaluation of the magnetite/Ag/rifampicin NPs showed no harmful action towards normal human fibroblasts, whereas the effect on human embryonic kidney cell viability was time and dose dependent.

  4. Dissolution of magnetite and redistribution of heavy metals in urban soils (model experiment)

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2013-06-01

    Technogenic magnetite in urban soils is extremely various in properties. Its particles strongly differ in magnetic susceptibility and degree of association with heavy metals. In the city of Perm, particles of magnetite enriched with different heavy metals are precipitated, which indicates different sources of technogenic magnetite within the limits of the city. The dissolution of magnetite and the effect of this process on the behavior of heavy metals have been simulated by the magnetochemical method. In strongly magnetic soils, the dissolution of highly magnetic macrocrystalline magnetite is accompanied by the dissolution of heavy metals: Cr, Mn, Ni, Zn, Pb, and Cu. The secondary precipitates of hydroxides of iron and heavy metals (predominantly Pb, Cu, and Ni) are formed relatively rarely, mainly in weakly magnetic soils, where slightly magnetic and dispersed magnetite is present. In cities, the dissolution of magnetite is favored by the added salts and organic acids released by plants.

  5. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile

    Science.gov (United States)

    Broughm, Shannon G.; Hanchar, John M.; Tornos, Fernando; Westhues, Anne; Attersley, Samuel

    2017-12-01

    Interpretation of the mineralizing environment of magnetite-apatite deposits remains controversial with theories that include a hydrothermal or magmatic origin or a combination of those two processes. To address this controversy, we have analyzed the trace element content of magnetite from precisely known geographic locations and geologic environments from the Precambrian magnetite-apatite ore and host rocks in Kiruna, Sweden, and the Pliocene-Holocene El Laco volcano in the Atacama desert of Chile. Magnetite samples from Kiruna have low trace element concentrations with little chemical variation between the ore, host, and related intrusive rocks. Magnetite from andesite at El Laco, and dacite from the nearby Láscar volcano, has high trace element concentrations typical of magmatic magnetite. El Laco ore magnetite have low trace element concentrations and displays growth zoning in incompatible elements (Si, Ca, and Ce), compatible elements (Mg, Al, and Mn), large-ion lithophile element (Sr), and high field strength element (Y, Nb, and Th). The El Laco ore magnetite are similar in composition to magnetite that has been previously interpreted to have crystallized from hydrothermal fluids; however, there is a significant difference in the internal zoning patterns. At El Laco, each zoned element is either enriched or depleted in the same layers, suggesting the magnetite crystallized from a volatile-rich, iron-oxide melt. In general, the compositions of magnetite from these two deposits plot in very wide fields that are not restricted to the proposed fields in published discriminant diagrams. This suggests that the use of these diagrams and genetic models based on them should be used with caution.

  6. Magnetite-based Magnetoreception in Animals: 25+ Years of Theory & Experimentation

    Science.gov (United States)

    Kirschvink, J. L.; Walker, M. M.

    2005-12-01

    Living organisms ranging from bacteria through higher vertebrates rely on orientation, navigation, and homing to survive. Any sensory cue that enhances these behaviors will be subject to intense natural selection over geological time. Reproducible behavioral responses to earth-strength magnetic fields(1) have been documented in Bacteria, Protoctists, and in nearly every major group of animals, and are possibly also present in the Archaea. Several groups of animals, including birds and cetaceans, respond behaviorally to magnetic anomalies below 100 nT in magnitude, implying that their magnetoreception ability approaches the thermal noise limit. This approach to thermal noise is commonly observed in other sensory systems, including hearing, olfaction, and electroreception. The hypothesis of magnetite-based magnetoreception(2) is the only theory proposed so far that is capable of explaining all of the magnetic behavioral data. Tiny crystals of single-domain magnetite (or in some bacteria, greigite) rotate the cells of microorganisms passively like a simple compass needle. The initial detection of biogenic magnetite with rock magnetic techniques in birds and bees over 25 years ago has led progressively to the identification of a group of specialized cells in fish and birds which contain organized magnetite-containing structures. In these animals (and presumably all vertebrates) magnetic signals are transmitted to the brain via the ophthalmic branch of the trigeminal nerve(3, 4). Experiments with pulse-remagnetization, like those that convert North-seeking bacteria into South-seekers, have dramatic effects on animal behavior, confirming the role of magnetite in the sensory system. This is therefore a general mechanism for a highly sensitive magnetic sense, the origin of which probably dates to the ancestral metazoan, and perhaps earlier. The largest debate presently occurring in the field concerns the interpretation of magnetic compass responses that vary with intensity

  7. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    The domain concept, originally suggested by Schmidt-Rohr in the 1930’s (as credited in Fishman’s writings in the 1970s), was an attempt to sort out different areas of language use in multilingual societies, which are relevant for language choice. In Fishman’s version, domains were considered...... as theoretical constructs that can explain language choice which were supposed to be a more powerful explanatory tool than more obvious (and observable) parameters like topic, place (setting) and interlocutor. In the meantime, at least in Scandinavia, the term ‘domain’ has been taken up in the debate among...... politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...

  8. Synthesis and characterization of silica-coated nanoparticles of magnetite

    Science.gov (United States)

    Ferreira, R. V.; Pereira, I. L. S.; Cavalcante, L. C. D.; Gamarra, L. F.; Carneiro, S. M.; Amaro, E.; Fabris, J. D.; Domingues, R. Z.; Andrade, A. L.

    2010-01-01

    Magnetic nanoparticles coated with silica have been subjected of extensive, and, in many aspects, also intensive investigations because of their potential application in different technological fields, particularly in biomedicine. This work was conceived and is being carried out in two main parts: (1) synthesis of the ferrimagnetic nanoparticles, specifically magnetite, and (2) coating these particles with tetraethyl orthosilicate (TEOS). The nanosized magnetite sample was prepared by the reduction-precipitation and the nanomagnetite particles were coated by the sol-gel method, based on the hydrolysis of tetraethyl orthosilicate (TEOS). The so obtained materials were characterized with powder X-ray diffraction (XRD), FTIR spectroscopy, saturation magnetization measurements, and 57Fe Mössbauer spectroscopy at room temperature.

  9. Synthesis and characterization of silica-coated nanoparticles of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, R. V., E-mail: robertavia@gmail.com; Pereira, I. L. S.; Cavalcante, L. C. D. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Gamarra, L. F. [Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE (Brazil); Carneiro, S. M. [Instituto Butantan (Brazil); Amaro, E. [Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE (Brazil); Fabris, J. D.; Domingues, R. Z. [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Andrade, A. L., E-mail: angelala01@hotmail.com [Universidade Federal de Minas Gerais, Departamento de Quimica/s10 (Brazil)

    2010-01-15

    Magnetic nanoparticles coated with silica have been subjected of extensive, and, in many aspects, also intensive investigations because of their potential application in different technological fields, particularly in biomedicine. This work was conceived and is being carried out in two main parts: (1) synthesis of the ferrimagnetic nanoparticles, specifically magnetite, and (2) coating these particles with tetraethyl orthosilicate (TEOS). The nanosized magnetite sample was prepared by the reduction-precipitation and the nanomagnetite particles were coated by the sol-gel method, based on the hydrolysis of tetraethyl orthosilicate (TEOS). The so obtained materials were characterized with powder X-ray diffraction (XRD), FTIR spectroscopy, saturation magnetization measurements, and {sup 57}Fe Moessbauer spectroscopy at room temperature.

  10. Adsorption of naphthenic acid on magnetite at different temperatures

    Science.gov (United States)

    Balmasova, O. V.; Ramazanova, A. G.; Korolev, V. V.

    2015-03-01

    Isotherms of naphthenic acid adsorption from heptane solutions on highly dispersed magnetite are studied using the adsorption equilibrium approach. The isosteric heats of naphthenic acid adsorption from heptane solutions are calculated over a temperature range of 293-308 K. The adsorption isotherms can be approximated using the equation for a straight line. Experimental adsorption isotherms are shown to be linear in the coordinates of the equation for the theory of volume filling of micropores (TVFM).

  11. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria

    OpenAIRE

    Christopher T Lefèvre; Viloria, Nathan; Schmidt, Marian L.; Pósfai, Mihály; Frankel, Richard B.; Bazylinski, Dennis A.

    2011-01-01

    Two novel magnetotactic bacteria (MTB) were isolated from sediment and water collected from the Badwater Basin, Death Valley National Park and southeastern shore of the Salton Sea, respectively, and were designated as strains BW-2 and SS-5, respectively. Both organisms are rod-shaped, biomineralize magnetite, and are motile by means of flagella. The strains grow chemolithoautotrophically oxidizing thiosulfate and sulfide microaerobically as electron donors, with thiosulfate oxidized stoichiom...

  12. Hydrothermal growth of fine magnetite and ferrite crystals

    Science.gov (United States)

    Byrappa, Shayan; Vicas, C. S.; Dhanaraj, Neel; Namratha, K.; Keerthana, S. D.; Dey, Ravi; Byrappa, K.

    2016-10-01

    In the present work, magnetite (Fe3O4, avg. 70 nm) synthesis employing Azadirachta indica (neem) leaf extract is reported originally using hydrothermal conditions and the results obtained were compared with that of D-glucose. Fourier transform infrared spectroscopy confirms the presence of polysaccharides and proteins in the extract which act as both surfactants and reducing agents, aided the formation of magnetite nanostructures. Authors also reported the selective doping of Zn, Cu and Co on nickel ferrite for the enhancement of adsorptive dye removal property, adopting and investigating the use of eloquent one-step green hydrothermal approach (T=180 °C, t=4 h, pH=12) with sodium dodecyl sulfate as surfactant. X-ray diffraction studies reveal that all the materials synthesized are isometric spinel structures and furthermore, morphological evidences using scanning electron microscopy are accounted. Adsorptive dye removal ability of synthesized materials was investigated using trypan blue as a probe. It was evident from the results that magnetite using neem extract showed enhanced adsorption ability (75%) than that of D-glucose (62%). Also, exponential increase in dye removal efficiency from 55% to 81% due to the presence of copper in nickel ferrite was duly noted.

  13. Growth of magnetite films by a hydrogel method

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, A.A., E-mail: avelas26@eafit.edu.edu.co [Grupo de Electromagnetismo Aplicado, Universidad EAFIT, A.A. 3300, Medellín (Colombia); Marín, C.C. [Grupo de Electromagnetismo Aplicado, Universidad EAFIT, A.A. 3300, Medellín (Colombia); Urquijo, J.P. [Grupo de Estado Sólido, Instituto de Física, Universidad de Antioquia, A.A. 1226, Medellín (Colombia)

    2017-06-15

    Magnetite (Fe{sub 3}O{sub 4}) films were grown on glass substrates by formation and condensation of complex of iron oxides in an agarose hydrogel. The obtained films were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Room Temperature Mössbauer Spectroscopy (TMS), Vibrating Sample Magnetometry (VSM), Atomic Force Microscopy (AFM) and Voltage vs. Current measurements by the four-point method. FTIR and TGA measurements showed that some polymer chains of agarose remain linked to the surface of the magnetic particles of the films after heat treatment. SEM measurements showed that the films are composed by quasi spherical particles with sizes around 55 nm. Mössbauer spectroscopy measurements showed two sextets with broaden lines, which were assigned to magnetite with a distributed particle size, and two doublets, which were assigned to superparamagnetic phases of magnetite. For the specific dimensions of the films prepared, measurements of Voltage vs. Current showed an ohmic behavior for currents between 0 and 200 nA, with a resistance of 355 kΩ.

  14. Magnetite nanoparticles conjugated with lignin: A physicochemical and magnetic study

    Science.gov (United States)

    Klapiszewski, Łukasz; Zdarta, Jakub; Antecka, Katarzyna; Synoradzki, Karol; Siwińska-Stefańska, Katarzyna; Moszyński, Dariusz; Jesionowski, Teofil

    2017-11-01

    Using the by-product biopolymer lignin and nanoparticles of magnetite, well-known for its nontoxicity and magnetic properties, novel nanomagnetite-lignin hybrid materials were synthesized. In the first step, magnetite was produced via a co-precipitation method with hydrothermal treatment, and was found to have a particle size of around 20 nm. Nano-Fe3O4 was then combined with pre-activated lignin to obtain hybrids with various magnetite-lignin ratios, whose physicochemical and magnetic properties were thoroughly analyzed. Thermal analysis showed the hybrids to have higher thermal stability than pure lignin. Based on Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy it was demonstrated that the Fe3O4 and lignin are connected via Fesbnd Osbnd C bonds. Further measurements showed the nanomagnetite-lignin hybrid materials to have good magnetic properties. The results of this study suggest that the synthesized hybrids may find practical applications in many fields of science and industry.

  15. Development of Antibody-Coated Magnetite Nanoparticles for Biomarker Immobilization

    Directory of Open Access Journals (Sweden)

    Christian Chapa Gonzalez

    2014-01-01

    Full Text Available Magnetic nanoparticles (MNPs have great potential in biomedical applications because of their magnetic response offers the possibility to direct them to specific areas and target biological entities. Magnetic separation of biomolecules is one of the most important applications of MNPs because their versatility in detecting cancer biomarkers. However, the effectiveness of this method depends on many factors, including the type of functionalization onto MNPs. Therefore, in this study, magnetite nanoparticles have been developed in order to separate the 5′-nucleotidase enzyme (5eNT. The 5eNT is used as a bio-indicator for diagnosing diseases such as hepatic ischaemia, liver tumor, and hepatotoxic drugs damage. Magnetic nanoparticles were covered in a core/shell type with silica, aminosilane, and a double shell of silica-aminosilane. A ScFv (fragment antibody and anti-CD73 antibody were attached to the coated nanoparticles in order to separate the enzyme. The magnetic separation of this enzyme with fragment antibody was found to be 28% higher than anti-CD73 antibody and the enzyme adsorption was improved with the double shell due to the increased length of the polymeric chain. Magnetite nanoparticles with a double shell (silica-aminosilane were also found to be more sensitive than magnetite with a single shell in the detection of biomarkers.

  16. Kinetics of magnetite oxidation under non-isothermal conditions

    Science.gov (United States)

    Sardari, Aref; Alamdari, Eskandar Keshavarz; Noaparast, Mohammad; Shafaei, Sied Ziaedin

    2017-05-01

    Oxidation of magnetite concentrates, which occurs during the pellet induration process, must be deeply understood to enable the appropriate design of induration machines. In the present paper, the kinetics of the magnetite oxidation reaction was studied. Primary samples were obtained from the Gol-e-Gohar iron ore deposit. Magnetic separation and flotation decreased the sulfur content in the samples to be approximately 0.1wt%. Thermogravimetric analysis was used to measure mass changes during the oxidation of magnetite and, consequently, the conversion values. The aim of this study was to use isoconversional methods to calculate the kinetic parameters. The Coats-Redfern method was also used to obtain the activation energy. Thermogravimetric analyses were run at three different heating rates. The Coats-Redfern results were too ambiguous for a meaningful interpretation. In the case of the isoconversional method, however, the mean activation energy and pre-exponential factor of the oxidation reaction were obtained as 67.55 kJ and 15.32 × 108 min-1, respectively. Such a large activation energy implies that temperature strongly affects the reaction rate. The oxidation reaction exhibits a true multi-step nature that is predominantly controlled by chemical reaction and diffusion mechanisms.

  17. Growth of magnetite films by a hydrogel method

    Science.gov (United States)

    Velásquez, A. A.; Marín, C. C.; Urquijo, J. P.

    2017-06-01

    Magnetite (Fe3O4) films were grown on glass substrates by formation and condensation of complex of iron oxides in an agarose hydrogel. The obtained films were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Room Temperature Mössbauer Spectroscopy (TMS), Vibrating Sample Magnetometry (VSM), Atomic Force Microscopy (AFM) and Voltage vs. Current measurements by the four-point method. FTIR and TGA measurements showed that some polymer chains of agarose remain linked to the surface of the magnetic particles of the films after heat treatment. SEM measurements showed that the films are composed by quasi spherical particles with sizes around 55 nm. Mössbauer spectroscopy measurements showed two sextets with broaden lines, which were assigned to magnetite with a distributed particle size, and two doublets, which were assigned to superparamagnetic phases of magnetite. For the specific dimensions of the films prepared, measurements of Voltage vs. Current showed an ohmic behavior for currents between 0 and 200 nA, with a resistance of 355 kΩ.

  18. The Desulfurization of Magnetite Ore by Flotation with a Mixture of Xanthate and Dixanthogen

    Directory of Open Access Journals (Sweden)

    Jun Yu

    2016-07-01

    Full Text Available The contamination of sulfur emanating from pyrrhotite in magnetite concentrates has been a problem in iron ore processing. This study utilized froth flotation to float pyrrhotite away from magnetite using collectors of xanthate and dixanthogen. It was found that xanthate or dixanthogen alone could not achieve selective separation between pyrrhotite and magnetite in flotation. A high loss of magnetite was obtained with xanthate, while a low desulfurization degree was obtained with dixanthogen. It was interesting that a high desulfurization ratio was achieved with little loss of magnetite when xanthate was mixed with dixanthogen as the collector. The synergistic effect of the mixed collector on pyrrhotite was studied by electrokinectic studies and FTIR measurements. It was found that xanthate was the anchor on pyrrhotite and determined its selectivity against magnetite, while dixanthogen associated with xanthate, enhancing its hydrophobicity. This study provides new insights into the separation of iron minerals.

  19. The magnetocaloric effect and heat capacity of ferrimagnetic nanosystems: High-dispersity magnetite

    Science.gov (United States)

    Korolev, V. V.; Aref'ev, I. M.; Ramazanova, A. G.

    2007-06-01

    The magnetocaloric effects of aqueous and ethanolic high-dispersity magnetite suspensions and the magnetite magnetic liquid were determined calorimetrically over the temperature range 15-80°C. The temperature dependence of the magnetocaloric effect of suspensions was evidence of the thermal oxidation of magnetite to maghemite. The temperature dependences of the magnetocaloric effect of the magnetic liquid passed extrema related to the second-order magnetic phase transition.

  20. How shape and internal structure affect the magnetic properties of anisometric magnetite nanoparticles

    OpenAIRE

    Gavilán, Helena; Posth, Oliver; Bogart, Lara K.; Steinhoff, Uwe; Gutiérrez, Lucía; Morales, M. P.

    2017-01-01

    A three-step aqueous approach to obtain large (>50 nm) magnetite single-core particles has been developed. The steps are a) synthesis of antiferromagnetic nanoparticles, b) particle coating and c) subsequent reduction of the core material to magnetite. By variation of precursor material and process conditions, the synthesis yielded rhombohedra, discs or needles below 200 nm. A combination of X-ray diffraction, 57Fe Mössbauer spectroscopy and infrared spectroscopy confirmed magnetite to be the...

  1. Novel humic acid-bonded magnetite nanoparticles for protein immobilization.

    Science.gov (United States)

    Bayrakci, Mevlut; Gezici, Orhan; Bas, Salih Zeki; Ozmen, Mustafa; Maltas, Esra

    2014-09-01

    The present paper is the first report that introduces (i) a useful methodology for chemical immobilization of humic acid (HA) to aminopropyltriethoxysilane-functionalized magnetite iron oxide nanoparticles (APS-MNPs) and (ii) human serum albumin (HSA) binding to the obtained material (HA-APS-MNPs). The newly prepared magnetite nanoparticle was characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and elemental analysis. Results indicated that surface modification of the bare magnetite nanoparticles (MNPs) with aminopropyltriethoxysilane (APS) and HA was successfully performed. The protein binding studies that were evaluated in batch mode exhibited that HA-APS-MNPs could be efficiently used as a substrate for the binding of HSA from aqueous solutions. Usually, recovery values higher than 90% were found to be feasible by HA-APS-MNPs, while that value was around 2% and 70% in the cases of MNPs and APS-MNPs, respectively. Hence, the capacity of MNPs was found to be significantly improved by immobilization of HA. Furthermore, thermal degradation of HA-APS-MNPs and HSA bonded HA-APS-MNPs was evaluated in terms of the Horowitz-Metzger equation in order to determine kinetic parameters for thermal decomposition. Activation energies calculated for HA-APS-MNPs (20.74 kJmol(-1)) and HSA bonded HA-APS-MNPs (33.42 kJmol(-1)) implied chemical immobilization of HA to APS-MNPs, and tight interactions between HA and HA-APS-MNPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria.

    Science.gov (United States)

    Lefèvre, Christopher T; Viloria, Nathan; Schmidt, Marian L; Pósfai, Mihály; Frankel, Richard B; Bazylinski, Dennis A

    2012-02-01

    Two novel magnetotactic bacteria (MTB) were isolated from sediment and water collected from the Badwater Basin, Death Valley National Park and southeastern shore of the Salton Sea, respectively, and were designated as strains BW-2 and SS-5, respectively. Both organisms are rod-shaped, biomineralize magnetite, and are motile by means of flagella. The strains grow chemolithoautotrophically oxidizing thiosulfate and sulfide microaerobically as electron donors, with thiosulfate oxidized stoichiometrically to sulfate. They appear to utilize the Calvin-Benson-Bassham cycle for autotrophy based on ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity and the presence of partial sequences of RubisCO genes. Strains BW-2 and SS-5 biomineralize chains of octahedral magnetite crystals, although the crystals of SS-5 are elongated. Based on 16S rRNA gene sequences, both strains are phylogenetically affiliated with the Gammaproteobacteria class. Strain SS-5 belongs to the order Chromatiales; the cultured bacterium with the highest 16S rRNA gene sequence identity to SS-5 is Thiohalocapsa marina (93.0%). Strain BW-2 clearly belongs to the Thiotrichales; interestingly, the organism with the highest 16S rRNA gene sequence identity to this strain is Thiohalospira alkaliphila (90.2%), which belongs to the Chromatiales. Each strain represents a new genus. This is the first report of magnetite-producing MTB phylogenetically associated with the Gammaproteobacteria. This finding is important in that it significantly expands the phylogenetic diversity of the MTB. Physiology of these strains is similar to other MTB and continues to demonstrate their potential in nitrogen, iron, carbon and sulfur cycling in natural environments.

  3. Estimate of the particle size in nanoparticles of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Paresque, M.C.; Castro, J.A.; Campos, M.F.; Oliveira, E.M.; Liuzzi, M.A.S.C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2016-07-01

    Full Text: Nanocrystalline particles of Fe3O4 were produced by co-precipitation in aquous mean. The particle size of magnetite is a very important parameter, because for particle size around 30 nm there is a transition superparamagnetic for ferromagnetic. This transition profoundly affects the properties of the nanofluid. The Langevin model allows an estimate of the particle size, directly from measured hysteresis curves. In this study, the particle size was also determined by x-ray diffraction with Rietveld analysis and by a Laser Particle Size Analyzer equipment. These two methods pointed out particle size around 20 nm. (author)

  4. Biophysical Puzzles Concerning Magnetite-Based Magnetoreception in the Common Nematode, Caenorhabditis elegans.

    Science.gov (United States)

    Kirschvink, J. L.; Kobayashi, A. K.

    2015-12-01

    A recent report demonstrating magnetotactic behavior in the nematode worm, C. elegans, presents two intriguing biophysical puzzles. Vidal-Gadea et al. (2015, DOI: 10.7554/eLife.07493) show that wild-type, well-fed populations from both Hemispheres migrate upwards when their soil environment is moist and wet, and downward when starved. Their data show that inverting the vertical component of the magnetic field reverses the migration direction, indicating that it is a magnetically polar (not axial) response. Also, the angle of magnetic migration varies with the inclination angle of the local geomagnetic field at the native site, minimizing travel time. This ancestral magnetic migration direction persists even when strains are taken to different areas. We note that only a single-domain ferromagnetic magnetoreceptor (e.g, magnetite) is capable of producing a polar magnetotactic response, and in support there is one report of magnetosomes in C. elegans (Cranfield et al., 2004;DOI 10.1098/rsbl.2004.0209). However, the polarity of a magnetosome is determined at the time it grows across the SPM/SD threshold, and the magnetic orientation will lock-in randomly unless biased by the strong field of adjacent magnetosomes. Hence, the persistence of a North or South seeking direction preference within these populations demands that stable magnetosome chains of fixed polarity must be transmitted from parents, to the eggs, to the larvae, and then to the new adults. This is similar to the non-genetic inheritance process by which populations of magnetotactic bacteria can maintain North- or South-seeking swimming preference. Furthermore, for a magnetotactic organism to maintain a consistent angle from the magnetic axis is not enough to make it go vertical; it would go in a cone. For them to go vertical as reported (or to deviate at their natal magnetic inclination) demands that they must have a separate gravity sensor with which to measure the inclination angle relative to the

  5. Characterization of magnetite particles in shocked quartz by means of electron- and magnetic force microscopy: Vredefort, South Africa

    CSIR Research Space (South Africa)

    Cloete, M

    1999-11-01

    Full Text Available ) in quartz generally accepted as typical shock lamellae. The magnetite particles along shock lamellae in quartz grains virtually all show uniform crystallographic orientations. In most instances, the groups of magnetite within different quartz grains...

  6. ELECTRON MICROSCOPY OF ANIONIC SURFACTANT-DIRECTED SYNTHESIS OF MAGNETITE NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Sharali Malik

    2016-06-01

    Full Text Available We have synthesized a variety of magnetite nanoparticles which appear to have biogenic signatures and could give insights into how the nanomagnetite particles form in biological systems, and how they are associated with Alzheimer’s disease. We have also synthesized mesoporous magnetite nanoparticles which have potential use in the targeted drug delivery.

  7. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, J.B., E-mail: javierbm@einstein.br [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil); Costa-Filho, A.J. [Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (Brazil); Cornejo, D.R. [Instituto de Física Universidade de São Paulo, USP, São Paulo (Brazil); Vieira, E.D. [Instituto de Física, Universidade Federal de Goiás, Goiânia (Brazil); Gamarra, L.F. [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil)

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  8. Characterization of Modified Magnetite Nanoparticles for Albumin Immobilization

    Directory of Open Access Journals (Sweden)

    A. K. Bordbar

    2014-01-01

    Full Text Available Magnetite Fe3O4 nanoparticles (NPs were prepared by chemical coprecipitation method. Silica-coated magnetite NPs were prepared by sol-gel reaction, subsequently coated with 3-aminopropyltriethoxysilane (APTES via silanization reaction, and then were activated with 2,4,6-trichloro-1,3,5-triazine (TCT and covalently immobilized with bovine serum albumin (BSA. The size and structure of the particles were characterized by transmission electron microscopy (TEM, X-ray powder diffraction (XRD, and dynamic light scattering (DLS techniques. The immobilization was confirmed by Fourier transform infrared spectroscopy (FT-IR. XRD analysis showed that the binding process has not done any phase change to Fe3O4. The immobilization time for this process was 4 h and the amount of immobilized BSA for the initial value of 1.05 mg BSA was about 120 mg/gr nanoparticles. Also, the influences of three different buffer solutions and ionic strength on covalent immobilization were evaluated.

  9. Hydrothermal synthesis of magnetite particles with uncommon crystal facets

    Directory of Open Access Journals (Sweden)

    Junki Sato

    2014-09-01

    Full Text Available Hydrothermal synthesis of Fe3O4 (magnetite particles was carried out using organic compounds as morphology control agents to obtain magnetite crystals with uncommon facets. It was established that the morphology of Fe3O4 crystals obtained by hydrothermal treatment of an aqueous solution containing Fe2+ and organic compounds depended on the organic compound used. The shape of the Fe3O4 particles obtained when no additives were used was quasi-octahedral. In contrast, the addition of picolinic acid, citric acid or pyridine resulted in the formation of polyhedral crystals, indicating the presence of not only {1 1 1}, {1 0 0} and {1 1 0} facets but also high-index facets including at least {3 1 1} and {3 3 1}. When citric acid was used as an additive, octahedral crystals with {1 1 1} facets also appeared, and their size decreased as the amount of citric acid was increased. Thus, control of Fe3O4 particle morphology was achieved by a simple hydrothermal treatment using additives.

  10. Preparation of size-controlled nanoparticles of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Angela L., E-mail: angelaleao@iceb.ufop.br [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro P-3810193 (Portugal); Department of Chemistry, Federal University of Ouro Preto, 35400-000 Ouro Preto, Minas Gerais (Brazil); Valente, Manuel A. [Department of Physics, I3N, University of Aveiro, Aveiro P-3810193 (Portugal); Ferreira, Jose M.F. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro P-3810193 (Portugal); Fabris, Jose D. [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), 39100-000 Diamantina, Minas Gerais (Brazil)

    2012-05-15

    Samples of ferrofluids containing chemically stabilized nanoparticles of magnetite (Fe{sub 3}O{sub 4}) with tetramethylammonium hydroxide (TMAOH) were prepared by a direct reduction-precipitation method. The influences of aging time and temperature on the size and monodispersion characteristics of the produced nanoparticles were investigated. Transmission electron microscopy, powder X-ray diffraction, Fourier-transform infrared, and magnetization measurements with applied magnetic field up to 2 T were used to characterize the synthesized iron oxides. Raising the temperature of the synthesized material in autoclave affects positively the monodispersion of the nanoparticles, but it was not found to significantly influence the size itself of individual particles. - Highlights: Black-Right-Pointing-Pointer From report protocols, chemical synthesis of magnetite with FeCl{sub 3} (stable in air) instead of FeCl{sub 2} or Fe(NO{sub 3}){sub 3}, precursor. Black-Right-Pointing-Pointer Chemical reduction with Na{sub 2}SO{sub 3} provides an additional advantage. Black-Right-Pointing-Pointer As any eventual reformation of Fe{sup 3+} from reoxidization of produced Fe{sup 2+} may be sequestered by remaining SO{sub 3}{sup 2-} in the medium. Black-Right-Pointing-Pointer Nanoparticles are stably individualized with tetramethylammonium hydroxide that acts as a surface-active agent. Black-Right-Pointing-Pointer Thermal treatment reduces further the mean sizes of particles, as required for many medical uses.

  11. Domain analysis

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    The domain-analytic approach to knowledge organization (KO) (and to the broader field of library and information science, LIS) is outlined. The article reviews the discussions and proposals on the definition of domains, and provides an example of a domain-analytic study in the field of art studie....... Varieties of domain analysis as well as criticism and controversies are presented and discussed....

  12. Multi-stage freezing of HEUR polymer networks with magnetite nanoparticles.

    Science.gov (United States)

    Campanella, A; Holderer, O; Raftopoulos, K N; Papadakis, C M; Staropoli, M P; Appavou, M S; Müller-Buschbaum, P; Frielinghaus, H

    2016-04-07

    We observe a change in the segmental dynamics of hydrogels based on hydrophobically modified ethoxylated urethanes (HEUR) when hydrophobic magnetite nanoparticles (MNPs) are embedded in the hydrogels. The dynamics of the nanocomposite hydrogels is investigated using dielectric relaxation spectroscopy (DRS) and neutron spin echo (NSE) spectroscopy. The magnetic nanoparticles within the hydrophobic domains of the HEUR polymer network increase the size of these domains and their distance. The size increase leads to a dilution of the polymers close to the hydrophobic domain, allowing higher mobility of the smallest polymer blobs close to the "center". This is reflected in the decrease of the activation energy of the β-process detected in the DRS data. The increase in distance leads to an increase of the size of the largest hydrophilic polymer blobs. Therefore, the segmental dynamics of the largest blobs is slowed down. At short time scales, i.e. 10(-9) s glass transition temperature (Tg) decreases upon increasing the MNP loading, indicating an acceleration of the segmental dynamics at long time scales (τ∼ 100 s). Therefore, it would be possible to tune the Tg of the hydrogels by varying the MNP concentration. The contribution of the static inhomogeneities to the total scattering function Sst(q) is extracted from the NSE data, revealing a more ordered gel structure than the one giving rise to the total scattering function S(q), with a relaxed correlation length ξNSE = (43 ± 5) Å which is larger than the fluctuating correlation length from a static investigation ξSANS = (17.2 ± 0.3) Å.

  13. iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite

    DEFF Research Database (Denmark)

    Jing, Yuhang; Wan, Jingjing; Angelidaki, Irini

    2017-01-01

    by around 44% in batch experiments, and both direct interspecies electron transfer and interspecies H2 transfer were thermodynamically feasible with the addition of magnetite. The methanation of propionate facilitated by magnetite was also demonstrated in a long-term operated continuous reactor. The methane...... enriched with the addition of magnetite. iTRAQ quantitative proteomic analysis, which was used in mixed culture for the first time, showed that magnetite induced the changes of protein expression levels involved in various pathways during the methanation of propionate. The up-regulation of proteins...... electron transfer considering its up-regulation with the addition of magnetite and origination from Thauera. Most of the up-regulated proteins in methane metabolism were originated from Methanosaeta, while most of the enzymes with down-regulated proteins were originated from Methanosarcina. However, the up-regulated...

  14. Simple assay for screening phytoestrogenic compounds using the oestrogen receptor immobilised magnetite nanoparticles.

    Science.gov (United States)

    Busayapongchai, Pimchanok; Siri, Sineenat

    2017-06-01

    With increasing interests of phytoestrogens for their potential applications, a rapid and simple tool for screening these phytochemicals is still required. In this study, a simple assay to detect phytoestrogens was developed based on the competition binding between the tested samples and the fluorescently labelled oestrogen (E2) to the human ligand binding domain of oestrogen receptor (LBD-ER) that was immobilised on the magnetite nanoparticles (MNPs). The 40-kDa LBD-ER peptide was produced in an Escherichia coli system. The synthesised 68.7-nm MNPs were silanised and subsequently covalently linked to the C-terminus of LBD-ER peptide. The LBD-ER immobilised MNPs demonstrated the specific binding for the standard E2 with the equilibrium dissociation constant of 9.56 nM and the binding capacity of 0.08 pmol/1 mg of the MNPs. The LBD-ER immobilised MNPs could evaluate oestrogenic activity of the extracts of Asparagus racemosus and Curcuma comosa , the reported phytoestrogenic plants, but not progesterone (P4) and Raphanus sativus extract, the negative controls. The results of this work clearly demonstrated a potential assay for detecting phytoestrogens of crude plant extracts, which is simple and easily adapted to a high throughput format.

  15. Biofunctionalized magnetic hydrogel nanospheres of magnetite and {kappa}-carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Daniel-da-Silva, Ana L; Fateixa, Sara; Trindade, Tito; Goodfellow, Brian J; Gil, Ana M [Department of Chemistry, CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Guiomar, Antonio J [Department of Biochemistry and CNC, University of Coimbra, 3001-401 Coimbra (Portugal); Costa, Benilde F O [CEMDRX, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Silva, Nuno J O, E-mail: ana.luisa@ua.p [Instituto de Ciencias de Materiales de Aragon, Departamento de Fisica de la Materia Condensada, Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2009-09-02

    Magnetic hydrogel {kappa}-carrageenan nanospheres were successfully prepared via water-in-oil (w/o) microemulsions combined with thermally induced gelation of the polysaccharide. The size of the nanospheres (an average diameter () of about 50 and 75 nm) was modulated by varying the concentration of surfactant. The nanospheres contained superparamagnetic magnetite nanoparticles (8 nm), previously prepared by co-precipitation within the biopolymer. Carboxyl groups, at a concentration of about 4 mmol g{sup -1}, were successfully grafted at the surface of these magnetic nanospheres via carboxymethylation of the {kappa}-carrageenan. The carboxylated nanospheres were shown to be thermo-sensitive in the 37-45 {sup 0}C temperature range, indicating their potential as thermally controlled delivery systems for drugs and/or magnetic particles at physiological temperatures. Finally, preliminary results have been obtained for IgG antibody conjugation of the carboxylated nanospheres and the potential of these systems for bio-applications is discussed.

  16. Brownian rotational relaxation and power absorption in magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Goya, G.F. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)]. E-mail: goya@unizar.es; Fernandez-Pacheco, R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Arruebo, M. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain); Cassinelli, N. [Electronics Division, Bauer and Associates, Buenos Aires (Argentina); Facultad de Ingenieria, UNLP (Argentina); Ibarra, M.R. [Institute of Nanoscience of Aragon (INA), University of Zaragoza, 50009 Zaragoza (Spain)

    2007-09-15

    We present a study of the power absorption efficiency in several magnetite-based colloids, to asses their potential as magnetic inductive hyperthermia (MIH) agents. Relaxation times {tau} were measured through the imaginary susceptibility component {chi}{sup '}'(T), and analyzed within Debye's theory of dipolar fluid. The results indicated Brownian rotational relaxation and allowed to calculate the hydrodynamic radius close to the values obtained from photon correlation. The study of the colloid performances as power absorbers showed no detectable increase of temperature for dextran-coated Fe{sub 3}O{sub 4} nanoparticles, whereas a second Fe{sub 3}O{sub 4}-based dispersion of similar concentration could be heated up to 12K after 30min under similar experimental conditions. The different power absorption efficiencies are discussed in terms of the magnetic structure of the nanoparticles.

  17. Hydrocolloid-Stabilized Magnetite for Efficient Removal of Radioactive Phosphates

    Directory of Open Access Journals (Sweden)

    Vinod Vellora Thekkae Padil

    2014-01-01

    Full Text Available Liquid radioactive waste is a common by-product when using radioactive isotopes in research and medicine. Efficient remediation of such liquid waste is crucial for increasing safety during the necessary storage of the material. Herein, we present a novel Gum Karaya stabilized magnetite for the efficient removal of radioactive phosphorus 32P from liquid radioactive waste. This environmentally friendly material is well suited to be used as a nanohydrogel for the removal of liquid waste, which can then be stored in a smaller space and without the risk of the spills inherent to the initial liquid material. The maximum adsorption capacity of the GK/M in this study was found to be 15.68 GBq/g. We present a thorough morphological characterization of the synthesised GK/M, as well as a discussion of the possible phosphorus adsorption mechanisms.

  18. Fluorescent Magnetic Bioprobes by Surface Modification of Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tito Trindade

    2013-07-01

    Full Text Available Bimodal nanoprobes comprising both magnetic and optical functionalities have been prepared via a sequential two-step process. Firstly, magnetite nanoparticles (MNPs with well-defined cubic shape and an average dimension of 80 nm were produced by hydrolysis of iron sulfate and were then surface modified with silica shells by using the sol-gel method. The Fe3O4@SiO2 particles were then functionalized with the fluorophore, fluorescein isothiocyanate (FITC, mediated by assembled shells of the cationic polyelectrolyte, polyethyleneimine (PEI. The Fe3O4 functionalized particles were then preliminary evaluated as fluorescent and magnetic probes by performing studies in which neuroblast cells have been contacted with these nanomaterials.

  19. Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline.

    Science.gov (United States)

    Park, Minsung; Cheng, Jie; Choi, Jaeyoo; Kim, Jaehwan; Hyun, Jinho

    2013-02-01

    Magnetic BC was biosynthesized by culturing Gluconacetobacter xylinus in a medium containing magnetite nanoparticle (MNP) clusters. The stable dispersion of MNP clusters in an aqueous solution was achieved using amphiphilic comb-like polymer (CLP) stabilizers to disperse the MNPs. Subsequently, a conducting polymer was synthesized on the magnetic BC fibers by the chemical oxidative polymerization of aniline. The BC fiber was fully coated with polyaniline, forming hydrogen bonds. The colloidal stability of the CLP-modified MNPs was characterized by optical imaging and UV-visible spectroscopy. The chemical structure and morphology of the hybrid BC layers were observed using Fourier transform infrared spectroscopy and scanning electron microscopy. Magnetic and conductive properties were measured to confirm the immobilization of MNPs and polyaniline. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Optical and magnetic characterization of theranostic magnetite particles (Conference Presentation)

    Science.gov (United States)

    Cialla-May, Dana; Patze, Sophie; Mueller, Robert; Weber, Karina; Popp, Jürgen

    2017-02-01

    Magnetic nanoparticles (MNPs) have a major role as contrast agent in diagnostic imaging and therapeutic monitoring. In order to research on MNP exposition, degradation and elimination of those nano composites as well as the consequences of the MNP exposition in relation with social economic relevant diseases (cancer, infectious diseases), the comprehensive characterization of magnetic and structural properties is of high importance. Within this contribution, the magnetic characterization of theranostic relevant MNPs is introduced. Applying a vibrating sample magnetometer (VSM), it is found, that the nanocomposites show superparamagnetic behavior and the recorded data confirm iron oxide cores (magnetite/maghemite). Employing Raman spectroscopy, the typical fingerprint information of magnetite is detected. By increasing the laser power, the transition to maghemite and hematite due to the oxidation of the magnetic core is illustrated. Moreover, IR spectroscopy is applied to characterize the coating material e.g. starch or other biocompatible polymers. To determine the stability of MNPs as well as the MNP's elimination under physiological conditions, different buffer systems were tested i.e. simulated body fluid (SBF) and artificial lysosomal fluid (ALF). The investigated MNPs are stable in SBF; thus, the stability in blood after injection of the contrast agent is guaranteed. Finally, the storage in ALF leads to a complete decomposition of the MNPs, which reflects the conditions in lysosomes and guarantee for a fast MNP elimination. Acknowledgement: We thank the Federal Ministry of Education and Research (BMBF), Germany as well as the Project Management Jülich (PTJ), Germany for funding the research project NanoBEL (03XP0003F).

  1. Evidence for artificial magnetite coating on Iberian armoury

    Directory of Open Access Journals (Sweden)

    García, L.

    2011-04-01

    Full Text Available A metallographic study of two pre-roman Iberian arms, affected by a cremation process, revealed the presence of an outer magnetite layer, providing highly protective properties. This layer is extraordinarily tenacious and of very homogeneous thickness, indicating an intentional manufacturing process rather than an accidental formation during the severe heating/cooling cycles the artefact suffered. Up to date, the intentional production of these types of layers has been attributed to a welding process of three different metallic sheets, here an alternative model is proposed, allowing, as could be simulated in the laboratory, the virtually exclusive formation of a magnetite coating.

    Se presenta un estudio metalográficos de dos armas prerromanas afectadas por un proceso de cremación. Las armas poseen un recubrimiento exterior de magnetita que las confieren unas altas propiedades de protección frente a la corrosión. Esta capa es extraordinariamente tenaz y posee un espesor muy homogéneo, indicando que son producto de un proceso de fabricación intencionado más que una formación accidental durante los varios ciclos de calentamiento/ enfriamiento que han sufrido los objetos. Hasta la fecha, la producción intencional de este tipo de recubrimientos ha sido atribuida a un proceso de soldadura de tres láminas metálicas diferentes. En este trabajo se propone un modelo alternativo de formación, el cual permite una simulación en el laboratorio en la que se forma exclusivamente una capa de magnetita.

  2. Effect of purification pretreatment on the recovery of magnetite from waste ferrous sulfate

    Science.gov (United States)

    Yu, Wang; Peng, Ying-lin; Zheng, Ya-jie

    2016-08-01

    The present study was conducted to elucidate the influence of impurities in waste ferrous sulfate on its recovery of magnetite. Ferrous sulfate solution was purified by the addition of NaOH solution to precipitate impurities, and magnetite was recovered from ferrous sulfate solution without and with purification pretreatment. Calcium hydroxide was added to the solution of ferrous sulfate as a precipitator. A mixed product of magnetite and gypsum was subsequently obtained by air oxidation and heating. Wet-milling was performed prior to magnetic separation to recover magnetite from the mixed products. The results show that with the purification pretreatment, the grade of iron in magnetite concentrate increased from 62.05% to 65.58% and the recovery rate of iron decreased from 85.35% to 80.35%. The purification pretreatment reduced the conglutination between magnetite and gypsum, which favors their subsequent magnetic separation. In summary, a higher-grade magnetite with a better crystallinity and a larger particle size of 2.35 μm was obtained with the purification pretreatment.

  3. Fabrication of Magnetite Nanoparticles Dispersed in Olive Oil and Their Structural and Magnetic Investigations

    Science.gov (United States)

    Taufiq, A.; Saputro, R. E.; Sunaryono; Hidayat, N.; Hidayat, A.; Mufti, N.; Diantoro, M.; Patriati, A.; Mujamilah; Putra, E. G. R.; Nur, H.

    2017-05-01

    In this work, the iron sand taken from Wedi Ireng Beach in Banyuwangi, Indonesia, was employed as the main precursor in fabricating magnetite nanoparticles. The magnetite nanoparticles were then functionalized in preparing magnetic fluids coated by oleic acid as a surfactant and dispersed in olive oil as a liquid carrier. The phase purity, crystallite size and crystal structure of the dried magnetic fluids were characterized by using X-Ray Diffractometer. Meanwhile, the functional groups of the magnetic fluids were investigated by means of Fourier Transform Infra-Red (FTIR) spectroscopy. The particle size and morphology of the magnetite particles were also investigated by using Transmission Electron Microscopy (TEM). The magnetic behaviors of the magnetic fluids were determined by using Vibrating Sample Magnetometer (VSM). Based on the XRD data analysis, the magnetite particles crystallized in the spinel structure without the presence of any other phases. The FTIR spectra showed that the functional groups of the magnetic fluids were referring to the magnetite, oleic acid, and olive oil. The TEM image presented that the magnetite particle was formed in a nanometric size. Finally, the saturation magnetization of the magnetic fluids varied in the mass composition and particle size of the magnetite nanoparticles.

  4. Magnetite (Fe3O4) microcapsules prepared using a glass membrane and solvent removal.

    Science.gov (United States)

    Omi, S; Kanetaka, A; Shimamori, Y; Supsakulchai, A; Nagai, M; Ma, G H

    2001-01-01

    Fine magnetite powders dispersed in polymer solution were encapsulated from an oil-in-water emulsion prepared by an emulsification process employing a porous glass membrane and subsequent evaporation of the solvent. Styrene-based copolymers were dissolved in a magnetic fluid, and then continuously pushed through the pores of glass membrane into the aqueous phase, which had dissolved polyvinyl alcohol (PVA) and sodium dodecyl sulphate (SDS) as a mixed stabilizer. P(styrene-co-acrylic acid) (PS-AA), P(stryrene-co-butyl acrylate) (PS-BA) and styrene-butadiene rubber (SBR) were dissolved in the specially ordered magnetite fluid (25 wt% magnetite dispersed in toluene) separately or as a mixture, and uniform droplets suspending the magnetic particles were obtained. After the evaporation of toluene, PS-AA capsules retained a spherical shape and uniformity, whereas PS-AA/PS-BA capsules revealed a creased surface and broader size distribution. The microcapsules entrapped 30-40 wt% of magnetite, and the encapsulation yield of magnetite was 20-40%. Glass membranes with 9.5, 5.25 and 1.42 microm pore size were employed and 5-40 microm microcapsules were obtained depending on the pore size. When magnetite suspended in chloroform was used, magnetite capsules with broader size distributions were obtained because of the sticking of the droplets to the membrane wall. The advantage of the membrane emulsification which provides uniform sized droplets was lost.

  5. Synthesis of Magnetite Nano-Particles by Reverse CO-PRECIPITATION

    Science.gov (United States)

    Kazemzadeh, Hamid; Ataie, Abolghasem; Rashchi, Fereshteh

    Magnetite nano-particles have been synthesized by reverse co-precipitation method using iron salts in alkaline medium in the presence of diethylene glycol (DEG). Effect of DEG on the nano-particle characteristics was investigated by XRD, FE-SEM, FTIR and VSM techniques. From XRD results it was concluded that in the presence of DEG the composition of magnetite did not change, however the mean crystallite size reduced from 10 to 5 nm. SEM micrograph showed that DEG decreased the size of spherical magnetite nano-particles from 50 to 20 nm. Fourier transform infrared spectra (FTIR) indicated that the DEG molecules chemisorbed on the magnetite nano-particles. Under the given experimental conditions, the rate of crystallization and growth reduced, which is probably due to the capping of DEG to the magnetite nano-particles. The agglomeration was also decreased which is attributed to the coating of magnetite nano-particles by DEG which prevents the formation of hydrogen bonding between magnetite and water molecules.

  6. Magnetic and microscopic characterization of magnetite nanoparticles adhered to clay surfaces

    DEFF Research Database (Denmark)

    Galindo-Gonzalez, C; Feinberg, JM; Kasama, Takeshi

    2009-01-01

    When suspended in solution, clay platelets coated with nanometer-scale magnetite particles behave as magnetorheologic fluids that are important to a variety of industrial applications. Such dual-phase assemblages are also similar to natural aggregates that record the direction and intensity...... of the Earth's magnetic field in lake and marine depositional environments. This study characterizes the mineralogical structure and magnetic behavior of montmorillonite platelets coated with aggregates of nanometer-scale magnetite crystals. The distribution of magnetite crystal sizes in three different clay...

  7. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran

    Science.gov (United States)

    Heidarian, Hassan; Lentz, David; Alirezaei, Saeed; Peighambari, Sima; Hall, Douglas

    2016-12-01

    Textural and compositional data are presented for different types of magnetite in the Chadormalu iron deposit to discern the genesis of various styles of mineralization. Samples were chosen according to their paragenetic relations to apatite and their host setting: magnetite-apatite veins in the altered host rocks, disseminated magnetite-apatite assemblages in the marginal parts of the main ore body, and massive magnetite associated with irregular apatite veinlets from internal part of the main ore body. Scanning electron microscopy - back scatter electron (SEM-BSE) images reveal that there are three main generations of magnetite in each of the different magnetite-apatite assemblages. Primary magnetite (Mag1) features abundant porosity and a dark appearance. A second generation of magnetite (Mag2) replacing Mag1 shows a lighter appearance with both sharp and gradational contacts with the primary magnetite crystals. The two magnetite types are related to dissolution-precipitation processes due to changing physico-chemical parameters of the ore fluids. A third type of magnetite (Mag3) with a recrystallized appearance and foam-like triple junctions was mostly observed in magnetite-apatite veins in the main ore body and in veins hosted by altered rocks. Electron probe microanalyses (EPMA) were utilized to discriminate the various magnetite generations in the different magnetite-apatite assemblages. Applying published elemental discrimination diagrams shows that most primary magnetites fall into the hydrothermal- and Kiruna-type fields. Primary magnetite contains lower FeO (88.77-93.65 wt.%; average 91.5 wt.%), and higher SiO2 (0.21-2.26 wt.%; ave. 0.32 wt.%), Al2O3 (0.001-0.45 wt.%; ave. 0.053 wt.%), and CaO (0.002-0.48 wt.%; ave. 0.078 wt.%) contents, which might be related to magmatically derived fluids. Secondary magnetites have higher FeO (89.23-93.49 wt.%; ave. 92.11 wt.%), lower SiO2 (0.037-0.189 wt.%; ave. 0.072 wt.%), Al2O3 (0.004-0.072 wt.%; ave. 0.019 wt

  8. Effects of common groundwater ions on chromate removal by magnetite: importance of chromate adsorption

    National Research Council Canada - National Science Library

    Meena, Amanda H; Arai, Yuji

    2016-01-01

    .... In this study, effects of common groundwater ions (i.e., nitrate and sulfate) on Cr(VI) sorption to magnetite were investigated using batch geochemical experiments in conjunction with X-ray absorption...

  9. Magnetic and Structural Properties of Magnetite in Radular Teeth of Chiton Acanthochiton Rubrolinestus

    Science.gov (United States)

    Han, Y. N.; Liu, C. L.; Yao, L. D.; Wang, Y.; Han, X. F.

    2008-03-01

    The major radular lateral teeth of Polyplacophora Chiton comprise a magnetite biomineral cap.We have investigated the structure and magnetic properties of the biomineralized magnetite crystallites in mature teeth of Chiton Acanthochiton Rubrolinestus. From the measurement of magnetic properties of tooth particles using SQUID magnetometry we find that the saturation magnetization and the Verwey transition temperature (Tv) are 78.4 emu/g and 105 K, respectively. An in situ examination of the structure of magnetite-bearing region within individual tooth using the high resolution TEM, together with electron diffraction (ED) pattern and energy-dispersive X-ray (EDX) analyses indicates magnetite microcrystal form electron-dense polycrystalline sheets with typical length 800 nm and width 150 nm or so. These polycrystalline sheets are arranged regularly along the longitude direction of the tooth cutting surface. Furthermore, the microcrystallites in polycrystalline sheet take on the generally good crystallinity.

  10. A comparison between acoustic properties and heat effects in biogenic (magnetosomes) and abiotic magnetite nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Józefczak, A., E-mail: aras@amu.edu.pl [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Leszczyński, B. [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Skumiel, A.; Hornowski, T. [Institute of Acoustics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2016-06-01

    Magnetic nanoparticles show unique properties and find many applications because of the possibility to control their properties using magnetic field. Magnetic nanoparticles are usually synthesized chemically and modification of the particle surface is necessary. Another source of magnetic nanoparticles are various magnetotactic bacteria. These biogenic nanoparticles (magnetosomes) represent an attractive alternative to chemically synthesized iron oxide particles because of their unique characteristics and a high potential for biotechnological and biomedical applications. This work presents a comparison between acoustic properties of biogenic and abiotic magnetite nanoparticle suspensions. Experimental studies have shown the influence of a biological membrane on the ultrasound properties of magnetosomes suspension. Finally the heat effect in synthetic and biogenic magnetite nanoparticles is also discussed. The experimental study shows that magnetosomes present good heating efficiency. - Highlights: • A biogenic and abiotic magnetite nanoparticle suspensions are investigated. • A comparison between ultrasonic properties and heat effects is presented. • Magnetosomes and abiotic magnetite nanoparticles exhibit good heating efficiency.

  11. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal.

    Science.gov (United States)

    Chandra, Vimlesh; Park, Jaesung; Chun, Young; Lee, Jung Woo; Hwang, In-Chul; Kim, Kwang S

    2010-07-27

    Magnetite-graphene hybrids have been synthesized via a chemical reaction with a magnetite particle size of approximately 10 nm. The composites are superparamagnetic at room temperature and can be separated by an external magnetic field. As compared to bare magnetite particles, the hybrids show a high binding capacity for As(III) and As(V), whose presence in the drinking water in wide areas of South Asia has been a huge problem. Their high binding capacity is due to the increased adsorption sites in the M-RGO composite which occurs by reducing the aggregation of bare magnetite. Since the composites show near complete (over 99.9%) arsenic removal within 1 ppb, they are practically usable for arsenic separation from water.

  12. Specific MR imaging of human-lymphocytes by monoclonal antibody-guided dextran-magnetite particles

    NARCIS (Netherlands)

    Bulte, J. W. M.; Hoekstra, Y; Kamman, R. L.; Magin, R. L.; Webb, A. G.; Briggs, R. W.; Go, K. G.; Hulstaert, C. E.; Miltenyi, S.; The, T. Hauw; de Leij, L

    Human lymphocytes were labeled with biotinylated anti-lymphocyte-directed monoclonal antibodies, to which streptavidin and subsequently biotinylated dextran-magnetite particles were coupled. This labeling resulted in a strong and selective negative contrast enhancement of lymphocyte suspensions at

  13. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    Science.gov (United States)

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  14. Synthesis of magnetite from iron-rich mine water using sodium carbonate

    CSIR Research Space (South Africa)

    Akinwekomi, V

    2017-06-01

    Full Text Available from the recovered sludge. Synthesis of magnetite nanoparticles was evaluated at varying temperature gradients. The principal mechanism governing the metals recovery was selective precipitation. This was achieved by manipulating the pH and aeration rate...

  15. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications.

    Science.gov (United States)

    Heidari, Fatemeh; Razavi, Mehdi; E Bahrololoom, Mohammad; Bazargan-Lari, Reza; Vashaee, Daryoosh; Kotturi, Hari; Tayebi, Lobat

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe3O4) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A unique type 3 ordinary chondrite containing graphite-magnetite aggregates - Allan Hills A77011

    Science.gov (United States)

    Mckinley, S. G.; Scott, E. R. D.; Taylor, G. J.; Keil, K.

    1982-01-01

    ALHA 77011, which is the object of study in the present investigation, is a chondrite of the 1977 meteorite collection from Allan Hills, Antarctica. It contains an opaque and recrystallized silicate matrix (Huss matrix) and numerous aggregates consisting of micron- and submicron-sized graphite and magnetite. It is pointed out that no abundant graphite-magnetite aggregates could be observed in other type 3 ordinary chondrites, except for Sharps. Attention is given to the results of a modal analysis, relations between ALHA 77011 and other type 3 ordinary chondrites, and the association of graphite-magnetite and metallic Fe, Ni. The discovery of graphite-magnetite aggregates in type 3 ordinary chondrites is found to suggest that this material may have been an important component in the formation of ordinary chondrites.

  17. INVESTIGATED DYNAMICS OF ELIMINATION MAGNETITE NANOPARTICLES OF INHALED IN GUINEA PIGS

    Directory of Open Access Journals (Sweden)

    A. V. Nosarev

    2014-01-01

    Full Text Available The article presents the results of a study of the dynamics of histological changes in the guinea pigs respiratory tissues due the process of elimination after a long course of inhaled nanoparticles of magnetite. In the experimental animals lungs as a result of prolonged inhalation nanomagnetite developed an inflammatory reaction, the accumulation of Perls -positive cells. These changes were not even a month later, when the input of magnetite nanoparticles in laboratory animals.

  18. Decrease of dissolved sulfide in sewage by powdered natural magnetite and hematite.

    Science.gov (United States)

    Zhang, Lehua; Verstraete, Willy; de Lourdes Mendoza, María; Lu, Zhihao; Liu, Yongdi; Huang, Guangtuan; Cai, Lankun

    2016-12-15

    Natural magnetite and hematite were explored to decrease sulfide in sewage, compared with iron salts (FeCl3 and FeSO4). A particle size of magnetite and hematite ranging from 45 to 60μm was used. The results showed that 40mgL-1 of powdered magnetite and hematite addition decreased the sulfide in sewage by 79%and 70%, respectively. The achieved decrease of sulfide production capacities were 197.3, 210.6, 317.6 and 283.3mgSg-1Fe for magnetite, hematite, FeCl3 and FeSO4 at the optimal dosage of 40mgL-1, respectively. Magnetite and hematite provided a higher decrease of sulfide production since more iron ions are capable of being released from the solid phase, not because of adsorption capacity of per gram iron. Besides, the impact on pH and oxidation-reduction potential (ORP) of hematite addition was negligible; while magnetite addition resulted in slight increase of 0.3-0.5 on pH and 10-40mV on ORP. Powdered magnetite and hematite thus appear to be suitable for sulfide decrease in sewage, for their sparing solubility, sustained-release, long reactive time in sewage as well as cost-effectiveness, compared with iron salts. Further investigation over long time periods under practical conditions are needed to evaluate the possible settlement in sewers and unwanted (toxic) metal elements presenting as impurities. Powdered magnetite and hematite were more cost-effective at only 30% costs of iron salts, such as FeCl3 and FeSO4 for decreasing sulfide production in sewage. Copyright © 2016. Published by Elsevier B.V.

  19. Emerging investigator series: As(v) in magnetite: incorporation and redistribution.

    Science.gov (United States)

    Huhmann, Brittany L; Neumann, Anke; Boyanov, Maxim I; Kemner, Kenneth M; Scherer, Michelle M

    2017-10-18

    Exposure to As in groundwater negatively impacts millions of people around the globe, and As mobility in groundwater is often controlled by Fe mineral dissolution and precipitation. Additionally, trace elements can be released from and incorporated into the structure of Fe oxides in the presence of dissolved Fe(ii). The potential for As to redistribute between sorbed on the magnetite surface and incorporated in the magnetite structure, however, remains unclear. In this study, we use selective chemical extraction and X-ray absorption spectroscopy (XAS) to distinguish magnetite-sorbed and incorporated As(v) and to provide evidence for As(v) incorporation during magnetite precipitation. While As in the As-magnetite coprecipitates did not redistribute between sorbed and incorporated over a 4 month period, a small, but measurable increase in incorporated As(v) of up to 13% was observed for sorbed As(v). We suggest that Fe(ii)-catalyzed recrystallization of magnetite did not significantly influence the redistribution of sorbed As(v) because the extent of Fe atom exchange was small (∼10%). In addition, the extent of As redistribution was the same in the absence and presence of added aqueous Fe(ii), suggesting that aqueous Fe(ii) had, overall, a minor effect on As redistribution for both coprecipitated and sorbed As(v). Our results suggest that coprecipitation of As(v) with magnetite and redistribution of As(v) sorbed on magnetite are potential pathways for irreversible As(v) uptake and sequestration. These pathways are likely to play a significant role in controlling As mobility in natural systems, during human-induced redox cycling of groundwater such as aquifer storage and recovery, as well as in iron oxide-based As removal systems.

  20. Magnetic susceptibility studies of the spin-glass and Verwey transitions in magnetite nanoparticles

    OpenAIRE

    Lopez Maldonado, K. L.; Presa Muñoz del Toro, Patricia de la; Flores Tavizon, E.; Farias Mancilla, J: R:; Matutes Aquino, J. A.; Hernando Grande, Antonio; Elizalde Galindo, J. T.

    2013-01-01

    Magnetite nanostructured powder samples were synthesized by aging chemical method. Phase, structural, and magnetic properties were characterized. X-ray diffraction patterns showed cubic magnetite pure phase, with average crystallite size, , equal to 40 nm. Susceptibility measurements showed the well-known Verwey transition at a temperature of 90 K. The decrease of Verwey transition temperature, with respect to the one reported in literature (125 K) was attributed to the low average cryst...

  1. STUDY OF THE MAGNETIC PROPERTIES OF POROUS POLYSTYRENE NANOPARTICLES LOADED WITH MAGNETITE

    OpenAIRE

    Puca, M.; Dpto. Académico de Fisicoquímica, FQIQ Universidad Nacional Mayor de San Marcos Lima, Perú; Tacuri, E.; Facultad de Química e Ingeniería Química Universidad Nacional Mayor de San Marcos Lima, Perú; Hurtado, M.; Facultad de Química e Ing. Química Universidad Nacional Mayor de San Marcos Lima, Perú; Guerrero, M.; Dpto. de Química Orgánica, FQIQ Universidad Nacional Mayor de San Marcos Lima, Perú; Figueroa, A.; Dpto. de Fisicoquímica, FQIQ Universidad Nacional Mayor de San Marcos Lima, Perú; Rojas, N.; Dpto. de Fisicoquímica, FQIQ Universidad Nacional Mayor de San Marcos Lima, Perú; Cjuno, J.; Dpto. de Fisicoquímica, FQIQ Universidad Nacional Mayor de San Marcos Lima, Perú; García, S.; Centro de Enseñanza Técnica Industrial-CETI.; Lopez, R. G.; Dpto. Procesos de Polimerización. Centro de Investigación en Química Aplicada-CIQA. Universidad Nacional Mayor de San Marcos Lima, Perú

    2014-01-01

    In this work the synthesis of magnetite nanoparticles by coprecipitación in inverse microemulsion, which were introduced inside the pores of the polystyrene nanoparticles is reported. The nanoparticles of porous polystyrene were synthesized by heterogeneous polymerization in semicontinuo, which were employed like cover polymeric due to their biocompatibility and biostability. Through the analysis by X-ray diffraction was verified the structure of the magnetite, and estimated its average diame...

  2. Introduction of biotin or folic acid into polypyrrole magnetite core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina; Turcu, Rodica [National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, Cluj-Napoca (Romania); Liebscher, Jürgen [National Institute of Research and Development for Isotopic and Molecular Technologies, Donath 65-103, Cluj-Napoca, Romania and Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor 2, D-12489 Berlin (Germany)

    2013-11-13

    In order to contribute to the trend in contemporary research to develop magnetic core shell nanoparticles with better properties (reduced toxicity, high colloidal and chemical stability, wide scope of application) in straightforward and reproducible methods new core shell magnetic nanoparticles were developed based on polypyrrole shells functionalized with biotin and folic acid. Magnetite nanoparticles stabilized by sebacic acid were used as magnetic cores. The morphology of magnetite was determined by transmission electron microscopy TEM, while the chemical structure investigated by FT-IR.

  3. Genes Necessary for Bacterial Magnetite Biomineralization Identified by Transposon Mutagenesis

    Science.gov (United States)

    Nash, C. Z.; Komeili, A.; Newman, D. K.; Kirschvink, J. L.

    2004-12-01

    Magnetic bacteria synthesize nanoscale crystals of magnetite in intracellular, membrane-bounded organelles (magnetosomes). These crystals are preserved in the fossil record at least as far back as the late Neoproterozoic and have been tentatively identified in much older rocks (1). This fossil record may provide deep time calibration points for molecular evolution studies once the genes involved in biologically controlled magnetic mineralization (BCMM) are known. Further, a genetic and biochemical understanding of BCMM will give insight into the depositional environment and biogeochemical cycles in which magnetic bacteria play a role. The BCMM process is not well understood, though proteins have been identified from the magnetosome membrane and genetic manipulation and biochemical characterization of these proteins are underway. Most of the proteins currently thought to be involved are encoded within the mam cluster, a large cluster of genes whose products localize to the magnetosome membrane and are conserved among magnetic bacteria (2). In an effort to identify all of the genes necessary for bacterial BCMM, we undertook a transposon mutagenesis of Magnetospirillum magneticum AMB-1. Non-magnetic mutants (MNMs) were identified by growth in liquid culture followed by a magnetic assay. The insertion site of the transposon was identified two ways. First MNMs were screened with a PCR assay to determine if the transposon had inserted into the mam cluster. Second, the transposon was rescued from the mutant DNA and cloned for sequencing. The majority insertion sites are located within the mam cluster. Insertion sites also occur in operons which have not previously been suspected to be involved in magnetite biomineralization. None of the insertion sites have occurred within genes reported from previous transposon mutagenesis studies of AMB-1 (3, 4). Two of the non-mam cluster insertion sites occur in operons containing genes conserved particularly between MS-1 and MC-1. We

  4. Sorption of nalidixic acid onto micrometric and nanometric magnetites: Experimental study and modeling

    Science.gov (United States)

    Usman, M.; Martin, S.; Cimetière, N.; Giraudet, S.; Chatain, V.; Hanna, K.

    2014-04-01

    The sorption of nalidixic acid (NA) was studied onto three kinds of magnetite characterized by different particle sizes (from micrometric to nanometric) and surface properties. Experiments were performed under static batch and dynamic flow conditions. Obtained results indicate that kinetics and extent of sorption was strongly affected by the particle size of tested magnetites. Ionic strength effect was less significant suggesting that aggregation state of the magnetite particles did not affect the sorption. During kinetic sorption experiments, apparent rate constant normalized to solid mass was faster for nanosized magnetite while an opposite trend was observed for the surface area-normalized rate constants. Infrared data suggested the possibility of similar surface interactions on both microsized and nanosized magnetites. Transport of NA in magnetite-packed column was found associated to the instantaneous sorption without any significant effect of kinetic limitation. Breakthrough curves (BC) and sorption extent in columns were calculated by using Thomas, Yan and Yoon-Nelson models. Sorption capacities predicted by Thomas or Yan model were in good agreement with that determined by integrating total area above BC. However, Thomas model failed particularly to predict an accurate concentration at lower and higher time points of the BC. These findings have strong implications in relation to the transport and removal of environmental pollutants in natural and engineered systems.

  5. Stability of magnetite nanoparticles with different coatings in a simulated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Favela-Camacho, Sarai E.; Pérez-Robles, J. Francisco [Center for Research and Advanced Studies of National Polytechnic Institute, CINVESTAV-Querétaro Unit (Mexico); García-Casillas, Perla E. [Autonomous University of Juarez, Department of Materials Science, Institute of Engineering and Technology (Mexico); Godinez-Garcia, Andrés, E-mail: andgodinez@xanum.uam.mx [Universidad Autónoma Metropolitana, Departamento de Ingeniería de Procesos e Hidráulica (Mexico)

    2016-07-15

    Magnetite nanoparticles (MNPs) have demonstrated to be a potential platform for simultaneous anticancer drug delivery and magnetic resonance imaging (MRI). However, magnetite is unstable at the blood plasma conditions. Therefore, to study their stability in a broad range of particle size, the MNPs were synthesized using two methods, the fast injection co-precipitation method (FIC) and the reflux co-precipitation method (RC). The MNPs obtained by the RC and the FIC methods have an average size of agglomerates of 200 and 45 nm respectively. They were dispersed using sodium citrate as surfactant and were coated with silica and chitosan. A total of four kind of coated MNPs were synthesized: magnetite/sodium citrate, magnetite/silica, magnetite/sodium citrate/silica and magnetite/sodium citrate/silica/chitosan. Different samples of the coated MNPs were immersed in a simulated blood plasma solution (Phosphate-Buffered Saline, PBS, Gibco{sup ®}), for periods of 24, 48 and 72 h. Inductively coupled plasma (ICP) technique was used to analyze the composition of the simulated plasma after those periods of time. The obtained results suggest that the uncoated samples showed an appreciable weight loss, and the iron composition in the simulated plasma increased. This last means that the used coatings avoid iron dissolution from the MNPs.Graphical abstract.

  6. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Heidari, Fatemeh [Department of Materials Science and Engineering, School of Engineering, Yasouj University, Yasuj 75918-74934 (Iran, Islamic Republic of); Razavi, Mehdi [BCAST, Institute of Materials and Manufacturing, Brunel University London, Uxbridge, London UB8 3PH (United Kingdom); Brunel Institute for Bioengineering, Brunel University London, Uxbridge, London UB8 3PH (United Kingdom); Bahrololoom, Mohammad E. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bazargan-Lari, Reza [Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht (Iran, Islamic Republic of); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Kotturi, Hari [Department of Biology, University of Central Oklahoma, Edmond, OK 73034 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Department of Engineering Science, University of Oxford, Oxford OX1 3PJ (United Kingdom)

    2016-08-01

    Chitosan (CS), hydroxyapatite (HA), and magnetite (Fe{sub 3}O{sub 4}) have been broadly employed for bone treatment applications. Having a hybrid biomaterial composed of the aforementioned constituents not only accumulates the useful characteristics of each component, but also provides outstanding composite properties. In the present research, mechanical properties of pure CS, CS/HA, CS/HA/magnetite, and CS/magnetite were evaluated by the measurements of bending strength, elastic modulus, compressive strength and hardness values. Moreover, the morphology of the bending fracture surfaces were characterized using a scanning electron microscope (SEM) and an image analyzer. Studies were also conducted to examine the biological response of the human Mesenchymal Stem Cells (hMSCs) on different composites. We conclude that, although all of these composites possess in-vitro biocompatibility, adding hydroxyapatite and magnetite to the chitosan matrix can noticeably enhance the mechanical properties of the pure chitosan. - Highlights: • Chitosan (CS)/magnetite composite presented the maximum bending strength. • Adding hydroxyapatite and magnetite to the CS enhances its mechanical properties. • Magnetic does not have reverse effect on the cyto-compatibility of samples.

  7. Amyloid Aβ 42, a promoter of magnetite nanoparticle formation in Alzheimer’s disease

    Science.gov (United States)

    Bogachan Tahirbegi, Islam; Pardo, Wilmer Alfonso; Alvira, Margarita; Mir, Mònica; Samitier, Josep

    2016-11-01

    The accumulation of iron oxides—mainly magnetite—with amyloid peptide is a key process in the development of Alzheimer’s disease (AD). However, the mechanism for biogeneration of magnetite inside the brain of someone with AD is still unclear. The iron-storing protein ferritin has been identified as the main magnetite-storing molecule. However, accumulations of magnetite in AD are not correlated with an increase in ferritin, leaving this question unresolved. Here we demonstrate the key role of amyloid peptide Aβ 42, one of the main hallmarks of AD, in the generation of magnetite nanoparticles in the absence of ferritin. The capacity of amyloid peptide to bind and concentrate iron hydroxides, the basis for the formation of magnetite, benefits the spontaneous synthesis of these nanoparticles, even under unfavorable conditions for their formation. Using scanning and transmission electron microscopy, electron energy loss spectroscopy and magnetic force microscopy we characterized the capacity of amyloid peptide Aβ 42 to promote magnetite formation.

  8. Magnetic microwave heating of magnetite-carbon black mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, K., E-mail: kotaro.ishizaki@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Stir, M. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland); Gozzo, F. [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Catala-Civera, J.M. [Universidad Politecnica de Valencia, Camino Vera s/n E-46022 Valencia (Spain); Vaucher, S.; Nicula, R. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Advanced Materials Processing, Feuerwerkerstr. 39, CH-3602 Thun (Switzerland)

    2012-06-15

    The kinetics of the carbothermal reduction of magnetite to iron using carbon black was investigated in situ using the time-resolved X-ray powder diffraction synchrotron radiation technique for the case of magnetic microwave heating in an H-field maximum and conventional heating, respectively. The phase transformation sequence and the reaction kinetics were studied with respect to the case of heating in a microwave E-field maximum investigated earlier. The reduction to iron proceeds an order of magnitude faster when using microwaves. It proceeds at comparable rates in the E- and the H-field microwave heating, yet the reaction temperature is lowered to 770 Degree-Sign C in magnetic H-field microwave heating, compared to nearly 1200 Degree-Sign C for the E-field case. - Highlights: Black-Right-Pointing-Pointer First in situ synchrotron study of reduction of Fe{sub 3}O{sub 4} to Fe during H-field microwave heating. Black-Right-Pointing-Pointer Faster kinetics of the carbothermal reaction when microwaves are used. Black-Right-Pointing-Pointer The carbothermal reaction occurs at much lower temperature in microwave H-field than in E-field.

  9. Structural purity of magnetite nanoparticles in magnetotactic bacteria.

    Science.gov (United States)

    Fischer, Anna; Schmitz, Manuel; Aichmayer, Barbara; Fratzl, Peter; Faivre, Damien

    2011-07-06

    Magnetosome biomineralization and chain formation in magnetotactic bacteria are two processes that are highly controlled at the cellular level in order to form cellular magnetic dipoles. However, even if the magnetosome chains are well characterized, controversial results about the microstructure of magnetosomes were obtained and its possible influence in the formation of the magnetic dipole is to be specified. For the first time, the microstructure of intracellular magnetosomes was investigated using high-resolution synchrotron X-ray diffraction. Significant differences in the lattice parameter were found between intracellular magnetosomes from cultured magnetotactic bacteria and isolated ones. Through comparison with abiotic control materials of similar size, we show that this difference can be associated with different oxidation states and that the biogenic nanomagnetite is stoichiometric, i.e. structurally pure whereas isolated magnetosomes are slightly oxidized. The hierarchical structuring of the magnetosome chain thus starts with the formation of structurally pure magnetite nanoparticles that in turn might influence the magnetic property of the magnetosome chains.

  10. Magnetite nanoparticles as reporters for microcarrier processing in cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Reibetanz, Uta, E-mail: uta.reibetanz@medizin.uni-leipzig.de [Translational Centre for Regenerative Medicine (TRM) Leipzig, Universitaet Leipzig, Philipp-Rosenthal-Strasse 55, 04103 Leipzig (Germany); Institute for Medical Physics and Biophysics, Medical Faculty, Universitaet Leipzig, Haertelstrasse 16-18, 04107 Leipzig (Germany); Jankuhn, Steffen, E-mail: jankuhn@uni-leipzig.de [Division of Nuclear Solid State Physics, Faculty of Physics and Geosciences, Universitaet Leipzig, Linnestrasse 5, 04103 Leipzig (Germany); Office for Environmental Protection and Occupational Safety, Universitaet Leipzig, Ritterstrasse 24, 04109 Leipzig (Germany)

    2011-10-15

    The development and therapeutic application of drug delivery systems based on colloidal microcarriers layer-by-layer coated with biopolyelectrolytes requires the investigation of their processing inside the cell for the successful and efficient transport and release of the active agents. The present study is focused on the time-dependent multilayer decomposition and the subsequent release of active agents to the cytoplasm. Magnetite nanoparticles (MNP) were used as reporter agents integrated into the protamine sulfate/dextran sulfate basis multilayer on colloidal SiO{sub 2} cores. This functionalization allows the monitoring of the multilayer decomposition due to the detection of the MNP release, visualized by means of proton-induced X-ray emission (PIXE) by elemental distribution of Si and Fe. The direct correlation between the microcarrier localization in endolysosomes and cytoplasm of HEK293T/17 cells via confocal laser scanning microscopy (CLSM) and the elemental distribution (PIXE) allows tracing the fate of the MNP-coated microcarriers in cytoplasm, and thus the processing of the multilayer. Microcarrier/cell co-incubation experiments of 6 h, 24 h, 48 h, and 72 h show that a MNP release and a slight expansion into the cytoplasm occurs after a longer co-incubation of 72 h.

  11. Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles.

    Science.gov (United States)

    Seelert, Trevor; Ghosh, Dipankar; Yargeau, Viviane

    2015-05-01

    In order to supplement the need for alternative energy resources within the near future, enhancing the production of biohydrogen with immobilized Clostridium beijerinckii NCIMB8052 was investigated. Magnetite nanoparticles were functionalized, with chitosan and alginic acid polyelectrolytes using a layer-by-layer method, to promote bacterial attachment. Cultivating C. beijerinckii with these nanoparticles resulted in a shorter lag growth phase and increased total biohydrogen production within 100-ml, 250-ml and 3.6-L reactors compared with freely suspended organisms. The greatest hydrogen yield was obtained in the 250-ml reactor with a value of 2.1 ± 0.7 mol H2/mol glucose, corresponding to substrate conversion and energy conversion efficiencies of 52 ± 18 and 10 ± 3 %, respectively. The hydrogen yields obtained using the immobilized bacteria are comparable to values found in literature. However, to make this process viable, further improvements are required to increase the substrate and energy conversion efficiencies.

  12. Reduced Magnetism in Core–Shell Magnetite@MOF Composites

    Energy Technology Data Exchange (ETDEWEB)

    Elsaidi, Sameh K. [Chemistry; Sinnwell, Michael A.; Banerjee, Debasis; Devaraj, Arun; Kukkadapu, Ravi K.; Droubay, Timothy C.; Nie, Zimin [Energy; Kovarik, Libor; Vijayakumar, Murugesan; Manandhar, Sandeep [Department; Nandasiri, Manjula; McGrail, B. Peter [Energy; Thallapally, Praveen K.

    2017-10-17

    Rare-earth elements (REEs) have significant commercial and military uses.1-3 However, REE extraction through conventional mining processes is expensive and feasible at only a few locations worldwide. Alternative methods are needed to produce REEs from more geographically disperse resources and in a cost effective, environmental friendly manner.4,5 Among various sources, geothermal brine, used for generating geothermal energy can possess attractive concentrations (ppb to ppm level) of REEs along with other dissolved metal ions.6 A system that can selectively trap the REEs using an existing geothermal power plant infrastructure would be an attractive additional revenue stream for the plant operator that could accelerate the development and deployment of geothermal plants in the United States and rest of the world.7,8 Here, we demonstrate a magnetic core-shell approach that can effectively extract REEs in their ionic form from aqueous solution with up to 99.99% removal efficiency. The shell, composed of thermally and chemically stable functionalized metal-organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core. Magnetic susceptibility of the particles was found to decline significantly after in situ growth of a MOF shell, which resulted from oxidation of Fe2+ species of the magnetite (Fe3O4) to Fe3+ species (maghemite). The core-shell particles can be completely removed from the mixture under an applied magnetic field, offering a practical, economic, and efficient REE-removal process.

  13. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential.

    Science.gov (United States)

    Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A

    2007-07-01

    The effect of pH and redox potential on the redox equilibria of iron oxides in aqueous-based magnetite dispersions was investigated. The ionic activities of each dissolved iron species in equilibrium with magnetite nanoparticles were determined and contoured within the Eh-pH framework of a composite stability diagram. Both standard redox potentials and equilibrium constants for all major iron oxide redox equilibria in magnetite dispersions were found to differ from values reported for noncolloidal systems. The "triple point" position of redox equilibrium among Fe(II) ions, magnetite, and hematite shifted to a higher standard redox potential and an equilibrium constant which was several orders of magnitude higher. The predominant area of magnetite stability was enlarged to cover a wider range of both pH and redox potentials as compared to that of a noncolloidal magnetite system.

  14. Stability and magnetic interactions between magnetite nanoparticles dispersed in zeolite as studied using Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Herojit singh, L. [Materials Science Group Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Govindaraj, R., E-mail: govind@igcar.gov.in [Materials Science Group Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mythili, R. [Physical Metallurgy Group Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amarendra, G. [Materials Science Group Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-11-15

    Stability of superparamagnetic magnetite nanoparticles as formed in Zeolite has been addressed in a detailed manner based on isochronal annealing studies using Mössbauer spectroscopy. A strong binding of these nanoparticles in Zeolite has been deduced as the coarsening of the nanoparticles is observed following annealing treatments beyond 825 K. In addition, the magnetic interactions between these superparamagnetic magnetite nanoparticles in the as dispersed condition in Zeolite have been elucidated by means of low temperature Mössbauer studies. A strong dependence of the dipole–dipole interactions between superparamagnetic particles of cubic iron oxides is deduced based on this study. - Highlights: • Dispersion of superparamagnetic magnetite particles in zeolite. • A strong binding of magnetite particles in zeolite deduced using Mössbauer studies. • Difference in spin relaxation behavior of bare and zeolite dispersed magnetite particles. • A strong dipole–dipole interactions between magnetite particles.

  15. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    Science.gov (United States)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  16. Magnetite nanoparticle (NP) uptake by wheat plants and its effect on cadmium and chromium toxicological behavior

    Energy Technology Data Exchange (ETDEWEB)

    López-Luna, J., E-mail: jlol_24@hotmail.com [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Silva-Silva, M.J. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); Martinez-Vargas, S. [Facultad de Ingeniería, Universidad Autónoma del Carmen, Ciudad del Carmen 24115, Campeche (Mexico); Mijangos-Ricardez, O.F. [Instituto de Estudios Ambientales, Universidad de la Sierra Juárez, Ixtlán de Juárez 68725, Oaxaca (Mexico); González-Chávez, M.C. [Colegio de Postgraduados en Ciencias Agrícolas, Carr. México–Texcoco km 36.5, Montecillo 56230, Estado de México (Mexico); Solís-Domínguez, F.A. [Facultad de Ingeniería, Universidad Autónoma de Baja California, Mexicali 21280, Baja California Norte (Mexico); Cuevas-Díaz, M.C. [Facultad de Ciencias Químicas, Universidad Veracruzana, Coatzacoalcos 96535, Veracruz (Mexico)

    2016-09-15

    The aim of this work was to assess the uptake of citrate-coated magnetite nanoparticles (NPs) by wheat plants and its effect on the bioaccumulation and toxicity of individual and joint Cd{sup 2+} and Cr{sup 6+} levels. Seven-day assays were conducted using quartz sand as the plant growth substrate. The endpoints measured were seed germination, root and shoot lengths, and heavy metal accumulation. Magnetite exhibited very low toxicity, regardless of the wheat seedling NP uptake and distribution into roots and shoots. The seed germination and shoot length were not sensitive enough, while the root length was a more sensitive toxicity endpoint. The root length of wheat seedlings exposed to individual metals decreased by 50% at 2.67 mg Cd{sup 2+} kg{sup −1} and 5.53 mg Cr{sup 6+} kg{sup −1}. However, when magnetite NPs (1000 mg kg{sup −1}) were added, the root length of the plants increased by 25 and 50%. Cd{sup 2+} and Cr{sup 6+} showed similar and noninteractive joint action, but strongly impaired the wheat seedlings. In contrast, an interactive infra-additive or antagonistic effect was observed upon adding magnetite NPs. Thus, cadmium and chromium accumulation in vegetable tissues was considerately diminished and the toxicity alleviated. - Highlights: • We assessed the effect of nanomagnetite on heavy metal toxicity in wheat plants. • Citrate-coated magnetite nanoparticles (NPs) exerted very low toxicity to plants. • Cadmium was more toxic than chromium and toxicity was mitigated by magnetite NPs. • Cadmium and chromium had a similar and noninteractive joint action on plants. • Metals showed an interactive infra-additive joint effect by adding magnetite NPs.

  17. The effect of arsenic chemical form and mixing regime on arsenic mass transfer from soil to magnetite.

    Science.gov (United States)

    Yang, Kyung; Kim, Byung-Chul; Nam, Kyoungphile; Choi, Yongju

    2017-03-01

    This study investigated the effect of chemical forms of arsenic (As) and soil-magnetite mixing regimes on As mass transfer in magnetite-amended soil. Two soil samples with different component ratios of As chemical forms were prepared. In the absence of magnetite, the amount of desorbable As was strongly dependent on the fraction of easily extractable As in soil. Contact of the soils with magnetite in a slurry phase significantly reduced soil As concentration for both soils. Changes in As concentrations in soil, magnetite, and water by the slurry phase contact were simulated using an As mass transfer model. The model parameters were determined independently for each process of As soil desorption and magnetite sorption. The experimentally measured As mass transfer from soil to magnetite was significantly greater than the simulation result. By sequential extraction, it was observed that the soil As concentration was significantly reduced not only for easily extractable As, but also for relatively strongly bound forms of As. Enclosing the magnetite in a dialysis bag substantially limited the As mass transfer from soil to magnetite. These results suggest that improving the mixture between Fe oxides and soils can facilitate the effectiveness of As stabilization using Fe oxides.

  18. Direct observations of field-induced assemblies in magnetite ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, N. S. Susan [Mechanical Engineering Department, Polytechnic School of Engineering, New York University, 6 Metrotech Center, Brooklyn, New York 11201 (United States); Khapli, Sachin D. [New York University Abu Dhabi, Saadiyat Island, PO Box 129 188, Abu Dhabi (United Arab Emirates); Kumar, Sunil [Mechanical Engineering Department, Polytechnic School of Engineering, New York University, 6 Metrotech Center, Brooklyn, New York 11201 (United States); New York University Abu Dhabi, Saadiyat Island, PO Box 129 188, Abu Dhabi (United Arab Emirates)

    2015-03-14

    Evolution of microstructures in magnetite-based ferrofluids with weak dipolar moments (particle size ≤ 10 nm) is studied with an emphasis on examining the effects of particle concentration (ϕ) and magnetic field strength (H) on the structures. Nanoparticles are dispersed in water at three different concentrations, ϕ = 0.15%, 0.48%, and 0.59% (w/v) [g/ml%] and exposed to uniform magnetic fields in the range of H = 0.05–0.42 T. Cryogenic transmission electron microscopy is employed to provide in-situ observations of the field-induced assemblies in such systems. As the magnetic field increases, the Brownian colloids are observed to form randomly distributed chains aligned in the field direction, followed by head-to-tail chain aggregation and then lateral aggregation of chains termed as zippering. By increasing the field in low concentration samples, the number of chains increases, though their length does not change dramatically. Increasing concentration increases the length of the linear particle assemblies in the presence of a fixed external magnetic field. Thickening of the chains due to zippering is observed at relatively high fields. Through a systematic variation of concentration and magnetic field strength, this study shows that both magnetic field strength and change in concentration can strongly influence formation of microstructures even in weak dipolar systems. Additionally, the results of two commonly used support films on electron microscopy grids, continuous carbon and holey carbon films, are compared. Holey carbon film allows us to create local regions of high concentrations that further assist the development of field-induced assemblies. The experimental observations provide a validation of the zippering effect and can be utilized in the development of models for thermophysical properties such as thermal conductivity.

  19. The effect of nanocrystalline magnetite size on arsenic removal

    Directory of Open Access Journals (Sweden)

    J.T. Mayo et al

    2007-01-01

    Full Text Available Higher environmental standards have made the removal of arsenic from water an important problem for environmental engineering. Iron oxide is a particularly interesting sorbent to consider for this application. Its magnetic properties allow relatively routine dispersal and recovery of the adsorbent into and from groundwater or industrial processing facilities; in addition, iron oxide has strong and specific interactions with both As(III and As(V. Finally, this material can be produced with nanoscale dimensions, which enhance both its capacity and removal. The objective of this study is to evaluate the potential arsenic adsorption by nanoscale iron oxides, specifically magnetite (Fe3O4 nanoparticles. We focus on the effect of Fe3O4 particle size on the adsorption and desorption behavior of As(III and As(V. The results show that the nanoparticle size has a dramatic effect on the adsorption and desorption of arsenic. As particle size is decreased from 300 to 12 nm the adsorption capacities for both As(III and As(V increase nearly 200 times. Interestingly, such an increase is more than expected from simple considerations of surface area and suggests that nanoscale iron oxide materials sorb arsenic through different means than bulk systems. The desorption process, however, exhibits some hysteresis with the effect becoming more pronounced with small nanoparticles. This hysteresis most likely results from a higher arsenic affinity for Fe3O4 nanoparticles. This work suggests that Fe3O4 nanocrystals and magnetic separations offer a promising method for arsenic removal.

  20. Novel environmentally friendly synthesis of superparamagnetic magnetite nanoparticles using mechanochemical effect

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, Tomohiro, E-mail: iwasaki@chemeng.osakafu-u.ac.jp [Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan); Kosaka, Kazunori; Watano, Satoru [Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan); Yanagida, Takeshi; Kawai, Tomoji [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2010-04-15

    A novel method for synthesizing superparamagnetic magnetite nanoparticles in water system via coprecipitation under an environmentally friendly condition has been developed. In this method, an almost neutral suspension containing ferrous hydroxide and goethite is used as the starting suspension and subjected to a ball-milling treatment. The product was characterized by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, dynamic light scattering, superconducting quantum interference device magnetometry, and Moessbauer spectroscopy. The mechanochemical effect generated by the ball-milling treatment promoted the reaction between ferrous hydroxide and goethite even at room temperature, resulting in the formation of homogeneous magnetite nanoparticles. Simultaneously, it also contributed to crystallize the formed magnetite nanoparticles while inhibiting the particle growth. This resulted in the formation of ultrafine magnetite nanoparticles of about 10 nm having a single crystal structure. This method could provide ferromagnetic magnetite nanoparticles with superparamagnetism under the moderate condition without neither heating nor any additives such as surfactant and organic solvent.

  1. Nanocrystalline magnetite thin films grown by dual ion-beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Pilar, E-mail: pilar.prieto@uam.es [Departamento de Física Aplicada M-12, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Ruiz, Patricia [Departamento de Física Aplicada M-12, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Ferrer, Isabel J. [Departamento de Física de Materiales M-4, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Figuera, Juan de la; Marco, José F. [Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid (Spain)

    2015-07-05

    Highlights: • We have grown tensile and compressive strained nanocrystalline magnetite thin films by dual ion beam sputtering. • The magnetic and thermoelectric properties can be controlled by the deposition conditions. • The magnetic anisotropy depends on the crystalline grain size. • The thermoelectric properties depend on the type of strain induced in the films. • In plane uniaxial magnetic anisotropy develops in magnetite thin films with grain sizes ⩽20 nm. - Abstract: We have explored the influence of an ion-assisted beam in the thermoelectric and magnetic properties of nanocrystalline magnetite thin films grown by ion-beam sputtering. The microstructure has been investigated by XRD. Tensile and compressive strained thin films have been obtained as a function of the parameters of the ion-assisted beam. The evolution of the in-plane magnetic anisotropy was attributed to crystalline grain size. In some films, magneto-optical Kerr effect measurements reveal the existence of uniaxial magnetic anisotropy induced by the deposition process related with a small grain size (⩽20 nm). Isotropic magnetic properties have observed in nanocrystalline magnetite thin film having larger grain sizes. The largest power factor of all the films prepared (0.47 μW/K{sup 2} cm), obtained from a Seebeck coefficient of −80 μV/K and an electrical resistivity of 13 mΩ cm, is obtained in a nanocrystalline magnetite thin film with an expanded out-of-plane lattice and with a grain size ≈30 nm.

  2. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; Laan, G. van der; Arenholz, E.; Tuna, F.; Lloyd, J. R.

    2011-08-02

    The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form.

  3. Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001.

    Science.gov (United States)

    Scott, E R

    1999-02-25

    A review of the mineralogical, isotopic, and chemical properties of the carbonates and associated submicrometer iron oxides and sulfides in Martian meteorite ALH84001 provides minimal evidence for microbial activity. Some magnetites resemble those formed by magnetotactic microorganisms but cubic crystals Magnetites with shapes that are clearly unique to magnetotactic bacteria appear to be absent in ALH84001. Magnetosomes have not been reported in plutonic rocks and are unlikely to have been transported in fluids through fractures and uniformly deposited where abiogenic magnetite was forming epitaxially on carbonate. Submicrometer sulfides and magnetites probably formed during shock heating. Carbonates have correlated variations in Ca, Mg, and 18O/16O, magnetite-rich rims, and they appear to be embedded in pyroxene and plagiociase glass. Carbonates with these features have not been identified in carbonaceous chondrites and terrestrial rocks, suggesting that the ALH84001 carbonates have a unique origin. Carbonates and hydrated minerals in ALH84001, like secondary phases in other Martian meteorites, have O and H isotopic ratios favoring formation from fluids that exchanged with the Martian atmosphere. I propose that carbonates originally formed in ALH84001 from aqueous fluids and were subsequently shock heated and vaporized. The original carbonates were probably dolomite-magnesite-siderite assemblages that formed in pores at interstitial sites with minor sulfate, chloride, and phyllosilicates. These phases, like many other volatile-rich phases in Martian meteorites, may have formed as evaporate deposits from intermittent floods.

  4. Controlled cobalt doping in the spinel structure of magnetosome magnetite: new evidences from element- and site-specific X-ray magnetic circular dichroism analyses.

    Science.gov (United States)

    Li, Jinhua; Menguy, Nicolas; Arrio, Marie-Anne; Sainctavit, Philippe; Juhin, Amélie; Wang, Yinzhao; Chen, Haitao; Bunau, Oana; Otero, Edwige; Ohresser, Philippe; Pan, Yongxin

    2016-08-01

    The biomineralization of magnetite nanocrystals (called magnetosomes) by magnetotactic bacteria (MTB) has attracted intense interest in biology, geology and materials science due to the precise morphology of the particles, the chain-like assembly and their unique magnetic properties. Great efforts have been recently made in producing transition metal-doped magnetosomes with modified magnetic properties for a range of applications. Despite some successful outcomes, the coordination chemistry and magnetism of such metal-doped magnetosomes still remain largely unknown. Here, we present new evidences from X-ray magnetic circular dichroism (XMCD) for element- and site-specific magnetic analyses that cobalt is incorporated in the spinel structure of the magnetosomes within Magnetospirillum magneticum AMB-1 through the replacement of Fe(2+) ions by Co(2+) ions in octahedral (Oh) sites of magnetite. Both XMCD at Fe and Co L2,3 edges, and energy-dispersive X-ray spectroscopy on transmission electron microscopy analyses reveal a heterogeneous distribution of cobalt occurring either in different particles or inside individual particles. Compared with non-doped one, cobalt-doped magnetosome sample has lower Verwey transition temperature and larger magnetic coercivity, related to the amount of doped cobalt. This study also demonstrates that the addition of trace cobalt in the growth medium can significantly improve both the cell growth and the magnetosome formation within M. magneticum AMB-1. Together with the cobalt occupancy within the spinel structure of magnetosomes, this study indicates that MTB may provide a promising biomimetic system for producing chains of metal-doped single-domain magnetite with an appropriate tuning of the magnetic properties for technological and biomedical applications. © 2016 The Author(s).

  5. In-Situ Study of Gaseous Reduction of Magnetite Doped with Alumina Using High-Temperature XRD Analysis

    Science.gov (United States)

    Kapelyushin, Yury; Sasaki, Yasushi; Zhang, Jianqiang; Jeong, Sunkwang; Ostrovski, Oleg

    2015-12-01

    The reduction of magnetite of technical grade and magnetite doped with 3 mass pct Al2O3 was studied in situ using high-temperature XRD (HT-XRD) analysis. Magnetite was reduced by CO-CO2 gas (80 vol pct CO) at 1023 K (750 °C). Reduction of magnetite doped with alumina occurred from the Fe3O4-FeAl2O4 solid solution which has a miscibility gap with critical temperature of 1133 K (860 °C). The degree of reduction of magnetite was derived using Rietveld refinement of the HT-XRD spectra; the compositions of the Fe3O4-FeAl2O4 solid solution and the concentrations of carbon in γ-iron were determined from the lattice constants of the solutions. The reduction of magnetite progressed topochemically with the formation of a dense iron shell. The reduction of alumina-containing magnetite started along certain lattice planes with the formation of a network-like structure. Reduction of alumina-containing magnetite was faster than that of un-doped magnetite; this difference was attributed to the formation of the network-like structure. Hercynite content in the Fe3O4-FeAl2O4 solid solution in the process of reduction of magnetite doped with 3 mass pct Al2O3 increased from 5.11 to 20 mass pct, which is close to the miscibility gap at 1023 K (750 °C). The concentration of carbon in γ-Fe (0.76 mass pct) formed in the reduced sample of magnetite doped with 3 mass pct Al2O3 was close to the equilibrium value with 80 vol pct CO to 20 vol pct CO2 gas used in the HT-XRD experiments.

  6. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    Science.gov (United States)

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe3O4) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Reduction of Magnetite in the Presence of Activated Carbon Using Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    Ledwaba Harry Moloto

    2013-01-01

    Full Text Available The reduction behaviour of magnetite using graphite under ball-milling conditions (using a planetary mono mill, Fritsch Pulverisette 6 has been investigated. The reaction of magnetite and graphite at different milling conditions leads to the formation of Fe2+ and Fe3+ species, the former increasing at the expense of Fe3O4. Fe3O4 completely disappeared after a ball to powder ratio of 50 : 1 and beyond. The Fe2+ species were confirmed to be due to FeO using Mössbauer Spectroscopy and X-ray diffraction techniques. Scanning electron microscopy and transmission electron microscopy analyses confirm the reduction of magnetite to wüstite.

  8. Controlled release study of an anti-carcinogenic agent, gallate from the surface of magnetite nanoparticles

    Science.gov (United States)

    Ghotbi, Mohammad Yeganeh; bin Hussein, Mohd Zobir

    2012-07-01

    Immobilization of gallate anion, an anti-carcinogenic, anti-mutagenic, and anti-microbial agent on the surface of magnetite nanoparticles was accomplished by adsorption technique for the formation of a core-shell nanocomposite. A simple co-precipitation technique in the presence of poly vinyl pyrrolidone was successfully applied for the preparation of magnetite nanoparticles as core beads with narrow size distribution. The powders were characterized by X-ray diffraction, particle size analysis, magnetic measurements, atomic force microscope and also infrared spectroscopy. FTIR and CHNS results indicated that the gallate anion was actually adsorbed onto the surface of the magnetite nanoparticles. The release of the anion from the surface of the nanocomposite was found to be controllable by the selection of the release media.

  9. Mesoporous silica-magnetite nanocomposite synthesized by using a neutral surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Souza, K C; Sousa, E M B [Laboratorio de Biomateriais, Centro de Desenvolvimento da Tecnologia Nuclear, 30123-970 Belo Horizonte, MG (Brazil); Salazar-Alvarez, G [Institut Catala de Nanotecnologia (ICN), Edifici CM7, Campus Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Ardisson, J D; Macedo, W A A [Laboratorio de Fisica Aplicada, Centro de Desenvolvimento da Tecnologia Nuclear, 30123-970 Belo Horizonte, MG (Brazil)], E-mail: sousaem@cdtn.br

    2008-05-07

    Magnetite nanoparticles coated by mesoporous silica were synthesized by an alternative chemical route using a neutral surfactant and without the application of any functionalization method. The magnetite (Fe{sub 3}O{sub 4}) nanoparticles were prepared by precipitation from aqueous media, and then coated with mesoporous silica by using nonionic block copolymer surfactants as the structure-directing agents. The mesoporous SiO{sub 2}-coated Fe{sub 3}O{sub 4} samples were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, N{sub 2} adsorption-desorption isotherms, transmission electron microscopy, {sup 57}Fe Moessbauer spectroscopy, and vibrating sample magnetometry. Our results revealed that the magnetite nanoparticles are completely coated by well-ordered mesoporous silica with free pores and stable ({approx}8 nm thick) pore walls, and that the structural and magnetic properties of the Fe{sub 3}O{sub 4} nanoparticles are preserved in the applied synthesis route.

  10. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  11. Galvanic Corrosion between Alloy 690 and Magnetite in Alkaline Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Soon-Hyeok Jeon

    2015-12-01

    Full Text Available The galvanic corrosion behavior of Alloy 690 coupled with magnetite has been investigated in an alkaline solution at 30 °C and 60 °C using a potentiodynamic polarization method and a zero resistance ammeter. The positive current values were recorded in the galvanic couple and the corrosion potential of Alloy 690 was relatively lower. These results indicate that Alloy 690 behaves as the anode of the pair. The galvanic coupling between Alloy 690 and magnetite increased the corrosion rate of Alloy 690. The temperature increase led to an increase in the extent of galvanic effect and a decrease in the stability of passive film. Galvanic effect between Alloy 690 and magnetite is proposed as an additional factor accelerating the corrosion rate of Alloy 690 steam generator tubing in secondary water.

  12. Characterization and magnetic properties study for magnetite nanoparticles obtained by pulsed laser ablation in water

    Science.gov (United States)

    Svetlichnyi, V. A.; Shabalina, A. V.; Lapin, I. N.; Goncharova, D. A.; Velikanov, D. A.; Sokolov, A. E.

    2017-12-01

    Magnetite (Fe3O4) nanoparticles of 1-10 nm (with the maximum at 2 nm) were obtained via pulsed laser ablation of iron target in water in form of a stable dispersion without addition of surfactants and stabilizers. The structure of the material obtained was investigated using transmission electron microscopy, scanning electron microscopy, and Brunauer-Emmett-Teller methods. To investigate the composition of the particles in the sample, such methods as Fourier transform infrared spectroscopy, Raman spectroscopy, differential scanning calorimetry, and X-ray diffraction, were applied. Magnetite phase was found to be sufficiently pure, it was not contaminated by other iron oxide phases and contained not more than 0.5% of metallic iron in form of large particles. The study of the magnetic properties of the magnetite nanoparticles obtained has shown that they exhibit ferrimagnetic behavior at room temperature with the paramagnetic contribution explained by the presence of fine superparamagnetic particles.

  13. Magnetite nanoparticles coated glass wool for As(V) removal from drinking water

    Science.gov (United States)

    Kango, Sarita; Kumar, Rajesh

    2015-08-01

    Arsenic (As) removal from contaminated groundwater is a key environmental concern worldwide. In this study, glass wool was coated with magnetite nanoparticles under argon gas flow and magnetite coated glass wool have been investigated for application as an adsorbent for As(V) removal from water. The adsorbent was characterized by using Scanning Electron Microscopy (SEM) and arsenic contaminated water treated with adsorbent was analyzed by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The ICP-MS results showed that 10 g/L of adsorbent removed 99.4% of As(V) within 5 hours at pH-7 and initial arsenic concentration of 360µg/L. Adsorption kinetics data fitted well in pseudo-first-order kinetics model with high correlation coefficient (R2 = 0.995). As magnetite nanoparticles coated glass wool showed favorable adsorption behavior for As(V), it can be a promising tool for water purification.

  14. Structure and magnetic properties of nanosized magnetite obtained by glass recrystallization.

    Science.gov (United States)

    Sandu, V; Nicolescu, M S; Kuncser, V; Popa, S; Pasuk, I; Ghica, C; Sandu, E

    2012-06-01

    We present the preparation, structural and magnetic properties of nanosized magnetite obtained by the crystallization of a series of Fe-containing borosilicate glasses. Several compositions with the ratio Fe2O3/SiO2 spanning from 0.37 to 0.67 were investigated as a function of two nucleators Cr2O3 and P2O5, respectively, and modifiers and intermediates (Al2O3 and MgO). Mössbauer spectroscopy revealed the degree, the type and the location of disorder induced by a specific composition and nucleators. In addition to magnetite, it was also revealed the presence of large amounts of Fe-rich paramagnetic phases. The magnetic response is analysed in relation with the amount of Fe ions which remain dispersed in the glassy matrix as noninteracting (paramagnetic) ions. We discuss the role of the nucleators on the disorder in both tetrahedral and octahedral sites of the magnetite.

  15. Magnetic properties of magnetite nanoparticles crystallized in sodium-aluminoborosilicate glass matrix

    Science.gov (United States)

    Georgieva, M.; Tzankov, D.; Harizanova, R.; Avdeev, G.; Rüssel, C.

    2016-03-01

    Magnetite (Fe3O4) nanoparticles were crystallized from soda alumina borosilicate glasses with the composition (24- y)Na2O· yAl2O3·14B2O3·37SiO2·25Fe2O3, where y = 8, 12, 14, 16 mol%. All samples are phase separated into magnetite core, enriched in iron oxide, and a glass shell. The magnetic core phase consists of nanocrystallites with sizes ranging between 25 and 40 nm, depending on the respective glass composition. All samples show characteristic well-defined hysteresis loops at room temperature, indicating that the magnetite particles are ferrimagnetic. No evidence for the existence of superparamagnetic particles is found by measuring the ZFC and FC thermomagnetic curves.

  16. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  17. Reordering between tetrahedral and octahedral sites in ultrathin magnetite films grown on MgO(001)

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, F.; Deiter, C. [Hamburger Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron, Notkestr. 85, 22607 Hamburg (Germany); Schemme, T.; Jentsch, S.; Wollschlaeger, J. [Fachbereich Physik, Universitaet Osnabrueck, Barbarastr. 7, 49069 Osnabrueck (Germany)

    2013-05-14

    Magnetite ultrathin films were grown using different deposition rates and substrate temperatures. The structure of these films was studied using (grazing incidence) x-ray diffraction, while their surface structure was characterized by low energy electron diffraction. In addition to that, we performed x-ray photoelectron spectroscopy and magneto optic Kerr effect measurements to probe the stoichiometry of the films as well as their magnetic properties. The diffraction peaks of the inverse spinel structure, which originate exclusively from Fe ions on tetrahedral sites are strongly affected by the preparation conditions, while the octahedral sites remain almost unchanged. With both decreasing deposition rate as well as decreasing substrate temperature, the integrated intensity of the diffraction peaks originating exclusively from Fe on tetrahedral sites is decreasing. We propose that the ions usually occupying tetrahedral sites in magnetite are relocated to octahedral vacancies. Ferrimagnetic behaviour is only observed for well ordered magnetite films.

  18. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    Energy Technology Data Exchange (ETDEWEB)

    Bastami, Tahereh Rohani; Entezari, Mohammad H., E-mail: moh_entezari@yahoo.com

    2013-09-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM). The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm{sup 2} (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months.

  19. Signatures in magnetites formed by (Ca,Mg,Fe)CO3 thermal decomposition: Terrestrial and extraterrestrial implications

    Science.gov (United States)

    Jimenez-Lopez, Concepcion; Rodriguez-Navarro, Carlos; Rodriguez-Navarro, Alejandro; Perez-Gonzalez, Teresa; Bazylinski, Dennis A.; Lauer, Howard V.; Romanek, Christopher S.

    2012-06-01

    It has never been demonstrated whether magnetite synthesized through the heat-dependent decomposition of carbonate precursors retains the chemical and structural features of the carbonates. In this study, synthetic (Ca,Mg,Fe)CO3 was thermally decomposed by heating from 25 to 700 °C under 1 atm CO2, and by in situ exposure under vacuum to the electron beam of a transmission electron microscope. In both cases, the decomposition of the carbonate was topotactic and resulted in porous pseudomorphs composed of oriented aggregates of magnetite nanocrystals. Both calcium and magnesium were incorporated into nanophase magnetite, forming (Ca,Mg)-magnetites and (Ca,Mg)-ferrites when these elements were present in the parent material, thus preserving the chemical signature of the precursor. These results show that magnetites synthesized in this way acquire a chemical and structural inheritance from their carbonate precursor that indicates how they were produced. These results are not only important in the determination of the origin of chemically-impure, oriented nanophase magnetite crystals in general, but they also provide important insights into the origin of the large, euhedral, chemically-pure, [111]-elongated magnetites found within Ca-, Mg- and Fe-rich carbonates of the Martian meteorite ALH84001. Based on our experimental results, the chemically-pure magnetites within ALH84001 cannot be genetically related to the Ca-, Mg- and Fe-rich carbonate matrix within which they are embedded, and an alternative explanation for their occurrence is warranted.

  20. Fabrication of magnetite-based core-shell coated nanoparticles with antibacterial properties.

    Science.gov (United States)

    Grumezescu, A M; Cristescu, R; Chifiriuc, M C; Dorcioman, G; Socol, G; Mihailescu, I N; Mihaiescu, D E; Ficai, A; Vasile, O R; Enculescu, M; Chrisey, D B

    2015-03-23

    We report the fabrication of biofunctionalized magnetite core/sodium lauryl sulfate shell/antibiotic adsorption-shell nanoparticles assembled thin coatings by matrix assisted pulsed laser evaporation for antibacterial drug-targeted delivery. Magnetite nanoparticles have been synthesized and subsequently characterized by transmission electron microscopy and x-ray diffraction. The obtained thin coatings have been investigated by FTIR and scanning electron microscope, and tested by in vitro biological assays, for their influence on in vitro bacterial biofilm development and cytotoxicity on human epidermoid carcinoma (HEp2) cells.

  1. Quenched magnetite in cretaceous-tertiary boundary microtekite-like spheroid

    Science.gov (United States)

    Smit, J.; Kyte, F. T.; Wasson, J. T.

    1984-01-01

    The magnetite containing spheres collected from a kt boundary localities in Italy were analyzed. It was found that these spheres contain relatively high concentrations of Ir. The spheres were analyzed for siderophile elements Ir, Pt, Au, Pd, Os, and Re. Elements Ir, Pt, Pd, and Au were found in high concentrations in magnetic spheres and their concentrations are similar to those in most meteorites. It is suggested that the magnetite spheres do not contain a meteorite component which may be a relic of the kt event.

  2. Magnetite-polylactic acid nanoparticles by surface initiated organocatalysis ring opening polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina [National Institute of R and D for Isotopic and Molecular Technologies (Romania); Leistner, Joachim [Humboldt-University Berlin, Institute of Chemistry (Germany); Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute of R and D for Isotopic and Molecular Technologies (Romania)

    2013-08-15

    Organocatalysis by 4-N,N-dimethylaminopyridine was employed for ring opening polymerization of lactide initiated at magnetic nanoparticles covered by glycerol phosphate or ascorbic acid phosphate. The resulting magnetite-polylactic acid nanoparticles exhibit high colloidal stability in water and alcohol. Their morphology was investigated by transmission electron microscopy and the chemical structure was elucidated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The increase in mass after coating the nanoparticles was determined by thermogravimetric analysis, while dynamic light scattering revealed the increase in hydrodynamic size. Magnetic measurements revealed superparamagnetic behavior and high magnetization values. The magnetite-polylactic acid nanoparticles were further used for magnetic tagging of biotin.

  3. Avrami behavior of magnetite nanoparticles formation in co-precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi R.

    2011-01-01

    Full Text Available In this work, magnetite nanoparticles (mean particle size about 20 nm were synthesized via coprecipitation method. In order to investigate the kinetics of nanoparticle formation, variation in the amount of reactants within the process was measured using pH-meter and atomic absorption spectroscopy (AAS instruments. Results show that nanoparticle formation behavior can be described by Avrami equations. Transmission electron microscopy (TEM and X-ray diffraction (XRD were performed to study the chemical and morphological characterization of nanoparticles. Some simplifying assumptions were employed for estimating the nucleation and growth rate of magnetite nanoparticles.

  4. Adsorption of alkenyl succinic anhydride from solutions in carbon tetrachloride on a fine magnetite surface

    Science.gov (United States)

    Balmasova, O. V.; Ramazanova, A. G.; Korolev, V. V.

    2016-06-01

    The adsorption of alkenyl succinic anhydride from a solution in carbon tetrachloride on a fine magnetite surface at a temperature of 298.15 K is studied using fine magnetite, which forms the basis of magnetic fluids, as the adsorbent. An adsorption isotherm is recorded and interpreted in terms of the theory of the volume filling of micropores (TVFM). Adsorption process parameters are calculated on the basis of the isotherm. It is shown that at low equilibrium concentrations, the experimental adsorption isotherm is linear in the TVFM equation coordinates.

  5. Synthesis, characterization and MRI application of magnetite water-soluble cubic nanoparticles

    Science.gov (United States)

    Nikitin, Aleksey; Fedorova, Mariia; Naumenko, Victor; Shchetinin, Igor; Abakumov, Maksim; Erofeev, Alexander; Gorelkin, Petr; Meshkov, Georgy; Beloglazkina, Elena; Ivanenkov, Yan; Klyachko, Natalya; Golovin, Yuriy; Savchenko, Alexander; Majouga, Alexander

    2017-11-01

    Magnetic nanoparticle size is one of the key factors determining its magnetic and biological properties. Herein, we report a synthesis of magnetite uniform-sized cubic nanoparticles with 10, 15 and 20 nm edge lengths for magnetic resonance imaging (MRI). The structure and physicochemical properties of obtained magnetite nanocubes (MNCbs) were studied by multiple methods. MNCbs conjugated with Pluronic F-127 exhibited high colloidal stability in aqueous medium. Synthesized MNCbs demonstrated improved T2-relaxation comparing to commercially available contrast agents proving that these nanocubes can be used for MRI.

  6. Domain crossing

    DEFF Research Database (Denmark)

    Schraefel, M. C.; Rouncefield, Mark; Kellogg, Wendy

    2012-01-01

    In CSCW, how much do we need to know about another domain/culture before we observe, intersect and intervene with designs. What optimally would that other culture need to know about us? Is this a “how long is a piece of string” question, or an inquiry where we can consider a variety of contexts...

  7. Characterization of anti-phase boundaries in epitaxial magnetite films

    NARCIS (Netherlands)

    Celotto, S.; Eerenstein, W.; Hibma, T

    2003-01-01

    The occurrence of anti-phase domain boundaries (APBs) in epitaxial Fe3O4 films has a strong influence on the resistivity, magnetic and magneto-resistance properties of these films. It is therefore important to understand the configuration and magnetic coupling across the boundary. We have studied

  8. Trusted Domain

    DEFF Research Database (Denmark)

    Hjorth, Theis Solberg; Torbensen, Rune

    2012-01-01

    In the digital age of home automation and with the proliferation of mobile Internet access, the intelligent home and its devices should be accessible at any time from anywhere. There are many challenges such as security, privacy, ease of configuration, incompatible legacy devices, a wealth...... of wireless standards, limited resources of embedded systems, etc. Taking these challenges into account, we present a Trusted Domain home automation platform, which dynamically and securely connects heterogeneous networks of Short-Range Wireless devices via simple non-expert user. interactions, and allows...... remote access via IP-based devices such as smartphones. The Trusted Domain platform fits existing legacy technologies by managing their interoperability and access controls, and it seeks to avoid the security issues of relying on third-party servers outside the home. It is a distributed system...

  9. The facile fabrication of magnetite nanoparticles and their enhanced catalytic performance in Fischer-Tropsch synthesis.

    Science.gov (United States)

    Zheng, Shenke; Sun, Jiaqiang; Song, Dechen; Chen, Zheng; Chen, Jiangang

    2015-07-14

    Uniform and crystalline magnetite nanoparticles are facilely fabricated and utilized as an efficient catalyst in Fischer-Tropsch synthesis (FTS). The catalyst exhibits a high and stable activity with low methane selectivity, attributed to its remarkable structural and chemical stability at the realistic conditions of FTS.

  10. Shock experiments in range of 10–45 GPa with small multidomain magnetite in porous targets

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Pesonen, L. J.; Deutsch, A.; Wünnemann, K.; Nowka, D.; Hornemann, U.; Heikinheimo, E.

    2012-01-01

    Roč. 47, č. 10 (2012), s. 1671-1680 ISSN 1086-9379 Institutional research plan: CEZ:AV0Z30130516 Keywords : shock * magnetite * magnetism * magnetic properties * density porosity Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.800, year: 2012

  11. The magnetic introduction of magnetite nanoparticles into live cells for radiosensibility enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Yurenya, Anton Y., E-mail: antonyurenya@gmail.com [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation); Polikarpov, Mikhail A. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Chukalova, Aynur A. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Moscow (Russian Federation); Moskaleva, Elizaveta Y.; Taldenkov, Alexander N. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Panchenko, Vladislav Y. [National Research Center “Kurchatov Institute”, Moscow (Russian Federation); Faculty of Physics, Lomonosov Moscow State University, Moscow (Russian Federation)

    2017-04-01

    Earlier we proposed a new radiotherapy enhancement method that entails the administration of {sup 57}Fe iron-oxide nanoparticles into the cells . Within this work we were prompt to investigate the capability of iron oxide nanoparticles with monolayer coating to penetrate into live cells. Magnetite particle samples were synthesized and stabilized with HCl or citric acid. The cells were incubated in the presence of nanoparticles for 1 h, washed and dried. To distinguish inside-cell particles from outside ones a set of experiments with low temperature incubation was carried out. Several cell samples were prepared in the presence of an external magnetic field in order to study the possibility of the nanoparticle uptake enhancement. To evaluate the amount of particles in each cell sample we used a SQUID-magnetometer. The nanoparticle suspension with HCl stabilization turned to be inadequate for intracellular introduction. Approximately 2·10{sup 5} particles with citric acid covering conjugated with each cell after incubation at normal conditions. An application of an external magnetic field increased this amount up to 10{sup 7} particles/cell. Most probably much of these particles penetrated into cells. - Highlights: • Uncoated magnetite nanoparticle suspension is unusable for intracellular introduction. • Magnetite particles stabilized with citric acid penetrate into cells via endocytosis. • An application of a magnetic field enhances cellular uptake of magnetite particles. • The amount of particles in cell samples can be evaluated with a SQUID-magnetometer.

  12. A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film

    Directory of Open Access Journals (Sweden)

    Đorđević Nenad

    2016-01-01

    Full Text Available The morphological, thermal and barrier properties of low-density polyethylene/polycaprolactone-modified nanocellulose hybrid materials were investigated in this paper. Nanonocelulose/magnetite (NC-Fe3O4 nanocomposite and maleic acid functionalized NC/magnetite (NCMA-Fe3O4 nanocomposite were prepared and used as filler at various concentrations (5, 10 and 15 wt. % in polycaprolactone (PCL layer. PE was coated with PCL/NC/magnetite layer. The addition of the filler did not unfavorably affect the inherent properties of the polymer, especially its barrier properties. Oxygen permeation measurements show that the oxygen barrier properties of magnetite enriched PCL film were improved due to chemical activity of added material. The highest level of barrier capacity was observed for PE samples coated with PCL based composite with NCMA-Fe3O4 micro/-nanofiller, which implies the significant contribution of nanocellulose surface modification with maleic anhydride residue to improved barrier properties. [Projekat Ministarstva nauke Republike Srbije, br. III45019 i br. OI172013

  13. Nanocomposites of Magnetite and Layered Double Hydroxide for Recyclable Chromate Removal

    Directory of Open Access Journals (Sweden)

    Gyeong-Hyeon Gwak

    2016-01-01

    Full Text Available Nanocomposites containing magnetic iron oxide (magnetite nanoparticles and layered double hydroxide (LDH nanosheets were prepared by two different methods, exfoliation-reassembly and coprecipitation, for aqueous chromate adsorbent. According to X-ray diffraction, scanning electron microscopy, and atomic force microscopy, both nanocomposites were determined to develop different nanostructures; LDH nanosheets well covered magnetite nanoparticles with house-of-cards-like structure in exfoliation-reassembly method, while coprecipitation resulted in LDH particle formation along with magnetite nanoparticles. Zeta-potential measurement also revealed that the magnetite surface was effectively covered by LDH moiety in exfoliation-reassembly compared with coprecipitation. Time, pH, concentration dependent chromate adsorption tests, and magnetic separation experiments exhibited that both nanocomposites effectively adsorb and easily collect chromate. However, exfoliation-reassembly nanocomposite was determined to be slightly effective in chromate removal by ~10%. Chromate adsorbed nanocomposites could be regenerated by treating with bicarbonate and the regenerated nanocomposites preserved ~80% of chromate adsorption efficacy after three times of recycling.

  14. Novel carboxylated PEG-coating on magnetite nanoparticles designed for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Illés, Erzsébet, E-mail: illese@chem.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged (Hungary); Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged (Hungary); Szekeres, Márta; Tóth, Ildikó Y. [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi Vt. 1, H-6720 Szeged (Hungary); Szabó, Ákos; Iván, Béla [Department of Polymer Chemistry, Research Centre for Natural Sciences, HAS, P.O. Box 286, H-1519 Budapest (Hungary)

    2015-04-15

    Fabrication of PEG coating on magnetite nanoparticles (MNPs) is one of the most favoured ways to ensure biocompatibility. Surface modification of magnetite by an own-prepared comb-like PEG-copolymer (PEGA-AA) was compared with two commercially available ones (carboxy-PEG (PEG-C) and phosphate-PEG (PEG-P)). ATR FT-IR data revealed that all polymers form complexes on the surface of MNPs. Electrophoresis and dynamic light scattering (DLS) experiments showed that both the type and quantity of the polymers' anchoring groups influence the aggregation of coated nanomagnets. PEG-C shell does not provide excess negative charges, so magnetite particles became aggregated. However PEG-P and PEGA-AA gradually modify the surface: neutralizing the originally positively charged MNPs below loading 0.5 mmol/g, while above it a polyanionic layer forms on nanomagnets dispersing them in salty media at pH ~6.5. The PEGA-AA comb-like copolymer is more efficient for MNPs PEGylation due to the uniform distribution of carboxylates and PEG chains along the carbon skeleton. - Highlights: • PEG-polymers were adsorbed through surface complexation on magnetite. • Increasing load of functionalized PEGs gradually modifies the MNP's surface. • MNPs coated completely by polyanionic shell can be dispersed in salty media at pH ~6.5. • Carboxylated comb-like PEG copolymer provides the most efficient biocompatible coating.

  15. Adsorption of Oxyanions from Industrial Wastewater using Perlite-Supported Magnetite.

    Science.gov (United States)

    Verbinnen, Bram; Block, Chantal; Vandecasteele, Carlo

    2016-05-01

    Most studies on oxyanion adsorption focus on their removal from synthetic solutions. It is often claimed that the considered adsorbents can be used to treat real (industrial) wastewaters, but this is seldom tested. Perlite-supported magnetite was characterized first by determining its specific surface area, magnetite content and by examining the coating. Tests on a synthetic solution showed that at the ideal pH values (pH 3 to 5), the order of adsorption is Mo(VI) > As(V) > Sb(V) > Cr(VI) > Se(VI). Most oxyanions can be removed for more than 75% with an adsorbent dosage of 1 g/l. Furthermore, perlite-supported magnetite has a higher removal efficiency for oxyanions than commercially available adsorbents and comparable adsorbents described in literature. Perlite-supported magnetite is suitable for treating real wastewaters: it can remove several oxyanions simultaneously from the considered industrial wastewater, but the adsorption order changes due to the presence of interfering anions.

  16. Understanding the Mossbauer spectrum of magnetite below the Verwey transition: ab initio calculations, simulation, and experiment

    Czech Academy of Sciences Publication Activity Database

    Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, Pavel; Żukrowski, J.; Kozlowski, A.; Kakol, Z.; Tarnawski, Z.; Honig, J.M.

    2017-01-01

    Roč. 96, č. 19 (2017), s. 1-10, č. článku 195124. ISSN 2469-9950 Institutional support: RVO:68378271 Keywords : magnetite * Mossbauer effect * density functional theory * modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  17. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  18. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Attallah, Olivia A., E-mail: olivia.adly@hu.edu.eg [Center of Nanotechnology, Nile University, 12677 Giza (Egypt); Pharmaceutical Chemistry Department, Heliopolis University, 11777 El Salam, Cairo (Egypt); Girgis, E. [Solid State Physics Department, National Research Center, 12622 Dokki, Giza (Egypt); Advanced Materials and Nanotechnology Lab, CEAS, National Research Center, 12622 Dokki, Giza (Egypt); Abdel-Mottaleb, Mohamed M.S.A. [Center of Nanotechnology, Nile University, 12677 Giza (Egypt)

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  19. Ultrafine Magnetite Nanopowder: Synthesis, Characterization, and Preliminary Use as Filler of Polymethylmethacrylate Nanocomposites

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2012-01-01

    Full Text Available Magnetite (Fe3O4 nanoparticles prepared by microwave-assisted hydrothermal synthesis have been characterized in terms of morphological and structural features. Electron micrographs collected in both scanning (SEM and transmission (TEM modes and evaluations of X-ray powder diffraction (XRD patterns have indicated the achievement of a monodispersed crystallite structure with particles having an average size around 15–20 nm. Structural investigations by Micro-Raman spectroscopy highlighted the obtainment of magnetite nanocrystals with a partial surface oxidation to maghemite (γ-Fe3O4. Preliminary attention has been also paid to the use of these magnetite nanoparticles as filler for a commercial polymethylmethacrylate resin. Hybrid formulations containing up to 3 wt% of nanoparticles were prepared by melt blending and characterized by calorimetric and thermogravimetric tests. For sake of comparison, same formulations containing commercial Fe3O4 nanoparticles are also reported. Calorimetric characterization indicates an increase of both glass transition temperature and thermal stability of the nanocomposite systems when loaded with the synthesized magnetite nanoparticles rather then loaded with the same amount of commercial Fe3O4. This first observation represents just one aspect of the promising potentiality offered by the novel magnetic nanoparticles when mixed with PMMA.

  20. New kind of type 3 chondrite with a graphite-magnetite matrix

    Science.gov (United States)

    Scott, E. R. D.; Rubin, A. E.; Taylor, G. J.; Keil, K.

    1981-01-01

    Four clasts in three ordinary-chondrite regolith breccias are discovered which are a new kind of type 3 chondrite. As with ordinary and carbonaceous type 3 chondrites, they have distinct chondrules, some of which contain glass, highly heterogeneous olivines and pyroxenes, and predominantly monoclinic low-Ca pyroxenes. Instead of the usual, fine-grained, Fe-rich silicate matrix, however, the clasts have a matrix composed largely of aggregates of micron- and submicron-sized graphite and magnetite. The bulk compositions of the clasts, as well as the types of chondrules (largely porphyritic), are characteristic of type 3 ordinary chondrites, although chondrules in the clasts are somewhat smaller (0.1-0.5 mm). A close relationship with ordinary chondrites is also suggested by the presence of similar graphite-magnetite aggregates in seven type 3 ordinary chondrites. It is thought that this new kind of chondrite is probably the source of the abundant graphite-magnetite inclusions in ordinary-chondrite regolith breccias and that it may be more common than indicated by the absence of whole meteorites made of chondrules and graphite-magnetite.

  1. XAS signatures of Am(III) adsorbed onto magnetite and maghemite

    DEFF Research Database (Denmark)

    Finck, N.; Radulescu, L.; Schild, D.

    2016-01-01

    Trivalent americium was adsorbed on magnetite and maghemite under similar chemical conditions and the local environment probed by EXAFS spectroscopy. In both samples, partially hydrated Am(III) binds the surface but slightly different surface complexes were identified. On Fe3O4, Am(III) forms mon...

  2. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Garcia, Monica [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Miranda Parca, Renata [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Braun Chaves, Sacha [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Paulino Silva, Luciano [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Djalma Santos, Antonio [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Guerrero Marques Lacava, Zulmira [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil); Cesar Morais, Paulo [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada, 70919-970 Brasilia-DF (Brazil); Azevedo, Ricardo Bentes [Universidade de Brasilia, Instituto de Biologia, Departamento de Genetica e Morfologia, 70910-900 Brasilia-DF (Brazil)]. E-mail: razevedo@unb.br

    2005-05-15

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner.

  3. Synthesis of poly(vinyl alcohol)-magnetite ferrogel obtained by freezing-thawing technique

    Science.gov (United States)

    Reséndiz-Hernández, P. J.; Rodríguez-Fernández, O. S.; García-Cerda, L. A.

    Polymer gels are crosslinked polymer networks swollen by a fluid. If magnetic particles either as powder or dispersed in a magnetic fluid are introduced into the gel then the system becomes sensitive to external magnetic fields and the resulting material is called ferrogel. The polyvinyl alcohol (PVA)-magnetite ferrogels system has properties that are attractive for artificial muscles and drug delivery systems for biomedical applications. This work investigates the synthesis and characterization of a ferrogel obtained by freezing-thawing cycles. PVA ( MW=89,000-98,000, degree of hydrolyzation: 99 mol%) and magnetite nanoparticles (˜12 nm) obtained by chemical coprecipitation were used as raw materials. The PVA-magnetite ferrogels were prepared by subjecting a PVA/DMSO/magnetite solution (2 g/30 ml/0.2 g) to freeze (-25 °C)/thaw (+25 °C) cycles. The resulting ferrogel was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC) and vibration sample magnetometry (VSM). The magnetic particles inside the PVA matrix formed agglomerates with average size ˜58 nm. All the ferrogels showed superparamagnetic behavior with maximum magnetization of 0.6 emu/g.

  4. The role of polymer films on the oxidation of magnetite nanoparticles

    Science.gov (United States)

    Letti, C. J.; Paterno, L. G.; Pereira-da-Silva, M. A.; Morais, P. C.; Soler, M. A. G.

    2017-02-01

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe3O4-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe3O4-np/PSS)n with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe3O4-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe3O4-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe3O4-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite.

  5. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    Science.gov (United States)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  6. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhigang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhang, Chang, E-mail: zhangchang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zheng, Zuhong [College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei Province (China); Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-05-01

    Highlights: • Citric acid (CA) was used to modify the surface structures of SDS-based magnetite. • Dosage of CA, pH values, ion strength, isotherms and dynamics were analyzed. • High CA dissolved anionic SDS and Fe{sup n+} but increased the stability of magnetite. • 0.05 and 0.1 M CA-modified iron oxide removed about 100% phosphorus. • Precipitation of phosphate and Fe {sup n+} was the main removal mechanism. - Abstract: In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where

  7. Enhancing phosphate adsorption capacity of SDS-based magnetite by surface modification of citric acid

    Science.gov (United States)

    Yu, Zhigang; Zhang, Chang; Zheng, Zuhong; Hu, Liang; Li, Xuemei; Yang, Zhongzhu; Ma, Chi; Zeng, Guangming

    2017-05-01

    In this study, citric acid (CA) was employed as a low-molecule organic acid to influence the adsorption performance of phosphorus by as-obtained magnetite. The factors including initial phosphate concentrations, dosage of citric acid, pH value, ion strength, contact time and temperature were examined in detail. Results indicated that the dissolution of anion sodium dodecyl sulfate (SDS) covering on surface of magnetite, a slight decrease of Fe level and a superior structure of magnetite after CA modification occurred. The pH-dependence of phosphate adsorption was impeded and the surface potential of magnetite positively increased at pH > 5.0 when CA was added. Non-linear regression Langmuir-Freundlich model was fitted well in thermodynamics, and the opposite adsorption process as a function of temperatures with or without CA addition was due to the decrease of active energy and active mobility of phosphate ion. Finally, the declining adsorption efficiency with increasing cycles was observed while phosphate removal was approximately finished and had small change with 0.05 and 0.1 M of CA addition. Those improvements of removal efficiency of phosphorus by modified iron oxide were because of the removal of anionic SDS that increased the surface positive charge, and especially the dissolution of element Fe into solution to form precipitate with phosphorus ions. The enhanced stability of magnetite by CA also promoted the high removal efficiency of phosphorus. These implications of CA on phosphate removal can be extended to the field where phosphate pollution is notorious but urgent.

  8. Theoretical and experimental analysis of the aerosol assisted CVD synthesis of magnetite hollow nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Monárrez-Cordero, B.E.; Amézaga-Madrid, P., E-mail: patricia.amezaga@cimav.edu.mx; Hernández-Salcedo, P.G.; Antúnez-Flores, W.; Leyva-Porras, C.; Miki-Yoshida, M.

    2014-12-05

    Highlights: • High purity mesoporous hollow magnetite nanoparticles were synthesized by AACVD. • Microstructural characteristics strongly depends on the synthesis conditions. • Activation energy of −159 kJ mol{sup −1} was obtained from thermogravimetric analyses of FeCl{sub 2.} • Simulation of concentration distribution of reactants and products was realized. • Simulated and experimental magnetite production rate agreed around 2 × 10{sup −5} mol h{sup −1}. - Abstract: Nowadays, mesoporous magnetite nanoparticles are an important class of new nanomaterials which occupy a valuable position in materials science. Owing to their several advantages over bulk magnetite and particularly with respect to higher adsorption capacity, there is a growing interest towards the use of these materials for the adsorptive removal of a variety of contaminants, including organic dyes from wastewater. Through aerosol assisted chemical vapor deposition (AACVD) technique is possible to synthesize spherical hollow nanoparticles with external diameter from 50 to 500 nm, composed of a shell of crystallites smaller than 30 nm. In the AACVD method, the structural morphology of resultant nanoparticles strongly depends on the starting precursors and operating conditions. Some advantages of this technique are the high production rate, continuous operation, use of relatively simple equipment, easy doping and the possibility to scale the process industrially. Therefore, in order to understand the formation of magnetite nanoparticles by AACVD, theoretical simulations were performed on two important steps of the synthesis: (i) temperature and carrier gas flow distribution inside of tubular reactor, and (ii) the distribution of molar concentration of the precursor in the synthesis process. Reaction kinetics of the precursor was studied to determine Arrhenius parameters. Activation energy and pre-exponential factor were calculated experimentally from thermal analysis, these values

  9. The effect of magnetite nanoparticles synthesis conditions on their ability to separate heavy metal ions

    Directory of Open Access Journals (Sweden)

    Bobik Magdalena

    2017-06-01

    Full Text Available Magnetite nanoparticles have become a promising material for scientific research. Among numerous technologies of their synthesis, co-precipitation seems to be the most convenient, less time-consuming and cheap method which produces fine and pure iron oxide particles applicable to environmental issues. The aim of the work was to investigate how the co-precipitation synthesis parameters, such as temperature and base volume, influence the magnetite nanoparticles ability to separate heavy metal ions. The synthesis were conducted at nine combinations of different ammonia volumes - 8 cm3, 10 cm3, 15 cm3 and temperatures - 30°C, 60°C, 90°C for each ammonia volume. Iron oxides synthesized at each combination were examined as an adsorbent of seven heavy metals: Cr(VI, Pb(II, Cr(III, Cu(II, Zn(II, Ni(II and Cd(II. The representative sample of magnetite was characterized using XRD, SEM and BET methods. It was observed that more effective sorbent for majority of ions was produced at 30°C using 10 cm3 of ammonia. The characterization of the sample produced at these reaction conditions indicate that pure magnetite with an average crystallite size of 23.2 nm was obtained (XRD, the nanosized crystallites in the sample were agglomerated (SEM and the specific surface area of the aggregates was estimated to be 55.64 m2·g-1 (BET. The general conclusion of the work is the evidence that magnetite nanoparticles have the ability to adsorb heavy metal ions from the aqueous solutions. The effectiveness of the process depends on many factors such as kind of heavy metal ion or the synthesis parameters of the sorbent.

  10. Influence of cobalt doping on the hyperthermic efficiency of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Fantechi, Elvira; Innocenti, Claudia; Albino, Martin; Lottini, Elisabetta [INSTM and Department of Chemistry “U. Schiff”, Università di Firenze, via della Lastruccia 3, Sesto Fiorentino, I-50019 Firenze (Italy); Sangregorio, Claudio, E-mail: csangregorio@iccom.cnr.it [C.N.R. – I.C.C.O.M., via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)

    2015-04-15

    Magnetite nanoparticles (NPs) are extensively investigated for biomedical applications, particularly as contrast agents for Magnetic Resonance Imaging and as heat mediators in Magnetic Fluid Hyperthermia. For the latter, one of the goal of the research is to obtain materials with improved hyperthermic properties. A valuable strategy is the increase of the magnetic anisotropy of commonly employed magnetite through the total or partial substitution of Fe{sup 2+} ions with Co{sup 2+} ions. Here we present a study on a family of 8 nm Co-doped magnetite NPs (Co{sub x}Fe{sub 3−x}O{sub 4}), with composition ranging from pure magnetite (x=0) to stoichiometric cobalt ferrite (x=1), aimed to investigate the evolution of the hyperthermic properties with the increase of Co content. We found that the addition of a small amount of Co is enough to sharply increase the Specific Absorption Rate (SAR). The SAR further increases with x but it reaches a maximum for an intermediate value (x=0.6). Such anomalous behavior is ascribed to the intrinsic magnetic properties of the material, and, in particular, to the magnetic anisotropy, which displays the same peculiar trend. The Co-doping thus may represent an effective strategy to improve the poor hyperthermic efficiency of very small magnetite NPs (<10 nm). - Highlights: • A series of 8 nm non-stoichiometric cobalt ferrite nanoparticles was synthesized. • The Co:Fe molar ratio was varied systematically from 0 to 0.5. • The SAR was observed to have a maximum at intermediate Co content. • The hyperthermic results are explained on the basis of the magnetic anisotropy. • Co-doping is an effective strategy to improve the SAR of Fe{sub 3}O{sub 4} NPs less than 10 nm.

  11. Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel

    Science.gov (United States)

    Atta, Ayman M.; El-Mahdy, Gamal A.; Al-Lohedan, Hamad A.; Al-Hussain, Sami A.

    2014-01-01

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement. PMID:24758936

  12. Magnetite magnetosome and fragmental chain formation of Magnetospirillum magneticum AMB-1: transmission electron microscopy and magnetic observations

    Science.gov (United States)

    Li, Jinhua; Pan, Yongxin; Chen, Guanjun; Liu, Qingsong; Tian, Lanxiang; Lin, Wei

    2009-04-01

    Stable single-domain (SD) magnetite formed intracellularly by magnetotactic bacteria is of fundamental interest in sedimentary and environmental magnetism. In this study, we studied the time course of magnetosome growth and magnetosome chain formation (0-96 hr) in Magnetospirillum magneticum AMB-1 by transmission electron microscopy (TEM) observation and rock magnetism. The initial non-magnetic cells were microaerobically batch cultured at 26 °C in a modified magnetic spirillum growth medium. TEM observations indicated that between 20 and 24 hr magnetosome crystals began to mineralize simultaneously at multiple sites within the cell body, followed by a phase of rapid growth lasting up to 48 hr cultivation. The synthesized magnetosomes were found to be assembled into 3-5 subchains, which were linearly aligned along the long axis of the cell, supporting the idea that magnetosome vesicles were linearly anchored to the inner membrane of cell. By 96 hr cultivation, 14 cubo-octahedral magnetosome crystals in average with a mean grain size of ~44.5 nm were formed in a cell. Low-temperature (10-300 K) thermal demagnetization, room-temperature hysteresis loops and first-order reversal curves (FORCs) were conducted on whole cell samples. Both coercivity (4.7-18.1 mT) and Verwey transition temperature (100-106 K) increase with increasing cultivation time length, which can be explained by increasing grain size and decreasing non-stoichiometry of magnetite, respectively. Shapes of hysteresis loops and FORCs indicated each subchain behaving as an `ideal' uniaxial SD particle and extremely weak magnetostatic interaction fields between subchains. Low-temperature thermal demagnetization of remanence demonstrated that the Moskowitz test is valid for such linear subchain configurations (e.g. δFC/δZFC > 2.0), implying that the test is applicable to ancient sediments where magnetosome chains might have been broken up into short chains due to disintegration of the organic scaffold

  13. Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.

    Science.gov (United States)

    Vidojkovic, Sonja M; Rakin, Marko P

    2017-07-01

    Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe3O4) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pHiep) and point of zero charge (p

  14. Quantifying Volcanic Stresses from Residual Stress Preserved in Magnetite and Zircon

    Science.gov (United States)

    Leonhardi, T. C.; Befus, K.; Manga, M.; Stan, C. V.; Tamura, N.

    2016-12-01

    Stresses active in volcanic systems are intimately linked with the processes driving magma chamber evolution and volcanic eruptions. These processes are difficult to quantify directly. Instead, insights come from a combination of modeling, geophysical observations, petrology and geochemistry. To directly quantify the forces and stresses associated with volcanic systems (such as chamber over-pressure) we need to develop techniques that provide new insights into volcanic processes. Here we quantified volcanic stresses in crystals from two units erupted from Yellowstone caldera. We used the Laue x-ray microdiffraction technique to measure preserved elastic lattice strain and the equivalent stress required to produce the strain. We analyzed zircon and magnetite crystals from pumice clasts in the pyroclastic fall deposit from the Tuff of Bluff Point and a flow front sample of the effusive Summit Lake lava flow. Analyses were performed using the x-ray microdiffraction beamline (12.3.2) at the Advanced Light Source, Lawrence Berkeley National Lab. Zircon preserved residual stress values in the range of 290-430 MPa for both units. Magnetite from the Tuff of Bluff Point preserves stress values of 310-370 MPa, whereas Summit Lake magnetite preserved values of 210-280 MPa. These values are greater that the estimates for lithostatic pressure in the final shallow storage chamber. If the values do represent the minerals' formation depth, then this indicates magnetite and zircon formed early in the magmatic system at greater depth. If true, residual stress in zircon and magnetite may be used as a crystallization geobarometer. Alternatively, if these values did not result from storage depth, they could reflect other processes in the chamber and conduit (such as fragmentation and thermal quenching). The observed differences in magnetite values suggest a change in the storage depth and/or volcanic stresses active in eruptions of the two deposits. For zircon, recoil damage and trace

  15. Evaluation of temperature increase with different amounts of magnetite in liver tissue samples.

    Science.gov (United States)

    Hilger, I; Andrä, W; Bähring, R; Daum, A; Hergt, R; Kaiser, W A

    1997-11-01

    The biologic effects of magnetically induced heating effects using iron oxide, magnetite, were examined in vitro in liver tissue samples as a first step toward potential applications in cancer therapy. For the determination of the temperature profile around an iron oxide sample, a cylinder containing 170 mg of magnetite was constructed and placed into pureed liver tissue from pig, together with thermocouples of copper and constantan wires positioned at defined distances from it. Temperature measurements were performed during the exposure to an alternating magnetic field (frequency: 400 kHz; amplitude: approximately 6.5 kA/m) generated by a circular coil (90 mm of diameter). Moreover, variable amounts of magnetite (dissolved in approximately 0.2 mL physiologic saline) were injected directly into carrageenan gels. During the exposure to a magnetic field for 4 minutes the temperature increase was determined in the area of iron oxide deposition using a thermocouple. Additionally, variable amounts of magnetite were injected directly into isolated liver tissue samples (diameter: 20 mm; height: 30 mm) and exposed to a magnetic field for 2 minutes. The extent of the induced macroscopically visible tissue alterations (light brown colorations caused by heating) was examined by means of volume estimations. The degrees of cellular necrosis were investigated by histopathologic studies. The temperature profile around a magnetite cylinder revealed a significant decrease of temperature difference between the beginning and the end of heating, depending on increasing distance from the sample center. The extent of the temperature difference correlated with increasing heating time. No significant variations of temperature were observed at a distance of approximately 12 mm from the sample center. A good correlation (r = 0.98) between the injected amounts (31 to 200 mg) and the temperature increase since the start of heating (6.8-33.7 degrees C) in the area of iron oxide deposits was

  16. Preparation and characterization of temperature-responsive magnetite nanoparticles conjugated with N-isopropylacrylamide-based functional copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Hirotake [Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Yamamoto, Kazuya [Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan); Nakao, Aiko [Beam Application Team, Advanced Development and Supporting Centre (AD and S Centre), RIKEN, 2-1 Hirosawa, Wako, Saitama 315-0198 (Japan); Aoyagi, Takao [Department of Nanostructure and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, 1-21-40, Korimoto, Kagoshima 890-0065 (Japan) and PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama (Japan)]. E-mail: aoyagi@eng.kagoshima-u.ac.jp

    2006-07-15

    In this study, magnetite nanoparticles conjugated with the temperature-responsive N-isopropylacrylamide-based functional copolymer were prepared. Observations using a transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) spectral measurements proved that the surrounding polymer layers bind to the magnetite surfaces. The particles showed a very sensitive temperature-responsive behavior, which was confirmed by particle size analysis and investigation of retention in a hydrophobic octadecylsilane (ODS)-modified column. In the magnetic field that was induced by an alternating electric current, the nanoparticles also demonstrated a sensitive temperature-responsive behavior and this result meant that the temperature-responsive polymer layer could absorb the heat induced in the magnetite cores. The temperature-responsive magnetite nanoparticles could show effective aggregation formation or hydrophobic interaction in response to an alternating magnetic field. These interesting phenomena would be used for embolization therapy or targeted drug delivery aiming at a cancer treatment.

  17. Polyhedral magnetite nanocrystals with multiple facets: facile synthesis, structural modelling, magnetic properties and application for high capacity lithium storage.

    Science.gov (United States)

    Su, Dawei; Horvat, Josip; Munroe, Paul; Ahn, Hyojun; Ranjbartoreh, Ali R; Wang, Guoxiu

    2012-01-09

    Polyhedral magnetite nanocrystals with multiple facets were synthesised by a low temperature hydrothermal method. Atomistic simulation and calculations on surface attachment energy successfully predicted the polyhedral structure of magnetite nanocrystals with multiple facets. X-ray diffraction, field emission scanning electron microscopy, and high resolution transmission microscopy confirmed the crystal structure of magnetite, which is consistent with the theoretical modelling. The magnetic property measurements show the superspin glass state of the polyhedral nanocrystals, which could originate from the nanometer size of individual single crystals. When applied as an anode material in lithium ion cells, magnetite nanocrystals demonstrated an outstanding electrochemical performance with a high lithium storage capacity, a satisfactory cyclability, and an excellent high rate capacity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Role of non-ionic surfactant in fatty acid phosphate gangue flotation from magnetite fines

    OpenAIRE

    Kota, Hanumantha Rao

    2010-01-01

    Adsorption, contact angle and flotation of anionic Atrac and non-ionic ethaloxylated nonylphenol surfactant, and their mixture on apatite and magnetite were studied. The effect of calcium ions and sodium silicate on Atrac adsorption was investigated. The effect of Atrac adsorption on the contact angle data of apatite and magnetite in the presence and absence of sodium silicate was also examined. Wettability of solids depends on solids surface free energy and the surface energies of apatite an...

  19. Magnetite Fe3O4 (111) Surfaces: Impact of Defects on Structure, Stability, and Electronic Properties

    KAUST Repository

    Noh, Jung Hyun

    2015-08-04

    We present a comprehensive investigation, via first-principles density functional theory (DFT) calculations, of various surface terminations of magnetite, Fe3O4 (111), a major iron oxide which has also a number of applications in electronics and spintronics. We compare the thermodynamic stability and electronic structure among the different surfaces terminations. Interestingly, we find that surfaces modified with point defects and adatoms can be more stable than bulk-like terminations. These surfaces show different surface chemistry, electronic structures and distinctive spin polarization features near the Fermi level from those previously considered in the literature. Our studies provide an atomic level insight for magnetite surfaces, which is a necessary step to understanding their interfaces with organic layers in OLED and spintronic devices.

  20. Synthesis, performance, and modeling of immobilized nano-sized magnetite layer for phosphate removal.

    Science.gov (United States)

    Zach-Maor, Adva; Semiat, Raphael; Shemer, Hilla

    2011-05-15

    A homogeneous layer of nano-sized magnetite particles (nanomagnetite layer was formed. Batch adsorption experiments revealed high efficiency of phosphate removal, by the newly developed adsorbent, attaining maximum adsorption capacity of 435 mg PO(4)/g Fe (corresponding to 1.1 mol PO(4)/mol Fe(3)O(4)). It was concluded that initially phosphate was adsorbed by the active sites on the magnetite surface, and then it diffused into the interior pores of the nanomagnetite layer. It was demonstrated that the latter is the rate-determining step for the process. Innovative correlation of the diffusion mechanism with the unique adsorption properties of the synthesized adsorbent is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Experimental and theoretical studies of manganite and magnetite compounds Transition oxide compounds

    CERN Document Server

    Srinitiwarawong, C

    2002-01-01

    In the recent years interest in the transition oxide compounds has renewed among researchers in the field of condensed matter physics. This thesis presents the studies of the two families of the transition oxides, the manganite and magnetite compounds. Manganite has regained the interest since the discovery of the large magnetoresistance around its Curie temperature in 1990s. Magnetite on the other hand is the oldest magnetic material known to man however some of its physical properties are still controversial. The experimental works address some basic properties of these compounds when fabricated in the form of thin films. These include the resistivity measurements and magnetic measurements as well as the Hall effect. The various models of transport mechanism have been compared. The magnetic field and the temperature dependence of magnetoresistance have also been studied. Simple devices such as an artificial grain boundary and bilayers thin film have been investigated. The second part of this thesis concentr...

  2. Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields

    Directory of Open Access Journals (Sweden)

    Kai Wu

    2017-05-01

    Full Text Available The heating performance of magnetic nanoparticles (MNPs under an alternating magnetic field (AMF is dependent on several factors. Optimizing these factors improves the heating efficiency for cancer therapy and meanwhile lowers the MNP treatment dosage. AMF is one of the most easily controllable variables to enhance the efficiency of heat generation. This paper investigated the optimal magnetic field strength and frequency for an assembly of magnetite nanoparticles. For hyperthermia treatment in clinical applications, monodispersed NPs are forming nanoclusters in target regions where a strong magnetically interactive environment is anticipated, which leads to a completely different situation than MNPs in ferrofluids. Herein, the energy barrier model is revisited and Néel relaxation time is tailored for high MNP packing densities. AMF strength and frequency are customized for different magnetite NPs to achieve the highest power generation and the best hyperthermia performance.

  3. MAPLE fabrication of thin films based on kanamycin functionalized magnetite nanoparticles with anti-pathogenic properties

    Science.gov (United States)

    Grumezescu, Valentina; Andronescu, Ecaterina; Holban, Alina Maria; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Stănculescu, Anca; Socol, Gabriel; Iordache, Florin; Maniu, Horia; Chifiriuc, Mariana Carmen

    2015-05-01

    In this study we aimed to evaluate the biocompatibility and antimicrobial activity of kanamycin functionalized 5 nm-magnetite (Fe3O4@KAN) nanoparticles thin films deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. A laser deposition regime was established in order to stoichiometrically transfer Fe3O4@KAN thin films on silicone and glass substrates. Morphological and physico-chemical properties of powders and coatings were characterized by XRD, TEM, SEM, AFM and IR microscopy (IRM). Our nanostructured thin films have proved efficiency in the prevention of microbial adhesion and mature biofilms development as a result of antibiotic release in its active form. Furthermore, kanamycin functionalized nanostructures exhibit a good biocompatibility, both in vivo and in vitro, demonstrating their potential for implants application. This is the first study reporting the assessment of the in vivo biocompatibility of a magnetite-antimicrobial thin films produced by MAPLE technique.

  4. Large low-field magnetoresistance in nanocrystalline magnetite prepared by sol-gel method.

    Science.gov (United States)

    Lu, Z L; Zou, W Q; Lv, L Y; Liu, X C; Li, S D; Zhu, J M; Zhang, F M; Du, Y W

    2006-11-30

    Nanocrystalline magnetite Fe3O4 samples with a grain size of about 40 nm have been synthesized by an optimized sol-gel method. The single phase of spinel magnetite was confirmed by both X-ray diffraction and transmission electron microscopy. It has been found that the magnetoresistance of the samples at low field (LFMR) is relatively large, and with the decrease of temperature its value at a field of 0.5 T changes dramatically from -2.5% at 300 K to -17.0% at 55 K. With the further decrease of temperature a sharp drop occurs for the magnitude of the magnetoresistance (MR), regarded as a spin (cluster) glass transition in the surface region of the grains that can be confirmed by the zero-field-cooled and field-cooled magnetization and ac susceptibility measurement. The mechanism of the magnetic and transport properties was discussed.

  5. Definitive identification of magnetite nanoparticles in the abdomen of the honeybee Apis mellifera

    Energy Technology Data Exchange (ETDEWEB)

    Desoil, M [Biological Physics Department, University of Mons-Hainaut (Belgium); Gillis, P [Biological Physics Department, University of Mons-Hainaut (Belgium); Gossuin, Y [Biological Physics Department, University of Mons-Hainaut (Belgium); Pankhurst, Q A [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Hautot, D [London Centre for Nanotechnology, University College London, London WC1E 7HN (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-en-Trent, ST4 7QB (United Kingdom)

    2005-01-01

    The biogenic magnetic properties of the honeybee Apis mellifera were investigated with a view to understanding the bee's physiological response to magnetic fields. The magnetisations of bee abdomens on one hand, and heads and thoraxes on the other hand, were measured separately as functions of temperature and field. Both the antiferromagnetic responses of the ferrihydrite cores of the iron storage protein ferritin, and the ferrimagnetic responses of nanoscale magnetite (Fe{sub 3}O{sub 4}) particles, were observed. Relatively large magnetite particles (ca. 30 nm or more), capable of retaining a remanent magnetisation at room temperature, were found in the abdomens, but were absent in the heads and thoraxes. In both samples, more than 98% of the iron atoms were due to ferritin.

  6. Carbon-coated hexagonal magnetite nanoflakes production by spray CVD of alcohols in mixture with water

    Science.gov (United States)

    Reyes-Reyes, Marisol; Hernández-Arriaga, Daniel; López-Sandoval, Román

    2014-12-01

    In this study, we report a successful technique for synthesizing magnetite hexagonal nanoflakes coated with carbon layers using spray thermal decomposition, which is a reproducible method that is easy to scale up. We investigated the effects of mixing different volumes of deionized (DI) water with alcohol on the population and quality of single-crystalline Fe3O4 hexagonal nanoflakes. Methanol and ethanol were used as the carbon and oxygen source, while ferrocene was mainly used as the Fe source. To obtain a large quantity of hexagonal structures, a strongly oxidative atmosphere was required. The DI water was used to enhance the oxidative environment during the reaction and was an important component for obtaining well-shaped hexagonal magnetite crystalline nanoflakes. The use of alcohols, water and the spray chemical vapor deposition (CVD) method make this procedure easy to use. In addition, this method provides a one-step process for synthesizing carbon-coated hexagonal Fe3O4 nanocrystals.

  7. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Science.gov (United States)

    Tadyszak, Krzysztof; Kertmen, Ahmet; Coy, Emerson; Andruszkiewicz, Ryszard; Milewski, Sławomir; Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan; Chybczyńska, Katarzyna

    2017-07-01

    Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe3O4@SiO2 nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  8. A study on the effect of chemically synthesized magnetite nanoparticles on earthworm: Eudrilus eugeniae

    Science.gov (United States)

    Samrot, Antony V.; Justin, C.; Padmanaban, S.; Burman, Ujjala

    2017-02-01

    Most look into the benefits of the nanoparticles, but keeping aside the benefits; this study focuses on the impacts of nanoparticles on living systems. Improper disposal of nanoparticles into the environment is a subject of pollution or nano-pollution which in turn affects the flora and fauna in the ecosystem, particularly soil ecosystem. Thus, this study was done to understand the impacts of chemically synthesized magnetite nanoparticles on earthworm— Eudrilus eugeniae, a soil-dependent organism which acquires food and nutrition from decaying matters. The chemically synthesized magnetite nanoparticles were characterized by UV-visible spectrophotometry, Fourier transform infrared spectroscopy and field emission scanning electron microscopy. Earthworms were allowed to interact with different concentrations of synthesized nanoparticles and the effect of the nanoparticles was analysed by studying the phenotypic changes followed by histology and inductively coupled plasma optical emission spectrometry analyses.

  9. Epitaxial magnetite nanorods with enhanced room temperature magnetic anisotropy.

    Science.gov (United States)

    Chandra, Sayan; Das, Raja; Kalappattil, Vijaysankar; Eggers, Tatiana; Harnagea, Catalin; Nechache, Riad; Phan, Manh-Huong; Rosei, Federico; Srikanth, Hariharan

    2017-06-14

    Nanostructured magnetic materials with well-defined magnetic anisotropy are very promising as building blocks in spintronic devices that operate at room temperature. Here we demonstrate the epitaxial growth of highly oriented Fe3O4 nanorods on a SrTiO3 substrate by hydrothermal synthesis without the use of a seed layer. The epitaxial nanorods showed biaxial magnetic anisotropy with an order of magnitude difference between the anisotropy field values of the easy and hard axes. Using a combination of conventional magnetometry, transverse susceptibility, magnetic force microscopy (MFM) and magneto-optic Kerr effect (MOKE) measurements, we investigate magnetic behavior such as temperature dependent magnetization and anisotropy, along with room temperature magnetic domain formation and its switching. The interplay of epitaxy and enhanced magnetic anisotropy at room temperature, with respect to randomly oriented powder Fe3O4 nanorods, is discussed. The results obtained identify epitaxial nanorods as useful materials for magnetic data storage and spintronic devices that necessitate tunable anisotropic properties with sharp magnetic switching phenomena.

  10. Redox reactions of Tc{sup VII} with magnetite and mackinawite. Solving an old enigma

    Energy Technology Data Exchange (ETDEWEB)

    Yalcintas, E.; Gaona, X.; Altmeier, M. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Nuclear Waste Disposal; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    While the reduction of heptavalent technetium, Tc(VII), by magnetite and mackinawite under anoxic conditions is well known, the identification of the resulting Tc(IV) species shows substantial disagreement between different studies. Here we use a systematic variation of initial Tc concentration, loading and pH to decipher the Tc species by EXAFS spectroscopy and to shine light on their formation pathways.

  11. Implications of Oxidation on the Colloidal Stability of Magnetite Nanoparticles and Cluster

    OpenAIRE

    Rebodos, Robert Louie Fermo

    2010-01-01

    Synthetic nanomagnetite has been suggested as a potential reactant for the in-situ treatment of contaminated groundwater. Although the application of nanomagnetite for environmental remediation is promising, a full understanding of its reactivity has been deterred by the propensity of the nanoparticles to aggregate and form clusters. To characterize the factors responsible for this aggregation behavior, we determined the magnetic properties of magnetite using a superconducting quantum interfe...

  12. Synthesis and characterization of nanometric magnetite coated by oleic acid and the surfactant CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Celis, J. Almazán, E-mail: jony-jac-5@hotmail.com; Olea Mejía, O. F., E-mail: oleaoscar@yahoo.com [Universidad Autónoma del Estado de México, Centro Conjunto de Investigación en Química Sustentable UAEMéx-UNAM (Mexico); Cabral-Prieto, A., E-mail: agustin.cabral@inin.gob.mx; García-Sosa, I., E-mail: irma.garcia@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares (Mexico); Derat-Escudero, R., E-mail: escu@unam.mx [Instituto de Investigación de materiales de la UNAM (Mexico); Baggio Saitovitch, E. M., E-mail: esaitovitch@yahoo.com.br; Alzamora Camarena, M., E-mail: mariella.alzamora@gmail.com [Centro Brasileiro de Pesquizas Físicas (Brazil)

    2017-11-15

    Nanometric magnetite (nm-Fe{sub 3}O{sub 4}) particles were prepared by the reverse co-precipitation synthesis method, obtaining particle sizes that ranged from 4 to 8.5 nm. In their synthesis, the concentration of iron salts of ferric nitrate, Fe(NO{sub 3}){sub 3}⋅9H{sub 2}O, and ferrous sulfate, FeSO{sub 4}⋅7H{sub 2}O, were varied relative to the chemical reaction volume and by using different surfactants such as oleic acid (OA) and hexadecyltrimethylammonium bromide (CTAB). The nm-Fe{sub 3}O{sub 4} particles were characterized by transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), magnetic and X-ray diffraction (XRD) measurements. Typical asymmetrical and/or broad lines shapes appeared in all Mössbauer spectra of the as prepared samples suggesting strong magnetic inter-particle interactions, reducing these interactions to some extent by gentle mechanical grinding. For the smallest particles, maghemite instead of magnetite was the main preparation product as low temperature Mössbauer and magnetic measurements indicated. For the intermediate and largest particles a mixture of magnetite and maghemite phases were produced as the saturation magnetization values of M{sub S} ∼ 60 emu/g indicated; these values were measured for most samples, independently of the coating surfactant concentration, and according to the ZFC-FC curves the blocking temperatures were 225K and 275K for the smallest and largest magnetite nanoparticles, respectively. The synthesis method was highly reproducible.

  13. Silica coated magnetite nanoparticles for removal of heavy metal ions from polluted waters

    CERN Document Server

    Dash, Monika

    2013-01-01

    Magnetic removal of Hg2+ and other heavy metal ions like Cd2+, Pb2+ etc. using silica coated magnetite particles from polluted waters is a current topic of active research to provide efficient water recycling and long term high quality water. The technique used to study the bonding characteristics of such kind of nanoparticles with the heavy metal ions is a very sensitive hyperfine specroscopy technique called the perturbed angular correlation technique (PAC).

  14. Magnetic property characterization of magnetite (Fe3O4) nanorod cores for integrated solenoid rf inductors

    Science.gov (United States)

    Kim, Jinsook; Ni, Weiping; Lee, Chungho; Kan, Edwin C.; Hosein, Ian D.; Song, Yanning; Liddell, Chekesha

    2006-04-01

    The on-chip magnetic solenoid inductors with Fe3O4 magnetite nanorod (MN) cores are fabricated and characterized up to 40 GHz. By vibrating-sample magnetometer measurements, the magnetic property of MN as a magnetic core for a solenoid inductor is investigated. In addition, high-frequency characterization with scattering parameter measurements is performed to estimate the high-frequency performance of the solenoid inductors with the MN cores.

  15. Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles

    OpenAIRE

    Eunsu Lee; Dowan Kim; Haneul Kim; Jinhwan Yoon

    2015-01-01

    To overcome the slow kinetics of the volume phase transition of stimuli-responsive hydrogels as platforms for soft actuators, thermally responsive comb-type hydrogels were prepared using synthesized poly(N-isopropylacrylamide) macromonomers bearing graft chains. Fast responding light-responsive hydrogels were fabricated by combining a comb-type hydrogel matrix with photothermal magnetite nanoparticles (MNP). The MNPs dispersed in the matrix provide heat to stimulate the volume change of the h...

  16. Treatment of hydrocarbon contamination under flow through conditions by using magnetite catalyzed chemical oxidation.

    Science.gov (United States)

    Usman, M; Faure, P; Lorgeoux, C; Ruby, C; Hanna, K

    2013-01-01

    Soil pollution by hydrocarbons (aromatic and aliphatic hydrocarbons) is a major environmental issue. Various treatments have been used to remove them from contaminated soils. In our previous studies, the ability of magnetite has been successfully explored to catalyze chemical oxidation for hydrocarbon remediation in batch slurry system. In the present laboratory study, column experiments were performed to evaluate the efficiency of magnetite catalyzed Fenton-like (FL) and activated persulfate (AP) oxidation for hydrocarbon degradation. Flow-through column experiments are intended to provide a better representation of field conditions. Organic extracts isolated from three different soils (an oil-contaminated soil from petrochemical industrial site and two soils polluted by polycyclic aromatic hydrocarbon (PAH) originating from coking plant sites) were spiked on sand. After solvent evaporation, spiked sand was packed in column and was subjected to oxidation using magnetite as catalyst. Oxidant solution was injected at a flow rate of 0.1 mL min(-1) under water-saturated conditions. Organic analyses were performed by GC-mass spectrometry, GC-flame ionization detector, and micro-Fourier transform infrared spectroscopy. Significant abatement of both types of hydrocarbons (60-70 %) was achieved after chemical oxidation (FL and AP) of organic extracts. No significant by-products were formed during oxidation experiment, underscoring the complete degradation of hydrocarbons. No selective degradation was observed for FL with almost similar efficiency towards all hydrocarbons. However, AP showed less reactivity towards higher molecular weight PAHs and aromatic oxygenated compounds. Results of this study demonstrated that magnetite-catalyzed chemical oxidation can effectively degrade both aromatic and aliphatic hydrocarbons (enhanced available contaminants) under flow-through conditions.

  17. Synthesis of Polymer Grafted Magnetite Nanoparticle with the Highest Grafting Density via Controlled Radical Polymerization

    OpenAIRE

    Babu Kothandapani; Dhamodharan Raghavachari

    2009-01-01

    Abstract The surface-initiated ATRP of benzyl methacrylate, methyl methacrylate, and styrene from magnetite nanoparticle is investigated, without the use of sacrificial (free) initiator in solution. It is observed that the grafting density obtained is related to the polymerization kinetics, being higher for faster polymerizing monomer. The grafting density was found to be nearly 2 chains/nm2for the rapidly polymerizing benzyl methacrylate. In contrast, for the less rapidly polymerizing styren...

  18. Bacterial magnetite produced in water column dominates lake sediment mineral magnetism: Lake Ely, USA

    Science.gov (United States)

    Kim, BangYeon; Kodama, Kenneth P.; Moeller, Robert E.

    2005-10-01

    Environmental magnetic studies of annually laminated sediments from Lake Ely, northeastern Pennsylvania, USA indicate that bacterial magnetite is the dominant magnetic mineral in the lake sediment. In previous studies of Lake Ely sediment, the dark, organic-rich layers in the annual laminae were interpreted to have high-intensity saturation isothermal remanent magnetizations (SIRMs) while the light-coloured, silt-rich layers have low-intensity SIRMs. To test the hypothesis that the magnetic grains in the sediments were an authigenic product of magnetotactic bacteria rather than detrital magnetic grains eroded from the watershed, we analysed samples from the water column, the lake sediment, and a sediment trap installed near the lake bottom. Direct microscopic observation of the water column samples showed the presence of magnetotactic bacteria in and below the oxic-anoxic transition zone (OATZ). To characterize the magnetic minerals, rock magnetic parameters were measured for material from the water column, the sediment trap and the dark- and light-coloured lake sediments. Low-temperature magnetic measurements tested for the presence of magnetosomes in separated dark- and light-coloured layer samples. Numeric unmixing of the low-temperature results showed that biogenic magnetites were present in the lake sediment and contributed more significantly to the SIRM in the dark, organic-rich layers than in the light-coloured, inorganic silt-rich layers. Observations under the transmission electron microscope (TEM) of magnetic extracts also show the abundance of magnetosomes in the lake sediment. The presence of live magnetotactic bacteria in the water column and the predominance of bacterial magnetites in filtered particulate matter, sediment traps and recent lake sediment all suggest that bacterial magnetites are the main magnetic minerals in Lake Ely sediment. This finding suggests that changes in environmental factors that control the productivity of magnetic bacteria

  19. Elevated temperature viscous remanent magnetization of natural and synthetic multidomain magnetite

    Science.gov (United States)

    Kelso, Paul R.; Banerjee, Subir K.

    1994-01-01

    The time-temperature relationship of magnetization is a subject of much interest and debate by paleomagnetists, rock magnetists, and magnetic anomaly modellers. We have investigated this relationship by studying the viscous remanent magnetization (VRM) of coarse-grained multidomain (MD) magnetite. Our experiments covered the temperature range from 22 to 400 C, times from minutes to months, and included both Australian granulite samples and multidomain magnetite samples synthesized by the glass ceramic method. VRM acquisition was found to generally increase with temperature but not always at the rate predicted from classical thermal fluctuation theories. Thermal cycling between room temperature (at which the measurements were made) and the VRM acquisition temperature sharply decreased the temperature dependence of the VRM. Room temperature VRM acquisition accelerates with time when plotted on a semilog plot, whereas at elevated temperature the curves are quasilinear against log(time) for both the natural and synthetic samples. This change in behavior may suggest a variation in the VRM acquisition mechanism as a function of temperature for MD magnetite. The granulites have a nearly linear increase in VRM acquisition rate with temperature whereas the glass ceramics display little change in the acquisition rate between 22 and 200 C, but increase by nearly a factor of 3 by 400 C. The increase in VRM of the glass ceramics between 200 and 400 C is in general qualitative agreement with thermal fluctuation theory. There was no systematic change in the rate of VRM acquisition with grain size for the multidomain magnetites used in this study. Elevated temperature (e.g., 400 C) VRM acquisition by the deep crustal granulites, if extrapolated over the Brunhes chron, would produce a magnetization of several A/m which, if true, is of the order required by models for the source of long-wavelength magnetic anomalies.

  20. Ultrafine Magnetite Nanopowder: Synthesis, Characterization, and Preliminary Use as Filler of Polymethylmethacrylate Nanocomposites

    OpenAIRE

    Pietro Russo; Domenico Acierno; Mariano Palomba; Gianfranco Carotenuto; Roberto Rosa; Antonino Rizzuti; Cristina Leonelli

    2012-01-01

    Magnetite (Fe3O4) nanoparticles prepared by microwave-assisted hydrothermal synthesis have been characterized in terms of morphological and structural features. Electron micrographs collected in both scanning (SEM) and transmission (TEM) modes and evaluations of X-ray powder diffraction (XRD) patterns have indicated the achievement of a monodispersed crystallite structure with particles having an average size around 15–20 nm. Structural investigations by Micro-Raman spectroscopy highlighted t...

  1. Impregnated Cobalt, Nickel, Copper and Palladium Oxides on Magnetite: Nanocatalysts for Organic Synthesis

    OpenAIRE

    Pérez Galera, Juana María

    2016-01-01

    In this manuscript, the application of different nanocatalysts derived from metal oxides impregnated on the surface of the magnetite in different reaction of general interest in Organic Chemistry is described. In the First Chapter, a cobalt derived catalyst was used to study the hydroacylation reaction of azodicarboxylates with aldehydes. In the Second Chapter, a catalyst derived from copper was used to perform different reactions, including homocoupling of terminal alkynes and the subsequent...

  2. .Gov Domains API

    Data.gov (United States)

    General Services Administration — This dataset offers the list of all .gov domains, including state, local, and tribal .gov domains. It does not include .mil domains, or other federal domains outside...

  3. Box-Behnken experimental design for chromium(VI) ions removal by bacterial cellulose-magnetite composites.

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jinga, Sorin Ion; Mihalache, Nicoleta; Botez, Adriana; Matei, Cristian; Berger, Daniela; Damian, Celina Maria; Ionita, Valentin

    2016-10-01

    In this study bacterial cellulose-magnetite composites were synthesised for the removal of chromium(VI) from aqueous solutions. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and X-ray Photoelectron Spectroscopy (XPS) were used to characterize the bacterial cellulose-magnetite composites and to reveal the uniform dispersion of nanomagnetite in the BC matrix. Magnetic properties were also measured to confirm the magnetite immobilization on bacterial cellulose membrane. The effects of initial Cr(VI) concentration, solution pH and solid/liquid ratio upon chromium removal were examined using the statistical Box-Behnken Design. Because of the possibility of magnetite dissolution during chromium(VI) adsorption, the degree of iron leaching was also analysed in the same conditions as Cr(VI) adsorption. From the factors affecting chromium(VI) adsorption the most important was solution pH. The highest Cr(VI) removal efficiency was observed at pH 4, accompanied by the lowest iron leaching in the solution. The adsorption experiments also indicated that the adsorption process of chromium(VI) is well described by Freundlich adsorption model. Our results proved that the BC-magnetite composites could be used for an efficient removal of chromium(VI) from diluted solutions with a minimum magnetite dissolution during operation. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparation and application of crosslinked poly(sodium acrylate)--coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy.

    Science.gov (United States)

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; El-Saeed, Ashraf M

    2015-01-14

    This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  5. Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Yingqing; Zhao Rui; Meng Fanbing; Lei Yajie; Zhong Jiachun; Yang Xulin [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu Xiaobo, E-mail: liuxb@uestc.edu.cn [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-06-15

    Highlights: > Novel CNTs/magnetite hybrid materials were prepared via covalently bonded method. > Stable interaction between nitriles and iron ion promoted the oriented growth of magnetite. > The hybrid material exhibited higher magnetism and electromagnetic properties - Abstract: A new type of CNTs/magnetite hybrid material was prepared via covalently bonded method in a simple solvothermal system using FeCl{sub 3} as iron source, ethylene glycol as the reducing agent, and 4-aminophenoxyphthalonitrile-grafted CNTs as templates. The magnetite nanoparticles, with the diameters of 70-80 nm, were self-assembled along the CNTs. The FTIR, UV-vis and DSC revealed that a stable covalent bond between nitriles group and iron ion promoted the oriented growth of magnetite nanoparticles along the CNTs, resulting in good dispersibility and solution storage stability. The magnetic properties measurements indicated that a higher saturated magnetization (70.7 emu g{sup -1}) existed in the CNTs/magnetite hybrid material, which further enhanced the electromagnetic properties. The magnetic loss was caused mainly by natural resonance, which is in good agreement with the Kittel equation results. The novel electromagnetic hybrid material is believed to have potential applications in the microwave absorbing performances.

  6. TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: Sand columns demonstration.

    Science.gov (United States)

    Jia, Daqing; Sun, Sheng-Peng; Wu, Zhangxiong; Wang, Na; Jin, Yaoyao; Dong, Weiyang; Chen, Xiao Dong; Ke, Qiang

    2018-03-15

    Trichloroethylene (TCE) degradation in sand columns has been investigated to evaluate the potential of chelates-enhanced Fenton-like reaction with magnetite as iron source for in situ treatment of TCE-contaminated groundwater. The results showed that successful degradation of TCE in sand columns was obtained by nitrilotriacetic acid (NTA)-assisted Fenton-like reaction of magnetite. Addition of ethylenediaminedisuccinic acid (EDDS) resulted in an inhibitory effect on TCE degradation in sand columns. Similar to EDDS, addition of ethylenediaminetetraacetic acid (EDTA) also led to an inhibition of TCE degradation in sand column with small content of magnetite (0.5 w.t.%), but enhanced TCE degradation in sand column with high content of magnetite (7.0 w.t.%). Additionally, the presence of NTA, EDDS and EDTA greatly decreased H 2 O 2 uptake in sand columns due to the competition between chelates and H 2 O 2 for surface sites on magnetite (and sand). Furthermore, the presented results show that magnetite in sand columns remained stable in a long period operation of 230 days without significant loss of performance in terms of TCE degradation and H 2 O 2 uptake. Moreover, it was found that TCE was degraded mainly to formic acid and chloride ion, and the formation of chlorinated organic intermediates was minimal by this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preparation and Application of Crosslinked Poly(sodium acrylate-Coated Magnetite Nanoparticles as Corrosion Inhibitors for Carbon Steel Alloy

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2015-01-01

    Full Text Available This work presents a new method to prepare poly(sodium acrylate magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate as shell. Fourier transform infrared spectroscopy (FTIR was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM was used to examine the morphology of the modified poly(sodium acrylate magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS. Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

  8. Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles.

    Science.gov (United States)

    Pidchenko, Ivan; Kvashnina, Kristina O; Yokosawa, Tadahiro; Finck, Nicolas; Bahl, Sebastian; Schild, Dieter; Polly, Robert; Bohnert, Elke; Rossberg, André; Göttlicher, Jörg; Dardenne, Kathy; Rothe, Jörg; Schäfer, Thorsten; Geckeis, Horst; Vitova, Tonya

    2017-02-21

    Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).

  9. Magnetite/Fe-Al-montmorillonite as a Fenton catalyst with efficient degradation of phenol.

    Science.gov (United States)

    Wei, Xipeng; Wu, Honghai; Sun, Feng

    2017-10-15

    A Fe-Al-MPM material assembled from nanosized magnetite and Fe-Al-pillared montmorillonite (Fe-Al-Mt) was characterized by XRD, XPS, BET, SEM and TEM. Fe-Al-Mt was proven to be capable of facilitating the dispersion of magnetite nanoparticles and inhibiting their aggregation. The coupling of Fe-Al-Mt with magnetite in Fe-Al-MPM improved its Fenton catalytic activity. Complete conversion of phenol within 80min with a high TOC removal rate (>78%) was achieved using Fe-Al-MPM as a heterogeneous Fenton catalyst under optimized conditions. The Fenton process first underwent a slow induction reaction, followed by the rapid oxidative decomposition of phenol. The existence of the induction reaction period was attributed to the need for activation of the iron species on the catalyst surfaces, and the duration depended on the solution temperature, pH and catalyst's nature. More importantly, Fe-Al-MPM showed high stability, with a low iron-release even after it was recycled 5 times. The minimal iron-leaching from Fe-Al-MPM was ascribed to the competitive adsorption of the incorporated aluminum and all the iron species for the residual (low ecotoxicity) organic ligands. These organic acids were among the main products that remained at the end of the Fenton process. Also important was the ease of separation of Fe-Al-MPM under a magnetic field. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Simultaneous hyperthermia and doxorubicin delivery from polymer-coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.R., E-mail: iglesias@ugr.es [Department of Applied Physics, University of Granada, Granada 18071 (Spain); Delgado, A.V.; González-Caballero, F. [Department of Applied Physics, University of Granada, Granada 18071 (Spain); Ramos-Tejada, M.M. [Department of Physics, University of Jaén, Linares 23700 (Spain)

    2017-06-01

    In this work, the hyperthermia response, (i.e., heating induced by an externally applied alternating magnetic field) and the simultaneous release of an anti-cancer drug (doxorubicin) by polymer-coated magnetite nanoparticles have been investigated. After describing the setup for hyperthermia measurements in suspensions of magnetic nanoparticles, the hyperthermia (represented by the rate of suspension heating and, ultimately, by the specific absorption rate or SAR) of magnetite nanoparticles (both bare and polymer-coated as drug nanocarriers) is discussed. The effect of the applied ac magnetic field on doxorubicin release is also studied, and it is concluded that the field does not interfere with the release process, demonstrating the double functionality of the investigated particles. - Highlights: • Magnetite NPs coated with polymers are used for drug delivery and hyperthermia. • The SAR of polyelectrolyte-coated NPs is larger because of their improved stability. • The antitumor drug doxorubicin is adsorbed on the coated particles. • The release rate of the drug is not affected by the ac magnetic field used in hyperthermia.

  11. Assessment of magnetite to remove Cs (Total) and Am-241 from radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Priscila; Lima, Josenilson B.; Bueno, Vanessa N.; Yamamura, Mitiko H.; Holland, Helber; Hiromoto, Goro; Potiens Junior, Ademar J.; Sakata, Solange K., E-mail: apotiens@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radioactive waste can affect human hea lt and the environment, thus their safe management has received considerable attention worldwide. Radioactive waste treatment is an important step in its management. Sorption technique is one of the most studied methods to reduce the volume of radioactive waste streams and it has been successfully used for treatment of radioactive liquid wastes. Herein, the experiments were performed using magnetite (Fe{sub 3}O{sub 4}) as adsorbents for removal the cesium and americium from different radioactive aqueous solution. An aqueous solution with 13.9 ppm of Cs-133 was stirred with 20-25 mg of magnetite and another solution of 117.94 Bq/mL Am-241 was stirred with 50 mg using the same adsorbent but in different contact times and pH. After the experiments the magnetite was removal using a super magnet and the solutions were analyzed by ICP-OES for Cs-133 and Am-241 remaining in solution was quantified by a gamma spectrometry. The results suggested that the biosorption process for Cs is more efficient at pH 6 and 30 minutes of contact time and for Am-241 the most efficient pH was also 6 and 40 min of contact time with 93% of removal of this radionuclide from the solution. (author)

  12. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Toghraie, Davood; Alempour, Seyed Mohammadbagher [Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan (Iran, Islamic Republic of); Afrand, Masoud, E-mail: masoud.afrand@pmc.iaun.ac.ir [Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of)

    2016-11-01

    In this paper, experimental determination of dynamic viscosity of water based magnetite nanofluid (Fe{sub 3}O{sub 4}/water) was performed. The viscosity was measured in the temperature range of 20–55 °C for various samples with solid volume fractions of 0.1%, 0.2%, 0.4%, 1%, 2% and 3%. The results showed that the viscosity considerably decreases with increasing temperature. Moreover, the viscosity enhances with an increase in the solid volume fraction, remarkably. The calculated viscosity ratios showed that the maximum viscosity enhancement was 129.7%. Using experimental data, a new correlation has been proposed to predict the viscosity of magnetite nanofluid (Fe{sub 3}O{sub 4}/water). A comparison between the experimental results and the correlation outputs showed that the proposed model has a suitable accuracy. - Highlights: • Preparing Magnetite nanofluids with solid volume fractions up to 3%. • Measuring viscosity in temperature range of 20–55 °C using Brookfield Viscometer. • Maximum viscosity enhancement occurred at volume fraction of 3% and was 129.7%. • Proposing new correlation to predict the viscosity of Fe3O4/water nanofluid.

  13. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition.

  14. Development and Characterization of Magnetite/Poly(butylcyanoacrylate) Nanoparticles for Magnetic Targeted Delivery of Cancer Drugs.

    Science.gov (United States)

    López-Viota, Margarita; El-Hammadi, Mazen M; Cabeza, Laura; Prados, José; Melguizo, Consolación; Ruiz Martinez, M Adolfina; Arias, José L; Delgado, Ángel V

    2017-05-15

    A great attention is presently paid to the design of drug delivery vehicles based on surface-modified magnetic nanoparticles. They can, in principle, be directed to a desired target area for releasing their drug payload, a process triggered by pH, temperature, radiation, or even magnetic field. To this, the possibility of forming part of diagnostic tools by enhanced magnetic resonance imaging or that of further treatment by magnetic hyperthermia can be added. Bare particles are rapidly eliminated from the bloodstream by the phagocyte mononuclear system, leading to short biological half-life. It is hence required to coat them in order to increase their biocompatibility and facilitate the drug incorporation. In this work, magnetite nanoparticles were coated with poly(butylcyanoacrylate) (PBCA) manufactured and characterized with regard to their physical properties and their suitability as a platform for magnetically controlled drug delivery. The average diameter of magnetite and core-shell nanoparticles was 97 ± 19 and 140 ± 20 nm, respectively. Infrared analysis, electrophoretic mobility, surface thermodynamics analysis, and X-ray diffraction all confirmed that the magnetic particles were sufficiently covered by the polymer in the composite nanoparticles. In addition, assays using normal (CCD-18 and MCF-10A) and tumoral (T-84 and MCF-7) cell lines derived from colon and breast tissue, respectively, demonstrated that nanocomposites have low or negligible cytotoxicity. It is concluded that PBCA-coated magnetite core-shell nanoparticles represent a remarkable promise as a platform for magnetically controlled drug delivery.

  15. Amino-functionalized silica magnetite nanoparticles for the simultaneous removal of pollutants from aqueous solution

    Science.gov (United States)

    Hozhabr Araghi, Samira; Entezari, Mohammad H.

    2015-04-01

    Amino-functionalized silica magnetite nanoparticles (A-S-MNPs) have been prepared through coating of sono-synthesized magnetite nanoparticles (MNPs) in a basic medium by SiO2. Then, the resultant silica magnetite nanoparticles (S-MNPs) were modified with 3-aminpropyltriethoxysilane (APTES). The modification was carried out by the organic solvent method in dry hexane to graft amine groups on the surface. The adsorption behavior of this novel magnetic sorbent was studied for the simultaneous removal of two organic pollutants containing the sulfonate group, e.g., Reactive Black 5 (RB5) and sodium dodecylbenzenesulfonate (SDBS) in aqueous solutions. The results show that a pseudo-second-order model fits well the experimental data and the rate constant of adsorption for SDBS is higher than for RB5. The adsorption capacity was obtained by the Langmuir isotherm. The qmax was 83.33 and 62.5 mg/g for RB5 and SDBS at pH 2 and 298 K, respectively. Furthermore, the loaded A-S-MNPs can be recovered easily from aqueous solution by magnetic separation and regenerated by simply washing with 0.1 M NaOH solution. Therefore, the synthesized novel magnetic sorbent can be used as an effective and recyclable adsorbent for the simultaneous removal of dye and surfactant from aqueous solutions.

  16. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging.

    Science.gov (United States)

    Kale, Anup; Kale, Sonia; Yadav, Prasad; Gholap, Haribhau; Pasricha, Renu; Jog, J P; Lefez, Benoit; Hannoyer, Béatrice; Shastry, Padma; Ogale, Satishchandra

    2011-06-03

    A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.

  17. Mineralization study on Dehbid magnetite deposit, Fars; using mineralogical and geochemical data

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2011-11-01

    Full Text Available The Dehbid magnetite deposit is located in northeastern part of Fars province, in the southern border of Sanandaj-Sirjan metamorphic zone. The mineralization occurred as veins and lenses along NW-SE faults. The ores are mainly hosted in silicified dolomite of early Mesozoic (Triassic. Mineralogical studies show that the ores are dominated by magnetite and minor hematite with massive texture occurring as cement of angular remnants of silicified host dolomite. According to geochemical data, Fe2O3 content in the mineralized zones show extensive variation between 34 to 75 wt %. The P, Ti, Cr and V contents of the iron ores are remarkably low and Co/Ni, Cr/V and LREE/HREE ratios, positive Eu anomalies, negative Ce anomalies, Eu/Sm = 1, along with field and textural observations of Dehbid ores indicate that the deposit belongs to the class of hydrothermal iron ores. At Dehbid, the magnetite ores are formed as open space fillings. The sparse rhyolites and basalts in the area may be regarded as the origin of iron and heat in the hydrothermal system. A decrease in temperature and likely pressure due to fluid mixing are the major causes of iron oxide deposition.

  18. Synthesis, structure, morphology and stoichiometry characterization of cluster and nano magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Singh, L. Herojit; Pati, S.S. [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil); Guimarães, Edi M. [Institute of Geoscience, University of Brasilia, 70910-900, Brasilia, DF (Brazil); Rodrigues, P.A.M.; Oliveira, Aderbal C. [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil); Garg, V.K., E-mail: vijgarg@gmail.com [Institute of Physics, University of Brasilia, 70919-970, Brasilia, DF (Brazil)

    2016-08-01

    We have studied the stoichiometry of magnetite nanoparticles using three spectroscopic techniques: Mössbauer, photoacoustic and ferromagnetic resonance (FMR). By varying the weight ratio of the Fe precursor to the reducing agent (sodium acetate) and a post-synthesis annealing, we were able to synthesize samples with different amounts of Fe vacancies, from stoichiometric Fe{sub 3}O{sub 4} to γ-Fe{sub 2}O{sub 3}. By synthesizing magnetite in the presence of zeolite we obtained nanoparticles within the 3–10 nm diameter range. The spectroscopic results show that there is a correlation between the amount of Fe vacancies and (i) the optical absorption and (ii) the g-values from the Electron paramagnetic resonance EPR spectra of the nanoparticles. - Highlights: • Magnetite nanoparticles and cluster synthesized. • Photoacoustic spectroscopy is effective in determining the stoichiometry. • Particles with 9 nm size has 0 < δ < 0.14. • Less than 9 nm gives 0.14 < δ < 0.3 and size <3 nm have δ = 0.33 (i.e. γ-Fe{sub 2}O{sub 3}).

  19. Solvothermal synthesis and characterization of functionalized graphene sheets (FGSs)/magnetite hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Yingqing; Meng Fanbin; Yang Xulin; Zhao Rui [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu Xiaobo, E-mail: liuxb@uestc.edu.cn [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-09-25

    Highlights: > Functionalized graphene sheets/Fe{sub 3}O{sub 4} hybrids were synthesized through solvothermal method. > The denseness, size and crystallinity of magnetite formed on FGSs can be altered. > The as-prepared hybrids exhibited high resistivity and saturation magnetization. > The magnetic loss was caused mainly by ferromagnetic natural resonance. - Abstract: Novel functionalized graphene sheets (FGSs)/Fe{sub 3}O{sub 4} hybrids were synthesized through a facile one-step solvothermal method using FeCl{sub 3} as iron source, ethylene glycol as the reducing agent and graphene nanosheets as templates. The morphology, composition and phase structure of as-prepared hybrid materials were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). These results showed that denseness, size and crystallinity of magnetite can be altered by controlling the reaction parameters. Magnetization measurement indicated that both coercivity and saturation magnetization increased linearly with increasing magnetite concentration in hybrid materials. The measured relative complex permittivity indicated that a high resistivity existed in the FGSs/Fe{sub 3}O{sub 4} inorganic hybrids. The magnetic loss was caused mainly by ferromagnetic natural resonance, which is in agreement with the Kittel equation. The novel inorganic hybrid materials are believed to have potential applications in the microwave absorbing performances.

  20. Influence of Basicity on High-Chromium Vanadium-Titanium Magnetite Sinter Properties, Productivity, and Mineralogy

    Science.gov (United States)

    Zhou, Mi; Yang, Songtao; Jiang, Tao; Xue, Xiangxin

    2015-05-01

    The effect of basicity on high-chromium vanadium-titanium magnetite (V-Ti-Cr) sintering was studied via sintering pot tests. The sinter rate, yield, and productivity were calculated before determining sinter strength (TI) and reduction degradation index (RDI). Furthermore, the effect of basicity on V-Ti-Cr sinter mineralogy was clarified using metallographic microscopy, x-ray diffraction, and scanning electron microscopy-energy-dispersive x-ray spectroscopy. The results indicate that increasing basicity quickly increases the sintering rate from 25.4 mm min-1 to 28.9 mm min-1, yield from 75.3% to 87.2%, TI from 55.4% to 64.8%, and productivity from 1.83 t (m2 h)-1 to 1.94 t (m2 h)-1 before experiencing a slight drop. The V-Ti-Cr sinter shows complex mineral composition, with main mineral phases such as magnetite, hematite, silicate (dicalcium silicate, Ca-Fe olivine, glass), calcium and aluminum silico-ferrite (SFCA/SFCAI) and perovskite. Perovskite is notable because it lowers the V-Ti sinter strength and RDI. The well intergrowths between magnetite and SFCA/SFCAI, and the decrease in perovskite and secondary skeletal hematite are the key for improving TI and RDI. Finally, a comprehensive index was calculated, and the optimal V-Ti-Cr sinter basicity also for industrial application was 2.55.

  1. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation.

    Science.gov (United States)

    Huang, Wenyu; Luo, Mengqi; Wei, Chaoshuai; Wang, Yinghui; Hanna, Khalil; Mailhot, Gilles

    2017-04-01

    In this research, magnetite and ethylenediamine-N,N'-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H2O2 concentration, and pH value were evaluated. The effect of different radical species including HO· and HO2·/O2·- was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H2O2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O2·- to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO· radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  2. Spectroscopic and magnetic studies of highly dispersible superparamagnetic silica coated magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tadyszak, Krzysztof [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland); Kertmen, Ahmet, E-mail: ahmet.kertmen@pg.gda.pl [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Coy, Emerson [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Andruszkiewicz, Ryszard; Milewski, Sławomir [Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk (Poland); Kardava, Irakli; Scheibe, Błażej; Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Chybczyńska, Katarzyna, E-mail: katarzyna.chybczynska@ifmpan.poznan.pl [Institute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smo.luchowskiego 17, 60-179 Poznań (Poland)

    2017-07-01

    Highlights: • Superparamagnetic core-shell nanoparticles of Fe{sub 2}O{sub 3}@Silica were obtained. • Magnetic response was studied by DC, AC magnetometry and EPR spectroscopy. • Nanoparticles show magnetite structure with a well-defined Verwey transition. • Samples show no inter particle magnetic interactions or agglomeration. - Abstract: Superparamagnetic behavior in aqueously well dispersible magnetite core-shell Fe{sub 3}O{sub 4}@SiO{sub 2} nanoparticles is presented. The magnetic properties of core-shell nanoparticles were measured with use of the DC, AC magnetometry and EPR spectroscopy. Particles where characterized by HR-TEM and Raman spectroscopy, showing a crystalline magnetic core of 11.5 ± 0.12 nm and an amorphous silica shell of 22 ± 1.5 nm in thickness. The DC, AC magnetic measurements confirmed the superparamagnetic nature of nanoparticles, additionally the EPR studies performed at much higher frequency than DC, AC magnetometry (9 GHz) have confirmed the paramagnetic nature of the nanoparticles. Our results show the excellent magnetic behavior of the particles with a clear magnetite structure, which are desirable properties for environmental remediation and biomedical applications.

  3. Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Lasheen, M.R., E-mail: ragaei24@link.net [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Sherif, Iman Y., E-mail: iman57us@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); Tawfik, Magda E., E-mail: magdaemileta@yahoo.com [Polymers and Pigments Department, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Wakeel, S.T., E-mail: shaimaa_tw@yahoo.com [Water Pollution Research Department, Environmental Research Division, National Research Centre, 33-El Buhoth St., Dokki, Cairo, 12311 (Egypt); El-Shahat, M.F., E-mail: elshahatmf@hotmail.com [Faculty of Science, Ain Shams University, Khalifa El-Maamon St., Abbasiya Sq., 11566, Cairo (Egypt)

    2016-08-15

    Highlights: • Nano magnetite–chitosan films were prepared by casting method. • The efficiency of the prepared films for removing heavy metals was investigated. • The adsorption mechanism was studied using different isotherm and kinetic models. • Films reuse and metals recovery were studied. - Abstract: Nano magnetite chitosan (NMag–CS) film was prepared and characterized with different analytical methods. X-ray diffraction (XRD) patterns confirmed the formation of a pure magnetite structure and NMag–CS nanocomposite. TEM image of the film, revealed the uniform dispersion of magnetite nanoparticles inside chitosan matrix. The adsorption properties of the prepared film for copper, lead, cadmium, chromium and nickel metal ions were evaluated. Different factors affecting the uptake behavior by the composite films such as time, initial pH and film dose were investigated. The adsorption equilibrium attained using 2 g/L of the film after 120 min of reaction. The equilibrium data were analyzed using Langmuir and Freundlich models. The adsorption kinetics followed the mechanism of the pseudo-second-order equation for all metals. The metals regenerated from films with an efficiency greater than 95% using 0.1 M ethylene diamine tetra acetic acid (EDTA) and films were successfully reused for adsorption.

  4. The role of polymer films on the oxidation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Letti, C.J. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Paterno, L.G. [Universidade de Brasilia, Instituto de Quimica, 70910-000 Brasilia, DF (Brazil); Pereira-da-Silva, M.A. [Instituto de Fisica de São Carlos, USP, 13560-9700 São Carlos, SP (Brazil); Centro Universitario Central Paulista – UNICEP, 13563-470 São Carlos, SP (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Soler, M.A.G., E-mail: soler@unb.br [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil)

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.

  5. Study of the new properties of magnetite and hematite after transformation by irradiation and by grinding; Etude des nouvelles proprietes de la magnetite et de l`hematite apres transformation par irradiation et par mecanosynthese

    Energy Technology Data Exchange (ETDEWEB)

    Meillon, S.

    1996-01-26

    We have investigated the evolution of magnetite (Fe{sub 3}O{sub 4}) and hematite ({alpha}Fe{sub 2}0{sub 3}) when faced with high energy heavy ions (5.9 6 GeV Pb) irradiation, fast neutron irradiation, and grinding. Magnetite is formed by a ceramic treatment. Heating hematite particles to about 1300 deg (under inert atmosphere) results in a conversion to magnetite. The damage induced in magnetite by high energy ion irradiation (electronic excitation) has the form of extended spherical defects (discontinuous latent tracks) in the ion wakes. High resolution electron microscopy observations have indicated only slight atomic displacements without profound modification of the structure (absence of an amorphous phase), even after high fluences (3*10{sup 12} Pb.cm{sup -2}). The results obtained by Moessbauer spectroscopy, by magnetization measurements and by low field hysteresis loops determination are coherently interpreted using a model based on magnetoelastic concepts. This model explains the restoration of the magnetic properties of magnetite after irradiation. The damage induced in magnetite and hematite following fast neutron irradiation was studied by thermal neutron diffraction. A very small variation of the lattice parameter has been observed for magnetite. The distribution of the magnetic moments of the iron ions in the tetrahedral and octahedral sites is not modified. For hematite, we have observed an expansion along the c-axis of hexagonal unit cell. This result is coherent with the results obtained by grinding. Finally, the observation of original direct phase transformation by the mechanical action of grinding is reported: hematite transforms into maghemite. As previously observed after fast neutron irradiation, here again the transition from an hexagonal (hematite) to a f.c.c lattice (maghemite) is accompanied by an expansion along the c-axis direction of the lattice. The transformation occurs through a shear sequence of oxygen planes. (Abstract Truncated)

  6. One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine.

    Science.gov (United States)

    Salamon, J; Sathishkumar, Y; Ramachandran, K; Lee, Yang Soo; Yoo, Dong Jin; Kim, Ae Rhan; Gnana Kumar, G

    2015-02-15

    Magnetite (Fe3O4) nanorods anchored over reduced graphene oxide (rGO) were synthesized through a one-pot synthesis method, where the reduction of GO and in-situ generation of Fe3O4 nanorods occurred concurrently. The average head and tail diameter of Fe3O4 nanorods anchored over the rGO matrix are found to be 32 and 11 nm, respectively, and morphology, structure and diameter of bare Fe3O4 nanorods were not altered even after the composite formation with rGO. The increased structural disorders and decrement in the sp(2) domains stimulated the high electrical conductivity and extended catalytic active sites for the prepared rGO/Fe3O4 nanocomposite. The constructed rGO/Fe3O4/GCE sensor exhibited excellent electrocatalytic activity toward the electrooxidation of dopamine (DA) with a quick response time of 6s, a wide linear range between 0.01 and 100.55 µM, high sensitivity of 3.15 µA µM(-1) cm(-2) and a lower detection limit of 7 nM. Furthermore, the fabricated sensor exhibited a practical applicability in the quantification of DA in urine samples with an excellent recovery rate. The excellent electroanalytical performances and straight-forward, surfactant and template free preparation method construct the rGO/Fe3O4 composite as an extremely promising material for the diagnosis of DA related diseases in biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    Science.gov (United States)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin

  8. Performance Evaluation of Magnetite Nanoparticles Modified with Sodium Alginate for the Removal of Acid Red 18 Dye from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Samarghandi

    2014-03-01

    Full Text Available Background: Azo dyes have many applications in various industries. In addition to Mutagenic and carcinogenic potential to humans, these materials cause the production of toxic byproducts in the aqueous solutions. In this study, magnetite nanoparticles were synthesized with modified sodium alginate. Then their efficiencies in absorbing Acid Red 18 dye were investigated. Methods: First, magnetite nanoparticles were synthesized by chemical co-precipitation method and then modified magnetite nanoparticles were evaluated as an adsorbent for Acid Red 18 dye adsorption. TGA test was used for proving modified magnetite nanoparticles coating. The effects of pH, contact time, nanoparticles and Acid Red 18 dye concentrations were studied. Residual concentration of Acid Red 18 dye was read using a spectrophotometer at a wavelength of 508 nm. Data was explained by the Langmuir isotherm and Freundlich models. Results: In optimal conditions of operation including pH = 5, contact time =30 minutes, adsorbent dose 0/2gr/l and the initial concentration of Acid Red 18 dye= 50 mg/l, removal efficiency of the process was obtained over 95 %. These studies also showed that Acid Red 18 absorption pattern has more conformity with the Freundlich model. Conclusion: The results showed that sodium alginate is a convenient and inexpensive coating for magnetite nanoparticles; also it has high efficiency to absorb dye Acid Red 18 in a short time.

  9. Structural Modification and Self-Assembly of Nanoscale Magnetite Synthesised in the Presence of an Anionic Surfactant

    Directory of Open Access Journals (Sweden)

    Malik S.

    2014-07-01

    Full Text Available The earliest reported medical use of magnetite powder for internal applications was in the 10th century A.D. by the Persian physician and philosopher Avicenna of Bokhara [1,2]. Today magnetic nanoparticles are used for magnetic resonance imaging (MRI and are potential colloidal mediators for cancer magnetic hyperthermia [3]. Twenty years ago magnetite (Fe3O4 was found to be present in the human brain [4] and more recently it has been reported that nanoscale biogenic magnetite (origin and formation uncertain is associated with neurodegenerative diseases such as Parkinson’s, Huntington’s and Alzheimer’s [5]. Here we show that the synthesis of magnetite in the presence of the surfactant sodium dodecyl sulphate (SDS gives rise to a variety of nanoscale morphologies, some of which look remarkably similar to magnetite found in organisms, suggesting that similar processes may be involved. Furthermore, these 1D materials with diameters of quantum confined size are of interest in the areas of biosensors [6] and biomedical imaging [7].

  10. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe₃O₄.

    Science.gov (United States)

    Bock, David C; Kirshenbaum, Kevin C; Wang, Jiajun; Zhang, Wei; Wang, Feng; Wang, Jun; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-24

    When electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation illustrates the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry.

  11. Structural Modification and Self-Assembly of Nanoscale Magnetite Synthesised in the Presence of an Anionic Surfactant

    Science.gov (United States)

    Malik, S.; Hewitt, I. J.; Powell, A. K.

    2014-07-01

    The earliest reported medical use of magnetite powder for internal applications was in the 10th century A.D. by the Persian physician and philosopher Avicenna of Bokhara [1,2]. Today magnetic nanoparticles are used for magnetic resonance imaging (MRI) and are potential colloidal mediators for cancer magnetic hyperthermia [3]. Twenty years ago magnetite (Fe3O4) was found to be present in the human brain [4] and more recently it has been reported that nanoscale biogenic magnetite (origin and formation uncertain) is associated with neurodegenerative diseases such as Parkinson's, Huntington's and Alzheimer's [5]. Here we show that the synthesis of magnetite in the presence of the surfactant sodium dodecyl sulphate (SDS) gives rise to a variety of nanoscale morphologies, some of which look remarkably similar to magnetite found in organisms, suggesting that similar processes may be involved. Furthermore, these 1D materials with diameters of quantum confined size are of interest in the areas of biosensors [6] and biomedical imaging [7].

  12. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, James; Klueglein, Nicole; Pearce, Carolyn I.; Rosso, Kevin M.; Appel, Erwin; Kappler, Andreas

    2015-03-26

    Despite the regular occurrence of both magnetite and iron-metabolizing bacteria in the same environments, it is currently unknown whether the iron(II) and iron(III) in magnetite can be cycled between different bacteria and whether or how magnetic properties are affected by this metabolic activity. We show through magnetic and spectroscopic measurements that the phototrophic Fe(II)-oxidizer Rhodopseudomonas palustris TIE-1 can oxidize solid-phase magnetite nanoparticles using light energy, leading to a decrease in the measured magnetic susceptibility (MS). This process likely occurs at the surface and is reversible in the dark by the Fe(III)-reducer Geobacter sulfurreducens resulting in an increase in MS. These results show that iron ions bound in highly crystalline mineral magnetite are bioavailable as electron stores and electron sinks under varying environmental conditions, making magnetite a potential “biogeobattery” during day/night cycles. These findings are relevant for environmental studies and reinforce the impact of microbial redox processes on the global iron cycle.

  13. Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH)

    Energy Technology Data Exchange (ETDEWEB)

    Obayemi, J.D. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Materials Science and Engineering, Kwara State University, Malete, Kwara State (Nigeria); Dozie-Nwachukwu, S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Sheda Science and Technology Complex (SHESTCO) Abuja, Federal Capital Territory (Nigeria); Danyuo, Y. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Department of Electronics and Electricals Engineering, Nigerian Turkish Nile University, Abuja (Nigeria); Odusanya, O.S. [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Sheda Science and Technology Complex (SHESTCO) Abuja, Federal Capital Territory (Nigeria); Anuku, N. [Department of Chemistry, Bronx Community College, New York, NY 10453 (United States); Princeton Institute of Science and Technology of Materials (PRISM), Princeton, NJ 08544 (United States); Malatesta, K. [Princeton Institute of Science and Technology of Materials (PRISM), Princeton, NJ 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544 (United States); Soboyejo, W.O., E-mail: soboyejo@princeton.edu [Department of Materials Science and Engineering, African University of Science and Technology (AUST) Abuja, Federal Capital Territory (Nigeria); Princeton Institute of Science and Technology of Materials (PRISM), Princeton, NJ 08544 (United States); Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08544 (United States)

    2015-01-01

    This paper presents the results of an experimental study of the biosynthesis of magnetite nanoparticles (BMNPs) with particle sizes between 10 nm and 60 nm. The biocompatible magnetic nanoparticles are produced from Magnetospirillum magneticum (M.M.) bacteria that respond to magnetic fields. M.M. bacteria were cultured and used to synthesize magnetite nanoparticles. This was done in an enriched magnetic spirillum growth medium (EMSGM) at different pH levels. The nanoparticle concentrations were characterized with UV–Visible (UV–Vis) spectroscopy, while the particle shapes were elucidated via transmission electron microscopy (TEM). The structure of the particles was studied using X-ray diffraction (XRD), while the hydrodynamic radii, particle size distributions and polydispersity of the nanoparticles were characterized using dynamic light scattering (DLS). Carbodiimide reduction was also used to functionalize the BMNPs with a molecular recognition unit (luteinizing hormone releasing hormone, LHRH) that attaches specifically to receptors that are over-expressed on the surfaces of most breast cancer cell types. The resulting nanoparticles were examined using Fourier Transform Infrared (FTIR) spectroscopy and quantitative image analysis. The implications of the results are then discussed for the potential development of magnetic nanoparticles for the specific targeting and treatment of breast cancer. - Highlights: • Biosynthesis of MNPs with clinically relevant sizes between 10 and 60 nm. • New insights into the effects of pH and processing time on nanoparticle shapes and sizes. • Successful conjugation of biosynthesized magnetite nanoparticles to LHRH ligands. • Conjugated BMNPs that are monodispersed with potential biomedical relevance. • Magnetic properties of biosynthesized MNPs suggest potential for MRI enhancement.

  14. Growth and characterization of magnetite-maghemite thin films by the dip coating method

    Science.gov (United States)

    Velásquez, A. A.; Arnedo, A.

    2017-11-01

    We present the process of growth and characterization of magnetite-maghemite thin films obtained by the dip coating method. The thin films were deposited on glass substrates, using a ferrofluid of nanostructured magnetite-maghemite particles as precursor solution. During the growth of the films the following parameters were controlled: number of dips of the substrates, dip velocity of the substrates and drying times. The films were characterized by Atomic Force Microscopy, Scanning Elelectron Microscopy, four-point method for resistance measurement, Room Temperature Mössbauer Spectroscopy and Hall effect. Mössbauer measurements showed the presence of a sextet attributed to maghemite ( γ-Fe2O3) and two doublets attributed to superparamagnetic magnetite (Fe3O4), indicating a distribution of oxidation states of the iron as well as a particle size distribution of the magnetic phases in the films. Atomic force microscopy measurements showed that the films cover quasi uniformly the substrates, existing in them some pores with sub-micron size. Scanning Electron Microscopy measurements showed a uniform structure in the films, with spherical particles with size around 10 nm. Voltage versus current measurements showed an ohmic response of the films for currents between 0 and 100 nA. On the other hand, Hall effect measurements showed a nonlinear response of the Hall voltage with the magnetic flux density applied perpendicular to the plane of the films, however the response is fairly linear for magnetic flux densities between 0.15 and 0.35 T approximately. The results suggest that the films are promising for application as magnetic flux density sensors.

  15. Growth and characterization of magnetite-maghemite thin films by the dip coating method

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, A. A., E-mail: avelas26@eafit.edu.edu.co; Arnedo, A. [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia)

    2017-11-15

    We present the process of growth and characterization of magnetite-maghemite thin films obtained by the dip coating method. The thin films were deposited on glass substrates, using a ferrofluid of nanostructured magnetite-maghemite particles as precursor solution. During the growth of the films the following parameters were controlled: number of dips of the substrates, dip velocity of the substrates and drying times. The films were characterized by Atomic Force Microscopy, Scanning Elelectron Microscopy, four-point method for resistance measurement, Room Temperature Mössbauer Spectroscopy and Hall effect. Mössbauer measurements showed the presence of a sextet attributed to maghemite (γ-Fe{sub 2}O{sub 3}) and two doublets attributed to superparamagnetic magnetite (Fe{sub 3}O{sub 4}), indicating a distribution of oxidation states of the iron as well as a particle size distribution of the magnetic phases in the films. Atomic force microscopy measurements showed that the films cover quasi uniformly the substrates, existing in them some pores with sub-micron size. Scanning Electron Microscopy measurements showed a uniform structure in the films, with spherical particles with size around 10 nm. Voltage versus current measurements showed an ohmic response of the films for currents between 0 and 100 nA. On the other hand, Hall effect measurements showed a nonlinear response of the Hall voltage with the magnetic flux density applied perpendicular to the plane of the films, however the response is fairly linear for magnetic flux densities between 0.15 and 0.35 T approximately. The results suggest that the films are promising for application as magnetic flux density sensors.

  16. Kinetic and Thermodynamic Effects on the Agglomeration of Magnetite Nanoparticles by Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Daeseong; Kim, Hackjin [Chungnam National University, Daejeon (Korea, Republic of)

    2016-06-15

    The dynamics of agglomeration of magnetite nanoparticles studied by measuring the magnetic weight shows the kinetics of stretched exponential. During the growth of the magnetic weight, the structure of agglomerate fluctuates by temperature change. This fast relaxation that can be interpreted in terms of Boltzmann distribution indicates that the thermal equilibration is established promptly with the temperature change. Agglomerate of nanoparticles resembles protein in that both of them exist in complex structures of various conformations with different formation energies, which requires the energy landscape for understanding of dynamics in detail.

  17. Iron site occupancies in magnetite-ulvospinel solid solution: A new approach using XMCD

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, C. I.; Henderson, C. M. B.; Telling, N. D.; Pattrick, R. A.D.; Vaughan, D. J.; Charnock, J. M.; Arenholz, E.; Tuna, F.; Coker, V.S.; Laan, G. van der

    2009-06-22

    Ordering of Fe{sup 3+} and Fe{sup 2+} between octahedral (Oh) and tetrahedral (Td) sites in synthetic members of the magnetite (Fe{sub 3}O{sub 4}) - ulvoespinel (Fe{sub 2}TiO{sub 4}) solid-solution series was determined using Fe L{sub 2,3}-edge X-ray magnetic circular dichroism (XMCD) coupled with electron microprobe and chemical analysis, Ti L-edge spectroscopy, Fe K-edge EXAFS and XANES, Fe{sub 57} Moessbauer spectroscopy, and unit cell parameters. Microprobe analysis, cell edges and chemical FeO determinations showed that the bulk compositions of the samples were stoichiometric magnetite-ulvoespinel solid-solutions. Surface sensitive XMCD showed that the surfaces of these oxide minerals were more sensitive to redox conditions and some samples required re-equilibration with suitable solid-solid buffers. Detailed site-occupancy analysis of these samples gave XMCD-Fe{sup 2+}/Fe{sup 3+} ratios very close to stoichiometric values. L{sub 2,3}-edge spectroscopy showed that Ti{sup 4+} was restricted to Oh sites. XMCD results showed that significant Fe{sup 2+} only entered Td when the Ti content was > 0.40 apfu while Fe{sup 2+} in Oh increased from 1 a.p.f.u in magnetite to a maximum of {approx}1.4 apfu in USP45. As the Ti content increased from this point, the steady increase in Fe{sup 2+} in Td sites was clearly observable in the XMCD spectra, concurrent with a slow decrease in Fe{sup 2+} in Oh sites. Calculated magnetic moments showed a steady decrease from magnetite (4.06 {mu}{sub B}) to USP45 (1.5 {mu}{sub B}) and then a slower decrease towards the value for ulvoespinel (0 {mu}{sub B}). Two of the synthesized samples were also partially maghemitized by re-equilibrating with an oxidizing Ni-NiO buffer and XMCD showed that Fe{sup 2+} oxidation only occurred at Oh sites, with concomitant vacancy formation restricted to this site. This study shows the advantage of using XMCD as a direct measurement of Fe oxidation state in these complex magnetic spinels. These results

  18. Size and surface effects on the magnetism of magnetite and maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, V. N., E-mail: pppnvn@yandex.ru [Moscow State University (Russian Federation); Ignatenko, A. N.; Irkhin, V. Yu. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2017-02-15

    The size effects of magnetite and maghemite nanoparticles on their magnetic properties (magnetic moment, Curie temperature, blocking temperature, etc.) have been investigated. Magnetic separation and centrifugation of an aqueous solution of nanoparticles were used for their separation into fractions; their sizes were measured by atomic force microscopy, dynamic light scattering, and electron microscopy. A change in the size leads to a change in the Curie temperature and magnetic moment per formula unit. Both native nanoparticles and those covered with a bioresorbable layer have been considered. The magnetic properties have been calculated by the Monte Carlo method for the classical Heisenberg model with various bulk and surface magnetic moments.

  19. Influence of nanodispersed modifications of magnetite powders on spray nozzle efficiency of diesel engine injector

    Science.gov (United States)

    Saidov, M. A.; Perekrestov, A. P.

    2017-10-01

    The paper presents data on the impact of new environmental requirements relating to the quality of diesel fuel on the anti-wear properties of fuel. Anti-wear additive is proposed as a material for increasing the tribotechnical characteristics of diesel fuel. This additive consists of diesel fuel with micelles contained in it, formed on the basis of molecules of solid plasticity lubrication of iron oxide (Fe3O4) – magnetite, and with surrounding molecules of oleic acid (C18H34O2). The additive has low shear resistance and increased lubricity of diesel fuel when this additive is introduced into it.

  20. Novel colloidal system: Magnetite-polymer particles/lyotropic liquid crystal under magnetic field

    Science.gov (United States)

    Mănăilă-Maximean, D.; Cîrtoaje, C.; Dănilă, O.; Donescu, D.

    2017-09-01

    We obtained a new highly ordered colloidal composite using specially manufactured magnetite-polymer nanoparticles and lyotropic liquid crystal. A good compatibility between the components was ensured by the functionalization of the particles during their synthesis. We studied the laser light transmission for the mixtures filled in sandwich-glass cells with homeotropic and planar treatment of the surfaces under external magnetic field. The Fréedericksz transition critical field was estimated, and its' behavior was compared to our new theoretical model based on the Brochard-de Gennes one.

  1. [Cells of mononuclear phagocytes system of liver and lung in rats after intravenous application of magnetite nanoparticles].

    Science.gov (United States)

    Mil'to, I V; Sukhodolo, I V; Usov, V Iu

    2012-01-01

    The article describes changes in the morphology and localization of the cells of mononuclear phagocyte system of liver and lung in rats at different times after single and repeated intravenous administration of a suspension of nanoparticles of magnetite (NPM). Mechanisms for removal of nanoparticles of magnetite from the rat body with the participation of mononuclear phagocytes of the liver (removal of the particles by stellate macrophages in the gastroenteric tract with bile) and of the lung (by migration of the alveolar macrophages in the gleam of the bronchial tree) have been illustrated. It has been shown that intravenous application of nanomagnetite causes changes in the morphology of the internal organs of rats and the severity of these changes increases with increasing total dose injected magnetite.

  2. Coherent source interaction, third-order nonlinear response of synthesized PEG coated magnetite nanoparticles in polyethylene glycol and its application

    Science.gov (United States)

    Gopal, S. Veena; Chitrambalam, S.; Joe, I. Hubert

    2018-01-01

    Third-order nonlinear response of synthesized polyethylene glycol coated Fe3O4 nanoparticles dispersed in a suitable solvent, polyethylene glycol has been studied. The structural characterization of the synthesized magnetite nanoparticles were carried out. The linear optical property of the synthesized magnetite nanoparticles was investigated using UV-visible technique. Both closed and open aperture Z-scan techniques have been performed at 532 nm with pulse width 5 ns and repetition rate 10 Hz. It was found that polyethylene glycol coated magnetite exhibits reverse saturable absorption, with significant nonlinear absorption coefficient. Two-photon absorption intensity dependent positive nonlinear refraction coefficients indicate self focusing phenomena. Results show that higher concentration gives better nonlinear and optical limiting properties.

  3. One-pot template-free synthesis of uniform-sized fullerene-like magnetite hollow spheres

    Science.gov (United States)

    Zhu, Qing; Zhang, Yue; Liu, Zheng; Zhou, Xinrui; Zhang, Xinmei; Zeng, Lintao

    2015-11-01

    Uniform-sized Fe3O4 hollow spheres with average diameter of 250 nm and shell thickness of ∼50 nm have been successfully synthesized through a simple hydrothermal route with the presence of di-n-propylamine (DPA) as a weak-base. The reaction time and DPA amount play important roles in the formation of the magnetite hollow spheres. The structures of the products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The results show that the single-crystalline Fe3O4 hollow spheres are composed of well-aligned magnetite nanoparticles (NPs). The magnetic property investigation shows that these hollow spheres have a higher saturation magnetization (Ms) than the solid spheres. Furthermore, a possible mechanism for the formation of magnetite hollow spheres is proposed based on the experimental observations.

  4. Domains in multiband superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y., E-mail: y.tanaka@aist.go.jp [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568 (Japan); Yanagisawa, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568 (Japan); Crisan, A. [University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)] [National Institute of Materials Physics, P.O. Box MG-7, Bucharest 077125 (Romania); Shirage, P.M.; Iyo, A. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba-shi, Ibaraki-ken 305-8568 (Japan); Tokiwa, K. [Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510 (Japan); Nishio, T. [Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Sundaresan, A. [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 064 (India); Terada, N. [Kagoshima University, Korimoto 1-21-24, Kagoshima-shi, Kagoshima-ken 890-8580 (Japan)

    2011-11-15

    Positive interband Josephson interactions disperse order parameters. It creates configuration domain in multiband superconductors. This domain poses a problem for the stability of superconductivity. However it also offer new potential for novel electronics. Multiband superconductors can have several types of domains that are inhibited in conventional single-band superconductors. These domains are phase domains and chiral domains and their domain wall are an interband phase difference soliton. In a superconductor with an odd number of electronic bands (five or more) and with positive interband Josephson interactions, we find other types of domains with different interband phase differences. We call these domains configuration domains because pseudo-order parameters for each band are dispersed in the complex plain and several configurations, which have several local minima. Fractional vortices serve as hubs for phase difference solitons (configuration domain walls). The divergence of the number of configurations with local minima would pose a serious problem for the stability of superconductivity.

  5. Constraining the origin of the Mesozoic Xishimen skarn iron deposit in North China using geochemistry of magnetite

    Science.gov (United States)

    SU, S.; Cui, Y.

    2016-12-01

    The Xishimen (XSM) iron deposit in the southern part of the Taihang Mountain, Hebei province, is one of the largest known skarn iron deposits in China. Understanding the origin of the skarn iron deposit has important implications to the lithospheric thinning in the North China Craton during the Mesozoic. The deposit is composed of orebodies along the contact between the Ordovician carbonates and dioritic pluton. There are also veinlets intruding diorites and carbonates. Most iron ores occur net-textured or massive texture. Some iron ores have many vesicles. Magnetite has variable Ti contents between different mineral assemblages. Magnetite coexisted with diopside, tremolite and phlogopite shows high Ti contents, while that coexisted with calcite, talc and pyrite has high SiO2, Hf and Nb, and low Ti. Settlement environment of magnetite ores and/or their location in the metallogenic conduit constrain the textures of ores, mineral assemblages and the content of magnetite. The δ56Fe values of magnetite ores range from -0.015 ‰ to 0.115 ‰, with an average of 0.064 ‰. Fe isotopes of ores are related to the altitude of ores. The heavy Fe isotope tends to be enriched in the lower part of the orebodies, and depleted in the upper part. We infer that the Fe of the deposit may have been derived from high temperature "iron magma". "iron magma" may contain abundant volatiles, such as CO2, P, and H2O. We propose that the XSM iron deposit is most likely formed from "iron magma". Because of fluid overpressure, "iron magma" may have risen along the magmatic conduit. Different magnetite in different parts of the conduit is likely due to the changes of T, P, and oxygen fugacity. Iron isotope fractionation occurs when iron magma rises.

  6. Desulfurization activity and reusability of magnetite nanoparticle-coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells.

    Science.gov (United States)

    Bardania, Hassan; Raheb, Jamshid; Mohammad-Beigi, Hossein; Rasekh, Behnam; Arpanaei, Ayyoob

    2013-01-01

    The application of Fe3 O4 nanoparticles to the separation of desulfurizing bacterial cells and their influence on the desulfurization activity and reusability of the two bacterial strains Rhodococcus erythropolis FMF and R. erythropolis IGTS8 were investigated. Magnetite nanoparticles were synthesized via the reverse coprecipitation method. Transmission electron microscopy (TEM) images showed that the magnetite nanoparticles had sizes of 5.35 ± 1.13 (F1 nanoparticles) and 8.74 ± 1.18 nm (F2 nanoparticles) when glycine was added during the synthesis of nanoparticles and when it was absent from the reaction mixture, respectively. Glycine was added after the synthesis of both F1 and F2 nanoparticles to stabilize the nanoparticle dispersion. TEM images of cells treated with magnetite nanoparticles indicated that F1 nanoparticles were immobilized on the surface of bacterial cells more evenly than the F2 nanoparticles. Desulfurization activities of the F1 magnetite nanoparticle-coated R. erythropolis FMF and R. erythropolis IGTS8 cells (with sulfur-removal percentage values of 70 ± 4 and 73 ± 3, respectively), as examined with the spectrophotometric Gibbs assay (based on dibenzothiophene degradation and sulfur-removal percentage), were not significantly different from those for the free bacterial cells (67 ± 3 and 69 ± 4, respectively). These results indicate that magnetite nanoparticles cannot affect the desulfurization activity of cells examined in this work. Isolation of bacterial cells from the suspension using a magnet and evaluation of desulfurization activity of separated cells showed that Fe3 O4 nanoparticles can provide a high-efficiency recovery of bacterial cells from a suspension, with the reused magnetite nanoparticle-coated bacterial cells being able to maintain their desulfurization activity efficiently. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  7. [Role of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) in the obtaining of stabilized magnetite nanoparticles for biomedical application].

    Science.gov (United States)

    Vazhnichaya, Ye M; Mokliak, Ye V; Kurapov, Yu A; Zabozlaev, A A

    2015-01-01

    Magnetite nanoparticles (NPs) are studied as agents for magnetic resonance imaging, hyperthermia of malignant tumors, targeted drug delivery as well as anti-anemic action. One of the main problems of such NPs is their aggregation that requires creation of methods for magnetite NPs stabilization during preparation of liquid medicinal forms on their basis. The present work is devoted to the possibility of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) use for solubilization of magnetite NPs in hydrophilic medium. For this purpose, the condensate produced by electron-beam evaporation and condensation, with magnetite particles of size 5-8 nm deposited into the crystals of sodium chloride were used in conjunction with substance of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate), and low molecular weight polyvinylpyrrolidone (PVP). The NP condensate was dispersed in distilled water or PVP or mexidol solutions. NPs size distribution in the liquid phase of the systems was determined by photon correlation spectroscopy, iron (Fe) concentration was evaluated by atomic emission spectrometry. It is shown that in the dispersion prepared in distilled water, the major amount of NPs was of 13-120 nm in size, in mexidol solution - 270-1700 nm, in PVP solution - 30-900 nm. In the fluid containing magnetite NPs together with mexidol and PVP, the main fraction (99.9%) was characterized by the NPs size of 14-75 nm with maximum of 25 nm. This system had the highest iron concentration: it was similar to that in the sample with mexidol solution and 6.6-7.3 times higher than the concentration in the samples with distilled water or PVP. Thus, in the preparation of aqueous dispersions based on magnetite NPs condensate, mexidol provides a transition of Fe to the liquid phase in amount necessary to achieve its biological activity, and PVP stabilizes such modified NPs.

  8. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    Science.gov (United States)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (500 ppm) concentrations.

  9. pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method

    Directory of Open Access Journals (Sweden)

    Ângela L. Andrade

    2010-01-01

    Full Text Available This work aimed at putting in evidence the influence of the pH on the chemical nature and properties of the synthesized magnetic nanocomposites. Saturation magnetization measurements evidenced a marked difference of the magnetic behavior of samples, depending on the final pH of the solution after reaction. Magnetite and maghemite in different proportions were the main magnetic iron oxides actually identified. Synthesis with final pH between 9.7-10.6 produced nearly pure magnetite with little or no other associated iron oxide. Under other synthetic conditions, goethite also appears in proportions that depended upon the pH of the synthesis medium.

  10. Study of local magnetic fields and magnetic ordering in fluid and solid matrices containing magnetite nanoparticles using TEMPOL stable radical

    Energy Technology Data Exchange (ETDEWEB)

    Kovarski, Alexander L. [Emanuel Institute of Biochemical Physics of Russian Academy of Science, Kosygin Str. 4, Moscow 119991 (Russian Federation)]. E-mail: kovar@sky.chph.ras.ru; Sorokina, Olga N. [Emanuel Institute of Biochemical Physics of Russian Academy of Science, Kosygin Str. 4, Moscow 119991 (Russian Federation)

    2007-04-15

    The stable nitroxide radical 2,2,6,6-tetramethyl-4-hydroxy-piperidin-1-oxyl (TEMPOL) has been applied as a sensor to study magnetite nanoparticles both in water suspension and in dried gelatin films. g-values and line widths of ESR spectra of the probe were found to be sensitive to the local magnetic fields of magnetic nanoparticles. Calculated on the basis of the sensor ESR spectra, local magnetic fields are stipulated by linear aggregates of magnetite nanoparticles formed in applied outer magnetic fields and are significantly lower than local magnetic fields estimated from the static magnetic measurements data.

  11. Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites?

    Science.gov (United States)

    Prokopyev, Ilya R.; Doroshkevich, Anna G.; Redina, Anna A.; Obukhov, Andrey V.

    2017-10-01

    The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296-308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium-low concentrated chloride-sulphate and oxidized carbonate-ferrous.

  12. Mineralogy, geochemistry and origin of Zafarabad iron deposit based on REE and trace elements of magnetite

    Directory of Open Access Journals (Sweden)

    Mehrdad Barati

    2013-10-01

    Full Text Available Zafarabad iron deposit is located northwest of Divandareh, in the northern margin of Sanandaj-Sirjan plutonic-metamorphic zone. The deposit is in lentoid to tubular shape, within a shear zone and occrrued in host rocks of calc-schist and limestone. Magnetite with massive, cataclastic and replacement textures are the main phases, while pyrite and other sulfide minerals are found. Major and trace elements are measured by ICP-MS and ICP-AES methods. Based on some ratios of trace elements in the ore samples and (Ti+V vs. Cal+Al+Mn and Ti+V vs. Ni/(Cr+Mn diagrams which are used for classification of iron deposit types, Zafarabad iron deposit fall in the range of skarn deposits. Spider diagrams show a steady decline from LREE to HREE elements with Eu (mean value of 0.06 ppm and Ce (mean value of 0.94 ppm negative anomalies. Comparing the distribution patterns of REE for the Zafarabad magnetites with those of various types of iron deposits shows that the REE pattern for Zafarabad is similar to these deposits. Analysis of calculated parameters for REE shows that the hydrothermal fluids responsible for mineralization are mainly of magmatic origin through fractionation and crystallization processes of a deep iron rich fluid phase and its emplacement within the carbonate rocks, forming iron skarn.

  13. Synthesis of magnetite/graphene oxide/chitosan composite and its application for protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Nengsheng, E-mail: yensh@cnu.edu.cn; Xie, Yali; Shi, Pengzhi; Gao, Ting; Ma, Jichao

    2014-12-01

    In this study, a facile and novel strategy was developed to fabricate magnetite/graphene oxide/chitosan (Fe{sub 3}O{sub 4}/GO/CS) composite, and the composite was used as a magnetic adsorbent for the enrichment of protein, and followed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) analysis. The phase composition, chemical structure and morphology of the composite were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), transmission electron microscopy (TEM), scanning electronic microscope (SEM) and vibrating sample magnetometer (VSM). Protein cytochrome c was chosen as model target to evaluate the adsorptive property of Fe{sub 3}O{sub 4}/GO/CS. After enrichment procedure and magnetic separation, protein bounded with the material was analyzed by MALDI-TOF MS without desorption. The results indicated that Fe{sub 3}O{sub 4}/GO/CS composite exhibited a good adsorptive capacity for protein, and Fe{sub 3}O{sub 4}/GO/CS composite had a promising potential in magnetic separation research. - Highlights: • Magnetite/graphene oxide/chitosan composite was synthesized by novel route. • The composite was used as magnetic absorbent for protein enrichment. • The composite had excellent adsorption performance for protein enrichment.

  14. Sodium Acetate Orientated Hollow/Mesoporous Magnetite Nanoparticles: Facile Synthesis, Characterization and Formation Mechanism

    Directory of Open Access Journals (Sweden)

    Quanguo He

    2018-02-01

    Full Text Available Monodispersed magnetite (Fe3O4 nanospheres with hollow or porous interior structures were synthesized by a facile one-pot solvothermal route. The facile synthetic process was carried out by using iron (III chloride hexahydrate (FeCl3·6H2O as only ferric ion resource, and anhydrous sodium acetate (NaAc as structure-directing agent in an ethylene glycol solution without any templates or surfactants involved. The sizes, morphologies, crystal structures and magnetic properties of hollow Fe3O4 NPs are characterized via Scanning electron microscopy (SEM, Transmission electron microscopy (TEM, X-ray powder diffraction (XRD and Vibrating sample magnetometer (VSM techniques. The influences of reaction time, molar ratio of reactants on the morphologies and magnetic performances are also investigated. The different morphologies of magnetite (Fe3O4 particles were presented with tunable size ranging from 85 to 250 nm and controllable structures including porous and hollow construction by using different amount of anhydrous NaAc. A plausible mechanism based on sodium acetate assistant local Ostwald ripening is proposed for acquiring the tailorable morphology and magnetic performance. Such a design conception of anhydrous NaAc assisted Ostwald ripening applied here is a significant alternative for synthesizing hollow magnetic particles, and it could elucidate some light to understand and construct other novel hollow/mesoporous nanostructures.

  15. Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties.

    Science.gov (United States)

    Mihaiescu, D E; Cristescu, R; Dorcioman, G; Popescu, C E; Nita, C; Socol, G; Mihailescu, I N; Grumezescu, A M; Tamas, D; Enculescu, M; Negrea, R F; Ghica, C; Chifiriuc, C; Bleotu, C; Chrisey, D B

    2013-03-01

    We report on the fabrication of magnetite/salicylic acid/silica shell/antibiotics (Fe(3)O(4)/SA/SiO(2)/ATB) thin films by matrix-assisted pulsed laser evaporation (MAPLE) to inert substrates. Fe(3)O(4)-based powder have been synthesized and investigated by XRD and TEM. All thin films were studied by FTIR, SEM and in vitro biological assays using Staphylococcus aureus and Pseudomonas aeruginosa reference strains, as well as eukaryotic HEp-2 cells. The influence of the obtained nanosystems on the microbial biofilm development as well as their biocompatibility has been assessed. For optimum deposition conditions, we obtained uniform adherent films with the composition identical with the raw materials. Fe(3)O(4)/SA/SiO(2)/ATB thin films had an inhibitory activity on the ability of microbial strains to initiate and develop mature biofilms, in a strain- and antibiotic-dependent manner. These magnetite silica thin films are promising candidates for the development of novel materials designed for the inhibition of medical biofilms formed by different pathogenic agents on common substrates, frequently implicated in the etiology of chronic and hard to treat infections.

  16. Size-dependent reactivity of magnetite nanoparticles: a field-laboratory comparison

    Science.gov (United States)

    Swindle, Andrew L.; Elwood Madden, Andrew S.; Cozzarelli, Isabelle M.; Benamara, Mourad

    2014-01-01

    Logistic challenges make direct comparisons between laboratory- and field-based investigations into the size-dependent reactivity of nanomaterials difficult. This investigation sought to compare the size-dependent reactivity of nanoparticles in a field setting to a laboratory analog using the specific example of magnetite dissolution. Synthetic magnetite nanoparticles of three size intervals, ∼6 nm, ∼44 nm, and ∼90 nm were emplaced in the subsurface of the USGS research site at the Norman Landfill for up to 30 days using custom-made subsurface nanoparticle holders. Laboratory analog dissolution experiments were conducted using synthetic groundwater. Reaction products were analyzed via TEM and SEM and compared to initial particle characterizations. Field results indicated that an organic coating developed on the particle surfaces largely inhibiting reactivity. Limited dissolution occurred, with the amount of dissolution decreasing as particle size decreased. Conversely, the laboratory analogs without organics revealed greater dissolution of the smaller particles. These results showed that the presence of dissolved organics led to a nearly complete reversal in the size-dependent reactivity trends displayed between the field and laboratory experiments indicating that size-dependent trends observed in laboratory investigations may not be relevant in organic-rich natural systems.

  17. Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption

    KAUST Repository

    Shen, Peng

    2016-05-12

    Abstract: Colloidal mesoporous magnetite nanoparticles with tunable porosity were realized by a simple and scalable solvothermal route with the aid of AOT as ligands. AOT was used to induce the anisotropic crystal growth of smaller nanocrystals and restrain their tight aggregation so as to form more mesoscale pores. Morphologies and microstructures investigation by SEM and TEM revealed that the bigger nanoparticles were composed of smaller nanocrystals with an average size of 18 nm. A possible formation mechanism was proposed for the mesoporous nanoparticles. Study of nitrogen adsorption–desorption isotherm revealed that the Brunauer–Emmett–Teller (BET) specific surface area of mesoporous nanoparticles is up to 209 m2/g, resulting from the slit-shaped pores created by the aggregation of polyhedral nanocrystals. Magnetic properties study indicated that the as-prepared nanoparticles are superparamagnetic at room temperature. Optimized mesoporous magnetite nanoparticles exhibit a maximum Cr(VI) ion sorption capacity of 12.9 mmol/g, and its absorption behavior followed a Freundlich model. Microwave absorption study indicated that porous nanoparticles own higher permeability values than that of solid nanoparticles, leading to a higher dielectric loss in the frequency range of 2–18 GHz. Graphical Abstract: [Figure not available: see fulltext.] © 2016, Springer Science+Business Media Dordrecht.

  18. Tracking of magnetite labeled nanoparticles in the rat brain using MRI.

    Directory of Open Access Journals (Sweden)

    Naira P Martínez Vera

    Full Text Available This study was performed to explore the feasibility of tracing nanoparticles for drug transport in the healthy rat brain with a clinical MRI scanner. Phantom studies were performed to assess the R1 ( =  1/T1 relaxivity of different magnetically labeled nanoparticle (MLNP formulations that were based on biodegradable human serum albumin and that were labeled with magnetite of different size. In vivo MRI measurements in 26 rats were done at 3T to study the effect and dynamics of MLNP uptake in the rat brain and body. In the brain, MLNPs induced T1 changes were quantitatively assessed by T1 relaxation time mapping in vivo and compared to post-mortem results from fluorescence imaging. Following intravenous injection of MLNPs, a visible MLNP uptake was seen in the liver and spleen while no visual effect was seen in the brain. However a histogram analysis of T1 changes in the brain demonstrated global and diffuse presence of MLNPs. The magnitude of these T1 changes scaled with post-mortem fluorescence intensity. This study demonstrates the feasibility of tracking even small amounts of magnetite labeled NPs with a sensitive histogram technique in the brain of a living rodent.

  19. Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone (LHRH).

    Science.gov (United States)

    Obayemi, J D; Dozie-Nwachukwu, S; Danyuo, Y; Odusanya, O S; Anuku, N; Malatesta, K; Soboyejo, W O

    2015-01-01

    This paper presents the results of an experimental study of the biosynthesis of magnetite nanoparticles (BMNPs) with particle sizes between 10 nm and 60 nm. The biocompatible magnetic nanoparticles are produced from Magnetospirillum magneticum (M.M.) bacteria that respond to magnetic fields. M.M. bacteria were cultured and used to synthesize magnetite nanoparticles. This was done in an enriched magnetic spirillum growth medium (EMSGM) at different pH levels. The nanoparticle concentrations were characterized with UV-Visible (UV-Vis) spectroscopy, while the particle shapes were elucidated via transmission electron microscopy (TEM). The structure of the particles was studied using X-ray diffraction (XRD), while the hydrodynamic radii, particle size distributions and polydispersity of the nanoparticles were characterized using dynamic light scattering (DLS). Carbodiimide reduction was also used to functionalize the BMNPs with a molecular recognition unit (luteinizing hormone releasing hormone, LHRH) that attaches specifically to receptors that are over-expressed on the surfaces of most breast cancer cell types. The resulting nanoparticles were examined using Fourier Transform Infrared (FTIR) spectroscopy and quantitative image analysis. The implications of the results are then discussed for the potential development of magnetic nanoparticles for the specific targeting and treatment of breast cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Influence of Coke Ratio on the Sintering Behavior of High-Chromium Vanadium-Titanium Magnetite

    Directory of Open Access Journals (Sweden)

    Songtao Yang

    2017-06-01

    Full Text Available High-chromium vanadium and titanium magnetite (HCVTM sinter has poor properties. The coke ratio has an important effect on the behavior of HCVTM sintering as it affects the mineral phases in the high-chromium vanadium and titanium sinter (HCVTS via changing the sintering temperature and atmosphere. In this work, the sintering behavior of HCVTM mixed with varying coke ratios was investigated through sintering pot tests, X-ray diffraction (XRD, gas chromatographic analysis, and mineral phase analysis. The results show that, with the increase of the coke ratio from 4.0% to 6.0%, leading to the increase of the combustion ratio of the flue gas, the vertical sintering rate and sinter productivity decrease. Meanwhile, with the change of the coke ratio, the content of magnetite, silicate, and perovskite increase, while the hematite and calcium ferrite decrease. In addition, the tumble strength and reduction ability of HCVTS decrease, and its degradation strength increase. It was found that the appropriate coke ratio for the sintering process was 5.0 wt %.

  1. Addition of a Magnetite Layer onto a Polysulfone Water Treatment Membrane to Enhance Virus Removal

    Science.gov (United States)

    Raciny, Isabel

    The applicability of low-pressure membranes systems in distributed (point of use) water treatment is hindered by, among other things, their inability to remove potentially harmful viruses and ions via size exclusion. According to the USEPA and the Safe Drinking Water Act, drinking water treatment processes must be designed for 4-log virus removal. Batch experiments using magnetite nanoparticle (nano-Fe3O4) suspensions and water filtration experiments with Polysulfone (PSf) membranes coated with nano-Fe3O 4 were conducted to assess the removal of a model virus (bacteriophage MS2). The membranes were coated via a simple filtration protocol. Unmodified membranes were a poor adsorbent for MS2 bacteriophage with less than 0.5-log removal, whereas membranes coated with magnetite nanoparticles exhibited a removal efficiency exceeding 99.99% (4-log). Thus, a cartridge of PSf membranes coated with nano-Fe3O4 particles could be used to remove viruses from water. Such membranes showed negligible iron leaching into the filtrate, thus obviating concern about colored water. Further research is needed to reduce the loss of water flux caused by coating.

  2. The effect of polycarboxylate shell of magnetite nanoparticles on protein corona formation in blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Szekeres, Márta, E-mail: szekeres@chem.u-szeged.hu [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Tóth, Ildikó Y. [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary); Turcu, R. [National Institute R& D for Isotopic and Molecular Technology, Cluj-Napoca 400293 (Romania); Tombácz, Etelka [Department of Physical Chemistry and Materials Sciences, University of Szeged, Hungary, 1 Aradi vt, 6720 Szeged (Hungary)

    2017-04-01

    The development of protein corona around nanoparticles upon administration to the human body is responsible in a large part for their biodistribution, cell-internalization and toxicity or biocompatibility. We studied the influence of the chemical composition of polyelectrolyte shells (citric acid (CA) and poly(acrylic-co-maleic acid) (PAM)) of core-shell magnetite nanoparticles (MNPs) on the evolution of protein corona in human plasma (HP). The aggregation state and zeta potential of the particles were measured in the range of HP concentration between 1 and 80 (v/v)% 3 min and 20 h after dispersing the particles in HP diluted with Tris buffered saline. Naked MNPs aggregated in HP solution, but the carboxylated MNPs became stabilized colloidally at higher plasma concentrations. Significant differences were observed at low plasma concentration. CA@MNPs aggregated instantly while the hydrodynamic diameter of PAM@MNP increased only slightly at 1–3 v/v % HP concentrations. The observed differences in protein corona formation can be explained by the differences in the steric effects of the polycarboxylate shells. It is interesting that relatively small but systematic changes in zeta potential alter the aggregation state significantly. - Highlights: • Human plasma protein corona cannot stabilize naked and citrate-coated magnetite nanoparticles. • Polycarboxylic acid (PAM) coated MNPs are well stabilized with HP protein corona. • Stability pattern of naked, CA and PAM-coated MNPs is not predicted by zeta potential.

  3. SYNTHESIS OF MAGNETITE NANOPARTICLES AND EVALUATION OF ITS EFFICIENCY FOR ARSENIC REMOVAL FROM SIMULATED INDUSTRIAL WASTEWATER

    Directory of Open Access Journals (Sweden)

    A. Khodabakhshi

    2011-09-01

    Full Text Available In this study the efficiency of magnetic nanoparticles for removal of trivalent arsenic from synthetic industrial wastewater was evaluated. The nanoparticles was prepared by sol-gel method and characterized by X-ray methods including XRD, XRF, and SEM, and vibrating sample magnetometer (VSM. The results showed that synthesized nanoparticles were in the size range of 40-300 nm, purity of about 90%, and magnetization of nanoparticles was 36.5emu/g. In initial conditions including: pH=7, As(III concentration of 10 mg/L, nanomagnetite concentration of 1g/L, shaking speed of 250 rpm and 20 minute retention time, 82% of As (III was removed. Competition from common coexisting ions such as Na+, Ni2+, Cu2+, SO42-, and Cl- was ignorable but for NO3- was significant. The adsorption data of magnetite nanoparticles fit well with Freundlich isotherm equations. The adsorption capacity of the Fe3O4 for As (III at pH=7 was obtained as 23.8 mg/g. It was concluded that magnetite nanoparticles have considerable potential in removal of As(III from synthetic industrial wastewaters.

  4. Synthesis, characterization and studies on magneto-viscous properties of magnetite dispersed water based nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Gayatri [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal (India); Kumar Das, Prasanta, E-mail: pkd@mech.iitkgp.ernet.in [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal (India); Manna, Indranil [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal (India); Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh (India)

    2016-04-15

    Magnetic nanofluids, commonly known as ferrofluids, containing surfactant coated magnetite nanoparticles (having mean size ∼11 nm) uniformly dispersed in water are synthesized by chemical co-precipitation method. The rheological properties of magnetic nanofluid at different concentrations of nanoparticle loading have been investigated by varying different parameters including the magnetic field strength. Shear thinning is observed in the non-Newtonian magnetic nanofluids under the application of magnetic field. The observed increase in yield stress (calculated by fitting the Herschel and Bulkley model) with the applied magnetic field and concentration of dispersed nanoparticles confirm the formation of large aggregates that restrict or prohibit the flow characteristics of the otherwise Newtonian magnetic nanofluid. The hysteresis observed during the application and withdrawal of magnetic field suggests that the chain or column like structures fail to relax within the allowed measurement time interval. - Highlights: • Magnetite dispersed water nanofluids are prepared by chemical precipitation method. • Effect of shear and magnetic field on the viscosity of nanofluids are investigated. • Applied field enhances the viscosity by several times and causes shear thinning. • Chain-like or columnar aggregates of nanoparticles formed increases the viscosity.

  5. Ultra-Small Fatty Acid-Stabilized Magnetite Nanocolloids Synthesized by In Situ Hydrolytic Precipitation

    Directory of Open Access Journals (Sweden)

    Kheireddine El-Boubbou

    2015-01-01

    Full Text Available Simple, fast, large-scale, and cost-effective preparation of uniform controlled magnetic nanoparticles remains a major hurdle on the way towards magnetically targeted applications at realistic technical conditions. Herein, we present a unique one-pot approach that relies on simple basic hydrolytic in situ coprecipitation of inexpensive metal salts (Fe2+ and Fe3+ compartmentalized by stabilizing fatty acids and aided by the presence of alkylamines. The synthesis was performed at relatively low temperatures (~80°C without the use of high-boiling point solvents and elevated temperatures. This method allowed for the production of ultra-small, colloidal, and hydrophobically stabilized magnetite metal oxide nanoparticles readily dispersed in organic solvents. The results reveal that the obtained magnetite nanoparticles exhibit narrow size distributions, good monodispersities, high saturation magnetizations, and excellent colloidal stabilities. When the [fatty acid] : [Fe] ratio was varied, control over nanoparticle diameters within the range of 2–10 nm was achieved. The amount of fatty acid and alkylamine used during the reaction proved critical in governing morphology, dispersity, uniformity, and colloidal stability. Upon exchange with water-soluble polymers, the ultra-small sized particles become biologically relevant, with great promise for theranostic applications as imaging and magnetically targeted delivery vehicles.

  6. Separation, Characterization and Initial Reaction Studies of Magnetite Particles from Hanford Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.; Grosz, Andrew E.; Ilton, Eugene S.; Krupka, Kenneth M.; Liu, Juan; Penn, Ryland L.; Pepin, Alex

    2010-04-24

    Magnetic and density separation methods have been applied to composite sediment sample from the Hanford formation from sediment recovered during drilling of an uncontaminated borehole located near the 200 West Area of the Hanford Site in southeastern Washington State. This paper describes the results of using those separation methods and from the characterization and initial reactivity measurements on a highly magnetic fraction isolated from that sediment. X-ray diffraction (XRD) analysis of the highly magnetic sediment fraction indicates that this material contains predominantly magnetite (Fe3O4). Particle morphology observed by scanning electron microscopy (SEM) and compositions determined energy dispersive spectroscopy (EDS) are consistent with this identification. Analyses by X-ray photoelectron spectroscopy (XPS) indicates that there is a thin coating on the particles that are likely a type of aluminosilicate. This highly magnetic fraction of material is not reactive with indigo carmine, an organic redox probe molecule that was shown to readily react with synthetic magnetite. Because of the limited amounts of material readily available, initial tests have been conducted that demonstrate the ability to complete U(VI) sorption on individual particles (nominally ~100 µm in size) of the isolated sediment and to remove and mount these individual particles for analysis of the concentration and chemical state of the sorbed U species using small area XPS.

  7. Separation, characterization and initial reaction studies of magnetite particles from Hanford sediments

    Science.gov (United States)

    Baer, D. R.; Grosz, A. E.; Ilton, E. S.; Krupka, K. M.; Liu, J.; Penn, R. L.; Pepin, A.

    Magnetic and density separation methods have been applied to composite sediment samples from the Hanford formation from sediment recovered during drilling of an uncontaminated borehole located near the 200 West Area of the Hanford Site in southeastern Washington State. This paper describes the results of using those separation methods and from the characterization and initial reactivity measurements on a highly magnetic fraction isolated from that sediment. X-ray diffraction (XRD) analysis of the highly magnetic sediment fraction indicates that this material contains predominantly magnetite (Fe 3O 4). Particle morphology observed by scanning electron microscopy (SEM) and compositions determined energy dispersive spectroscopy (EDS) are consistent with this identification. Analyses by X-ray photoelectron spectroscopy (XPS) indicates that there is a thin coating on the particles that are likely a type of aluminosilicate. This highly magnetic fraction of material is not reactive with indigo carmine, an organic redox probe molecule that was shown to readily react with synthetic magnetite. Because of the limited amounts of material readily available, initial tests have been conducted that demonstrate the ability to complete U(VI) sorption on individual particles (nominally ∼100 μm in size) of the isolated sediment and to remove and mount these individual particles for analysis of the concentration and chemical state of the sorbed U species using small area XPS.

  8. Separation, Characterization and Initial Reaction Studies of Magnetite Particles from Hanford Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Donald R.; Grosz, Andrew E.; Ilton, Eugene S.; Krupka, Kenneth M.; Liu, Juan; Penn, Ryland L.; Pepin, Alex

    2010-08-01

    Magnetic and density separation methods have been applied to composite sediment sample from the Hanford formation from sediment recovered during drilling of an uncontaminated borehole located near the 200 West Area of the Hanford Site in southeastern Washington State. This paper describes the results of using those separation methods and from the characterization and initial reactivity measurements on a highly magnetic fraction isolated from that sediment. X-ray diffraction (XRD) analysis of the highly magnetic sediment fraction indicates that this material contains predominantly magnetite (Fe3O4). Particle morphology observed by scanning electron microscopy (SEM) and compositions determined energy dispersive spectroscopy (EDS) are consistent with this identification. Analyses by X-ray photoelectron spectroscopy (XPS) indicates that there is a thin coating on the particles that are likely a type of aluminosilicate. This highly magnetic fraction of material is not reactive with indigo carmine, an organic redox probe molecule that was shown to readily react with synthetic magnetite. Because of the limited amounts of material readily available, initial tests have been conducted that demonstrate the ability to complete U(VI) sorption on individual particles (nominally ~100 µm in size) of the isolated sediment and to remove and mount these individual particles for analysis of the concentration and chemical state of the sorbed U species using small area XPS.

  9. Nonequilibrium synthesis of silica-supported magnetite tubes and mechanical control of their magnetic properties.

    Science.gov (United States)

    Makki, Rabih; Steinbock, Oliver

    2012-09-19

    Materials synthesis far from thermodynamic equilibrium can yield hierarchical order that spans from molecular to macroscopic length scales. Here we report the nonequilibrium formation of millimeter-scale iron oxide-silica tubes in experiments that tightly control the tube radius and growth speed. The experiments involve the hydrodynamic injection of an iron (II,III) solution into a large volume of solution containing sodium silicate and ammonium hydroxide. The forming tubes are pinned to a motorized glass rod that moves at a predetermined speed. X-ray diffraction and electron microscopy, as well as Raman and Mössbauer spectroscopy, reveal magnetite nanoparticles in the range of 5-15 nm. Optical data suggest that the magnetite particles follow first-order nucleation-growth kinetics. The hollow tubes exhibit superparamagnetic behavior at room temperature, with a transition to a blocked state at T(B) = 95 K for an applied field of 200 Oe. Heat capacity measurements yield evidence for the Verwey transition at 20 K. Finally, we show a remarkable dependence of the tubes' magnetic properties on the speed of the pinning rod and the injection rate employed during synthesis.

  10. Impact of magnetite nanoparticle incorporation on the eigenfrequencies of nanocomposite microcapsules

    Science.gov (United States)

    Glukhova, O. E.; Grishina, O. A.

    2015-03-01

    Modern researches showed that nanocomposite films with magnetite nanoparticle incorporation have good perspectives for applications in electronics to create antireflective coatings and also for biomedical applications to create coatings with remote control of physical properties using alternative magnetic field or microwave radiation, which is very important for fabrication of new generation substrates in tissue engineering and advanced drug delivery systems. In particular, the unique properties of advanced nanocomposite microcapsules allowed developing of the supramolecular system of targeted drug delivery. A study of the behavior of the nanocomposite shell of microcapsules, which consists of alternate layers of negatively charged iron oxide nanoparticles and cationic polyallylamine hydrochloride molecules, was carried out. The aim of the present study was to investigate the effect of the number of nanoparticle layers on magnetic properties of polyelectrolyte/nanoparticles nanocomposite microcapsules prepared via layer-by-layer technique using iron oxide colloids. In result of numerical simulation using ANSYS Workbench software the behavior of the nanocomposite shell of microcapsules depending on the concentration of magnetite particles in it was investigated. Modal and harmonic analysis of behavior of the microcapsules shell was conducted in water at a temperature of 37°. As a result of numerical experiment the eigenfrequencies and mode shape were first time defined for any modifications of the nanocomposite microcapsules. It has been established that the magnetic permeability value depends on the number of iron oxide nanoparticle layers in a nanocomposite microcapsule.

  11. A density functional theory investigation of the electronic structure and spin moments of magnetite

    KAUST Repository

    Noh, Junghyun

    2014-08-01

    We present the results of density functional theory (DFT) calculations on magnetite, Fe3O4, which has been recently considered as electrode in the emerging field of organic spintronics. Given the nature of the potential applications, we evaluated the magnetite room-temperature cubic phase in terms of structural, electronic, and magnetic properties. We considered GGA (PBE), GGA + U (PBE + U), and range-separated hybrid (HSE06 and HSE(15%)) functionals. Calculations using HSE06 and HSE(15%) functionals underline the impact that inclusion of exact exchange has on the electronic structure. While the modulation of the band gap with exact exchange has been seen in numerous situations, the dramatic change in the valence band nature and states near the Fermi level has major implications for even a qualitative interpretation of the DFT results. We find that HSE06 leads to highly localized states below the Fermi level while HSE(15%) and PBE + U result in delocalized states around the Fermi level. The significant differences in local magnetic moments and atomic charges indicate that describing room-temperature bulk materials, surfaces and interfaces may require different functionals than their low-temperature counterparts.

  12. Hybrid nanomaterials based on gum Arabic and magnetite for hyperthermia treatments.

    Science.gov (United States)

    Horst, M Fernanda; Coral, Diego F; Fernández van Raap, Marcela B; Alvarez, Mariana; Lassalle, Verónica

    2017-05-01

    In this study, one-step co-precipitation method was conveniently adapted to obtain novel nanomaterials based on Gum Arabic and magnetite. Two synthesis procedures were evaluated: one employing the solid biopolymer in the co-precipitation media; a second using an aqueous solution of the polysaccharide. An exhaustive characterization of both formulations was performed using several specific techniques. The obtained data confirmed the successful incorporation of the gum Arabic on the magnetic core. Values of hydrodynamic diameters, measured by dynamic light scattering, in aqueous dispersions were about 70-80nm, while sizes lower than 20nm were registered by TEM microscopy. Surface charge of gum Arabic coated magnetic nanoparticles was significantly different from the corresponding to raw materials (magnetite and GA). This fact confirmed the formation of hybrid nanosystems with novel and specific properties. The potential utility of these materials was tested regarding to magnetic hyperthermia therapy under radiofrequency fields. Magnetocalorimetric measurements were performed in a wide range of field amplitude and frequency. Specific absorption rate of 218W/gFe was determined at field frequency of 260kHz and amplitude of 52kA/m. These results demonstrate their viability to be applied in tumor ablation treatments. Using the linear response theory and restricting field parameters to the accepted biomedical window, maximum useful value of 74w/gFe is predicted at 417kHz and 12kA/m. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Biphasic liquid interface derived magnetite nanocrystals: synthesis, properties and growth mechanism

    Science.gov (United States)

    Hou, Yue; Hou, Chuanxin; Fan, Yuqi; Dang, Feng; Li, Bao-Wen

    2017-12-01

    Magnetite (Fe3O4) nanocubes were synthesized from a water-toluene biphasic liquid system. The Fe3O4 nuclei generated in aqueous phase were transferred into the toluene solution by modifying oleic acid (OLA) at the organic–inorganic interface. Well-dispersed Fe3O4 nanocubes with a size of 20 nm were prepared in this process. Octylamine was found to play a dominant role in controlling the dispersibility, morphology and particle size of nanocubes. Only alkylamine with proper chain length had effects on the morphology control in the biphasic liquid synthesis system. The remanence (7.04 emu g‑1) and coercivity (170 Oe) of the nanocubes were 3 times higher than those (the remanence and coercivity value were 2.03 emu g‑1 and 68 Oe) of irregular particles. Magnetite (Fe3O4) iron oxide nanoparticles can be used in various fields, including developing biomarker detection systems for disease diagnosis, ferrofluids, drug delivery, magnetic resonance imaging (MRI), energy storage, sensing, etc.

  14. Ammonia-mediated Method for One-step and Surfactant-free Synthesis of Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Mansournia

    2015-10-01

    Full Text Available Magnetite (Fe3O4 nanoparticles have been successfully prepared by a novel one-step and surfactant-free approach utilizing ferrous ion, as a single iron source. In this manner, the reaction occurs between two aqueous solutions via the spontaneous transfer of ammonia gas from one to another in room temperature. No ferric source or oxidizing specie, oxidation controlling and capping agents are needed and the method is suited for large-scale preparation. The effects of reaction conditions on the formation of Fe3O4 were investigated using powder X-ray diffraction (XRD, Fourier transformation infrared spectroscopy (FT-IR and scanning electron microscopy (SEM techniques. The results have demonstrated that the pure and single phase magnetite nanoparticles were synthesized at the final pH values higher than 8. Accordingly, the formation mechanism of these nanostructures is proposed. Moreover, the vibrating sample magnetometry (VSM measurements of the as-synthesized nanoparticles show their room temperature superparamagnetic characteristic with a typical saturation magnetization of 51 emug−1.

  15. Influence of Growth Conditions on Magnetite Nanoparticles Electro-Crystallized in the Presence of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Saba Mosivand

    2013-05-01

    Full Text Available Magnetite nanoparticles were synthesized by electrocrystallization in the presence of thiourea or sodium butanoate as an organic stabilizer. The synthesis was performed in a thermostatic electrochemical cell containing two iron electrodes with an aqueous solution of sodium sulfate as electrolyte. The effects of organic concentration, applied potential and growth temperature on particle size, morphology, structure and magnetic properties were investigated. The magnetite nanoparticles were characterized by X-ray diffraction, electron microscopy, magnetometry and Mössbauer spectrometry. When the synthesis is performed in the presence of sodium butanoate at 60 °C, a paramagnetic ferric salt is obtained as a second phase; it is possible to avoid formation of this phase, increase the specific magnetization and improve the structure of the oxide particles by tuning the growth conditions. Room-temperature magnetization values range from 45 to 90 Am2kg−1, depending on the particle size, type of surfactant and synthesis conditions. Mössbauer spectra, which were recorded at 290 K for all the samples, are typical of nonstoichiometric Fe3−δO4, with a small excess of Fe3+, 0.05 ≤ δ ≤ 0.15.

  16. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    Science.gov (United States)

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Polypyrrole/silica/magnetite nanoparticles as a sorbent for the extraction of sulfonamides from water samples.

    Science.gov (United States)

    Sukchuay, Thanyaporn; Kanatharana, Proespichaya; Wannapob, Rodtichoti; Thavarungkul, Panote; Bunkoed, Opas

    2015-09-08

    A magnetic solid-phase extraction sorbent of polypyrrole/silica/magnetite nanoparticles was successfully synthesized and applied for the extraction and preconcentration of sulfonamides in water samples. The magnetite nanoparticles provided a simple and fast separation method for the analytes in water samples. The silica coating increased the surface area that helped to increase the polypyrrole layer. The polypyrrole-coated silica provided a high extraction efficiency due to the π-π and hydrophobic interactions between the polypyrrole and sulfonamides. Several parameters that affected the extraction efficiencies, i.e. the amount of sorbent, pH of the sample, extraction time, extraction temperature, ionic strength, and desorption conditions were investigated. Under the optimal conditions, the method was linear over the range of 0.30-200 μg/L for sulfadiazine and sulfamerazine, and 1.0-200 μg/L for sulfamethazine and sulfamonomethoxine. The limit of detection was 0.30 μg/L for sulfadiazine and sulfamerazine and 1.0 μg/L for sulfamethazine and sulfamonomethoxine. This simple and rapid method was successfully applied to efficiently extract sulfonamides from water samples. It showed a high extraction efficiency for all tested sulfonamides, and the recoveries were in the range of 86.7-99.7% with relative standard deviations of < 6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Changes in Effective Thermal Conductivity During the Carbothermic Reduction of Magnetite Using Graphite

    Science.gov (United States)

    Kiamehr, Saeed; Ahmed, Hesham; Viswanathan, Nurni; Seetharaman, Seshadri

    2017-06-01

    Knowledge of the effective thermal diffusivity changes of systems undergoing reactions where heat transfer plays an important role in the reaction kinetics is essential for process understanding and control. Carbothermic reduction process of magnetite containing composites is a typical example of such systems. The reduction process in this case is highly endothermic and hence, the overall rate of the reaction is greatly influenced by the heat transfer through composite compact. Using Laser-Flash method, the change of effective thermal diffusivity of magnetite-graphite composite pellet was monitored in the dynamic mode over a pre-defined thermal cycle (heating at the rate of 7 K/min to 1423 K (1150 °C), holding the sample for 270 minutes at this temperature and then cooling it down to the room temperature at the same rate as heating). These measurements were supplemented by Thermogravimetric Analysis under comparable experimental conditions as well as quenching tests of the samples in order to combine the impact of various factors such as sample dilatations and changes in apparent density on the progress of the reaction. The present results show that monitoring thermal diffusivity changes during the course of reduction would be a very useful tool in a total understanding of the underlying physicochemical phenomena. At the end, effort is made to estimate the apparent thermal conductivity values based on the measured thermal diffusivity and dilatations.

  19. Multifunctional nanocomposites of poly(vinylidene fluoride reinforced by carbon nanotubes and magnetite nanoparticles

    Directory of Open Access Journals (Sweden)

    C. Tsonos

    2015-12-01

    Full Text Available In the present study, the effect of nano magnetite (Fe3O4 content on structural, dielectric/electrical, magnetic and thermal properties of poly(vinylidene fluoride/carbon nanotubes matrix, is investigated. Nanocomposite films of polyvinylidene fluoride, carbon nanotubes and Fe3O4 nanoparticles were prepared by the twin screw compounding method. Fe3O4, as magnetic inclusions was incorporated into the composites with carbon nanotubes loadings well above the percolation threshold, where conductive networks were formed. Magnetic characterization revealed the ferrimagnetic behavior of nanocomposites, with saturation magnetization values depending on magnetite content. Results obtained from the analysis of Fourier Transform Infrared Spectroscopy (FTIR, X-ray Diffraction (XRD and Differential Scanning Calorimetry (DSC techniques were very informative for the study of the polymorphism and crystallinity in PVDF. The incorporation of Fe3O4 inclusions in PVDF/CNT matrix, gradually increase both electrical conductivity and dielectric permittivity up to 10 wt% Fe3O4 content, while at the higher Fe3O4 content (15 wt% reduced values were obtained. This behavior, at higher Fe3O4 content, should be possible related to the insulating and barrier role of Fe3O4 nanoparticles.

  20. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force.

    Science.gov (United States)

    Shimizu, Kazunori; Ito, Akira; Yoshida, Tatsuro; Yamada, Yoichi; Ueda, Minoru; Honda, Hiroyuki

    2007-08-01

    An in vitro reconstruction of three-dimensional (3D) tissues without the use of scaffolds may be an alternative strategy for tissue engineering. We have developed a novel tissue engineering strategy, termed magnetic force-based tissue engineering (Mag-TE), in which magnetite cationic liposomes (MCLs) with a positive charge at the liposomal surface, and magnetic force were used to construct 3D tissue without scaffolds. In this study, human mesenchymal stem cells (MSCs) magnetically labeled with MCLs were seeded onto an ultra-low attachment culture surface, and a magnet (4000 G) was placed on the reverse side. The MSCs formed multilayered sheet-like structures after a 24-h culture period. MSCs in the sheets constructed by Mag-TE maintained an in vitro ability to differentiate into osteoblasts, adipocytes, or chondrocytes after a 21-day culture period using each induction medium. Using an electromagnet, MSC sheets constructed by Mag-TE were harvested and transplanted into the bone defect in the crania of nude rats. Histological observation revealed that new bone surrounded by osteoblast-like cells was formed in the defect area 14 days after transplantation with MSC sheets, whereas no bone formation was observed in control rats without the transplant. These results indicated that Mag-TE could be used for the transplantation of MSC sheets using magnetite nanoparticles and magnetic force, providing novel methodology for bone tissue engineering.

  1. An analysis of mass balance and fractional particle size distributions of coal and magnetite in a dense-medium cyclone circuit

    Energy Technology Data Exchange (ETDEWEB)

    Celik, H. [Usak University, Usak (Turkey)

    2009-07-01

    In this study, a complete mass balance of magnetite and coal in the various parts of a dense-medium cyclone (DMC) circuit was determined and fractional size distributions of magnetite and coal were analyzed for the circuit. The DMC overflow product contained 71.34% of the feed coal, whereas 88.35% of the feed magnetite reported to the DMC underflow. The majority of the magnetite (about 86%) was removed by the sieve bends in both the DMC underflow and overflow streams. Sixty-one percent of the raw coal within a size range of 0.50-20.00mm was recovered as clean coal with an average ash content of 15.30%. About 77% of the feed magnetite having a size range of 75-600m was obtained from the underflow of the drain-and-rinse screen belonging to DMC underflow.

  2. On the ‘centre of gravity’ method for measuring the composition of magnetite/maghemite mixtures, or the stoichiometry of magnetite-maghemite solid solutions, via 57Fe Mössbauer spectroscopy

    DEFF Research Database (Denmark)

    Fock, Jeppe; Bogart, Lara K.; González-Alonso, David

    2017-01-01

    spectrum, and is correlated to the sample’s composition or stoichiometry. We present data on high-purity magnetite and maghemite powders, and mixtures thereof, as well as comparison literature data from nanoparticulate mixtures and solid solutions, to show that a linear correlation exists between δ̅RT...

  3. Magnetite nanoparticles prepared by co-precipitation method in different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aphesteguy, J.C., E-mail: caphestegu@fi.uba.ar [LAFMACEL-INTECIN, Facultad de Ingeniería, UBA, Paseo Colón 850, C1063EHA Buenos Aires (Argentina); Kurlyandskaya, G.V. [Universidad del País Vasco UPV-EHU, Dept. Electricidad y Electronica, 48940 Leioa (Spain); Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Celis, J.P. de [National Technology University (UTN), Facultad Regional Avellaneda, Department of Chemistry (Argentina); Safronov, A.P. [Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Ekaterinburg 620016 (Russian Federation); Schegoleva, N.N. [Institute of Metal Physics UD RAS, Ekaterinburg 620044 (Russian Federation)

    2015-07-01

    Magnetic nanoparticles (MNPs) of pure magnetite (Fe{sub 3}O{sub 4}) were prepared in an aqueous solution (sample M−I) and in a water-ethyl alcohol mixture (sample M−II) by the co-precipitation method. The structure and magnetic properties of both samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic (M−H) and microwave measurements (FMR). The mean average particle diameter and particle size distribution was evaluated by the Dynamic Light Scattering (DLS) and Brunauer- Emmett-Teller techniques (BET). The Quantitative chemical analysis of iron was performed by Inductively Coupled Plasma (ICP)- Atomic Emission Spectroscopy (AES) technique. The MNPs prepared in aqueous solution show a higher grain than those prepared in the water-ethyl alcohol mixture. The type of phase structure in both cases can be defined as “defective spinel”. The shape of the majority of M−I MNPs is octahedral. The shape of the majority of M−II MNPs is cubic. The specific surface area of MNPs was as high as 14.4 m{sup 2}/g for M−I sample and 77.8 m{sup 2}/g for sample M–II. The obtained saturation magnetization values of 75 emu/g (M−I) and 68 emu/g (M−II) are consistent with expected values for magnetite MNPs of observed sizes. Ferromagnetic resonance (FMR) measurements confirmed that MNPs of both types are magnetically homogeneous materials. FMR lines' position and line widths can be understood by invoking the local dipolar fields, deviations from sphericity, magnetocrystalline anisotropy and stresses. M−I sample shows sizeable zero field microwave absorption which is absent in the M−II case. The differences in microwave behaviour of M−I and M−II MNPs can be used in the design of microwave radiation absorbing multilayers. - Highlights: • Magnetite nanoparticles were prepared in two different conditions. • Specific surface area of sample prepared in water- ethanol mix is

  4. Removal of Aromatic Pollutant Surrogate from Water by Recyclable Magnetite-Activated Carbon Nanocomposite: An Experiment for General Chemistry

    Science.gov (United States)

    Furlan, Ping Y.; Melcer, Michael E.

    2014-01-01

    A general chemistry laboratory experiment using readily available chemicals is described to introduce college students to an exciting class of nanocomposite materials. In a one-step room temperature synthetic process, magnetite nanoparticles are embedded onto activated carbon matrix. The resultant nanocomposite has been shown to combine the…

  5. Reduction of Hematite to Magnetite in CO/CO2 Gas Mixtures Under Carbon Looping Combustion Conditions

    Science.gov (United States)

    Simmonds, Tegan; Hayes, Peter C.

    2017-12-01

    Iron oxides have been identified as promising materials for use as oxygen carriers in chemical looping combustion technologies as there are abundant resources available in the form of ore and in industrial wastes. The isothermal reduction of hematite (Fe2O3) in the fuel reactor and the subsequent oxidation of magnetite (Fe3O4) in air are the principal reactions of interest for these applications. Experimental investigations have been carried out to characterize the microstructural changes taking place as a result of the reduction reactions for a range of CO/CO2 gas compositions at temperatures between 1073 K and 1373 K (800 °C and 1100 °C). It has been shown that magnetite spinel is formed directly from hematite under these conditions and that porous magnetite or dense platelet or "lath" type morphologies can be formed depending on gas composition and reaction temperature. The conditions for the lath/pore transition are established. Dendritic gas pores are formed during the creation of the porous magnetite. This morphology allows continuous contact between the gas reactant and reaction interface and results in high reduction reaction rates.

  6. Isothermal Oxidation of Magnetite to Hematite in Air and Cyclic Reduction/Oxidation Under Carbon Looping Combustion Conditions

    Science.gov (United States)

    Simmonds, Tegan; Hayes, Peter C.

    2017-12-01

    In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.

  7. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze Delta

    Science.gov (United States)

    Yue, Wei; Jin, Bingfu; Zhao, Baocheng

    2018-02-01

    Heavy mineral and detrital magnetite geochemistry were analyzed to extract sediment provenance indexes from different reaches of the modern Yangtze River which were used to trace sediment source of the Yangtze Delta and to speculate its geomorphology change since the Pliocene. Our results show that diagnostic heavy minerals of the upper Yangtze sediment are characterized by clinopyroxene (12% on average) and magnetite (7% on average); the middle reaches by ilmenite, zircon and tourmaline; and the local small rivers by fluorite. Detrital magnetite composition of Ti, Mg, V and Cr is high in the upper Yangtze from the underlying basalt. These diagnostic indexes are then used in the Pliocene sediment core to extract provenance signal of different Yangtze reaches. Analysis of core sediment of the Yangtze Delta reveals that sediment provenance of the Pliocene was from local small rivers. Since the beginning of the Pleistocene, core sediments provenance was similar to that of the middle Yangtze tributaries. After 1.2 Ma, high content of pyroxene and magnetite grains that are rich in Ti, Mg, V, Cr imply sediment provenance signals from the upper Yangtze. Sediment provenance shift from short-distance sources to more distant sources indicates that the geomorphology of the Yangtze Delta region has undergone a great transformation since the Pliocene. This dramatic landform change is likely in response to continuous uplift of the Tibetan plateau and accelerated subsidence of the east China coast since the Pliocene.

  8. Dipolar structures in magnetite ferrofluids studied with small-angle neutron scattering with and without applied magnetic field

    NARCIS (Netherlands)

    Klokkenburg, M.; Erne, B.H.; Wiedenmann, A.; Petukhov, A.V.; Philipse, A.P.

    2007-01-01

    Field-induced structure formation in a ferrofluid with well-defined magnetite nanoparticles with a permanent magnetic dipole moment was studied with small-angle neutron scattering (SANS) as a function of the magnetic interactions. The interactions were tuned by adjusting the size of the

  9. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    NARCIS (Netherlands)

    Aral, H.

    1986-01-01

    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis Massif

  10. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    NARCIS (Netherlands)

    Aral, H.

    1986-01-01

    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis

  11. Magnetically recyclable magnetite-ceria (Nanocat-Fe-Ce) nanocatalysts - applications in multicomponent reactions under benign conditions

    Science.gov (United States)

    A novel magnetite nanoparticle-supported ceria catalyst (Nanocat-Fe-Ce) has been successfully prepared by simple impregnation method and was well characterized by XRD, SIMS, FEG-SEM-EDS, and TEM. The exact nature of Nanocat-Fe-Ce was confirmed by X-ray photoelectron spectroscopy ...

  12. Aqueous U(VI) interaction with magnetite nanoparticles in a mixed flow reactor system: HR-XANES study

    Science.gov (United States)

    Pidchenko, I.; Heberling, F.; Kvashnina, KO; Finck, N.; Schild, D.; Bohnert, E.; Schäfer, T.; Rothe, J.; Geckeis, H.; Vitova, T.

    2016-05-01

    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L3 and M4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10-6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-Oaxial bond length for the magnetite compared to the maghemite system are present too.

  13. Mössbauer hyperfine parameters of iron species in the course of Geobacter-mediated magnetite mineralization

    Science.gov (United States)

    Li, Yi-Liang; Zhu, San-Yuan; Deng, Kun

    2011-10-01

    Amorphous ferric iron species (ferrihydrite or akaganeite of buffered, anaerobic media shows the simultaneous formation of green rust and its gradual transformation to magnetite plus a small fraction of goethite. We suggested that the dynamics of Fe(II) supply is a critical factor for the mineral transformation in the dissimilatory iron-reducing cultures.

  14. Experimental calibration of a new oxybarometer for silicic magmas based on vanadium partitioning between magnetite and silicate melt

    Science.gov (United States)

    Arató, Róbert; Audétat, Andreas

    2017-07-01

    Partition coefficients of vanadium between magnetite and rhyolitic silicate melt, DVmgt/melt, were experimentally determined as a function of oxygen fugacity (0.7-4.0 log units above the fayalite-magnetite-quartz buffer), temperature (800-1000 °C), melt alumina saturation index (ASI = 0.74-1.14), magnetite composition (0.2-14 wt% TiO2) and pressure (1-5 kbar; at H2O saturation). Experiments were performed by equilibrating small (≤20 μm), V-free magnetite grains in V-doped silicate melts (∼100 ppm V) and then analyzing both phases by LA-ICP-MS. Attainment of equilibrium was demonstrated by several reversal experiments. The results suggest that DVmgt/melt depends strongly on fO2, increasing by 1.5-1.7 log units from the MnO-Mn3O4 buffer to the Ni-NiO buffer, and to lesser (but still considerable) extents on melt alumina saturation index (ASI; increasing by 0.3-0.7 log units over 0.4 ASI units) and temperature (increasing by 0.3-0.7 log units over a 200 °C interval at a fixed fO2 buffer). Magnetite composition and melt water content seem to have negligible effects. The data were fitted by the following linear regression equation: in which temperature is given in K, ASI refers to molar Al2O3/(CaO + Na2O + K2O) and ΔFMQ refers to the deviation of fO2 (in log units) from the fayalite-magnetite-quartz buffer. This equation reproduces all of our data within 0.3 log units, and 89% of them within 0.15 log units. The main advantages of this new oxybarometer over classical magnetite-ilmenite oxybarometry are (1) that it can be applied to rocks that do not contain ilmenite, and (2) that it is easier to apply to slowly-cooled rocks such as granites.

  15. Sub-micrometer-scale mapping of magnetite crystals and sulfur globules in magnetotactic bacteria using confocal Raman micro-spectrometry.

    Directory of Open Access Journals (Sweden)

    Stephan H K Eder

    Full Text Available The ferrimagnetic mineral magnetite Fe3O4 is biomineralized by magnetotactic microorganisms and a diverse range of animals. Here we demonstrate that confocal Raman microscopy can be used to visualize chains of magnetite crystals in magnetotactic bacteria, even though magnetite is a poor Raman scatterer and in bacteria occurs in typical grain sizes of only 35-120 nm, well below the diffraction-limited optical resolution. When using long integration times together with low laser power (<0.25 mW to prevent laser induced damage of magnetite, we can identify and map magnetite by its characteristic Raman spectrum (303, 535, 665 cm(-1 against a large autofluorescence background in our natural magnetotactic bacteria samples. While greigite (cubic Fe3S4; Raman lines of 253 and 351 cm(-1 is often found in the Deltaproteobacteria class, it is not present in our samples. In intracellular sulfur globules of Candidatus Magnetobacterium bavaricum (Nitrospirae, we identified the sole presence of cyclo-octasulfur (S8: 151, 219, 467 cm(-1, using green (532 nm, red (638 nm and near-infrared excitation (785 nm. The Raman-spectra of phosphorous-rich intracellular accumulations point to orthophosphate in magnetic vibrios and to polyphosphate in magnetic cocci. Under green excitation, the cell envelopes are dominated by the resonant Raman lines of the heme cofactor of the b or c-type cytochrome, which can be used as a strong marker for label-free live-cell imaging of bacterial cytoplasmic membranes, as well as an indicator for the redox state.

  16. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: a.mahdavian@ippi.ac.ir; Salehi-Mobarakeh, Hamid

    2017-03-15

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.

  17. Preparation of biodegradable magnetic microspheres with poly(lactic acid)-coated magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Hong; Saatchi, Katayoun [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, 6T 1Z3 (Canada); Haefeli, Urs O. [Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3 (Canada)], E-mail: uhafeli@interchange.ubc.ca

    2009-05-15

    Poly(lactic acid) (PLA)-coated magnetic nanoparticles were made using uncapped PLA with free carboxylate groups. The physical properties of these particles were compared to those of oleate-coated or oleate/sulphonate bilayer (W40) coated magnetic particles. Magnetic microspheres (MMS) with the matrix material poly(lactide-co-glycolide) (PLGA) or PLA were then formed by the emulsion solvent extraction method with encapsulation efficiencies of 40%, 83% and 96% for oleate, PLA and oleate/sulfonate-coated magnetic particles, respectively. MMS made from PLA-coated magnetite were hemocompatible and produced no hemolysis, whereas the other MMS were hemolytic above 0.3 mg/mL of blood.

  18. Magnetite nanoparticles coated with methoxy polyethylene glycol as an efficient adsorbent of diazinon pesticide from water

    Directory of Open Access Journals (Sweden)

    Mahboubeh Saeidi

    2016-12-01

    Full Text Available Methoxy polyethylene glycol modified magnetite nanoparticles (PEGMNs were synthesized and characterized by scanning electron microscopy (SEM, vibrating sample magnetometer (VSM, and X-ray diffraction (XRD. The adsorption of diazinon onto PEGMNs was investigated by UV-Vis spectrophotometry at 236 nm, through batch experiments. The effects of adsorbent dosage, solution pH, contact time, solution temperature and water impurities on the adsorption of diazinon onto PEGMNs were investigated. The process of adsorption was increased rapidly in the first contact period of 10 min. The adsorption at equilibrium (qe was found to increase with increasing pH. The results of diazinon removal at various PEGMNs dosages demonstrated that the optimum dose of PEGMNs was 1mg. The amount of adsorption of diazinon at equilibrium increased with an increasing temperature from 15°C to 45°C that indicateds an endothermic process. Therefore, PEGMNs were used as an efficient absorbent for the removal of diazinon.

  19. Electrokinetic preconcentration of magnetite core - carboxylic shell nanoparticles by capillary electrophoresis.

    Science.gov (United States)

    Baron, Daniel; Cacho, Carmen; Petr, Jan

    2017-05-26

    Online electrokinetic preconcentration of magnetite core/carboxylic shell nanoparticles (MNPs) was studied by capillary electrophoresis using reversed and suppressed electroosmotic flow (EOF). 50mM sodium borate pH 9.5 was used as a background electrolyte. CTAB additive was used to reverse EOF and commercial polyvinylalcohol (PVA)-coated capillaries were used for EOF suppressed studies. Analyses in PVA-coated capillaries were more reproducible and therefore, the setup was further optimized in terms of water plug injection time, sample injection time, and voltage. Within the optimal conditions, the MNPs dispersed in water are electrokinetically loaded into BGE consisting of 50mM sodium borate pH 9.5 using -10kV for 120s. In comparison with the hydrodynamic injection of 5s by 50mbar, the electrokinetic injection allows 860-fold preconcentration of MNPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Poly(amidehydroxyurethane template magnetite NPs electrosynthesis. II. Core and shell characterization

    Directory of Open Access Journals (Sweden)

    Laura Ursu

    2013-10-01

    Full Text Available Core and layer polymer characterization of magnetite nanoparticles (NPs surface-functionalized with poly(amidehydroxyurethane (PAmHU, obtained by a new electrochemical synthesis route is presented. The core magnetic properties were investigated by Vibrating Sample Magnetometer (VSM, showing that the obtained NPs have superparamagnetic to ferromagnetic behaviour (very low coercivity and remanence. The magnetite–PAmHU NPs morphology and size were studied by Atomic Force Microscopy (AFM and Dynamic Light Scattering (DLS; both methods showed the existence of PAmHU out-flaked layer on NPs. Structural analysis by Infrared spectroscopy (FTIR and Thermogravimetry (TG confirm the out-flaking of magnetic NPs with PAmHU.

  1. A facile one-pot synthesis of polyaniline/magnetite nanocomposites by micelles-assisted method

    Science.gov (United States)

    Basavaiah, K.; Pavan Kumar, Y.; Prasada Rao, A. V.

    2013-10-01

    Magnetic nanocomposites based on polyaniline (PANI) and magnetite nanoparticles (Fe3O4 NPs) have been prepared by an in situ self-assembly method in presence of dodecylbenzene sulfonic acid (DBSA) as dopant as well as surfactant. Influence of the aniline to DBSA molar ratio on morphology, magnetic properties, and thermal stability of PANI/Fe3O4 NPs composites has been investigated. Spectroscopic results indicated the interaction between PANI nanorods and Fe3O4 NPs. Scanning electron microscopy and transmission electron microscopy images indicated that PANI rods were decorated with Fe3O4 NPs. Morphologies of nanocomposites were found to be critically dependent on molar ratios of organic acid to monomer. PANI nanorod/Fe3O4 NPs composites showed superparamagnetism and higher thermal stability with small mass fraction of Fe3O4 NPs.

  2. MHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheet

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Present work is devoted to convective flow of ferrofluid due to non linear stretching curved sheet. Electrically conducting fluid is considered in the presence of uniform magnetic field. Nanofluid comprises water and magnetite-Fe3O4 as nanoparticles. Thermal radiation and heat generation/absorption are explained. Homotopy concept is utilized for the development of solutions. Highly nonlinear partial differential systems are reduced into the nonlinear ordinary differential system. Impact of non-dimensional radius of curvature and power law index on the physical quantities like fluid pressure, velocity and temperature field are examined. Computations for surface shear stress and heat transfer rate also analyzed. Keywords: MHD nanofluid, Thermal radiation, Porous medium, Convective boundary conditions, Non-linear curved stretching sheet

  3. Pollution magnet: nano-magnetite for arsenic removal from drinking water.

    Science.gov (United States)

    Yavuz, Cafer T; Mayo, J T; Suchecki, Carmen; Wang, Jennifer; Ellsworth, Adam Z; D'Couto, Helen; Quevedo, Elizabeth; Prakash, Arjun; Gonzalez, Laura; Nguyen, Christina; Kelty, Christopher; Colvin, Vicki L

    2010-08-01

    Arsenic contamination in groundwater is a severe global problem, most notably in Southeast Asia where millions suffer from acute and chronic arsenic poisoning. Removing arsenic from groundwater in impoverished rural or urban areas without electricity and with no manufacturing infrastructure remains a significant challenge. Magnetite nanocrystals have proven to be useful in arsenic remediation and could feasibly be synthesized by a thermal decomposition method that employs refluxing of FeOOH and oleic acid in 1-octadecene in a laboratory setup. To reduce the initial cost of production, $US 2600/kg, and make this nanomaterial widely available, we suggest that inexpensive and accessible "everyday" chemicals be used. Here we show that it is possible to create functional and high-quality nanocrystals using methods appropriate for manufacturing in diverse and minimal infrastructure, even those without electricity. We suggest that the transfer of this knowledge is best achieved using an open source concept.

  4. Magnetite nanoparticles coated with alkyne-containing polyacrylates for click chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Socaci, Crina [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania); Rybka, Miriam [Humboldt-University Berlin, Department of Chemistry (Germany); Magerusan, Lidia; Nan, Alexandrina; Turcu, Rodica; Liebscher, Juergen, E-mail: liebscher@chemie.hu-berlin.de [National Institute of Research and Development for Isotopic and Molecular Technologies (Romania)

    2013-06-15

    New magnetic core shell nanoparticles were synthesized consisting of magnetite cores and poly-(O-propargyl acrylate) shells. Strong fixing of the shells was achieved by primary anchoring phosphates or {alpha}-dihydroxydiphosphonates containing acrylate or methacrylate functionalities. The magnetic nanoparticles are attractive as supports for a variety of function which can be easily introduced by Cu-catalyzed alkyne azide cycloaddition (CuAAC, a click reaction). In this way, also the loading of the magnetic nanoparticles with propargyl units was determined by reaction with 4-azidoacetophenone and analysis of the supernatant. In order to demonstrate the attractiveness of the magnetic nanoparticles a novel azido-containing conjugate with biotin as recognition function and dansyl as fluorescence marker was introduced by CuAAC reaction. All NP show superparamagnetic behavior with high-saturation magnetization values and were further characterized by FTIR, photoelectron spectroscopy and TEM.

  5. Bench scale testing of micronized magnetite beneficiation. Quarterly technical progress report 4, October--December, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Anast, K.

    1994-01-25

    This project is aimed at development of a process that, by using ultra fine magnetite suspension, would expand the application of heavy media separation technology to processing fine, {minus}28 mesh coals. These coal fines, produced during coal mining and crushing, are separated in the conventional coal preparation plant and generally impounded in a tailings pond. Development of an economic process for processing these fines into marketable product will expand the utilization of coal for power production in an environmentally acceptable and economically viable way. This process has been successfully researched at PETC but has not been studied on a continuous bench-scale unit, which is a necessary step towards commercial development of this promising technology. The goal of the program is to investigate the technology in a continuous circuit at a reasonable scale to provide a design basis for larger plants and a commercial feasibility data.

  6. Electrochemical synthesis of magnetite and maghemite nanoparticles using dissymmetric potential pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Lopez, A.; Paredes-Arroyo, A.; Mojica-Gomez, J.; Estrada-Arteaga, C. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (Mexico); Cruz-Rivera, J. J.; Elias Alfaro, C. G. [Universidad Autonoma de San Luis Potosi., Instituto de metalurgia, Facultad de Ingenieria (Mexico); Antano-Lopez, R., E-mail: rantano@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (Mexico)

    2012-08-15

    Magnetic iron oxide nanoparticles of controlled size distribution were electrochemically synthesized applying a dissymmetric pattern of potential pulses to iron-based electrodes in aqueous media. The best pattern was determined through a design of experiments based on a previous voltammetric study. The applied method conveys an optimization of previous methods which employed direct or symmetric alternate potentials. XRD results indicate that magnetite phase is favored to anodic potentials larger -0.2 V versus SSE. TEM images show quasi spherical particles with size ranging from 10 to 50 nm, depending on the synthesis conditions, which agrees with size estimated from diffractograms. EDS indicate that the electrolyte is not totally eliminated by washing although its content is lower than 1 %.

  7. AC susceptibility and EPR investigations of superspin dynamics in magnetite nanoparticles

    Science.gov (United States)

    Price, Alex D.

    In this investigation we use two complementary techniques to distinguish between superparamagnetic blocking (SPB) and superspin-glass (SSG) freezing phenomena in magnetite nanoparticles. While these manifestations of the superspin dynamics are fundamentally different, they have similar "signatures", especially in dc-magnetization experiments. Even if ac-susceptibility measurements are employed, careful use of mathematical models to analyze the data are needed to uncover which type of phenomena (SPB or SSG freezing) occurs within the material. Yet, by utilizing electron paramagnetic resonance (EPR) on a 10 nm Fe3O4 nano-powder as well as on a ferrofluid (based on the same nanoparticle ensemble) we found a very distinct difference in the absorption spectra between the two samples, which indicates markedly different EPR signatures from SPB and SSG freezing behaviors.

  8. Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001

    Science.gov (United States)

    Scott, Edward R. D.

    1999-02-01

    A review of the mineralogical, isotopic, and chemical properties of the carbonates and associated submicrometer iron oxides and sulfides in Martian meteorite ALH84001 provides minimal evidence for microbial activity. Some magnetites resemble those formed by magnetotactic microorganisms but cubic crystals glass. Carbonates with these features have not been identified in carbonaceous chondrites and terrestrial rocks, suggesting that the ALH84001 carbonates have a unique origin. Carbonates and hydrated minerals in ALH84001, like secondary phases in other Martian meteorites, have O and H isotopic ratios favoring formation from fluids that exchanged with the Martian atmosphere. I propose that carbonates originally formed in ALH84001 from aqueous fluids and were subsequently shock heated and vaporized. The original carbonates were probably dolomite-magnesite-siderite assemblages that formed in pores at interstitial sites with minor sulfate, chloride, and phyllosilicates. These phases, like many other volatile-rich phases in Martian meteorites, may have formed as evaporite deposits from intermittent floods.

  9. Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica

    Science.gov (United States)

    Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

  10. Magneto-optical study of magnetite nanoparticles prepared by chemical and biomineralization process

    Energy Technology Data Exchange (ETDEWEB)

    Dzarova, A. [Institute of Experimental Physics, SASD, Watsonova 47, 040 01 Kosice (Slovakia); Royer, F., E-mail: Francois.Royer@univ-st-etienne.f [Universite de Lyon, F-42023 Saint Etienne (France); DIOM EA 3523, Universite de Saint Etienne, Jean Monnet, F-42000 Saint Etienne (France); Timko, M. [Institute of Experimental Physics, SASD, Watsonova 47, 040 01 Kosice (Slovakia); Jamon, D. [Universite de Lyon, F-42023 Saint Etienne (France); DIOM EA 3523, Universite de Saint Etienne, Jean Monnet, F-42000 Saint Etienne (France); Kopcansky, P.; Kovac, J. [Institute of Experimental Physics, SASD, Watsonova 47, 040 01 Kosice (Slovakia); Choueikani, F. [Universite de Lyon, F-42023 Saint Etienne (France); DIOM EA 3523, Universite de Saint Etienne, Jean Monnet, F-42000 Saint Etienne (France); Gojzewski, H. [Institute of Physics, Poznan University of Technology, ul. Nieszawska 13A, 60-965 Poznan (Poland); Rousseau, J.J. [Universite de Lyon, F-42023 Saint Etienne (France); DIOM EA 3523, Universite de Saint Etienne, Jean Monnet, F-42000 Saint Etienne (France)

    2011-06-15

    This paper deals with a magneto-optical study of suspensions of magnetosomes. These magnetosomes are synthesized by biomineralization process of magnetotactic bacteria, followed by steps of isolation and purification in order to obtain stable suspensions. The structural analysis evidences the good crystallinity of the magnetite particles with a diameter of 34 nm. Magneto-induced linear and circular anisotropy confirms the important role played by the chains in the orientation mechanism of such magnetic dipoles. Numerical adjustments of the linear anisotropy curves using a classical Langevin orientation model give the average number of magnetosomes per chain, about 12. - Highlights: Magnetosomes chains submitted to a magnetic field produce optical anisotropy. Anisotropy numerical adjustments give the average number of particles per chains. This number is consistent with statistical analysis from TEM pictures.

  11. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira [Naresuan University, Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science (Thailand); Vilaivan, Tirayut [Chulalongkorn University, Department of Chemistry, Organic Synthesis Research Unit, Faculty of Science (Thailand); Nakkuntod, Maliwan [Naresuan University, Department of Biology, Faculty of Science (Thailand); Rutnakornpituk, Metha, E-mail: methar@nu.ac.th [Naresuan University, Department of Chemistry and Center of Excellence in Biomaterials, Faculty of Science (Thailand)

    2016-09-15

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly(N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size (D{sub h}) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV–visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.Graphical Abstract.

  12. Domains of laminin

    DEFF Research Database (Denmark)

    Engvall, E; Wewer, U M

    1996-01-01

    Extracellular matrix molecules are often very large and made up of several independent domains, frequently with autonomous activities. Laminin is no exception. A number of globular and rod-like domains can be identified in laminin and its isoforms by sequence analysis as well as by electron...... microscopy. Here we present the structure-function relations in laminins by examination of their individual domains. This approach to viewing laminin is based on recent results from several laboratories. First, some mutations in laminin genes that cause disease have affected single laminin domains, and some...... laminin isoforms lack particular domains. These mutants and isoforms are informative with regard to the activities of the mutated and missing domains. These mutants and isoforms are informative with regard to the activities of the mutated and missing domains. Second, laminin-like domains have now been...

  13. Efficient Extraction of Vanadium from Vanadium–Titanium Magnetite Concentrate by Potassium Salt Roasting Additives

    Directory of Open Access Journals (Sweden)

    Renmin Li

    2018-01-01

    Full Text Available In this paper, potassium salt roasting additives were applied to extract vanadium from vanadium–titanium magnetite concentrate. Meanwhile, the mechanisms of potassium salt roasting and acid leaching kinetics were investigated. The results indicate that potassium salt roasting additives are more efficient than sodium and calcium salt and that K2SO4 works best. Under certain conditions (a dosage of K2SO4 of 4 wt %, a roasting temperature of 900 °C, a roasting time of 1 h, a leaching temperature of 95 °C, a sulfuric acid concentration of 10% (v/v, and a leaching time of 1.5 h with a liquid to solid ratio of 3 mL/g the vanadium leaching efficiency reached 71.37%, an increase of 30.20% compared to that of blank roasting. Additionally, XRD and related SEM-EDS analyses indicated that K2SO4 fully destroyed the structure of vanadium-bearing minerals such as magnetite, and promoted the generation of soluble KVO3 to inhibit the formation of insoluble Ca(VO32 in the roasting process. Furthermore, it promoted the dissolution of sphene and the release of its vanadium in the leaching process, which increased the vanadium leaching efficiency significantly. Meanwhile, leaching kinetics analyses showed that the leaching process was controlled by internal diffusion; the apparent activation energy decreased from 37.43 kJ/mol with blank roasting to 26.31 kJ/mol with potassium salt roasting. The reaction order, with regards to the sulfuric acid concentration, decreased from 0.6588 to 0.5799. Therefore, potassium salt roasting could improve mineral activity, accelerating the leaching process and reducing the dependence on high temperature and high acidity.

  14. Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils.

    Science.gov (United States)

    Usman, M; Faure, P; Ruby, C; Hanna, K

    2012-04-01

    In this study, feasibility of magnetite-activated persulfate oxidation (AP) was evaluated for the degradation of polycyclic aromatic hydrocarbons (PAHs) in batch slurry system. Persulfate oxidation activated with soluble Fe(II) (FP) or without activation (SP) was also tested. Kinetic oxidation of PAHs was tracked in spiked sand and in aged PAH contaminated soils at circumneutral pH. Quartz sand was spiked with: (i) single model pollutant (fluorenone) and (ii) organic extract isolated from two PAH contaminated soils (H and NM sampled from ancient coking plants) and was subjected to oxidation. Oxidation was also performed on real H and NM soils with and without an extraction pretreatment. Results indicate that oxidation of fluorenone resulted in its complete degradation by AP while abatement was very low (soil extracts spiked on sand, significant degradation of 16 PAHs was observed by AP (70-80%) in 1 week as compared to only 15% by SP or FP systems. But no PAH abatement was observed in real soils whatever the treatment used (AP, FP or SP). Then soils were subjected to an extraction pretreatment but without isolation of organic extract from soil. Oxidation of this pretreated soil showed significant abatement of PAHs by AP. On the other hand, very low degradation was achieved by FP or SP. Selective degradation of PAHs was observed by AP with lower degradation efficiency towards high molecular weight PAHs. Analyses revealed that no by-products were formed during oxidation. The results of this study demonstrate that magnetite can activate persulfate at circumneutral pH for an effective degradation of PAHs in soils. However, availability of PAHs and soil matrix were found to be the most critical factors for degradation efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Magnetic field-enhanced sedimentation of nanopowder magnetite in water flow.

    Science.gov (United States)

    Bakhteeva, Iu; Medvedeva, I; Byzov, I; Zhakov, S; Yermakov, A; Uimin, M; Shchegoleva, N

    2015-01-01

    Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowder (10-20 nm) in water in a gradient magnetic field Bmax=0.3 T, (dB/dz)max=0.13 T/cm was studied for different water flow speeds and starting particle concentrations (0.1 and 1.0 g/l). The aggregates formation in water was monitored under the same conditions. In cyclical water flow, the velocity of particle sedimentation increases significantly in comparison to its rate in still water, which corresponds to the intensified aggregate formation. However, at a water flow speed more than 0.1 cm/s sedimentation velocity slows down, which might be connected to aggregate destruction in a faster water flow. Correlation between sedimentation time and the nanoparticle concentration in water does not follow the trend expected for spherical superparamagnetic particles. In our case sedimentation time is shorter for c=0.1 g/l in comparison with that for c=1 g/l. We submit that such a feature is caused by particle self-organization in water into complex structures of fractal type. This effect is unexplained in the framework of existing theoretical models of colloids systems, so far. Provisional recommendations are suggested for the design of a magnetic separator on the permanent magnets base. The main device parameters are magnetic field intensity B≥0.1 T, magnetic field gradient (dB/dz)max≈(0.1-0.2) T/cm, and water flow speed V<0.15 cm/s. For particle concentration c=1 g/l, purification of water from magnetite down to ecological and hygienic standards is reached in 80 min, for c=0.1 g/l the time is reduced down to 50 min.

  16. Sedimentation and aggregation of magnetite nanoparticles in water by a gradient magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Medvedeva, I., E-mail: ivmed@imp.uran.ru; Bakhteeva, Yu.; Zhakov, S. [Ural Branch of the Russian Academy of Sciences, Institute of Metal Physics (Russian Federation); Revvo, A. [Ural State Mining University (Russian Federation); Byzov, I.; Uimin, M.; Yermakov, A.; Mysik, A. [Ural Branch of the Russian Academy of Sciences, Institute of Metal Physics (Russian Federation)

    2013-11-15

    Magnetite (γ-Fe{sub 3}O{sub 4}) nanoparticles are promising effective sorbents for water cleaning of heavy metal, radionuclides, organic and biological materials. A good sorption capacity can be achieved due to their high specific surface area. Application of gradient magnetic fields helps to separate the magnetic nanoparticles from the water suspension, which is rather hard to do using the conventional mechanical filtration and sedimentation methods without coagulants. The sedimentation dynamics of magnetite nanoparticles with sizes of 10–20 nm in aqueous media in the presence of a gradient magnetic field was studied by optical and NMR relaxometry methods. The gradient magnetic field was produced by a series of strip permanent magnets with B ≤ 0.5 T, dB/dz ≤ 0.13 T/cm and in some cases enhanced by a steel grid with sharp edges (dB/dz ≤ 5 T/cm). Dynamic Light Scattering in the water suspension with different nanoparticle concentrations (c{sub 0} = 0.1–1 g/l) revealed the characteristic features in the aggregate formation, which is reflected in the sedimentation behavior. The sedimentation rate of the nanoparticles in water and in magnetic fields is higher for less concentrated suspensions (c{sub 0} = 0.1 g/l) than for more concentrated ones (c{sub 0} = 1 g/l), which might be connected with the formation of a gel structures due to a strong magnetic attraction between ferromagnetic nanoparticles. In 180 min this resulted in the reduction of the iron concentration in water down to 0.4 mg/l, which is close to hygienic and environmental norms for drinking water and fishery.

  17. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles.

    Science.gov (United States)

    Rashid, Mamun; Price, Nathaniel T; Gracia Pinilla, Miguel Ángel; O'Shea, Kevin E

    2017-10-15

    Effective removal of excess phosphate from water is critical to counteract eutrophication and restore water quality. In this study, low cost, environmentally friendly humic acid coated magnetite nanoparticles (HA-MNP) were synthesized and applied for the remediation of phosphate from aqueous media. The HA-MNPs, characterized by FTIR, TEM and HAADF-STEM showed the extensive coating of humic acid on the magnetite surface. The magnetic nanoparticles with diameters of 7-12 nm could be easily separated from the reaction mixture by using a simple hand held magnet. Adsorption studies demonstrate the fast and effective separation of phosphate with maximum adsorption capacity of 28.9 mg/g at pH 6.6. The adsorption behavior follows the Freundlich isotherm suggesting the formation of non-uniform multilayers of phosphate on the heterogeneous surface of HA-MNP. The adsorption kinetic fits the pseudo-second order model well with rate constants of 0.206 ± 0.003, 0.073 ± 0.002 and 0.061 ± 0.003 g mg(-1)min(-1) for phosphate (P) concentrations of 2, 5 and 10 mg/L respectively. The removal of phosphate was found higher at acidic and neutral pH compared to basic conditions. The nanoparticles exhibit good selectivity and adsorption efficiency for phosphate in presence of co-existing ions such as Cl(-), SO4(2-)and NO3(-) with some inhibition effect by CO3(2-). The effect of temperature on the adsorption reveals that the process is endothermic and spontaneous. HA-MNPs are promising, simple, environmentally friendly materials for the removal of phosphate from aqueous media. Copyright © 2017. Published by Elsevier Ltd.

  18. Transport Modeling of Modified Magnetite Nanoparticles with Sodium Dodecyl Sulfate in a Saturated Sandy Soil

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-02-01

    Full Text Available Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats of nanoparticle releases into the soil–water environment, a number of studies have been carried out to investigate the transport, retention and deposition of nanoparticles in saturated porous media. Many of these studies are based on measurements of transport in columns packed with idealized porous media consisting of spherical glass beads or sand. The nanoparticles are usually introduced into the column and breakthrough curve concentrations are measured at the column outlet. To examine the effect of various parameters on the transport of nanoparticles in porous medium, for convenience, all the parameters considered the same in the experiments, and only one parameter in the experiments is changed and investigated. Materials and Methods: The objective of this research is quantitative study of modified magnetite nanoparticles transport in saturated sand-repacked columns. The modified magnetite nanoparticles with Sodium dodecyl sulfate were synthesized following the protocol described by Si et al. (2004. The experimental setup included a suspension reservoir, Teflon tubing, a HPLC pump, and a glass column (2.5 cm i.d. and 20 cm height. Therefore, breakthrough curves of modified magnetite nanoparticles with Sodium dodecyl sulfate and chloride were determined under saturated conditions and influence of nanoparticles concentration (0.1 and 0.5 g.L-1 and pore velocity (pressure head of 2 and 10 cm on nanoparticles transport were investigated. For each medium bed, the background solution were first pumped through the column in the up-flow mode to obtain a steady flow state. Then, a tracer test was conducted by introducing CaCl2 solution into the column

  19. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    Science.gov (United States)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-03-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  20. Domain Specific Problem Solving.

    Science.gov (United States)

    Eade, Frank

    1989-01-01

    Outlines a possible framework for allowing teachers to explore how children learn mathematics. A mathematical modelling process and three domains, including content, process and pragmatic domain, are described. Twelve strategies for encouraging children to translate between the domains are suggested. (YP)

  1. PDP: protein domain parser.

    Science.gov (United States)

    Alexandrov, Nickolai; Shindyalov, Ilya

    2003-02-12

    We have developed a program for automatic identification of domains in protein three-dimensional structures. Performance of the program was assessed by three different benchmarks: (i) by comparison with the expert-curated SCOP database of structural domains; (ii) by comparison with a collection of manual domain assignments; and (iii) by comparison with a set of 55 proteins, frequently used as a benchmark for automatic domain assignment. In all these benchmarks PDP identified domains correctly in more than 80% of proteins. http://123d.ncifcrf.gov/.

  2. Prospecting For Magnetite Ore Deposits With A Innovative Sensor's of Unique Fundamentally New Magnetometer.

    Science.gov (United States)

    Emelianenko, T. I.; Tachaytdinov, R. S.; Sarichev, V. F.; Kotov, B. V.; Susoeva, G. N.

    After careful study of principles and abilities of all existing magnetmeters of all three revolutions in magnetic prospecting we have come to the conclusion that they cannot solve local guestions of the magnetic prospecting or determine centre coordinates of magnetite ore body before drilling Electromagnetism lows and achievents magnetprospectings and radioelectronics of all 20th century serve as a theoretical base of the "locator". While creating this cardinally new magnetmeter , we borrowed different things from radio-prospectors, magnetprospectors, wireless operators and combined all of them while creating the "locators''. The "locators' construction is bas ed on the "magnetic intensification" principle ,owing to which this "locators" are characterised by hight sensitiveness and ability to determine centers of even little commercial magnetite ore deposits with relatively weak magnetic anomalies. The main advantage of the "locators" over existing ones is that it can solve local questions determine centre coordinates. A remarkably simple locator construction determine direction of the on-surface measurings towards the ore body centre and gives approximate prognosis resourses before/withour/ drilling. The "locators" were worked out for the first time in history , they have 2 licences. The fundamental design and drawbacks of the existing magnetometers have been inherited from the original magnetometre dating back two or three hundred years. The developers of the existing magnetometres have all gone along the same well- beaten track of replacing the primitive sensor in the form of a piece of ore hung on a string at first by an arrow sensor and later by magnetically oriented protons and quanta, with amplification of the sensors' OUTPUT signal. Furthermore, all the existing magnetometres are imperfect in that they, lacking the directivity of the ground-level magnetic measurements, only record the overall magnetic vector field generated by all the ore bodies around the

  3. Au-bearing magnetite mineralizaion in Kashmar (alteration, mineralization, geochemistry, geochemistry and fluid inclusions;

    Directory of Open Access Journals (Sweden)

    Alireza Almasi

    2017-02-01

    Full Text Available Introduction The study area is located in the central part of the Khaf- Kashmar- Bardaskan volcano-plotunic belt (briefly KKBB. Several IOCG deposits such as Tanourjeh Au-bearing magnetite deposit and Kuh-e-Zar Specularite-rich Au deposit have been explored in KKBB. Geology, alteration, mineralization, geochemistry and fluid inclusion results in Kashmar suggest the IOCG type Au-bearing magnetite mineralization. These IOCG deposits at KKBB form at an active continental arc related to SSZ-type Sabzevar oceanic subduction. Materials and methods Use of Landsat 7+, IRS and Aster satellites. Petrography and alteration Studies in 150 thin sections of volcanic and intrusive rocks. Sampling of ore-bearing quartz vein and mineralography. Preparation of 28 geochemistry samples by the chip composite method of ore-bearing quartz vein and analyzing them in the ACME laboratory by Aqua Regia 1DX1. Fluid inclusions studies of 14 samples of quartz and barite related to the ore minerals of ore-bearing quartz vein by THM600 stage of Linkam company. Results Magmatic events in Kashmar occur at Paleocene-Eocene and include: (1 old mafic - intermediate volcano-plutonic series; (2 felsic volcanic and granitoids; and (3 parallel swarm dykes which are youngest (Almasi et al., 2016. Geochemically, Kashmar rocks are metaluminous to highly peraluminous and Tholeitic to calc-alkaline and shoshonitic in composition (Almasi et al., 2016. The field characteristics, together with isotope and geochemical analyses show that all rock types are essentially co-magmatic and post-collisional I-type (Almasi et al., 2016. Alteration of Kashmar is described in two ways: (1 intense ellipsoidal-linear Argillic-Sillicification and low sericitic with Silica caps and with medium widespread and propylitic alterations in triple regions, next to Dorouneh fault; and (2 Medium Hematite-Carbonate-Chlorite-Silicification alterations in Kamarmard heights. In parts of near the Doruneh fault, sometimes

  4. Phase stabilization of magnetite (Fe3O4) nanoparticles with B2O3 addition: A significant enhancement on the phase transition temperature

    Science.gov (United States)

    Topal, Uğur; Aksan, Mehmet Ali

    2016-05-01

    Magnetite nanoparticles (MNPs) are extensively investigated for biomedical applications, particularly as contrast agents for Magnetic Resonance Imaging and as drug delivery agent and heat mediators for cancer therapy. Tuning the magnetic properties of the magnetite nanoparticles with doping of foreign atoms has a crucial importance for determining the application areas of these materials and so attracts much interests. On the other hand the doping with foreign atoms requires high temperature annealing, and it causes a phase transition to the hematite phase above 400 °C. In this work the phase transition temperature from the magnetite to the hematite phase has been increased by 200 °C, which is the highest enhancement reported in literature. It was achieved by addition of the appropriate amounts of B2O3. Our experiments indicates that the 5.0 wt% of B2O3 addition stabilizes and keeps the existence of single phase magnetite up to 600 °C.

  5. The origin of skarn beds, Ryllshyttan Zn-Pb-Ag + magnetite deposit, Bergslagen, Sweden

    Science.gov (United States)

    Jansson, Nils F.; Allen, Rodney L.

    2011-11-01

    Thin- to medium-bedded, stratiform calc-silicate deposits (banded skarns) are a peculiar, but important, component of the supracrustal successions in the Palaeoproterozoic Bergslagen mining district of central Sweden. They are referred to as "skarn-banded leptites" in the literature and are common in areas and at stratigraphic levels that contain iron oxide and base metal sulphide deposits. The stratigraphic hanging wall of the stratabound Ryllshyttan Zn-Pb-Ag + magnetite deposit at Garpenberg, contains approximately 100-150 m of interbedded aluminous skarn beds and rhyolitic ash-siltstones. The skarn beds are mineralogically variable and dominantly composed of grandite, spessartine, epidote, actinolite, quartz, clinopyroxene, and locally magnetite. Integrated field-mapping, and whole-rock lithogeochemical, microscopic and mineral chemical analyses suggest that the stratiform skarn beds are the products of at least two discrete hydrothermal events and subsequent metamorphism. The first event comprised accumulation in a quiescent subaqueous environment, below wave base, of calcareous and ferruginous sediments rich in Fe, Mn, Ca, and Mg. These chemical sediments were deposited concurrently with rhyolitic ash-silt sedimentation, thus forming a (now metamorphosed) laminated calcareous Fe formation with both a detrital rhyolitic component and rhyolitic siltstone interbeds. Positive Eu-anomalies and negative Ce-anomalies for normalized rare earth element analyses of skarn beds suggest that the iron may have been derived from exhalation of hot and reduced hydrothermal fluids, which upon mixing with more oxidized seawater, precipitated Fe oxides and/or carbonates that settled from suspension to the seafloor. The size of the positive Eu-anomalies of the chemical sediments are modified by the content of rhyolitic volcaniclastic material, which has a negative Eu anomaly, such that positive Eu-anomalies are only observed in skarn beds that possess a minor volcaniclastic

  6. Domains and Naive Theories.

    Science.gov (United States)

    Gelman, Susan A; Noles, Nicholaus S

    2011-09-01

    Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This review examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children's classification of biological and non-biological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning.

  7. Self-organized single crystal mixed magnetite/cobalt ferrite films grown by infrared pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Figuera, Juan de la, E-mail: juan.delafiguera@iqfr.csic.es [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Quesada, Adrián [Instituto de Cerámica y Vidrio, CSIC, Madrid E-28049 (Spain); Martín-García, Laura; Sanz, Mikel; Oujja, Mohamed; Rebollar, Esther; Castillejo, Marta [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain); Prieto, Pilar; Muñoz-Martín, Ángel [Universidad Autónoma de Madrid, E-28049 (Spain); Aballe, Lucía [Alba Synchrotron Light Facility, CELLS, Barcelona (Spain); Marco, José F. [Instituto de Química Física “Rocasolano”, CSIC, Madrid E-28006 (Spain)

    2015-12-30

    Highlights: • Infrared pulsed deposition is used to grow single crystal mixed magnetite-cobalt ferrite films. • Distinct topography with two mound types on the surface of the film. • Suggested origin of segregation into two phases is oxygen deficiency during growth. • Mössbauer is required to quantify the two components. - Abstract: We have grown mixed magnetite/cobalt ferrite epitaxial films on SrTiO{sub 3} by infrared pulsed-laser deposition. Diffraction experiments indicate epitaxial growth with a relaxed lattice spacing. The films are flat with two distinct island types: nanometric rectangular mounds in two perpendicular orientations, and larger square islands, attributed to the two main components of the film as determined by Mössbauer spectroscopy. The origin of the segregation is suggested to be the oxygen-deficiency during growth.

  8. Three dimensional quantitative characterization of magnetite nanoparticles embedded in mesoporous silicon: local curvature, demagnetizing factors and magnetic Monte Carlo simulations.

    Science.gov (United States)

    Uusimäki, Toni; Margaris, Georgios; Trohidou, Kalliopi; Granitzer, Petra; Rumpf, Klemens; Sezen, Meltem; Kothleitner, Gerald

    2013-12-07

    Magnetite nanoparticles embedded within the pores of a mesoporous silicon template have been characterized using electron tomography. Linear least squares optimization was used to fit an arbitrary ellipsoid to each segmented particle from the three dimensional reconstruction. It was then possible to calculate the demagnetizing factors and the direction of the shape anisotropy easy axis for every particle. The demagnetizing factors, along with the knowledge of spatial and volume distribution of the superparamagnetic nanoparticles, were used as a model for magnetic Monte Carlo simulations, yielding zero field cooling/field cooling and magnetic hysteresis curves, which were compared to the measured ones. Additionally, the local curvature of the magnetite particles' docking site within the mesoporous silicon's surface was obtained in two different ways and a comparison will be given. A new iterative semi-automatic image alignment program was written and the importance of image segmentation for a truly objective analysis is also addressed.

  9. Formation of Core-Shell Nanoparticles Composed of Magnetite and Samarium Oxide in Magnetospirillum magneticum Strain RSS-1.

    Science.gov (United States)

    Shimoshige, Hirokazu; Nakajima, Yoshikata; Kobayashi, Hideki; Yanagisawa, Keiichi; Nagaoka, Yutaka; Shimamura, Shigeru; Mizuki, Toru; Inoue, Akira; Maekawa, Toru

    2017-01-01

    Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) or greigite (Fe3S4) particles in the cells. Recently, several studies have shown some possibilities of controlling the biomineralization process and altering the magnetic properties of magnetosomes by adding some transition metals to the culture media under various environmental conditions. Here, we successfully grow Magnetospirillum magneticum strain RSS-1, which are isolated from a freshwater environment, and find that synthesis of magnetosomes are encouraged in RSS-1 in the presence of samarium and that each core magnetic crystal composed of magnetite is covered with a thin layer of samarium oxide (Sm2O3). The present results show some possibilities of magnetic recovery of transition metals and synthesis of some novel structures composed of magnetic particles and transition metals utilizing MTB.

  10. Pressure effect on the low-temperature remanences of multidomain magnetite: Change in the Verwey transition temperature

    Science.gov (United States)

    Sato, M.; Yamamoto, Y.; Nishioka, T.; Kodama, K.; Mochizuki, N.; Tsunakawa, H.

    2011-12-01

    The Verwey transition of magnetite is the basic issues for the rock magnetism, since main magnetic mineral of terrestrial rocks is magnetite and its associates. One of the most important issues concerning the Verwey transition is the change in transition temperature (Tv) due to pressure, which is thought to improve our understanding of its electric and magnetic nature in relation to the phase diagram. Recently, the opposite pressure effects of the transition temperature were reported applying the different experimental method. Measuring the electrical resistivity of single crystalline samples, Môri et al. [2002] reported that Tv becomes lower with increasing pressure by 9 GPa. In contrast, Pasternak et al. [2003] reported from Mössbauer experiment that transition temperature becomes higher with increasing pressure by 30 GPa. Thus the change in transition temperature with pressure has been controversial, and nature of the Verwey transition is still unclear. The magnetic property measurements using low temperature cycle are a powerful tool for identifying the state of magnetic minerals. Carporzen and Gilder [2010] conducted the thermal demagnetization experiment of low-temperature remanences of magnetite, and observed an increase in Tv with increasing pretreated pressure. From this result, they suggested that the Verwey transition of magnetite have the potential of a geobarometer. Modern techniques of high-pressure experiments enable us to measure sample magnetizations under pressure [Gilder et al., 2002; Kodama and Nishioka, 2005; Sadykov et al., 2008]. In the present study, systematic experiments of low-temperature remanences have been conducted for powder samples of stoichiometric magnetite under pressure up to 0.7 GPa using the high-pressure cell specially designed for MPMS, which was made of CuBe and ZrO2 [Kodama and Nishioka, 2005]. Natural magnetite of large single crystals were crushed by hand and sieved in an ultrasonic bath to be ~50 μm in size. For

  11. Magnetic behavior of natural magnetite (Fe3O4) extracted from beach sand obtained by mechanical alloying method

    Science.gov (United States)

    Jalil, Z.; Rahwanto, A.; Mustanir, Akhyar, Handoko, E.

    2017-07-01

    Investigation on the iron sand characteristic of Syiah Kuala beach in Banda Aceh coastal region has been performed. Samples were prepared by mechanical alloying method using a planetary type high energy ball milling. As shown by XRF results, the results indicate that the iron sand is dominated by magnetite up to 85.80 %. The XRD test showed that the Fe3O4 (magnetite) appears as the majority phase. Furthermore, the magnetic properties observation found that the magnetization saturation (Ms) and remanent (Br) are decreasing with the increasing of the coercivity (Hc). These results inform us that the mechanical alloying method is a very attractive technique to reduce the beach sand particle into nanometer scale.

  12. Shape-control by microwave-assisted hydrothermal method for the synthesis of magnetite nanoparticles using organic additives

    Energy Technology Data Exchange (ETDEWEB)

    Rizzuti, Antonino [Politecnico di Bari, Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (Italy); Dassisti, Michele [Politecnico di Bari, Dipartimento di Meccanica, Management e Matematica (Italy); Mastrorilli, Piero, E-mail: p.mastrorilli@poliba.it [Politecnico di Bari, Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica (Italy); Sportelli, Maria C.; Cioffi, Nicola; Picca, Rosaria A. [Università di Bari, Dipartimento di Chimica (Italy); Agostinelli, Elisabetta; Varvaro, Gaspare [Consiglio Nazionale delle Ricerche, Istituto di Struttura della Materia (Italy); Caliandro, Rocco [Consiglio Nazionale delle Ricerche, Istituto di Cristallografia (Italy)

    2015-10-15

    A simple and fast microwave-assisted hydrothermal method is proposed for the synthesis of magnetite nanoparticles. The addition of different surfactants (polyvinylpyrrolidone, oleic acid, or trisodium citrate) was studied to investigate the effect on size distribution, morphology, and functionalization of the magnetite nanoparticles. Microwave irradiation at 150 °C for 2 h of aqueous ferrous chloride and hydrazine without additives resulted in hexagonal magnetite nanoplatelets with a facet-to-facet distance of 116 nm and a thickness of 40 nm having a saturation magnetization of ∼65 Am{sup 2} kg{sup −1}. The use of polyvinylpyrrolidone led to hexagonal nanoparticles with a facet-to-facet distance of 120 nm and a thickness of 53 nm with a saturation magnetization of ∼54 Am{sup 2} kg{sup −1}. Additives such as oleic acid and trisodium citrate yielded quasi-spherical nanoparticles of 25 nm in size with a saturation magnetization of ∼70 Am{sup 2} kg{sup −1} and spheroidal nanoparticles of 60 nm in size with a saturation magnetization up to ∼82 Am{sup 2} kg{sup −1}, respectively. A kinetic control of the crystal growth is believed to be responsible for the hexagonal habit of the nanoparticles obtained without additive. Conversely, a thermodynamic control of the crystal growth, leading to spheroidal nanoparticles, seems to occur when additives which strongly interact with the nanoparticle surface are used. A thorough characterization of the materials was performed. Magnetic properties were investigated by Superconducting Quantum Interference Device and Vibrating Sample magnetometers. Based on the observed magnetic properties, the magnetite obtained using citrate appears to be a promising support for magnetically transportable catalysts.

  13. An ATR-FTIR study of sulphate sorption on magnetite; rate of adsorption, surface speciation, and effect of calcium ions.

    Science.gov (United States)

    Roonasi, Payman; Holmgren, Allan

    2009-05-01

    The adsorption of sulphate on magnetite was studied in-situ using ATR-FTIR spectroscopy. Synthetic magnetite particles were deposited on a ZnSe internal reflection element and the spectra of sulphate adsorbed at pH 4-8.5 were recorded. Two different ionic strengths were used viz. 0.01 M and 0.1 M NaCl. The spectra of adsorbed sulphate on magnetite coated ZnSe were compared with the spectra of sulphate solutions at the same pH values and in contact with uncoated ZnSe. The spectrum of adsorbed sulphate at pH 4 showed three maxima at 979, 1044, and 1115 cm(-1) indicating a monodentate adsorption in which the T(d) symmetry of SO(4)(2-) is lowered to C(3v). At pH 6.5, sulphate adsorbed as an outer-sphere complex with two weak bands appearing at 1102 and 980 cm(-1). Moreover, spectra of the adsorbed sulphate at pH 4 were recorded as a function of time and sulphate concentration. The equilibrium absorbance at different concentrations fitted a Langmuir type adsorption isotherm. The Langmuir affinity constant K at pH 4 was determined from the slope and intercept of the Langmuir plot to be K=1.2344x10(4) M(-1) and the Gibbs free energy of adsorption DeltaG(ads)(0) was estimated from this value to be -33.3 kJ/mol. Kinetic analysis indicated that adsorption at pH 4 is fast, whilst the desorption kinetic at the same pH is very slow. In addition, the effect of Ca ions on sulphate adsorption was also studied. It was shown that Ca ions increased the sulphate adsorption on magnetite at pH 8.5.

  14. Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles.

    Science.gov (United States)

    Reddy, Karen; Nasr, Mahmoud; Kumari, Sheena; Kumar, Santhosh; Gupta, Sanjay Kumar; Enitan, Abimbola Motunrayo; Bux, Faizal

    2017-03-01

    Batch dark fermentation experiments were conducted to investigate the effects of initial pH, substrate-to-biomass (S/X) ratio, and concentrations of Fe2+ and magnetite nanoparticles on biohydrogen production from sugarcane bagasse (SCB) hydrolysate. By applying the response surface methodology, the optimum condition of steam-acid hydrolysis was 0.64% (v/v) H2SO4 for 55.7 min, which obtained a sugar yield of 274 mg g-1. The maximum hydrogen yield (HY) of 0.874 mol (mol glucose-1) was detected at the optimum pH of 5.0 and S/X ratio of 0.5 g chemical oxygen demand (COD, g VSS-1). The addition of Fe2+ 200 mg L-1 and magnetite nanoparticles 200 mg L-1 to the inoculum enhanced the HY by 62.1% and 69.6%, respectively. The kinetics of hydrogen production was estimated by fitting the experimental data to the modified Gompertz model. The inhibitory effects of adding Fe2+ and magnetite nanoparticles to the fermentative hydrogen production were examined by applying Andrew's inhibition model. COD mass balance and full stoichiometric reactions, including soluble metabolic products, cell synthesis, and H2 production, indicated the reliability of the experimental results. A qPCR-based analysis was conducted to assess the microbial community structure using Enterobacteriaceae, Clostridium spp., and hydrogenase-specific gene activity. Results from the microbial analysis revealed the dominance of hydrogen producers in the inoculum immobilized on magnetite nanoparticles, followed by the inoculum supplemented with Fe2+ concentration. Graphical abstract ᅟ.

  15. Nanohybride Materials Based on Magnetite-Gold Nanoparticles for Diagnostics of Prostate Cancer: Synthesis and In Vitro Testing.

    Science.gov (United States)

    Machulkin, A E; Garanina, A S; Zhironkina, O A; Beloglazkina, E K; Zyk, N V; Savchenko, A G; Kotelyanskii, V E; Mazhuga, A G

    2016-09-01

    We synthesized a fluorescence conjugate and modified magnetite-gold nanoparticles carrying prostate specific membrane antigen (PSMA) as the ligand. Analysis of their binding to human prostate cancer cell lines PC-3 (PSMA-) and LNCaP (PSMA+) showed selective interaction of the synthesized conjugate and modified nanoparticles with LNCaP cells. These findings suggest that these nanoparticles can be used in tissue-specific magnetic-resonance imaging.

  16. One-pot template-free synthesis of uniform-sized fullerene-like magnetite hollow spheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qing; Zhang, Yue, E-mail: 273551472@qq.com; Liu, Zheng; Zhou, Xinrui; Zhang, Xinmei; Zeng, Lintao

    2015-11-30

    Graphical abstract: Uniform-sized Fe{sub 3}O{sub 4} hollow spheres with average diameter of 250 nm and shell thickness of ∼50 nm have been successfully synthesized through a simple hydrothermal route with the presence of di-n-propylamine (DPA) as a weak-base. The magnetic property investigation shows that these hollow spheres have a higher saturation magnetization (M{sub s}) than the solid spheres. Furthermore, a possible mechanism for the formation of magnetite hollow spheres is proposed based on the experimental observations. - Highlights: • Uniform-sized Fe{sub 3}O{sub 4} hollow microspheres were prepared by a hydrothermal method. • The used reagent di-n-propylamine made it easy for further surface modification. • The saturation magnetization of hollow spheres was higher than that of solid ones. • The formation mechanism was discussed. • This method provides a convenient way to fabricate other hollow ferrite spheres. - Abstract: Uniform-sized Fe{sub 3}O{sub 4} hollow spheres with average diameter of 250 nm and shell thickness of ∼50 nm have been successfully synthesized through a simple hydrothermal route with the presence of di-n-propylamine (DPA) as a weak-base. The reaction time and DPA amount play important roles in the formation of the magnetite hollow spheres. The structures of the products were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy. The results show that the single-crystalline Fe{sub 3}O{sub 4} hollow spheres are composed of well-aligned magnetite nanoparticles (NPs). The magnetic property investigation shows that these hollow spheres have a higher saturation magnetization (M{sub s}) than the solid spheres. Furthermore, a possible mechanism for the formation of magnetite hollow spheres is proposed based on the experimental observations.

  17. β-Cyclodextrin/thermosensitive containing polymer brushes grafted onto magnetite nano-particles for extraction and determination of venlafaxine in biological and pharmaceutical samples.

    Science.gov (United States)

    Ahmad Panahi, Homayon; Alaei, Haniyeh Sadat

    2014-12-10

    In this paper, a novel nano-sorbent is fabricated by the surface grafting of poly[β-CD/allylamine-co-N-isopropylacrylamide] onto modified magnetite nano-particles by 3-mercaptopropyltrimethoxysilane. The polymer grafted magnetite nano-particles was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, scanning electron microscopy, and transmission electron microscopy. The feasibility of employing this nano-sorbent for extraction of trace venlafaxine in pharmaceutical samples and human biological fluids are investigated. The effect of various parameters such as pH, reaction temperature, and contact time was evaluated. The result revealed that the best sorption of venlafaxine by the magnetite nano-sorbent occurred at 35 °C at an optimum pH of 5. The kinetics of the venlafaxine shows accessibility of active sites in the grafted polymer onto the drug. The equilibrium data of venlafaxine by grafted magnetite nano-sorbent are well represented by the Langmuir and Freundlich isotherm models. The adsorption capacity of venlafaxine is found 142.8 mg g(-1) and indicated the homogeneous sites onto polymer grafted magnetite nano-sorbent surface. Nearly 80% of venlafaxine was released in simulated intestinal fluid, pH 7.4, in 30 h and 90% in simulated gastric fluid, pH 1.2, in 1 h. The venlafaxine loaded-polymer grafted magnetite nano-particles were successfully applied for the extraction in urine and pharmaceutical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Sonochemical stabilization of ultrafine colloidal biocompatible magnetite nanoparticles using amino acid, L-arginine, for possible bio applications.

    Science.gov (United States)

    Theerdhala, Sriharsha; Bahadur, Dhirendra; Vitta, Satish; Perkas, Nina; Zhong, Ziyi; Gedanken, Aharon

    2010-04-01

    Materials obtained by the synergistic combination of nanotechnology and biomedicine are an important source of drug delivery and other health care related applications. The anchoring of amino acids onto the surface of nano-sized magnetite is one such example. Herein, we report on the binding of a semi-essential amino acid, L-arginine, onto the surface of nano magnetite, creating a stable aqueous suspension by an in situ one-step method using sonochemical synthesis. An ex situ two-step process was also attempted, but was soon discarded owing to the relative short duration of the suspension attributed to increase in particle size and lower extent of binding. The initial concentration of the amino acid was found to play an important role in controlling the particle size and also the binding motif. Lower concentrations of arginine were found to favor the formation of elongated tubular structures, while at higher concentrations, the elongated structures were less prominent and arginine was found to be adsorbed onto the surface of the magnetite. This surface-functionalized nanomagnetite with amino acids could become a promising vehicle for drug delivery. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  19. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils

    Energy Technology Data Exchange (ETDEWEB)

    Pan Gang, E-mail: gpan@rcees.ac.c [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Li Lei [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Zhao Dongye [Department of Civil Engineering, Auburn University, AL 36830 (United States); Chen Hao [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2010-01-15

    Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized 'nanomagnetite' could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase. - CMC-stabilized magnetite nanoparticles can effectively penetrate soil columns and immobilize phosphate in situ.

  20. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Science.gov (United States)

    Mahdieh, Athar; Mahdavian, Ali Reza; Salehi-Mobarakeh, Hamid

    2017-03-01

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe3O4 nanoparticles with polymerizable groups is presented here. After synthesis of Fe3O4 nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe3O4 are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe3O4 nanoparticles (0-10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles.

  1. MAGNETITE-HEMATITE IRON ORE OCCURRENCES IN THE TRIASSIC-PALEOZOIC METAMORPHIC COMPLEX OF MEDVEDNICA MOUNTAIN, CROATIA

    Directory of Open Access Journals (Sweden)

    Ivan Jurković

    2005-12-01

    Full Text Available Iron ore occurrences are situated on the south-eastern slopes of the Medvednica Mountain. They occur as discontinous, decameters long and 2-3.5 m thick bedded, poorly mineralized (15-35 % Fe lenses. A narrow, 6 km long, ore zone strikes NE-SW from Tisova Peć to Pustodol-Adolfovac. It is spatially and genetically bounded to the basic volcanogenic-sedimentary series (SEDEX-type, metamorphosed in greenschists during Cretaceous under P 3-3.5 kbar and T 350-400°C. The main minerals of the paragenesis are: quartz, chlorite, hematite, magnetite, stilpnomelane, martite. Similar types of Neo-Proterozoic and Early Paleozoic iron deposits were found in eastern Bosnia - western Serbia, western Macedonia and in the Serbo-Macedonian Mass. In the Triassic period of the Dinarides, magnetite-hematite deposits occur only as iron skarns or as short veins and small sized bodies of pneumatolytic-hydrothermal origin genetically bounded to gabbro-diorite or syenite stock and dykes. In the Triassic vulcanogenic-sedimentary complexes pointing occur only bedded deposits of red hematite, siderite, as well as locally with Mn-oxide ores. The arguments for the Paleozoic age of the Mt. Medvednica iron deposits are more convincing than those proposing theoretically possible Triassic age. The structures, textures and parageneses of the Mt. Medvednica magnetite-hematite occurrences are very similar only to the iron ores situated in the Early Paleozoic metamorphic complexes.

  2. Studies on the role of unsaturation in the fatty acid surfactant molecule on the thermal conductivity of magnetite nanofluids.

    Science.gov (United States)

    Lenin, Ramanujam; Joy, Pattayil Alias

    2017-11-15

    To study the role of unsaturation in the surfactant molecule on the thermal conductivity of magnetite nanofluids, four different fatty acid (stearic, oleic, linoleic, and linolenic acids with different degree of unsaturation) coated magnetite nanoparticles of comparable size are prepared and dispersed in toluene. It is found that the nanofluid with the saturated fatty acid coated nanoparticles show larger viscosity than the fluid with the unsaturated fatty acid coated particles at all concentrations. Thermal conductivity studies show enhancement only above a critical concentration for all fluids. The critical concentration for thermal conductivity enhancement varies with the surfactant, possibly due to the difference in the degree of aggregation of the nanoparticles in the fluid, because of the difference in the conformation of the surfactant molecules on the nanoparticle's surface. The experimental thermal conductivity follows the Maxwell model at higher concentrations. From the overall studies, it is observed that the thermal conductivity of the fluids with aggregated or assembled nanoparticles shows slightly larger enhancement than that of the fluids with isolated particles. However, in the presence of a magnetic field, the fluids with isolated nanoparticles showed relatively larger enhancement, possibly due to the easy response of the isolated magnetite nanoparticles to the applied field. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bleomycin Loaded Magnetite Nanoparticles Functionalized by Polyacrylic Acid as a New Antitumoral Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Yue Xu

    2013-01-01

    Full Text Available Objective. To prepare, characterize, and analyze the release behavior of bleomycin-loaded magnetite nanoparticles (BLM-MNPs coated with polyacrylic acid (PAA as a new drug delivery system that can be specifically distributed in the tumor site. Methods. BLM-MNPs coated with PAA were prepared using a solvothermal approach. The particles were characterized using scanning electron microscope (SEM, vibrating sample magnetometer (VSM, and Fourier transform infrared spectroscopy (FTIR. The loading and release behaviors of BLM-MNPs were examined by a mathematical formula and in vitro release profile at pH 7.5. Results. The sphere Fe3O4 nanoparticles with the size of approximately 30 nm exhibit a saturation magnetization of 87 emu/g. The noncoordinated carboxylate groups of PAA confer on the good dispersibility in the aqueous solution and lead to a good loading efficiency of BLM reaching 50% or higher. Approximately 98% of immobilized BLM could be released within 24 h, of which 22.4% was released in the first hour and then the remaining was released slowly and quantitatively in the next 23 hours. Conclusion. BLM-MNPs were prepared and characterized successfully. The particles show high saturation magnetization, high drug loading capacity, and favorable release property, which could contribute to the specific delivery and controllable release of BLM, and the BLM-MNPs could be a potential candidate for the development of treating solid tumors.

  4. Facile Synthesis Polyethylene Glycol Coated Magnetite Nanoparticles for High Colloidal Stability

    Directory of Open Access Journals (Sweden)

    Mun Foong Tai

    2016-01-01

    Full Text Available Polyethylene glycol (PEG is one of the most frequently used synthetic polymers for surface modifications of magnetite nanoparticles (MNPs to provide a new opportunity for constructing high colloidal stability. Herein, a facile in situ coprecipitation technique is described for the synthesis of PEG coated MNPs using ammonium hydroxide as the precipitating agent. The structure and morphology of the prepared PEG coated MNPs samples were characterized by Fourier transform infrared (FTIR spectroscopy, X-ray spectroscopy, thermogravimetric analysis (TGA, and the high resolution transmission electron microscopy (HRTEM. In this study, all samples demonstrated hydrodynamic size in the range of 32 to 43 nm with narrow size distribution. In addition, the magnetic properties of resultant samples were investigated using a vibrating sample magnetometer (VSM to reveal the superparamagnetic behaviour with saturation magnetization. The saturation magnetization of PEG coated MNPs samples was in the range of 63 to 66 emu/g at 300 K. Interestingly, it was found that 1.0 g of PEG coated MNPs exhibited high colloidal stability in a basic solution (pH = 10 and nitrile (NBR latex up to 21 days as compared to the unmodified MNPs during the sedimentation test.

  5. Adsorption of biomedical coating molecules, amino acids, and short peptides on magnetite (110)

    Science.gov (United States)

    Aschauer, Ulrich; Selloni, Annabella

    2015-07-01

    Superparamagnetic iron oxide nanoparticles for biomedical applications are usually coated with organic molecules to form a steric barrier against agglomeration. The stability of these coatings is well established in the synthesis medium but is more difficult to assess in physiological environment. To obtain a first theoretical estimate of their stability in such an environment, we perform density functional theory calculations of the adsorption of water, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) coating molecules, as well as the monomer and dimer of glycine as a prototype short peptide, on the (110) surface of magnetite (Fe3O4) in vacuo. Our results show that PVA binds significantly stronger to the surface than both PEG and glycine, while the difference between the latter two is quite small. Depending on the coverage, the water adsorption strength is intermediate between PVA and glycine. Due to its strongly interacting OH side groups, PVA is likely to remain bound to the surface in the presence of short peptides. This stability will have to be further assessed by molecular dynamics in the solvated state for which the present work forms the basis.

  6. Lipase immobilized on polydopamine-coated magnetite nanoparticles for biodiesel production from soybean oil

    Directory of Open Access Journals (Sweden)

    Marcos F. C. Andrade

    2016-06-01

    Full Text Available Lipase from Pseudomonas cepacia was covalently attached to magnetite nanoparticles coated with a thin polydopamine film, and employed in the enzymatic conversion of soybean oil into biodiesel, in the presence of methanol.  The proposed strategy explored the direct immobilization of the enzyme via Michael addition and aldolic condensation reactions at the catechol rings, with no need of using specific coupling agents. In addition, a larger amount of enzymes could be bound to the magnetic nanoparticles, allowing their efficient recycling with the use of an external magnet. In the biodiesel conversion, the transesterification reaction was carried out directly in soybean oil by the stepwise addition of methanol, in order to circumvent its inactivation effect on the enzyme. A better yield was  obtained in relation to the free enzyme, achieving 90% yield at 37 oC.  However, the catalysis became  gradually less effective after the third cycle, due to its prolonged exposition to the denaturating methanol medium.

  7. Highly active Pd-on-magnetite nanocatalysts for aqueous phase hydrodechlorination reactions.

    Science.gov (United States)

    Hildebrand, Heike; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2009-05-01

    Nanoscale catalyst particles are already in focus as excellent tools in catalytic processes and intensive research is currently optimizing their performance. As known from nanosized metal particles, nanocatalysts have the potential of very high reaction rates due to their high specific surface areas and low mass transfer restrictions. In this study, we generated extremely active palladium catalysts on the basis of colloidal magnetic carriers. The most active catalyst contains only traces of Pd (0.15 wt %) on nanomagnetite as carrier. Pd-on-magnetite was successfully tested in batch experiments for the hydrodechlorination (HDC) of the chlorohydrocarbons trichloroethene (TCE) and chlorobenzene. For the HDC of TCE, second-order rate coefficients of approximately 1.6 x 10(4) L g(-1) min(-1) were measured. Such high activities have never been described before for Pd-containing catalysts in aqueous phase HDC reactions. The ferrimagnetism of the carrier enables a separation of the nanocatalyst from the treated water by means of magnetic separation. This allows the catalyst to be reused several times, which is an important advantage compared to other nanoscale catalytic systems such as pure Pd or Pd-on-Au colloids.

  8. Carrageenan-grafted magnetite nanoparticles as recyclable sorbents for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel-da-Silva, Ana L., E-mail: ana.luisa@ua.pt; Salgueiro, Ana M., E-mail: a38242@ua.pt; Creaney, Bianca, E-mail: bianca.creaney@gmail.com; Oliveira-Silva, Rui, E-mail: ruipedro.silva@ua.pt [University of Aveiro, Department of Chemistry, CICECO, Aveiro Institute of Materials (Portugal); Silva, Nuno J. O., E-mail: nunojoao@ua.pt [University of Aveiro, Department of Physics, CICECO, Aveiro Institute of Materials (Portugal); Trindade, Tito, E-mail: tito@ua.pt [University of Aveiro, Department of Chemistry, CICECO, Aveiro Institute of Materials (Portugal)

    2015-07-15

    The efforts dedicated to improving water decontamination procedures have prompted the interest in the development of efficient, inexpensive, and reusable sorbents for the uptake of dye pollutants. In this work, novel sorbents consisting of carrageenan polysaccharides grafted to magnetic iron oxide nanoparticles were prepared. κ- and ι-carrageenan were first chemically modified by carboxymethylation and then covalently attached via amide bond to the surface of aminated silica-coated magnetite nanoparticles, both steps monitored using infrared spectroscopy (FTIR) analysis. The kinetics and the equilibrium behavior of the cationic dye methylene blue (MB) adsorption onto the carrageenan sorbents were investigated. ι-carrageenan sorbents displayed higher MB adsorption capacity that was ascribed to high content of sulfonate groups. Overall, the pseudo-second order equation provided a good description of the adsorption kinetics. The κ-carrageenan sorbents followed an unusual Z-type equilibrium adsorption isotherm whereas the isotherm of ι-carrageenan sorbents, although displaying a conventional shape, could not be successfully predicted by isotherm models commonly used. Noteworthy, both sorbents were long-term stable and could easily be recycled by simply rinsing with KCl aqueous solution. The removal efficiency of κ-carrageenan sorbents was 92 % in the first adsorption cycle and kept high (>80 %) even after six consecutive adsorption/desorption cycles.

  9. Study of mesoporous silica/magnetite systems in drug controlled release.

    Science.gov (United States)

    Souza, K C; Ardisson, J D; Sousa, E M B

    2009-02-01

    Ordered mesoporous materials like SBA-15 have a network of channels and pores with well-defined size in the nanoscale range. This particular silica matrix pore architecture makes them suitable for hosting a broad variety of compounds in very promising materials in a range of applications, including drug release magnetic carriers. In this work, magnetic nanoparticles embedded into mesoporous silica were prepared in two steps: first, magnetite was synthesized by oxidation-precipitation method, and next, the magnetic nanoparticles were coated with mesoporous silica by using nonionic block copolymer surfactants as structure-directing agents. The materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), N(2) adsorption, and scanning electron microscopy (SEM). The influence of magnetic nanoparticles on drug release kinetics was studied with cisplatin, carboplatin, and atenolol under in vitro conditions in the absence and in the presence of an external magnetic field (0.25 T) by using NdFeB permanent magnet. The constant external magnetic field did not affect drug release significantly. The low-frequency alternating magnetic field had a large influence on the cisplatin release profile.

  10. Application of biocompatible magnetite nanoparticles for the removal of arsenic and copper from water

    Science.gov (United States)

    Iconaru, S. L.; Beuran, M.; Turculet, C. S.; Negoi, I.; Teleanu, G.; Prodan, A. M.; Motelica-Heino, M.; Guégan, R.; Ciobanu, C. S.; Jiga, G.; Predoi, Daniela

    2018-02-01

    The progress of nanotechnology made possible the use of nanomaterials as adsorbents and magnetic iron oxides represents one of the first generations of nanoscale materials used in environment technologies [1]. A systematic characterization of commercial magnetite (Fe3O4) is presented in this research. The commercial (Fe3O4) magnetic adsorbents were characterized by various characterizations methods such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). This study was also focused on the study of adsorption isotherms and the kinetics evaluation. X-ray studies indicated that As3+ and Cu2+ removed by Fe3O4 did not seem to alter the structure of Fe3O4 but they were highlighted in the EDX analysis. In addition, the SEM studies were consistent with the XRD results. The rate of adsorption of contaminants, in contaminated solutions decreases when the amount of contaminant increases in all experiments performed. The results revealed that Fe3O4 nanoparticles are promising candidates which could be used as sorbents for the removal of arsenic from the marine environment, for site remediation and groundwater treatment.

  11. Uniform and water stable magnetite nanoparticles with diameters around the monodomain-multidomain limit

    Energy Technology Data Exchange (ETDEWEB)

    Verges, M Andres [Department of Organic and Inorganic Chemistry, Universidad de Exremadura, Avda Elvas s/n, 06071 Badajoz (Spain); Costo, R; Roca, A G; Serna, C J; Morales, M P [Department of Particulate Materials, Instituto de Ciencia de Materiales de Madrid, ICMM, CSIC, c/ Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain); Marco, J F [Instituto de Quimica Fisica Rocasolano, CSIC, c/ Serrano 113, 28013 Madrid (Spain); Goya, G F [Instituto Universitario de Investigacion en Nanociencia de Aragon (INA), Cerbuna 12, 50009-Zaragoza (Spain)], E-mail: puerto@icmm.csic.es

    2008-07-07

    A direct method for the preparation of uniform magnetite nanoparticles with sizes around 30 nm and stable in aqueous media at pH 7 has been developed. This method is based on the precipitation of an iron (II) salt (FeSO{sub 4}) in the presence of a base (NaOH) and a mild oxidant (KNO{sub 3}). Reaction rate seems to be controlled by the iron salt concentration and the presence of ethanol in the media. Thus lower iron concentration and a water/ethanol ratio equal to one lead to the formation of the smallest particles, 30 nm in diameter. Colloidal suspensions of these particles were directly obtained by simple ultrasonic treatment of the powders leading to very stable ferrofluids at pH 7. Sulphate anions present at the particle surface seem to be responsible for the colloidal stability, providing a biocompatible character to the suspensions. The structural, morphological and magnetic characterization of the nanoparticles is also described and suggests that the smallest particles have a diameter close to the limit between monodomain-multidomain magnetic structure, which could account for the high powder absorption of magnetic fields. According to this calorimetric experiments resulted in specific power absorption rates of ca 80-95 W g{sup -1}, which are among the highest values reported in the literature and make these nanoparticles very interesting for hyperthermia.

  12. Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method

    Directory of Open Access Journals (Sweden)

    B.I. Macías-Martínez

    2016-08-01

    Full Text Available The present paper reports the heating ability and hemolysis test of magnetite nanoparticles (MNPs for biomedical applications, obtained by a novel and easy co-precipitation method, in which it is not necessary the use of controlled atmospheres and high stirring rates. Different molar proportions of FeCl2:FeCl3 (2:1 and 3:2 respectively were used and the obtained MNPs were analyzed by X-ray diffraction, vibrating sample magnetometry and transmission electron microscopy. The heating ability was evaluated under a magnetic field using a solid state induction heating equipment at two different frequencies (362 and 200 kHz. Additionally, a hemolysis test was performed according to the ASTM method. The obtained ferrites showed a particle size in the range of 8–12 nm and superparamagnetic behavior. The MNPs increased the temperature up to 43.1 °C in 5 min under a low magnetic field and showed non hemolytic effect up to 3 mg/ml. The MNPs obtained are highly potential materials for hyperthermia cancer treatment.

  13. Magnetite-loaded fluorine-containing polymeric micelles for magnetic resonance imaging and drug delivery.

    Science.gov (United States)

    Li, Xiaolong; Li, Huan; Liu, Guoqiang; Deng, Ziwei; Wu, Shuilin; Li, Penghui; Xu, Zushun; Xu, Haibo; Chu, Paul K

    2012-04-01

    Magnetite (Fe(3)O(4)) - loaded polymer micelles (denoted as "magnetomicelles") are produced by self-assembly of fluorine-containing amphiphilic poly(HFMA-g-PEGMA) copolymers with oleic acid modified Fe(3)O(4) nanoparticles in an aqueous medium. The oleic acid modified Fe(3)O(4) nanoparticles form small clusters in the poly(HFMA-g-PEGMA) micelles with a mean diameter of 100 nm and the magnetomicelles show high stability in an aqueous medium due to the high hydrophobic fluorine segments in graft copolymers enhance the stability of the micelles. The magnetomicelles also show good cytocompatibility based on the MTT cytotoxicity assay and possess paramagnetic properties with saturation magnetization of 17.14 emu/g.Their good stability, cytocompatibility, and paramagnetic properties render the materials attractive in drug delivery and in vivo magnetic resonance imaging (MRI) applications. Controlled release of hydrophobic drug-5-fluorouracil is achieved from the magnetomicelles with a loading efficiency of 20.94 wt%. The magnetomicelles have transverse relaxivity rates (r(2)) of 134.27 mM(-1) s(-1) and exhibit high efficacy as a negative MRI agent in T(2)-weighted imaging. In vivo MRI studies demonstrate that the contrast between liver and spleen is enhanced by the magnetomicelles. These favorable properties suggest clinical use as nanocarriers in drug delivery applications and contrast agents in MRI. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole.

    Science.gov (United States)

    Harijan, Dilip K L; Chandra, Vimlesh; Yoon, Taeseung; Kim, Kwang S

    2017-11-02

    The effective capture and storage of radioactive iodine is of importance for nuclear waste storage during nuclear power station accidents. Here we report Fe3O4@PPy powder containing ∼12nm magnetite (Fe3O4) nanoparticles encapsulated in the polypyrrole (PPy) matrix. It shows 1627mg/g uptake of iodine dissolved in water, within 2h at room temperature. Fe3O4@PPy is ferromagnetic in nature and can be separated from water using external magnetic field. The nitrogen gas sweeping test at 30°C shows release of 2% iodine from iodine adsorbed Fe3O4@PPy, revealing stable storage of iodine for a moderate period. The iodine-adsorbed magnetic powder can be regenerated by washing with ethanol. The XPS spectrum of iodine adsorbed Fe3O4@PPy confirmed the presence of polyiodides (I3- and I5-) bound to the PPy surface. This excellent iodine capture and storage from iodine contaminated water is an environment friendly, inexpensive and large scale method. Copyright © 2017. Published by Elsevier B.V.

  15. Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles

    Science.gov (United States)

    Gupta, Amit; Kane, Ravi S.; Borca-Tasciuc, Diana-Andra

    2010-09-01

    This paper describes a new technique employing fluorescent quantum dots as temperature probes for measuring the temperature rise in the proximity of nanoparticles heated by a radio frequency (rf) electromagnetic field. The remote heating of nanoparticles by an rf field is a promising approach to control biological transformations at the molecular level. In principle, the heat dissipated by each nanoparticle might produce a temperature increase in its proximity, facilitating a change in the molecules directly attached to it but not in the others. Although this method has been demonstrated to provide control over biological transformations, the proposed mechanism involves producing and maintaining large temperature differences across small distances, in the range of several degrees Celsius across tens of nanometers. Existing theories for heat generation and transfer in rf heated nanoparticle systems cannot account for these gradients. To better understand the limitations of local heating, the temperature in the vicinity of rf heated nanoparticles was measured. Dilute aqueous suspensions of gold and magnetite nanoparticles were remotely heated by an rf field between 600-800 kHz. Two systems were investigated: a control sample consisting of quantum dots mixed with nanoparticles and a solution of quantum dots covalently linked to nanoparticles. The temperature of the fluorescent probes represents the average temperature in the former and the local temperature in the later. For the experimental conditions employed in this study, the measured temperature rise in the vicinity of rf heated nanoparticles were similar to the average or "bulk" temperature, in agreement with theoretical predictions.

  16. Oral magnetite nanoparticles disturb the development of Drosophila melanogaster from oogenesis to adult emergence.

    Science.gov (United States)

    Chen, Hanqing; Wang, Bing; Feng, Weiyue; Du, Wei; Ouyang, Hong; Chai, Zhifang; Bi, Xiaolin

    2015-05-01

    The potential impacts of nanomaterials (NMs) on fetal development have attracted great concerns because of the increased potential exposure to NMs during pregnancy. Drosophila melanogaster oogenesis and developmental transitions may provide an attractive system to study the biological and environmental effects of NMs on the embryonic development. In this study, the effects of three types of magnetite (Fe3O4) nanoparticles (MNPs): UN-MNPs (pristine), CA-MNPs (citric acid modified) and APTS-MNPs (3-aminopropyltriethoxylsilane coated) on the development of Drosophila at 300 and 600 μg/g dosage were studied. The uptake of MNPs by female and male flies caused obvious reduction in the female fecundity, and the developmental delay at the egg-pupae and pupae-adult transitions, especially in those treated by the positive APTS-MNPs. Further investigation demonstrates that the parental uptake of MNPs disturbs the oogenesis period, induces ovarian defect, reduces the length of eggs, decreases the number of nurse cells and delays egg chamber development, which may contribute to the decrease of fecundity of female Drosophila and the development delay of their offspring. Using the synchrotron radiation-based micro-X-ray fluorescence (SR-μXRF), the dyshomeostasis of trace elements such as Fe, Ca and Cu along the anterior-posterior axis of the fertilized eggs was found, which may be an important reason for the development delay of Drosophila.

  17. Magnetorheological fluid based on submicrometric silica-coated magnetite particles under an oscillatory magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Agustín-Serrano, R. [Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Puebla, Puebla 72570, México (Mexico); Donado, F., E-mail: fernando@uaeh.edu.mx [Instituto de Ciencias Básicas e Ingeniería de la Universidad Autónoma del Estado de Hidalgo-AAMF, Pachuca 42184, México (Mexico); Rubio-Rosas, E. [Centro Universitario de Vinculación, Universidad Autónoma de Puebla, Puebla 72570, México (Mexico)

    2013-06-15

    An experimental study conducted on the rheological properties of a magnetorheological fluid based on submicrometric silica-coated magnetite particles dispersed in silicone oil is presented. We investigated the rheological behaviour when the system is simultaneously exposed to a static field and a sinusoidal field used as a perturbation. The results show that the perturbation modifies the rheological behaviour of the system and can be used to control its physical properties; however, the changes that are induced are smaller than expected from previous results for the aggregation of particles under magnetic perturbations. We discussed this difference in terms of the ratio between the magnetic energy and the thermal energy. We observed that a threshold magnetic field exists; below it, the yield stress is practically zero, whereas above it, the yield stress grows quickly. We discuss this result in terms of a model based on chain length distribution. - Highlights: ► We study a magnetorheological fluid under an oscillatory magnetic field. ► The exponential chain length distribution depends on the average chain length. ► A simple yield stress model based on the chain length distribution is proposed.

  18. Biocompatible APTES-PEG modified magnetite nanoparticles: effective carriers of antineoplastic agents to ovarian cancer.

    Science.gov (United States)

    Javid, Amaneh; Ahmadian, Shahin; Saboury, Ali Akbar; Kalantar, Seyed Mehdi; Rezaei-Zarchi, Saeed; Shahzad, Sughra

    2014-05-01

    Magnetite nanoparticles are particularly attractive for drug delivery applications because of their size-dependent superparamagnetism, low toxicity, and biocompatibility with cells and tissues. Surface modification of iron oxide nanoparticles with biocompatible polymers is potentially beneficial to prepare biodegradable nanocomposite-based drug delivery agents for in vivo and in vitro applications. In the present study, the bare (10 nm) and polyethylene glycol (PEG)-(3-aminopropyl)triethoxysilane (APTES) (PA) modified (17 nm) superparamagnetic iron oxide nanoparticles (SPIO NPs) were synthesized by coprecipitation method. The anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately encapsulated into the synthesized polymeric nanocomposites for localized targeting of human ovarian cancer in vitro. Surface morphology analysis by scanning electron microscopy showed a slight increase in particle size (27 ± 0.7 and 30 ± 0.45 nm) with drug loading capacities of 70 and 61.5 % and release capabilities of 90 and 93 % for the DOX- and PTX-AP-SPIO NPs, respectively (p APTES-PEG-SPIO-based nanocomposite system of targeted drug delivery proved to be effective enough in order to treat deadly solid tumor of ovarian cancer in vitro and in vivo.

  19. Biodegradable nanocomposite magnetite stent for implant-assisted magnetic drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Mangual, Jan O.; Li Shigeng; Ploehn, Harry J.; Ebner, Armin D. [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, SC 29208 (United States); Ritter, James A., E-mail: ritter@cec.sc.ed [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina, Columbia, SC 29208 (United States)

    2010-10-15

    This study shows, for the first time, the fabrication of a biodegradable polymer nanocomposite magnetic stent and the feasibility of its use in implant-assisted-magnetic drug targeting (IA-MDT). The nanocomposite magnetic stent was made from PLGA, a biodegradable copolymer, and iron oxide nanopowder via melt mixing and extrusion into fibers. Degradation and dynamic mechanical thermal analyses showed that the addition of the iron oxide nanopowder increased the polymer's glass transition temperature (T{sub g}) and its modulus but had no notable effect on its degradation rate in PBS buffer solution. IA-MDT in vitro experiments were carried out with the nanocomposite magnetic fiber molded into a stent coil. These stent prototypes were used in the presence of a homogeneous magnetic field of 0.3 T to capture 100 nm magnetic drug carrier particles (MDCPs) from an aqueous solution. Increasing the amount of magnetite in the stent nanocomposite (0, 10 and 40 w/w%) resulted in an increase in the MDCP capture efficiency (CE). Reducing the MDCP concentrations (0.75 and 1.5 mg/mL) in the flowing fluid and increasing the fluid velocities (20 and 40 mL/min) both resulted in decrease in the MDCP CE. These results show that the particle capture performance of PLGA-based, magnetic nanocomposite stents are similar to those exhibited by a variety of different non-polymeric magnetic stent materials studied previously.

  20. Effect of oxidation degree on the synthesis and adsorption property of magnetite/graphene nanocomposites

    Science.gov (United States)

    Luo, Kun; Mu, Yuanying; Wang, Peng; Liu, Xiaoteng

    2015-12-01

    A facile approach is demonstrated to synthesize a series of magnetite/graphene nanocomposites by solvothermal method, which can be easily collected after removal of pollutants without secondary pollution of graphene powders. Raman and FT-IR analyses show that the reduction of the mixing vapor of ammonia and hydrazine at different reaction periods generates the discrepancy of oxidation degree for reduced graphene oxide (rGO), which can be kept after the solvothermal synthesis of Fe3O4/rGO nanocomposites. Batch adsorption experiments indicate that the nanocomposite with maximum oxidation degree of rGO presents the largest magnetization of 35.4 emu g-1 and adsorption capacity of 59.2 mg g-1 for Cu2+, while the one with minimum oxidation degree exhibits the strongest adsorption of 39.0 mg g-1 for methylene blue accompanied with appropriate magnetization of 9.0 emu g-1, and only 23% of initial capacity was lost after seven recycling use. The adsorption kinetics of the both composites follows the pseudo-second-order model, suggestive of physical and chemical interactions between the pollutants and adsorbent. The results suggest that the oxidation degree of the rGO substrate can apparently influence both the structure and the adsorbing behavior of Fe3O4/rGO nanocomposites, which allows the control over the adsorbent performance according to the pollutant of interest.

  1. Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ioanna Savva

    2012-01-01

    Full Text Available Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA and 2-(acetoacetoxyethyl methacrylate (AEMA (MMA-co-AEMA and oleic acid-coated magnetite (OA·Fe3O4 nanoparticles. The AEMA moieties containing β-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4 content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

  2. Influences of surface coating, UV irradiation and magnetic field on the algae removal using magnetite nanoparticles.

    Science.gov (United States)

    Ge, Shijian; Agbakpe, Michael; Wu, Zhiyi; Kuang, Liyuan; Zhang, Wen; Wang, Xianqin

    2015-01-20

    Magnetophoretic separation is a promising and sustainable technology for rapid algal separation or removal from water. This work demonstrated the application of magnetic magnetite nanoparticles (MNPs) coated with a cationic polymer, polyethylenimine (PEI), toward the separation of Scenedesmus dimorphus from the medium broth. The influences of surface coating, UV irradiation, and magnetic field on the magnetophoretic separation were systematically examined. After PEI coating, zeta potential of MNPs shifted from −7.9 ± 2.0 to +39.0 ± 3.1 mV at a pH of 7.0, which improved MNPs-algae interaction and helped reduce the dose demand of MNPs (e.g., from 0.2 to 0.1 g·g(–1) while the harvesting efficiency (HE) of over 80% remained unchanged). The extended Derjaguin–Landau–Verwey–Overbeek theory predicted a strong attractive force between PEI-coated MNPs and algae, which supported the improved algal harvesting. Moreover, the HE was greater under the UV365 irradiation than that under the UV254, and increased with the irradiation intensity. Continuous application of the external magnetic field at high strength remarkably improved the algal harvesting. Finally, the reuse of MNPs for multiple cycles of algal harvesting was studied, which aimed at increasing the sustainability and lowering the cost.

  3. SERS Detection of Penicillin G Using Magnetite Decorated with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Paula C. Pinheiro

    2017-10-01

    Full Text Available Sensitive and reliable procedures for detecting vestigial antibiotics are of great relevance for water quality monitoring due to the occurrence of such emergent pollutants in the aquatic environment. As such, we describe here research concerning the use of multifunctional nanomaterials combining magnetic and plasmonic components. These nanomaterials have been prepared by decorating magnetite nanoparticles (MNP with colloidal gold nanoparticles (Au NPs of distinct particle size distributions. Several analytical conditions were investigated in order to optimize the surface enhanced Raman scattering (SERS detection of penicillin G (PG dissolved in water. In particular, the dependence of the SERS signal by using distinct sized Au NPs adsorbed at the MNP was investigated. Additionally, microscopic methods, including Raman confocal microscopy, were employed to characterize the SERS substrates and then to qualitatively detect penicillin G using such substrates. For example, magnetic–plasmonic nanocomposites can be employed for magnetically concentrate analyte molecules and their removal from solution. As a proof of concept, we applied magneto-plasmonic nanosorbents in the removal of aqueous penicillin G and demonstrate the possibility of SERS sensing this antibiotic.

  4. Synthesis of Polymer Grafted Magnetite Nanoparticle with the Highest Grafting Density via Controlled Radical Polymerization

    Science.gov (United States)

    Babu, Kothandapani; Dhamodharan, Raghavachari

    2009-09-01

    The surface-initiated ATRP of benzyl methacrylate, methyl methacrylate, and styrene from magnetite nanoparticle is investigated, without the use of sacrificial (free) initiator in solution. It is observed that the grafting density obtained is related to the polymerization kinetics, being higher for faster polymerizing monomer. The grafting density was found to be nearly 2 chains/nm2 for the rapidly polymerizing benzyl methacrylate. In contrast, for the less rapidly polymerizing styrene, the grafting density was found to be nearly 0.7 chain/nm2. It is hypothesized that this could be due to the relative rates of surface-initiated polymerization versus conformational mobility of polymer chains anchored by one end to the surface. An amphiphilic diblock polymer based on 2-hydroxylethyl methacrylate is synthesized from the polystyrene monolayer. The homopolymer and block copolymer grafted MNs form stable dispersions in various solvents. In order to evaluate molecular weight of the polymer that was grafted on to the surface of the nanoparticles, it was degrafted suitably and subjected to gel permeation chromatography analysis. Thermogravimetric analysis, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to confirm the grafting reaction.

  5. Synthesis of Polymer Grafted Magnetite Nanoparticle with the Highest Grafting Density via Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Babu Kothandapani

    2009-01-01

    Full Text Available Abstract The surface-initiated ATRP of benzyl methacrylate, methyl methacrylate, and styrene from magnetite nanoparticle is investigated, without the use of sacrificial (free initiator in solution. It is observed that the grafting density obtained is related to the polymerization kinetics, being higher for faster polymerizing monomer. The grafting density was found to be nearly 2 chains/nm2for the rapidly polymerizing benzyl methacrylate. In contrast, for the less rapidly polymerizing styrene, the grafting density was found to be nearly 0.7 chain/nm2. It is hypothesized that this could be due to the relative rates of surface-initiated polymerization versus conformational mobility of polymer chains anchored by one end to the surface. An amphiphilic diblock polymer based on 2-hydroxylethyl methacrylate is synthesized from the polystyrene monolayer. The homopolymer and block copolymer grafted MNs form stable dispersions in various solvents. In order to evaluate molecular weight of the polymer that was grafted on to the surface of the nanoparticles, it was degrafted suitably and subjected to gel permeation chromatography analysis. Thermogravimetric analysis, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to confirm the grafting reaction.

  6. Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres.

    Science.gov (United States)

    Gong, Jingming; Wang, Xiaoqing; Shao, Xiulan; Yuan, Shuang; Yang, Chenlin; Hu, Xianluo

    2012-11-15

    Magnetically driven separation technology has received considerable attention in recent decade for its great potential application. In this work, hierarchically structured magnetite-carbonaceous microspheres (Fe(3)O(4)-C MSs) have been synthesized for the adsorption of heavy metal ions from aqueous solution. Each sphere contains numerous unique rattle-type structured magnetic particles, realizing the integration of rattle-type building unit into microspheres. The as-prepared composites with high BET surface area, hierarchical as well as mesoporous structures, exhibit an excellent adsorption capacity for heavy metal ions and a convenient separation procedure with the help of an external magnet. It was found that the maximum adsorption capacity of the composite toward Pb(2+) was ∼126mgg(-1), displaying a high efficiency for the removal of heavy metal ions. The Freundlich adsorption isotherm was applicable to describe the removal processes. Kinetics of the Pb(2+) removal was found to follow pseudo-second-order rate equation. The as-prepared composite of Fe(3)O(4)-C MSs as well as Pb(2+)-adsorbed composite were carefully examined by scanning electron microscopy (SEM), Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), nitrogen sorption measurements, and X-ray photoelectron spectroscopy (XPS). Based on the characterization results, a possible mechanism of Pb(2+) removal with the composite of Fe(3)O(4)-C MSs was proposed. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Intrathecal magnetic drug targeting using gold-coated magnetite nanoparticles in a human spine model.

    Science.gov (United States)

    Lueshen, Eric; Venugopal, Indu; Kanikunnel, Joseph; Soni, Tejen; Alaraj, Ali; Linninger, Andreas

    2014-01-01

    We aimed to magnetically guide and locally confine nanoparticles in desired locations within the spinal canal to achieve effective drug administration for improved treatment of chronic pain, cancers, anesthesia and spasticity. We developed a physiologically and anatomically consistent in vitro human spine model to test the feasibility of intrathecal magnetic drug targeting. Gold-coated magnetite nanoparticles were infused into the model and targeted to specific regions using external magnetic fields. Experiments and simulations aiming to determine the effect of key parameters, such as magnet strength, duration of magnetic field exposure, magnet location and ferrous implants, on the collection efficiency of superparamagnetic nanoparticles in targeted regions were performed. An 891% increase in nanoparticle collection efficiency within the target region was achieved using intrathecal magnetic drug targeting when compared with the control. Nanoparticle collection efficiency at the target region increased with time and reached a steady value within 15 min. Ferrous epidural implants generated sufficiently high-gradient magnetic fields, even when magnets were placed at a distance equal to the space between a patient's epidermis and spinal canal. Our experiments indicate that intrathecal magnetic drug targeting is a promising technique for concentrating and localizing drugs at targeted sites within the spinal canal for treating diseases affecting the CNS.

  8. The molecular mass of dextran used to modify magnetite nanoparticles affects insulin amyloid aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Siposova, Katarina [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Pospiskova, Kristyna [Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc (Czech Republic); Bednarikova, Zuzana [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Department of Biochemistry, Faculty of Science, Safarik University, Kosice (Slovakia); Safarik, Ivo [Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc (Czech Republic); Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice (Czech Republic); Safarikova, Mirka [Department of Nanobiotechnology, Biology Centre, ISB, CAS, Ceske Budejovice (Czech Republic); Kubovcikova, Martina; Kopcansky, Peter [Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia); Gazova, Zuzana, E-mail: gazova@saske.sk [Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia)

    2017-04-01

    Protein transformation from its soluble state into amyloid aggregates is associated with amyloid-related diseases. Amyloid deposits of insulin fibrils have been found in the sites of subcutaneous insulin application in patients with prolonged diabetes. Using atomic force microscopy and ThT fluorescence assay we have investigated the interference of insulin amyloid aggregation with superparamagnetic Fe{sub 3}O{sub 4}-based nanoparticles (SPIONs) coated with dextran (DEX); molecular mass of dextran was equal to 15–20, 40 or 70 kDa. The obtained data indicate that all three types of dextran coated nanoparticles (NP-FeDEXs) are able to inhibit insulin fibrillization and to destroy amyloid fibrils. The extent of anti-amyloid activities depends on the properties of NP-FeDEXs, mainly on the size of nanoparticles which is determined by molecular mass of dextran molecules. The most effective inhibiting activity was observed for the smallest nanoparticles coated with 15–20 kDa dextran. Contrary, the highest destroying activity was observed for the largest NP-FeDEX (70 kDa dextran). - Highlights: • Interference of dextran- magnetite nanoparticles with insulin amyloid aggregation. • Nanoparticles inhibited insulin fibrillization and depolymerized insulin amyloid fibrils. • Size of nanoparticles significantly influences their anti-amyloid activities. • The most effective inhibition of insulin amyloid fibrillization was detected for the smallest nanoparticles. • Contrary, DC{sub 50} values decreased with increasing size of nanoparticles.

  9. Combination of magnetic and enhanced mechanical properties for copolymer-grafted magnetite composite thermoplastic elastomers.

    Science.gov (United States)

    Jiang, Feng; Zhang, Yaqiong; Wang, Zhongkai; Wang, Wentao; Xu, Zhaohua; Wang, Zhigang

    2015-05-20

    Composite thermoplastic elastomers (CTPEs) of magnetic copolymer-grafted nanoparticles (magnetite, Fe3O4) were synthesized and characterized to generate magnetic CTPEs, which combined the magnetic property of Fe3O4 nanoparticles and the thermoplastic elasticity of the grafted amorphous polymer matrix. Fe3O4 nanoparticles served as stiff, multiple physical cross-linking points homogeneously dispersed in the grafted poly(n-butyl acrylate-co-methyl methacrylate) rubbery matrix synthesized via the activators regenerated by electron transfer for atom transfer radical polymerization method (ARGET ATRP). The preparation technique for magnetic CTPEs opened a new route toward developing a wide spectrum of magnetic elastomeric materials with strongly enhanced macroscopic properties. Differential scanning calorimetry (DSC) was used to measure the glass transition temperatures, and thermogravimetric analysis (TGA) was used to examine thermal stabilities of these CTPEs. The magnetic property could be conveniently tuned by adjusting the content of Fe3O4 nanoparticles in CTPEs. Compared to their linear copolymers, these magnetic CTPEs showed significant increases in tensile strength and elastic recovery. In situ small-angle X-ray scattering measurement was conducted to reveal the microstructural evolution of CTPEs during tensile deformation.

  10. Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes.

    Science.gov (United States)

    Lang, Claus; Schüler, Dirk; Faivre, Damien

    2007-02-12

    Magnetotactic bacteria (MTB) have the ability to navigate along the Earth's magnetic field. This so-called magnetotaxis is a result of the presence of magnetosomes, organelles which comprise nanometer-sized intracellular crystals of magnetite (Fe(3)O(4)) enveloped by a membrane. Because of their unique characteristics, magnetosomes have a high potential for nano- and biotechnological applications, which require a specifically designed particle surface. The functionalization of magnetosomes is possible either by chemical modification of purified particles or by genetic engineering of magnetosome membrane proteins. The second approach is potentially superior to chemical approaches as a large variety of biological functions such as protein tags, fluorophores, and enzymes may be directly incorporated in a site-specific manner during magnetosome biomineralization. An alternative to the bacterial production of magnetosomes are biomimetic approaches, which aim to mimic the bacterial biomineralization pathway in vitro. In MTB a number of magnetosome proteins with putative functions in the biomineralization of the nanoparticles have been identified by genetic and biochemical approaches. The initial results obtained by several groups indicate that some of these proteins have an impact on nanomagnetite properties in vitro. In this article the key features of magnetosomes are discussed, an overview of their potential applications are given, and different strategies are proposed for the functionalization of magnetosome particles and for the biomimetism of their biomineralization pathway.

  11. Antifungal Activity of Amphotericin B Conjugated to Nanosized Magnetite in the Treatment of Paracoccidioidomycosis.

    Directory of Open Access Journals (Sweden)

    Camila Arruda Saldanha

    2016-06-01

    Full Text Available This study reports on in vitro and in vivo tests that sought to assess the antifungal activity of a newly developed magnetic carrier system comprising amphotericin B loaded onto the surface of pre-coated (with a double-layer of lauric acid magnetite nanoparticles. The in vitro tests compared two drugs; i.e., this newly developed form and free amphotericin B. We found that this nanocomplex exhibited antifungal activity without cytotoxicity to human urinary cells and with low cytotoxicity to peritoneal macrophages. We also evaluated the efficacy of the nanocomplex in experimental paracoccidioidomycosis. BALB/c mice were intratracheally infected with Paracoccidioides brasiliensis and treated with the compound for 30 or 60 days beginning the day after infection. The newly developed amphotericin B coupled with magnetic nanoparticles was effective against experimental paracoccidioidomycosis, and it did not induce clinical, biochemical or histopathological alterations. The nanocomplex also did not induce genotoxic effects in bone marrow cells. Therefore, it is reasonable to believe that amphotericin B coupled to magnetic nanoparticles and stabilized with bilayer lauric acid is a promising nanotool for the treatment of the experimental paracoccidioidomycosis because it exhibited antifungal activity that was similar to that of free amphotericin B, did not induce adverse effects in therapeutic doses and allowed for a reduction in the number of applications.

  12. Magnetically recyclable reduced graphene oxide nanosheets/magnetite-palladium aerogel with superior catalytic activity and reusability.

    Science.gov (United States)

    Feng, Yan; Zhang, Hui; Xin, Baifu; Wu, Jie

    2017-11-15

    A two-step method was employed to synthesize reduced graphene oxide nanosheets/magnetite-palladium (rGSs/Fe3O4-Pd) aerogel, with excellent catalytic activity and recyclability. Firstly, graphene oxide nanosheet (GS) hydrogels were formed by the self-assembly of GSs during the hydrothermal process. Meanwhile, hematite (α-Fe2O3) and Pd nanoparticles (NPs) were synthesized and anchored onto the surface of the hydrogel. During heat-treatment, GSs were reduced to rGSs, while nonmagnetic α-Fe2O3NPs were converted to magnetic Fe3O4 NPs. The as-obtained rGSs/Fe3O4-Pd aerogel displayed a three-dimensional interconnected hierarchical porous architecture, which was rich in mesopores and macropores. Such a structure was suitable for catalysis, since it not only improved the mass diffusion and transport, but also readily exposed the catalytic Pd NPs to the reactants. The typical reduction of 4-nitrophenol was chosen as a model reaction to evaluate the catalytic performance of the aerogel. As anticipated, both the reaction rate constant and turn over frequency of the aerogel were much higher than those of the commercial Pd/C catalyst. Moreover, due to incorporation of Fe3O4 NPs, the rGSs/Fe3O4-Pd aerogel could be magnetically separated from the reaction solution and reused, without obvious loss of catalytic activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mechanism of Arsenic Adsorption on Magnetite Nanoparticles from Water: Thermodynamic and Spectroscopic Studies.

    Science.gov (United States)

    Liu, Cheng-Hua; Chuang, Ya-Hui; Chen, Tsan-Yao; Tian, Yuan; Li, Hui; Wang, Ming-Kuang; Zhang, Wei

    2015-07-07

    Removal of arsenic (As) from water supplies is needed to reduce As exposure through drinking water and food consumption in many regions of the world. Magnetite nanoparticles (MNPs) are promising and novel adsorbents for As removal because of their great adsorption capacity for As and easy separation. This study aimed to investigate the adsorption mechanism of arsenate, As(V), and arsenite, As(III), on MNPs by macroscopic adsorption experiments in combination with thermodynamic calculation and microspectroscopic characterization using synchrotron-radiation-based X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Adsorption reactions are favorable endothermic processes as evidenced by increased adsorption with increasing temperatures, and high positive enthalpy change. EXAFS spectra suggested predominant formation of bidentate binuclear corner-sharing complexes ((2)C) for As(V), and tridentate hexanuclear corner-sharing ((3)C) complexes for As(III) on MNP surfaces. The macroscopic and microscopic data conclusively identified the formation of inner-sphere complexes between As and MNP surfaces. More intriguingly, XANES and XPS results revealed complex redox transformation of the adsorbed As on MNPs exposed to air: Concomitant with the oxidation of MNPs, the oxidation of As(III) and MNPs was expected, but the observed As(V) reduction was surprising because of the role played by the reactive Fe(II).

  14. Tailoring the properties of magnetite nanoparticles clusters by coating with double inorganic layers

    Energy Technology Data Exchange (ETDEWEB)

    Petran, Anca [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania); Radu, Teodora, E-mail: teodora.radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania); Culic, Bogdan [Faculty of Dental Medicine,Iuliu Hatieganu University of Medicine and Pharmacy, 32 Clinicilor Str., 400006 Cluj-Napoca (Romania); Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca (Romania)

    2016-12-30

    Highlights: • New magnetite clusters covered with inorganic oxides double layers. • Coating layers influence on the surface properties of the magnetic clusters. • Color parameters assessment for the inorganic oxides coated magnetic clusters. • High magnetization clusters with appropiate color for magnetic security paper. - Abstract: New magnetic nanoparticles based on Fe{sub 3}O{sub 4} clusters covered with a double layer of inorganic salts/oxides with high magnetization for incorporation in security materials such as security paper were synthesized. For the inorganic layers ZnO, SiO{sub 2} and BaSO{sub 4} were used. The microstructure and composition of the products were determined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS). Magnetization measurements on the obtained samples show a straightforward correlation between the saturation magnetization (M{sub s}) and morphology of the samples. The results obtained from color parameter assessment are discussed in relation with the morphology and microstructure of the prepared samples.

  15. The effect of polycarboxylate shell of magnetite nanoparticles on protein corona formation in blood plasma

    Science.gov (United States)

    Szekeres, Márta; Tóth, Ildikó Y.; Turcu, R.; Tombácz, Etelka

    2017-04-01

    The development of protein corona around nanoparticles upon administration to the human body is responsible in a large part for their biodistribution, cell-internalization and toxicity or biocompatibility. We studied the influence of the chemical composition of polyelectrolyte shells (citric acid (CA) and poly(acrylic-co-maleic acid) (PAM)) of core-shell magnetite nanoparticles (MNPs) on the evolution of protein corona in human plasma (HP). The aggregation state and zeta potential of the particles were measured in the range of HP concentration between 1 and 80 (v/v)% 3 min and 20 h after dispersing the particles in HP diluted with Tris buffered saline. Naked MNPs aggregated in HP solution, but the carboxylated MNPs became stabilized colloidally at higher plasma concentrations. Significant differences were observed at low plasma concentration. CA@MNPs aggregated instantly while the hydrodynamic diameter of PAM@MNP increased only slightly at 1-3 v/v % HP concentrations. The observed differences in protein corona formation can be explained by the differences in the steric effects of the polycarboxylate shells. It is interesting that relatively small but systematic changes in zeta potential alter the aggregation state significantly.

  16. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems

    Science.gov (United States)

    Khandhar, Amit P.; Ferguson, R. Matthew; Krishnan, Kannan M.

    2011-01-01

    Magnetite (Fe3O4) nanoparticles (MNPs) are suitable materials for Magnetic Fluid Hyperthermia (MFH), provided their size is carefully tailored to the applied alternating magnetic field (AMF) frequency. Since aqueous synthesis routes produce polydisperse MNPs that are not tailored for any specific AMF frequency, we have developed a comprehensive protocol for synthesizing highly monodispersed MNPs in organic solvents, specifically tailored for our field conditions (f = 376 kHz, H0 = 13.4 kA∕m) and subsequently transferred them to water using a biocompatible amphiphilic polymer. These MNPs (σavg. = 0.175) show truly size-dependent heating rates, indicated by a sharp peak in the specific loss power (SLP, W∕g Fe3O4) for 16 nm (diameter) particles. For broader size distributions (σavg. = 0.266), we observe a 30% drop in overall SLP. Furthermore, heating measurements in biological medium [Dulbecco’s modified Eagle medium (DMEM) + 10% fetal bovine serum] show a significant drop for SLP (∼30% reduction in 16 nm MNPs). Dynamic Light Scattering (DLS) measurements show particle hydrodynamic size increases over time once dispersed in DMEM, indicating particle agglomeration. Since the effective magnetic relaxation time of MNPs is determined by fractional contribution of the Neel (independent of hydrodynamic size) and Brownian (dependent on hydrodynamic size) components, we conclude that agglomeration in biological medium modifies the Brownian contribution and thus the net heating capacity of MNPs. PMID:21523253

  17. Cell Penetrating Peptide Adsorption on Magnetite and Silica Surfaces: A Computational Investigation.

    Science.gov (United States)

    Grasso, Gianvito; Deriu, Marco A; Prat, Maria; Rimondini, Lia; Vernè, Enrica; Follenzi, Antonia; Danani, Andrea

    2015-07-02

    Magnetic nanoparticles (MNPs) represent one of the most promising materials as they can act as a versatile platform in the field of bionanotechnology for enhanced imaging, diagnosis, and treatment of various diseases. Silica is the most common compound for preparing coated iron oxide NPs since it improves colloidal stability and the binding affinity for various organic molecules. Biomolecules such as cell penetrating peptides (CPPs) might be employed to decorate MNPs, combining their promising physicochemical properties with a cell penetrating ability. In this work, a computational investigation on adsorption of Antennapedia homeodomain-derived penetrating peptide (pAntp) on silica and magnetite (MAG) surfaces is presented. By employing umbrella sampling molecular dynamics, we provided a quantitative estimation of the pAntp-surface adsorption free energy to highlight the influence of surface hydroxylation state on the adsorption mechanism. The interaction between peptide and surface has shown to be mainly driven by electrostatics. In case of MAG surface, also an important contribution of van der Waals (VdW) attraction was observed. Our data suggest that a competitive mechanism between MNPs and cell membrane might partially inhibit the CPP to carry out its membrane penetrating function.

  18. Adsorptive desulfurization of model oil using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq

    2017-02-01

    Full Text Available The present research work focuses on a novel ultraclean desulfurization process of model oil by the adsorption method using untreated, acid activated and magnetite nanoparticle loaded bentonite as adsorbent. The parameters investigated are effect of contact time, adsorbent dose, initial dibenzothiophene (DBT concentration and temperature. Experimental tests were conducted in batch process. Pseudo first and second order kinetic equations were used to examine the experimental data. It was found that pseudo second order kinetic equation described the data of the DBT adsorption onto all types of adsorbents very well. The isotherm data were analyzed using Langmuir and Freundlich isotherm models. The Langmuir isotherm model fits the data very well for the adsorption of DBT onto all three forms of adsorbents. The adsorption of DBT was also investigated at different adsorbent doses and was found that the percentage adsorption of DBT was increased with increasing the adsorbent dose, while the adsorption in mg/g was decreased with increasing the adsorbent dose. The prepared adsorbents were analyzed by scanning electron microscopy (SEM, energy dispersive X-ray spectrometry (EDX and X-ray diffraction (XRD.

  19. Magnetite and cobalt ferrite nanoparticles used as seeds for acid mine drainage treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kefeni, Kebede K., E-mail: kkefeni@gmail.com; Mamba, Bhekie B.; Msagati, Titus A.M.

    2017-07-05

    Highlights: • Presence of α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} in AMD resulted in formation of crystalline ferrite. • Increasing settling time improved removal of Mg, Ca, Mn and Na from AMD. • Mixtures of ferrite nanoparticles were produced from AMD. • Formations of crystalline ferrite were more favored in the presence of heat. - Abstract: In this study, magnetite and cobalt ferrite nanoparticles were used as seeds for acid mine drainage (AMD) treatment at pH of 7.05 ± 0.35. Duplicate samples of AMD, one without heating and another with heating at 60 °C was treated under continuous stirring for 1 h. The filtrate analysis results from ICP-OES have shown complete removal of Al, Mg, and Mn, while for Fe, Ni and Zn over 90% removals were recorded. Particularly, settling time has significant effect on the removal of Mg, Ca and Na. The results from SQUID have shown superparamagnetic properties of the synthesised magnetic nanoparticles and ferrite sludge. The recovered nanoparticles from AMD are economically important and reduce the cost of waste disposal.

  20. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices.

    Science.gov (United States)

    Lim, Daeun; Lee, Eunsu; Kim, Haneul; Park, Sungmin; Baek, Seulgi; Yoon, Jinhwan

    2015-02-28

    Extensive research efforts have been devoted to the development of hydrogel microfibers for tissue engineering, because the vascular structure is related to the transport of nutrients and oxygen as well as the control of metabolic and mechanical functions in the human body. Even though stimuli-responsive properties would enhance the potential applicability of hydrogel microfibers for artificial tissue architectures, previous studies of their fabrication have not considered changes in the microfibers in response to external stimuli. In this work, we prepared temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) microfibers with controlled shapes and sizes by the in situ photo-polymerization of aqueous monomers loaded in calcium alginate templates generated from microcapillary devices. We found that the shape and size of the hydrogel microfibers could be controlled by adjusting the injection positions of the solutions and varying the diameters of the inner capillary, respectively. We further fabricated light-responsive materials by incorporating photothermal magnetite nanoparticles (MNPs) within the temperature-responsive PNIPAm hydrogel microfibers. Because the MNPs incorporated into the PNIPAm microfibers generated heat upon the absorption of visible light, we could demonstrate volume changes in the microfibers triggered by both visible light irradiation and temperature.

  1. Faraday rotation and magneto-optical figure of merit for the magnetite magnetic fluids

    Directory of Open Access Journals (Sweden)

    Kalandadze L.

    2011-05-01

    Full Text Available In the present paper, using magnetite magnetic fluids as examples, we consider the optical and magneto-optical properties of magnetic fluids based on particles of magnetic oxides, for the optical constants of the material of which, n and k , the relation k2 ≺≺ n2 holds. In this work the Faraday rotation is represented within the theoretical Maxwell-Garnett model. A theoretical analysis has shown that Faraday rotation for magnetic fluids is related to the Faraday rotation on the material of particles by the simple relation. According to this result  in specific experimental conditions the values of the Faraday rotation prorate to q , which is the occupancy of the volume of the magnetic fluid with magnetic particles and spectral dependences of effect in magnetic fluid and in the proper bulk magnetic are similar. We also show that the values of the magneto-optical figure of merit for ultrafine medium and for the bulk material are equal.

  2. Enhanced magneto-optic activity of magnetite-based ferrofluids subjected to gamma irradiation

    Science.gov (United States)

    Devi, Manasi; Das, Rupali; Mohanta, Dambarudhar; Baruah, Kishor Kumar; Saha, Abhijit

    2012-03-01

    We report here the effect of γ-irradiation on the particle size and size distribution dependent spectroscopic and magneto-optic properties of ferrofluids, synthesized by a co-precipitation method. The X-ray diffraction (XRD) study exhibits magnetite (Fe3O4) phase of the particles while electron microscopic and dynamic light scattering (DLS) studies have predicted particle growth upon γ-irradiation. Further, Fourier transform infrared (FT-IR) spectroscopy studies ensured that no dissociation has occurred due to irradiation effect. As a consequence of magneto-optic behavior reflected in the Faraday rotation (FR) measurement, the Verdet constant increased from a value of 0.64×10-2 for the pristine sample to 5.6×10-2 deg/Gauss-cm for the sample irradiated with the highest dose (2.635 kGy). The substantial enhancement in the FR is assigned to the improvement in associated chaining effect owing to adequate particle growth where an increased stoichiometry variation of Fe2+/Fe3+ is assured.

  3. Surface-modified magnetite nanoparticles act as aneugen-like spindle poison.

    Science.gov (United States)

    Buliaková, Barbora; Mesárošová, Monika; Bábelová, Andrea; Šelc, Michal; Némethová, Veronika; Šebová, Lívia; Rázga, Filip; Ursínyová, Monika; Chalupa, Ivan; Gábelová, Alena

    2017-01-01

    Iron oxide nanoparticles are one of the most promising types of nanoparticles for biomedical applications, primarily in the context of nanomedicine-based diagnostics and therapy; hence, great attention should be paid to their bio-safety. Here, we investigate the ability of surface-modified magnetite nanoparticles (MNPs) to produce chromosome damage in human alveolar A549 cells. Compared to control cells, all the applied MNPs increased the level of micronuclei moderately but did not cause structural chromosomal aberrations in exposed cells. A rise in endoreplication, polyploid and multinuclear cells along with disruption of tubulin filaments, downregulation of Aurora protein kinases and p53 protein activation indicated the capacity of these MNPs to impair the chromosomal passenger complex and/or centrosome maturation. We suppose that surface-modified MNPs may act as aneugen-like spindle poisons via interference with tubulin polymerization. Further studies on experimental animals revealing mechanisms of therapeutic-aimed MNPs are required to confirm their suitability as potential anti-cancer drugs. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Comprehensive DNA Adduct Analysis Reveals Pulmonary Inflammatory Response Contributes to Genotoxic Action of Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Kousuke Ishino

    2015-02-01

    Full Text Available Nanosized-magnetite (MGT is widely utilized in medicinal and industrial fields; however, its toxicological properties are not well documented. In our previous report, MGT showed genotoxicity in both in vitro and in vivo assay systems, and it was suggested that inflammatory responses exist behind the genotoxicity. To further clarify mechanisms underlying the genotoxicity, a comprehensive DNA adduct (DNA adductome analysis was conducted using DNA samples derived from the lungs of mice exposed to MGT. In total, 30 and 42 types of DNA adducts were detected in the vehicle control and MGT-treated groups, respectively. Principal component analysis (PCA against a subset of DNA adducts was applied and several adducts, which are deduced to be formed by inflammation or oxidative stress, as the case of etheno-deoxycytidine (εdC, revealed higher contributions to MGT exposure. By quantitative-LC-MS/MS analysis, εdC levels were significantly higher in MGT-treated mice than those of the vehicle control. Taken together with our previous data, it is suggested that inflammatory responses might be involved in the genotoxicity induced by MGT in the lungs of mice.

  5. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  6. GlycoDomainViewer

    DEFF Research Database (Denmark)

    Joshi, Hiren J; Jørgensen, Anja; Schjoldager, Katrine T

    2018-01-01

    The GlycoDomainViewer is a bioinformatic tool to aid in the mining of glycoproteomic data sets from different sources and facilitate incorporation of glycosylation into studies of protein structure and function. We present a version 2.0 of GlycoDomainViewer incorporating a number of advanced feat...

  7. Cholesterol Domains Enhance Transfection

    Science.gov (United States)

    Betker, Jamie L.; Kullberg, Max; Gomez, Joe; Anchordoquy, Thomas J.

    2014-01-01

    The formation of cholesterol domains in lipoplexes has been associated with enhanced serum stability and transfection rates both in cell culture and in vivo. This study utilizes the ability of saturated phosphatidylcholines to promote the formation of cholesterol domains at much lower cholesterol contents than have been utilized in previous work. The results show that lipoplexes with identical cholesterol and cationic lipid contents exhibit significantly improved transfection efficiencies when a domain is present, consistent with previous work. In addition, studies assessing transfection rates in the absence of serum demonstrate that the ability of domains to enhance transfection is not dependent on interactions with serum proteins. Consistent with this hypothesis, characterization of the adsorbed proteins composing the corona of these lipoplex formulations did not reveal a correlation between transfection and the adsorption of a specific protein. Finally, we show that the interaction with serum proteins can promote domain formation in some formulations, and thereby result in enhanced transfection only after serum exposure. PMID:23557286

  8. Experimental calibration of a new oxybarometer for silicic magmas based on the partitioning of vanadium between magnetite and silicate melt

    Science.gov (United States)

    Arató, Róbert; Audétat, Andreas

    2016-04-01

    Oxygen fugacity is an important parameter in magmatic systems that affects the stability of mineral phases and fluid species. However, there is no well-established method to reconstruct the oxygen fugacity of slowly cooled magmas such as granite, for example, because existing oxybarometers (e.g., magnetite-ilmenite method) are susceptible to re-equilibration processes during slow cooling and thus lead to erroneous results when applied for granitic rocks. In this study, we aim at developing an oxybarometer that is based on the partitioning of vanadium (a redox-sensitive element) between magnetite inclusions and silicate melt inclusions preserved in quartz phenocrysts, where they were protected from subsolidus alteration and can be measured as entities by LA-ICP-MS. In the first - experimental - part of this study we investigated the effects of temperature (800-950 ° C), pressure (1-2 kbar), oxygen fugacity (from ΔFMQ+0.7 to ΔFMQ+4.0), magnetite composition, and melt composition on the partition coefficient of vanadium between magnetite and melt (DVmgt-melt). The experiments were carried out in cold-seal pressure vessels and the starting material was a mixture of V-doped haplogranite glasses or natural obsidian powder with variable aluminum saturation index (ASI), and synthetic, V-free magnetite of 10-20 μm grain size. The vanadium partition coefficient was found to depend strongly on oxygen fugacity, and to lesser (but still considerable) degrees on melt composition and temperature. A more than 1.5 log unit decrease in DVmgt-melt values with increasing oxygen fugacity can be explained by a change of the dominant valence state of V in the silicate melt. For a given oxygen fugacity buffer DVmgt-melt decreases with increasing temperature, but this reflects mostly the change in absolute fO2 values while the net temperature effect is in fact positive. DVmgt-melt depends significantly on melt composition, resulting in higher D-values with increasing aluminum

  9. Chromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction method.

    Science.gov (United States)

    Ren, Genkuan; Wang, Xinlong; Huang, Penghui; Zhong, Benhe; Zhang, Zhiye; Yang, Lin; Yang, Xiushan

    2017-12-31

    Porous magnetite nanoparticles were successfully synthesized by reduction of titanium residue with pyrite under nitrogen protection, and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometer, X-ray photoelectron spectroscope, zeta potential and Brunauer-Emmett-Teller method. The XRD analysis confirmed the formation of porous magnetite nanoparticles with single spinel structure. The SEM image demonstrated that porous magnetite nanoparticles displayed spherical shape with the average diameter of ~51nm. The surface area of porous magnetite nanoparticles with high magnetic moment (78emu·g(-1)) was 11.1m(2)g(-1). The experimental results revealed that equilibrium adsorption behavior of Cr(VI) was well described by Langmuir isotherm model with the maximum adsorption capacity of 14.49mgg(-1) at 298.15K, and kinetic data was found to fit well with pseudo-second-order model. The adsorption rate for Cr(VI) was controlled by both boundary layer diffusion and intraparticle diffusion. Thermodynamics analysis showed that the adsorption processes of Cr(VI) were endothermic and spontaneous. In addition, the adsorption of Cr(VI) on porous magnetite nanoparticles was classified as chemisorption adsorption, which depended on electrostatic attraction accompanied with reduction of Cr(VI) to Cr(III). Porous magnetite nanoparticles were readily regenerated and used repeatedly for Cr(VI) adsorption at least five cycles. Furthermore, the experimental results indicate that porous magnetite nanoparticles have a promising application for Cr(VI) adsorption from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Conserved Domain Database (CDD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — CDD is a protein annotation resource that consists of a collection of well-annotated multiple sequence alignment models for ancient domains and full-length proteins.

  11. Synthesis and characterization of liposomes nano-composite-particles with hydrophobic magnetite as a MRI probe

    Energy Technology Data Exchange (ETDEWEB)

    Han, Limin; Zhou, Xingping, E-mail: xpzhou@dhu.edu.cn

    2016-07-15

    Highlights: • Thin film dispersing method is prepared HMLs, based on hydrophobic Fe3O4 NPs. • The properties of the produced HMLs are comprehensively researched. • The biocompatibility of the HMLs was tested by MTT and hemolysis assays. • The HMLs were sufficient to produce a pronounced weaken MR signal in vitro. - Abstract: Nano-magnetic liposomes (MLs) consist of liposomes and magnetic nanoparticles (MNPs). Due to the active surfaces of liposomes, various functional groups can be attached for ligand-specific targeting. Here, we describe synthesis of magnetic nano-composite liposomes (HMLs) by a thin film dispersing method, based on hydrophobic magnetite (Fe{sub 3}O{sub 4}) nanoparticles. The results showed that the particle diameter of the HMLs containing Fe{sub 3}O{sub 4}−OA NPs at a final Fe loading of 11.02 g/mol phosphatidylcholine (POPC) mainly in a sandwich-structure was 125.3 ± 12.9 nm determined by transmission electron microscopy (TEM) and dynamic light scattering (DLS). While the initial Fe concentration in the solution varied from 0.25 to 3.0 mg/mL, an effective Fe{sub 3}O{sub 4} NPs loading was achieved, with encapsulation efficiency (EE%) from 91.0% to 71.0%. Subsequently, the HMLs were confirmed to be quite cytocompatible and hemocompatible in the applied concentration range by MTT and hemolysis assays. We also found that HMLs had more advantages than those liposomes with hydrophilic Fe{sub 3}O{sub 4} NPs by comparing their EE% and r{sub 2} relaxivity. Finally, it was concluded that the analyzed Fe concentration in HMLs was sufficient to produce a pronouncedly weak signal for MRI in vitro to enhance the contrast between tumors and normal tissues.

  12. Stable Small Composite Microbubbles Decorated with Magnetite Nanoparticles - A Synergistic Effect between Surfactant Molecules and Nanoparticles.

    Science.gov (United States)

    Ma, Jun; Pourroy, Geneviève; Krafft, Marie Pierre

    2016-05-01

    Three approaches to preparing iron oxide nanoparticle-decorated microbubbles (NP-decoMBs) have been investigated. The size and stability characteristics of these microbubbles (MBs) were investigated by optical microscopy, laser light scattering and an acoustical method, and compared with those of non-decorated MBs. First, magnetite nanoparticles (Fe3O4NPs) grafted with dimyristoylphosphatidylcholine (DMPC) were synthesized and used to prepare MBs by brief sonication under an atmosphere of air saturated with perfluorohexane. These MBs had a rather large mean radius (r ~ 12 µm), and a moderate volume of encapsulated gas. Remarkably, a second approach that consisted of dispersing unbound DMPC molecules in the aqueous phase along with DMPC-grafted Fe3O4NPs prior to sonication was found to drastically change the situation, allowing the obtaining of monomodal populations of much smaller (r ~ 0.6 µm) NP-decoMBs. The latter were echogenic and stable for at least 10 days at room temperature, without significant variation of their size characteristics. In a third approach, NP-decoMBs were directly prepared from dispersions of naked Fe3O4NPs in the presence of DMPC. The resulting NP-decoMBs suspensions consisted of broadly distributed bubble populations mostly containing two populations (with r ~ 5 and ~ 15 µm). Control microbubbles made of DMPC only were small (r ~ 1.3 µm), although not as small as those formed from DMPC-grafted Fe3O4NPs in the presence of free DMPC, and were less stable, with a room temperature half-life of only ~1 day. These observations imply that there is a synergy between the Fe3O4NPs and the DMPC molecules in the air/water interfacial film stabilization process.

  13. Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production

    Directory of Open Access Journals (Sweden)

    Camille Crouzet

    2017-10-01

    Full Text Available The effect of acidic conditions (in a pH range of 3 to 6 and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150–350°C range for acid acetic concentrations from 0 to 4 M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 ± 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 h, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10–30 nm, 100–300 nm, and 1–10 μm. The smallest fraction (10–30 nm is comparable to the 10–20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.

  14. Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection

    Energy Technology Data Exchange (ETDEWEB)

    Jain-Gupta, Neeta [Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology (United States); Pothayee, Nipon; Pothayee, Nikorn [Virginia Polytechnic Institute and State University, Macromolecules and Interfaces Institute (United States); Tyler, Ronald; Caudell, David L. [Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology (United States); Balasubramaniam, Sharavanan; Hu, Nan; Davis, Richey M.; Riffle, Judy S. [Virginia Polytechnic Institute and State University, Macromolecules and Interfaces Institute (United States); Sriranganathan, Nammalwar, E-mail: nathans@vt.edu [Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Department of Biomedical Sciences and Pathobiology (United States)

    2013-11-15

    Anionic copolymers can enable intracellular delivery of cationic drugs which otherwise cannot cross cell membrane barriers. We tested the efficacy of gentamicin-loaded magnetite block ionomer complexes (MBICs) against intracellular Brucella melitensis. Anionic block copolymers were used to coat nanomagnetite through adsorption of a portion of anions on the particle surfaces, then the remaining anions were complexed with 30–32 weight percentage of gentamicin. The zeta potential changed from −39 to −13 mV after encapsulation of the drug with complementary charge. The gentamicin-loaded MBICs had intensity average hydrodynamic diameters of 62 nm, while the polymer-coated nanomagnetite particles without drug were 34 nm in size. No toxicity as measured by a MTS assay was observed upon incubation of the MBICs with J774A.1 murine macrophage-like cells. Confocal microscopic images showed that the MBICs were taken up by the macrophages and distributed in the cell cytoplasm and endosomal/lysosomal compartments. Upon treatment with gentamicin-loaded MBICs (3.5 Log{sub 10}), B. melitensis-infected macrophages showed significantly higher clearance of Brucella compared to the treatment with free g (0.9 Log{sub 10}). Compared to doxycycline alone, a combination of doxycycline and gentamicin (either free or encapsulated in MBICs) showed significantly higher clearance of B.melitensis from chronically infected mice. Histopathological examination of kidneys from the MBICs-treated mice revealed multifocal infiltration of macrophages containing intracytoplasmic iron (MBICs) in peri-renal adipose. Although MBICs showed similar efficacy as free gentamicin against Brucella in mice, our strategy presents an effective way to deliver higher loads of drugs intracellularly and ability to study the bio-distribution of drug carriers.

  15. Efficacies of gentamicin-loaded magnetite block ionomer complexes against chronic Brucella melitensis infection

    Science.gov (United States)

    Jain-Gupta, Neeta; Pothayee, Nipon; Pothayee, Nikorn; Tyler, Ronald; Caudell, David L.; Balasubramaniam, Sharavanan; Hu, Nan; Davis, Richey M.; Riffle, Judy S.; Sriranganathan, Nammalwar

    2013-11-01

    Anionic copolymers can enable intracellular delivery of cationic drugs which otherwise cannot cross cell membrane barriers. We tested the efficacy of gentamicin-loaded magnetite block ionomer complexes (MBICs) against intracellular Brucella melitensis. Anionic block copolymers were used to coat nanomagnetite through adsorption of a portion of anions on the particle surfaces, then the remaining anions were complexed with 30-32 weight percentage of gentamicin. The zeta potential changed from -39 to -13 mV after encapsulation of the drug with complementary charge. The gentamicin-loaded MBICs had intensity average hydrodynamic diameters of 62 nm, while the polymer-coated nanomagnetite particles without drug were 34 nm in size. No toxicity as measured by a MTS assay was observed upon incubation of the MBICs with J774A.1 murine macrophage-like cells. Confocal microscopic images showed that the MBICs were taken up by the macrophages and distributed in the cell cytoplasm and endosomal/lysosomal compartments. Upon treatment with gentamicin-loaded MBICs (3.5 Log10), B. melitensis-infected macrophages showed significantly higher clearance of Brucella compared to the treatment with free g (0.9 Log10). Compared to doxycycline alone, a combination of doxycycline and gentamicin (either free or encapsulated in MBICs) showed significantly higher clearance of B. melitensis from chronically infected mice. Histopathological examination of kidneys from the MBICs-treated mice revealed multifocal infiltration of macrophages containing intracytoplasmic iron (MBICs) in peri-renal adipose. Although MBICs showed similar efficacy as free gentamicin against Brucella in mice, our strategy presents an effective way to deliver higher loads of drugs intracellularly and ability to study the bio-distribution of drug carriers.

  16. Hybrid magnetite nanoparticles/ Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity

    Science.gov (United States)

    Chifiriuc, Carmen; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Saviuc, Crina; Lazăr, Veronica; Andronescu, Ecaterina

    2012-04-01

    Biofilms formed by fungal organisms are associated with drastically enhanced resistance against most antimicrobial agents, contributing to the persistence of the fungi despite antifungal therapy. The purpose of this study is to combine the unique properties of nanoparticles with the antimicrobial activity of the Rosmarinus officinalis essential oil in order to obtain a nanobiosystem that could be pelliculised on the surface of catheter pieces, in order to obtain an improved resistance to microbial colonization and biofilm development by Candida albicans and C. tropicalis clinical strains. The R. officinalis essential oils were extracted in a Neo-Clevenger type apparatus, and its chemical composition was settled by GC-MS analysis. Functionalized magnetite nanoparticles of up to 20 nm size had been synthesized by precipitation method adapted for microwave conditions, with oleic acid as surfactant. The catheter pieces were coated with suspended core/shell nanoparticles (Fe3O4/oleic acid:CHCl3), by applying a magnetic field on nanofluid, while the CHCl3 diluted essential oil was applied by adsorption in a secondary covering treatment. The fungal adherence ability was investigated in six multiwell plates, in which there have been placed catheters pieces with and without hybrid nanoparticles/essential oil nanobiosystem pellicle, by using culture-based methods and confocal laser scanning microscopy (CLSM). The R. officinalis essential oil coated nanoparticles strongly inhibited the adherence ability and biofilm development of the C. albicans and C. tropicalis tested strains to the catheter surface, as shown by viable cell counts and CLSM examination. Due to the important implications of C andida spp. in human pathogenesis, especially in prosthetic devices related infections and the emergence of antifungal tolerance/resistance, using the new core/shell/coated shell based on essential oil of R. officinalis to inhibit the fungal adherence could be of a great interest for the

  17. Magnetite-graphene for the direct electrochemistry of hemoglobin and its biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    He Yaping; Sheng Qinglin [Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi' an, Shaanxi 710069 (China); Zheng Jianbin, E-mail: zhengjb@nwu.edu.c [Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi' an, Shaanxi 710069 (China); Wang Minzhi [Institute of Analytical Science/Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Northwest University, Xi' an, Shaanxi 710069 (China); Liu Bin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry (Ministry of Education), Northwest University, Xi' an, Shaanxi 710069 (China); Department of Chemistry, Xianyang Normal University, Xianyang, Shaanxi 712000 (China)

    2011-02-01

    Magnetite-graphene (Fe{sub 3}O{sub 4}-GE) was prepared via a simple effective chemical precipitation method, followed by the chemical reduction with hydrazine. Fe{sub 3}O{sub 4}-GE was characterized by Raman spectroscopy, transmission electron microscope, X-ray powder diffraction and electrochemical methods. A hydrogen peroxide (H{sub 2}O{sub 2}) biosensor was structured by immobilizing hemoglobin (Hb) into Fe{sub 3}O{sub 4}-GE for the first time. UV-vis and Fourier transform infrared spectra were employed to characterize Hb retained original structure in the resulting Hb-Fe{sub 3}O{sub 4}-GE membrane. Electrochemical investigation of the biosensor showed a pair of well-defined, quasi-reversible redox peaks with E{sub pa} = -0.285 V and E{sub pc} = -0.363 V (vs. SCE) in phosphate buffer solution (0.1 mol/L, pH 7.0) at the scan rate of 100 mV/s. The Hb-Fe{sub 3}O{sub 4}-GE showed a better synergistic electrochemical effect for the reduced process of H{sub 2}O{sub 2}. The biosensor displayed a fast response time (<3 s) and broad linear response to H{sub 2}O{sub 2} in the range from 1.50 to 585 {mu}mol/L with a relatively low detection limit of 0.5 {mu}mol/L (S/N = 3). Moreover, the biosensor could be applied in practical analysis and exhibit good reproducibility and long-term stability.

  18. Cadmium Immobilization in Soil using Sodium Dodecyl Sulfate Stabilized Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmad Farrokhian Firouzi

    2017-06-01

    Full Text Available Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil organism activity and compositions. Cadmium is a soil pollutant of no known essential biological functions, and may pose threats to soil-dwelling organisms and human health. Soil contamination with Cd usually originates from mining and smelting activities, atmospheric deposition from metallurgical industries, incineration of plastics and batteries, land application of sewage sludge, and burning of fossil fuels. Heavy metal immobilization using amendments is a simple and rapid method for the reduction of heavy metal pollution. One way of the assessment of contaminated soils is sequential extraction procedure. Sequential extraction of heavy metals in soils is an appropriate way to determine soil metal forms including soluble, exchangeable, carbonate, oxides of iron and manganese, and the residual. Its results are valuable in prediction of bioavailability, leaching rate and elements transformation in contaminated agricultural soils. Materials and Methods The objective of this study was to synthesize magnetite nanoparticles (Fe3O4 stabilized with sodium dodecyl sulfate (SDS and to investigate the effect of its different percentages (0, 1, 2.5, 5, and 10% on the different fractions of cadmium in soil by sequential extraction method. The nanoparticles were synthesized following the protocol described by Si et al. (19. The investigations were carried out with a loamy sand topsoil. Before use, the soil was air-dried, homogenized and sieved (

  19. Time-resolved SAXS characterization of the shell growth of silica-coated magnetite nanocomposites

    Science.gov (United States)

    Gutsche, Alexander; Daikeler, Alexander; Guo, Xiaoai; Dingenouts, Nico; Nirschl, Hermann

    2014-07-01

    Time-resolved characterization of silica-coated magnetite nanoparticles during synthesis is performed using our self-developed small-angle X-ray scattering (SAXS) instrument. The shell growth (5-20 nm) is determined quantitatively using a core-shell sphere model. SAXS analyses provide reliable information on the shell thickness despite the complex geometry of the synthesized nanocomposites. They are in good agreement with transmission electron microscope (TEM) observations. Firstly, time-resolved SAXS analyses are used to study the influence of the precursor concentration (tetraethyl orthosilicate) on growth kinetics. Time evolution of the shell thickness can be described by diffusion-limited shell growth, obeying kinetics of first order in the precursor concentration. Furthermore, SAXS measurements provide information on the standard deviation of the shell thickness as a function of the coating time. Its decrease observed with increasing coating time is explained by a self-sharpening mechanism and/or a morphology evolution to more isometric shapes. Additionally, the influence of ammonia is studied. By increasing its concentration, the growth rate is affected. However, the final shell thickness and the standard deviation do not change significantly. For low ammonia concentration, by contrast, the SAXS and TEM observations reveal superimposed silica gelation. In addition, coating reaction was conducted at elevated temperature (40 °C). SAXS patterns measured as a function of the coating time and TEM micrographs reveal simultaneous production of classic Stöber particles under these conditions. Hence, SAXS is found to have a big potential for on-line monitoring of the shell properties.

  20. Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles.

    Science.gov (United States)

    Liu, Cheng-Hao; Yu, Cheng-Ju; Tseng, Wei-Lung

    2012-10-01

    We report a fluorescence approach for the highly selective and sensitive detection of catecholamines using magnetite nanoparticles (Fe(3)O(4) NPs) in the presence of Amplex UltraRed (AUR) and H(2)O(2). Fe(3)O(4) NPs catalyze H(2)O(2)-mediated oxidation of AUR. The resulting product fluoresces (excitation/emission maxima, ca. 568/587nm) more strongly, relative to AUR. When catecholamines bind to Fe(3)O(4), the complexes that are formed induce decreased activity of Fe(3)O(4) NPs, mediated through the coordination between Fe(3+) on the NP surface and the catechol moiety of catecholamines. As a result, Fe(3)O(4) NPs-catalyzed H(2)O(2)-mediated oxidation of AUR is inhibited by catecholamines. The limits of detection for dopamine (DA), L-DOPA, norepinephrine, and epinephrine were 3 nM, 3 nM, 3 nM, and 6 nM, respectively. The Fe(3)O(4) NPs-H(2)O(2)-AUR probe exhibited high selectivity (>1000-fold) toward catecholamines over other tested biomolecules that commonly exist in urine. Four catecholamines had similar sensitivity because the inhibition of the Fe(3)O(4) NPs activity relies on the presence of the catechol moiety. This approach also allowed the determination of tyrosinase activity because tyrosinase catalyzes the conversion of l-tyrosine to L-DOPA. We validated the practicality of the use of the Fe(3)O(4) NPs-H(2)O(2)-AUR probe for the determination of the concentrations of DA in urine samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Definition of a magnetic susceptibility of conglomerates with magnetite particles. Particularities of defining single particle susceptibility

    Science.gov (United States)

    Sandulyak, A. A.; Sandulyak, A. V.; Ershova, V.; Pamme, N.; Ngmasom, B.; Iles, A.

    2017-11-01

    Data of a magnetic susceptibility of ferro-and the ferrimagnetic particles of many technogenic, natural, special media are especially demanded for the solution of various tasks connected with purposeful magnetic impact on these particles. One of productive approaches to definition of a magnetic susceptibility χ of these particles consists in receiving experimental data of a susceptibility of disperse samples with a disperse phase of these particles. The paper expounds and analyses the results of experiments on defining (by Faraday method in a magnetic field with intensity H = 90-730 kA/m) the magnetic susceptibility of disperse samples (conglomerates) with a given volume ratio γ of magnetite particles (γ = 0.0065-0.25). The corresponding families of concentration and field dependences are provided alongside with discussing the applicability of linear and exponential functions to describe these dependences. We consider the possibility of defining single particles susceptibility χ (with simultaneous obtaining field dependence of this susceptibility) by the commonly used relation χ = /γ both at relatively small (preferable for accuracy reasons) values γ - to γ = 0.02…0.025, as well as at increased values γ - up to γ = 0.25. The data χ are provided depending on H and correlating with known data at H defined here value of constant-multiplier (0.8), it provides the grounds for obtaining valid data χ, employing the results of measuring for conglomerates with not obligatory small values of γ. It is demonstrated that being obtained by data χ, the calculated field dependence of the particle matter magnetic susceptibility χm (for the case when the particles are traditionally likened to balls with the characteristic for them demagnetising factor equalling 1/3) complies with the anticipated inverse function χm ∼ 1/H in the studied area H (where magnetization M expressed as M = χH reaches saturation M = Const).

  2. Uniform hollow magnetite spheres: Facile synthesis, growth mechanism, and their magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xing, E-mail: xzhou@mail.usts.edu.cn [School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); Zhao, Guizhe [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); Liu, Yaqing, E-mail: zfflyq98@163.com [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China)

    2014-11-15

    Highlights: • Uniform Fe{sub 3}O{sub 4} hollow spheres with high saturation magnetization were synthesized through a simple solvothermal process. • Without using any hard templates or external magnetic field. • The as-prepared magnetite hollow spheres exhibit a ferromagnetic behavior with high Ms of ca. 85.9 emu/g at room temperature. • The morphology of Fe{sub 3}O{sub 4} with nanoparticles, hollow, and irregular structures could be adjusted by changing the reactive conditions. - Abstract: Hierarchical porous Fe{sub 3}O{sub 4} hollow spheres with high saturation magnetization were synthesized through a simple solvothermal process in ethylene glycol (EG) in the presence of Tetrabutylammonium chloride (TBAC) and urea. By investigating the effect of reaction temperature, time, the amount of urea, and concentration of iron ion on the formation of hollow spheres, it was proposed that the main formation mechanism of hollow spheres is Ostwald ripening process combined with assembly-then-inside-out evacuation process. Additionally, it is found that the morphology of Fe{sub 3}O{sub 4} with nanoparticles, hollow, and irregular structures could be adjusted by changing the above factors. The resulting products were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and vibrating sample magnetometer (VSM). The hierarchical porous Fe{sub 3}O{sub 4} hollow spheres exhibited enhanced saturation magnetization as compared with Fe{sub 3}O{sub 4} nanoparticles.

  3. Large stable magnetic domains

    Science.gov (United States)

    Pulliam, G. R.; Ross, W. E.; MacNeal, B.; Bailey, R. F.

    1982-03-01

    Large, thin-film single domain areas have been observed, in the absence of a bias field, in garnets with magnetization perpendicular to the film plane.1,2 The domain stability in the work by Krumme1 was attributed to a combination of low saturation magnetization and a low Curie temperature. Uchishiba2 relates the stability in his double layer system to appropriate anisotropy fields in one layer compared to the magnetization in the other layer. A more complete model for large domain stability in a bias field free environment is given in this work. Three distinct stability regimes are predicted by the model and all have been observed experimentally. Areas 3.5-cm in diameter have been made into stable single domains. This was achieved in a material showing a zero bias strip width of 4.5 μm. The single domain diameter was, therefore, 7500 times the equilibrium energy domain width. The technique developed and the model have led to a new means for observing magnetic defects. More importantly, it also offers a means for measuring the strength of the defects. Possible applications of the model are also discussed.

  4. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.

    Science.gov (United States)

    Habibi, Neda

    2015-02-05

    The preparation and characterization of functional biocompatible magnetite-cellulose nano-composite fibrous material is described. Magnetite-cellulose nano-composite was prepared by a combination of the solution-based formation of magnetic nano-particles and subsequent coating with amino celluloses. Characterization was accomplished using X-ray powder diffraction (XRD), fourier transformed infrared (FTIR) and field emission scanning electron microscopy (FESEM) analysis. The peaks of Fe3O4 in the XRD pattern of nanocomposite confirm existence of the nanoparticles in the amino cellulose matrix. Magnetite-cellulose particles exhibit an average diameter of roughly 33nm as demonstrated by field emission scanning electron microscopy. Magnetite nanoparticles were irregular spheres dispersed in the cellulose matrix. The vibration corresponding to the NCH3 functional group about 2850cm(-1) is assigned in the FTIR spectra. Functionalized magnetite-cellulose nano-composite polymers have a potential range of application as targeted drug delivery system in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Semi-Biosynthesis of Magnetite-Gold Composite Nanoparticles Using an Ethanol Extract of Eucalyptus camaldulensis and Study of the Surface Chemistry

    Directory of Open Access Journals (Sweden)

    Emad al din Haratifar

    2009-01-01

    Full Text Available Green synthesis of metal nanoparticles, such as silver or gold nanoparticles, has been attracting increasing attention in recent years. Functionalized magnetite nanoparticles have many uses in various applications, including nanoelectronic devices, molecular recognition, biomedical applications, drug delivery targeting, and optical devices. In this investigation, magnetic cores (Fe3O4 were synthesized using a fabrication method involving coprecipitation of Fe2+ and Fe3+. In the next step, magnetite-gold composite nanoparticles were synthesized with size ranging from 6–20 nm, using an ethanol extract of Eucalyptus camaldulensis as a natural reducing agent. Transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction spectroscopy, and visible absorption spectroscopy confirmed the fabrication of magnetite-gold composite nanoparticles. In the UV spectra diagram, a red-shift of the surface plasmon of the Au was evidence that contact between gold and Fe3O4 had occurred. The surface chemistry of the as-prepared magnetite-gold nanoparticles was studied using infrared spectroscopy. The presence of organic compounds with a carboxyl moiety was confirmed on the surface of the magnetite-gold nanoparticles fabricated by this combined chemical and biological reducing process, which we have designated as a semi-biosynthesis method.

  6. Quantitative analysis of Fe and Co in Co-substituted magnetite using XPS: The application of non-linear least squares fitting (NLLSF)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongmei, E-mail: hmliu@gig.ac.cn [CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 (China); Wei, Gaoling [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 (China); Xu, Zhen [School of Materials Science and Engineering, Central South University, Changsha, 410012 (China); Liu, Peng; Li, Ying [CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China)

    2016-12-15

    Highlights: • XPS and Auger peak overlapping complicates Co-substituted magnetite quantification. • Disrurbance of Auger peaks was eliminated by non-linear least squares fitting. • Fitting greatly improved the accuracy of quantification for Co and Fe. • Catalytic activity of magnetite was enhanced with the increase of Co substitution. - Abstract: Quantitative analysis of Co and Fe using X-ray photoelectron spectroscopy (XPS) is of important for the evaluation of the catalytic ability of Co-substituted magnetite. However, the overlap of XPS peaks and Auger peaks for Co and Fe complicate quantification. In this study, non-linear least squares fitting (NLLSF) was used to calculate the relative Co and Fe contents of a series of synthesized Co-substituted magnetite samples with different Co doping levels. NLLSF separated the XPS peaks of Co 2p and Fe 2p from the Auger peaks of Fe and Co, respectively. Compared with a control group without fitting, the accuracy of quantification of Co and Fe was greatly improved after elimination by NLLSF of the disturbance of Auger peaks. A catalysis study confirmed that the catalytic activity of magnetite was enhanced with the increase of Co substitution. This study confirms the effectiveness and accuracy of the NLLSF method in XPS quantitative calculation of Fe and Co coexisting in a material.

  7. Domains in Ferroelectric Nanostructures

    Science.gov (United States)

    Gregg, Marty

    2010-03-01

    Ferroelectric materials have great potential in influencing the future of small scale electronics. At a basic level, this is because ferroelectric surfaces are charged, and so interact strongly with charge-carrying metals and semiconductors - the building blocks for all electronic systems. Since the electrical polarity of the ferroelectric can be reversed, surfaces can both attract and repel charges in nearby materials, and can thereby exert complete control over both charge distribution and movement. It should be no surprise, therefore, that microelectronics industries have already looked very seriously at harnessing ferroelectric materials in a variety of applications, from solid state memory chips (FeRAMs) to field effect transistors (FeFETs). In all such applications, switching the direction of the polarity of the ferroelectric is a key aspect of functional behavior. The mechanism for switching involves the field-induced nucleation and growth of domains. Domain coarsening, through domain wall propagation, eventually causes the entire ferroelectric to switch its polar direction. It is thus the existence and behavior of domains that determine the switching response, and ultimately the performance of the ferroelectric device. A major issue, associated with the integration of ferroelectrics into microelectronic devices, has been that the fundamental properties associated with ferroelectrics, when in bulk form, appear to change quite dramatically and unpredictably when at the nanoscale: new modes of behaviour, and different functional characteristics from those seen in bulk appear. For domains, in particular, the