WorldWideScience

Sample records for pseudo-random number sequence

  1. Correlations of pseudo-random numbers of multiplicative sequence

    International Nuclear Information System (INIS)

    Bukin, A.D.

    1989-01-01

    An algorithm is suggested for searching with a computer in unit n-dimensional cube the sets of planes where all the points fall whose coordinates are composed of n successive pseudo-random numbers of multiplicative sequence. This effect should be taken into account in Monte-Carlo calculations with definite constructive dimension. The parameters of these planes are obtained for three random number generators. 2 refs.; 2 tabs

  2. Long period pseudo random number sequence generator

    Science.gov (United States)

    Wang, Charles C. (Inventor)

    1989-01-01

    A circuit for generating a sequence of pseudo random numbers, (A sub K). There is an exponentiator in GF(2 sup m) for the normal basis representation of elements in a finite field GF(2 sup m) each represented by m binary digits and having two inputs and an output from which the sequence (A sub K). Of pseudo random numbers is taken. One of the two inputs is connected to receive the outputs (E sub K) of maximal length shift register of n stages. There is a switch having a pair of inputs and an output. The switch outputs is connected to the other of the two inputs of the exponentiator. One of the switch inputs is connected for initially receiving a primitive element (A sub O) in GF(2 sup m). Finally, there is a delay circuit having an input and an output. The delay circuit output is connected to the other of the switch inputs and the delay circuit input is connected to the output of the exponentiator. Whereby after the exponentiator initially receives the primitive element (A sub O) in GF(2 sup m) through the switch, the switch can be switched to cause the exponentiator to receive as its input a delayed output A(K-1) from the exponentiator thereby generating (A sub K) continuously at the output of the exponentiator. The exponentiator in GF(2 sup m) is novel and comprises a cyclic-shift circuit; a Massey-Omura multiplier; and, a control logic circuit all operably connected together to perform the function U(sub i) = 92(sup i) (for n(sub i) = 1 or 1 (for n(subi) = 0).

  3. Quality pseudo-random number generator

    International Nuclear Information System (INIS)

    Tarasiuk, J.

    1996-01-01

    The pseudo-random number generator (RNG) was written to match needs of nuclear and high-energy physics computation which in some cases require very long and independent random number sequences. In this random number generator the repetition period is about 10 36 what should be sufficient for all computers in the world. In this article the test results of RNG correlation, speed and identity of computations for PC, Sun4 and VAX computer tests are presented

  4. A Repetition Test for Pseudo-Random Number Generators

    OpenAIRE

    Gil, Manuel; Gonnet, Gaston H.; Petersen, Wesley P.

    2017-01-01

    A new statistical test for uniform pseudo-random number generators (PRNGs) is presented. The idea is that a sequence of pseudo-random numbers should have numbers reappear with a certain probability. The expectation time that a repetition occurs provides the metric for the test. For linear congruential generators (LCGs) failure can be shown theoretically. Empirical test results for a number of commonly used PRNGs are reported, showing that some PRNGs considered to have good statistical propert...

  5. a Pseudo-Random Number Generator Employing Multiple RÉNYI Maps

    Science.gov (United States)

    Lui, Oi-Yan; Yuen, Ching-Hung; Wong, Kwok-Wo

    2013-11-01

    The increasing risk along with the drastic development of multimedia data transmission has raised a big concern on data security. A good pseudo-random number generator is an essential tool in cryptography. In this paper, we propose a novel pseudo-random number generator based on the controlled combination of the outputs of several digitized chaotic Rényi maps. The generated pseudo-random sequences have passed both the NIST 800-22 Revision 1a and the DIEHARD tests. Moreover, simulation results show that the proposed pseudo-random number generator requires less operation time than existing generators and is highly sensitive to the seed.

  6. Properties making a chaotic system a good Pseudo Random Number Generator

    OpenAIRE

    Falcioni, Massimo; Palatella, Luigi; Pigolotti, Simone; Vulpiani, Angelo

    2005-01-01

    We discuss two properties making a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai entropy and high-dimensionality. We propose the multi dimensional Anosov symplectic (cat) map as a Pseudo Random Number Generator. We show what chaotic features of this map are useful for generating Pseudo Random Numbers and investigate numerically which of them survive in the discrete version of the map. Testing and comparisons with other generat...

  7. Simulation of a directed random-walk model: the effect of pseudo-random-number correlations

    OpenAIRE

    Shchur, L. N.; Heringa, J. R.; Blöte, H. W. J.

    1996-01-01

    We investigate the mechanism that leads to systematic deviations in cluster Monte Carlo simulations when correlated pseudo-random numbers are used. We present a simple model, which enables an analysis of the effects due to correlations in several types of pseudo-random-number sequences. This model provides qualitative understanding of the bias mechanism in a class of cluster Monte Carlo algorithms.

  8. A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism

    International Nuclear Information System (INIS)

    Fu-Lai, Wang

    2010-01-01

    A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0–1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator. (general)

  9. A universal algorithm to generate pseudo-random numbers based on uniform mapping as homeomorphism

    Science.gov (United States)

    Wang, Fu-Lai

    2010-09-01

    A specific uniform map is constructed as a homeomorphism mapping chaotic time series into [0,1] to obtain sequences of standard uniform distribution. With the uniform map, a chaotic orbit and a sequence orbit obtained are topologically equivalent to each other so the map can preserve the most dynamic properties of chaotic systems such as permutation entropy. Based on the uniform map, a universal algorithm to generate pseudo random numbers is proposed and the pseudo random series is tested to follow the standard 0-1 random distribution both theoretically and experimentally. The algorithm is not complex, which does not impose high requirement on computer hard ware and thus computation speed is fast. The method not only extends the parameter spaces but also avoids the drawback of small function space caused by constraints on chaotic maps used to generate pseudo random numbers. The algorithm can be applied to any chaotic system and can produce pseudo random sequence of high quality, thus can be a good universal pseudo random number generator.

  10. Pseudo-random Trees: Multiple Independent Sequence Generators for Parallel and Branching Computations

    Science.gov (United States)

    Halton, John H.

    1989-09-01

    A class of families of linear congruential pseudo-random sequences is defined, for which it is possible to branch at any event without changing the sequence of random numbers used in the original random walk and for which the sequences in different branches show properties analogous to mutual statistical independence. This is a hitherto unavailable, and computationally desirable, tool.

  11. Generation of pseudo-random sequences for spread spectrum systems

    Science.gov (United States)

    Moser, R.; Stover, J.

    1985-05-01

    The characteristics of pseudo random radio signal sequences (PRS) are explored. The randomness of the PSR is a matter of artificially altering the sequence of binary digits broadcast. Autocorrelations of the two sequences shifted in time, if high, determine if the signals are the same and thus allow for position identification. Cross-correlation can also be calculated between sequences. Correlations closest to zero are obtained with large volume of prime numbers in the sequences. Techniques for selecting optimal and maximal lengths for the sequences are reviewed. If the correlations are near zero in the sequences, then signal channels can accommodate multiple users. Finally, Gold codes are discussed as a technique for maximizing the code lengths.

  12. Graphical analysis of some pseudo-random number generators

    OpenAIRE

    Lewis, Peter A. W.

    1986-01-01

    There exist today many 'good' pseudo-random number generators; the problem is to retrieve them. This document discusses three commonly used pseudo- random number generators, the first being RANDU, a notoriously bad generator, but one which is still occasionally used. The next is the widely used prime modulus, multiplicative congruential generator used in LL-RANDOMII, the Naval Postgraduate School random number package, and the last is the random number generator provided for microcomputers wi...

  13. Pseudo random number generator based on quantum chaotic map

    Science.gov (United States)

    Akhshani, A.; Akhavan, A.; Mobaraki, A.; Lim, S.-C.; Hassan, Z.

    2014-01-01

    For many years dissipative quantum maps were widely used as informative models of quantum chaos. In this paper, a new scheme for generating good pseudo-random numbers (PRNG), based on quantum logistic map is proposed. Note that the PRNG merely relies on the equations used in the quantum chaotic map. The algorithm is not complex, which does not impose high requirement on computer hardware and thus computation speed is fast. In order to face the challenge of using the proposed PRNG in quantum cryptography and other practical applications, the proposed PRNG is subjected to statistical tests using well-known test suites such as NIST, DIEHARD, ENT and TestU01. The results of the statistical tests were promising, as the proposed PRNG successfully passed all these tests. Moreover, the degree of non-periodicity of the chaotic sequences of the quantum map is investigated through the Scale index technique. The obtained result shows that, the sequence is more non-periodic. From these results it can be concluded that, the new scheme can generate a high percentage of usable pseudo-random numbers for simulation and other applications in scientific computing.

  14. Pseudo-Random Number Generator Based on Coupled Map Lattices

    Science.gov (United States)

    Lü, Huaping; Wang, Shihong; Hu, Gang

    A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.

  15. Design of Long Period Pseudo-Random Sequences from the Addition of -Sequences over

    Directory of Open Access Journals (Sweden)

    Ren Jian

    2004-01-01

    Full Text Available Pseudo-random sequence with good correlation property and large linear span is widely used in code division multiple access (CDMA communication systems and cryptology for reliable and secure information transmission. In this paper, sequences with long period, large complexity, balance statistics, and low cross-correlation property are constructed from the addition of -sequences with pairwise-prime linear spans (AMPLS. Using -sequences as building blocks, the proposed method proved to be an efficient and flexible approach to construct long period pseudo-random sequences with desirable properties from short period sequences. Applying the proposed method to , a signal set is constructed.

  16. A symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences

    International Nuclear Information System (INIS)

    Xiao Fanghong

    2004-01-01

    By considering a chaotic pseudo-random sequence as a symbolic sequence, authors present a symbolic dynamics approach for the complexity analysis of chaotic pseudo-random sequences. The method is applied to the cases of Logistic map and one-way coupled map lattice to demonstrate how it works, and a comparison is made between it and the approximate entropy method. The results show that this method is applicable to distinguish the complexities of different chaotic pseudo-random sequences, and it is superior to the approximate entropy method

  17. Research of the method of pseudo-random number generation based on asynchronous cellular automata with several active cells

    Directory of Open Access Journals (Sweden)

    Bilan Stepan

    2017-01-01

    Full Text Available To date, there are many tasks that are aimed at studying the dynamic changes in physical processes. These tasks do not give advance known result. The solution of such problems is based on the construction of a dynamic model of the object. Successful structural and functional implementation of the object model can give a positive result in time. This approach uses the task of constructing artificial biological objects. To solve such problems, pseudo-random number generators are used, which also find wide application for information protection tasks. Such generators should have good statistical properties and give a long repetition period of the generated pseudo-random bit sequence. This work is aimed at improving these characteristics. The paper considers the method of forming pseudo-random sequences of numbers on the basis of aperiodic cellular automata with two active cells. A pseudo-random number generator is proposed that generates three bit sequences. The first two bit sequences are formed by the corresponding two active cells in the cellular automaton. The third bit sequence is the result of executing the XOR function over the bits of the first two sequences and it has better characteristics compared to them. The use of cellular automata with two active cells allowed to improve the statistical properties of the formed bit sequence, as well as its repetition period. This is proved by using graphical tests for generators built based on cellular automata using the neighborhoods of von Neumann and Moore. The tests showed high efficiency of the generator based on an asynchronous cellular automaton with the neighborhood of Moore. The proposed pseudo-random number generators have good statistical properties, which makes it possible to use them in information security systems, as well as for simulation tasks of various dynamic processes.

  18. Pseudo-random number generation using a 3-state cellular automaton

    Science.gov (United States)

    Bhattacharjee, Kamalika; Paul, Dipanjyoti; Das, Sukanta

    This paper investigates the potentiality of pseudo-random number generation of a 3-neighborhood 3-state cellular automaton (CA) under periodic boundary condition. Theoretical and empirical tests are performed on the numbers, generated by the CA, to observe the quality of it as pseudo-random number generator (PRNG). We analyze the strength and weakness of the proposed PRNG and conclude that the selected CA is a good random number generator.

  19. A Bidirectional Generalized Synchronization Theorem-Based Chaotic Pseudo-random Number Generator

    Directory of Open Access Journals (Sweden)

    Han Shuangshuang

    2013-07-01

    Full Text Available Based on a bidirectional generalized synchronization theorem for discrete chaos system, this paper introduces a new 5-dimensional bidirectional generalized chaos synchronization system (BGCSDS, whose prototype is a novel chaotic system introduced in [12]. Numerical simulation showed that two pair variables of the BGCSDS achieve generalized chaos synchronization via a transform H.A chaos-based pseudo-random number generator (CPNG was designed by the new BGCSDS. Using the FIPS-140-2 tests issued by the National Institute of Standard and Technology (NIST verified the randomness of the 1000 binary number sequences generated via the CPNG and the RC4 algorithm respectively. The results showed that all the tested sequences passed the FIPS-140-2 tests. The confidence interval analysis showed the statistical properties of the randomness of the sequences generated via the CPNG and the RC4 algorithm do not have significant differences.

  20. Chaos-based Pseudo-random Number Generation

    KAUST Repository

    Barakat, Mohamed L.

    2014-04-10

    Various methods and systems related to chaos-based pseudo-random number generation are presented. In one example, among others, a system includes a pseudo-random number generator (PRNG) to generate a series of digital outputs and a nonlinear post processing circuit to perform an exclusive OR (XOR) operation on a first portion of a current digital output of the PRNG and a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output. In another example, a method includes receiving at least a first portion of a current output from a PRNG and performing an XOR operation on the first portion of the current PRNG output with a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output.

  1. Chaos-based Pseudo-random Number Generation

    KAUST Repository

    Barakat, Mohamed L.; Mansingka, Abhinav S.; Radwan, Ahmed Gomaa Ahmed; Salama, Khaled N.

    2014-01-01

    Various methods and systems related to chaos-based pseudo-random number generation are presented. In one example, among others, a system includes a pseudo-random number generator (PRNG) to generate a series of digital outputs and a nonlinear post processing circuit to perform an exclusive OR (XOR) operation on a first portion of a current digital output of the PRNG and a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output. In another example, a method includes receiving at least a first portion of a current output from a PRNG and performing an XOR operation on the first portion of the current PRNG output with a permutated version of a corresponding first portion of a previous post processed output to generate a corresponding first portion of a current post processed output.

  2. Non-periodic pseudo-random numbers used in Monte Carlo calculations

    Science.gov (United States)

    Barberis, Gaston E.

    2007-09-01

    The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 1013 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 1013 numbers and that they are not correlated.

  3. Non-periodic pseudo-random numbers used in Monte Carlo calculations

    International Nuclear Information System (INIS)

    Barberis, Gaston E.

    2007-01-01

    The generation of pseudo-random numbers is one of the interesting problems in Monte Carlo simulations, mostly because the common computer generators produce periodic numbers. We used simple pseudo-random numbers generated with the simplest chaotic system, the logistic map, with excellent results. The numbers generated in this way are non-periodic, which we demonstrated for 10 13 numbers, and they are obtained in a deterministic way, which allows to repeat systematically any calculation. The Monte Carlo calculations are the ideal field to apply these numbers, and we did it for simple and more elaborated cases. Chemistry and Information Technology use this kind of simulations, and the application of this numbers to quantum Monte Carlo and cryptography is immediate. I present here the techniques to calculate, analyze and use these pseudo-random numbers, show that they lack periodicity up to 10 13 numbers and that they are not correlated

  4. Program pseudo-random number generator for microcomputers

    International Nuclear Information System (INIS)

    Ososkov, G.A.

    1980-01-01

    Program pseudo-random number generators (PNG) intended for the test of control equipment and communication channels are considered. In the case of 8-bit microcomputers it is necessary to assign 4 words of storage to allocate one random number. The proposed economical algorithms of the random number generation are based on the idea of the ''mixing'' of such quarters of the preceeding random number to obtain the next one. Test results of the PNG are displayed for two such generators. A FORTRAN variant of the PNG is presented along with a program realizing the PNG made on the base of the INTEL-8080 autocode

  5. Primitive polynomials selection method for pseudo-random number generator

    Science.gov (United States)

    Anikin, I. V.; Alnajjar, Kh

    2018-01-01

    In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.

  6. High-Performance Pseudo-Random Number Generation on Graphics Processing Units

    OpenAIRE

    Nandapalan, Nimalan; Brent, Richard P.; Murray, Lawrence M.; Rendell, Alistair

    2011-01-01

    This work considers the deployment of pseudo-random number generators (PRNGs) on graphics processing units (GPUs), developing an approach based on the xorgens generator to rapidly produce pseudo-random numbers of high statistical quality. The chosen algorithm has configurable state size and period, making it ideal for tuning to the GPU architecture. We present a comparison of both speed and statistical quality with other common parallel, GPU-based PRNGs, demonstrating favourable performance o...

  7. Modular Transformations, Order-Chaos Transitions and Pseudo-Random Number Generation

    Science.gov (United States)

    Bonelli, Antonio; Ruffo, Stefano

    Successive pairs of pseudo-random numbers generated by standard linear congruential transformations display ordered patterns of parallel lines. We study the "ordered" and "chaotic" distribution of such pairs by solving the eigenvalue problem for two-dimensional modular transformations over integers. We conjecture that the optimal uniformity for pair distribution is obtained when the slope of linear modular eigenspaces takes the value n opt =maxint (p/√ {p-1}), where p is a prime number. We then propose a new generator of pairs of independent pseudo-random numbers, which realizes an optimal uniform distribution (in the "statistical" sense) of points on the unit square (0, 1] × (0, 1]. The method can be easily generalized to the generation of k-tuples of random numbers (with k>2).

  8. ACORN—A new method for generating sequences of uniformly distributed Pseudo-random Numbers

    Science.gov (United States)

    Wikramaratna, R. S.

    1989-07-01

    A new family of pseudo-random number generators, the ACORN ( additive congruential random number) generators, is proposed. The resulting numbers are distributed uniformly in the interval [0, 1). The ACORN generators are defined recursively, and the ( k + 1)th order generator is easily derived from the kth order generator. Some theorems concerning the period length are presented and compared with existing results for linear congruential generators. A range of statistical tests are applied to the ACORN generators, and their performance is compared with that of the linear congruential generators and the Chebyshev generators. The tests show the ACORN generators to be statistically superior to the Chebyshev generators, while being statistically similar to the linear congruential generators. However, the ACORN generators execute faster than linear congruential generators for the same statistical faithfulness. The main advantages of the ACORN generator are speed of execution, long period length, and simplicity of coding.

  9. Novel pseudo-random number generator based on quantum random walks

    Science.gov (United States)

    Yang, Yu-Guang; Zhao, Qian-Qian

    2016-02-01

    In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.

  10. Novel pseudo-random number generator based on quantum random walks.

    Science.gov (United States)

    Yang, Yu-Guang; Zhao, Qian-Qian

    2016-02-04

    In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.

  11. Design of Long Period Pseudo-Random Sequences from the Addition of m -Sequences over 𝔽 p

    Directory of Open Access Journals (Sweden)

    Ren Jian

    2004-01-01

    Full Text Available Pseudo-random sequence with good correlation property and large linear span is widely used in code division multiple access (CDMA communication systems and cryptology for reliable and secure information transmission. In this paper, sequences with long period, large complexity, balance statistics, and low cross-correlation property are constructed from the addition of m -sequences with pairwise-prime linear spans (AMPLS. Using m -sequences as building blocks, the proposed method proved to be an efficient and flexible approach to construct long period pseudo-random sequences with desirable properties from short period sequences. Applying the proposed method to 𝔽 2 , a signal set ( ( 2 n − 1 ( 2 m − 1 , ( 2 n + 1 ( 2 m + 1 , ( 2 ( n + 1 / 2 + 1 ( 2 ( m + 1 / 2 + 1 is constructed.

  12. New Trends in Pseudo-Random Number Generation

    Science.gov (United States)

    Gutbrod, F.

    Properties of pseudo-random number generators are reviewed. The emphasis is on correlations between successive random numbers and their suppression by improvement steps. The generators under discussion are the linear congruential generators, lagged Fibonacci generators with various operations, and the improvement techniques combination, shuffling and decimation. The properties of the RANSHI generator are reviewed somewhat more extensively. The transition to 64-bit technology is discussed in several cases. The generators are subject to several tests, which look both for short range and for long range correlations. Some performance figures are given for a Pentium Pro PC. Recommendations are presented in the final chapter.

  13. A pseudo-random number generator and its spectral test

    International Nuclear Information System (INIS)

    Wang Lai

    1998-01-01

    The author introduces a pseudo-random number generator and describes its algorithm and C language implementation. The performance of the generator is tested and compared with some well known LCG generators

  14. An empirical test of pseudo random number generators by means of an exponential decaying process

    International Nuclear Information System (INIS)

    Coronel B, H.F.; Hernandez M, A.R.; Jimenez M, M.A.; Mora F, L.E.

    2007-01-01

    Empirical tests for pseudo random number generators based on the use of processes or physical models have been successfully used and are considered as complementary to theoretical tests of randomness. In this work a statistical methodology for evaluating the quality of pseudo random number generators is presented. The method is illustrated in the context of the so-called exponential decay process, using some pseudo random number generators commonly used in physics. (Author)

  15. Using pseudo-random number generator for making iterative algorithms of hashing data

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Vasil'ev, N.P.; Kozyrskij, B.L.

    2014-01-01

    The method of stochastic data transformation made for usage in cryptographic methods of information protection has been analyzed. The authors prove the usage of cryptographically strong pseudo-random number generators as a basis for Sponge construction. This means that the analysis of the quality of the known methods and tools for assessing the statistical security of pseudo-random number generators can be used effectively [ru

  16. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map

    Science.gov (United States)

    Wang, Xing-Yuan; Qin, Xue; Xie, Yi-Xin

    2011-08-01

    We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.

  17. Cryptographic pseudo-random sequence from the spatial chaotic map

    International Nuclear Information System (INIS)

    Sun Fuyan; Liu Shutang

    2009-01-01

    A scheme for pseudo-random binary sequence generation based on the spatial chaotic map is proposed. In order to face the challenge of using the proposed PRBS in cryptography, the proposed PRBS is subjected to statistical tests which are the well-known FIPS-140-1 in the area of cryptography, and correlation properties of the proposed sequences are investigated. The proposed PRBS successfully passes all these tests. Results of statistical testing of the sequences are found encouraging. The results of statistical tests suggest strong candidature for cryptographic applications.

  18. Pseudo-random number generator for the Sigma 5 computer

    Science.gov (United States)

    Carroll, S. N.

    1983-01-01

    A technique is presented for developing a pseudo-random number generator based on the linear congruential form. The two numbers used for the generator are a prime number and a corresponding primitive root, where the prime is the largest prime number that can be accurately represented on a particular computer. The primitive root is selected by applying Marsaglia's lattice test. The technique presented was applied to write a random number program for the Sigma 5 computer. The new program, named S:RANDOM1, is judged to be superior to the older program named S:RANDOM. For applications requiring several independent random number generators, a table is included showing several acceptable primitive roots. The technique and programs described can be applied to any computer having word length different from that of the Sigma 5.

  19. Application of quasi-random numbers for simulation

    International Nuclear Information System (INIS)

    Kazachenko, O.N.; Takhtamyshev, G.G.

    1985-01-01

    Application of the Monte-Carlo method for multidimensional integration is discussed. The main goal is to check the statement that the application of quasi-random numbers instead of regular pseudo-random numbers provides more rapid convergency. The Sobol, Richtmayer and Halton algorithms of quasi-random sequences are described. Over 50 tests to compare these quasi-random numbers as well as pseudo-random numbers were fulfilled. In all cases quasi-random numbers have clearly demonstrated a more rapid convergency as compared with pseudo-random ones. Positive test results on quasi-random trend in Monte-Carlo method seem very promising

  20. Hardware implementation of a GFSR pseudo-random number generator

    Science.gov (United States)

    Aiello, G. R.; Budinich, M.; Milotti, E.

    1989-12-01

    We describe the hardware implementation of a pseudo-random number generator of the "Generalized Feedback Shift Register" (GFSR) type. After brief theoretical considerations we describe two versions of the hardware, the tests done and the performances achieved.

  1. Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Qin Xue; Xie Yi-Xin

    2011-01-01

    We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number x i generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application. (general)

  2. Pseudo-random-number generators and the square site percolation threshold.

    Science.gov (United States)

    Lee, Michael J

    2008-09-01

    Selected pseudo-random-number generators are applied to a Monte Carlo study of the two-dimensional square-lattice site percolation model. A generator suitable for high precision calculations is identified from an application specific test of randomness. After extended computation and analysis, an ostensibly reliable value of p_{c}=0.59274598(4) is obtained for the percolation threshold.

  3. Quantifiers for randomness of chaotic pseudo-random number generators.

    Science.gov (United States)

    De Micco, L; Larrondo, H A; Plastino, A; Rosso, O A

    2009-08-28

    We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature.

  4. Accelerating Pseudo-Random Number Generator for MCNP on GPU

    Science.gov (United States)

    Gong, Chunye; Liu, Jie; Chi, Lihua; Hu, Qingfeng; Deng, Li; Gong, Zhenghu

    2010-09-01

    Pseudo-random number generators (PRNG) are intensively used in many stochastic algorithms in particle simulations, artificial neural networks and other scientific computation. The PRNG in Monte Carlo N-Particle Transport Code (MCNP) requires long period, high quality, flexible jump and fast enough. In this paper, we implement such a PRNG for MCNP on NVIDIA's GTX200 Graphics Processor Units (GPU) using CUDA programming model. Results shows that 3.80 to 8.10 times speedup are achieved compared with 4 to 6 cores CPUs and more than 679.18 million double precision random numbers can be generated per second on GPU.

  5. Pseudo-Random Number Generators for Vector Processors and Multicore Processors

    DEFF Research Database (Denmark)

    Fog, Agner

    2015-01-01

    Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways...

  6. Security Flaws in an Efficient Pseudo-Random Number Generator for Low-Power Environments

    Science.gov (United States)

    Peris-Lopez, Pedro; Hernandez-Castro, Julio C.; Tapiador, Juan M. E.; Millán, Enrique San; van der Lubbe, Jan C. A.

    In 2004, Settharam and Rhee tackled the design of a lightweight Pseudo-Random Number Generator (PRNG) suitable for low-power environments (e.g. sensor networks, low-cost RFID tags). First, they explicitly fixed a set of requirements for this primitive. Then, they proposed a PRNG conforming to these requirements and using a free-running timer [9]. We analyze this primitive discovering important security faults. The proposed algorithm fails to pass even relatively non-stringent batteries of randomness such as ENT (i.e. a pseudorandom number sequence test program). We prove that their recommended PRNG has a very short period due to the flawed design of its core. The internal state can be easily revealed, compromising its backward and forward security. Additionally, the rekeying algorithm is defectively designed mainly related to the unpractical value proposed for this purpose.

  7. Cryptography, statistics and pseudo-randomness (Part 1)

    NARCIS (Netherlands)

    Brands, S.; Gill, R.D.

    1995-01-01

    In the classical approach to pseudo-random number generators, a generator is considered to perform well if its output sequences pass a battery of statistical tests that has become standard. In recent years, it has turned out that this approach is not satisfactory. Many generators have turned out to

  8. PRIMITIVE MATRICES AND GENERATORS OF PSEUDO RANDOM SEQUENCES OF GALOIS

    Directory of Open Access Journals (Sweden)

    A. Beletsky

    2014-04-01

    Full Text Available In theory and practice of information cryptographic protection one of the key problems is the forming a binary pseudo-random sequences (PRS with a maximum length with acceptable statistical characteristics. PRS generators are usually implemented by linear shift register (LSR of maximum period with linear feedback [1]. In this paper we extend the concept of LSR, assuming that each of its rank (memory cell can be in one of the following condition. Let’s call such registers “generalized linear shift register.” The research goal is to develop algorithms for constructing Galois and Fibonacci generalized matrix of n-order over the field , which uniquely determined both the structure of corresponding generalized of n-order LSR maximal period, and formed on their basis Galois PRS generators of maximum length. Thus the article presents the questions of formation the primitive generalized Fibonacci and Galois arbitrary order matrix over the prime field . The synthesis of matrices is based on the use of irreducible polynomials of degree and primitive elements of the extended field generated by polynomial. The constructing methods of Galois and Fibonacci conjugated primitive matrices are suggested. The using possibilities of such matrices in solving the problem of constructing generalized generators of Galois pseudo-random sequences are discussed.

  9. Pseudo-random number generators for Monte Carlo simulations on ATI Graphics Processing Units

    Science.gov (United States)

    Demchik, Vadim

    2011-03-01

    Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed up factor is hundreds of times in comparison with CPU. RANLUX generator is found to be the most appropriate for using on GPU in Monte Carlo simulations. The brief review of the pseudo-random number generators used in modern software packages for Monte Carlo simulations in high-energy physics is presented.

  10. Interference Suppression Performance of Automotive UWB Radars Using Pseudo Random Sequences

    Directory of Open Access Journals (Sweden)

    I. Pasya

    2015-12-01

    Full Text Available Ultra wideband (UWB automotive radars have attracted attention from the viewpoint of reducing traffic accidents. The performance of automotive radars may be degraded by interference from nearby radars using the same frequency. In this study, a scenario where two cars pass each other on a road was considered. Considering the utilization of cross-polarization, the desired-to-undesired signal power ratio (DUR was found to vary approximately from -10 to 30 dB. Different pseudo random sequences were employed for spectrum spreading the different radar signals to mitigate the interference effects. This paper evaluates the interference suppression provided by maximum length sequence (MLS and Gold sequence (GS through numerical simulations of the radar’s performance in terms of probability of false alarm and probability of detection. It was found that MLS and GS yielded nearly the same performance when the DUR is -10 dB (worst case; for example when fixing the probability of false alarm to 0.0001, the probabilities of detection were 0.964 and 0.946 respectively. The GS are more advantageous than MLS due to larger number of different sequences having the same length in GS than in MLS.

  11. Three-dimensional pseudo-random number generator for implementing in hybrid computer systems

    International Nuclear Information System (INIS)

    Ivanov, M.A.; Vasil'ev, N.P.; Voronin, A.V.; Kravtsov, M.Yu.; Maksutov, A.A.; Spiridonov, A.A.; Khudyakova, V.I.; Chugunkov, I.V.

    2012-01-01

    The algorithm for generating pseudo-random numbers oriented to implementation by using hybrid computer systems is considered. The proposed solution is characterized by a high degree of parallel computing [ru

  12. Cardiorespiratory Kinetics Determined by Pseudo-Random Binary Sequences - Comparisons between Walking and Cycling.

    Science.gov (United States)

    Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U

    2016-12-01

    This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Fully Digital Chaotic Oscillators Applied to Pseudo Random Number Generation

    KAUST Repository

    Mansingka, Abhinav S.

    2012-05-01

    adapted for pseudo random number generation by truncating statistically defective bits. Finally, a novel post-processing technique using the Fibonacci series is proposed and implemented with a non-autonomous driven hyperchaotic system to provide pseudo random number generators with high nonlinear complexity and controllable period length that enables full utilization of all branches of the chaotic output as statistically secure pseudo random output.

  14. Generation of pseudo-random numbers with the use of inverse chaotic transformation

    Directory of Open Access Journals (Sweden)

    Lawnik Marcin

    2018-02-01

    Full Text Available In (Lawnik M., Generation of numbers with the distribution close to uniform with the use of chaotic maps, In: Obaidat M.S., Kacprzyk J., Ören T. (Ed., International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH (28-30 August 2014, Vienna, Austria, SCITEPRESS, 2014 Lawnik discussed a method of generating pseudo-random numbers from uniform distribution with the use of adequate chaotic transformation. The method enables the “flattening” of continuous distributions to uniform one. In this paper a inverse process to the above-mentioned method is presented, and, in consequence, a new manner of generating pseudo-random numbers from a given continuous distribution. The method utilizes the frequency of the occurrence of successive branches of chaotic transformation in the process of “flattening”. To generate the values from the given distribution one discrete and one continuous value of a random variable are required. The presented method does not directly involve the knowledge of the density function or the cumulative distribution function, which is, undoubtedly, a great advantage in comparison with other well-known methods. The described method was analysed on the example of the standard normal distribution.

  15. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  16. Parallel random number generator for inexpensive configurable hardware cells

    Science.gov (United States)

    Ackermann, J.; Tangen, U.; Bödekker, B.; Breyer, J.; Stoll, E.; McCaskill, J. S.

    2001-11-01

    A new random number generator ( RNG) adapted to parallel processors has been created. This RNG can be implemented with inexpensive hardware cells. The correlation between neighboring cells is suppressed with smart connections. With such connection structures, sequences of pseudo-random numbers are produced. Numerical tests including a self-avoiding random walk test and the simulation of the order parameter and energy of the 2D Ising model give no evidence for correlation in the pseudo-random sequences. Because the new random number generator has suppressed the correlation between neighboring cells which is usually observed in cellular automaton implementations, it is applicable for extended time simulations. It gives an immense speed-up factor if implemented directly in configurable hardware, and has recently been used for long time simulations of spatially resolved molecular evolution.

  17. Pseudo-random number generator based on mixing of three chaotic maps

    Science.gov (United States)

    François, M.; Grosges, T.; Barchiesi, D.; Erra, R.

    2014-04-01

    A secure pseudo-random number generator three-mixer is proposed. The principle of the method consists in mixing three chaotic maps produced from an input initial vector. The algorithm uses permutations whose positions are computed and indexed by a standard chaotic function and a linear congruence. The performance of that scheme is evaluated through statistical analysis. Such a cryptosystem lets appear significant cryptographic qualities for a high security level.

  18. Very high performance pseudo-random number generation on DAP

    Science.gov (United States)

    Smith, K. A.; Reddaway, S. F.; Scott, D. M.

    1985-07-01

    Since the National DAP Service began at QMC in 1980, extensive use has been made of pseudo-random numbers in Monte Carlo simulation. Matrices of uniform numbers have been produced by various generators: (a) multiplicative ( x+ 1 = 13 13xn mod 2 59); (b) very long period shift register ( x4423 + x271 + 1); (c) multiple shorter period ( x127 + x7 + 1) shift registers generating several matrices per iteration. The above uniform generators can also feed a normal distribution generator that uses the Box-Muller transformation. This paper describes briefly the generators, their implementation and speed. Generator (b) has been greatly speeded-up by re-implementation, and now produces more than 100 × 10 6 high quality 16-bit numbers/s. Generator (c) is under development and will achieve even higher performance, mainly due to producing data in greater bulk. High quality numbers are expected, and performance will range from 400 to 800 × 10 6 numbers/s, depending on how the generator is used.

  19. Pseudo Random Coins Show More Heads Than Tails

    OpenAIRE

    Bauke, Heiko; Mertens, Stephan

    2003-01-01

    Tossing a coin is the most elementary Monte Carlo experiment. In a computer the coin is replaced by a pseudo random number generator. It can be shown analytically and by exact enumerations that popular random number generators are not capable of imitating a fair coin: pseudo random coins show more heads than tails. This bias explains the empirically observed failure of some random number generators in random walk experiments. It can be traced down to the special role of the value zero in the ...

  20. Exploring pseudo- and chaotic random Monte Carlo simulations

    Science.gov (United States)

    Blais, J. A. Rod; Zhang, Zhan

    2011-07-01

    Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer-generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as importance sampling and stratified sampling can be applied in most Monte Carlo simulations and significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on some practical examples of geodetic direct and inverse problems, conclusions and recommendations concerning their performance and general applicability are included.

  1. Distributed Pseudo-Random Number Generation and Its Application to Cloud Database

    OpenAIRE

    Chen, Jiageng; Miyaji, Atsuko; Su, Chunhua

    2014-01-01

    Cloud database is now a rapidly growing trend in cloud computing market recently. It enables the clients run their computation on out-sourcing databases or access to some distributed database service on the cloud. At the same time, the security and privacy concerns is major challenge for cloud database to continue growing. To enhance the security and privacy of the cloud database technology, the pseudo-random number generation (PRNG) plays an important roles in data encryptions and privacy-pr...

  2. Efficient pseudo-random number generation for monte-carlo simulations using graphic processors

    Science.gov (United States)

    Mohanty, Siddhant; Mohanty, A. K.; Carminati, F.

    2012-06-01

    A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.

  3. Efficient pseudo-random number generation for Monte-Carlo simulations using graphic processors

    International Nuclear Information System (INIS)

    Mohanty, Siddhant; Mohanty, A K; Carminati, F

    2012-01-01

    A hybrid approach based on the combination of three Tausworthe generators and one linear congruential generator for pseudo random number generation for GPU programing as suggested in NVIDIA-CUDA library has been used for MONTE-CARLO sampling. On each GPU thread, a random seed is generated on fly in a simple way using the quick and dirty algorithm where mod operation is not performed explicitly due to unsigned integer overflow. Using this hybrid generator, multivariate correlated sampling based on alias technique has been carried out using both CUDA and OpenCL languages.

  4. Pseudo-random number generator based on asymptotic deterministic randomness

    Science.gov (United States)

    Wang, Kai; Pei, Wenjiang; Xia, Haishan; Cheung, Yiu-ming

    2008-06-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks.

  5. Pseudo-random number generator based on asymptotic deterministic randomness

    International Nuclear Information System (INIS)

    Wang Kai; Pei Wenjiang; Xia Haishan; Cheung Yiuming

    2008-01-01

    A novel approach to generate the pseudorandom-bit sequence from the asymptotic deterministic randomness system is proposed in this Letter. We study the characteristic of multi-value correspondence of the asymptotic deterministic randomness constructed by the piecewise linear map and the noninvertible nonlinearity transform, and then give the discretized systems in the finite digitized state space. The statistic characteristics of the asymptotic deterministic randomness are investigated numerically, such as stationary probability density function and random-like behavior. Furthermore, we analyze the dynamics of the symbolic sequence. Both theoretical and experimental results show that the symbolic sequence of the asymptotic deterministic randomness possesses very good cryptographic properties, which improve the security of chaos based PRBGs and increase the resistance against entropy attacks and symbolic dynamics attacks

  6. Pseudo-random bit generator based on lag time series

    Science.gov (United States)

    García-Martínez, M.; Campos-Cantón, E.

    2014-12-01

    In this paper, we present a pseudo-random bit generator (PRBG) based on two lag time series of the logistic map using positive and negative values in the bifurcation parameter. In order to hidden the map used to build the pseudo-random series we have used a delay in the generation of time series. These new series when they are mapped xn against xn+1 present a cloud of points unrelated to the logistic map. Finally, the pseudo-random sequences have been tested with the suite of NIST giving satisfactory results for use in stream ciphers.

  7. Robust video watermarking via optimization algorithm for quantization of pseudo-random semi-global statistics

    Science.gov (United States)

    Kucukgoz, Mehmet; Harmanci, Oztan; Mihcak, Mehmet K.; Venkatesan, Ramarathnam

    2005-03-01

    In this paper, we propose a novel semi-blind video watermarking scheme, where we use pseudo-random robust semi-global features of video in the three dimensional wavelet transform domain. We design the watermark sequence via solving an optimization problem, such that the features of the mark-embedded video are the quantized versions of the features of the original video. The exact realizations of the algorithmic parameters are chosen pseudo-randomly via a secure pseudo-random number generator, whose seed is the secret key, that is known (resp. unknown) by the embedder and the receiver (resp. by the public). We experimentally show the robustness of our algorithm against several attacks, such as conventional signal processing modifications and adversarial estimation attacks.

  8. Computer simulation of different designs of pseudo-random time-of-flight velocity analysers for molecular beam scattering experiments

    International Nuclear Information System (INIS)

    Rotzoll, G.

    1982-01-01

    After a brief summary of the pseudo-random time-of-flight (TOF) method, the design criteria for construction of a pseudo-random TOF disc are considered and complemented by computer simulations. The question of resolution and the choice of the sequence length and number of time channels per element are discussed. Moreover, the stability requirements of the chopper motor frequency are investigated. (author)

  9. Targeted reduction of highly abundant transcripts using pseudo-random primers.

    Science.gov (United States)

    Arnaud, Ophélie; Kato, Sachi; Poulain, Stéphane; Plessy, Charles

    2016-04-01

    Transcriptome studies based on quantitative sequencing can estimate levels of gene expression by measuring target RNA abundance in sequencing libraries. Sequencing costs are proportional to the total number of sequenced reads, and in order to cover rare RNAs, considerable quantities of abundant and identical reads are needed. This major limitation can be addressed by depleting a proportion of the most abundant sequences from the library. However, such depletion strategies involve either extra handling of the input RNA sample or use of a large number of reverse transcription primers, termed not-so-random (NSR) primers, which are costly to synthesize. Taking advantage of the high tolerance of reverse transcriptase to mis-prime, we found that it is possible to use as few as 40 pseudo-random (PS) reverse transcription primers to decrease the rate of undesirable abundant sequences within a library without affecting the overall transcriptome diversity. PS primers are simple to design and can be used to deplete several undesirable RNAs simultaneously, thus creating a flexible tool for enriching transcriptome libraries for rare transcript sequences.

  10. Pseudo-Random Number Generators

    Science.gov (United States)

    Howell, L. W.; Rheinfurth, M. H.

    1984-01-01

    Package features comprehensive selection of probabilistic distributions. Monte Carlo simulations resorted to whenever systems studied not amenable to deterministic analyses or when direct experimentation not feasible. Random numbers having certain specified distribution characteristic integral part of simulations. Package consists of collector of "pseudorandom" number generators for use in Monte Carlo simulations.

  11. A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration

    Science.gov (United States)

    Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves

    2011-07-01

    An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications.

  12. A high-speed on-chip pseudo-random binary sequence generator for multi-tone phase calibration

    International Nuclear Information System (INIS)

    Gommé, Liesbeth; Vandersteen, Gerd; Rolain, Yves

    2011-01-01

    An on-chip reference generator is conceived by adopting the technique of decimating a pseudo-random binary sequence (PRBS) signal in parallel sequences. This is of great benefit when high-speed generation of PRBS and PRBS-derived signals is the objective. The design implemented standard CMOS logic is available in commercial libraries to provide the logic functions for the generator. The design allows the user to select the periodicity of the PRBS and the PRBS-derived signals. The characterization of the on-chip generator marks its performance and reveals promising specifications

  13. Generation of pseudo-random numbers

    Science.gov (United States)

    Howell, L. W.; Rheinfurth, M. H.

    1982-01-01

    Practical methods for generating acceptable random numbers from a variety of probability distributions which are frequently encountered in engineering applications are described. The speed, accuracy, and guarantee of statistical randomness of the various methods are discussed.

  14. An empirical test of pseudo random number generators by means of an exponential decaying process; Una prueba empirica de generadores de numeros pseudoaleatorios mediante un proceso de decaimiento exponencial

    Energy Technology Data Exchange (ETDEWEB)

    Coronel B, H.F.; Hernandez M, A.R.; Jimenez M, M.A. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, A.P. 475, Xalapa, Veracruz (Mexico); Mora F, L.E. [CIMAT, A.P. 402, 36000 Guanajuato (Mexico)]. e-mail: hcoronel@uv.mx

    2007-07-01

    Empirical tests for pseudo random number generators based on the use of processes or physical models have been successfully used and are considered as complementary to theoretical tests of randomness. In this work a statistical methodology for evaluating the quality of pseudo random number generators is presented. The method is illustrated in the context of the so-called exponential decay process, using some pseudo random number generators commonly used in physics. (Author)

  15. The MIXMAX random number generator

    Science.gov (United States)

    Savvidy, Konstantin G.

    2015-11-01

    In this paper, we study the randomness properties of unimodular matrix random number generators. Under well-known conditions, these discrete-time dynamical systems have the highly desirable K-mixing properties which guarantee high quality random numbers. It is found that some widely used random number generators have poor Kolmogorov entropy and consequently fail in empirical tests of randomness. These tests show that the lowest acceptable value of the Kolmogorov entropy is around 50. Next, we provide a solution to the problem of determining the maximal period of unimodular matrix generators of pseudo-random numbers. We formulate the necessary and sufficient condition to attain the maximum period and present a family of specific generators in the MIXMAX family with superior performance and excellent statistical properties. Finally, we construct three efficient algorithms for operations with the MIXMAX matrix which is a multi-dimensional generalization of the famous cat-map. First, allowing to compute the multiplication by the MIXMAX matrix with O(N) operations. Second, to recursively compute its characteristic polynomial with O(N2) operations, and third, to apply skips of large number of steps S to the sequence in O(N2 log(S)) operations.

  16. Study on random number generator in Monte Carlo code

    International Nuclear Information System (INIS)

    Oya, Kentaro; Kitada, Takanori; Tanaka, Shinichi

    2011-01-01

    The Monte Carlo code uses a sequence of pseudo-random numbers with a random number generator (RNG) to simulate particle histories. A pseudo-random number has its own period depending on its generation method and the period is desired to be long enough not to exceed the period during one Monte Carlo calculation to ensure the correctness especially for a standard deviation of results. The linear congruential generator (LCG) is widely used as Monte Carlo RNG and the period of LCG is not so long by considering the increasing rate of simulation histories in a Monte Carlo calculation according to the remarkable enhancement of computer performance. Recently, many kinds of RNG have been developed and some of their features are better than those of LCG. In this study, we investigate the appropriate RNG in a Monte Carlo code as an alternative to LCG especially for the case of enormous histories. It is found that xorshift has desirable features compared with LCG, and xorshift has a larger period, a comparable speed to generate random numbers, a better randomness, and good applicability to parallel calculation. (author)

  17. Development and testing of high performance pseudo random number generator for Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chakraborty, Brahmananda

    2009-01-01

    Random number plays an important role in any Monte Carlo simulation. The accuracy of the results depends on the quality of the sequence of random numbers employed in the simulation. These include randomness of the random numbers, uniformity of their distribution, absence of correlation and long period. In a typical Monte Carlo simulation of particle transport in a nuclear reactor core, the history of a particle from its birth in a fission event until its death by an absorption or leakage event is tracked. The geometry of the core and the surrounding materials are exactly modeled in the simulation. To track a neutron history one needs random numbers for determining inter collision distance, nature of the collision, the direction of the scattered neutron etc. Neutrons are tracked in batches. In one batch approximately 2000-5000 neutrons are tracked. The statistical accuracy of the results of the simulation depends on the total number of particles (number of particles in one batch multiplied by the number of batches) tracked. The number of histories to be generated is usually large for a typical radiation transport problem. To track a very large number of histories one needs to generate a long sequence of independent random numbers. In other words the cycle length of the random number generator (RNG) should be more than the total number of random numbers required for simulating the given transport problem. The number of bits of the machine generally limits the cycle length. For a binary machine of p bits the maximum cycle length is 2 p . To achieve higher cycle length in the same machine one has to use either register arithmetic or bit manipulation technique

  18. Pseudo-random bit generator based on Chebyshev map

    Science.gov (United States)

    Stoyanov, B. P.

    2013-10-01

    In this paper, we study a pseudo-random bit generator based on two Chebyshev polynomial maps. The novel derivative algorithm shows perfect statistical properties established by number of statistical tests.

  19. The simultaneous use of several pseudo-random binary sequences in the identification of linear multivariable dynamic systems

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1965-02-01

    With several white noise sources the various transmission paths of a linear multivariable system may be determined simultaneously. This memorandum considers the restrictions on pseudo-random two state sequences to effect simultaneous identification of several transmission paths and the consequential rejection of cross-coupled signals in linear multivariable systems. The conditions for simultaneous identification are established by an example, which shows that the integration time required is large i.e. tends to infinity, as it does when white noise sources are used. (author)

  20. Random Numbers and Quantum Computers

    Science.gov (United States)

    McCartney, Mark; Glass, David

    2002-01-01

    The topic of random numbers is investigated in such a way as to illustrate links between mathematics, physics and computer science. First, the generation of random numbers by a classical computer using the linear congruential generator and logistic map is considered. It is noted that these procedures yield only pseudo-random numbers since…

  1. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    Science.gov (United States)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  2. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    Science.gov (United States)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  3. RANDNA: a random DNA sequence generator.

    Science.gov (United States)

    Piva, Francesco; Principato, Giovanni

    2006-01-01

    Monte Carlo simulations are useful to verify the significance of data. Genomic regularities, such as the nucleotide correlations or the not uniform distribution of the motifs throughout genomic or mature mRNA sequences, exist and their significance can be checked by means of the Monte Carlo test. The test needs good quality random sequences in order to work, moreover they should have the same nucleotide distribution as the sequences in which the regularities have been found. Random DNA sequences are also useful to estimate the background score of an alignment, that is a threshold below which the resulting score is merely due to chance. We have developed RANDNA, a free software which allows to produce random DNA or RNA sequences setting both their length and the percentage of nucleotide composition. Sequences having the same nucleotide distribution of exonic, intronic or intergenic sequences can be generated. Its graphic interface makes it possible to easily set the parameters that characterize the sequences being produced and saved in a text format file. The pseudo-random number generator function of Borland Delphi 6 is used, since it guarantees a good randomness, a long cycle length and a high speed. We have checked the quality of sequences generated by the software, by means of well-known tests, both by themselves and versus genuine random sequences. We show the good quality of the generated sequences. The software, complete with examples and documentation, is freely available to users from: http://www.introni.it/en/software.

  4. Fast integration using quasi-random numbers

    International Nuclear Information System (INIS)

    Bossert, J.; Feindt, M.; Kerzel, U.

    2006-01-01

    Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples

  5. Fast integration using quasi-random numbers

    Science.gov (United States)

    Bossert, J.; Feindt, M.; Kerzel, U.

    2006-04-01

    Quasi-random numbers are specially constructed series of numbers optimised to evenly sample a given s-dimensional volume. Using quasi-random numbers in numerical integration converges faster with a higher accuracy compared to the case of pseudo-random numbers. The basic properties of quasi-random numbers are introduced, various generators are discussed and the achieved gain is illustrated by examples.

  6. Generation of pseudo-random numbers from given probabilistic distribution with the use of chaotic maps

    Science.gov (United States)

    Lawnik, Marcin

    2018-01-01

    The scope of the paper is the presentation of a new method of generating numbers from a given distribution. The method uses the inverse cumulative distribution function and a method of flattening of probabilistic distributions. On the grounds of these methods, a new construction of chaotic maps was derived, which generates values from a given distribution. The analysis of the new method was conducted on the example of a newly constructed chaotic recurrences, based on the Box-Muller transformation and the quantile function of the exponential distribution. The obtained results certify that the proposed method may be successively applicable for the construction of generators of pseudo-random numbers.

  7. Frequency characteristic measurement of a fiber optic gyroscope using a correlation spectrum analysis method based on a pseudo-random sequence

    International Nuclear Information System (INIS)

    Li, Yang; Chen, Xingfan; Liu, Cheng

    2015-01-01

    The frequency characteristic is an important indicator of a system’s dynamic performance. The identification of a fiber optic gyroscope (FOG)’s frequency characteristic using a correlation spectrum analysis method based on a pseudo-random sequence is proposed. Taking the angle vibrator as the source of the test rotation stimulation and a pseudo-random sequence as the test signal, the frequency characteristic of a FOG is calculated according to the power spectral density of the rotation rate signal and the cross-power spectral density of the FOG’s output signal and rotation rate signal. A theoretical simulation is done to confirm the validity of this method. An experiment system is built and the test results indicate that the measurement error of the normalized amplitude–frequency response is less than 0.01, that the error of the phase–frequency response is less than 0.3 rad, and the overall measurement accuracy is superior to the traditional frequency-sweep method. By using this method, the FOG’s amplitude–frequency response and phase–frequency response can be measured simultaneously, quickly, accurately, and with a high frequency resolution. The described method meets the requirements of engineering applications. (paper)

  8. Golden Ratio Versus Pi as Random Sequence Sources for Monte Carlo Integration

    Science.gov (United States)

    Sen, S. K.; Agarwal, Ravi P.; Shaykhian, Gholam Ali

    2007-01-01

    We discuss here the relative merits of these numbers as possible random sequence sources. The quality of these sequences is not judged directly based on the outcome of all known tests for the randomness of a sequence. Instead, it is determined implicitly by the accuracy of the Monte Carlo integration in a statistical sense. Since our main motive of using a random sequence is to solve real world problems, it is more desirable if we compare the quality of the sequences based on their performances for these problems in terms of quality/accuracy of the output. We also compare these sources against those generated by a popular pseudo-random generator, viz., the Matlab rand and the quasi-random generator ha/ton both in terms of error and time complexity. Our study demonstrates that consecutive blocks of digits of each of these numbers produce a good random sequence source. It is observed that randomly chosen blocks of digits do not have any remarkable advantage over consecutive blocks for the accuracy of the Monte Carlo integration. Also, it reveals that pi is a better source of a random sequence than theta when the accuracy of the integration is concerned.

  9. Humans can consciously generate random number sequences: a possible test for artificial intelligence.

    Science.gov (United States)

    Persaud, Navindra

    2005-01-01

    Computer algorithms can only produce seemingly random or pseudorandom numbers whereas certain natural phenomena, such as the decay of radioactive particles, can be utilized to produce truly random numbers. In this study, the ability of humans to generate random numbers was tested in healthy adults. Subjects were simply asked to generate and dictate random numbers. Generated numbers were tested for uniformity, independence and information density. The results suggest that humans can generate random numbers that are uniformly distributed, independent of one another and unpredictable. If humans can generate sequences of random numbers then neural networks or forms of artificial intelligence, which are purported to function in ways essentially the same as the human brain, should also be able to generate sequences of random numbers. Elucidating the precise mechanism by which humans generate random number sequences and the underlying neural substrates may have implications in the cognitive science of decision-making. It is possible that humans use their random-generating neural machinery to make difficult decisions in which all expected outcomes are similar. It is also possible that certain people, perhaps those with neurological or psychiatric impairments, are less able or unable to generate random numbers. If the random-generating neural machinery is employed in decision making its impairment would have profound implications in matters of agency and free will.

  10. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen

    2013-01-01

    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  11. Magnetic nanoparticle imaging by random and maximum length sequences of inhomogeneous activation fields.

    Science.gov (United States)

    Baumgarten, Daniel; Eichardt, Roland; Crevecoeur, Guillaume; Supriyanto, Eko; Haueisen, Jens

    2013-01-01

    Biomedical applications of magnetic nanoparticles require a precise knowledge of their biodistribution. From multi-channel magnetorelaxometry measurements, this distribution can be determined by means of inverse methods. It was recently shown that the combination of sequential inhomogeneous excitation fields in these measurements is favorable regarding the reconstruction accuracy when compared to homogeneous activation . In this paper, approaches for the determination of activation sequences for these measurements are investigated. Therefor, consecutive activation of single coils, random activation patterns and families of m-sequences are examined in computer simulations involving a sample measurement setup and compared with respect to the relative condition number of the system matrix. We obtain that the values of this condition number decrease with larger number of measurement samples for all approaches. Random sequences and m-sequences reveal similar results with a significant reduction of the required number of samples. We conclude that the application of pseudo-random sequences for sequential activation in the magnetorelaxometry imaging of magnetic nanoparticles considerably reduces the number of required sequences while preserving the relevant measurement information.

  12. Theoretical and empirical convergence results for additive congruential random number generators

    Science.gov (United States)

    Wikramaratna, Roy S.

    2010-03-01

    Additive Congruential Random Number (ACORN) generators represent an approach to generating uniformly distributed pseudo-random numbers that is straightforward to implement efficiently for arbitrarily large order and modulus; if it is implemented using integer arithmetic, it becomes possible to generate identical sequences on any machine. This paper briefly reviews existing results concerning ACORN generators and relevant theory concerning sequences that are well distributed mod 1 in k dimensions. It then demonstrates some new theoretical results for ACORN generators implemented in integer arithmetic with modulus M=2[mu] showing that they are a family of generators that converge (in a sense that is defined in the paper) to being well distributed mod 1 in k dimensions, as [mu]=log2M tends to infinity. By increasing k, it is possible to increase without limit the number of dimensions in which the resulting sequences approximate to well distributed. The paper concludes by applying the standard TestU01 test suite to ACORN generators for selected values of the modulus (between 260 and 2150), the order (between 4 and 30) and various odd seed values. On the basis of these and earlier results, it is recommended that an order of at least 9 be used together with an odd seed and modulus equal to 230p, for a small integer value of p. While a choice of p=2 should be adequate for most typical applications, increasing p to 3 or 4 gives a sequence that will consistently pass all the tests in the TestU01 test suite, giving additional confidence in more demanding applications. The results demonstrate that the ACORN generators are a reliable source of uniformly distributed pseudo-random numbers, and that in practice (as suggested by the theoretical convergence results) the quality of the ACORN sequences increases with increasing modulus and order.

  13. Pseudo-Hermitian random matrix theory

    International Nuclear Information System (INIS)

    Srivastava, S.C.L.; Jain, S.R.

    2013-01-01

    Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to problems in statistical mechanics where new results have become possible. We have found it important to mention the precise directions where advances could be made if further results become available. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Quantum random number generator

    Science.gov (United States)

    Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin

    2001-03-01

    Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.

  15. Evidence of significant bias in an elementary random number generator

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Brandl, V.

    1981-03-01

    An elementary pseudo random number generator for isotropically distributed unit vectors in 3-dimensional space has ben tested for bias. This generator uses the IBM-suplied routine RANDU and a transparent rejection technique. The tests show clearly that non-randomness in the pseudo random numbers generated by the primary IBM generator leads to bias in the order of 1 percent in estimates obtained from the secondary random number generator. FORTRAN listings of 4 variants of the random number generator called by a simple test programme and output listings are included for direct reference. (orig.) [de

  16. About the problem of generating three-dimensional pseudo-random points.

    Science.gov (United States)

    Carpintero, D. D.

    The author demonstrates that a popular pseudo-random number generator is not adequate in some circumstances to generate n-dimensional random points, n > 2. This problem is particularly noxious when direction cosines are generated. He proposes several soultions, among them a good generator that satisfies all statistical criteria.

  17. An integrable low-cost hardware random number generator

    Science.gov (United States)

    Ranasinghe, Damith C.; Lim, Daihyun; Devadas, Srinivas; Jamali, Behnam; Zhu, Zheng; Cole, Peter H.

    2005-02-01

    A hardware random number generator is different from a pseudo-random number generator; a pseudo-random number generator approximates the assumed behavior of a real hardware random number generator. Simple pseudo random number generators suffices for most applications, however for demanding situations such as the generation of cryptographic keys, requires an efficient and a cost effective source of random numbers. Arbiter-based Physical Unclonable Functions (PUFs) proposed for physical authentication of ICs exploits statistical delay variation of wires and transistors across integrated circuits, as a result of process variations, to build a secret key unique to each IC. Experimental results and theoretical studies show that a sufficient amount of variation exits across IC"s. This variation enables each IC to be identified securely. It is possible to exploit the unreliability of these PUF responses to build a physical random number generator. There exists measurement noise, which comes from the instability of an arbiter when it is in a racing condition. There exist challenges whose responses are unpredictable. Without environmental variations, the responses of these challenges are random in repeated measurements. Compared to other physical random number generators, the PUF-based random number generators can be a compact and a low-power solution since the generator need only be turned on when required. A 64-stage PUF circuit costs less than 1000 gates and the circuit can be implemented using a standard IC manufacturing processes. In this paper we have presented a fast and an efficient random number generator, and analysed the quality of random numbers produced using an array of tests used by the National Institute of Standards and Technology to evaluate the randomness of random number generators designed for cryptographic applications.

  18. RANDOMNUMBERS, Random Number Sequence Generated from Gas Ionisation Chamber Data

    International Nuclear Information System (INIS)

    Frigerio, N.A.; Sanathanan, L.P.; Morley, M.; Tyler, S.A.; Clark, N.A.; Wang, J.

    1989-01-01

    1 - Description of problem or function: RANDOM NUMBERS is a data collection of almost 2.7 million 31-bit random numbers generated by using a high resolution gas ionization detector chamber in conjunction with a 4096-channel multichannel analyzer to record the radioactive decay of alpha particles from a U-235 source. The signals from the decaying alpha particles were fed to the 4096-channel analyzer, and for each channel the frequency of signals registered in a 20,000-microsecond interval was recorded. The parity bits of these frequency counts, 0 for an even count and 1 for and odd count, were then assembled in sequence to form 31-bit random numbers and transcribed onto magnetic tape. This cycle was repeated to obtain the random numbers. 2 - Method of solution: The frequency distribution of counts from the device conforms to the Brockwell-Moyal distribution which takes into account the dead time of the counter. The count data were analyzed and tests for randomness on a sample indicate that the device is a highly reliable source of truly random numbers. 3 - Restrictions on the complexity of the problem: The RANDOM NUMBERS tape contains 2,669,568 31-bit numbers

  19. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    Science.gov (United States)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-08-01

    Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  20. Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices

    International Nuclear Information System (INIS)

    Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.

    2011-01-01

    Highlights: → Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. → Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. → We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. → With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.

  1. Search for a perfect generator of random numbers

    International Nuclear Information System (INIS)

    Musyck, E.

    1977-01-01

    Theoretical tests have been carried out by COVEYOU and MAC PHERSON to verify the applications of the LEHMER algorithm. In a similar way, a theoretical method is proposed to evaluate in a rigorous way the random character of numbers generated by a shift register. This theory introduces the concept of ''degree of randomness'' of the elements, taken in a definite order, of a shift register. It permits making the judicious choice of the elements of the shift register which will produce the bits of the random numbers. On the other hand, a calculation method is developed in order to verify the primitive character of any shift register of high complexity. A new test, called ''slice test'', of empirical and theoretical use is also described; it constitutes a significant contribution to the understanding of certain properties of pseudo-random sequences. As a practical example, a random number generator structure formed with 32 bits, built out of a shift register with 61 elements and 60 modulo-2 adder circuits was made. The author is convinced that this generator can be considered to be practically perfect for all empirical applications of random numbers, particularly for the solution of Monte-Carlo problems. (author)

  2. Pseudo-Random Number Generation in Children with High-Functioning Autism and Asperger's Disorder: Further Evidence for a Dissociation in Executive Functioning?

    Science.gov (United States)

    Rinehart, Nicole J.; Bradshaw, John L.; Moss, Simon A.; Brereton, Avril V.; Tonge, Bruce J.

    2006-01-01

    The repetitive, stereotyped and obsessive behaviours, which are core diagnostic features of autism, are thought to be underpinned by executive dysfunction. This study examined executive impairment in individuals with autism and Asperger's disorder using a verbal equivalent of an established pseudo-random number generating task. Different patterns…

  3. Random number generators in support of Monte Carlo problems in physics

    International Nuclear Information System (INIS)

    Dyadkin, I.G.

    1993-01-01

    The ability to support a modern users' expectations of random number generators to solve problems in physics is analyzed. The capabilities of the newest concepts and the old pseudo-random algorithms are compared. The author is in favor of multiplicative generators. Due to the 64-bit arithmetic of a modern PC, multiplicative generators have a sufficient number of periods (up to 2 62 ) and are quicker to generate and to govern independent sequences for parallel processing. In addition they are able to replicate sub-sequences (without storing their seeds) for each standard trial in any code and to simulate spatial and planar directions and EXP(-x) distributions often needed as ''bricks'' for simulating events in physics. Hundreds of multipliers for multiplicative generators have been tabulated and tested, and the required speeds have been obtained. (author)

  4. Least squares deconvolution for leak detection with a pseudo random binary sequence excitation

    Science.gov (United States)

    Nguyen, Si Tran Nguyen; Gong, Jinzhe; Lambert, Martin F.; Zecchin, Aaron C.; Simpson, Angus R.

    2018-01-01

    Leak detection and localisation is critical for water distribution system pipelines. This paper examines the use of the time-domain impulse response function (IRF) for leak detection and localisation in a pressurised water pipeline with a pseudo random binary sequence (PRBS) signal excitation. Compared to the conventional step wave generated using a single fast operation of a valve closure, a PRBS signal offers advantageous correlation properties, in that the signal has very low autocorrelation for lags different from zero and low cross correlation with other signals including noise and other interference. These properties result in a significant improvement in the IRF signal to noise ratio (SNR), leading to more accurate leak localisation. In this paper, the estimation of the system IRF is formulated as an optimisation problem in which the l2 norm of the IRF is minimised to suppress the impact of noise and interference sources. Both numerical and experimental data are used to verify the proposed technique. The resultant estimated IRF provides not only accurate leak location estimation, but also good sensitivity to small leak sizes due to the improved SNR.

  5. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    Science.gov (United States)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-09-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1,2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  6. Characterization of electron microscopes with binary pseudo-random multilayer test samples

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Conley, Raymond; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-01-01

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi 2 /Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.

  7. Super fast physical-random number generation using laser diode frequency noises

    Science.gov (United States)

    Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2011-02-01

    Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.

  8. Fast random-number generation using a diode laser's frequency noise characteristic

    Science.gov (United States)

    Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2012-02-01

    Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".

  9. PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species

    Directory of Open Access Journals (Sweden)

    Lalucat Jorge

    2010-04-01

    Full Text Available Abstract Background The genus Pseudomonas comprises more than 100 species of environmental, clinical, agricultural, and biotechnological interest. Although, the recommended method for discriminating bacterial species is DNA-DNA hybridisation, alternative techniques based on multigenic sequence analysis are becoming a common practice in bacterial species discrimination studies. Since there is not a general criterion for determining which genes are more useful for species resolution; the number of strains and genes analysed is increasing continuously. As a result, sequences of different genes are dispersed throughout several databases. This sequence information needs to be collected in a common database, in order to be useful for future identification-based projects. Description The PseudoMLSA Database is a comprehensive database of multiple gene sequences from strains of Pseudomonas species. The core of the database is composed of selected gene sequences from all Pseudomonas type strains validly assigned to the genus through 2008. The database is aimed to be useful for MultiLocus Sequence Analysis (MLSA procedures, for the identification and characterisation of any Pseudomonas bacterial isolate. The sequences are available for download via a direct connection to the National Center for Biotechnology Information (NCBI. Additionally, the database includes an online BLAST interface for flexible nucleotide queries and similarity searches with the user's datasets, and provides a user-friendly output for easily parsing, navigating, and analysing BLAST results. Conclusions The PseudoMLSA database amasses strains and sequence information of validly described Pseudomonas species, and allows free querying of the database via a user-friendly, web-based interface available at http://www.uib.es/microbiologiaBD/Welcome.html. The web-based platform enables easy retrieval at strain or gene sequence information level; including references to published peer

  10. How random are random numbers generated using photons?

    International Nuclear Information System (INIS)

    Solis, Aldo; Angulo Martínez, Alí M; Ramírez Alarcón, Roberto; Cruz Ramírez, Hector; U’Ren, Alfred B; Hirsch, Jorge G

    2015-01-01

    Randomness is fundamental in quantum theory, with many philosophical and practical implications. In this paper we discuss the concept of algorithmic randomness, which provides a quantitative method to assess the Borel normality of a given sequence of numbers, a necessary condition for it to be considered random. We use Borel normality as a tool to investigate the randomness of ten sequences of bits generated from the differences between detection times of photon pairs generated by spontaneous parametric downconversion. These sequences are shown to fulfil the randomness criteria without difficulties. As deviations from Borel normality for photon-generated random number sequences have been reported in previous work, a strategy to understand these diverging findings is outlined. (paper)

  11. An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response.

    Science.gov (United States)

    Stipčević, Mario; Ursin, Rupert

    2015-06-09

    Random numbers are essential for our modern information based society e.g. in cryptography. Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms but rather on a physical process to provide true randomness. Quantum random number generators (QRNG) do rely on a process, which can be described by a probabilistic theory only, even in principle. Here we present a conceptually simple implementation, which offers a 100% efficiency of producing a random bit upon a request and simultaneously exhibits an ultra low latency. A careful technical and statistical analysis demonstrates its robustness against imperfections of the actual implemented technology and enables to quickly estimate randomness of very long sequences. Generated random numbers pass standard statistical tests without any post-processing. The setup described, as well as the theory presented here, demonstrate the maturity and overall understanding of the technology.

  12. Parallel Monte Carlo Particle Transport and the Quality of Random Number Generators: How Good is Good Enough?

    International Nuclear Information System (INIS)

    Procassini, R J; Beck, B R

    2004-01-01

    It might be assumed that use of a ''high-quality'' random number generator (RNG), producing a sequence of ''pseudo random'' numbers with a ''long'' repetition period, is crucial for producing unbiased results in Monte Carlo particle transport simulations. While several theoretical and empirical tests have been devised to check the quality (randomness and period) of an RNG, for many applications it is not clear what level of RNG quality is required to produce unbiased results. This paper explores the issue of RNG quality in the context of parallel, Monte Carlo transport simulations in order to determine how ''good'' is ''good enough''. This study employs the MERCURY Monte Carlo code, which incorporates the CNPRNG library for the generation of pseudo-random numbers via linear congruential generator (LCG) algorithms. The paper outlines the usage of random numbers during parallel MERCURY simulations, and then describes the source and criticality transport simulations which comprise the empirical basis of this study. A series of calculations for each test problem in which the quality of the RNG (period of the LCG) is varied provides the empirical basis for determining the minimum repetition period which may be employed without producing a bias in the mean integrated results

  13. Improving the pseudo-randomness properties of chaotic maps using deep-zoom

    Science.gov (United States)

    Machicao, Jeaneth; Bruno, Odemir M.

    2017-05-01

    A generalized method is proposed to compose new orbits from a given chaotic map. The method provides an approach to examine discrete-time chaotic maps in a "deep-zoom" manner by using k-digits to the right from the decimal separator of a given point from the underlying chaotic map. Interesting phenomena have been identified. Rapid randomization was observed, i.e., chaotic patterns tend to become indistinguishable when compared to the original orbits of the underlying chaotic map. Our results were presented using different graphical analyses (i.e., time-evolution, bifurcation diagram, Lyapunov exponent, Poincaré diagram, and frequency distribution). Moreover, taking advantage of this randomization improvement, we propose a Pseudo-Random Number Generator (PRNG) based on the k-logistic map. The pseudo-random qualities of the proposed PRNG passed both tests successfully, i.e., DIEHARD and NIST, and were comparable with other traditional PRNGs such as the Mersenne Twister. The results suggest that simple maps such as the logistic map can be considered as good PRNG methods.

  14. Determination of spatially dependent transfer function of zero power reactor by using pseudo-random incentive

    International Nuclear Information System (INIS)

    Kostic, Lj.

    1973-01-01

    Specially constructed fast reactivity oscillator was stimulating the zero power reactor by a stimulus which caused pseudo-random reactivity changes. Measuring system included stochastic oscillator BCR-1 supplied by pseudo-random pulses from noise generator GBS-16, instrumental tape-recorder, system for data acquisition and digital computer ZUSE-Z-23. For measuring the spatially dependent transfer function, reactor response was measured at a number of different positions of stochastic oscillator and ionization chamber. In order to keep the reactor system linear, experiment was limited to small reactivity fluctuations. Experimental results were compared to theoretical ones

  15. Random number generators tested on quantum Monte Carlo simulations.

    Science.gov (United States)

    Hongo, Kenta; Maezono, Ryo; Miura, Kenichi

    2010-08-01

    We have tested and compared several (pseudo) random number generators (RNGs) applied to a practical application, ground state energy calculations of molecules using variational and diffusion Monte Carlo metheds. A new multiple recursive generator with 8th-order recursion (MRG8) and the Mersenne twister generator (MT19937) are tested and compared with the RANLUX generator with five luxury levels (RANLUX-[0-4]). Both MRG8 and MT19937 are proven to give the same total energy as that evaluated with RANLUX-4 (highest luxury level) within the statistical error bars with less computational cost to generate the sequence. We also tested the notorious implementation of linear congruential generator (LCG), RANDU, for comparison. (c) 2010 Wiley Periodicals, Inc.

  16. Information hiding technology and application analysis based on decimal expansion of irrational numbers

    Science.gov (United States)

    Liu, Xiaoyong; Lu, Pei; Shao, Jianxin; Cao, Haibin; Zhu, Zhenmin

    2017-10-01

    In this paper, an information hiding method using decimal expansion of irrational numbers to generate random phase mask is proposed. Firstly, the decimal expansion parts of irrational numbers generate pseudo-random sequences using a new coding schemed, the irrational number and start and end bit numbers were used as keys in image information hiding. Secondly, we apply the coding schemed to the double phase encoding system, the pseudo-random sequences are taken to generate random phase masks. The mean square error is used to calculate the quality of the recovered image information. Finally, two tests had been carried out to verify the security of our method; the experimental results demonstrate that the cipher image has such features, strong robustness, key sensitivity, and resistance to brute force attack.

  17. True random numbers from amplified quantum vacuum.

    Science.gov (United States)

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  18. Analysis of entropy extraction efficiencies in random number generation systems

    Science.gov (United States)

    Wang, Chao; Wang, Shuang; Chen, Wei; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-05-01

    Random numbers (RNs) have applications in many areas: lottery games, gambling, computer simulation, and, most importantly, cryptography [N. Gisin et al., Rev. Mod. Phys. 74 (2002) 145]. In cryptography theory, the theoretical security of the system calls for high quality RNs. Therefore, developing methods for producing unpredictable RNs with adequate speed is an attractive topic. Early on, despite the lack of theoretical support, pseudo RNs generated by algorithmic methods performed well and satisfied reasonable statistical requirements. However, as implemented, those pseudorandom sequences were completely determined by mathematical formulas and initial seeds, which cannot introduce extra entropy or information. In these cases, “random” bits are generated that are not at all random. Physical random number generators (RNGs), which, in contrast to algorithmic methods, are based on unpredictable physical random phenomena, have attracted considerable research interest. However, the way that we extract random bits from those physical entropy sources has a large influence on the efficiency and performance of the system. In this manuscript, we will review and discuss several randomness extraction schemes that are based on radiation or photon arrival times. We analyze the robustness, post-processing requirements and, in particular, the extraction efficiency of those methods to aid in the construction of efficient, compact and robust physical RNG systems.

  19. Testing random number generators for Monte Carlo applications

    International Nuclear Information System (INIS)

    Sim, L.H.

    1992-01-01

    Central to any system for modelling radiation transport phenomena using Monte Carlo techniques is the method by which pseudo random numbers are generated. This method is commonly referred to as the Random Number Generator (RNG). It is usually a computer implemented mathematical algorithm which produces a series of numbers uniformly distributed on the interval [0,1]. If this series satisfies certain statistical tests for randomness, then for practical purposes the pseudo random numbers in the series can be considered to be random. Tests of this nature are important not only for new RNGs but also to test the implementation of known RNG algorithms in different computer environments. Six RNGs have been tested using six statistical tests and one visual test. The statistical tests are the moments, frequency (digit and number), serial, gap, and poker tests. The visual test is a simple two dimensional ordered pair display. In addition the RNGs have been tested in a specific Monte Carlo application. This type of test is often overlooked, however it is important that in addition to satisfactory performance in statistical tests, the RNG be able to perform effectively in the applications of interest. The RNGs tested here are based on a variety of algorithms, including multiplicative and linear congruential, lagged Fibonacci, and combination arithmetic and lagged Fibonacci. The effect of the Bays-Durham shuffling algorithm on the output of a known bad RNG has also been investigated. 18 refs., 11 tabs., 4 figs. of

  20. Fully digital jerk-based chaotic oscillators for high throughput pseudo-random number generators up to 8.77Gbits/s

    KAUST Repository

    Mansingka, Abhinav S.

    2014-06-18

    This paper introduces fully digital implementations of four di erent systems in the 3rd order jerk-equation based chaotic family using the Euler approximation. The digitization approach enables controllable chaotic systems that reliably provide sinusoidal or chaotic output based on a selection input. New systems are introduced, derived using logical and arithmetic operations between two system implementations of different bus widths, with up to 100x higher maximum Lyapunov exponent than the original jerkequation based chaotic systems. The resulting chaotic output is shown to pass the NIST sp. 800-22 statistical test suite for pseudorandom number generators without post-processing by only eliminating the statistically defective bits. The systems are designed in Verilog HDL and experimentally verified on a Xilinx Virtex 4 FPGA for a maximum throughput of 15.59 Gbits/s for the native chaotic output and 8.77 Gbits/s for the resulting pseudo-random number generators.

  1. Random number generation and creativity.

    Science.gov (United States)

    Bains, William

    2008-01-01

    A previous paper suggested that humans can generate genuinely random numbers. I tested this hypothesis by repeating the experiment with a larger number of highly numerate subjects, asking them to call out a sequence of digits selected from 0 through 9. The resulting sequences were substantially non-random, with an excess of sequential pairs of numbers and a deficit of repeats of the same number, in line with previous literature. However, the previous literature suggests that humans generate random numbers with substantial conscious effort, and distractions which reduce that effort reduce the randomness of the numbers. I reduced my subjects' concentration by asking them to call out in another language, and with alcohol - neither affected the randomness of their responses. This suggests that the ability to generate random numbers is a 'basic' function of the human mind, even if those numbers are not mathematically 'random'. I hypothesise that there is a 'creativity' mechanism, while not truly random, provides novelty as part of the mind's defence against closed programming loops, and that testing for the effects seen here in people more or less familiar with numbers or with spontaneous creativity could identify more features of this process. It is possible that training to perform better at simple random generation tasks could help to increase creativity, through training people to reduce the conscious mind's suppression of the 'spontaneous', creative response to new questions.

  2. Extracting random numbers from quantum tunnelling through a single diode.

    Science.gov (United States)

    Bernardo-Gavito, Ramón; Bagci, Ibrahim Ethem; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J; Woodhead, Christopher S; Missous, Mohamed; Roedig, Utz; Young, Robert J

    2017-12-19

    Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application.

  3. The additive congruential random number generator--A special case of a multiple recursive generator

    Science.gov (United States)

    Wikramaratna, Roy S.

    2008-07-01

    This paper considers an approach to generating uniformly distributed pseudo-random numbers which works well in serial applications but which also appears particularly well-suited for application on parallel processing systems. Additive Congruential Random Number (ACORN) generators are straightforward to implement for arbitrarily large order and modulus; if implemented using integer arithmetic, it becomes possible to generate identical sequences on any machine. Previously published theoretical analysis has demonstrated that a kth order ACORN sequence approximates to being uniformly distributed in up to k dimensions, for any given k. ACORN generators can be constructed to give period lengths exceeding any given number (for example, with period length in excess of 230p, for any given p). Results of empirical tests have demonstrated that, if p is greater than or equal to 2, then the ACORN generator can be used successfully for generating double precision uniform random variates. This paper demonstrates that an ACORN generator is a particular case of a multiple recursive generator (and, therefore, also a special case of a matrix generator). Both these latter approaches have been widely studied, and it is to be hoped that the results given in the present paper will lead to greater confidence in using the ACORN generators.

  4. Random matrix theory for pseudo-Hermitian systems: Cyclic blocks

    Indian Academy of Sciences (India)

    We discuss the relevance of random matrix theory for pseudo-Hermitian systems, and, for Hamiltonians that break parity and time-reversal invariance . In an attempt to understand the random Ising model, we present the treatment of cyclic asymmetric matrices with blocks and show that the nearest-neighbour spacing ...

  5. Fabrication of Random Microwell Arrays as Pseudo-Thermal Speckle Light Source

    Directory of Open Access Journals (Sweden)

    Axiu Cao

    2018-05-01

    Full Text Available Quantum correlated imaging using the intensity fluctuations of thermal light possesses advantages of high resolution and strong anti-interference ability. The common method to produce pseudo-thermal light source is using a rotary ground glass and transmission of laser beam. In the present work, we propose a method for the fabrication of microwell arrays with randomly varied diameters, which could be used as a new structural element for pseudo-thermal speckle light source. If these are etched with random sizes then they may also have random and complex varying curvatures (diffusion limited etching leading to random destructive interference of the coherent beam which could be a good thing. The microwell arrays, with diameters randomly varying from 5 μm to 40 μm, height varying from 200 nm to 20 μm, were fabricated by photolithography combined with acid etching. The experimental conditions are simple and can be scaled up to for large structures. The produced microwell arrays can transform the laser beam to a pseudo-thermal light source with a certain divergent angle by rational designing of mask and adjustable process parameters.

  6. Random matrix theory for pseudo-Hermitian systems: Cyclic blocks

    Indian Academy of Sciences (India)

    Abstract. We discuss the relevance of random matrix theory for pseudo-Hermitian sys- tems, and, for Hamiltonians that break parity P and time-reversal invariance T. In an attempt to understand the random Ising model, we present the treatment of cyclic asym- metric matrices with blocks and show that the nearest-neighbour ...

  7. Cellular Automata-Based Parallel Random Number Generators Using FPGAs

    Directory of Open Access Journals (Sweden)

    David H. K. Hoe

    2012-01-01

    Full Text Available Cellular computing represents a new paradigm for implementing high-speed massively parallel machines. Cellular automata (CA, which consist of an array of locally connected processing elements, are a basic form of a cellular-based architecture. The use of field programmable gate arrays (FPGAs for implementing CA accelerators has shown promising results. This paper investigates the design of CA-based pseudo-random number generators (PRNGs using an FPGA platform. To improve the quality of the random numbers that are generated, the basic CA structure is enhanced in two ways. First, the addition of a superrule to each CA cell is considered. The resulting self-programmable CA (SPCA uses the superrule to determine when to make a dynamic rule change in each CA cell. The superrule takes its inputs from neighboring cells and can be considered itself a second CA working in parallel with the main CA. When implemented on an FPGA, the use of lookup tables in each logic cell removes any restrictions on how the super-rules should be defined. Second, a hybrid configuration is formed by combining a CA with a linear feedback shift register (LFSR. This is advantageous for FPGA designs due to the compactness of the LFSR implementations. A standard software package for statistically evaluating the quality of random number sequences known as Diehard is used to validate the results. Both the SPCA and the hybrid CA/LFSR were found to pass all the Diehard tests.

  8. Protocols for data hiding in pseudo-random state

    Science.gov (United States)

    Craver, Scott; Li, Enping; Yu, Jun

    2009-02-01

    An emerging form of steganographic communication uses ciphertext to replace the output of a random or strong pseudo-random number generator. PRNG-driven media, for example computer animated backdrops in video-conferencing channels, can then be used as a covert channel, if the PRNG bits that generated a piece of content can be estimated by the recipient. However, all bits sent over such a channel must be computationally indistinguishable from i.i.d. coin flips. Ciphertext messages and even key exchange datagrams are easily shaped to match this distribution; however, when placing these messages into a continous stream of PRNG bits, the sender is unable to provide synchronization markers, metadata, or error correction to ensure the message's location and proper decoding. In this paper we explore methods for message transmission and steganographic key exchange in such a "coin flip" channel. We establish that key exchange is generally not possible in this channel if an adversary possesses even a modest noise budget. If the warden is not vigilant in adding noise, however, communication is very simple.

  9. A fast random number generator for the Intel Paragon supercomputer

    Science.gov (United States)

    Gutbrod, F.

    1995-06-01

    A pseudo-random number generator is presented which makes optimal use of the architecture of the i860-microprocessor and which is expected to have a very long period. It is therefore a good candidate for use on the parallel supercomputer Paragon XP. In the assembler version, it needs 6.4 cycles for a real∗4 random number. There is a FORTRAN routine which yields identical numbers up to rare and minor rounding discrepancies, and it needs 28 cycles. The FORTRAN performance on other microprocessors is somewhat better. Arguments for the quality of the generator and some numerical tests are given.

  10. Random Numbers and Monte Carlo Methods

    Science.gov (United States)

    Scherer, Philipp O. J.

    Many-body problems often involve the calculation of integrals of very high dimension which cannot be treated by standard methods. For the calculation of thermodynamic averages Monte Carlo methods are very useful which sample the integration volume at randomly chosen points. After summarizing some basic statistics, we discuss algorithms for the generation of pseudo-random numbers with given probability distribution which are essential for all Monte Carlo methods. We show how the efficiency of Monte Carlo integration can be improved by sampling preferentially the important configurations. Finally the famous Metropolis algorithm is applied to classical many-particle systems. Computer experiments visualize the central limit theorem and apply the Metropolis method to the traveling salesman problem.

  11. On the Periods of the {ranshi} Random Number Generator

    Science.gov (United States)

    Gutbrod, F.

    The stochastic properties of the pseudo-random number generator {ranshi} are discussed, with emphasis on the average period. Within a factor 2 this turns out to be the root of the maximally possible period. The actual set of periods depends on minor details of the algorithm, and the system settles down in one of only a few different cycles. These features are in perfect agreement with absolute random motion in phase space, to the extent allowed by deterministic dynamics.

  12. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  13. Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes.

    Science.gov (United States)

    Drescher, U; Koschate, J; Schiffer, T; Schneider, S; Hoffmann, U

    2017-06-01

    The aim of the study was to compare the kinetics responses of heart rate (HR), pulmonary (V˙O 2 pulm) and predicted muscular (V˙O 2 musc) oxygen uptake between two different pseudo-random binary sequence (PRBS) work rate (WR) amplitudes both below anaerobic threshold. Eight healthy individuals performed two PRBS WR protocols implying changes between 30W and 80W and between 30W and 110W. HR and V˙O 2 pulm were measured beat-to-beat and breath-by-breath, respectively. V˙O 2 musc was estimated applying the approach of Hoffmann et al. (Eur J Appl Physiol 113: 1745-1754, 2013) considering a circulatory model for venous return and cross-correlation functions (CCF) for the kinetics analysis. HR and V˙O 2 musc kinetics seem to be independent of WR intensity (p>0.05). V˙O 2 pulm kinetics show prominent differences in the lag of the CCF maximum (39±9s; 31±4s; p<0.05). A mean difference of 14W between the PRBS WR amplitudes impacts venous return significantly, while HR and V˙O 2 musc kinetics remain unchanged. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. All-optical fast random number generator.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Zhang, Jian-Zhong

    2010-09-13

    We propose a scheme of all-optical random number generator (RNG), which consists of an ultra-wide bandwidth (UWB) chaotic laser, an all-optical sampler and an all-optical comparator. Free from the electric-device bandwidth, it can generate 10Gbit/s random numbers in our simulation. The high-speed bit sequences can pass standard statistical tests for randomness after all-optical exclusive-or (XOR) operation.

  15. Generating random numbers by means of nonlinear dynamic systems

    Science.gov (United States)

    Zang, Jiaqi; Hu, Haojie; Zhong, Juhua; Luo, Duanbin; Fang, Yi

    2018-07-01

    To introduce the randomness of a physical process to students, a chaotic pendulum experiment was opened in East China University of Science and Technology (ECUST) on the undergraduate level in the physics department. It was shown chaotic motion could be initiated through adjusting the operation of a chaotic pendulum. By using the data of the angular displacements of chaotic motion, random binary numerical arrays can be generated. To check the randomness of generated numerical arrays, the NIST Special Publication 800-20 method was adopted. As a result, it was found that all the random arrays which were generated by the chaotic motion could pass the validity criteria and some of them were even better than the quality of pseudo-random numbers generated by a computer. Through the experiments, it is demonstrated that chaotic pendulum can be used as an efficient mechanical facility in generating random numbers, and can be applied in teaching random motion to the students.

  16. Effects of changing the random number stride in Monte Carlo calculations

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    1991-01-01

    This paper reports on a common practice in Monte Carlo radiation transport codes which is to start each random walk a specified number of steps up the random number sequence from the previous one. This is called the stride in the random number sequence between source particles. It is used for correlated sampling or to provide tree-structured random numbers. A new random number generator algorithm for the major Monte Carlo code MCNP has been written to allow adjustment of the random number stride. This random number generator is machine portable. The effects of varying the stride for several sample problems are examined

  17. A true random number generator based on mouse movement and chaotic cryptography

    International Nuclear Information System (INIS)

    Hu Yue; Liao Xiaofeng; Wong, Kwok-wo; Zhou Qing

    2009-01-01

    True random number generators are in general more secure than pseudo random number generators. In this paper, we propose a novel true random number generator which generates a 256-bit random number by computer mouse movement. It is cheap, convenient and universal for personal computers. To eliminate the effect of similar movement patterns generated by the same user, three chaos-based approaches, namely, discretized 2D chaotic map permutation, spatiotemporal chaos and 'MASK' algorithm, are adopted to post-process the captured mouse movements. Random bits generated by three users are tested using NIST statistical tests. Both the spatiotemporal chaos approach and the 'MASK' algorithm pass the tests successfully. However, the latter has a better performance in terms of efficiency and effectiveness and so is more practical for common personal computer applications.

  18. The RANDOM computer program: A linear congruential random number generator

    Science.gov (United States)

    Miles, R. F., Jr.

    1986-01-01

    The RANDOM Computer Program is a FORTRAN program for generating random number sequences and testing linear congruential random number generators (LCGs). The linear congruential form of random number generator is discussed, and the selection of parameters of an LCG for a microcomputer described. This document describes the following: (1) The RANDOM Computer Program; (2) RANDOM.MOD, the computer code needed to implement an LCG in a FORTRAN program; and (3) The RANCYCLE and the ARITH Computer Programs that provide computational assistance in the selection of parameters for an LCG. The RANDOM, RANCYCLE, and ARITH Computer Programs are written in Microsoft FORTRAN for the IBM PC microcomputer and its compatibles. With only minor modifications, the RANDOM Computer Program and its LCG can be run on most micromputers or mainframe computers.

  19. Drawing a random number

    DEFF Research Database (Denmark)

    Wanscher, Jørgen Bundgaard; Sørensen, Majken Vildrik

    2006-01-01

    Random numbers are used for a great variety of applications in almost any field of computer and economic sciences today. Examples ranges from stock market forecasting in economics, through stochastic traffic modelling in operations research to photon and ray tracing in graphics. The construction...... distributions into others with most of the required characteristics. In essence, a uniform sequence which is transformed into a new sequence with the required distribution. The subject of this article is to consider the well known highly uniform Halton sequence and modifications to it. The intent is to generate...

  20. DNA-based random number generation in security circuitry.

    Science.gov (United States)

    Gearheart, Christy M; Arazi, Benjamin; Rouchka, Eric C

    2010-06-01

    DNA-based circuit design is an area of research in which traditional silicon-based technologies are replaced by naturally occurring phenomena taken from biochemistry and molecular biology. This research focuses on further developing DNA-based methodologies to mimic digital data manipulation. While exhibiting fundamental principles, this work was done in conjunction with the vision that DNA-based circuitry, when the technology matures, will form the basis for a tamper-proof security module, revolutionizing the meaning and concept of tamper-proofing and possibly preventing it altogether based on accurate scientific observations. A paramount part of such a solution would be self-generation of random numbers. A novel prototype schema employs solid phase synthesis of oligonucleotides for random construction of DNA sequences; temporary storage and retrieval is achieved through plasmid vectors. A discussion of how to evaluate sequence randomness is included, as well as how these techniques are applied to a simulation of the random number generation circuitry. Simulation results show generated sequences successfully pass three selected NIST random number generation tests specified for security applications.

  1. LPTAU, Quasi Random Sequence Generator

    International Nuclear Information System (INIS)

    Sobol, Ilya M.

    1993-01-01

    1 - Description of program or function: LPTAU generates quasi random sequences. These are uniformly distributed sets of L=M N points in the N-dimensional unit cube: I N =[0,1]x...x[0,1]. These sequences are used as nodes for multidimensional integration; as searching points in global optimization; as trial points in multi-criteria decision making; as quasi-random points for quasi Monte Carlo algorithms. 2 - Method of solution: Uses LP-TAU sequence generation (see references). 3 - Restrictions on the complexity of the problem: The number of points that can be generated is L 30 . The dimension of the space cannot exceed 51

  2. Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique

    International Nuclear Information System (INIS)

    Nasserzadeh, V.; Swithenbank, J.; Jones, B.

    1995-01-01

    The problem of measuring gas-residence time in large incinerators was studied by the pseudo-random binary sequence (PRBS) stimulus tracer response technique at the Sheffield municipal solid-waste incinerator (35 MW plant). The steady-state system was disturbed by the superimposition of small fluctuations in the form of a pseudo-random binary sequence of methane pulses, and the response of the incinerator was determined from the CO 2 concentration in flue gases at the boiler exit, measured with a specially developed optical gas analyser with a high-frequency response. For data acquisition, an on-line PC computer was used together with the LAB Windows software system; the output response was then cross-correlated with the perturbation signal to give the impulse response of the incinerator. There was very good agreement between the gas-residence time for the Sheffield MSW incinerator as calculated by computational fluid dynamics (FLUENT Model) and gas-residence time at the plant as measured by the PRBS tracer technique. The results obtained from this research programme clearly demonstrate that the PRBS stimulus tracer response technique can be successfully and economically used to measure gas-residence times in large incinerator plants. It also suggests that the common commercial practice of characterising the incinerator operation by a single-residence-time parameter may lead to a misrepresentation of the complexities involved in describing the operation of the incineration system. (author)

  3. Efficient implementation of Bailey and Borwein pseudo-random number generator based on normal numbers

    Science.gov (United States)

    Beliakov, G.; Creighton, D.; Johnstone, M.; Wilkin, T.

    2013-08-01

    This paper describes an implementation of a Linear Congruential Generator (LCG) based on the binary representation of the normal number α, and of a combined generator based on that LCG. The base LCG with the modulus 333 provides a quality sequence with the period ≈3.7ṡ1015, which passes all but two statistical tests from BigCrush test suite. We improved on the original implementation by adapting Barrett's modular reduction method, which resulted in four-fold increase in efficiency. The combined generator has the period of ≈1023 and passes all tests from BigCrush suite.

  4. Stream cipher based on pseudorandom number generation using optical affine transformation

    Science.gov (United States)

    Sasaki, Toru; Togo, Hiroyuki; Tanida, Jun; Ichioka, Yoshiki

    2000-07-01

    We propose a new stream cipher technique for 2D image data which can be implemented by iterative optical transformation. The stream cipher uses a pseudo-random number generator (PRNG) to generate pseudo-random bit sequence. The proposed method for the PRNG is composed of iterative operation of 2D affine transformation achieved by optical components, and modulo-n addition of the transformed images. The method is expected to be executed efficiently by optical parallel processing. We verify performance of the proposed method in terms of security strength and clarify problems on optical implementation by the optical fractal synthesizer.

  5. [Intel random number generator-based true random number generator].

    Science.gov (United States)

    Huang, Feng; Shen, Hong

    2004-09-01

    To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.

  6. Covert Communication in MIMO-OFDM System Using Pseudo Random Location of Fake Subcarriers

    Directory of Open Access Journals (Sweden)

    Rizky Pratama Hudhajanto

    2016-08-01

    Full Text Available Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER than the legal receiver compared to the conventional MIMO-OFDM system.

  7. Private random numbers produced by entangled ions and certified by Bell's theorem

    Science.gov (United States)

    Hayes, David; Matsukevich, Dzmitry; Maunz, Peter; Monroe, Chris; Olmschenk, Steven

    2010-03-01

    It has been shown that entangled particles can be used to generate numbers whose privacy and randomness are guaranteed by the violation of a Bell inequality [1,2]. The authenticity of the bit stream produced is guaranteed when the system used can close the detection loophole and when the entangled particles are non-interacting. We report the use of remotely located trapped ions with near perfect state detection efficiency as a private random number generator. By entangling the ions through photon interference and choosing the measurement settings using a pseudo-random number generator, we measure a CHSH correlation function that is more than seven standard deviations above the classical limit. With a total of 3016 events, we are able to certify the generation of 42 new random numbers with 99% confidence. [1] S. Pironio et al.(submitted to Nature, arXiv:0911.3427) [2] Colbeck, R. PhD Dissertation (2007)

  8. Brain potentials index executive functions during random number generation.

    Science.gov (United States)

    Joppich, Gregor; Däuper, Jan; Dengler, Reinhard; Johannes, Sönke; Rodriguez-Fornells, Antoni; Münte, Thomas F

    2004-06-01

    The generation of random sequences is considered to tax different executive functions. To explore the involvement of these functions further, brain potentials were recorded in 16 healthy young adults while either engaging in random number generation (RNG) by pressing the number keys on a computer keyboard in a random sequence or in ordered number generation (ONG) necessitating key presses in the canonical order. Key presses were paced by an external auditory stimulus to yield either fast (1 press/800 ms) or slow (1 press/1300 ms) sequences in separate runs. Attentional demands of random and ordered tasks were assessed by the introduction of a secondary task (key-press to a target tone). The P3 amplitude to the target tone of this secondary task was reduced during RNG, reflecting the greater consumption of attentional resources during RNG. Moreover, RNG led to a left frontal negativity peaking 140 ms after the onset of the pacing stimulus, whenever the subjects produced a true random response. This negativity could be attributed to the left dorsolateral prefrontal cortex and was absent when numbers were repeated. This negativity was interpreted as an index for the inhibition of habitual responses. Finally, in response locked ERPs a negative component was apparent peaking about 50 ms after the key-press that was more prominent during RNG. Source localization suggested a medial frontal source. This effect was tentatively interpreted as a reflection of the greater monitoring demands during random sequence generation.

  9. CMOS Compressed Imaging by Random Convolution

    OpenAIRE

    Jacques, Laurent; Vandergheynst, Pierre; Bibet, Alexandre; Majidzadeh, Vahid; Schmid, Alexandre; Leblebici, Yusuf

    2009-01-01

    We present a CMOS imager with built-in capability to perform Compressed Sensing. The adopted sensing strategy is the random Convolution due to J. Romberg. It is achieved by a shift register set in a pseudo-random configuration. It acts as a convolutive filter on the imager focal plane, the current issued from each CMOS pixel undergoing a pseudo-random redirection controlled by each component of the filter sequence. A pseudo-random triggering of the ADC reading is finally applied to comp...

  10. Cryptographic pseudo-random sequences from the chaotic Hénon ...

    Indian Academy of Sciences (India)

    dimensional discrete-time Hénon map is proposed. Properties of the proposed sequences pertaining to linear complexity, linear complexity profile, correlation and auto-correlation are investigated. All these properties of the sequences suggest a ...

  11. Lensless digital holography with diffuse illumination through a pseudo-random phase mask.

    Science.gov (United States)

    Bernet, Stefan; Harm, Walter; Jesacher, Alexander; Ritsch-Marte, Monika

    2011-12-05

    Microscopic imaging with a setup consisting of a pseudo-random phase mask, and an open CMOS camera, without an imaging objective, is demonstrated. The pseudo random phase mask acts as a diffuser for an incoming laser beam, scattering a speckle pattern to a CMOS chip, which is recorded once as a reference. A sample which is afterwards inserted somewhere in the optical beam path changes the speckle pattern. A single (non-iterative) image processing step, comparing the modified speckle pattern with the previously recorded one, generates a sharp image of the sample. After a first calibration the method works in real-time and allows quantitative imaging of complex (amplitude and phase) samples in an extended three-dimensional volume. Since no lenses are used, the method is free from lens abberations. Compared to standard inline holography the diffuse sample illumination improves the axial sectioning capability by increasing the effective numerical aperture in the illumination path, and it suppresses the undesired so-called twin images. For demonstration, a high resolution spatial light modulator (SLM) is programmed to act as the pseudo-random phase mask. We show experimental results, imaging microscopic biological samples, e.g. insects, within an extended volume at a distance of 15 cm with a transverse and longitudinal resolution of about 60 μm and 400 μm, respectively.

  12. Pseudo-random data acquisition geometry in 3D seismic survey; Sanjigen jishin tansa ni okeru giji random data shutoku reiauto ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, M; Tsuburaya, Y [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-10-01

    Influence of pseudo-random geometry on the imaging for 3D seismic exploration data acquisition has been investigate using a simple model by comparing with the regular geometry. When constituting wave front by the interference of elemental waves, pseudo-random geometry data did not always provide good results. In the case of a point diffractor, the imaging operation, where the constituted wave front was returned to the point diffractor by the interference of elemental waves for the spatial alias records, did not always give clear images. In the case of multi point diffractor, good images were obtained with less noise generation in spite of alias records. There are a lot of diffractors in the actual geological structures, which corresponds to the case of multi point diffractors. Finally, better images could be obtained by inputting records acquired using the pseudo-random geometry rather than by inputting spatial alias records acquired using the regular geometry. 7 refs., 6 figs.

  13. A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications

    Science.gov (United States)

    Grauer, Jared A.

    2017-01-01

    Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.

  14. A hybrid-type quantum random number generator

    Science.gov (United States)

    Hai-Qiang, Ma; Wu, Zhu; Ke-Jin, Wei; Rui-Xue, Li; Hong-Wei, Liu

    2016-05-01

    This paper proposes a well-performing hybrid-type truly quantum random number generator based on the time interval between two independent single-photon detection signals, which is practical and intuitive, and generates the initial random number sources from a combination of multiple existing random number sources. A time-to-amplitude converter and multichannel analyzer are used for qualitative analysis to demonstrate that each and every step is random. Furthermore, a carefully designed data acquisition system is used to obtain a high-quality random sequence. Our scheme is simple and proves that the random number bit rate can be dramatically increased to satisfy practical requirements. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178010 and 11374042), the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China, and the Fundamental Research Funds for the Central Universities of China (Grant No. bupt2014TS01).

  15. Frequency characteristics of coordinate sequences of linear recurrences over Galois rings

    Science.gov (United States)

    Kamlovskii, O. V.

    2013-12-01

    We consider some properties of the coordinate sequences of linear recurrences over Galois rings which characterize the possibility of regarding them as pseudo-random sequences. We study the periodicity properties, linear complexity and frequency characteristics of these sequences. Up to now, these parameters have been studied mainly in the case when the linear recurring sequence has maximal possible period. We investigate the coordinate sequences of linear recurrences of not necessarily maximal period. We obtain sharpened and generalized estimates for the number of elements and r-patterns on the cycles and intervals of these sequences.

  16. Frequency characteristics of coordinate sequences of linear recurrences over Galois rings

    International Nuclear Information System (INIS)

    Certification Research Center, Moscow (Russian Federation))" data-affiliation=" (LLC Certification Research Center, Moscow (Russian Federation))" >Kamlovskii, O V

    2013-01-01

    We consider some properties of the coordinate sequences of linear recurrences over Galois rings which characterize the possibility of regarding them as pseudo-random sequences. We study the periodicity properties, linear complexity and frequency characteristics of these sequences. Up to now, these parameters have been studied mainly in the case when the linear recurring sequence has maximal possible period. We investigate the coordinate sequences of linear recurrences of not necessarily maximal period. We obtain sharpened and generalized estimates for the number of elements and r-patterns on the cycles and intervals of these sequences

  17. Recommendations and illustrations for the evaluation of photonic random number generators

    Science.gov (United States)

    Hart, Joseph D.; Terashima, Yuta; Uchida, Atsushi; Baumgartner, Gerald B.; Murphy, Thomas E.; Roy, Rajarshi

    2017-09-01

    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h (𝜖 ,τ ) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission.

  18. Recommendations and illustrations for the evaluation of photonic random number generators

    Directory of Open Access Journals (Sweden)

    Joseph D. Hart

    2017-09-01

    Full Text Available The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(,τ as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission.

  19. Random number generators and the Metropolis algorithm: application to various problems in physics and mechanics as an introduction to computational physics

    International Nuclear Information System (INIS)

    Calvayrac, Florent

    2005-01-01

    We present known and new applications of pseudo random numbers and of the Metropolis algorithm to phenomena of physical and mechanical interest, such as the search of simple clusters isomers with interactive visualization, or vehicle motion planning. The progression towards complicated problems was used with first-year graduate students who wrote most of the programs presented here. We argue that the use of pseudo random numbers in simulation and extrema research programs in teaching numerical methods in physics allows one to get quick programs and physically meaningful and demonstrative results without recurring to the advanced numerical analysis methods

  20. Pseudo-random tool paths for CNC sub-aperture polishing and other applications.

    Science.gov (United States)

    Dunn, Christina R; Walker, David D

    2008-11-10

    In this paper we first contrast classical and CNC polishing techniques in regard to the repetitiveness of the machine motions. We then present a pseudo-random tool path for use with CNC sub-aperture polishing techniques and report polishing results from equivalent random and raster tool-paths. The random tool-path used - the unicursal random tool-path - employs a random seed to generate a pattern which never crosses itself. Because of this property, this tool-path is directly compatible with dwell time maps for corrective polishing. The tool-path can be used to polish any continuous area of any boundary shape, including surfaces with interior perforations.

  1. Random numbers spring from alpha decay

    International Nuclear Information System (INIS)

    Frigerio, N.A.; Sanathanan, L.P.; Morley, M.; Clark, N.A.; Tyler, S.A.

    1980-05-01

    Congruential random number generators, which are widely used in Monte Carlo simulations, are deficient in that the number they generate are concentrated in a relatively small number of hyperplanes. While this deficiency may not be a limitation in small Monte Carlo studies involving a few variables, it introduces a significant bias in large simulations requiring high resolution. This bias was recognized and assessed during preparations for an accident analysis study of nuclear power plants. This report describes a random number device based on the radioactive decay of alpha particles from a 235 U source in a high-resolution gas proportional counter. The signals were fed to a 4096-channel analyzer and for each channel the frequency of signals registered in a 20,000-microsecond interval was recorded. The parity bits of these frequency counts (0 for an even count and 1 for an odd count) were then assembled in sequence to form 31-bit binary random numbers and transcribed to a magnetic tape. This cycle was repeated as many times as were necessary to create 3 million random numbers. The frequency distribution of counts from the present device conforms to the Brockwell-Moyal distribution, which takes into account the dead time of the counter (both the dead time and decay constant of the underlying Poisson process were estimated). Analysis of the count data and tests of randomness on a sample set of the 31-bit binary numbers indicate that this random number device is a highly reliable source of truly random numbers. Its use is, therefore, recommended in Monte Carlo simulations for which the congruential pseudorandom number generators are found to be inadequate. 6 figures, 5 tables

  2. Systematic errors due to linear congruential random-number generators with the Swendsen-Wang algorithm: a warning.

    Science.gov (United States)

    Ossola, Giovanni; Sokal, Alan D

    2004-08-01

    We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte Carlo simulations using the Swendsen-Wang algorithm, if the lattice size is a multiple of a very large power of 2 and one random number is used per bond. These systematic errors arise from correlations within a single bond-update half-sweep. The errors can be eliminated (or at least radically reduced) by updating the bonds in a random order or in an aperiodic manner. It also helps to use a generator of large modulus (e.g., 60 or more bits).

  3. Pseudo-stochastic signal characterization in wavelet-domain

    International Nuclear Information System (INIS)

    Zaytsev, Kirill I; Zhirnov, Andrei A; Alekhnovich, Valentin I; Yurchenko, Stanislav O

    2015-01-01

    In this paper we present the method for fast and accurate characterization of pseudo-stochastic signals, which contain a large number of similar but randomly-located fragments. This method allows estimating the statistical characteristics of pseudo-stochastic signal, and it is based on digital signal processing in wavelet-domain. Continuous wavelet transform and the criterion for wavelet scale power density are utilized. We are experimentally implementing this method for the purpose of sand granulometry, and we are estimating the statistical parameters of test sand fractions

  4. DEMONSTRATION BY MASS-SPECTROMETRY THAT PSEUDO-HEVEIN AND HEVEIN HAVE RAGGED C-TERMINAL SEQUENCES

    NARCIS (Netherlands)

    SOEDJANAATMADJA, UMS; HOFSTEENGE, J; JERONIMUSSTRATINGH, CM; BRUINS, AP; BEINTEMA, JJ

    1994-01-01

    The primary structure of pseudo-hevein, a minor hevein component from the latex of the rubber tree, Hevea brasiliensis, was determined. Six differences with the sequence of the major hevein component were found, one of which is a replacement of tryptophan by tyrosine in the carbohydrate binding

  5. Fast physical random bit generation with chaotic semiconductor lasers

    Science.gov (United States)

    Uchida, Atsushi; Amano, Kazuya; Inoue, Masaki; Hirano, Kunihito; Naito, Sunao; Someya, Hiroyuki; Oowada, Isao; Kurashige, Takayuki; Shiki, Masaru; Yoshimori, Shigeru; Yoshimura, Kazuyuki; Davis, Peter

    2008-12-01

    Random number generators in digital information systems make use of physical entropy sources such as electronic and photonic noise to add unpredictability to deterministically generated pseudo-random sequences. However, there is a large gap between the generation rates achieved with existing physical sources and the high data rates of many computation and communication systems; this is a fundamental weakness of these systems. Here we show that good quality random bit sequences can be generated at very fast bit rates using physical chaos in semiconductor lasers. Streams of bits that pass standard statistical tests for randomness have been generated at rates of up to 1.7 Gbps by sampling the fluctuating optical output of two chaotic lasers. This rate is an order of magnitude faster than that of previously reported devices for physical random bit generators with verified randomness. This means that the performance of random number generators can be greatly improved by using chaotic laser devices as physical entropy sources.

  6. Pseudo-random arranged color filter array for controlling moiré patterns in display.

    Science.gov (United States)

    Zhou, Yangui; Fan, Hang; An, Sengzhong; Li, Juntao; Wang, Jiahui; Zhou, Jianying; Liu, Yikun

    2015-11-16

    Optical display quality can be degraded by the appearance of moiré pattern occurring in a display system consisting of a basic matrix superimposed with a functional structured optical layer. We propose in this paper a novel pseudo-random arranged color filter array with the table number arranged with an optimal design scenario. We show that the moiré pattern can be significantly reduced with the introduction of the special color filter array. The idea is tested with an experiment that gives rise to a substantially reduced moiré pattern in a display system. It is believed that the novel functional optical structures have significant impact to complex structured display system in general and to the autostereoscopic and integrated display systems in particular.

  7. Comparison of tool feed influence in CNC polishing between a novel circular-random path and other pseudo-random paths.

    Science.gov (United States)

    Takizawa, Ken; Beaucamp, Anthony

    2017-09-18

    A new category of circular pseudo-random paths is proposed in order to suppress repetitive patterns and improve surface waviness on ultra-precision polished surfaces. Random paths in prior research had many corners, therefore deceleration of the polishing tool affected the surface waviness. The new random path can suppress velocity changes of the polishing tool and thus restrict degradation of the surface waviness, making it suitable for applications with stringent mid-spatial-frequency requirements such as photomask blanks for EUV lithography.

  8. Reactor dynamics experiment of nuclear ship Mutsu using pseudo random signal (II). The second experiment

    International Nuclear Information System (INIS)

    Hayashi, Koji; Shimazaki, Junya; Nabeshima, Kunihiko; Ochiai, Masaaki; Shinohara, Yoshikuni; Inoue, Kimihiko.

    1995-01-01

    In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, the second reactor noise experiment using pseudo random binary sequences (PRBS) was performed on August 30, 1991 in the third experimental navigation. The experiments using both reactivity and load disturbances were performed at 50% of reactor power and under a quiet sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. Furthermore, natural reactor noise signals were measured after each PRBS experiment in order to evaluate the effects of the PRBS disturbances. This paper summarizes the planning of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)

  9. Reactor dynamics experiment of nuclear ship Mutsu using pseudo random signal (III). The third experiment

    International Nuclear Information System (INIS)

    Hayashi, Koji; Shimazaki, Junya; Nabeshima, Kunihiko; Ochiai, Masaaki; Shinohara, Yoshikuni; Inoue, Kimihiko.

    1995-03-01

    In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, the third reactor noise experiment using pseudo random binary sequences (PRBS) was performed on September 16, 1991 in the third experimental navigation. The experiments using both reactivity and load disturbances were performed at 70% of reactor power and under a normal sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. Furthermore, natural reactor noise signals were measured after each PRBS experiment in order to evaluate the effects of the PRBS disturbances. This paper summarizes the planning of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)

  10. Cryptographic pseudo-random sequences from the chaotic Hénon ...

    Indian Academy of Sciences (India)

    2-dimensional chaotic maps for the generation of pseudorandom sequences. 3. ... map. Consider the bit-stream Bx formed by choosing every Pth bit of Sx, ... Similarly, the probability of the linear complexity C assuming the value c(c < N) when.

  11. Direct generation of all-optical random numbers from optical pulse amplitude chaos.

    Science.gov (United States)

    Li, Pu; Wang, Yun-Cai; Wang, An-Bang; Yang, Ling-Zhen; Zhang, Ming-Jiang; Zhang, Jian-Zhong

    2012-02-13

    We propose and theoretically demonstrate an all-optical method for directly generating all-optical random numbers from pulse amplitude chaos produced by a mode-locked fiber ring laser. Under an appropriate pump intensity, the mode-locked laser can experience a quasi-periodic route to chaos. Such a chaos consists of a stream of pulses with a fixed repetition frequency but random intensities. In this method, we do not require sampling procedure and external triggered clocks but directly quantize the chaotic pulses stream into random number sequence via an all-optical flip-flop. Moreover, our simulation results show that the pulse amplitude chaos has no periodicity and possesses a highly symmetric distribution of amplitude. Thus, in theory, the obtained random number sequence without post-processing has a high-quality randomness verified by industry-standard statistical tests.

  12. Simulating efficiently the evolution of DNA sequences.

    Science.gov (United States)

    Schöniger, M; von Haeseler, A

    1995-02-01

    Two menu-driven FORTRAN programs are described that simulate the evolution of DNA sequences in accordance with a user-specified model. This general stochastic model allows for an arbitrary stationary nucleotide composition and any transition-transversion bias during the process of base substitution. In addition, the user may define any hypothetical model tree according to which a family of sequences evolves. The programs suggest the computationally most inexpensive approach to generate nucleotide substitutions. Either reproducible or non-repeatable simulations, depending on the method of initializing the pseudo-random number generator, can be performed. The corresponding options are offered by the interface menu.

  13. Programmable pseudo-random detector-pulse-pattern generator

    International Nuclear Information System (INIS)

    Putten, R. van der; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica

    1990-01-01

    This report discusses the design and realization of the digital part of the programmable pseudo-random detector pulse-pattern generator. For the design and realization use has been made of F-TTL and high speed special purpose ic's, in particular FAL's (15 ns). The design possibilities offered by the software for pro-gramming of the FAL's have been utilized as much as possible. In this way counters, registers and a state machine with extended control possibilities have been designed and an advanced 8 channel pulse generator has been developed which is controlled via the VME system bus. the generator possesses an internal clock oscillator of 16 MHZ. The moment when a pulse is generated can be adjusted with a step size of 250 ps. 2000 different periods (time windows) can be stored for generating a pattern. (author). 37 refs.; 6 figs

  14. Permutation Entropy for Random Binary Sequences

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2015-12-01

    Full Text Available In this paper, we generalize the permutation entropy (PE measure to binary sequences, which is based on Shannon’s entropy, and theoretically analyze this measure for random binary sequences. We deduce the theoretical value of PE for random binary sequences, which can be used to measure the randomness of binary sequences. We also reveal the relationship between this PE measure with other randomness measures, such as Shannon’s entropy and Lempel–Ziv complexity. The results show that PE is consistent with these two measures. Furthermore, we use PE as one of the randomness measures to evaluate the randomness of chaotic binary sequences.

  15. PseudoBase: a database with RNA pseudoknots.

    Science.gov (United States)

    van Batenburg, F H; Gultyaev, A P; Pleij, C W; Ng, J; Oliehoek, J

    2000-01-01

    PseudoBase is a database containing structural, functional and sequence data related to RNA pseudo-knots. It can be reached at http://wwwbio. Leiden Univ.nl/ approximately Batenburg/PKB.html. This page will direct the user to a retrieval page from where a particular pseudoknot can be chosen, or to a submission page which enables the user to add pseudoknot information to the database or to an informative page that elaborates on the various aspects of the database. For each pseudoknot, 12 items are stored, e.g. the nucleotides of the region that contains the pseudoknot, the stem positions of the pseudoknot, the EMBL accession number of the sequence that contains this pseudoknot and the support that can be given regarding the reliability of the pseudoknot. Access is via a small number of steps, using 16 different categories. The development process was done by applying the evolutionary methodology for software development rather than by applying the methodology of the classical waterfall model or the more modern spiral model.

  16. Design of a Handheld Pseudo Random Coded UWB Radar for Human Sensing

    Directory of Open Access Journals (Sweden)

    Xia Zheng-huan

    2015-10-01

    Full Text Available This paper presents the design of a handheld pseudo random coded Ultra-WideBand (UWB radar for human sensing. The main tasks of the radar are to track the moving human object and extract the human respiratory frequency. In order to achieve perfect penetrability and good range resolution, m sequence with a carrier of 800 MHz is chosen as the transmitting signal. The modulated m-sequence can be generated directly by the high-speed DAC and FPGA to reduce the size of the radar system, and the mean power of the transmitting signal is 5 dBm. The receiver has two receiving channels based on hybrid sampling, the first receiving channel is to sample the reference signal and the second receiving channel is to obtain the radar echo. The real-time pulse compression is computed in parallel with a group of on-chip DSP48E slices in FPGA to improve the scanning rate of the radar system. Additionally, the algorithms of moving target tracking and life detection are implemented using Intel’s micro-processor, and the detection results are sent to the micro displayer fixed on the helmet. The experimental results show that the moving target located at less than 16 m far away from the wall can be tracked, and the respiratory frequency of the static human at less than 14 m far away from the wall can be extracted.

  17. Pseudo-noise generator using UNMBER SIEVE''. Kazu furui wo mochiita giji ransu seiseiki

    Energy Technology Data Exchange (ETDEWEB)

    Kyan, S.; Teruya, H. (University of the Ryukyus, Okinawa (Japan). College of Engineering)

    1992-09-01

    In data communications which require secrecy, the Vernam cipher method is often used because of its simple principle and high security. It is necessary for this method to generate key streams as random numbers. The conventional generating methods using linear feedback shift register (LFSR) or data encryption standard(DES) have some problems in and security and circuit complexity. This paper proposes a pseudo-noise generator of relatively simple structure using number sieve, and describes its structure and security. The pseudo-noise generator consists of the number sieve circuit combined With shift resistors of figures of 8 prime numbers from 2 to 19 and other resisters containing AND in feedback area. The total number of keys that can be selected is 3.8[times]10[sup 25], which is not readable from the aspect of calculation volume. Concerning a model of the number sieve circuit with shift resistors which are reduced to 4, linear complexity, which is part of evaluation standard for the security of pseudo-random numbers for cipher, and hamming distance for different keys are examined. 10 refs., 8 figs., 3 tabs.

  18. The synthesis of the correlation function of pseudorandom binary numbers at the output shift register

    Science.gov (United States)

    Galustov, G. G.; Voronin, V. V.

    2017-05-01

    The sequence generator generates a sequence of pseudorandom binary numbers using a linear-feedback shift register (LFSR). This block implements LFSR using a simple shift register generator (SSRG, or Fibonacci) configuration. In this article we introduce the concept of probabilistic binary element provides requirements, which ensure compliance with the criterion of "uniformity" in the implementation of the basic physical generators uniformly distributed random number sequences. Based on these studies, we obtained an analytic relation between the parameters of the binary sequence and parameters of a numerical sequence with the shift register output. The received analytical dependencies can help in evaluating the statistical characteristics of the processes in solving problems of statistical modeling. It is supposed that the formation of the binary sequence output from the binary probabilistic element is produced using a physical noise process. It is shown that the observed errors in statistical modeling using pseudo-random numbers do not occur if the model examines linear systems with constant parameters, but in case models of nonlinear systems, higher order moments can have a Gaussian distribution.

  19. Generation of brain pseudo-CTs using an undersampled, single-acquisition UTE-mDixon pulse sequence and unsupervised clustering

    International Nuclear Information System (INIS)

    Su, Kuan-Hao; Hu, Lingzhi; Traughber, Melanie; Stehning, Christian; Helle, Michael; Qian, Pengjiang; Thompson, Cheryl L.; Pereira, Gisele C.; Traughber, Bryan J.; Jordan, David W.; Herrmann, Karin A.; Muzic, Raymond F.

    2015-01-01

    Purpose: MR-based pseudo-CT has an important role in MR-based radiation therapy planning and PET attenuation correction. The purpose of this study is to establish a clinically feasible approach, including image acquisition, correction, and CT formation, for pseudo-CT generation of the brain using a single-acquisition, undersampled ultrashort echo time (UTE)-mDixon pulse sequence. Methods: Nine patients were recruited for this study. For each patient, a 190-s, undersampled, single acquisition UTE-mDixon sequence of the brain was acquired (TE = 0.1, 1.5, and 2.8 ms). A novel method of retrospective trajectory correction of the free induction decay (FID) signal was performed based on point-spread functions of three external MR markers. Two-point Dixon images were reconstructed using the first and second echo data (TE = 1.5 and 2.8 ms). R2 ∗ images (1/T2 ∗ ) were then estimated and were used to provide bone information. Three image features, i.e., Dixon-fat, Dixon-water, and R2 ∗ , were used for unsupervised clustering. Five tissue clusters, i.e., air, brain, fat, fluid, and bone, were estimated using the fuzzy c-means (FCM) algorithm. A two-step, automatic tissue-assignment approach was proposed and designed according to the prior information of the given feature space. Pseudo-CTs were generated by a voxelwise linear combination of the membership functions of the FCM. A low-dose CT was acquired for each patient and was used as the gold standard for comparison. Results: The contrast and sharpness of the FID images were improved after trajectory correction was applied. The mean of the estimated trajectory delay was 0.774 μs (max: 1.350 μs; min: 0.180 μs). The FCM-estimated centroids of different tissue types showed a distinguishable pattern for different tissues, and significant differences were found between the centroid locations of different tissue types. Pseudo-CT can provide additional skull detail and has low bias and absolute error of estimated CT

  20. Reactor dynamics experiment of N.S. Mutsu using pseudo random signal. 1

    International Nuclear Information System (INIS)

    Hayashi, Koji; Nabeshima, Kunihiko; Shinohara, Yoshikuni; Shimazaki, Junya; Inoue, Kimihiko; Ochiai, Masaaki.

    1993-10-01

    In order to investigate dynamics of the reactor plant of the nuclear ship Mutsu, reactor noise experiments using pseudo random binary sequences (PRBS) have been planned, and a preliminary experiment was performed on March 4, 1991 in the first experimental navigation with the aim of checking the experimental procedures and conditions. The experiments using both reactivity and load disturbances were performed at 70 % of reactor power and under a quiet sea condition. Each PRBS was applied by manual operation of the control rod or the main steam valve. Various signals of the plant responses and of the acceleration of ship motion were measured. From the results obtained, we confirmed that (1) the procedures and experimental conditions determined prior to the experiment were suitable for performing the PRBS experiments, (2) when the PRBS disturbances were applied, the plant state remained quite stable, and (3) the quality of the measured data is adequate for the purpose of dynamics analysis. This paper summarizes the planning and preparation of the experiment, the instruction for the experiment and logs, the data recording conditions, recorded signal wave forms and the results of power spectral analysis. (author)

  1. Note on Marsaglia\\'s Xorshift Random Number Generators

    Directory of Open Access Journals (Sweden)

    Richard P. Brent

    2004-08-01

    Full Text Available Marsaglia (2003 has described a class of Xorshift random number generators (RNGs with periods 2n - 1 for n = 32, 64, etc. We show that the sequences generated by these RNGs are identical to the sequences generated by certain linear feedback shift register (LFSR generators using "exclusive or" (xor operations on n-bit words, with a recurrence defined by a primitive polynomial of degree n.

  2. Random Generators and Normal Numbers

    OpenAIRE

    Bailey, David H.; Crandall, Richard E.

    2002-01-01

    Pursuant to the authors' previous chaotic-dynamical model for random digits of fundamental constants, we investigate a complementary, statistical picture in which pseudorandom number generators (PRNGs) are central. Some rigorous results are achieved: We establish b-normality for constants of the form $\\sum_i 1/(b^{m_i} c^{n_i})$ for certain sequences $(m_i), (n_i)$ of integers. This work unifies and extends previously known classes of explicit normals. We prove that for coprime $b,c>1$ the...

  3. Employing online quantum random number generators for generating truly random quantum states in Mathematica

    Science.gov (United States)

    Miszczak, Jarosław Adam

    2013-01-01

    numbers generated by quantum real number generator. Reasons for new version: Added support for the high-speed on-line quantum random number generator and improved methods for retrieving lists of random numbers. Summary of revisions: The presented version provides two signicant improvements. The first one is the ability to use the on-line Quantum Random Number Generation service developed by PicoQuant GmbH and the Nano-Optics groups at the Department of Physics of Humboldt University. The on-line service supported in the version 2.0 of the TRQS package provides faster access to true randomness sources constructed using the laws of quantum physics. The service is freely available at https://qrng.physik.hu-berlin.de/. The use of this service allows using the presented package with the need of a physical quantum random number generator. The second improvement introduced in this version is the ability to retrieve arrays of random data directly for the used source. This increases the speed of the random number generation, especially in the case of an on-line service, where it reduces the time necessary to establish the connection. Thanks to the speed improvement of the presented version, the package can now be used in simulations requiring larger amounts of random data. Moreover, the functions for generating random numbers provided by the current version of the package more closely follow the pattern of functions for generating pseudo- random numbers provided in Mathematica. Additional comments: Speed comparison: The implementation of the support for the QRNG on-line service provides a noticeable improvement in the speed of random number generation. For the samples of real numbers of size 101; 102,…,107 the times required to generate these samples using Quantis USB device and QRNG service are compared in Fig. 1. The presented results show that the use of the on-line service provides faster access to random numbers. One should note, however, that the speed gain can increase or

  4. Non-Stoichiometric SixN Metal-Oxide-Semiconductor Field-Effect Transistor for Compact Random Number Generator with 0.3 Mbit/s Generation Rate

    Science.gov (United States)

    Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2008-08-01

    The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.

  5. Pseudo-random Aloha for inter-frame soft combining in RFID systems

    DEFF Research Database (Denmark)

    Castiglione, Paolo; Ricciato, Fabio; Popovski, Petar

    2013-01-01

    In this work we consider a recently proposed variant of the classical Framed Slotted-ALOHA where slot selection is based on a pseudo-random function of the message to be transmitted and of the frame index. We couple this feature with convolutional encoding, that allows to perform Inter-frame Soft...... cancellation (instead of combining). Numerical simulation results show that the ISoC scheme brings a noticeable throughput gain over traditional schemes in a dense RFID scenario with multiple concurrent Tag transmissions....

  6. THE PSEUDO-SMARANDACHE FUNCTION

    OpenAIRE

    David Gorski

    2007-01-01

    The Pseudo-Smarandache Function is part of number theory. The function comes from the Smarandache Function. The Pseudo-Smarandache Function is represented by Z(n) where n represents any natural number.

  7. Chaotic generation of PN sequences : a VLSI implementation

    NARCIS (Netherlands)

    Dornbusch, A.; Pineda de Gyvez, J.

    1999-01-01

    Generation of repeatable pseudo-random sequences with chaotic analog electronics is not feasible using standard circuit topologies. Component variation caused by imperfect fabrication causes the same divergence of output sequences as does varying initial conditions. By quantizing the output of a

  8. An investigation of the uniform random number generator

    Science.gov (United States)

    Temple, E. C.

    1982-01-01

    Most random number generators that are in use today are of the congruential form X(i+1) + AX(i) + C mod M where A, C, and M are nonnegative integers. If C=O, the generator is called the multiplicative type and those for which C/O are called mixed congruential generators. It is easy to see that congruential generators will repeat a sequence of numbers after a maximum of M values have been generated. The number of numbers that a procedure generates before restarting the sequence is called the length or the period of the generator. Generally, it is desirable to make the period as long as possible. A detailed discussion of congruential generators is given. Also, several promising procedures that differ from the multiplicative and mixed procedure are discussed.

  9. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Cornejo Diaz, N.; Vergara Gil, A.; Jurado Vargas, M.

    2010-01-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations.

  10. Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry.

    Science.gov (United States)

    Díaz, N Cornejo; Gil, A Vergara; Vargas, M Jurado

    2010-03-01

    The Monte Carlo method has become a valuable numerical laboratory framework in which to simulate complex physical systems. It is based on the generation of pseudo-random number sequences by numerical algorithms called random generators. In this work we assessed the suitability of different well-known random number generators for the simulation of gamma-ray spectrometry systems during efficiency calibrations. The assessment was carried out in two stages. The generators considered (Delphi's linear congruential, mersenne twister, XorShift, multiplier with carry, universal virtual array, and non-periodic logistic map based generator) were first evaluated with different statistical empirical tests, including moments, correlations, uniformity, independence of terms and the DIEHARD battery of tests. In a second step, an application-specific test was conducted by implementing the generators in our Monte Carlo program DETEFF and comparing the results obtained with them. The calculations were performed with two different CPUs, for a typical HpGe detector and a water sample in Marinelli geometry, with gamma-rays between 59 and 1800 keV. For the Non-periodic Logistic Map based generator, dependence of the most significant bits was evident. This explains the bias, in excess of 5%, of the efficiency values obtained with this generator. The results of the application-specific assessment and the statistical performance of the other algorithms studied indicate their suitability for the Monte Carlo simulation of gamma-ray spectrometry systems for efficiency calculations. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Problems with the random number generator RANF implemented on the CDC cyber 205

    Science.gov (United States)

    Kalle, Claus; Wansleben, Stephan

    1984-10-01

    We show that using RANF may lead to wrong results when lattice models are simulated by Monte Carlo methods. We present a shift-register sequence random number generator which generates two random numbers per cycle on a two pipe CDC Cyber 205.

  12. Scope of Various Random Number Generators in ant System Approach for TSP

    Science.gov (United States)

    Sen, S. K.; Shaykhian, Gholam Ali

    2007-01-01

    Experimented on heuristic, based on an ant system approach for traveling salesman problem, are several quasi- and pseudo-random number generators. This experiment is to explore if any particular generator is most desirable. Such an experiment on large samples has the potential to rank the performance of the generators for the foregoing heuristic. This is mainly to seek an answer to the controversial issue "which generator is the best in terms of quality of the result (accuracy) as well as cost of producing the result (time/computational complexity) in a probabilistic/statistical sense."

  13. On Sequence Lengths of Some Special External Exclusive OR Type LFSR Structures – Study and Analysis

    Directory of Open Access Journals (Sweden)

    A Ahmad

    2014-12-01

    Full Text Available The study of the length of pseudo-random binary sequences generated by Linear- Feedback Shift Registers (LFSRs plays an important role in the design approaches of built-in selftest, cryptosystems, and other applications. However, certain LFSR structures might not be appropriate in some situations. Given that determining the length of generated pseudo-random binary sequence is a complex task, therefore, before using an LFSR structure, it is essential to investigate the length and the properties of the sequence. This paper investigates some conditions and LFSR’s structures, which restrict the pseudo-random binary sequences’ generation to a certain fixed length. The outcomes of this paper are presented in the form of theorems, simulations, and analyses. We believe that these outcomes are of great importance to the designers of built-in self-test equipment, cryptosystems, and other applications such as radar, CDMA, error correction, and Monte Carlo simulation.

  14. EPCGen2 Pseudorandom Number Generators: Analysis of J3Gen

    Directory of Open Access Journals (Sweden)

    Alberto Peinado

    2014-04-01

    Full Text Available This paper analyzes the cryptographic security of J3Gen, a promising pseudo random number generator for low-cost passive Radio Frequency Identification (RFID tags. Although J3Gen has been shown to fulfill the randomness criteria set by the EPCglobal Gen2 standard and is intended for security applications, we describe here two cryptanalytic attacks that question its security claims: (i a probabilistic attack based on solving linear equation systems; and (ii a deterministic attack based on the decimation of the output sequence. Numerical results, supported by simulations, show that for the specific recommended values of the configurable parameters, a low number of intercepted output bits are enough to break J3Gen. We then make some recommendations that address these issues.

  15. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-01-01

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays (Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)) has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer (Nucl. Instr. and Meth. A616, 172 (2010)). Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  16. On the limiting characteristics of quantum random number generators at various clusterings of photocounts

    Science.gov (United States)

    Molotkov, S. N.

    2017-03-01

    Various methods for the clustering of photocounts constituting a sequence of random numbers are considered. It is shown that the clustering of photocounts resulting in the Fermi-Dirac distribution makes it possible to achieve the theoretical limit of the random number generation rate.

  17. True random number generation from mobile telephone photo based on chaotic cryptography

    International Nuclear Information System (INIS)

    Zhao Liang; Liao Xiaofeng; Xiao Di; Xiang Tao; Zhou Qing; Duan Shukai

    2009-01-01

    A cheap, convenient and universal TRNG based on mobile telephone photo for producing random bit sequence is proposed. To settle the problem of sequential pixels and comparability, three chaos-based approaches are applied to post-process the generated binary image. The random numbers produced by three users are tested using US NIST RNG statistical test software. The experimental results indicate that the Arnold cat map is the fastest way to generate a random bit sequence and can be accepted on general PC. The 'MASK' algorithm also performs well. Finally, comparing with the TRNG of Hu et al. [Hu Y, Liao X, Wong KW, Zhou Q. A true random number generator based on mouse movement and chaotic cryptography. Chaos, Solitons and Fractals 2007. doi: 10.1016/j.chaos.2007.10.022] which is presented by Hu et al., many merits of the proposed TRNG in this paper has been found.

  18. Self-correcting random number generator

    Science.gov (United States)

    Humble, Travis S.; Pooser, Raphael C.

    2016-09-06

    A system and method for generating random numbers. The system may include a random number generator (RNG), such as a quantum random number generator (QRNG) configured to self-correct or adapt in order to substantially achieve randomness from the output of the RNG. By adapting, the RNG may generate a random number that may be considered random regardless of whether the random number itself is tested as such. As an example, the RNG may include components to monitor one or more characteristics of the RNG during operation, and may use the monitored characteristics as a basis for adapting, or self-correcting, to provide a random number according to one or more performance criteria.

  19. A novel pseudo-complementary PNA G-C base pair

    DEFF Research Database (Denmark)

    Olsen, Anne G.; Dahl, Otto; Petersen, Asger Bjørn

    2011-01-01

    Pseudo-complementary oligonucleotide analogues and mimics provide novel opportunities for targeting duplex structures in RNA and DNA. Previously, a pseudo-complementary A-T base pair has been introduced. Towards sequence unrestricted targeting, a pseudo-complementary G-C base pair consisting...

  20. Random number generation

    International Nuclear Information System (INIS)

    Coveyou, R.R.

    1974-01-01

    The subject of random number generation is currently controversial. Differing opinions on this subject seem to stem from implicit or explicit differences in philosophy; in particular, from differing ideas concerning the role of probability in the real world of physical processes, electronic computers, and Monte Carlo calculations. An attempt is made here to reconcile these views. The role of stochastic ideas in mathematical models is discussed. In illustration of these ideas, a mathematical model of the use of random number generators in Monte Carlo calculations is constructed. This model is used to set up criteria for the comparison and evaluation of random number generators. (U.S.)

  1. An Alignment-Free Algorithm in Comparing the Similarity of Protein Sequences Based on Pseudo-Markov Transition Probabilities among Amino Acids.

    Science.gov (United States)

    Li, Yushuang; Song, Tian; Yang, Jiasheng; Zhang, Yi; Yang, Jialiang

    2016-01-01

    In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector.

  2. Range walk error correction and modeling on Pseudo-random photon counting system

    Science.gov (United States)

    Shen, Shanshan; Chen, Qian; He, Weiji

    2017-08-01

    Signal to noise ratio and depth accuracy are modeled for the pseudo-random ranging system with two random processes. The theoretical results, developed herein, capture the effects of code length and signal energy fluctuation are shown to agree with Monte Carlo simulation measurements. First, the SNR is developed as a function of the code length. Using Geiger-mode avalanche photodiodes (GMAPDs), longer code length is proven to reduce the noise effect and improve SNR. Second, the Cramer-Rao lower bound on range accuracy is derived to justify that longer code length can bring better range accuracy. Combined with the SNR model and CRLB model, it is manifested that the range accuracy can be improved by increasing the code length to reduce the noise-induced error. Third, the Cramer-Rao lower bound on range accuracy is shown to converge to the previously published theories and introduce the Gauss range walk model to range accuracy. Experimental tests also converge to the presented boundary model in this paper. It has been proven that depth error caused by the fluctuation of the number of detected photon counts in the laser echo pulse leads to the depth drift of Time Point Spread Function (TPSF). Finally, numerical fitting function is used to determine the relationship between the depth error and the photon counting ratio. Depth error due to different echo energy is calibrated so that the corrected depth accuracy is improved to 1cm.

  3. On the design of henon and logistic map-based random number generator

    Science.gov (United States)

    Magfirawaty; Suryadi, M. T.; Ramli, Kalamullah

    2017-10-01

    The key sequence is one of the main elements in the cryptosystem. True Random Number Generators (TRNG) method is one of the approaches to generating the key sequence. The randomness source of the TRNG divided into three main groups, i.e. electrical noise based, jitter based and chaos based. The chaos based utilizes a non-linear dynamic system (continuous time or discrete time) as an entropy source. In this study, a new design of TRNG based on discrete time chaotic system is proposed, which is then simulated in LabVIEW. The principle of the design consists of combining 2D and 1D chaotic systems. A mathematical model is implemented for numerical simulations. We used comparator process as a harvester method to obtain the series of random bits. Without any post processing, the proposed design generated random bit sequence with high entropy value and passed all NIST 800.22 statistical tests.

  4. Post-processing Free Quantum Random Number Generator Based on Avalanche Photodiode Array

    International Nuclear Information System (INIS)

    Li Yang; Liao Sheng-Kai; Liang Fu-Tian; Shen Qi; Liang Hao; Peng Cheng-Zhi

    2016-01-01

    Quantum random number generators adopting single photon detection have been restricted due to the non-negligible dead time of avalanche photodiodes (APDs). We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32 × 32 APD array is up to tens of Gbits/s. (paper)

  5. Analisis Teoritis dan Empiris Uji Craps dari Diehard Battery of Randomness Test untuk Pengujian Pembangkit Bilangan Acaksemu

    Directory of Open Access Journals (Sweden)

    Sari Agustini Hafman

    2013-05-01

    Full Text Available According to Kerchoffs (1883, the security system should only rely on cryptographic keys which is used in that system. Generally, the key sequences are generated by a Pseudo Random Number Generator (PRNG or Random Number Generator (RNG. There are three types of randomness sequences that generated by the RNG and PRNG i.e. pseudorandom sequence, cryptographically secure pseudorandom sequences, and real random sequences. Several statistical tests, including diehard battery of tests of randomness, is used to check the type of randomness sequences that generated by PRNG or RNG. Due to its purpose, the principle on taking the testing parameters and the test statistic are associated with the validity of the conclusion produced by a statistical test, then the theoretical analysis is performed by applying a variety of statistical theory to evaluate craps test, one of the test included in the diehard battery of randomness tests. Craps test, inspired by craps game, aims to examine whether a PRNG produces an independent and identically distributed (iid pseudorandom sequences. To demonstrate the process to produce a test statistics equation and to show how craps games applied on that test, will be carried out theoretical analysis by applying a variety of statistical theory. Furthermore, empirical observations will be done by applying craps test on a PRNG in order to check the test effectiveness in detecting the distribution and independency of sequences which produced by PRNG

  6. Quantum random number generator

    Science.gov (United States)

    Pooser, Raphael C.

    2016-05-10

    A quantum random number generator (QRNG) and a photon generator for a QRNG are provided. The photon generator may be operated in a spontaneous mode below a lasing threshold to emit photons. Photons emitted from the photon generator may have at least one random characteristic, which may be monitored by the QRNG to generate a random number. In one embodiment, the photon generator may include a photon emitter and an amplifier coupled to the photon emitter. The amplifier may enable the photon generator to be used in the QRNG without introducing significant bias in the random number and may enable multiplexing of multiple random numbers. The amplifier may also desensitize the photon generator to fluctuations in power supplied thereto while operating in the spontaneous mode. In one embodiment, the photon emitter and amplifier may be a tapered diode amplifier.

  7. Surface detection performance evaluation of pseudo-random noise continuous wave laser radar

    Science.gov (United States)

    Mitev, Valentin; Matthey, Renaud; Pereira do Carmo, Joao

    2017-11-01

    A number of space missions (including in the ESA Exploration Programme) foreseen a use of laser radar sensor (or lidar) for determination of range between spacecrafts or between spacecraft and ground surface (altimetry). Such sensors need to be compact, robust and power efficient, at the same time with high detection performance. These requirements can be achieved with a Pseudo-Random Noise continuous wave lidar (PRN cw lidar). Previous studies have pointed to the advantages of this lidar with respect to space missions, but they also identified its limitations in high optical background. The progress of the lasers and the detectors in the near IR spectral range requires a re-evaluation of the PRN cw lidar potential. Here we address the performances of this lidar for surface detection (altimetry) in planetary missions. The evaluation is based on the following system configuration: (i) A cw fiber amplifier as lidar transmitter. The seeding laser exhibits a single-frequency spectral line, with subsequent amplitude modulation. The fiber amplifier allows high output power level, keeping the spectral characteristics and the modulation of the seeding light input. (ii) An avalanche photodiode in photon counting detection; (iii) Measurement scenarios representative for Earth, Mercury and Mars.

  8. Pseudo-color processing in nuclear medical image

    International Nuclear Information System (INIS)

    Wang Zhiqian; Jin Yongjie

    1992-01-01

    The application of pseudo-color technology in nuclear medical image processing is discussed. It includes selection of the number of pseudo-colors, method of realizing pseudo-color transformation, function of pseudo-color transformation and operation on the function

  9. Using Efficient TRNGs for PSEUDO Profile in National eID Card

    Directory of Open Access Journals (Sweden)

    Blerim Rexha

    2018-03-01

    Full Text Available Applications that requires true random number generator (TRNG, which uses raw analog data generated from any noise source in nature, must convert the source normal distribution to uniform distribution. Many up to date implementations convert the raw analog data into digital data by employing a comparator or a Schmitt trigger. This method wastes a large amount of random input data, lowering the throughput of the TRNG. In new national electronic identity card (eID beyond the true identity of his bearer and to address the increasing concern of user privacy while doing business in Internet an additional pseudo profile is set. This pseudo profile uses 20-byte random value generated by database server, using a script during personalization process. In this paper, we present a novel algorithm that enables efficient distribution conversion in low power devices. The low memory requirements and efficient processing make it suitable for implementation low power cryptographic devices but also in complex personalization systems. Furthermore, we compare the random data generated by our efficient TRNG vs. those generated by database server.

  10. Implementation of a RANLUX Based Pseudo-Random Number Generator in FPGA Using VHDL and Impulse C

    OpenAIRE

    Agnieszka Dąbrowska-Boruch; Grzegorz Gancarczyk; Kazimierz Wiatr

    2014-01-01

    Monte Carlo simulations are widely used e.g. in the field of physics and molecular modelling. The main role played in these is by the high performance random number generators, such as RANLUX or MERSSENE TWISTER. In this paper the authors introduce the world's first implementation of the RANLUX algorithm on an FPGA platform for high performance computing purposes. A significant speed-up of one generator instance over 60 times, compared with a graphic card based solution, can be noticed. Compa...

  11. Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards

    International Nuclear Information System (INIS)

    Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.

    2008-01-01

    We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.

  12. Self-Powered Random Number Generator Based on Coupled Triboelectric and Electrostatic Induction Effects at the Liquid-Dielectric Interface.

    Science.gov (United States)

    Yu, Aifang; Chen, Xiangyu; Cui, Haotian; Chen, Libo; Luo, Jianjun; Tang, Wei; Peng, Mingzeng; Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2016-12-27

    Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.

  13. RANDOMNESS of Numbers DEFINITION(QUERY:WHAT? V HOW?) ONLY Via MAXWELL-BOLTZMANN CLASSICAL-Statistics(MBCS) Hot-Plasma VS. Digits-Clumping Log-Law NON-Randomness Inversion ONLY BOSE-EINSTEIN QUANTUM-Statistics(BEQS) .

    Science.gov (United States)

    Siegel, Z.; Siegel, Edward Carl-Ludwig

    2011-03-01

    RANDOMNESS of Numbers cognitive-semantics DEFINITION VIA Cognition QUERY: WHAT???, NOT HOW?) VS. computer-``science" mindLESS number-crunching (Harrel-Sipser-...) algorithmics Goldreich "PSEUDO-randomness"[Not.AMS(02)] mea-culpa is ONLY via MAXWELL-BOLTZMANN CLASSICAL-STATISTICS(NOT FDQS!!!) "hot-plasma" REPULSION VERSUS Newcomb(1881)-Weyl(1914;1916)-Benford(1938) "NeWBe" logarithmic-law digit-CLUMPING/ CLUSTERING NON-Randomness simple Siegel[AMS Joint.Mtg.(02)-Abs. # 973-60-124] algebraic-inversion to THE QUANTUM and ONLY BEQS preferentially SEQUENTIALLY lower-DIGITS CLUMPING/CLUSTERING with d = 0 BEC, is ONLY VIA Siegel-Baez FUZZYICS=CATEGORYICS (SON OF TRIZ)/"Category-Semantics"(C-S), latter intersection/union of Lawvere(1964)-Siegel(1964)] category-theory (matrix: MORPHISMS V FUNCTORS) "+" cognitive-semantics'' (matrix: ANTONYMS V SYNONYMS) yields Siegel-Baez FUZZYICS=CATEGORYICS/C-S tabular list-format matrix truth-table analytics: MBCS RANDOMNESS TRUTH/EMET!!!

  14. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    Science.gov (United States)

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. CNV-RF Is a Random Forest-Based Copy Number Variation Detection Method Using Next-Generation Sequencing.

    Science.gov (United States)

    Onsongo, Getiria; Baughn, Linda B; Bower, Matthew; Henzler, Christine; Schomaker, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2016-11-01

    Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  16. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data

    Directory of Open Access Journals (Sweden)

    Guisan Antoine

    2009-04-01

    Full Text Available Abstract Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a real absences b pseudo-absences selected randomly from the background and c two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97, and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have

  17. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  18. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  19. Spreading Sequences Generated Using Asymmetrical Integer-Number Maps

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    2007-09-01

    Full Text Available Chaotic sequences produced by piecewise linear maps can be transformed to binary sequences. The binary sequences are optimal for the asynchronous DS/CDMA systems in case of certain shapes of the maps. This paper is devoted to the one-to-one integer-number maps derived from the suitable asymmetrical piecewise linear maps. Such maps give periodic integer-number sequences, which can be transformed to the binary sequences. The binary sequences produced via proposed modified integer-number maps are perfectly balanced and embody good autocorrelation and crosscorrelation properties. The number of different binary sequences is sizable. The sequences are suitable as spreading sequences in DS/CDMA systems.

  20. Investigating the Randomness of Numbers

    Science.gov (United States)

    Pendleton, Kenn L.

    2009-01-01

    The use of random numbers is pervasive in today's world. Random numbers have practical applications in such far-flung arenas as computer simulations, cryptography, gambling, the legal system, statistical sampling, and even the war on terrorism. Evaluating the randomness of extremely large samples is a complex, intricate process. However, the…

  1. Quantum random-number generator based on a photon-number-resolving detector

    International Nuclear Information System (INIS)

    Ren Min; Wu, E; Liang Yan; Jian Yi; Wu Guang; Zeng Heping

    2011-01-01

    We demonstrated a high-efficiency quantum random number generator which takes inherent advantage of the photon number distribution randomness of a coherent light source. This scheme was realized by comparing the photon flux of consecutive pulses with a photon number resolving detector. The random bit generation rate could reach 2.4 MHz with a system clock of 6.0 MHz, corresponding to a random bit generation efficiency as high as 40%. The random number files passed all the stringent statistical tests.

  2. Digital random-number generator

    Science.gov (United States)

    Brocker, D. H.

    1973-01-01

    For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.

  3. Sequences, groups, and number theory

    CERN Document Server

    Rigo, Michel

    2018-01-01

    This collaborative book presents recent trends on the study of sequences, including combinatorics on words and symbolic dynamics, and new interdisciplinary links to group theory and number theory. Other chapters branch out from those areas into subfields of theoretical computer science, such as complexity theory and theory of automata. The book is built around four general themes: number theory and sequences, word combinatorics, normal numbers, and group theory. Those topics are rounded out by investigations into automatic and regular sequences, tilings and theory of computation, discrete dynamical systems, ergodic theory, numeration systems, automaton semigroups, and amenable groups.  This volume is intended for use by graduate students or research mathematicians, as well as computer scientists who are working in automata theory and formal language theory. With its organization around unified themes, it would also be appropriate as a supplemental text for graduate level courses.

  4. Analysis of android random number generator

    OpenAIRE

    Sarıtaş, Serkan

    2013-01-01

    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 61-65. Randomness is a crucial resource for cryptography, and random number generators are critical building blocks of almost all cryptographic systems. Therefore, random number generation is one of the key parts of secure communication. Random number generatio...

  5. A light weight secure image encryption scheme based on chaos & DNA computing

    Directory of Open Access Journals (Sweden)

    Bhaskar Mondal

    2017-10-01

    Full Text Available This paper proposed a new light weight secure cryptographic scheme for secure image communication. In this scheme the plain image is permuted first using a sequence of pseudo random number (PRN and encrypted by DeoxyriboNucleic Acid (DNA computation. Two PRN sequences are generated by a Pseudo Random Number Generator (PRNG based on cross coupled chaotic logistic map using two sets of keys. The first PRN sequence is used for permuting the plain image whereas the second PRN sequence is used for generating random DNA sequence. The number of rounds of permutation and encryption may be variable to increase security. The scheme is proposed for gray label images but the scheme may be extended for color images and text data. Simulation results exhibit that the proposed scheme can defy any kind of attack.

  6. Image encryption using random sequence generated from generalized information domain

    International Nuclear Information System (INIS)

    Zhang Xia-Yan; Wu Jie-Hua; Zhang Guo-Ji; Li Xuan; Ren Ya-Zhou

    2016-01-01

    A novel image encryption method based on the random sequence generated from the generalized information domain and permutation–diffusion architecture is proposed. The random sequence is generated by reconstruction from the generalized information file and discrete trajectory extraction from the data stream. The trajectory address sequence is used to generate a P-box to shuffle the plain image while random sequences are treated as keystreams. A new factor called drift factor is employed to accelerate and enhance the performance of the random sequence generator. An initial value is introduced to make the encryption method an approximately one-time pad. Experimental results show that the random sequences pass the NIST statistical test with a high ratio and extensive analysis demonstrates that the new encryption scheme has superior security. (paper)

  7. A revision of the subtract-with-borrow random number generators

    Science.gov (United States)

    Sibidanov, Alexei

    2017-12-01

    The most popular and widely used subtract-with-borrow generator, also known as RANLUX, is reimplemented as a linear congruential generator using large integer arithmetic with the modulus size of 576 bits. Modern computers, as well as the specific structure of the modulus inferred from RANLUX, allow for the development of a fast modular multiplication - the core of the procedure. This was previously believed to be slow and have too high cost in terms of computing resources. Our tests show a significant gain in generation speed which is comparable with other fast, high quality random number generators. An additional feature is the fast skipping of generator states leading to a seeding scheme which guarantees the uniqueness of random number sequences. Licensing provisions: GPLv3 Programming language: C++, C, Assembler

  8. Nonlinear deterministic structures and the randomness of protein sequences

    CERN Document Server

    Huang Yan Zhao

    2003-01-01

    To clarify the randomness of protein sequences, we make a detailed analysis of a set of typical protein sequences representing each structural classes by using nonlinear prediction method. No deterministic structures are found in these protein sequences and this implies that they behave as random sequences. We also give an explanation to the controversial results obtained in previous investigations.

  9. Thermal-hydraulic study of fixed bed nuclear reactor (FBNR), in FCC, BCC and pseudo-random configurations of the core through CFD method

    International Nuclear Information System (INIS)

    Luna, M.; Chavez, I.; Cajas, D.; Santos, R.

    2015-01-01

    The study of thermal-hydraulic performance of a fixed bed nuclear reactor (FBNR) core and the effect of the porosity was studied by the CFD method with 'SolidWorks' software. The representative sections of three different packed beds arrangements were analyzed: face-centered cubic (FCC), body-centered cubic (BCC), and a pseudo-random, with values of porosity of 0.28, 0.33 and 0.53 respectively. The minimum coolant flow required to avoid the phase change for each one of the configurations was determined. The results show that the heat transfer rate increases when the porosity value decreases, and consequently the minimum coolant flow in each configuration. The results of minimum coolant flow were: 728.51 kg/s for the FCC structure, 372.72 kg/s for the BCC, and 304.96 kg/s for the pseudo-random. Meanwhile, the heat transfer coefficients in each packed bed were 6480 W/m 2 *K, 3718 W/m 2 *K and 3042 W/m 2 *K respectively. Finally the pressure drop was calculated, and the results were 0.588 MPa for FCC configuration, 0.033 MPa for BCC and 0.017 MPa for the pseudo-random one. This means that with a higher porosity, the fluid can circulate easier because there are fewer obstacles to cross, so there are fewer energy losses. (authors)

  10. Quantum random number generator based on quantum nature of vacuum fluctuations

    Science.gov (United States)

    Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.

    2017-11-01

    Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.

  11. Inflammatory pseudo tumor of the spleen. Radiologic findings

    International Nuclear Information System (INIS)

    Folgueral, M.; Naranjo, G.; Grasa, J.

    1998-01-01

    The inflammatory splenic pseudo tumor is an uncommon benign lesion of unknown etiology that usually is detected incidentally in patients being examined for other disorders. We present the ultrasound, computed tomography (CT) and magnetic resonance (MR) findings in two patients (a 56-year-old woman and 67-year-old man) with inflammatory pseudo tumor of the spleen. Ultrasound images of the inflammatory splenic pseudo tumor show a hypoechoic mass with or without calcifications. In CT, the mass presents a low attenuation that is slightly enhanced by intravenous injection of an iodinated contrast medium. MR images show an isointense spleen in T1-weighted spin-echo sequences that is hypointense in T2-weighted sequences. The differential diagnosis should consider other more common splenic masses. but the definitive diagnosis can not be based on imaging methods alone. In the both cases, the final diagnosis was reached after splenectomy and pathological study. (Author) 8 refs

  12. Pseudo-random generator to allow to an electronic pulse simulator the ability to emulate radioisotopes spectra

    International Nuclear Information System (INIS)

    Lucianna F A; Carrillo M A; Mangussi M J

    2012-01-01

    The present work describes the development of a pseudo-random system to provide to a simulator pulse of radiation detectors the ability to emit pulses patterns similar to those recorded when measuring actual radioisotope. The idea is that the system can emulate characteristic spectral distributions of known radioisotopes, as well as creating individual spectra for specific purposes. This design is based on an improvement in terms of software from earlier development that only supplied predefined amplitude pulses at constant intervals (author)

  13. A robust random number generator based on differential comparison of chaotic laser signals.

    Science.gov (United States)

    Zhang, Jianzhong; Wang, Yuncai; Liu, Ming; Xue, Lugang; Li, Pu; Wang, Anbang; Zhang, Mingjiang

    2012-03-26

    We experimentally realize a robust real-time random number generator by differentially comparing the signal from a chaotic semiconductor laser and its delayed signal through a 1-bit analog-to-digital converter. The probability density distribution of the output chaotic signal based on the differential comparison method possesses an extremely small coefficient of Pearson's median skewness (1.5 × 10⁻⁶), which can yield a balanced random sequence much easily than the previously reported method that compares the signal from the chaotic laser with a certain threshold value. Moveover, we experimently demonstrate that our method can stably generate good random numbers at rates of 1.44 Gbit/s with excellent immunity from external perturbations while the previously reported method fails.

  14. Prediction of Protein Hotspots from Whole Protein Sequences by a Random Projection Ensemble System

    Directory of Open Access Journals (Sweden)

    Jinjian Jiang

    2017-07-01

    Full Text Available Hotspot residues are important in the determination of protein-protein interactions, and they always perform specific functions in biological processes. The determination of hotspot residues is by the commonly-used method of alanine scanning mutagenesis experiments, which is always costly and time consuming. To address this issue, computational methods have been developed. Most of them are structure based, i.e., using the information of solved protein structures. However, the number of solved protein structures is extremely less than that of sequences. Moreover, almost all of the predictors identified hotspots from the interfaces of protein complexes, seldom from the whole protein sequences. Therefore, determining hotspots from whole protein sequences by sequence information alone is urgent. To address the issue of hotspot predictions from the whole sequences of proteins, we proposed an ensemble system with random projections using statistical physicochemical properties of amino acids. First, an encoding scheme involving sequence profiles of residues and physicochemical properties from the AAindex1 dataset is developed. Then, the random projection technique was adopted to project the encoding instances into a reduced space. Then, several better random projections were obtained by training an IBk classifier based on the training dataset, which were thus applied to the test dataset. The ensemble of random projection classifiers is therefore obtained. Experimental results showed that although the performance of our method is not good enough for real applications of hotspots, it is very promising in the determination of hotspot residues from whole sequences.

  15. Source-Independent Quantum Random Number Generation

    Science.gov (United States)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  16. Microcomputer-Assisted Discoveries: Random Numbers.

    Science.gov (United States)

    Kimberling, Clark

    1983-01-01

    A programing contest was designed to promote interest in mathematical randomness. Student-developed programs making clever uses of random numbers are presented. Modifications users might make are suggested. (MNS)

  17. Introduction to fractional and pseudo-differential equations with singular symbols

    CERN Document Server

    Umarov, Sabir

    2015-01-01

    The book systematically presents the theories of pseudo-differential operators with symbols singular in dual variables, fractional order derivatives, distributed and variable order fractional derivatives, random walk approximants, and applications of these theories to various initial and multi-point boundary value problems for pseudo-differential equations. Fractional Fokker-Planck-Kolmogorov equations associated with a large class of stochastic processes are presented. A complex version of the theory of pseudo-differential operators with meromorphic symbols based on the recently introduced complex Fourier transform is developed and applied for initial and boundary value problems for systems of complex differential and pseudo-differential equations.

  18. Source-Independent Quantum Random Number Generation

    Directory of Open Access Journals (Sweden)

    Zhu Cao

    2016-02-01

    Full Text Available Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5×10^{3}  bit/s.

  19. On a direct algorithm for the generation of log-normal pseudo-random numbers

    CERN Document Server

    Chamayou, J M F

    1976-01-01

    The random variable ( Pi /sub i=1//sup n/X/sub i//X/sub i+n/)/sup 1/ square root 2n/ is used to generate standard log normal variables Lambda (0, 1), where the X/sub i/ are independent uniform variables on (0, 1). (8 refs).

  20. Pseudo-deterministic Algorithms

    OpenAIRE

    Goldwasser , Shafi

    2012-01-01

    International audience; In this talk we describe a new type of probabilistic algorithm which we call Bellagio Algorithms: a randomized algorithm which is guaranteed to run in expected polynomial time, and to produce a correct and unique solution with high probability. These algorithms are pseudo-deterministic: they can not be distinguished from deterministic algorithms in polynomial time by a probabilistic polynomial time observer with black box access to the algorithm. We show a necessary an...

  1. Secure self-calibrating quantum random-bit generator

    International Nuclear Information System (INIS)

    Fiorentino, M.; Santori, C.; Spillane, S. M.; Beausoleil, R. G.; Munro, W. J.

    2007-01-01

    Random-bit generators (RBGs) are key components of a variety of information processing applications ranging from simulations to cryptography. In particular, cryptographic systems require 'strong' RBGs that produce high-entropy bit sequences, but traditional software pseudo-RBGs have very low entropy content and therefore are relatively weak for cryptography. Hardware RBGs yield entropy from chaotic or quantum physical systems and therefore are expected to exhibit high entropy, but in current implementations their exact entropy content is unknown. Here we report a quantum random-bit generator (QRBG) that harvests entropy by measuring single-photon and entangled two-photon polarization states. We introduce and implement a quantum tomographic method to measure a lower bound on the 'min-entropy' of the system, and we employ this value to distill a truly random-bit sequence. This approach is secure: even if an attacker takes control of the source of optical states, a secure random sequence can be distilled

  2. Random Sequence for Optimal Low-Power Laser Generated Ultrasound

    Science.gov (United States)

    Vangi, D.; Virga, A.; Gulino, M. S.

    2017-08-01

    Low-power laser generated ultrasounds are lately gaining importance in the research world, thanks to the possibility of investigating a mechanical component structural integrity through a non-contact and Non-Destructive Testing (NDT) procedure. The ultrasounds are, however, very low in amplitude, making it necessary to use pre-processing and post-processing operations on the signals to detect them. The cross-correlation technique is used in this work, meaning that a random signal must be used as laser input. For this purpose, a highly random and simple-to-create code called T sequence, capable of enhancing the ultrasound detectability, is introduced (not previously available at the state of the art). Several important parameters which characterize the T sequence can influence the process: the number of pulses Npulses , the pulse duration δ and the distance between pulses dpulses . A Finite Element FE model of a 3 mm steel disk has been initially developed to analytically study the longitudinal ultrasound generation mechanism and the obtainable outputs. Later, experimental tests have shown that the T sequence is highly flexible for ultrasound detection purposes, making it optimal to use high Npulses and δ but low dpulses . In the end, apart from describing all phenomena that arise in the low-power laser generation process, the results of this study are also important for setting up an effective NDT procedure using this technology.

  3. Bunches of random cross-correlated sequences

    International Nuclear Information System (INIS)

    Maystrenko, A A; Melnik, S S; Pritula, G M; Usatenko, O V

    2013-01-01

    The statistical properties of random cross-correlated sequences constructed by the convolution method (likewise referred to as the Rice or the inverse Fourier transformation) are examined. We clarify the meaning of the filtering function—the kernel of the convolution operator—and show that it is the value of the cross-correlation function which describes correlations between the initial white noise and constructed correlated sequences. The matrix generalization of this method for constructing a bunch of N cross-correlated sequences is presented. Algorithms for their generation are reduced to solving the problem of decomposition of the Fourier transform of the correlation matrix into a product of two mutually conjugate matrices. Different decompositions are considered. The limits of weak and strong correlations for the one-point probability and pair correlation functions of sequences generated by the method under consideration are studied. Special cases of heavy-tailed distributions of the generated sequences are analyzed. We show that, if the filtering function is rather smooth, the distribution function of generated variables has the Gaussian or Lévy form depending on the analytical properties of the distribution (or characteristic) functions of the initial white noise. Anisotropic properties of statistically homogeneous random sequences related to the asymmetry of a filtering function are revealed and studied. These asymmetry properties are expressed in terms of the third- or fourth-order correlation functions. Several examples of the construction of correlated chains with a predefined correlation matrix are given. (paper)

  4. Unbiased All-Optical Random-Number Generator

    Science.gov (United States)

    Steinle, Tobias; Greiner, Johannes N.; Wrachtrup, Jörg; Giessen, Harald; Gerhardt, Ilja

    2017-10-01

    The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random-number generators. These often exhibit a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be postprocessed to "iron out" such spurious effects. Here, we present a purely optical randomness generator, based on the bistable output of an optical parametric oscillator. Detector noise plays no role and postprocessing is reduced to a minimum. Upon entering the bistable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.

  5. A novel random-pulser concept for empirical reliability studies of complex systems

    International Nuclear Information System (INIS)

    Priesmeyer, H.G.

    1985-01-01

    The concept of a computer-controlled pseudo-random pulser is described, which is able to produce pulse sequences obeying statistical distributions, used in probability assessments of safety technology. It shall be used in empirical investigations of the reliability of complex systems. (orig.) [de

  6. Reduced randomness in quantum cryptography with sequences of qubits encoded in the same basis

    International Nuclear Information System (INIS)

    Lamoureux, L.-P.; Cerf, N. J.; Bechmann-Pasquinucci, H.; Gisin, N.; Macchiavello, C.

    2006-01-01

    We consider the cloning of sequences of qubits prepared in the states used in the BB84 or six-state quantum cryptography protocol, and show that the single-qubit fidelity is unaffected even if entire sequences of qubits are prepared in the same basis. This result is only valid provided that the sequences are much shorter than the total key. It is of great importance for practical quantum cryptosystems because it reduces the need for high-speed random number generation without impairing on the security against finite-size cloning attacks

  7. Generation of Random Numbers and Parallel Random Number Streams for Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    L. Yu. Barash

    2012-01-01

    Full Text Available Modern methods and libraries for high quality pseudorandom number generation and for generation of parallel random number streams for Monte Carlo simulations are considered. The probability equidistribution property and the parameters when the property holds at dimensions up to logarithm of mesh size are considered for Multiple Recursive Generators.

  8. Plasmon response in K, Na and Li clusters: systematics using the separable random-phase approximation with pseudo-Hamiltonians

    International Nuclear Information System (INIS)

    Kleinig, W.; Nesterenko, V.O.; Reinhard, P.-G.; Serra, Ll.

    1998-01-01

    The systematics of the plasmon response in spherical K, Na and Li clusters in a wide size region (8≤N≤440) is studied. We have considered two simplifying approximations whose validity has been established previously. First, a separable approach to the random-phase approximation is used. This involves an expansion of the residual interaction into a sum of separable terms until convergence is reached. Second, the electron-ion interaction is modelled by using the pseudo-Hamiltonian jellium model (MHJM) which includes nonlocal effects by means of realistic atomic pseudo-Hamiltonians. In cases where nonlocal effects are negligible the Structure Averaged Jellium Model (SAJM) has been used. Good agreement with available experimental data is achieved for K, Na (using the SAJM) and small Li clusters (invoking the PHJM). The trends for peak position and width are generally well reproduced, even up to details of the Landau fragmentation in several clusters. Less good agreement, however, is found for large Li clusters. This remains an open question

  9. An Ultra-light PRNG Passing Strict Randomness Tests and Suitable for Low Cost Tags

    Directory of Open Access Journals (Sweden)

    OZCANHAN, M. H.

    2016-08-01

    Full Text Available A pseudo-random number generator for low-cost RFID tags is presented. The scheme is simple, sequential and secure, yet has a high performance. Despite its lowest hardware complexity, our proposal represents a better alternative than previous proposals for low-cost tags. The scheme is based on the well-founded pseudo random number generator, Mersenne Twister. The proposed generator takes low-entropy seeds extracted from a physical characteristic of the tag and produces outputs that pass popular randomness tests. Contrarily, previous proposal tests are based on random number inputs from a popular online source, which are simply unavailable to tags. The high performance and satisfactory randomness of present work are supported by extensive test results and compared with similar previous works. Comparison using proven estimation formulae indicates that our proposal has the best hardware complexity, power consumption, and the least cost.

  10. Sharp lower bounds on the extractable randomness from non-uniform sources

    NARCIS (Netherlands)

    Skoric, B.; Obi, C.; Verbitskiy, E.A.; Schoenmakers, B.

    2011-01-01

    Extraction of uniform randomness from (noisy) non-uniform sources is an important primitive in many security applications, e.g. (pseudo-)random number generators, privacy-preserving biometrics, and key storage based on Physical Unclonable Functions. Generic extraction methods exist, using universal

  11. Performance Evaluation of NIPT in Detection of Chromosomal Copy Number Variants Using Low-Coverage Whole-Genome Sequencing of Plasma DNA

    DEFF Research Database (Denmark)

    Liu, Hongtai; Gao, Ya; Hu, Zhiyang

    2016-01-01

    , including 33 CNVs samples and 886 normal samples from September 1, 2011 to May 31, 2013, were enrolled in this study. The samples were randomly rearranged and blindly sequenced by low-coverage (about 7M reads) whole-genome sequencing of plasma DNA. Fetal CNVs were detected by Fetal Copy-number Analysis...

  12. GuiTope: an application for mapping random-sequence peptides to protein sequences.

    Science.gov (United States)

    Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert

    2012-01-03

    Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  13. GuiTope: an application for mapping random-sequence peptides to protein sequences

    Directory of Open Access Journals (Sweden)

    Halperin Rebecca F

    2012-01-01

    Full Text Available Abstract Background Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. Results GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. Conclusions GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.

  14. Binary Pseudo-Random Gratings and Arrays for Calibration of Modulation Transfer Functions of Surface Profilometers

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Anderson, Erik D.; Cambie, Rossana; McKinney, Wayne R.; Takacs, Peter Z.; Stover, John C.; Voronov, Dmitriy L.; Yashchuk, Valeriy V.

    2009-09-11

    A technique for precise measurement of the modulation transfer function (MTF), suitable for characterization of a broad class of surface profilometers, is investigated in detail. The technique suggested in [Proc. SPIE 7077-7, (2007), Opt. Eng. 47(7), 073602-1-5 (2008)]is based on use of binary pseudo-random (BPR) gratings and arrays as standard MTF test surfaces. Unlike most conventional test surfaces, BPR gratings and arrays possess white-noise-like inherent power spectral densities (PSD), allowing the direct determination of the one- and two-dimensional MTF, respectively, with a sensitivity uniform over the entire spatial frequency range of a profiler. In the cited work, a one dimensional realization of the suggested method based on use of BPR gratings has been demonstrated. Here, a high-confidence of the MTF calibration technique is demonstrated via cross comparison measurements of a number of two dimensional BPR arrays using two different interferometric microscopes and a scatterometer. We also present the results of application of the experimentally determined MTF correction to the measurement taken with the MicromapTM-570 interferometric microscope of the surface roughness of a super-polished test mirror. In this particular case, without accounting for the instrumental MTF, the surface rms roughness over half of the instrumental spatial frequency bandwidth would be underestimated by a factor of approximately 1.4.

  15. An alignment-free method to find similarity among protein sequences via the general form of Chou's pseudo amino acid composition.

    Science.gov (United States)

    Gupta, M K; Niyogi, R; Misra, M

    2013-01-01

    In this paper, we propose a method to create the 60-dimensional feature vector for protein sequences via the general form of pseudo amino acid composition. The construction of the feature vector is based on the contents of amino acids, total distance of each amino acid from the first amino acid in the protein sequence and the distribution of 20 amino acids. The obtained cosine distance metric (also called the similarity matrix) is used to construct the phylogenetic tree by the neighbour joining method. In order to show the applicability of our approach, we tested it on three proteins: 1) ND5 protein sequences from nine species, 2) ND6 protein sequences from eight species, and 3) 50 coronavirus spike proteins. The results are in agreement with known history and the output from the multiple sequence alignment program ClustalW, which is widely used. We have also compared our phylogenetic results with six other recently proposed alignment-free methods. These comparisons show that our proposed method gives a more consistent biological relationship than the others. In addition, the time complexity is linear and space required is less as compared with other alignment-free methods that use graphical representation. It should be noted that the multiple sequence alignment method has exponential time complexity.

  16. Pseudo color ghost coding imaging with pseudo thermal light

    Science.gov (United States)

    Duan, De-yang; Xia, Yun-jie

    2018-04-01

    We present a new pseudo color imaging scheme named pseudo color ghost coding imaging based on ghost imaging but with multiwavelength source modulated by a spatial light modulator. Compared with conventional pseudo color imaging where there is no nondegenerate wavelength spatial correlations resulting in extra monochromatic images, the degenerate wavelength and nondegenerate wavelength spatial correlations between the idle beam and signal beam can be obtained simultaneously. This scheme can obtain more colorful image with higher quality than that in conventional pseudo color coding techniques. More importantly, a significant advantage of the scheme compared to the conventional pseudo color coding imaging techniques is the image with different colors can be obtained without changing the light source and spatial filter.

  17. A Method of Erasing Data Using Random Number Generators

    OpenAIRE

    井上,正人

    2012-01-01

    Erasing data is an indispensable step for disposal of computers or external storage media. Except physical destruction, erasing data means writing random information on entire disk drives or media. We propose a method which erases data safely using random number generators. These random number generators create true random numbers based on quantum processes.

  18. Measuring order in disordered systems and disorder in ordered systems: Random matrix theory for isotropic and nematic liquid crystals and its perspective on pseudo-nematic domains

    Science.gov (United States)

    Zhao, Yan; Stratt, Richard M.

    2018-05-01

    Surprisingly long-ranged intermolecular correlations begin to appear in isotropic (orientationally disordered) phases of liquid crystal forming molecules when the temperature or density starts to close in on the boundary with the nematic (ordered) phase. Indeed, the presence of slowly relaxing, strongly orientationally correlated, sets of molecules under putatively disordered conditions ("pseudo-nematic domains") has been apparent for some time from light-scattering and optical-Kerr experiments. Still, a fully microscopic characterization of these domains has been lacking. We illustrate in this paper how pseudo-nematic domains can be studied in even relatively small computer simulations by looking for order-parameter tensor fluctuations much larger than one would expect from random matrix theory. To develop this idea, we show that random matrix theory offers an exact description of how the probability distribution for liquid-crystal order parameter tensors converges to its macroscopic-system limit. We then illustrate how domain properties can be inferred from finite-size-induced deviations from these random matrix predictions. A straightforward generalization of time-independent random matrix theory also allows us to prove that the analogous random matrix predictions for the time dependence of the order-parameter tensor are similarly exact in the macroscopic limit, and that relaxation behavior of the domains can be seen in the breakdown of the finite-size scaling required by that random-matrix theory.

  19. Pseudo-random properties of a linear congruential generator investigated by b-adic diaphony

    Science.gov (United States)

    Stoev, Peter; Stoilova, Stanislava

    2017-12-01

    In the proposed paper we continue the study of the diaphony, defined in b-adic number system, and we extend it in different directions. We investigate this diaphony as a tool for estimation of the pseudorandom properties of some of the most used random number generators. This is done by evaluating the distribution of specially constructed two-dimensional nets on the base of the obtained random numbers. The aim is to see how the generated numbers are suitable for calculations in some numerical methods (Monte Carlo etc.).

  20. Random Number Generation in HIV Disease: Associations with Neuropsychological Functions and Activities of Daily Living.

    Science.gov (United States)

    Sheppard, David P; Woods, Steven Paul; Doyle, Katie L; Verduzco, Marizela

    2017-02-01

    HIV is associated with frontostriatal dysregulation and executive dysfunction. This study evaluated whether HIV-infected individuals evidence deficits in random number generation (RNG), which is a strategic task requiring paced, rule-guided production of digits. In total, 74 HIV+ adults and 54 seronegative comparison participants completed a comprehensive research neuropsychological battery. Participants produced a random digit sequence by avoiding any order and using numbers 1 through 10 for 100 s at a pace of 1 digit/s. Outcomes included intrusions, repetitions, seriation (1-2-3-4), and cycling (median length of gaps between repeating digits). HIV disease was associated with higher levels of seriation and cycling (ps  .10). Among HIV+ individuals, higher seriation was associated with neuropsychological performance including poorer auditory attention, verbal learning, and delayed memory, whereas higher cycling scores were associated with poorer delayed memory and verbal fluency (ps random sequences, which showed medium associations with higher order verbal abilities and may contribute to greater declines in everyday functioning outcomes. Future studies might examine RNG's role in health behaviors such as medical decision-making or medication adherence. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Semi-device-independent random-number expansion without entanglement

    International Nuclear Information System (INIS)

    Li Hongwei; Yin Zhenqiang; Wu Yuchun; Zou Xubo; Wang Shuang; Chen Wei; Guo Guangcan; Han Zhengfu

    2011-01-01

    By testing the classical correlation violation between two systems, true random numbers can be generated and certified without applying classical statistical method. In this work, we propose a true random-number expansion protocol without entanglement, where the randomness can be guaranteed only by the two-dimensional quantum witness violation. Furthermore, we only assume that the dimensionality of the system used in the protocol has a tight bound, and the whole protocol can be regarded as a semi-device-independent black-box scenario. Compared with the device-independent random-number expansion protocol based on entanglement, our protocol is much easier to implement and test.

  2. Partial summations of stationary sequences of non-Gaussian random variables

    DEFF Research Database (Denmark)

    Mohr, Gunnar; Ditlevsen, Ove Dalager

    1996-01-01

    The distribution of the sum of a finite number of identically distributed random variables is in many cases easily determined given that the variables are independent. The moments of any order of the sum can always be expressed by the moments of the single term without computational problems...... of convergence of the distribution of a sum (or an integral) of mutually dependent random variables to the Gaussian distribution. The paper is closely related to the work in Ditlevsen el al. [Ditlevsen, O., Mohr, G. & Hoffmeyer, P. Integration of non-Gaussian fields. Prob. Engng Mech 11 (1996) 15-23](2)....... lognormal variables or polynomials of standard Gaussian variables. The dependency structure is induced by specifying the autocorrelation structure of the sequence of standard Gaussian variables. Particularly useful polynomials are the Winterstein approximations that distributionally fit with non...

  3. Analysis of random number generators in abnormal usage conditions

    International Nuclear Information System (INIS)

    Soucarros, M.

    2012-01-01

    Random numbers have been used through the ages for games of chance, more recently for secret codes and today they are necessary to the execution of computer programs. Random number generators have now evolved from simple dices to electronic circuits and algorithms. Accordingly, the ability to distinguish between random and non-random numbers has become more difficult. Furthermore, whereas in the past dices were loaded in order to increase winning chances, it is now possible to influence the outcome of random number generators. In consequence, this subject is still very much an issue and has recently made the headlines. Indeed, there was talks about the PS3 game console which generates constant random numbers and redundant distribution of secret keys on the internet. This thesis presents a study of several generators as well as different means to perturb them. It shows the inherent defects of their conceptions and possible consequences of their failure when they are embedded inside security components. Moreover, this work highlights problems yet to be solved concerning the testing of random numbers and the post-processing eliminating bias in these numbers distribution. (author) [fr

  4. Implementation of LT codes based on chaos

    International Nuclear Information System (INIS)

    Zhou Qian; Li Liang; Chen Zengqiang; Zhao Jiaxiang

    2008-01-01

    Fountain codes provide an efficient way to transfer information over erasure channels like the Internet. LT codes are the first codes fully realizing the digital fountain concept. They are asymptotically optimal rateless erasure codes with highly efficient encoding and decoding algorithms. In theory, for each encoding symbol of LT codes, its degree is randomly chosen according to a predetermined degree distribution, and its neighbours used to generate that encoding symbol are chosen uniformly at random. Practical implementation of LT codes usually realizes the randomness through pseudo-randomness number generator like linear congruential method. This paper applies the pseudo-randomness of chaotic sequence in the implementation of LT codes. Two Kent chaotic maps are used to determine the degree and neighbour(s) of each encoding symbol. It is shown that the implemented LT codes based on chaos perform better than the LT codes implemented by the traditional pseudo-randomness number generator. (general)

  5. Improvement of the Gravitational Search Algorithm by means of Low-Discrepancy Sobol Quasi Random-Number Sequence Based Initialization

    Directory of Open Access Journals (Sweden)

    ALTINOZ, O. T.

    2014-08-01

    Full Text Available Nature-inspired optimization algorithms can obtain the optima by updating the position of each member in the population. At the beginning of the algorithm, the particles of the population are spread into the search space. The initial distribution of particles corresponds to the beginning points of the search process. Hence, the aim is to alter the position for each particle beginning with this initial position until the optimum solution will be found with respect to the pre-determined conditions like maximum iteration, and specific error value for the fitness function. Therefore, initial positions of the population have a direct effect on both accuracy of the optima and the computational cost. If any member in the population is close enough to the optima, this eases the achievement of the exact solution. On the contrary, individuals grouped far away from the optima might yield pointless efforts. In this study, low-discrepancy quasi-random number sequence is preferred for the localization of the population at the initialization phase. By this way, the population is distributed into the search space in a more uniform manner at the initialization phase. The technique is applied to the Gravitational Search Algorithm and compared via the performance on benchmark function solutions.

  6. Locating multiple optima using particle swarm optimization

    CSIR Research Space (South Africa)

    Brits, R

    2007-01-01

    Full Text Available in [37]). Faure-sequences are distributed with high uniformity within a n-dimensional unit cube. Other pseudo-random uniform number generators, such as Sobol-sequences [33], may also be used. Main swarm training: In the nbest algorithm, overlapping...

  7. Parallel Mitogenome Sequencing Alleviates Random Rooting Effect in Phylogeography.

    Science.gov (United States)

    Hirase, Shotaro; Takeshima, Hirohiko; Nishida, Mutsumi; Iwasaki, Wataru

    2016-04-28

    Reliably rooted phylogenetic trees play irreplaceable roles in clarifying diversification in the patterns of species and populations. However, such trees are often unavailable in phylogeographic studies, particularly when the focus is on rapidly expanded populations that exhibit star-like trees. A fundamental bottleneck is known as the random rooting effect, where a distant outgroup tends to root an unrooted tree "randomly." We investigated whether parallel mitochondrial genome (mitogenome) sequencing alleviates this effect in phylogeography using a case study on the Sea of Japan lineage of the intertidal goby Chaenogobius annularis Eighty-three C. annularis individuals were collected and their mitogenomes were determined by high-throughput and low-cost parallel sequencing. Phylogenetic analysis of these mitogenome sequences was conducted to root the Sea of Japan lineage, which has a star-like phylogeny and had not been reliably rooted. The topologies of the bootstrap trees were investigated to determine whether the use of mitogenomes alleviated the random rooting effect. The mitogenome data successfully rooted the Sea of Japan lineage by alleviating the effect, which hindered phylogenetic analysis that used specific gene sequences. The reliable rooting of the lineage led to the discovery of a novel, northern lineage that expanded during an interglacial period with high bootstrap support. Furthermore, the finding of this lineage suggested the existence of additional glacial refugia and provided a new recent calibration point that revised the divergence time estimation between the Sea of Japan and Pacific Ocean lineages. This study illustrates the effectiveness of parallel mitogenome sequencing for solving the random rooting problem in phylogeographic studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Testing, Selection, and Implementation of Random Number Generators

    National Research Council Canada - National Science Library

    Collins, Joseph C

    2008-01-01

    An exhaustive evaluation of state-of-the-art random number generators with several well-known suites of tests provides the basis for selection of suitable random number generators for use in stochastic simulations...

  9. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, V. V., E-mail: VVYashchuk@lbl.gov; Chan, E. R.; Lacey, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fischer, P. J. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California Santa Cruz, Santa Cruz, California 94056 (United States); Conley, R. [Advance Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); McKinney, W. R. [Diablo Valley College, 321 Golf Club Road, Pleasant Hill, California 94523 (United States); Artemiev, N. A. [KLA-Tencor Corp., 1 Technology Drive, Milpitas, California 95035 (United States); Bouet, N. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Cabrini, S. [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Calafiore, G.; Peroz, C.; Babin, S. [aBeam Technologies, Inc., Hayward, California 94541 (United States)

    2015-12-15

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  10. Binary pseudo-random patterned structures for modulation transfer function calibration and resolution characterization of a full-field transmission soft x-ray microscope

    International Nuclear Information System (INIS)

    Yashchuk, V. V.; Chan, E. R.; Lacey, I.; Fischer, P. J.; Conley, R.; McKinney, W. R.; Artemiev, N. A.; Bouet, N.; Cabrini, S.; Calafiore, G.; Peroz, C.; Babin, S.

    2015-01-01

    We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate the MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope’s MTF, tests with the BPRML sample can be used to fine tune the instrument’s focal distance. Our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters

  11. Calculation of total number of disintegrations after intake of radioactive nuclides using the pseudo inverse matrix

    International Nuclear Information System (INIS)

    Noh, Si Wan; Sol, Jeong; Lee, Jai Ki; Lee, Jong Il; Kim, Jang Lyul

    2012-01-01

    Calculation of total number of disintegrations after intake of radioactive nuclides is indispensable to calculate a dose coefficient which means committed effective dose per unit activity (Sv/Bq). In order to calculate the total number of disintegrations analytically, Birch all's algorithm has been commonly used. As described below, an inverse matrix should be calculated in the algorithm. As biokinetic models have been complicated, however, the inverse matrix does not exist sometime and the total number of disintegrations cannot be calculated. Thus, a numerical method has been applied to DCAL code used to calculate dose coefficients in ICRP publication and IMBA code. In this study, however, we applied the pseudo inverse matrix to solve the problem that the inverse matrix does not exist for. In order to validate our method, the method was applied to two examples and the results were compared to the tabulated data in ICRP publication. MATLAB 2012a was used to calculate the total number of disintegrations and exp m and p inv MATLAB built in functions were employed

  12. Uniform random number generators

    Science.gov (United States)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  13. IMPLEMENTATION OF NEURAL - CRYPTOGRAPHIC SYSTEM USING FPGA

    Directory of Open Access Journals (Sweden)

    KARAM M. Z. OTHMAN

    2011-08-01

    Full Text Available Modern cryptography techniques are virtually unbreakable. As the Internet and other forms of electronic communication become more prevalent, electronic security is becoming increasingly important. Cryptography is used to protect e-mail messages, credit card information, and corporate data. The design of the cryptography system is a conventional cryptography that uses one key for encryption and decryption process. The chosen cryptography algorithm is stream cipher algorithm that encrypt one bit at a time. The central problem in the stream-cipher cryptography is the difficulty of generating a long unpredictable sequence of binary signals from short and random key. Pseudo random number generators (PRNG have been widely used to construct this key sequence. The pseudo random number generator was designed using the Artificial Neural Networks (ANN. The Artificial Neural Networks (ANN providing the required nonlinearity properties that increases the randomness statistical properties of the pseudo random generator. The learning algorithm of this neural network is backpropagation learning algorithm. The learning process was done by software program in Matlab (software implementation to get the efficient weights. Then, the learned neural network was implemented using field programmable gate array (FPGA.

  14. Towards a high-speed quantum random number generator

    Science.gov (United States)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  15. Microcomputer Unit: Generating Random Numbers.

    Science.gov (United States)

    Haigh, William E.

    1986-01-01

    Presents an activity, suitable for students in grades 6-12, on generating random numbers. Objectives, equipment needed, list of prerequisite experiences, instructional strategies, and ready-to-copy student worksheets are included. (JN)

  16. The random signal generator of imitated nuclear radiation pulse

    International Nuclear Information System (INIS)

    Li Dongcang; Yang Lei; Yuan Shulin; Yang Yinghui; Zang Fujia

    2007-01-01

    Based in pseudo-random uniformity number, it produces random numbers of Gaussian distribution and exponential distribution by arithmetic. The hardware is the single-chip microcomputer of 89C51. Program language makes use of Keil C. The output pulse amplitude is Gaussian distribution, exponential distribution or uniformity distribution. Likewise, it has two mode or upwards two. The time alternation of output pulse is both periodic and exponential distribution. The generator has achieved output control of multi-mode distribution, imitated random characteristic of nuclear pulse in amplitude and in time. (authors)

  17. Degeneracy of energy levels of pseudo-Gaussian oscillators

    International Nuclear Information System (INIS)

    Iacob, Theodor-Felix; Iacob, Felix; Lute, Marina

    2015-01-01

    We study the main features of the isotropic radial pseudo-Gaussian oscillators spectral properties. This study is made upon the energy levels degeneracy with respect to orbital angular momentum quantum number. In a previous work [6] we have shown that the pseudo-Gaussian oscillators belong to the class of quasi-exactly solvable models and an exact solution has been found

  18. Quantum random number generation for loophole-free Bell tests

    Science.gov (United States)

    Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar

    2015-05-01

    We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.

  19. Microcomputer-Assisted Discoveries: Generate Your Own Random Numbers.

    Science.gov (United States)

    Kimberling, Clark

    1984-01-01

    Having students try to generate their own random numbers can lead to much discovery learning as one tries to create 'patternlessness' from formulas. Developing an equidistribution test and runs test, plus other ideas for generating random numbers, is discussed, with computer programs given. (MNS)

  20. Red, green, blue equals 1, 2, 3: Digit-color synesthetes can use structured digit information to boost recall of color sequences.

    Science.gov (United States)

    Teichmann, A Lina; Nieuwenstein, Mark R; Rich, Anina N

    2015-01-01

    Digit-color synesthetes report experiencing colors when perceiving letters and digits. The conscious experience is typically unidirectional (e.g., digits elicit colors but not vice versa) but recent evidence shows subtle bidirectional effects. We examined whether short-term memory for colors could be affected by the order of presentation reflecting more or less structure in the associated digits. We presented a stream of colored squares and asked participants to report the colors in order. The colors matched each synesthete's colors for digits 1-9 and the order of the colors corresponded either to a sequence of numbers (e.g., [red, green, blue] if 1 = red, 2 = green, 3 = blue) or no systematic sequence. The results showed that synesthetes recalled sequential color sequences more accurately than pseudo-randomized colors, whereas no such effect was found for the non-synesthetic controls. Synesthetes did not differ from non-synesthetic controls in recall of color sequences overall, providing no evidence of a general advantage in memory for serial recall of colors.

  1. IMRT optimization with pseudo-biologic objective function

    International Nuclear Information System (INIS)

    Yi, B. Y.; Ahn, S. D.; Kim, J. H.; Lee, S. W.; Choi, E. K.

    2002-01-01

    The pseudo-biologic objective function has been proposed for the IMRT optimization. It is similar to the biological objective function in mathematical shape, but uses physical parameters. The pseudo-biologic objective function concept is consisted of the target coverage index (TCI) and the organ score index (OSI), was introduced. The TCI was expressed as the sum of all of the weighted bins of target dose volume histogram (DVH). The weights were given as the normal distribution of which the average is 100 % and the standard deviation is ±. The OSI was expressed as similar way. The average of the normal distribution was 0% of the dose and that of standard deviation was selected as a function of limiting dose and its importance. The objective function could be calculated as the product of the TCI and OSI's. The RTP Tool Box (RTB) was used for this study. The constraints applied in the optimization was intuitively clinical experience based numbers, while the physical objective function asks just numbers which are not necessarily based on the clinic, and the parameters for the biologic objective functions are uncertain. The OSI's from the pseudo-biological function showed better results than from the physical functions, while TCI's showed similar tendency. We could show that the pseudo-biologic function can be used for an IMRT objective function on behalf of the biological objective function

  2. Pseudo-set framing.

    Science.gov (United States)

    Barasz, Kate; John, Leslie K; Keenan, Elizabeth A; Norton, Michael I

    2017-10-01

    Pseudo-set framing-arbitrarily grouping items or tasks together as part of an apparent "set"-motivates people to reach perceived completion points. Pseudo-set framing changes gambling choices (Study 1), effort (Studies 2 and 3), giving behavior (Field Data and Study 4), and purchase decisions (Study 5). These effects persist in the absence of any reward, when a cost must be incurred, and after participants are explicitly informed of the arbitrariness of the set. Drawing on Gestalt psychology, we develop a conceptual account that predicts what will-and will not-act as a pseudo-set, and defines the psychological process through which these pseudo-sets affect behavior: over and above typical reference points, pseudo-set framing alters perceptions of (in)completeness, making intermediate progress seem less complete. In turn, these feelings of incompleteness motivate people to persist until the pseudo-set has been fulfilled. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Random walk of the baryon number

    International Nuclear Information System (INIS)

    Kazaryan, A.M.; Khlebnikov, S.Y.; Shaposhnikov, M.E.

    1989-01-01

    A new approach is suggested for the anomalous nonconservation of baryon number in the electroweak theory at high temperatures. Arguments are presented in support of the idea that the baryon-number changing reactions may be viewed as random Markov processes. Making use of the general theory of Markov processes, the Fokker--Planck equation for the baryon-number distribution density is obtained and kinetic coefficients are calculated

  4. Tauberian theorems for Abel summability of sequences of fuzzy numbers

    Science.gov (United States)

    Yavuz, Enes; ćoşkun, Hüsamettin

    2015-09-01

    We give some conditions under which Abel summable sequences of fuzzy numbers are convergent. As corollaries we obtain the results given in [E. Yavuz, Ö. Talo, Abel summability of sequences of fuzzy numbers, Soft computing 2014, doi: 10.1007/s00500-014-1563-7].

  5. Perceptions of randomness in binary sequences: Normative, heuristic, or both?

    Science.gov (United States)

    Reimers, Stian; Donkin, Chris; Le Pelley, Mike E

    2018-03-01

    When people consider a series of random binary events, such as tossing an unbiased coin and recording the sequence of heads (H) and tails (T), they tend to erroneously rate sequences with less internal structure or order (such as HTTHT) as more probable than sequences containing more structure or order (such as HHHHH). This is traditionally explained as a local representativeness effect: Participants assume that the properties of long sequences of random outcomes-such as an equal proportion of heads and tails, and little internal structure-should also apply to short sequences. However, recent theoretical work has noted that the probability of a particular sequence of say, heads and tails of length n, occurring within a larger (>n) sequence of coin flips actually differs by sequence, so P(HHHHH) rational norms based on limited experience. We test these accounts. Participants in Experiment 1 rated the likelihood of occurrence for all possible strings of 4, 5, and 6 observations in a sequence of coin flips. Judgments were better explained by representativeness in alternation rate, relative proportion of heads and tails, and sequence complexity, than by objective probabilities. Experiments 2 and 3 gave similar results using incentivized binary choice procedures. Overall the evidence suggests that participants are not sensitive to variation in objective probabilities of a sub-sequence occurring; they appear to use heuristics based on several distinct forms of representativeness. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Motzkin numbers out of Random Domino Automaton

    Energy Technology Data Exchange (ETDEWEB)

    Białecki, Mariusz, E-mail: bialecki@igf.edu.pl [Institute of Geophysics, Polish Academy of Sciences, ul. Ks. Janusza 64, 01-452 Warszawa (Poland)

    2012-10-01

    Motzkin numbers are derived from a special case of Random Domino Automaton – recently proposed a slowly driven system being a stochastic toy model of earthquakes. It is also a generalisation of 1D Drossel–Schwabl forest-fire model. A solution of the set of equations describing stationary state of Random Domino Automaton in inverse-power case is presented. A link with Motzkin numbers allows to present explicit form of asymptotic behaviour of the automaton. -- Highlights: ► Motzkin numbers are derived from stochastic cellular automaton with avalanches. ► Explicit solution of toy model of earthquakes is presented. ► Case with inverse-power distribution of avalanches is found.

  7. Discrete pseudo-integrals

    Czech Academy of Sciences Publication Activity Database

    Mesiar, Radko; Li, J.; Pap, E.

    2013-01-01

    Roč. 54, č. 3 (2013), s. 357-364 ISSN 0888-613X R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : concave integral * pseudo-addition * pseudo-multiplication Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-discrete pseudo-integrals.pdf

  8. Heartbeats Do Not Make Good Pseudo-Random Number Generators: An Analysis of the Randomness of Inter-Pulse Intervals

    Directory of Open Access Journals (Sweden)

    Lara Ortiz-Martin

    2018-01-01

    Full Text Available The proliferation of wearable and implantable medical devices has given rise to an interest in developing security schemes suitable for these systems and the environment in which they operate. One area that has received much attention lately is the use of (human biological signals as the basis for biometric authentication, identification and the generation of cryptographic keys. The heart signal (e.g., as recorded in an electrocardiogram has been used by several researchers in the last few years. Specifically, the so-called Inter-Pulse Intervals (IPIs, which is the time between two consecutive heartbeats, have been repeatedly pointed out as a potentially good source of entropy and are at the core of various recent authentication protocols. In this work, we report the results of a large-scale statistical study to determine whether such an assumption is (or not upheld. For this, we have analyzed 19 public datasets of heart signals from the Physionet repository, spanning electrocardiograms from 1353 subjects sampled at different frequencies and with lengths that vary between a few minutes and several hours. We believe this is the largest dataset on this topic analyzed in the literature. We have then applied a standard battery of randomness tests to the extracted IPIs. Under the algorithms described in this paper and after analyzing these 19 public ECG datasets, our results raise doubts about the use of IPI values as a good source of randomness for cryptographic purposes. This has repercussions both in the security of some of the protocols proposed up to now and also in the design of future IPI-based schemes.

  9. Synchronization of random bit generators based on coupled chaotic lasers and application to cryptography.

    Science.gov (United States)

    Kanter, Ido; Butkovski, Maria; Peleg, Yitzhak; Zigzag, Meital; Aviad, Yaara; Reidler, Igor; Rosenbluh, Michael; Kinzel, Wolfgang

    2010-08-16

    Random bit generators (RBGs) constitute an important tool in cryptography, stochastic simulations and secure communications. The later in particular has some difficult requirements: high generation rate of unpredictable bit strings and secure key-exchange protocols over public channels. Deterministic algorithms generate pseudo-random number sequences at high rates, however, their unpredictability is limited by the very nature of their deterministic origin. Recently, physical RBGs based on chaotic semiconductor lasers were shown to exceed Gbit/s rates. Whether secure synchronization of two high rate physical RBGs is possible remains an open question. Here we propose a method, whereby two fast RBGs based on mutually coupled chaotic lasers, are synchronized. Using information theoretic analysis we demonstrate security against a powerful computational eavesdropper, capable of noiseless amplification, where all parameters are publicly known. The method is also extended to secure synchronization of a small network of three RBGs.

  10. GASPRNG: GPU accelerated scalable parallel random number generator library

    Science.gov (United States)

    Gao, Shuang; Peterson, Gregory D.

    2013-04-01

    Graphics processors represent a promising technology for accelerating computational science applications. Many computational science applications require fast and scalable random number generation with good statistical properties, so they use the Scalable Parallel Random Number Generators library (SPRNG). We present the GPU Accelerated SPRNG library (GASPRNG) to accelerate SPRNG in GPU-based high performance computing systems. GASPRNG includes code for a host CPU and CUDA code for execution on NVIDIA graphics processing units (GPUs) along with a programming interface to support various usage models for pseudorandom numbers and computational science applications executing on the CPU, GPU, or both. This paper describes the implementation approach used to produce high performance and also describes how to use the programming interface. The programming interface allows a user to be able to use GASPRNG the same way as SPRNG on traditional serial or parallel computers as well as to develop tightly coupled programs executing primarily on the GPU. We also describe how to install GASPRNG and use it. To help illustrate linking with GASPRNG, various demonstration codes are included for the different usage models. GASPRNG on a single GPU shows up to 280x speedup over SPRNG on a single CPU core and is able to scale for larger systems in the same manner as SPRNG. Because GASPRNG generates identical streams of pseudorandom numbers as SPRNG, users can be confident about the quality of GASPRNG for scalable computational science applications. Catalogue identifier: AEOI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOI_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: UTK license. No. of lines in distributed program, including test data, etc.: 167900 No. of bytes in distributed program, including test data, etc.: 1422058 Distribution format: tar.gz Programming language: C and CUDA. Computer: Any PC or

  11. A method for generating skewed random numbers using two overlapping uniform distributions

    International Nuclear Information System (INIS)

    Ermak, D.L.; Nasstrom, J.S.

    1995-02-01

    The objective of this work was to implement and evaluate a method for generating skewed random numbers using a combination of uniform random numbers. The method provides a simple and accurate way of generating skewed random numbers from the specified first three moments without an a priori specification of the probability density function. We describe the procedure for generating skewed random numbers from unifon-n random numbers, and show that it accurately produces random numbers with the desired first three moments over a range of skewness values. We also show that in the limit of zero skewness, the distribution of random numbers is an accurate approximation to the Gaussian probability density function. Future work win use this method to provide skewed random numbers for a Langevin equation model for diffusion in skewed turbulence

  12. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites

    International Nuclear Information System (INIS)

    Li, V.C.; Wu, H.W.

    1992-01-01

    Apart from imparting increased fracture toughness, one of the useful purposes of reinforcing brittle matrices with fibers is to create enhanced composite strain capacity. This paper reviews the conditions underwhich such a composite will exhibit the pseudo strain-hardening phenomenon. The presentation is given in a unified manner for both continuous aligned and discontinuous random fiber composites. It is demonstrated that pseudo strain hardening can be practically designed for both gills of composites by proper tailoring of material structures. 18 refs., 8 figs., 2 tabs

  13. Random-Number Generator Validity in Simulation Studies: An Investigation of Normality.

    Science.gov (United States)

    Bang, Jung W.; Schumacker, Randall E.; Schlieve, Paul L.

    1998-01-01

    The normality of number distributions generated by various random-number generators were studied, focusing on when the random-number generator reached a normal distribution and at what sample size. Findings suggest the steps that should be followed when using a random-number generator in a Monte Carlo simulation. (SLD)

  14. PSEUDO-CODEWORD LANDSCAPE

    Energy Technology Data Exchange (ETDEWEB)

    CHERTKOV, MICHAEL [Los Alamos National Laboratory; STEPANOV, MIKHAIL [Los Alamos National Laboratory

    2007-01-10

    The authors discuss performance of Low-Density-Parity-Check (LDPC) codes decoded by Linear Programming (LP) decoding at moderate and large Signal-to-Noise-Ratios (SNR). Frame-Error-Rate (FER) dependence on SNR and the noise space landscape of the coding/decoding scheme are analyzed by a combination of the previously introduced instanton/pseudo-codeword-search method and a new 'dendro' trick. To reduce complexity of the LP decoding for a code with high-degree checks, {ge} 5, they introduce its dendro-LDPC counterpart, that is the code performing identifically to the original one under Maximum-A-Posteriori (MAP) decoding but having reduced (down to three) check connectivity degree. Analyzing number of popular LDPC codes and their dendro versions performing over the Additive-White-Gaussian-Noise (AWGN) channel, they observed two qualitatively different regimes: (i) error-floor sets early, at relatively low SNR, and (ii) FER decays with SNR increase faster at moderate SNR than at the largest SNR. They explain these regimes in terms of the pseudo-codeword spectra of the codes.

  15. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  16. Multi-kW coherent combining of fiber lasers seeded with pseudo random phase modulated light

    Science.gov (United States)

    Flores, Angel; Ehrehreich, Thomas; Holten, Roger; Anderson, Brian; Dajani, Iyad

    2016-03-01

    We report efficient coherent beam combining of five kilowatt-class fiber amplifiers with a diffractive optical element (DOE). Based on a master oscillator power amplifier (MOPA) configuration, the amplifiers were seeded with pseudo random phase modulated light. Each non-polarization maintaining fiber amplifier was optically path length matched and provides approximately 1.2 kW of near diffraction-limited output power (measured M2polarization control. A low power sample of the combined beam after the DOE provided an error signal for active phase locking which was performed via Locking of Optical Coherence by Single-Detector Electronic-Frequency Tagging (LOCSET). After phase stabilization, the beams were coherently combined via the 1x5 DOE. A total combined output power of 4.9 kW was achieved with 82% combining efficiency and excellent beam quality (M2splitter loss was 5%. Similarly, losses due in part to non-ideal polarization, ASE content, uncorrelated wavefront errors, and misalignment errors contributed to the efficiency reduction.

  17. A random-matrix theory of the number sense.

    Science.gov (United States)

    Hannagan, T; Nieder, A; Viswanathan, P; Dehaene, S

    2017-02-19

    Number sense, a spontaneous ability to process approximate numbers, has been documented in human adults, infants and newborns, and many other animals. Species as distant as monkeys and crows exhibit very similar neurons tuned to specific numerosities. How number sense can emerge in the absence of learning or fine tuning is currently unknown. We introduce a random-matrix theory of self-organized neural states where numbers are coded by vectors of activation across multiple units, and where the vector codes for successive integers are obtained through multiplication by a fixed but random matrix. This cortical implementation of the 'von Mises' algorithm explains many otherwise disconnected observations ranging from neural tuning curves in monkeys to looking times in neonates and cortical numerotopy in adults. The theory clarifies the origin of Weber-Fechner's Law and yields a novel and empirically validated prediction of multi-peak number neurons. Random matrices constitute a novel mechanism for the emergence of brain states coding for quantity.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Author(s).

  18. Generation and reception of spread-spectrum signals

    Science.gov (United States)

    Moser, R.

    1983-05-01

    The term 'spread-spectrum' implies a technique whereby digitized information is added to a pseudo-random number sequence and the resultant bit stream changes some parameter of the carrier frequency in discrete increments. The discrete modulation of the carrier frequency is usually realized either as a multiple level phase shift keyed or frequency shift keyed signal. The resultant PSK-modulated frequency spectrum is referred to as direct sequence spread-spectrum, whereas the FSK-modulated carrier frequency is referred to as a frequency hopped spread spectrum. These can be considered the major subsets of the more general term 'spread-spectrum'. In discussing signal reception, it is pointed out that active correlation methods are used for channel synchronization when the psuedo random sequences are long or when the processing gain is large, whereas the passive methods may be used for either short pseudo-random noise generation codes or to assist in attaining initial synchronization in long sequence spread-spectrum systems.

  19. Number-conserving random phase approximation with analytically integrated matrix elements

    International Nuclear Information System (INIS)

    Kyotoku, M.; Schmid, K.W.; Gruemmer, F.; Faessler, A.

    1990-01-01

    In the present paper a number conserving random phase approximation is derived as a special case of the recently developed random phase approximation in general symmetry projected quasiparticle mean fields. All the occurring integrals induced by the number projection are performed analytically after writing the various overlap and energy matrices in the random phase approximation equation as polynomials in the gauge angle. In the limit of a large number of particles the well-known pairing vibration matrix elements are recovered. We also present a new analytically number projected variational equation for the number conserving pairing problem

  20. On contact numbers in random rod packings

    NARCIS (Netherlands)

    Wouterse, A.; Luding, Stefan; Philipse, A.P.

    2009-01-01

    Random packings of non-spherical granular particles are simulated by combining mechanical contraction and molecular dynamics, to determine contact numbers as a function of density. Particle shapes are varied from spheres to thin rods. The observed contact numbers (and packing densities) agree well

  1. A quick and easy improvement of Monte Carlo codes for simulation

    Science.gov (United States)

    Lebrere, A.; Talhi, R.; Tripathy, M.; Pyée, M.

    The simulation of trials of independent random variables of given distribution is a critical element of running Monte-Carlo codes. This is usually performed by using pseudo-random number generators (and in most cases linearcongruential ones). We present here an alternative way to generate sequences with given statistical properties. This sequences are purely deterministic and are given by closed formulae, and can give in some cases better results than classical generators.

  2. A generator for unique quantum random numbers based on vacuum states

    DEFF Research Database (Denmark)

    Gabriel, C.; Wittmann, C.; Sych, D.

    2010-01-01

    the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably......Random numbers are a valuable component in diverse applications that range from simulations(1) over gambling to cryptography(2,3). The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational...... unpredictability of quantum mechanics(4-11). However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique(12-15). Here we present a simple experimental setup based on homodyne measurements that uses...

  3. Electron with arbitrary pseudo-spins in multilayer graphene

    Institute of Scientific and Technical Information of China (English)

    Worasak Prarokijjak; Bumned Soodchomshom

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (}/2), where N={1, 2, 3, . . .}. It is said that for N>1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers.

  4. Electron with arbitrary pseudo-spins in multilayer graphene

    International Nuclear Information System (INIS)

    Prarokijjak Worasak; Soodchomshom Bumned

    2015-01-01

    Using the low-energy effective Hamiltonian of the ABC-stacked multilayer graphene, the pseudo-spin coupling to real orbital angular momentum of electrons in multilayer graphene is investigated. We show that the electron wave function in N-layer graphene mimics the behavior of a particle with a spin of N × (ħ/2), where N = {1, 2, 3,…}. It is said that for N > 1 the low-energy effective Hamiltonian for ABC-stacked graphene cannot be used to describe pseudo-spin-1/2 particles. The wave function of electrons in multilayer graphene may behave like fermionic (or bosonic) particle for N being odd (or even). In this paper, we propose a theory of graphene serving as a host material of electrons with arbitrary pseudo-spins tunable by changing the number of graphene layers. (paper)

  5. The intermittency of vector fields and random-number generators

    Science.gov (United States)

    Kalinin, A. O.; Sokoloff, D. D.; Tutubalin, V. N.

    2017-09-01

    We examine how well natural random-number generators can reproduce the intermittency phenomena that arise in the transfer of vector fields in random media. A generator based on the analysis of financial indices is suggested as the most promising random-number generator. Is it shown that even this generator, however, fails to reproduce the phenomenon long enough to confidently detect intermittency, while the C++ generator successfully solves this problem. We discuss the prospects of using shell models of turbulence as the desired generator.

  6. An Architecturally Constrained Model of Random Number Generation and its Application to Modelling the Effect of Generation Rate

    Directory of Open Access Journals (Sweden)

    Nicholas J. Sexton

    2014-07-01

    Full Text Available Random number generation (RNG is a complex cognitive task for human subjects, requiring deliberative control to avoid production of habitual, stereotyped sequences. Under various manipulations (e.g., speeded responding, transcranial magnetic stimulation, or neurological damage the performance of human subjects deteriorates, as reflected in a number of qualitatively distinct, dissociable biases. For example, the intrusion of stereotyped behaviour (e.g., counting increases at faster rates of generation. Theoretical accounts of the task postulate that it requires the integrated operation of multiple, computationally heterogeneous cognitive control ('executive' processes. We present a computational model of RNG, within the framework of a novel, neuropsychologically-inspired cognitive architecture, ESPro. Manipulating the rate of sequence generation in the model reproduced a number of key effects observed in empirical studies, including increasing sequence stereotypy at faster rates. Within the model, this was due to time limitations on the interaction of supervisory control processes, namely, task setting, proposal of responses, monitoring, and response inhibition. The model thus supports the fractionation of executive function into multiple, computationally heterogeneous processes.

  7. Perisplenic Pseudo

    International Nuclear Information System (INIS)

    Kim, Hyo Heon; Cho, Sin Young; Suh, Hong Kil; Kim, Ji Hyeon; Choi, Chul Soon; Lee, Eil Seong; Kang, Ik Won

    1995-01-01

    Perisplenic pseudo 'fluid collection' is one of the rare normal variations. Its frequency and sonographic findings for the differentiation from true perisplenic fluid collection have not been well described. Thus, we performed this study. The examination was performed with special attention to the splenic and perisplenic areas. We excluded patients with proved or suspected liver cirrhosis, pancreatic diseases,and abdominal trauma from the study population, but did not exclude the patients with chronic hepatitis and the carriers of hepatitis B virus. Of the examined 4794 patients, 8 cases showed perisplenic pseudo 'fluid collection'. Two of them were confirmed with computed tomography and liver scan, and six were inferred from the fact proved to be a part of the left lobe extension of the liver by tracing with the transducer. All cases ofperisplenic pseudo 'fluid collection' showed hypoechoic crescent area with hepatic ductal echoes. Perisplenic pseudo 'fluid collection' is very rare. The helpful findings for the differentiation from true fluid collection are the hepatic ductal echoes seen in the normal liver, proof of continuation into remained voluminous liver by tracing with the transducer. High awareness of it would prevent further unnecessary studies such as computed tomography and liver scan

  8. Quantum random flip-flop and its applications in random frequency synthesis and true random number generation

    Energy Technology Data Exchange (ETDEWEB)

    Stipčević, Mario, E-mail: mario.stipcevic@irb.hr [Photonics and Quantum Optics Research Unit, Center of Excellence for Advanced Materials and Sensing Devices, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb (Croatia)

    2016-03-15

    In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fundamentally random process of emission and detection of light quanta. We demonstrate novel applications of RFF in randomness preserving frequency division, random frequency synthesis, and random number generation. Possible usages of these applications in the information and communication technology, cryptographic hardware, and testing equipment are discussed.

  9. Frequency response testing at Experimental Breeder Reactor II using discrete-level periodic signals

    International Nuclear Information System (INIS)

    Rhodes, W.D.; Larson, H.A.

    1990-01-01

    The Experimental Breeder Reactor 2 (EBR-2) reactivity-to-power frequency-response function was measured with pseudo-random, discrete-level, periodic signals. The reactor power deviation was small with insignificant perturbation of normal operation and in-place irradiation experiments. Comparison of results with measured rod oscillator data and with theoretical predictions show good agreement. Moreover, measures of input signal quality (autocorrelation function and energy spectra) confirm the ability to enable this type of frequency response determination at EBR-2. Measurements were made with the pseudo-random binary sequence, quadratic residue binary sequence, pseudo-random ternary sequence, and the multifrequency binary sequence. 10 refs., 7 figs., 3 tabs

  10. The ΦBT1 large serine recombinase catalyzes DNA integration at pseudo-attB sites in the genus Nocardia

    Directory of Open Access Journals (Sweden)

    Marion Herisse

    2018-05-01

    Full Text Available Plasmid vectors based on bacteriophage integrases are important tools in molecular microbiology for the introduction of foreign DNA, especially into bacterial species where other systems for genetic manipulation are limited. Site specific integrases catalyze recombination between phage and bacterial attachment sites (attP and attB, respectively and the best studied integrases in the actinomycetes are the serine integrases from the Streptomyces bacteriophages ΦC31 and ΦBT1. As this reaction is unidirectional and highly stable, vectors containing phage integrase systems have been used in a number of genetic engineering applications. Plasmids bearing the ΦBT1 integrase have been used to introduce DNA into Streptomyces and Amycolatopsis strains; however, they have not been widely studied in other actinobacterial genera. Here, we show that vectors based on ΦBT1 integrase can stably integrate into the chromosomes of a range of Nocardia species, and that this integration occurs despite the absence of canonical attB sites in these genomes. Furthermore, we show that a ΦBT1 integrase-based vector can insert at multiple pseudo-attB sites within a single strain and we determine the sequence of a pseudo-attB motif. These data suggest that ΦBT1 integrase-based vectors can be used to readily and semi-randomly introduce foreign DNA into the genomes of a range of Nocardia species. However, the precise site of insertion will likely require empirical determination in each species to avoid unexpected off-target effects.

  11. 3D Object Metamorphosis with Pseudo Metameshes

    Directory of Open Access Journals (Sweden)

    MOCANU, B.

    2015-02-01

    Full Text Available In this paper we introduce a novel framework for 3D object metamorphosis, represented by closed triangular meshes. The systems returns a high quality transition sequence, smooth and gradual, that is visual pleasant and consistent to both source and target topologies. The method starts by parameterizing both the source and the target model to a common domain (the unit sphere. Then, the features selected from the two models are aligned by applying the CTPS C2a radial basis functions. We demonstrate how the selected approach can create valid warping by deforming the models embedded into the parametric domain. In the final stage, we propose and validate a novel algorithm to construct a pseudo-supermesh able to approximate both, the source and target 3D objects. By using the pseudo-supermesh we developed a morphing transition consistent with respect to both geometry and topology of the 3D models.

  12. Recoverable Random Numbers in an Internet of Things Operating System

    Directory of Open Access Journals (Sweden)

    Taeill Yoo

    2017-03-01

    Full Text Available Over the past decade, several security issues with Linux Random Number Generator (LRNG on PCs and Androids have emerged. The main problem involves the process of entropy harvesting, particularly at boot time. An entropy source in the input pool of LRNG is not transferred into the non-blocking output pool if the entropy counter of the input pool is less than 192 bits out of 4098 bits. Because the entropy estimation of LRNG is highly conservative, the process may require more than one minute for starting the transfer. Furthermore, the design principle of the estimation algorithm is not only heuristic but also unclear. Recently, Google released an Internet of Things (IoT operating system called Brillo based on the Linux kernel. We analyze the behavior of the random number generator in Brillo, which inherits that of LRNG. In the results, we identify two features that enable recovery of random numbers. With these features, we demonstrate that random numbers of 700 bytes at boot time can be recovered with the success probability of 90% by using time complexity for 5.20 × 2 40 trials. Therefore, the entropy of random numbers of 700 bytes is merely about 43 bits. Since the initial random numbers are supposed to be used for sensitive security parameters, such as stack canary and key derivation, our observation can be applied to practical attacks against cryptosystem.

  13. Production of a pseudo-random square wave using a shift register with binary feedbacks; Generation d'un creneau pseudo-aleatoire par un registre a decalage a contre-reaction binaire

    Energy Technology Data Exchange (ETDEWEB)

    Stern, T E; Cazemajou, J; Macherez, B; Valat, J; Vignon, A

    1964-07-01

    We summarize here the theoretical basis for the production of square wave having the values '1' or '0', the switching times being 'pseudo-random'. More precisely, the square-wave may or may not change value at regular time intervals of length {delta}, with probability approximately. 5 for each alternative. The wave-form is obtained by means of a shift-register having modulo-2 feedback. If the interval {delta} and the feedback connections are well chosen, it is possible to produce a waveform whose autocorrelation function is very close to a Dirac delta function. The square-wave therefore behaves like a quantized white noise, which has very interesting properties in cross-correlation techniques. (authors) [French] On resume ici les bases theoriques permettant d'obtenir un creneau prenant les valeurs '1' ou '0', les instants de commutation etant pseudo-aleatoires. Plus exactement, le creneau a la possibilite de changer (ou de ne pas changer) d'etat a intervalles de temps reguliers, separes par intervalle elementaire {delta}, chacune des deux possibilites possedant une probabilite d'apparition tres voisine de 0,5. Le creneau est obtenu par un registre a decalage (shift register) a contre-reactions logiques modulo-2. Si l'intervalle {delta} et les contre-reactions sont judicieusement choisis, il est possible d'obtenir pour le creneau une fonction d'autocorrelation triangulaire tres voisine d'une impulsion de Dirac. Par suite le creneau se comporte comme un bruit blanc quantifie possedant de tres interessantes proprietes pour les techniques statistiques d'intercorrelation. (auteurs)

  14. Standard random number generation for MBASIC

    Science.gov (United States)

    Tausworthe, R. C.

    1976-01-01

    A machine-independent algorithm is presented and analyzed for generating pseudorandom numbers suitable for the standard MBASIC system. The algorithm used is the polynomial congruential or linear recurrence modulo 2 method. Numbers, formed as nonoverlapping adjacent 28-bit words taken from the bit stream produced by the formula a sub m + 532 = a sub m + 37 + a sub m (modulo 2), do not repeat within the projected age of the solar system, show no ensemble correlation, exhibit uniform distribution of adjacent numbers up to 19 dimensions, and do not deviate from random runs-up and runs-down behavior.

  15. Pseudo-Riemannian Novikov algebras

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhiqi; Zhu Fuhai [School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071 (China)], E-mail: chenzhiqi@nankai.edu.cn, E-mail: zhufuhai@nankai.edu.cn

    2008-08-08

    Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-type and Hamiltonian operators in formal variational calculus. Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-degenerate invariant symmetric bilinear forms. In this paper, we find that there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and give a special class of pseudo-Riemannian Novikov algebras.

  16. MRT of scaphoid pseudo-arthrosis using Gd-DTPA. Staging and clinical correlation

    International Nuclear Information System (INIS)

    Vogl, T.J.; Beutel, F.; Wilhelm, K.; Tempka, A.; Schedel, H.; Haas, R.; Felix, R.

    1994-01-01

    During a period of two years, 134 patients with pseudo-arthrosis of the scaphoid were examined by conventional radiography and by MRI in the course of a prospective study. The aim of the study was to define radiological staging using contrast enhanced MRI in order to improve the prognostic criteria. All MRI examinations were carried out with a 1.5 Tesla scanner (SP63) using a surface coil and T 1 weighted spin echo sequences in sagittal and frontal projection and frontal FLASH T 2 -sequences and axial spin echo T 2 sequences. The T 1 weighted SE sequences in frontal projection were carried out before and after iv contrast (0.1 mmol Gd-DTPA/kg KG). All sequences were compared with conventional radiographs and the operative findings. Eight patients in stage 0 showed high signal intensity of both fragments in T 1 weighted SE sequences and at surgery there was good vascularisation. In 22 cases there was reduced signal intensity in at least one fragment (stage I). 45 patients with scaphoid pseudo-arthrosis showed complete signal loss but marked contrast uptake with still vital nuclei at surgery (stage II). In 22 patients, there was no increase in signal intensity after contrast and complete loss of vitality of the fragments at surgery. Staging was not possible in 37 patients because of previous operative intervention. The use of contrast enhanced MRI provides additional information compared with conventional radiography or plain MRI. (orig.) [de

  17. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    International Nuclear Information System (INIS)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-01-01

    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  18. Towards the generation of random bits at terahertz rates based on a chaotic semiconductor laser

    Science.gov (United States)

    Kanter, Ido; Aviad, Yaara; Reidler, Igor; Cohen, Elad; Rosenbluh, Michael

    2010-06-01

    Random bit generators (RBGs) are important in many aspects of statistical physics and crucial in Monte-Carlo simulations, stochastic modeling and quantum cryptography. The quality of a RBG is measured by the unpredictability of the bit string it produces and the speed at which the truly random bits can be generated. Deterministic algorithms generate pseudo-random numbers at high data rates as they are only limited by electronic hardware speed, but their unpredictability is limited by the very nature of their deterministic origin. It is widely accepted that the core of any true RBG must be an intrinsically non-deterministic physical process, e.g. measuring thermal noise from a resistor. Owing to low signal levels, such systems are highly susceptible to bias, introduced by amplification, and to small nonrandom external perturbations resulting in a limited generation rate, typically less than 100M bit/s. We present a physical random bit generator, based on a chaotic semiconductor laser, having delayed optical feedback, which operates reliably at rates up to 300Gbit/s. The method uses a high derivative of the digitized chaotic laser intensity and generates the random sequence by retaining a number of the least significant bits of the high derivative value. The method is insensitive to laser operational parameters and eliminates the necessity for all external constraints such as incommensurate sampling rates and laser external cavity round trip time. The randomness of long bit strings is verified by standard statistical tests.

  19. Security of Semi-Device-Independent Random Number Expansion Protocols.

    Science.gov (United States)

    Li, Dan-Dan; Wen, Qiao-Yan; Wang, Yu-Kun; Zhou, Yu-Qian; Gao, Fei

    2015-10-27

    Semi-device-independent random number expansion (SDI-RNE) protocols require some truly random numbers to generate fresh ones, with making no assumptions on the internal working of quantum devices except for the dimension of the Hilbert space. The generated randomness is certified by non-classical correlation in the prepare-and-measure test. Until now, the analytical relations between the amount of the generated randomness and the degree of non-classical correlation, which are crucial for evaluating the security of SDI-RNE protocols, are not clear under both the ideal condition and the practical one. In the paper, first, we give the analytical relation between the above two factors under the ideal condition. As well, we derive the analytical relation under the practical conditions, where devices' behavior is not independent and identical in each round and there exists deviation in estimating the non-classical behavior of devices. Furthermore, we choose a different randomness extractor (i.e., two-universal random function) and give the security proof.

  20. Generalized statistical convergence of order β for sequences of fuzzy numbers

    Science.gov (United States)

    Altınok, Hıfsı; Karakaş, Abdulkadir; Altın, Yavuz

    2018-01-01

    In the present paper, we introduce the concepts of Δm-statistical convergence of order β for sequences of fuzzy numbers and strongly Δm-summable of order β for sequences of fuzzy numbers by using a modulus function f and taking supremum on metric d for 0 < β ≤ 1 and give some inclusion relations between them.

  1. Perisplenic Pseudo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Heon; Cho, Sin Young; Suh, Hong Kil; Kim, Ji Hyeon; Choi, Chul Soon; Lee, Eil Seong; Kang, Ik Won [Hallym University College of Medicine, Chuncheon (Korea, Republic of)

    1995-12-15

    Perisplenic pseudo 'fluid collection' is one of the rare normal variations. Its frequency and sonographic findings for the differentiation from true perisplenic fluid collection have not been well described. Thus, we performed this study. The examination was performed with special attention to the splenic and perisplenic areas. We excluded patients with proved or suspected liver cirrhosis, pancreatic diseases,and abdominal trauma from the study population, but did not exclude the patients with chronic hepatitis and the carriers of hepatitis B virus. Of the examined 4794 patients, 8 cases showed perisplenic pseudo 'fluid collection'. Two of them were confirmed with computed tomography and liver scan, and six were inferred from the fact proved to be a part of the left lobe extension of the liver by tracing with the transducer. All cases ofperisplenic pseudo 'fluid collection' showed hypoechoic crescent area with hepatic ductal echoes. Perisplenic pseudo 'fluid collection' is very rare. The helpful findings for the differentiation from true fluid collection are the hepatic ductal echoes seen in the normal liver, proof of continuation into remained voluminous liver by tracing with the transducer. High awareness of it would prevent further unnecessary studies such as computed tomography and liver scan

  2. The average crossing number of equilateral random polygons

    International Nuclear Information System (INIS)

    Diao, Y; Dobay, A; Kusner, R B; Millett, K; Stasiak, A

    2003-01-01

    In this paper, we study the average crossing number of equilateral random walks and polygons. We show that the mean average crossing number ACN of all equilateral random walks of length n is of the form (3/16)n ln n + O(n). A similar result holds for equilateral random polygons. These results are confirmed by our numerical studies. Furthermore, our numerical studies indicate that when random polygons of length n are divided into individual knot types, the for each knot type K can be described by a function of the form = a(n-n 0 )ln(n-n 0 ) + b(n-n 0 ) + c where a, b and c are constants depending on K and n 0 is the minimal number of segments required to form K. The profiles diverge from each other, with more complex knots showing higher than less complex knots. Moreover, the profiles intersect with the profile of all closed walks. These points of intersection define the equilibrium length of K, i.e., the chain length n e (K) at which a statistical ensemble of configurations with given knot type K-upon cutting, equilibration and reclosure to a new knot type K'-does not show a tendency to increase or decrease . This concept of equilibrium length seems to be universal, and applies also to other length-dependent observables for random knots, such as the mean radius of gyration g >

  3. Statistical distributions of optimal global alignment scores of random protein sequences

    Directory of Open Access Journals (Sweden)

    Tang Jiaowei

    2005-10-01

    Full Text Available Abstract Background The inference of homology from statistically significant sequence similarity is a central issue in sequence alignments. So far the statistical distribution function underlying the optimal global alignments has not been completely determined. Results In this study, random and real but unrelated sequences prepared in six different ways were selected as reference datasets to obtain their respective statistical distributions of global alignment scores. All alignments were carried out with the Needleman-Wunsch algorithm and optimal scores were fitted to the Gumbel, normal and gamma distributions respectively. The three-parameter gamma distribution performs the best as the theoretical distribution function of global alignment scores, as it agrees perfectly well with the distribution of alignment scores. The normal distribution also agrees well with the score distribution frequencies when the shape parameter of the gamma distribution is sufficiently large, for this is the scenario when the normal distribution can be viewed as an approximation of the gamma distribution. Conclusion We have shown that the optimal global alignment scores of random protein sequences fit the three-parameter gamma distribution function. This would be useful for the inference of homology between sequences whose relationship is unknown, through the evaluation of gamma distribution significance between sequences.

  4. Random number generation in bilingual Balinese and German students: preliminary findings from an exploratory cross-cultural study.

    Science.gov (United States)

    Strenge, Hans; Lesmana, Cokorda Bagus Jaya; Suryani, Luh Ketut

    2009-08-01

    Verbal random number generation is a procedurally simple task to assess executive function and appears ideally suited for the use under diverse settings in cross-cultural research. The objective of this study was to examine ethnic group differences between young adults in Bali (Indonesia) and Kiel (Germany): 50 bilingual healthy students, 30 Balinese and 20 Germans, attempted to generate a random sequence of the digits 1 to 9. In Balinese participants, randomization was done in Balinese (native language L1) and Indonesian (first foreign language L2), in German subjects in the German (L1) and English (L2) languages. 10 of 30 Balinese (33%), but no Germans, were unable to inhibit habitual counting in more than half of the responses. The Balinese produced significantly more nonrandom responses than the Germans with higher rates of counting and significantly less occurrence of the digits 2 and 3 in L1 compared with L2. Repetition and cycling behavior did not differ between the four languages. The findings highlight the importance of taking into account culture-bound psychosocial factors for Balinese individuals when administering and interpreting a random number generation test.

  5. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Jackson Stuart

    2010-04-01

    Full Text Available Abstract Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value, and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  6. Randomized quasi-Monte Carlo simulation of fast-ion thermalization

    Science.gov (United States)

    Höök, L. J.; Johnson, T.; Hellsten, T.

    2012-01-01

    This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to {O}(N^{-1}) , where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 214.

  7. Comparison of a quantum random number generator with pseudorandom number generators for their use in molecular Monte Carlo simulations.

    Science.gov (United States)

    Ghersi, Dario; Parakh, Abhishek; Mezei, Mihaly

    2017-12-05

    Four pseudorandom number generators were compared with a physical, quantum-based random number generator using the NIST suite of statistical tests, which only the quantum-based random number generator could successfully pass. We then measured the effect of the five random number generators on various calculated properties in different Markov-chain Monte Carlo simulations. Two types of systems were tested: conformational sampling of a small molecule in aqueous solution and liquid methanol under constant temperature and pressure. The results show that poor quality pseudorandom number generators produce results that deviate significantly from those obtained with the quantum-based random number generator, particularly in the case of the small molecule in aqueous solution setup. In contrast, the widely used Mersenne Twister pseudorandom generator and a 64-bit Linear Congruential Generator with a scrambler produce results that are statistically indistinguishable from those obtained with the quantum-based random number generator. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Conformal maps between pseudo-Finsler spaces

    Science.gov (United States)

    Voicu, Nicoleta

    The paper aims to initiate a systematic study of conformal mappings between Finsler spacetimes and, more generally, between pseudo-Finsler spaces. This is done by extending several results in pseudo-Riemannian geometry which are necessary for field-theoretical applications and by proposing a technique that reduces some problems involving pseudo-Finslerian conformal vector fields to their pseudo-Riemannian counterparts. Also, we point out, by constructing classes of examples, that conformal groups of flat (locally Minkowskian) pseudo-Finsler spaces can be much richer than both flat Finslerian and pseudo-Euclidean conformal groups.

  9. Learning Random Numbers: A Matlab Anomaly

    Czech Academy of Sciences Publication Activity Database

    Savický, Petr; Robnik-Šikonja, M.

    2008-01-01

    Roč. 22, č. 3 (2008), s. 254-265 ISSN 0883-9514 R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : random number s * machine learning * classification * attribute evaluation * regression Subject RIV: BA - General Mathematics Impact factor: 0.795, year: 2008

  10. Global repeat discovery and estimation of genomic copy number in a large, complex genome using a high-throughput 454 sequence survey

    Directory of Open Access Journals (Sweden)

    Varala Kranthi

    2007-05-01

    Full Text Available Abstract Background Extensive computational and database tools are available to mine genomic and genetic databases for model organisms, but little genomic data is available for many species of ecological or agricultural significance, especially those with large genomes. Genome surveys using conventional sequencing techniques are powerful, particularly for detecting sequences present in many copies per genome. However these methods are time-consuming and have potential drawbacks. High throughput 454 sequencing provides an alternative method by which much information can be gained quickly and cheaply from high-coverage surveys of genomic DNA. Results We sequenced 78 million base-pairs of randomly sheared soybean DNA which passed our quality criteria. Computational analysis of the survey sequences provided global information on the abundant repetitive sequences in soybean. The sequence was used to determine the copy number across regions of large genomic clones or contigs and discover higher-order structures within satellite repeats. We have created an annotated, online database of sequences present in multiple copies in the soybean genome. The low bias of pyrosequencing against repeat sequences is demonstrated by the overall composition of the survey data, which matches well with past estimates of repetitive DNA content obtained by DNA re-association kinetics (Cot analysis. Conclusion This approach provides a potential aid to conventional or shotgun genome assembly, by allowing rapid assessment of copy number in any clone or clone-end sequence. In addition, we show that partial sequencing can provide access to partial protein-coding sequences.

  11. Using Computer-Generated Random Numbers to Calculate the Lifetime of a Comet.

    Science.gov (United States)

    Danesh, Iraj

    1991-01-01

    An educational technique to calculate the lifetime of a comet using software-generated random numbers is introduced to undergraduate physiques and astronomy students. Discussed are the generation and eligibility of the required random numbers, background literature related to the problem, and the solution to the problem using random numbers.…

  12. Solution-Processed Carbon Nanotube True Random Number Generator.

    Science.gov (United States)

    Gaviria Rojas, William A; McMorrow, Julian J; Geier, Michael L; Tang, Qianying; Kim, Chris H; Marks, Tobin J; Hersam, Mark C

    2017-08-09

    With the growing adoption of interconnected electronic devices in consumer and industrial applications, there is an increasing demand for robust security protocols when transmitting and receiving sensitive data. Toward this end, hardware true random number generators (TRNGs), commonly used to create encryption keys, offer significant advantages over software pseudorandom number generators. However, the vast network of devices and sensors envisioned for the "Internet of Things" will require small, low-cost, and mechanically flexible TRNGs with low computational complexity. These rigorous constraints position solution-processed semiconducting single-walled carbon nanotubes (SWCNTs) as leading candidates for next-generation security devices. Here, we demonstrate the first TRNG using static random access memory (SRAM) cells based on solution-processed SWCNTs that digitize thermal noise to generate random bits. This bit generation strategy can be readily implemented in hardware with minimal transistor and computational overhead, resulting in an output stream that passes standardized statistical tests for randomness. By using solution-processed semiconducting SWCNTs in a low-power, complementary architecture to achieve TRNG, we demonstrate a promising approach for improving the security of printable and flexible electronics.

  13. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition.

    Science.gov (United States)

    Chen, Wei; Lei, Tian-Yu; Jin, Dian-Chuan; Lin, Hao; Chou, Kuo-Chen

    2014-07-01

    The pseudo oligonucleotide composition, or pseudo K-tuple nucleotide composition (PseKNC), can be used to represent a DNA or RNA sequence with a discrete model or vector yet still keep considerable sequence order information, particularly the global or long-range sequence order information, via the physicochemical properties of its constituent oligonucleotides. Therefore, the PseKNC approach may hold very high potential for enhancing the power in dealing with many problems in computational genomics and genome sequence analysis. However, dealing with different DNA or RNA problems may need different kinds of PseKNC. Here, we present a flexible and user-friendly web server for PseKNC (at http://lin.uestc.edu.cn/pseknc/default.aspx) by which users can easily generate many different modes of PseKNC according to their need by selecting various parameters and physicochemical properties. Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the current web server to generate their desired PseKNC without the need to follow the complicated mathematical equations, which are presented in this article just for the integrity of PseKNC formulation and its development. It is anticipated that the PseKNC web server will become a very useful tool in computational genomics and genome sequence analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Algebra of pseudo-differential operators over C*-algebra

    International Nuclear Information System (INIS)

    Mohammad, N.

    1982-08-01

    Algebras of pseudo-differential operators over C*-algebras are studied for the special case when in Hormander class Ssub(rho,delta)sup(m)(Ω) Ω = Rsup(n); rho = 1, delta = 0, m any real number, and the C*-algebra is infinite dimensional non-commutative. The space B, i.e. the set of A-valued C*-functions in Rsup(n) (or Rsup(n) x Rsup(n)) whose derivatives are all bounded, plays an important role. A denotes C*-algebra. First the operator class Ssub(phi,0)sup(m) is defined, and through it, the class Lsub(1,0)sup(m) of pseudo-differential operators. Then the basic asymptotic expansion theorems concerning adjoint and product of operators of class Ssub(1,0)sup(m) are stated. Finally, proofs are given of L 2 -continuity theorem and the main theorem, which states that algebra of all pseudo-differential operators over C*-algebras is itself C*-algebra

  15. Events per variable for risk differences and relative risks using pseudo-observations

    DEFF Research Database (Denmark)

    Hansen, Stefan Nygaard; Andersen, Per Kragh; Parner, Erik Thorlund

    2014-01-01

    A method based on pseudo-observations has been proposed for direct regression modeling of functionals of interest with right-censored data, including the survival function, the restricted mean and the cumulative incidence function in competing risks. The models, once the pseudo-observations have...... been computed, can be fitted using standard generalized estimating equation software. Regression models can however yield problematic results if the number of covariates is large in relation to the number of events observed. Guidelines of events per variable are often used in practice. These rules...

  16. An X-ray CCD signal generator with true random arrival time

    International Nuclear Information System (INIS)

    Huo Jia; Xu Yuming; Chen Yong; Cui Weiwei; Li Wei; Zhang Ziliang; Han Dawei; Wang Yusan; Wang Juan

    2011-01-01

    An FPGA-based true random signal generator with adjustable amplitude and exponential distribution of time interval is presented. Since traditional true random number generators (TRNG) are resource costly and difficult to transplant, we employed a method of random number generation based on jitter and phase noise in ring oscillators formed by gates in an FPGA. In order to improve the random characteristics, a combination of two different pseudo-random processing circuits is used for post processing. The effects of the design parameters, such as sample frequency are discussed. Statistical tests indicate that the generator can well simulate the timing behavior of random signals with Poisson distribution. The X-ray CCD signal generator will be used in debugging the CCD readout system of the Low Energy X-ray Instrument onboard the Hard X-ray Modulation Telescope (HXMT). (authors)

  17. Using Random Numbers in Science Research Activities.

    Science.gov (United States)

    Schlenker, Richard M.; And Others

    1996-01-01

    Discusses the importance of science process skills and describes ways to select sets of random numbers for selection of subjects for a research study in an unbiased manner. Presents an activity appropriate for grades 5-12. (JRH)

  18. Realistic noise-tolerant randomness amplification using finite number of devices

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Ramanathan, Ravishankar; Grudka, Andrzej; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Szarek, Tomasz; Wojewódka, Hanna

    2016-04-01

    Randomness is a fundamental concept, with implications from security of modern data systems, to fundamental laws of nature and even the philosophy of science. Randomness is called certified if it describes events that cannot be pre-determined by an external adversary. It is known that weak certified randomness can be amplified to nearly ideal randomness using quantum-mechanical systems. However, so far, it was unclear whether randomness amplification is a realistic task, as the existing proposals either do not tolerate noise or require an unbounded number of different devices. Here we provide an error-tolerant protocol using a finite number of devices for amplifying arbitrary weak randomness into nearly perfect random bits, which are secure against a no-signalling adversary. The correctness of the protocol is assessed by violating a Bell inequality, with the degree of violation determining the noise tolerance threshold. An experimental realization of the protocol is within reach of current technology.

  19. Exploring Monte Carlo Simulation Strategies for Geoscience Applications

    Science.gov (United States)

    Blais, J.; Grebenitcharsky, R.; Zhang, Z.

    2008-12-01

    Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on [0, 1], can be very different depending on the selection of pseudo-random number (PRN), quasi-random number (QRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the expected error variances are generally of different orders for the same number of random numbers. A comparative analysis of these three strategies has been carried out for geodetic and related applications in planar and spherical contexts. Based on these computational experiments, conclusions and recommendations concerning their performance and error variances are included.

  20. MRI-based treatment planning with pseudo CT generated through atlas registration

    International Nuclear Information System (INIS)

    Uh, Jinsoo; Merchant, Thomas E.; Hua, Chiaho; Li, Yimei; Li, Xingyu

    2014-01-01

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the

  1. MRI-based treatment planning with pseudo CT generated through atlas registration

    Energy Technology Data Exchange (ETDEWEB)

    Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Hua, Chiaho [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States); Li, Yimei; Li, Xingyu [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee 38105 (United States)

    2014-05-15

    Purpose: To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. Methods: A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. Results: The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787–0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%–98.7%) satisfied the criteria of chi-evaluation (<2% maximum dose and 2 mm range). The dose to 95% of the volume and the

  2. Some Double Sequence Spaces of Fuzzy Real Numbers of Paranormed Type

    Directory of Open Access Journals (Sweden)

    Bipul Sarma

    2013-01-01

    Full Text Available We study different properties of convergent, null, and bounded double sequence spaces of fuzzy real numbers like completeness, solidness, sequence algebra, symmetricity, convergence-free, and so forth. We prove some inclusion results too.

  3. Random Number Generation for High Performance Computing

    Science.gov (United States)

    2015-01-01

    number streams, a quality metric for the parallel random number streams. * * * * * Atty. Dkt . No.: 5660-14400 Customer No. 35690 Eric B. Meyertons...responsibility to ensure timely payment of maintenance fees when due. Pagel of3 PTOL-85 (Rev. 02/11) Atty. Dkt . No.: 5660-14400 Page 1 Meyertons...with each subtask executed by a separate thread or process (henceforth, process). Each process has Atty. Dkt . No.: 5660-14400 Page 2 Meyertons

  4. MO-F-CAMPUS-J-05: Toward MRI-Only Radiotherapy: Novel Tissue Segmentation and Pseudo-CT Generation Techniques Based On T1 MRI Sequences

    Energy Technology Data Exchange (ETDEWEB)

    Aouadi, S; McGarry, M; Hammoud, R; Torfeh, T; Perkins, G; Al-Hammadi, N [Hamad Medical Corporation, NCCCR, Doha (Qatar)

    2015-06-15

    Purpose: To develop and validate a 4 class tissue segmentation approach (air cavities, background, bone and soft-tissue) on T1 -weighted brain MRI and to create a pseudo-CT for MRI-only radiation therapy verification. Methods: Contrast-enhanced T1-weighted fast-spin-echo sequences (TR = 756ms, TE= 7.152ms), acquired on a 1.5T GE MRI-Simulator, are used.MRIs are firstly pre-processed to correct for non uniformity using the non parametric, non uniformity intensity normalization algorithm. Subsequently, a logarithmic inverse scaling log(1/image) is applied, prior to segmentation, to better differentiate bone and air from soft-tissues. Finally, the following method is enrolled to classify intensities into air cavities, background, bone and soft-tissue:Thresholded region growing with seed points in image corners is applied to get a mask of Air+Bone+Background. The background is, afterward, separated by the scan-line filling algorithm. The air mask is extracted by morphological opening followed by a post-processing based on knowledge about air regions geometry. The remaining rough bone pre-segmentation is refined by applying 3D geodesic active contours; bone segmentation evolves by the sum of internal forces from contour geometry and external force derived from image gradient magnitude.Pseudo-CT is obtained by assigning −1000HU to air and background voxels, performing linear mapping of soft-tissue MR intensities in [-400HU, 200HU] and inverse linear mapping of bone MR intensities in [200HU, 1000HU]. Results: Three brain patients having registered MRI and CT are used for validation. CT intensities classification into 4 classes is performed by thresholding. Dice and misclassification errors are quantified. Correct classifications for soft-tissue, bone, and air are respectively 89.67%, 77.8%, and 64.5%. Dice indices are acceptable for bone (0.74) and soft-tissue (0.91) but low for air regions (0.48). Pseudo-CT produces DRRs with acceptable clinical visual agreement to CT

  5. Pseudo-spin band in the odd-odd nucleus sup 1 sup 7 sup 2 Lu

    CERN Document Server

    Venkova, T; Gast, W; Podsvirova, E O; Jäger, H M; Mihailescu, L; Bazzacco, D; Menegazzo, R; Lunardi, S; Alvarez, C R; Ur, C; Martínez, T; Angelis, G D; Axiotis, M; Napoli, D; Urban, W; Rzaca-Urban, T; Frauendorf, S

    2003-01-01

    High-spin states in the odd-odd nucleus sup 1 sup 7 sup 2 Lu have been populated in a sup 1 sup 7 sup 0 Er( sup 7 Li,5n) reaction and the emitted gamma-radiation was detected with the GASP array. Two sequences of a new identical band have been observed with the transition energies in the favoured and unfavoured sequences being identical within approx 3 keV at low spins and approx 1 keV at high spins over the whole observed spin range. An interpretation as a pseudo-spin singlet band of pi 1/2 sup - [541] x nu 1/2 sup - [420] configuration is proposed. It represents the best example of a pseudo-spin singlet band in normal deformed nuclei known until now.

  6. Randomized quasi-Monte Carlo simulation of fast-ion thermalization

    International Nuclear Information System (INIS)

    Höök, L J; Johnson, T; Hellsten, T

    2012-01-01

    This work investigates the applicability of the randomized quasi-Monte Carlo method for simulation of fast-ion thermalization processes in fusion plasmas, e.g. for simulation of neutral beam injection and radio frequency heating. In contrast to the standard Monte Carlo method, the quasi-Monte Carlo method uses deterministic numbers instead of pseudo-random numbers and has a statistical weak convergence close to O(N -1 ), where N is the number of markers. We have compared different quasi-Monte Carlo methods for a neutral beam injection scenario, which is solved by many realizations of the associated stochastic differential equation, discretized with the Euler-Maruyama scheme. The statistical convergence of the methods is measured for time steps up to 2 14 . (paper)

  7. Algebra of pseudo-differential C*-operators

    International Nuclear Information System (INIS)

    Mohammad, N.

    1987-11-01

    In this paper the algebra of pseudo-differential operators is studied in the framework of C * -algebras. It is proved that every pseudo-differential operator of order m admits an adjoint operator, in this case, which is again a pseudo-differential operator. Consequently, the space of all pseudo-differential operators on a compact manifold is an involutive algebra. 10 refs

  8. Some double sequence spaces of interval numbers defined by Orlicz function

    Directory of Open Access Journals (Sweden)

    Ayhan Esi

    2014-10-01

    Full Text Available In this paper we introduce some interval valued double sequence spaces defined by Orlicz function and study different properties of these spaces like inclusion relations, solidity, etc. We establish some inclusion relations among them. Also we introduce the concept of double statistical convergence for interval number sequences and give an inclusion relation between interval valued double sequence spaces.

  9. Pseudo-Haptic Feedback in Teleoperation.

    Science.gov (United States)

    Neupert, Carsten; Matich, Sebastian; Scherping, Nick; Kupnik, Mario; Werthschutzky, Roland; Hatzfeld, Christian

    2016-01-01

    In this paper, we develop possible realizations of pseudo-haptic feedback in teleoperation systems based on existing works for pseudo-haptic feedback in virtual reality and the intended applications. We derive four potential factors affecting the performance of haptic feedback (calculation operator, maximum displacement, offset force, and scaling factor), which are analyzed in three compliance identification experiments. First, we analyze the principle usability of pseudo-haptic feedback by comparing information transfer measures for teleoperation and direct interaction. Pseudo-haptic interaction yields well above-chance performance, while direct interaction performs almost perfectly. In order to optimize pseudo-haptic feedback, in the second study we perform a full-factorial experimental design with 36 subjects performing 6,480 trials with 36 different treatments. Information transfer ranges from 0.68 bit to 1.72 bit in a task with a theoretical maximum of 2.6 bit, with a predominant effect of the calculation operator and a minor effect of the maximum displacement. In a third study, short- and long-term learning effects are analyzed. Learning effects regarding the performance of pseudo-haptic feedback cannot be observed for single-day experiments. Tests over 10 days show a maximum increase in information transfer of 0.8 bit. The results show the feasibility of pseudo-haptic feedback for teleoperation and can be used as design basis for task-specific systems.

  10. Estimation of equivalent dose and its uncertainty in the OSL SAR protocol when count numbers do not follow a Poisson distribution

    International Nuclear Information System (INIS)

    Bluszcz, Andrzej; Adamiec, Grzegorz; Heer, Aleksandra J.

    2015-01-01

    The current work focuses on the estimation of equivalent dose and its uncertainty using the single aliquot regenerative protocol in optically stimulated luminescence measurements. The authors show that the count numbers recorded with the use of photomultiplier tubes are well described by negative binomial distributions, different ones for background counts and photon induced counts. This fact is then exploited in pseudo-random count number generation and simulations of D e determination assuming a saturating exponential growth. A least squares fitting procedure is applied using different types of weights to determine whether the obtained D e 's and their error estimates are unbiased and accurate. A weighting procedure is suggested that leads to almost unbiased D e estimates. It is also shown that the assumption of Poisson distribution in D e estimation may lead to severe underestimation of the D e error. - Highlights: • Detailed analysis of statistics of count numbers in luminescence readers. • Generation of realistically scattered pseudo-random numbers of counts in luminescence measurements. • A practical guide for stringent analysis of D e values and errors assessment.

  11. Digital chaotic sequence generator based on coupled chaotic systems

    International Nuclear Information System (INIS)

    Shu-Bo, Liu; Jing, Sun; Jin-Shuo, Liu; Zheng-Quan, Xu

    2009-01-01

    Chaotic systems perform well as a new rich source of cryptography and pseudo-random coding. Unfortunately their digital dynamical properties would degrade due to the finite computing precision. Proposed in this paper is a modified digital chaotic sequence generator based on chaotic logistic systems with a coupling structure where one chaotic subsystem generates perturbation signals to disturb the control parameter of the other one. The numerical simulations show that the length of chaotic orbits, the output distribution of chaotic system, and the security of chaotic sequences have been greatly improved. Moreover the chaotic sequence period can be extended at least by one order of magnitude longer than that of the uncoupled logistic system and the difficulty in decrypting increases 2 128 *2 128 times indicating that the dynamical degradation of digital chaos is effectively improved. A field programmable gate array (FPGA) implementation of an algorithm is given and the corresponding experiment shows that the output speed of the generated chaotic sequences can reach 571.4 Mbps indicating that the designed generator can be applied to the real-time video image encryption. (general)

  12. Comparing Ecological and Genetic Diversity Within the Marine Diatom Genus Pseudo-nitzschia: A Multiregional Synthesis

    Science.gov (United States)

    Hubbard, K.; Bruzek, S.

    2016-02-01

    The globally distributed marine diatom genus Pseudo-nitzschia consists of approximately 40 species, more than half of which occur in US coastal waters. Here, sensitive genetic tools targeting a variable portion of the internal transcribed spacer 1 (ITS1) region of the rRNA gene were used to assess Pseudo-nitzschia spp. diversity in more than 600 environmental DNA samples collected from US Atlantic, Pacific, and Gulf of Mexico waters. Community-based approaches employed genus-specific primers for environmental DNA fingerprinting and targeted sequencing. For the Gulf of Mexico samples especially, a nested PCR approach (with or without degenerate primers) improved resolution of species diversity. To date, more than 40 unique ITS1 amplicon sizes have been repeatedly observed in ITS1 fingerprints. Targeted sequencing of environmental DNA as well as single chains isolated from live samples indicate that many of these represent novel and known inter- and intra-specific Pseudo-nitzschia diversity. A few species (e.g., P. pungens, P. cuspidata) occur across all three regions, whereas other species and intraspecific variants occurred at local to regional spatial scales only. Generally, species frequently co-occur in complex assemblages, and transitions in Pseudo-nitzschia community composition occur seasonally, prior to bloom initiation, and across (cross-shelf, latitudinal, and vertical) environmental gradients. These observations highlight the dynamic nature of diatom community composition in the marine environment and the importance of classifying diversity at relevant ecological and/or taxonomic scales.

  13. Improved diagonal queue medical image steganography using Chaos theory, LFSR, and Rabin cryptosystem.

    Science.gov (United States)

    Jain, Mamta; Kumar, Anil; Choudhary, Rishabh Charan

    2017-06-01

    In this article, we have proposed an improved diagonal queue medical image steganography for patient secret medical data transmission using chaotic standard map, linear feedback shift register, and Rabin cryptosystem, for improvement of previous technique (Jain and Lenka in Springer Brain Inform 3:39-51, 2016). The proposed algorithm comprises four stages, generation of pseudo-random sequences (pseudo-random sequences are generated by linear feedback shift register and standard chaotic map), permutation and XORing using pseudo-random sequences, encryption using Rabin cryptosystem, and steganography using the improved diagonal queues. Security analysis has been carried out. Performance analysis is observed using MSE, PSNR, maximum embedding capacity, as well as by histogram analysis between various Brain disease stego and cover images.

  14. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of

  15. Estados de pseudo-Cushing

    OpenAIRE

    Romanholi, Daniella J.P.C.; Salgado, Luiz Roberto

    2007-01-01

    Síndromes de pseudo-Cushing são um grupo heterogêneo de doenças, incluindo alcoolismo, anorexia nervosa, obesidade visceral e depressão, que compartilham muitas das características clínicas e bioquímicas da síndrome de Cushing. Os mecanismos responsáveis para a gênese da síndrome de pseudo-Cushing são fracamente compreendidos. Tem sido sugerido que o hipercortisolismo da síndrome de pseudo-Cushing pode ser resultante do aumento da secreção do hormônio liberador de corticotrofina (CRH) hipotal...

  16. Automatic generation of randomized trial sequences for priming experiments.

    Science.gov (United States)

    Ihrke, Matthias; Behrendt, Jörg

    2011-01-01

    In most psychological experiments, a randomized presentation of successive displays is crucial for the validity of the results. For some paradigms, this is not a trivial issue because trials are interdependent, e.g., priming paradigms. We present a software that automatically generates optimized trial sequences for (negative-) priming experiments. Our implementation is based on an optimization heuristic known as genetic algorithms that allows for an intuitive interpretation due to its similarity to natural evolution. The program features a graphical user interface that allows the user to generate trial sequences and to interactively improve them. The software is based on freely available software and is released under the GNU General Public License.

  17. Experimentally Generated Random Numbers Certified by the Impossibility of Superluminal Signaling

    Science.gov (United States)

    Bierhorst, Peter; Shalm, Lynden K.; Mink, Alan; Jordan, Stephen; Liu, Yi-Kai; Rommal, Andrea; Glancy, Scott; Christensen, Bradley; Nam, Sae Woo; Knill, Emanuel

    Random numbers are an important resource for applications such as numerical simulation and secure communication. However, it is difficult to certify whether a physical random number generator is truly unpredictable. Here, we exploit the phenomenon of quantum nonlocality in a loophole-free photonic Bell test experiment to obtain data containing randomness that cannot be predicted by any theory that does not also allow the sending of signals faster than the speed of light. To certify and quantify the randomness, we develop a new protocol that performs well in an experimental regime characterized by low violation of Bell inequalities. Applying an extractor function to our data, we obtain 256 new random bits, uniform to within 10- 3 .

  18. Random Tagging Genotyping by Sequencing (rtGBS, an Unbiased Approach to Locate Restriction Enzyme Sites across the Target Genome.

    Directory of Open Access Journals (Sweden)

    Elena Hilario

    Full Text Available Genotyping by sequencing (GBS is a restriction enzyme based targeted approach developed to reduce the genome complexity and discover genetic markers when a priori sequence information is unavailable. Sufficient coverage at each locus is essential to distinguish heterozygous from homozygous sites accurately. The number of GBS samples able to be pooled in one sequencing lane is limited by the number of restriction sites present in the genome and the read depth required at each site per sample for accurate calling of single-nucleotide polymorphisms. Loci bias was observed using a slight modification of the Elshire et al.some restriction enzyme sites were represented in higher proportions while others were poorly represented or absent. This bias could be due to the quality of genomic DNA, the endonuclease and ligase reaction efficiency, the distance between restriction sites, the preferential amplification of small library restriction fragments, or bias towards cluster formation of small amplicons during the sequencing process. To overcome these issues, we have developed a GBS method based on randomly tagging genomic DNA (rtGBS. By randomly landing on the genome, we can, with less bias, find restriction sites that are far apart, and undetected by the standard GBS (stdGBS method. The study comprises two types of biological replicates: six different kiwifruit plants and two independent DNA extractions per plant; and three types of technical replicates: four samples of each DNA extraction, stdGBS vs. rtGBS methods, and two independent library amplifications, each sequenced in separate lanes. A statistically significant unbiased distribution of restriction fragment size by rtGBS showed that this method targeted 49% (39,145 of BamH I sites shared with the reference genome, compared to only 14% (11,513 by stdGBS.

  19. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations

    International Nuclear Information System (INIS)

    Nie, You-Qi; Liu, Yang; Zhang, Jun; Pan, Jian-Wei; Huang, Leilei; Payne, Frank

    2015-01-01

    The speed of a quantum random number generator is essential for practical applications, such as high-speed quantum key distribution systems. Here, we push the speed of a quantum random number generator to 68 Gbps by operating a laser around its threshold level. To achieve the rate, not only high-speed photodetector and high sampling rate are needed but also a very stable interferometer is required. A practical interferometer with active feedback instead of common temperature control is developed to meet the requirement of stability. Phase fluctuations of the laser are measured by the interferometer with a photodetector and then digitalized to raw random numbers with a rate of 80 Gbps. The min-entropy of the raw data is evaluated by modeling the system and is used to quantify the quantum randomness of the raw data. The bias of the raw data caused by other signals, such as classical and detection noises, can be removed by Toeplitz-matrix hashing randomness extraction. The final random numbers can pass through the standard randomness tests. Our demonstration shows that high-speed quantum random number generators are ready for practical usage

  20. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins.

    Science.gov (United States)

    Ramsey, Andrew J; Russell, Lance C; Chinkers, Michael

    2009-10-12

    Steroid-hormone-receptor maturation is a multi-step process that involves several TPR (tetratricopeptide repeat) proteins that bind to the maturation complex via the C-termini of hsp70 (heat-shock protein 70) and hsp90 (heat-shock protein 90). We produced a random T7 peptide library to investigate the roles played by the C-termini of the two heat-shock proteins in the TPR-hsp interactions. Surprisingly, phages with the MEEVD sequence, found at the C-terminus of hsp90, were not recovered from our biopanning experiments. However, two groups of phages were isolated that bound relatively tightly to HsPP5 (Homo sapiens protein phosphatase 5) TPR. Multiple copies of phages with a C-terminal sequence of LFG were isolated. These phages bound specifically to the TPR domain of HsPP5, although mutation studies produced no evidence that they bound to the domain's hsp90-binding groove. However, the most abundant family obtained in the initial screen had an aspartate residue at the C-terminus. Two members of this family with a C-terminal sequence of VD appeared to bind with approximately the same affinity as the hsp90 C-12 control. A second generation pseudo-random phage library produced a large number of phages with an LD C-terminus. These sequences acted as hsp70 analogues and had relatively low affinities for hsp90-specific TPR domains. Unfortunately, we failed to identify residues near hsp90's C-terminus that impart binding specificity to individual hsp90-TPR interactions. The results suggest that the C-terminal sequences of hsp70 and hsp90 act primarily as non-specific anchors for TPR proteins.

  1. The average inter-crossing number of equilateral random walks and polygons

    International Nuclear Information System (INIS)

    Diao, Y; Dobay, A; Stasiak, A

    2005-01-01

    In this paper, we study the average inter-crossing number between two random walks and two random polygons in the three-dimensional space. The random walks and polygons in this paper are the so-called equilateral random walks and polygons in which each segment of the walk or polygon is of unit length. We show that the mean average inter-crossing number ICN between two equilateral random walks of the same length n is approximately linear in terms of n and we were able to determine the prefactor of the linear term, which is a = 3ln2/8 ∼ 0.2599. In the case of two random polygons of length n, the mean average inter-crossing number ICN is also linear, but the prefactor of the linear term is different from that of the random walks. These approximations apply when the starting points of the random walks and polygons are of a distance ρ apart and ρ is small compared to n. We propose a fitting model that would capture the theoretical asymptotic behaviour of the mean average ICN for large values of ρ. Our simulation result shows that the model in fact works very well for the entire range of ρ. We also study the mean ICN between two equilateral random walks and polygons of different lengths. An interesting result is that even if one random walk (polygon) has a fixed length, the mean average ICN between the two random walks (polygons) would still approach infinity if the length of the other random walk (polygon) approached infinity. The data provided by our simulations match our theoretical predictions very well

  2. Test Pattern Generator for Mixed Mode BIST

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Sik; Lee, Hang Kyu; Kang, Sung Ho [Yonsei University (Korea, Republic of)

    1998-07-01

    As the increasing integrity of VLSI, the BIST (Built-In Self Test) is used as an effective method to test chips. Generally the pseudo-random test pattern generation is used for BIST. But it requires lots of test patterns when there exist random resistant faults. Therefore deterministic testing is an interesting BIST technique due to the minimal number of test patterns and to its high fault coverage. However this is not applicable since the existing deterministic test pattern generators require too much area overhead despite their efficiency. Therefore we propose a mixed test scheme which applies to the circuit under test, a deterministic test sequence followed by a pseudo-random one. This scheme allows the maximum fault coverage detection to be achieved, furthermore the silicon area overhead of the mixed hardware generator can be reduced. The deterministic test generator is made with a finite state machine and a pseudo-random test generator is made with LFSR(linear feedback shift register). The results of ISCAS circuits show that the maximum fault coverage is guaranteed with small number of test set and little hardware overhead. (author). 15 refs., 10 figs., 4 tabs.

  3. DNA based random key generation and management for OTP encryption.

    Science.gov (United States)

    Zhang, Yunpeng; Liu, Xin; Sun, Manhui

    2017-09-01

    One-time pad (OTP) is a principle of key generation applied to the stream ciphering method which offers total privacy. The OTP encryption scheme has proved to be unbreakable in theory, but difficult to realize in practical applications. Because OTP encryption specially requires the absolute randomness of the key, its development has suffered from dense constraints. DNA cryptography is a new and promising technology in the field of information security. DNA chromosomes storing capabilities can be used as one-time pad structures with pseudo-random number generation and indexing in order to encrypt the plaintext messages. In this paper, we present a feasible solution to the OTP symmetric key generation and transmission problem with DNA at the molecular level. Through recombinant DNA technology, by using only sender-receiver known restriction enzymes to combine the secure key represented by DNA sequence and the T vector, we generate the DNA bio-hiding secure key and then place the recombinant plasmid in implanted bacteria for secure key transmission. The designed bio experiments and simulation results show that the security of the transmission of the key is further improved and the environmental requirements of key transmission are reduced. Analysis has demonstrated that the proposed DNA-based random key generation and management solutions are marked by high security and usability. Published by Elsevier B.V.

  4. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  5. GenRGenS: Software for Generating Random Genomic Sequences and Structures

    OpenAIRE

    Ponty , Yann; Termier , Michel; Denise , Alain

    2006-01-01

    International audience; GenRGenS is a software tool dedicated to randomly generating genomic sequences and structures. It handles several classes of models useful for sequence analysis, such as Markov chains, hidden Markov models, weighted context-free grammars, regular expressions and PROSITE expressions. GenRGenS is the only program that can handle weighted context-free grammars, thus allowing the user to model and to generate structured objects (such as RNA secondary structures) of any giv...

  6. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI.

    Science.gov (United States)

    Leynes, Andrew P; Yang, Jaewon; Wiesinger, Florian; Kaushik, Sandeep S; Shanbhag, Dattesh D; Seo, Youngho; Hope, Thomas A; Larson, Peder E Z

    2018-05-01

    Accurate quantification of uptake on PET images depends on accurate attenuation correction in reconstruction. Current MR-based attenuation correction methods for body PET use a fat and water map derived from a 2-echo Dixon MRI sequence in which bone is neglected. Ultrashort-echo-time or zero-echo-time (ZTE) pulse sequences can capture bone information. We propose the use of patient-specific multiparametric MRI consisting of Dixon MRI and proton-density-weighted ZTE MRI to directly synthesize pseudo-CT images with a deep learning model: we call this method ZTE and Dixon deep pseudo-CT (ZeDD CT). Methods: Twenty-six patients were scanned using an integrated 3-T time-of-flight PET/MRI system. Helical CT images of the patients were acquired separately. A deep convolutional neural network was trained to transform ZTE and Dixon MR images into pseudo-CT images. Ten patients were used for model training, and 16 patients were used for evaluation. Bone and soft-tissue lesions were identified, and the SUV max was measured. The root-mean-squared error (RMSE) was used to compare the MR-based attenuation correction with the ground-truth CT attenuation correction. Results: In total, 30 bone lesions and 60 soft-tissue lesions were evaluated. The RMSE in PET quantification was reduced by a factor of 4 for bone lesions (10.24% for Dixon PET and 2.68% for ZeDD PET) and by a factor of 1.5 for soft-tissue lesions (6.24% for Dixon PET and 4.07% for ZeDD PET). Conclusion: ZeDD CT produces natural-looking and quantitatively accurate pseudo-CT images and reduces error in pelvic PET/MRI attenuation correction compared with standard methods. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  7. Pólya number and first return of bursty random walk: Rigorous solutions

    Science.gov (United States)

    Wan, J.; Xu, X. P.

    2012-03-01

    The recurrence properties of random walks can be characterized by Pólya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we investigate Pólya number and first return for bursty random walk on a line, in which the walk has different step size and moving probabilities. Using the concept of the Catalan number, we obtain exact results for first return probability, the average first return time and Pólya number for the first time. We show that Pólya number displays two different functional behavior when the walk deviates from the recurrent point. By utilizing the Lagrange inversion formula, we interpret our findings by transferring Pólya number to the closed-form solutions of an inverse function. We also calculate Pólya number using another approach, which corroborates our results and conclusions. Finally, we consider the recurrence properties and Pólya number of two variations of the bursty random walk model.

  8. High-speed true random number generation based on paired memristors for security electronics

    Science.gov (United States)

    Zhang, Teng; Yin, Minghui; Xu, Changmin; Lu, Xiayan; Sun, Xinhao; Yang, Yuchao; Huang, Ru

    2017-11-01

    True random number generator (TRNG) is a critical component in hardware security that is increasingly important in the era of mobile computing and internet of things. Here we demonstrate a TRNG using intrinsic variation of memristors as a natural source of entropy that is otherwise undesirable in most applications. The random bits were produced by cyclically switching a pair of tantalum oxide based memristors and comparing their resistance values in the off state, taking advantage of the more pronounced resistance variation compared with that in the on state. Using an alternating read scheme in the designed TRNG circuit, the unbiasedness of the random numbers was significantly improved, and the bitstream passed standard randomness tests. The Pt/TaO x /Ta memristors fabricated in this work have fast programming/erasing speeds of ˜30 ns, suggesting a high random number throughput. The approach proposed here thus holds great promise for physically-implemented random number generation.

  9. Astronomical random numbers for quantum foundations experiments

    Science.gov (United States)

    Leung, Calvin; Brown, Amy; Nguyen, Hien; Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason

    2018-04-01

    Photons from distant astronomical sources can be used as a classical source of randomness to improve fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell's inequality and delayed-choice quantum eraser tests inspired by Wheeler's cosmic-scale Mach-Zehnder interferometer gedanken experiment. Such sources of random numbers may also be useful for information-theoretic applications such as key distribution for quantum cryptography. Building on the design of an astronomical random number generator developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017), 10.1103/PhysRevLett.118.060401], in this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars with redshifts up to z =3.9 . With stars, we achieved bit rates of ˜1 ×106Hz/m 2 , limited by saturation of our single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ˜102 and 2 ×103Hz /m2 . For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used to set the measurement settings in a test of the Bell-CHSH inequality.

  10. A fast image encryption system based on chaotic maps with finite precision representation

    International Nuclear Information System (INIS)

    Kwok, H.S.; Tang, Wallace K.S.

    2007-01-01

    In this paper, a fast chaos-based image encryption system with stream cipher structure is proposed. In order to achieve a fast throughput and facilitate hardware realization, 32-bit precision representation with fixed point arithmetic is assumed. The major core of the encryption system is a pseudo-random keystream generator based on a cascade of chaotic maps, serving the purpose of sequence generation and random mixing. Unlike the other existing chaos-based pseudo-random number generators, the proposed keystream generator not only achieves a very fast throughput, but also passes the statistical tests of up-to-date test suite even under quantization. The overall design of the image encryption system is to be explained while detail cryptanalysis is given and compared with some existing schemes

  11. Random number generation based on digital differential chaos

    KAUST Repository

    Zidan, Mohammed A.; Radwan, Ahmed G.; Salama, Khaled N.

    2012-01-01

    In this paper, we present a fully digital differential chaos based random number generator. The output of the digital circuit is proved to be chaotic by calculating the output time series maximum Lyapunov exponent. We introduce a new post processing

  12. SEARCHING FOR LOW WEIGHT PSEUDO-CODEWORDS

    International Nuclear Information System (INIS)

    Chertkov, Michael; Stepanov, Mikhail

    2007-01-01

    Belief Propagation (BP) and Linear Programming (LP) decodings of LDPC codes are discussed. The authors summarize results of instanton/pseudo-codeword approach developed for analysis of the error-floor domain of the codes. Instantons are special, code and decoding specific, configurations of the channel noise contributing most to the Frame-Error-Rate (FER). Instantons are decoded into pseudo-codewords. Instanton/pseudo-codeword with the lowest weight describes the largest Signal-to-Noise-Ratio (SNR) asymptotic of FER, while the whole spectra of the low weight instantons is descriptive of the FER vs. SNR profile in the extended error-floor domain. First, they describe a general optimization method that allows to find the instantons for any coding/decoding. Second, they introduce LP-specific pseudo-codeword search algorithm that allows efficient calculations of the pseudo-codeword spectra. Finally, they discuss results of combined BP/LP error-floor exploration experiments for two mode codes.

  13. SEARCHING FOR LOW WEIGHT PSEUDO-CODEWORDS

    Energy Technology Data Exchange (ETDEWEB)

    CHERTKOV, MICHAEL [Los Alamos National Laboratory; STEPANOV, MIKHAIL [Los Alamos National Laboratory

    2007-01-23

    Belief Propagation (BP) and Linear Programming (LP) decodings of LDPC codes are discussed. The authors summarize results of instanton/pseudo-codeword approach developed for analysis of the error-floor domain of the codes. Instantons are special, code and decoding specific, configurations of the channel noise contributing most to the Frame-Error-Rate (FER). Instantons are decoded into pseudo-codewords. Instanton/pseudo-codeword with the lowest weight describes the largest Signal-to-Noise-Ratio (SNR) asymptotic of FER, while the whole spectra of the low weight instantons is descriptive of the FER vs. SNR profile in the extended error-floor domain. First, they describe a general optimization method that allows to find the instantons for any coding/decoding. Second, they introduce LP-specific pseudo-codeword search algorithm that allows efficient calculations of the pseudo-codeword spectra. Finally, they discuss results of combined BP/LP error-floor exploration experiments for two mode codes.

  14. Boosting the FM-Index on the GPU: Effective Techniques to Mitigate Random Memory Access.

    Science.gov (United States)

    Chacón, Alejandro; Marco-Sola, Santiago; Espinosa, Antonio; Ribeca, Paolo; Moure, Juan Carlos

    2015-01-01

    The recent advent of high-throughput sequencing machines producing big amounts of short reads has boosted the interest in efficient string searching techniques. As of today, many mainstream sequence alignment software tools rely on a special data structure, called the FM-index, which allows for fast exact searches in large genomic references. However, such searches translate into a pseudo-random memory access pattern, thus making memory access the limiting factor of all computation-efficient implementations, both on CPUs and GPUs. Here, we show that several strategies can be put in place to remove the memory bottleneck on the GPU: more compact indexes can be implemented by having more threads work cooperatively on larger memory blocks, and a k-step FM-index can be used to further reduce the number of memory accesses. The combination of those and other optimisations yields an implementation that is able to process about two Gbases of queries per second on our test platform, being about 8 × faster than a comparable multi-core CPU version, and about 3 × to 5 × faster than the FM-index implementation on the GPU provided by the recently announced Nvidia NVBIO bioinformatics library.

  15. Clauser-Horne-Shimony-Holt versus three-party pseudo-telepathy: on the optimal number of samples in device-independent quantum private query

    Science.gov (United States)

    Basak, Jyotirmoy; Maitra, Subhamoy

    2018-04-01

    In device-independent (DI) paradigm, the trustful assumptions over the devices are removed and CHSH test is performed to check the functionality of the devices toward certifying the security of the protocol. The existing DI protocols consider infinite number of samples from theoretical point of view, though this is not practically implementable. For finite sample analysis of the existing DI protocols, we may also consider strategies for checking device independence other than the CHSH test. In this direction, here we present a comparative analysis between CHSH and three-party Pseudo-telepathy game for the quantum private query protocol in DI paradigm that appeared in Maitra et al. (Phys Rev A 95:042344, 2017) very recently.

  16. Pseudo-spin flip in doubly decoupled structures and identical bands

    International Nuclear Information System (INIS)

    Kreiner, A.J.; Cardona, M.A.; Somacal, H.; Debray, M.E.; Hojman, D.; Davidson, J.; Davidson, M.; De Acuna, D.; Napoli, D.R.; Rico, J.; Bazzacco, D.; Burch, R.; Lenzi, S.M.; Rossi Alvarez, C.; Blasi, N.; Lo Bianco, G.

    1995-01-01

    Unfavored components of doubly decoupled bands are reported for the first time. They can be interpreted as having the pseudo-spin flipped relative to the orientation in the favored components, i.e. antialigned with respect to the rotation axis. In addition, the differences in consecutive transition energies along the favored and unfavored sequences are strikingly similar among them up to I π =15 + and 14 + respectively. This feature arises from a cancellation of differences in alignments and moments of inertia. ((orig.))

  17. MRI-based treatment planning with pseudo CT generated through atlas registration.

    Science.gov (United States)

    Uh, Jinsoo; Merchant, Thomas E; Li, Yimei; Li, Xingyu; Hua, Chiaho

    2014-05-01

    To evaluate the feasibility and accuracy of magnetic resonance imaging (MRI)-based treatment planning using pseudo CTs generated through atlas registration. A pseudo CT, providing electron density information for dose calculation, was generated by deforming atlas CT images previously acquired on other patients. The authors tested 4 schemes of synthesizing a pseudo CT from single or multiple deformed atlas images: use of a single arbitrarily selected atlas, arithmetic mean process using 6 atlases, and pattern recognition with Gaussian process (PRGP) using 6 or 12 atlases. The required deformation for atlas CT images was derived from a nonlinear registration of conjugated atlas MR images to that of the patient of interest. The contrasts of atlas MR images were adjusted by histogram matching to reduce the effect of different sets of acquisition parameters. For comparison, the authors also tested a simple scheme assigning the Hounsfield unit of water to the entire patient volume. All pseudo CT generating schemes were applied to 14 patients with common pediatric brain tumors. The image similarity of real patient-specific CT and pseudo CTs constructed by different schemes was compared. Differences in computation times were also calculated. The real CT in the treatment planning system was replaced with the pseudo CT, and the dose distribution was recalculated to determine the difference. The atlas approach generally performed better than assigning a bulk CT number to the entire patient volume. Comparing atlas-based schemes, those using multiple atlases outperformed the single atlas scheme. For multiple atlas schemes, the pseudo CTs were similar to the real CTs (correlation coefficient, 0.787-0.819). The calculated dose distribution was in close agreement with the original dose. Nearly the entire patient volume (98.3%-98.7%) satisfied the criteria of chi-evaluation (pediatric brain tumor patients. The doses calculated from pseudo CTs agreed well with those from real CTs

  18. Sequence diversity and copy number variation of Mutator-like transposases in wheat

    Directory of Open Access Journals (Sweden)

    Nobuaki Asakura

    2008-01-01

    Full Text Available Partial transposase-coding sequences of Mutator-like elements (MULEs were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and divided into two distinct subclasses (subclass I and subclass II. The average pair-wise identity between members of both subclasses was 58.8% at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number elements. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes before polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. These results suggest that the differentiation of these two subclasses occurred before or immediately after the establishment of the tribe Triticeae.

  19. Increased coincidence detection for quantum versus pseudo-generated random numbers

    NARCIS (Netherlands)

    Boshoff, Lieze; Jolij, Jacob

    2015-01-01

    People often see meaning in stimuli that are typically considered meaningless. According to Von Lucadou’s idea of Generalized Quantum Teory (GQT), such perceived coincidences, or examples of synchronicity, may be the result of entanglement between a conscious observer and the physical world. Here we

  20. Binary pseudo-random gratings and arrays for calibration of the modulation transfer function of surface profilometers: recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Samuel K.; Soldate, Paul; Anderson, Erik H.; Cambie, Rossana; Marchesini, Stefano; McKinney, Wanye R.; Takacs, Peter Z.; Voronov, Dmitry L.; Yashchuk, Valeriy V.

    2009-07-07

    The major problem of measurement of a power spectral density (PSD) distribution of the surface heights with surface profilometers arises due to the unknown Modulation Transfer Function (MTF) of the instruments. The MTF tends to distort the PSD at higher spatial frequencies. It has been suggested [Proc. SPIE 7077-7, (2007), Opt. Eng. 47 (7), 073602-1-5 (2008)] that the instrumental MTF of a surface profiler can be precisely measured using standard test surfaces based on binary pseudo-random (BPR) patterns. In the cited work, a one dimensional (1D) realization of the suggested method based on use of BPR gratings has been demonstrated. Here, we present recent achievements made in fabricating and using two-dimensional (2D) BPR arrays that allow for a direct 2D calibration of the instrumental MTF. The 2D BPRAs were used as standard test surfaces for 2D MTF calibration of the MicromapTM-570 interferometric microscope with all available objectives. The effects of fabrication imperfections on the efficiency of calibration are also discussed.

  1. On the short-term predictability of fully digital chaotic oscillators for pseudo-random number generation

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-18

    This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.

  2. On the short-term predictability of fully digital chaotic oscillators for pseudo-random number generation

    KAUST Repository

    Radwan, Ahmed Gomaa; Mansingka, Abhinav S.; Salama, Khaled N.; Zidan, Mohammed A.

    2014-01-01

    This paper presents a digital implementation of a 3rd order chaotic system using the Euler approximation. Short-term predictability is studied in relation to system precision, Euler step size and attractor size and optimal parameters for maximum performance are derived. Defective bits from the native chaotic output are neglected and the remaining pass the NIST SP. 800-22 tests without post-processing. The resulting optimized pseudorandom number generator has throughput up to 17.60 Gbits/s for a 64-bit design experimentally verified on a Xilinx Virtex 4 FPGA with logic utilization less than 1.85%.

  3. Superparamagnetic perpendicular magnetic tunnel junctions for true random number generators

    Science.gov (United States)

    Parks, Bradley; Bapna, Mukund; Igbokwe, Julianne; Almasi, Hamid; Wang, Weigang; Majetich, Sara A.

    2018-05-01

    Superparamagnetic perpendicular magnetic tunnel junctions are fabricated and analyzed for use in random number generators. Time-resolved resistance measurements are used as streams of bits in statistical tests for randomness. Voltage control of the thermal stability enables tuning the average speed of random bit generation up to 70 kHz in a 60 nm diameter device. In its most efficient operating mode, the device generates random bits at an energy cost of 600 fJ/bit. A narrow range of magnetic field tunes the probability of a given state from 0 to 1, offering a means of probabilistic computing.

  4. Sequence protein identification by randomized sequence database and transcriptome mass spectrometry (SPIDER-TMS): from manual to automatic application of a 'de novo sequencing' approach.

    Science.gov (United States)

    Pascale, Raffaella; Grossi, Gerarda; Cruciani, Gabriele; Mecca, Giansalvatore; Santoro, Donatello; Sarli Calace, Renzo; Falabella, Patrizia; Bianco, Giuliana

    Sequence protein identification by a randomized sequence database and transcriptome mass spectrometry software package has been developed at the University of Basilicata in Potenza (Italy) and designed to facilitate the determination of the amino acid sequence of a peptide as well as an unequivocal identification of proteins in a high-throughput manner with enormous advantages of time, economical resource and expertise. The software package is a valid tool for the automation of a de novo sequencing approach, overcoming the main limits and a versatile platform useful in the proteomic field for an unequivocal identification of proteins, starting from tandem mass spectrometry data. The strength of this software is that it is a user-friendly and non-statistical approach, so protein identification can be considered unambiguous.

  5. Pseudo-simple heteroclinic cycles in R4

    Science.gov (United States)

    Chossat, Pascal; Lohse, Alexander; Podvigina, Olga

    2018-06-01

    We study pseudo-simple heteroclinic cycles for a Γ-equivariant system in R4 with finite Γ ⊂ O(4) , and their nearby dynamics. In particular, in a first step towards a full classification - analogous to that which exists already for the class of simple cycles - we identify all finite subgroups of O(4) admitting pseudo-simple cycles. To this end we introduce a constructive method to build equivariant dynamical systems possessing a robust heteroclinic cycle. Extending a previous study we also investigate the existence of periodic orbits close to a pseudo-simple cycle, which depends on the symmetry groups of equilibria in the cycle. Moreover, we identify subgroups Γ ⊂ O(4) , Γ ⊄ SO(4) , admitting fragmentarily asymptotically stable pseudo-simple heteroclinic cycles. (It has been previously shown that for Γ ⊂ SO(4) pseudo-simple cycles generically are completely unstable.) Finally, we study a generalized heteroclinic cycle, which involves a pseudo-simple cycle as a subset.

  6. Predicting Consensus Structures for RNA Alignments Via Pseudo-Energy Minimization

    Directory of Open Access Journals (Sweden)

    Junilda Spirollari

    2009-01-01

    Full Text Available Thermodynamic processes with free energy parameters are often used in algorithms that solve the free energy minimization problem to predict secondary structures of single RNA sequences. While results from these algorithms are promising, an observation is that single sequence-based methods have moderate accuracy and more information is needed to improve on RNA secondary structure prediction, such as covariance scores obtained from multiple sequence alignments. We present in this paper a new approach to predicting the consensus secondary structure of a set of aligned RNA sequences via pseudo-energy minimization. Our tool, called RSpredict, takes into account sequence covariation and employs effective heuristics for accuracy improvement. RSpredict accepts, as input data, a multiple sequence alignment in FASTA or ClustalW format and outputs the consensus secondary structure of the input sequences in both the Vienna style Dot Bracket format and the Connectivity Table format. Our method was compared with some widely used tools including KNetFold, Pfold and RNAalifold. A comprehensive test on different datasets including Rfam sequence alignments and a multiple sequence alignment obtained from our study on the Drosophila X chromosome reveals that RSpredict is competitive with the existing tools on the tested datasets. RSpredict is freely available online as a web server and also as a jar file for download at http:// datalab.njit.edu/biology/RSpredict.

  7. Scaphoid pseudo-arthrosis: Frequency, pathogenesis and course

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, K.; Teifke, A.; Benning, R.; Dahm, M.; Thelen, R.; Schild, H.

    1989-06-01

    Eighty-three scaphoid pseudo-arthroses were found amongst 1.104 scaphoid examinations. Sixtyseven were present at the first examination and 16 pseudo-arthroses developed amongst 252 scaphoid fractures. Men were affected predominantly, particularly in the 20 to 40-year old group. Fractures in the proximal third of the scaphoid and vertical oblique fractures had a particular tendency to pseudo-arthrosis formation. The operative treatment of choice is a Matti-Russe bone graft. Only one patient in seven with definite scaphoid pseudo-arthrosis showed firm fusion. (orig.).

  8. Scaphoid pseudo-arthrosis: Frequency, pathogenesis and course

    International Nuclear Information System (INIS)

    Schunk, K.; Teifke, A.; Benning, R.; Dahm, M.; Thelen, R.; Schild, H.; Mainz Univ.

    1989-01-01

    Eighty-three scaphoid pseudo-arthroses were found amongst 1.104 scaphoid examinations. Sixtyseven were present at the first examination and 16 pseudo-arthroses developed amongst 252 scaphoid fractures. Men were affected predominantly, particularly in the 20 to 40-year old group. Fractures in the proximal third of the scaphoid and vertical oblique fractures had a particular tendency to pseudo-arthrosis formation. The operative treatment of choice is a Matti-Russe bone graft. Only one patient in seven with definite scaphoid pseudo-arthrosis showed firm fusion. (orig.) [de

  9. The algorithm of random length sequences synthesis for frame synchronization of digital television systems

    Directory of Open Access Journals (Sweden)

    Аndriy V. Sadchenko

    2015-12-01

    Full Text Available Digital television systems need to ensure that all digital signals processing operations are performed simultaneously and consistently. Frame synchronization dictated by the need to match phases of transmitter and receiver so that it would be possible to identify the start of a frame. As a frame synchronization signals are often used long length binary sequence with good aperiodic autocorrelation function. Aim: This work is dedicated to the development of the algorithm of random length sequences synthesis. Materials and Methods: The paper provides a comparative analysis of the known sequences, which can be used at present as synchronization ones, revealed their advantages and disadvantages. This work proposes the algorithm for the synthesis of binary synchronization sequences of random length with good autocorrelation properties based on noise generator with a uniform distribution law of probabilities. A "white noise" semiconductor generator is proposed to use as the initial material for the synthesis of binary sequences with desired properties. Results: The statistical analysis of the initial implementations of the "white noise" and synthesized sequences for frame synchronization of digital television is conducted. The comparative analysis of the synthesized sequences with known ones was carried out. The results show the benefits of obtained sequences in compare with known ones. The performed simulations confirm the obtained results. Conclusions: Thus, the search algorithm of binary synchronization sequences with desired autocorrelation properties received. According to this algorithm, the sequence can be longer in length and without length limitations. The received sync sequence can be used for frame synchronization in modern digital communication systems that will increase their efficiency and noise immunity.

  10. Detection of M-Sequences from Spike Sequence in Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Yoshi Nishitani

    2012-01-01

    Full Text Available In circuit theory, it is well known that a linear feedback shift register (LFSR circuit generates pseudorandom bit sequences (PRBS, including an M-sequence with the maximum period of length. In this study, we tried to detect M-sequences known as a pseudorandom sequence generated by the LFSR circuit from time series patterns of stimulated action potentials. Stimulated action potentials were recorded from dissociated cultures of hippocampal neurons grown on a multielectrode array. We could find several M-sequences from a 3-stage LFSR circuit (M3. These results show the possibility of assembling LFSR circuits or its equivalent ones in a neuronal network. However, since the M3 pattern was composed of only four spike intervals, the possibility of an accidental detection was not zero. Then, we detected M-sequences from random spike sequences which were not generated from an LFSR circuit and compare the result with the number of M-sequences from the originally observed raster data. As a result, a significant difference was confirmed: a greater number of “0–1” reversed the 3-stage M-sequences occurred than would have accidentally be detected. This result suggests that some LFSR equivalent circuits are assembled in neuronal networks.

  11. The Pagoda Sequence: a Ramble through Linear Complexity, Number Walls, D0L Sequences, Finite State Automata, and Aperiodic Tilings

    Directory of Open Access Journals (Sweden)

    Fred Lunnon

    2009-06-01

    Full Text Available We review the concept of the number wall as an alternative to the traditional linear complexity profile (LCP, and sketch the relationship to other topics such as linear feedback shift-register (LFSR and context-free Lindenmayer (D0L sequences. A remarkable ternary analogue of the Thue-Morse sequence is introduced having deficiency 2 modulo 3, and this property verified via the re-interpretation of the number wall as an aperiodic plane tiling.

  12. A time-series approach to random number generation: Using recurrence quantification analysis to capture executive behavior

    Directory of Open Access Journals (Sweden)

    Wouter eOomens

    2015-06-01

    Full Text Available The concept of executive functions plays a prominent role in contemporary experimental and clinical studies on cognition. One paradigm used in this framework is the random number generation (RNG task, the execution of which demands aspects of executive functioning, specifically inhibition and working memory. Data from the RNG task are best seen as a series of successive events. However, traditional RNG measures that are used to quantify executive functioning are mostly summary statistics referring to deviations from mathematical randomness. In the current study, we explore the utility of recurrence quantification analysis (RQA, a nonlinear method that keeps the entire sequence intact, as a better way to describe executive functioning compared to traditional measures. To this aim, 242 first- and second-year students completed a non-paced RNG task. Principal component analysis of their data showed that traditional and RQA measures convey more or less the same information. However, RQA measures do so more parsimoniously and have a better interpretation.

  13. The linking number and the writhe of uniform random walks and polygons in confined spaces

    International Nuclear Information System (INIS)

    Panagiotou, E; Lambropoulou, S; Millett, K C

    2010-01-01

    Random walks and polygons are used to model polymers. In this paper we consider the extension of the writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the mean squared self-linking number of oriented uniform random walks or polygons of length n, in a convex confined space, are of the form O(n 2 ). Moreover, for a fixed simple closed curve in a convex confined space, we prove that the mean absolute value of the linking number between this curve and a uniform random walk or polygon of n edges is of the form O(√n). Our numerical studies confirm those results. They also indicate that the mean absolute linking number between any two oriented uniform random walks or polygons, of n edges each, is of the form O(n). Equilateral random walks and polygons are used to model polymers in θ-conditions. We use numerical simulations to investigate how the self-linking and linking number of equilateral random walks scale with their length.

  14. Potential for Increasing Soil Nutrient Availability via Soil Organic Matter Improvement Using Pseudo Panel Data

    NARCIS (Netherlands)

    Chavez Clemente, M.D.; Berentsen, P.B.M.; Oenema, O.; Oude Lansink, A.G.J.M.

    2014-01-01

    Fixed and random effect models were applied to a pseudo-panel data built of soil analysis reports from tobacco farms to analyze relationships between soil characteristics like soil organic matter (SOM) and soil nitrogen (N), phosphorous (P) and potassium (K) and to explore the potential for

  15. Extended substitution-diffusion based image cipher using chaotic standard map

    Science.gov (United States)

    Kumar, Anil; Ghose, M. K.

    2011-01-01

    This paper proposes an extended substitution-diffusion based image cipher using chaotic standard map [1] and linear feedback shift register to overcome the weakness of previous technique by adding nonlinearity. The first stage consists of row and column rotation and permutation which is controlled by the pseudo-random sequences which is generated by standard chaotic map and linear feedback shift register, second stage further diffusion and confusion is obtained in the horizontal and vertical pixels by mixing the properties of the horizontally and vertically adjacent pixels, respectively, with the help of chaotic standard map. The number of rounds in both stage are controlled by combination of pseudo-random sequence and original image. The performance is evaluated from various types of analysis such as entropy analysis, difference analysis, statistical analysis, key sensitivity analysis, key space analysis and speed analysis. The experimental results illustrate that performance of this is highly secured and fast.

  16. Random sequences are an abundant source of bioactive RNAs or peptides

    DEFF Research Database (Denmark)

    Neme, Rafik; Amador, Cristina; Yildirim, Burcin

    2017-01-01

    It is generally assumed that new genes arise through duplication and/or recombination of existing genes. The probability that a new functional gene could arise out of random non-coding DNA is so far considered to be negligible, as it seems unlikely that such an RNA or protein sequence could have ...

  17. Maintaining heterokaryosis in pseudo-homothallic fungi.

    Science.gov (United States)

    Grognet, Pierre; Silar, Philippe

    2015-01-01

    Among all the strategies displayed by fungi to reproduce and propagate, some species have adopted a peculiar behavior called pseudo-homothallism. Pseudo-homothallic fungi are true heterothallics, i.e., they need 2 genetically-compatible partners to mate, but they produce self-fertile mycelium in which the 2 different nuclei carrying the compatible mating types are present. This lifestyle not only enables the fungus to reproduce without finding a compatible partner, but also to cross with any mate it may encounter. However, to be fully functional, pseudo-homothallism requires maintaining heterokaryosis at every stage of the life cycle. We recently showed that neither the structure of the mating-type locus nor hybrid-enhancing effect due to the presence of the 2 mating types accounts for the maintenance of heterokaryosis in the pseudo-homothallic fungus P. anserina. In this addendum, we summarize the mechanisms creating heterokaryosis in P. anserina and 2 other well-known pseudo-homothallic fungi, Neurospora tetrasperma and Agaricus bisporus. We also discuss mechanisms potentially involved in maintaining heterokaryosis in these 3 species.

  18. 25 CFR 547.14 - What are the minimum technical standards for electronic random number generation?

    Science.gov (United States)

    2010-04-01

    ... random number generation? 547.14 Section 547.14 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF... CLASS II GAMES § 547.14 What are the minimum technical standards for electronic random number generation...) Unpredictability; and (3) Non-repeatability. (b) Statistical Randomness.(1) Numbers produced by an RNG shall be...

  19. An Investigation of the Sequence of Catalan Numbers with Activities for Prospective Teachers.

    Science.gov (United States)

    Koker, John; Kuenzi, Norbert J.; Oktac, Asuman; Carmony, Lowell; Leibowitz, Rochelle

    1998-01-01

    Investigates several problems with the sequences of numbers known as the Catalan numbers and the Bell numbers. Finds that the problems are appropriate for both pre- and in-service teachers, as well as students studying discrete mathematics. (Author/CCM)

  20. [Pseudo-Bartter syndrome--2 cases].

    Science.gov (United States)

    Jóźwiak, Lucyna; Jaroszyński, Andrzej; Baranowicz-Gaszczyk, Iwona; Borowicz, Ewa; Ksiazek, Andrzej

    2010-01-01

    Bartter syndrome represents the group of renal disturbances characterized by hypokaliemia and metabolic alkalosis. Some diseases could display hypokalemic metabolic alkalosis without primary tubular dysfunction. These disorders are called pseudo-Bartter syndrome. In this paper we present 2 cases of pseudo-Bartter syndrome related among to other things to overuse of diuretic drugs.

  1. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model

    Directory of Open Access Journals (Sweden)

    Edwards Scott V

    2010-10-01

    Full Text Available Abstract Background Several phylogenetic approaches have been developed to estimate species trees from collections of gene trees. However, maximum likelihood approaches for estimating species trees under the coalescent model are limited. Although the likelihood of a species tree under the multispecies coalescent model has already been derived by Rannala and Yang, it can be shown that the maximum likelihood estimate (MLE of the species tree (topology, branch lengths, and population sizes from gene trees under this formula does not exist. In this paper, we develop a pseudo-likelihood function of the species tree to obtain maximum pseudo-likelihood estimates (MPE of species trees, with branch lengths of the species tree in coalescent units. Results We show that the MPE of the species tree is statistically consistent as the number M of genes goes to infinity. In addition, the probability that the MPE of the species tree matches the true species tree converges to 1 at rate O(M -1. The simulation results confirm that the maximum pseudo-likelihood approach is statistically consistent even when the species tree is in the anomaly zone. We applied our method, Maximum Pseudo-likelihood for Estimating Species Trees (MP-EST to a mammal dataset. The four major clades found in the MP-EST tree are consistent with those in the Bayesian concatenation tree. The bootstrap supports for the species tree estimated by the MP-EST method are more reasonable than the posterior probability supports given by the Bayesian concatenation method in reflecting the level of uncertainty in gene trees and controversies over the relationship of four major groups of placental mammals. Conclusions MP-EST can consistently estimate the topology and branch lengths (in coalescent units of the species tree. Although the pseudo-likelihood is derived from coalescent theory, and assumes no gene flow or horizontal gene transfer (HGT, the MP-EST method is robust to a small amount of HGT in the

  2. Building Kindergartners' Number Sense: A Randomized Controlled Study.

    Science.gov (United States)

    Jordan, Nancy C; Glutting, Joseph; Dyson, Nancy; Hassinger-Das, Brenna; Irwin, Casey

    2012-08-01

    Math achievement in elementary school is mediated by performance and growth in number sense during kindergarten. The aim of the present study was to test the effectiveness of a targeted small group number sense intervention for high-risk kindergartners from low-income communities. Children were randomly assigned to one of three groups ( n = 44 in each group): a number sense intervention group, a language intervention group, or a business as usual control group. Accounting for initial skill level in mathematical knowledge, children who received the number sense intervention performed better than controls at immediate post test, with meaningful effects on measures of number competencies and general math achievement. Many of the effects held eight weeks after the intervention was completed, suggesting that children internalized what they had learned. There were no differences between the language and control groups on any math-related measures.

  3. A P-N Sequence Generator Using LFSR with Dual Edge Trigger Technique

    Directory of Open Access Journals (Sweden)

    Naghwal Nitin Kumar

    2016-01-01

    Full Text Available This paper represents the design and implementation of a low power 4-bit LFSR using Dual edge triggered flip flop. A linear feedback shift register (LFSR is assembled by N number of flip flops connected in series and a combinational logic generally xor gate. An LFSR can generate random number sequence which acts as cipher in cryptography. A known text encrypted over long PN sequence, in order to improve security sequence made longer ie 128 bit; require long chain of flip flop leads to more power consumption. In this paper a novel circuit of random sequence generator using dual edge triggered flip flop has been proposed. Data has been generated on every edge of flip flop instead of single edge. A DETFF-LFSR can generate random number require with less number of clock cycle, it minimizes the number of flip flop result in power saving. In this paper we concentrates on the designing of power competent Test Pattern Generator (TPG using four dual edge triggered flip-flops as the basic building block, overall there is reduction of power around 25% by using these techniques.

  4. Simulation techniques for determining reliability and availability of technical systems

    International Nuclear Information System (INIS)

    Lindauer, E.

    1975-01-01

    The system is described in the form of a fault tree with components representing part functions of the system and connections which reproduce the logical structure of the system. Both have the states intact or failed, they are defined here as in the programme FESIVAR of the IRS. For the simulation of components corresponding to the given probabilities, pseudo-random numbers are applied; these are numbers whose sequence is determined by the producing algorithm, but which for the given purpose sufficiently exhibit the behaviour of randomly successive numbers. This method of simulation is compared with deterministic methods. (HP/LH) [de

  5. Autonomous Byte Stream Randomizer

    Science.gov (United States)

    Paloulian, George K.; Woo, Simon S.; Chow, Edward T.

    2013-01-01

    Net-centric networking environments are often faced with limited resources and must utilize bandwidth as efficiently as possible. In networking environments that span wide areas, the data transmission has to be efficient without any redundant or exuberant metadata. The Autonomous Byte Stream Randomizer software provides an extra level of security on top of existing data encryption methods. Randomizing the data s byte stream adds an extra layer to existing data protection methods, thus making it harder for an attacker to decrypt protected data. Based on a generated crypto-graphically secure random seed, a random sequence of numbers is used to intelligently and efficiently swap the organization of bytes in data using the unbiased and memory-efficient in-place Fisher-Yates shuffle method. Swapping bytes and reorganizing the crucial structure of the byte data renders the data file unreadable and leaves the data in a deconstructed state. This deconstruction adds an extra level of security requiring the byte stream to be reconstructed with the random seed in order to be readable. Once the data byte stream has been randomized, the software enables the data to be distributed to N nodes in an environment. Each piece of the data in randomized and distributed form is a separate entity unreadable on its own right, but when combined with all N pieces, is able to be reconstructed back to one. Reconstruction requires possession of the key used for randomizing the bytes, leading to the generation of the same cryptographically secure random sequence of numbers used to randomize the data. This software is a cornerstone capability possessing the ability to generate the same cryptographically secure sequence on different machines and time intervals, thus allowing this software to be used more heavily in net-centric environments where data transfer bandwidth is limited.

  6. Quantum random number generator based on quantum tunneling effect

    OpenAIRE

    Zhou, Haihan; Li, Junlin; Pan, Dong; Zhang, Weixing; Long, Guilu

    2017-01-01

    In this paper, we proposed an experimental implementation of quantum random number generator(QRNG) with inherent randomness of quantum tunneling effect of electrons. We exploited InGaAs/InP diodes, whose valance band and conduction band shared a quasi-constant energy barrier. We applied a bias voltage on the InGaAs/InP avalanche diode, which made the diode works under Geiger mode, and triggered the tunneling events with a periodic pulse. Finally, after data collection and post-processing, our...

  7. IDENTIFICATION AND ASSESSMENT OF DOMOIC ACID PRODUCTION IN OCEANIC PSEUDO-NITZSCHIA (BACILLARIOPHYCEAE) FROM IRON-LIMITED WATERS IN THE NORTHEAST SUBARCTIC PACIFIC(1).

    Science.gov (United States)

    Marchetti, Adrian; Lundholm, Nina; Kotaki, Yuichi; Hubbard, Katherine; Harrison, Paul J; Virginia Armbrust, E

    2008-06-01

    We identified and investigated the potential toxicity of oceanic Pseudo-nitzschia species from Ocean Station Papa (OSP), located in a high-nitrate, low-chlorophyll (HNLC) region of the northeast (NE) subarctic Pacific Ocean. Despite their relatively low abundances in the indigenous phytoplankton assemblage, Pseudo-nitzschia species richness is high. The morphometric characteristics of five oceanic Pseudo-nitzschia isolates from at least four species are described using SEM and TEM. The species identified are Pseudo-nitzschia dolorosa Lundholm et Moestrup, P. granii Hasle, P. heimii Manguin, and P. cf. turgidula (Hust.) Hasle. Additional support for the taxonomic classifications based on frustule morphology is provided through the sequencing of the internal transcribed spacer 1 (ITS1) rDNA. Pseudo-nitzschia species identification was also assessed by the construction of ITS1 clone libraries and using automated ribosomal intergenic spacer analysis (ARISA) for environmental samples collected during the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES), conducted in close proximity to OSP in July of 2002. Based on ITS1 sequences, the presence of P. granii, P. heimii, P. cf. turgidula, and at least five other putative, unidentified Pseudo-nitzschia ITS1 variants was confirmed within iron-enriched phytoplankton assemblages at OSP. None of the oceanic isolates produced detectable levels of particulate domoic acid (DA) when in prolonged stationary phase due to silicic acid starvation. The lack of detectable concentrations of DA suggests that either these strains produce very little or no toxin, or that the physiological conditions required to promote particulate DA production were not met and thus differ from their coastal, toxigenic congeners. © 2008 Phycological Society of America.

  8. Evaluation of Key Dependent S-Box Based Data Security Algorithm using Hamming Distance and Balanced Output

    Directory of Open Access Journals (Sweden)

    Balajee Maram K.

    2016-02-01

    Full Text Available Data security is a major issue because of rapid evolution of data communication over unsecured internetwork. Here the proposed system is concerned with the problem of randomly generated S-box. The generation of S-box depends on Pseudo-Random-Number-Generators and shared-secret-key. The process of Pseudo-Random-Number-Generator depends on large prime numbers. All Pseudo-Random-Numbers are scrambled according to shared-secret-key. After scrambling, the S-box is generated. In this research, large prime numbers are the inputs to the Pseudo-Random-Number-Generator. The proposed S-box will reduce the complexity of S-box generation. Based on S-box parameters, it experimentally investigates the quality and robustness of the proposed algorithm which was tested. It yields better results with the S-box parameters like Hamming Distance, Balanced Output and Avalanche Effect and can be embedded to popular cryptography algorithms

  9. On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2

    Directory of Open Access Journals (Sweden)

    Tian-Xiao He

    2009-01-01

    Full Text Available Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.

  10. Ultrafast quantum random number generation based on quantum phase fluctuations.

    Science.gov (United States)

    Xu, Feihu; Qi, Bing; Ma, Xiongfeng; Xu, He; Zheng, Haoxuan; Lo, Hoi-Kwong

    2012-05-21

    A quantum random number generator (QRNG) can generate true randomness by exploiting the fundamental indeterminism of quantum mechanics. Most approaches to QRNG employ single-photon detection technologies and are limited in speed. Here, we experimentally demonstrate an ultrafast QRNG at a rate over 6 Gbits/s based on the quantum phase fluctuations of a laser operating near threshold. Moreover, we consider a potential adversary who has partial knowledge on the raw data and discuss how one can rigorously remove such partial knowledge with postprocessing. We quantify the quantum randomness through min-entropy by modeling our system and employ two randomness extractors--Trevisan's extractor and Toeplitz-hashing--to distill the randomness, which is information-theoretically provable. The simplicity and high-speed of our experimental setup show the feasibility of a robust, low-cost, high-speed QRNG.

  11. Examples of pseudo-bosons in quantum mechanics

    International Nuclear Information System (INIS)

    Bagarello, F.

    2010-01-01

    We discuss two physical examples of the so-called pseudo-bosons, recently introduced in connection with pseudo-hermitian quantum mechanics. In particular, we show that the so-called extended harmonic oscillator and the Swanson model satisfy all the assumptions of the pseudo-bosonic framework introduced by the author. We also prove that the biorthogonal bases they produce are not Riesz bases.

  12. Random walks in Euclidean space

    OpenAIRE

    Varjú, Péter Pál

    2012-01-01

    Consider a sequence of independent random isometries of Euclidean space with a previously fixed probability law. Apply these isometries successively to the origin and consider the sequence of random points that we obtain this way. We prove a local limit theorem under a suitable moment condition and a necessary non-degeneracy condition. Under stronger hypothesis, we prove a limit theorem on a wide range of scales: between e^(-cl^(1/4)) and l^(1/2), where l is the number of steps.

  13. THE PSEUDO-EVOLUTION OF HALO MASS

    International Nuclear Information System (INIS)

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-01-01

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M 200ρ-bar ≲ 10 12 h -1 M ☉ and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  14. Building Kindergartners’ Number Sense: A Randomized Controlled Study

    Science.gov (United States)

    Jordan, Nancy C.; Glutting, Joseph; Dyson, Nancy; Hassinger-Das, Brenna; Irwin, Casey

    2015-01-01

    Math achievement in elementary school is mediated by performance and growth in number sense during kindergarten. The aim of the present study was to test the effectiveness of a targeted small group number sense intervention for high-risk kindergartners from low-income communities. Children were randomly assigned to one of three groups (n = 44 in each group): a number sense intervention group, a language intervention group, or a business as usual control group. Accounting for initial skill level in mathematical knowledge, children who received the number sense intervention performed better than controls at immediate post test, with meaningful effects on measures of number competencies and general math achievement. Many of the effects held eight weeks after the intervention was completed, suggesting that children internalized what they had learned. There were no differences between the language and control groups on any math-related measures. PMID:25866417

  15. IT-26IDENTIFICATION OF PSEUDO-PROGRESSION IN NEW DIAGNOSED GLIOBLASTOMA (GBM) IN A RANDOMIZED PHASE 2 OF ICT-107: MRI AND PATHOLOGY CORRELATION

    Science.gov (United States)

    Phuphanich, Surasak; Yu, John; Bannykh, Serguei; Zhu, Jay-Jiguang

    2014-01-01

    BACKGROUND: Previously reports of pseudo-progression in patients with brain tumor after therapeutic vaccines in pediatric and adult glioma (Pollack, JCO online on June 2, 2014 and Okada, JCO Jan 20, 2011; 29: 330-336) demonstrated that RANO criteria for tumor progression may not be adequate for immunotherapy trials. Similar observations were also seen in other checkpoint inhibitor in melanoma and NSLSC. METHODS: We identified 2 patients, who developed tumor progression by RANO criteria, underwent surgery following enrollment in a phase 2 randomized ICT-107 (an autologous vaccine consisting of patient dendritic cells pulsed with peptides from AIM-2, TRP-2, HER2/neu, IL-13Ra2, gp100, MAGE1) after radiation and Temozolomide (TMZ). RESULTS: The first case is a 69 years old Chinese male, who underwent 1st surgery of gross total resection right occipital GBM on 10/26/2011. Subsequently he received 19 cycles of TMZ and 9 vaccines/placebo. MRI from 7/2/2013 showed enhancement surrounding surgical cavity. After 2nd surgery, pathology showed only rare residual tumor cells with macrophages and positive CD 8 cells. He continued on this vaccine program and MRI showed more progression with finger-like extension into parietal lobe 4 months later. The 3rd surgery also showed extensive reactive changes with no active tumor cells. For 2nd case, a 62 years old male, who underwent first surgery on 7/11/2011 of right temporal lobe, developed 2 areas of enhancement after 6 cycles of TMZ and 7 vaccines/placebo on 4/18/2012. With 2nd surgery, pathology showed reactive gliosis without active tumor. The subject continued in this trial. CONCLUSION: Pseudo-progression was confirmed by pathology in these 2 patients at 20 and 9 months which were delayed comparing to pseudo-progression observed in patients treated with concurrent XRT/TMZ (3-6 months). Future iRANO criteria development is essential for immunotherapy trials. Accurately identifying and managing such patients is necessary to avoid

  16. PERL-2 and LAVR-2 programs for Monte Carlo calculation of reactivity disturbances with trajectory correlation using random numbers

    International Nuclear Information System (INIS)

    Kamaeva, O.B.; Polevoj, V.B.

    1983-01-01

    Realization of BESM-6 computer of a technique is described for calculating a wide class of reactivity disturbances by plotting trajectories in undisturbed and disturbed systems using one sequence of random numbers. The technique was realized on the base of earlier created programs of calculation of widespreed (PERL) and local (LAVR) reactivity disturbances. The efficiency of the technique and programs is demonstrated by calculation of change of effective neutron-multiplication factor when absorber is substituted for fuel element in a BFS-40 critical assembly and by calculation of control drum characteristics

  17. Newtonian and pseudo-Newtonian Hill problem

    International Nuclear Information System (INIS)

    Steklain, A.F.; Letelier, P.S.

    2006-01-01

    A pseudo-Newtonian Hill problem based on the Paczynski-Wiita pseudo-Newtonian potential that reproduces general relativistic effects is presented and compared with the usual Newtonian Hill problem. Poincare maps, Lyapunov exponents and fractal escape techniques are employed to study bounded and unbounded orbits. In particular we consider the systems composed by Sun, Earth and Moon and composed by the Milky Way, the M2 cluster and a star. We find that some pseudo-Newtonian systems-including the M2 system-are more stable than their Newtonian equivalent

  18. Differential activity in left inferior frontal gyrus for pseudo and real words: an event-related functional MRI study on auditory lexical decision

    International Nuclear Information System (INIS)

    Xiao Zhuangwei; Xu Weixiong; Zhang Xuexin; Wang Xiaoyi; Weng Xuchu; Wu Renhua; Wu Xiaoping

    2006-01-01

    Objective: To study lexical processing of pseudo words and real words by using a fast event-related functional MRI (ER-fMRI) design. Methods: Participants did an auditory lexical decision task on a list of pseudo-randomly intermixed real and pseudo Chinese two-character (or two-syllable) words. Pseudo words were constructed by recombining constituent characters of the real words to control for sublexical codes properties. Results: The behavioral performance of fourteen participants indicated that response to pseudowords was significantly slower and less accurate than to real words (mean error rate: 9.9% versus 3.9%, mean reaction time: 1618 ms versus 1143 ms). Processing of pseudo words and real words activated a highly comparable network of brain regions, including bilateral inferior frontal gyrus, superior, middle temporal gyrus, calcarine and lingual gyrus, and left supramarginal gyrus. Mirroring a behavioral lexical effect, left inferior frontal gyrus (IFG) was significantly more activated for pseudo words than for real words. Conclusion: The results indicate that the processing of left inferior frontal gyrus in judging pseudo words and real words is not related to grapheme-to-phoneme conversion, but rather to making positive versus negative responses in decision making. (authors)

  19. Randomizer for High Data Rates

    Science.gov (United States)

    Garon, Howard; Sank, Victor J.

    2018-01-01

    NASA as well as a number of other space agencies now recognize that the current recommended CCSDS randomizer used for telemetry (TM) is too short. When multiple applications of the PN8 Maximal Length Sequence (MLS) are required in order to fully cover a channel access data unit (CADU), spectral problems in the form of elevated spurious discretes (spurs) appear. Originally the randomizer was called a bit transition generator (BTG) precisely because it was thought that its primary value was to insure sufficient bit transitions to allow the bit/symbol synchronizer to lock and remain locked. We, NASA, have shown that the old BTG concept is a limited view of the real value of the randomizer sequence and that the randomizer also aids in signal acquisition as well as minimizing the potential for false decoder lock. Under the guidelines we considered here there are multiple maximal length sequences under GF(2) which appear attractive in this application. Although there may be mitigating reasons why another MLS sequence could be selected, one sequence in particular possesses a combination of desired properties which offsets it from the others.

  20. On the number of spanning trees in random regular graphs

    DEFF Research Database (Denmark)

    Greenhill, Catherine; Kwan, Matthew; Wind, David Kofoed

    2014-01-01

    Let d >= 3 be a fixed integer. We give an asympotic formula for the expected number of spanning trees in a uniformly random d-regular graph with n vertices. (The asymptotics are as n -> infinity, restricted to even n if d is odd.) We also obtain the asymptotic distribution of the number of spanning...

  1. Ring correlations in random networks.

    Science.gov (United States)

    Sadjadi, Mahdi; Thorpe, M F

    2016-12-01

    We examine the correlations between rings in random network glasses in two dimensions as a function of their separation. Initially, we use the topological separation (measured by the number of intervening rings), but this leads to pseudo-long-range correlations due to a lack of topological charge neutrality in the shells surrounding a central ring. This effect is associated with the noncircular nature of the shells. It is, therefore, necessary to use the geometrical distance between ring centers. Hence we find a generalization of the Aboav-Weaire law out to larger distances, with the correlations between rings decaying away when two rings are more than about three rings apart.

  2. On Random Numbers and Design

    Science.gov (United States)

    Ben-Ari, Morechai

    2004-01-01

    The term "random" is frequently used in discussion of the theory of evolution, even though the mathematical concept of randomness is problematic and of little relevance in the theory. Therefore, since the core concept of the theory of evolution is the non-random process of natural selection, the term random should not be used in teaching the…

  3. The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs

    Science.gov (United States)

    Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.

    2009-12-01

    This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.

  4. Theory and implementation of a very high throughput true random number generator in field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong; Xu, Chao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-15

    The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.

  5. On the number of subgraphs of the Barabasi-Albert random graph

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchenko, Aleksandr A; Samosvat, Egor A [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region, Russian Frderation (Russian Federation)

    2012-06-30

    We study a model of a random graph of the type of the Barabasi-Albert preferential attachment model. We develop a technique that makes it possible to estimate the mathematical expectation for a fairly wide class of random variables in the model under consideration. We use this technique to prove a theorem on the asymptotics of the mathematical expectation of the number of subgraphs isomorphic to a certain fixed graph in the random graphs of this model.

  6. A Detection Algorithm for the BOC Signal Based on Quadrature Channel Correlation

    Directory of Open Access Journals (Sweden)

    Bo Qian

    2018-01-01

    Full Text Available In order to solve the problem of detecting a BOC signal, which uses a long-period pseudo random sequence, an algorithm is presented based on quadrature channel correlation. The quadrature channel correlation method eliminates the autocorrelation component of the carrier wave, allowing for the extraction of the absolute autocorrelation peaks of the BOC sequence. If the same lag difference and height difference exist for the adjacent peaks, the BOC signal can be detected effectively using a statistical analysis of the multiple autocorrelation peaks. The simulation results show that the interference of the carrier wave component is eliminated and the autocorrelation peaks of the BOC sequence are obtained effectively without demodulation. The BOC signal can be detected effectively when the SNR is greater than −12 dB. The detection ability can be improved further by increasing the number of sampling points. The higher the ratio of the square wave subcarrier speed to the pseudo random sequence speed is, the greater the detection ability is with a lower SNR. The algorithm presented in this paper is superior to the algorithm based on the spectral correlation.

  7. Succinylcholine versus rocuronium for rapid sequence intubation in intensive care: a prospective, randomized controlled trial

    Science.gov (United States)

    2011-01-01

    Introduction Succinylcholine and rocuronium are widely used to facilitate rapid sequence induction (RSI) intubation in intensive care. Concerns relate to the side effects of succinylcholine and to slower onset and inferior intubation conditions associated with rocuronium. So far, succinylcholine and rocuronium have not been compared in an adequately powered randomized trial in intensive care. Accordingly, the aim of the present study was to compare the incidence of hypoxemia after rocuronium or succinylcholine in critically ill patients requiring an emergent RSI. Methods This was a prospective randomized controlled single-blind trial conducted from 2006 to 2010 at the University Hospital of Basel. Participants were 401 critically ill patients requiring emergent RSI. Patients were randomized to receive 1 mg/kg succinylcholine or 0.6 mg/kg rocuronium for neuromuscular blockade. The primary outcome was the incidence of oxygen desaturations defined as a decrease in oxygen saturation ≥ 5%, assessed by continuous pulse oxymetry, at any time between the start of the induction sequence and two minutes after the completion of the intubation. A severe oxygen desaturation was defined as a decrease in oxygen saturation ≥ 5% leading to a saturation value of ≤ 80%. Results There was no difference between succinylcholine and rocuronium regarding oxygen desaturations (succinylcholine 73/196; rocuronium 66/195; P = 0.67); severe oxygen desaturations (succinylcholine 20/196; rocuronium 20/195; P = 1.0); and extent of oxygen desaturations (succinylcholine -14 ± 12%; rocuronium -16 ± 13%; P = 0.77). The duration of the intubation sequence was shorter after succinycholine than after rocuronium (81 ± 38 sec versus 95 ± 48 sec; P = 0.002). Intubation conditions (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; P = 0.7) and failed first intubation attempts (succinylcholine 32/200; rocuronium 36/201; P = 1.0) did not differ between the groups. Conclusions In critically ill

  8. Construction of the mathematical concept of pseudo thinking students

    Science.gov (United States)

    Anggraini, D.; Kusmayadi, T. A.; Pramudya, I.

    2018-05-01

    Thinking process is a process that begins with the acceptance of information, information processing and information calling in memory with structural changes that include concepts or knowledges. The concept or knowledge is individually constructed by each individual. While, students construct a mathematical concept, students may experience pseudo thinking. Pseudo thinking is a thinking process that results in an answer to a problem or construction to a concept “that is not true”. Pseudo thinking can be classified into two forms there are true pseudo and false pseudo. The construction of mathematical concepts in students of pseudo thinking should be immediately known because the error will have an impact on the next construction of mathematical concepts and to correct the errors it requires knowledge of the source of the error. Therefore, in this article will be discussed thinking process in constructing of mathematical concepts in students who experience pseudo thinking.

  9. [Influence of PCR cycle number on microbial diversity analysis through next generation sequencing].

    Science.gov (United States)

    An, Yunhe; Gao, Lijuan; Li, Junbo; Tian, Yanjie; Wang, Jinlong; Zheng, Xuejuan; Wu, Huijuan

    2016-08-25

    Using of high throughput sequencing technology to study the microbial diversity in complex samples has become one of the hottest issues in the field of microbial diversity research. In this study, the soil and sheep rumen chyme samples were used to extract DNA, respectively. Then the 25 ng total DNA was used to amplify the 16S rRNA V3 region with 20, 25, 30 PCR cycles, and the final sequencing library was constructed by mixing equal amounts of purified PCR products. Finally, the operational taxonomic unit (OUT) amount, rarefaction curve, microbial number and species were compared through data analysis. It was found that at the same amount of DNA template, the proportion of the community composition was not the best with more numbers of PCR cycle, although the species number was much more. In all, when the PCR cycle number is 25, the number of species and proportion of the community composition were the most optimal both in soil or chyme samples.

  10. Short sequence motifs, overrepresented in mammalian conservednon-coding sequences

    Energy Technology Data Exchange (ETDEWEB)

    Minovitsky, Simon; Stegmaier, Philip; Kel, Alexander; Kondrashov,Alexey S.; Dubchak, Inna

    2007-02-21

    Background: A substantial fraction of non-coding DNAsequences of multicellular eukaryotes is under selective constraint. Inparticular, ~;5 percent of the human genome consists of conservednon-coding sequences (CNSs). CNSs differ from other genomic sequences intheir nucleotide composition and must play important functional roles,which mostly remain obscure.Results: We investigated relative abundancesof short sequence motifs in all human CNSs present in the human/mousewhole-genome alignments vs. three background sets of sequences: (i)weakly conserved or unconserved non-coding sequences (non-CNSs); (ii)near-promoter sequences (located between nucleotides -500 and -1500,relative to a start of transcription); and (iii) random sequences withthe same nucleotide composition as that of CNSs. When compared tonon-CNSs and near-promoter sequences, CNSs possess an excess of AT-richmotifs, often containing runs of identical nucleotides. In contrast, whencompared to random sequences, CNSs contain an excess of GC-rich motifswhich, however, lack CpG dinucleotides. Thus, abundance of short sequencemotifs in human CNSs, taken as a whole, is mostly determined by theiroverall compositional properties and not by overrepresentation of anyspecific short motifs. These properties are: (i) high AT-content of CNSs,(ii) a tendency, probably due to context-dependent mutation, of A's andT's to clump, (iii) presence of short GC-rich regions, and (iv) avoidanceof CpG contexts, due to their hypermutability. Only a small number ofshort motifs, overrepresented in all human CNSs are similar to bindingsites of transcription factors from the FOX family.Conclusion: Human CNSsas a whole appear to be too broad a class of sequences to possess strongfootprints of any short sequence-specific functions. Such footprintsshould be studied at the level of functional subclasses of CNSs, such asthose which flank genes with a particular pattern of expression. Overallproperties of CNSs are affected by

  11. Covariance of the number of real zeros of a random trigonometric polynomial

    Directory of Open Access Journals (Sweden)

    K. Farahmand

    2006-01-01

    Full Text Available For random coefficients aj and bj we consider a random trigonometric polynomial defined as Tn(θ=∑j=0n{ajcos⁡jθ+bjsin⁡jθ}. The expected number of real zeros of Tn(θ in the interval (0,2π can be easily obtained. In this note we show that this number is in fact n/3. However the variance of the above number is not known. This note presents a method which leads to the asymptotic value for the covariance of the number of real zeros of the above polynomial in intervals (0,π and (π,2π. It can be seen that our method in fact remains valid to obtain the result for any two disjoint intervals. The applicability of our method to the classical random trigonometric polynomial, defined as Pn(θ=∑j=0naj(ωcos⁡jθ, is also discussed. Tn(θ has the advantage on Pn(θ of being stationary, with respect to θ, for which, therefore, a more advanced method developed could be used to yield the results.

  12. On the pseudo-norm in some PT-symmetric potentials

    International Nuclear Information System (INIS)

    Levai, G.

    2005-01-01

    Complete text of publication follows. PT-symmetric quantum mechanical systems possess non-hermitian Hamiltonian, still they have some characteristics similar to hermitian problems. The most notable of these is their discrete energy spectrum, which can be partly or completely real. These systems are invariant under the simultaneous action of the P space and T time inversion operations. Perhaps the simplest PT-symmetric Hamiltonian contains a one-dimensional Schroedinger operator with a complex potential satisfying the V*(-x) = V (x) relation. Another typical feature PT-symmetric systems have in common with hermitian problems is that their basis states form an orthogonal set provided that the inner product is redefined as (ψ φ)PT ≡ (ψ Pφ). However, the norm defined by this inner product, the pseudo-norm turned out to possess indefinite sign, and this raised the question of the probabilistic interpretation of PT-symmetric systems. This problem was later put into a more general context when it was found that PT symmetry is a special case of pseudo-hermiticity, and this explains most of the peculiar features of PT-symmetric systems. There have been several attempts to link PT-symmetric, and in general, pseudo- hermitian systems with equivalent hermitian ones, and the sign of the pseudo-norm was found to play an important role in this respect. It is thus essential to evaluate the pseudo- norm for various potentials, especially considering the fact that there are some inconsistencies in the available results. Numerical studies indicated that the sign of the pseudo-norm typically alternates according to the n principal quantum number as (-1) n , and this was later proven for a class of potentials that are written in a polynomial form of ix. However, some potentials of other type did not fit into this line: this was the case for the Scarf II potential, the most well-known exactly solvable PT-symmetric potential. In contrast with the other examples, this potential is

  13. Inter simple sequence repeats (ISSR) and random amplified ...

    African Journals Online (AJOL)

    21 of 30 random amplified polymorphic DNA (RAPD) primers produced 220 reproducible bands with average of 10.47 bands per primer and 80.12% of polymorphism. OPR02 primer showed the highest number of effective allele (Ne), Shannon index (I) and genetic diversity (H). Some of the cultivars had specific bands, ...

  14. Raw and Central Moments of Binomial Random Variables via Stirling Numbers

    Science.gov (United States)

    Griffiths, Martin

    2013-01-01

    We consider here the problem of calculating the moments of binomial random variables. It is shown how formulae for both the raw and the central moments of such random variables may be obtained in a recursive manner utilizing Stirling numbers of the first kind. Suggestions are also provided as to how students might be encouraged to explore this…

  15. 40 CFR 761.308 - Sample selection by random number generation on any two-dimensional square grid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sample selection by random number... § 761.79(b)(3) § 761.308 Sample selection by random number generation on any two-dimensional square... area created in accordance with paragraph (a) of this section, select two random numbers: one each for...

  16. Decompositions, partitions, and coverings with convex polygons and pseudo-triangles

    NARCIS (Netherlands)

    Aichholzer, O.; Huemer, C.; Kappes, S.; Speckmann, B.; Tóth, Cs.D.

    2007-01-01

    We propose a novel subdivision of the plane that consists of both convex polygons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We also introduce pseudo-convex

  17. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression

    Directory of Open Access Journals (Sweden)

    Paul eMiller

    2013-05-01

    Full Text Available Randomly connected recurrent networks of excitatory groups of neurons can possess a multitude of attractor states. When the internal excitatory synapses of these networks are depressing, the attractor states can be destabilized with increasing input. This leads to an itinerancy, where with either repeated transient stimuli, or increasing duration of a single stimulus, the network activity advances through sequences of attractor states. We find that the resulting network state, which persists beyond stimulus offset, can encode the number of stimuli presented via a distributed representation of neural activity with non-monotonic tuning curves for most neurons. Increased duration of a single stimulus is encoded via different distributed representations, so unlike an integrator, the network distinguishes separate successive presentations of a short stimulus from a single presentation of a longer stimulus with equal total duration. Moreover, different amplitudes of stimulus cause new, distinct activity patterns, such that changes in stimulus number, duration and amplitude can be distinguished from each other. These properties of the network depend on dynamic depressing synapses, as they disappear if synapses are static. Thus short-term synaptic depression allows a network to store separately the different dynamic properties of a spatially constant stimulus.

  18. Population dynamics of Pseudo-nitzschia species ...

    African Journals Online (AJOL)

    The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es Salaam. Samples ...

  19. Balancing treatment allocations by clinician or center in randomized trials allows unacceptable levels of treatment prediction.

    Science.gov (United States)

    Hills, Robert K; Gray, Richard; Wheatley, Keith

    2009-08-01

    Randomized controlled trials are the standard method for comparing treatments because they avoid the selection bias that might arise if clinicians were free to choose which treatment a patient would receive. In practice, allocation of treatments in randomized controlled trials is often not wholly random with various 'pseudo-randomization' methods, such as minimization or balanced blocks, used to ensure good balance between treatments within potentially important prognostic or predictive subgroups. These methods avoid selection bias so long as full concealment of the next treatment allocation is maintained. There is concern, however, that pseudo-random methods may allow clinicians to predict future treatment allocations from previous allocation history, particularly if allocations are balanced by clinician or center. We investigate here to what extent treatment prediction is possible. Using computer simulations of minimization and balanced block randomizations, the success rates of various prediction strategies were investigated for varying numbers of stratification variables, including the patient's clinician. Prediction rates for minimization and balanced block randomization typically exceed 60% when clinician is included as a stratification variable and, under certain circumstances, can exceed 80%. Increasing the number of clinicians and other stratification variables did not greatly reduce the prediction rates. Without clinician as a stratification variable, prediction rates are poor unless few clinicians participate. Prediction rates are unacceptably high when allocations are balanced by clinician or by center. This could easily lead to selection bias that might suggest spurious, or mask real, treatment effects. Unless treatment is blinded, randomization should not be balanced by clinician (or by center), and clinician-center effects should be allowed for instead by retrospectively stratified analyses. © 2009 Blackwell Publishing Asia Pty Ltd and Chinese

  20. Fast selection of miRNA candidates based on large-scale pre-computed MFE sets of randomized sequences.

    Science.gov (United States)

    Warris, Sven; Boymans, Sander; Muiser, Iwe; Noback, Michiel; Krijnen, Wim; Nap, Jan-Peter

    2014-01-13

    Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings. Using a local grid infrastructure, MFE distributions of random sequences were pre-calculated on a large scale. These distributions follow a normal distribution and can be used to determine the MFE distribution for any given sequence composition by interpolation. It allows on-the-fly calculation of the normal distribution for any candidate sequence composition. The speedup achieved makes genome-wide screening with this characteristic of a pre-miRNA sequence practical. Although this particular property alone will not be able to distinguish miRNAs from other sequences sufficiently discriminative, the MFE-based P-value should be added to the parameters of choice to be included in the selection of potential miRNA candidates for experimental verification.

  1. Analysis of a Scenario for Chaotic Quantal Slowing Down of Inspiration

    Science.gov (United States)

    2013-01-01

    On exposure to opiates, preparations from rat brain stems have been observed to continue to produce regular expiratory signals, but to fail to produce some inspiratory signals. The numbers of expirations between two successive inspirations form an apparently random sequence. Here, we propose an explanation based on the qualitative theory of dynamical systems. A relatively simple scenario for the dynamics of interaction between the generators of expiratory and inspiratory signals produces pseudo-random behaviour of the type observed. PMID:24040967

  2. Pseudo-differential operators groups, geometry and applications

    CERN Document Server

    Zhu, Hongmei

    2017-01-01

    This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.

  3. Pseudo-populations a basic concept in statistical surveys

    CERN Document Server

    Quatember, Andreas

    2015-01-01

    This book emphasizes that artificial or pseudo-populations play an important role in statistical surveys from finite universes in two manners: firstly, the concept of pseudo-populations may substantially improve users’ understanding of various aspects in the sampling theory and survey methodology; an example of this scenario is the Horvitz-Thompson estimator. Secondly, statistical procedures exist in which pseudo-populations actually have to be generated. An example of such a scenario can be found in simulation studies in the field of survey sampling, where close-to-reality pseudo-populations are generated from known sample and population data to form the basis for the simulation process. The chapters focus on estimation methods, sampling techniques, nonresponse, questioning designs and statistical disclosure control.This book is a valuable reference in understanding the importance of the pseudo-population concept and applying it in teaching and research.

  4. Multiple ECG Fiducial Points-Based Random Binary Sequence Generation for Securing Wireless Body Area Networks.

    Science.gov (United States)

    Zheng, Guanglou; Fang, Gengfa; Shankaran, Rajan; Orgun, Mehmet A; Zhou, Jie; Qiao, Li; Saleem, Kashif

    2017-05-01

    Generating random binary sequences (BSes) is a fundamental requirement in cryptography. A BS is a sequence of N bits, and each bit has a value of 0 or 1. For securing sensors within wireless body area networks (WBANs), electrocardiogram (ECG)-based BS generation methods have been widely investigated in which interpulse intervals (IPIs) from each heartbeat cycle are processed to produce BSes. Using these IPI-based methods to generate a 128-bit BS in real time normally takes around half a minute. In order to improve the time efficiency of such methods, this paper presents an ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm. The technique of discrete wavelet transforms is employed to detect arrival time of these fiducial points, such as P, Q, R, S, and T peaks. Time intervals between them, including RR, RQ, RS, RP, and RT intervals, are then calculated based on this arrival time, and are used as ECG features to generate random BSes with low latency. According to our analysis on real ECG data, these ECG feature values exhibit the property of randomness and, thus, can be utilized to generate random BSes. Compared with the schemes that solely rely on IPIs to generate BSes, this MFBSG algorithm uses five feature values from one heart beat cycle, and can be up to five times faster than the solely IPI-based methods. So, it achieves a design goal of low latency. According to our analysis, the complexity of the algorithm is comparable to that of fast Fourier transforms. These randomly generated ECG BSes can be used as security keys for encryption or authentication in a WBAN system.

  5. Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation

    Energy Technology Data Exchange (ETDEWEB)

    England, D. G.; Bustard, P. J.; Moffatt, D. J.; Nunn, J.; Lausten, R.; Sussman, B. J., E-mail: ben.sussman@nrc.ca [National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6 (Canada)

    2014-02-03

    The inherent uncertainty in quantum mechanics offers a source of true randomness which can be used to produce unbreakable cryptographic keys. We discuss the development of a high-speed random number generator based on the quantum phase fluctuations in spontaneously initiated stimulated Raman scattering (SISRS). We utilize the tight confinement and long interaction length available in a Potassium Titanyl Phosphate waveguide to generate highly efficient SISRS using nanojoule pulse energies, reducing the high pump power requirements of the previous approaches. We measure the random phase of the Stokes output using a simple interferometric setup to yield quantum random numbers at 145 Mbps.

  6. Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition

    International Nuclear Information System (INIS)

    Shen Hongbin; Chou Kuochen

    2005-01-01

    The nucleus is the brain of eukaryotic cells that guides the life processes of the cell by issuing key instructions. For in-depth understanding of the biochemical process of the nucleus, the knowledge of localization of nuclear proteins is very important. With the avalanche of protein sequences generated in the post-genomic era, it is highly desired to develop an automated method for fast annotating the subnuclear locations for numerous newly found nuclear protein sequences so as to be able to timely utilize them for basic research and drug discovery. In view of this, a novel approach is developed for predicting the protein subnuclear location. It is featured by introducing a powerful classifier, the optimized evidence-theoretic K-nearest classifier, and using the pseudo amino acid composition [K.C. Chou, PROTEINS: Structure, Function, and Genetics, 43 (2001) 246], which can incorporate a considerable amount of sequence-order effects, to represent protein samples. As a demonstration, identifications were performed for 370 nuclear proteins among the following 9 subnuclear locations: (1) Cajal body, (2) chromatin, (3) heterochromatin, (4) nuclear diffuse, (5) nuclear pore, (6) nuclear speckle, (7) nucleolus, (8) PcG body, and (9) PML body. The overall success rates thus obtained by both the re-substitution test and jackknife cross-validation test are significantly higher than those by existing classifiers on the same working dataset. It is anticipated that the powerful approach may also become a useful high throughput vehicle to bridge the huge gap occurring in the post-genomic era between the number of gene sequences in databases and the number of gene products that have been functionally characterized. The OET-KNN classifier will be available at www.pami.sjtu.edu.cn/people/hbshen

  7. Blocked Randomization with Randomly Selected Block Sizes

    Directory of Open Access Journals (Sweden)

    Jimmy Efird

    2010-12-01

    Full Text Available When planning a randomized clinical trial, careful consideration must be given to how participants are selected for various arms of a study. Selection and accidental bias may occur when participants are not assigned to study groups with equal probability. A simple random allocation scheme is a process by which each participant has equal likelihood of being assigned to treatment versus referent groups. However, by chance an unequal number of individuals may be assigned to each arm of the study and thus decrease the power to detect statistically significant differences between groups. Block randomization is a commonly used technique in clinical trial design to reduce bias and achieve balance in the allocation of participants to treatment arms, especially when the sample size is small. This method increases the probability that each arm will contain an equal number of individuals by sequencing participant assignments by block. Yet still, the allocation process may be predictable, for example, when the investigator is not blind and the block size is fixed. This paper provides an overview of blocked randomization and illustrates how to avoid selection bias by using random block sizes.

  8. Inferring Variation in Copy Number Using High Throughput Sequencing Data in R.

    Science.gov (United States)

    Knaus, Brian J; Grünwald, Niklaus J

    2018-01-01

    Inference of copy number variation presents a technical challenge because variant callers typically require the copy number of a genome or genomic region to be known a priori . Here we present a method to infer copy number that uses variant call format (VCF) data as input and is implemented in the R package vcfR . This method is based on the relative frequency of each allele (in both genic and non-genic regions) sequenced at heterozygous positions throughout a genome. These heterozygous positions are summarized by using arbitrarily sized windows of heterozygous positions, binning the allele frequencies, and selecting the bin with the greatest abundance of positions. This provides a non-parametric summary of the frequency that alleles were sequenced at. The method is applicable to organisms that have reference genomes that consist of full chromosomes or sub-chromosomal contigs. In contrast to other software designed to detect copy number variation, our method does not rely on an assumption of base ploidy, but instead infers it. We validated these approaches with the model system of Saccharomyces cerevisiae and applied it to the oomycete Phytophthora infestans , both known to vary in copy number. This functionality has been incorporated into the current release of the R package vcfR to provide modular and flexible methods to investigate copy number variation in genomic projects.

  9. A random number generator for continuous random variables

    Science.gov (United States)

    Guerra, V. M.; Tapia, R. A.; Thompson, J. R.

    1972-01-01

    A FORTRAN 4 routine is given which may be used to generate random observations of a continuous real valued random variable. Normal distribution of F(x), X, E(akimas), and E(linear) is presented in tabular form.

  10. Pseudo-Cycle-Based Multicast Routing in Wormhole-Routed Networks

    Institute of Scientific and Technical Information of China (English)

    SONG JianPing (宋建平); HOU ZiFeng (侯紫峰); XU Ming (许铭)

    2003-01-01

    This paper addresses the problem of fault-tolerant multicast routing in wormholerouted multicomputers. A new pseudo-cycle-based routing method is presented for constructing deadlock-free multicast routing algorithms. With at most two virtual channels this technique can be applied to any connected networks with arbitrary topologies. Simulation results show that this technique results in negligible performance degradation even in the presence of a large number of faulty nodes.

  11. Melanoma or Pseudo melanoma Change in a pigmented lesion after application of topical 5-Fluorouracil

    Science.gov (United States)

    2017-10-26

    2. REPORT TYPE 3. DATES COVERED (From - To) 10/26/2017 Poster 10/26/2017-10/29/2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Melanoma or Pseudo...melanoma? Change in a pigmented lesion after application of topical 5-Fluorouracil. 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  12. Linearized pseudo-Einstein equations on the Heisenberg group

    Science.gov (United States)

    Barletta, Elisabetta; Dragomir, Sorin; Jacobowitz, Howard

    2017-02-01

    We study the pseudo-Einstein equation R11bar = 0 on the Heisenberg group H1 = C × R. We consider first order perturbations θɛ =θ0 + ɛ θ and linearize the pseudo-Einstein equation about θ0 (the canonical Tanaka-Webster flat contact form on H1 thought of as a strictly pseudoconvex CR manifold). If θ =e2uθ0 the linearized pseudo-Einstein equation is Δb u - 4 | Lu|2 = 0 where Δb is the sublaplacian of (H1 ,θ0) and L bar is the Lewy operator. We solve the linearized pseudo-Einstein equation on a bounded domain Ω ⊂H1 by applying subelliptic theory i.e. existence and regularity results for weak subelliptic harmonic maps. We determine a solution u to the linearized pseudo-Einstein equation, possessing Heisenberg spherical symmetry, and such that u(x) → - ∞ as | x | → + ∞.

  13. Pseudo-Riemannian VSI spaces

    International Nuclear Information System (INIS)

    Hervik, Sigbjoern; Coley, Alan

    2011-01-01

    In this paper we consider pseudo-Riemannian spaces of arbitrary signature for which all of the polynomial curvature invariants vanish (VSI spaces). We discuss an algebraic classification of pseudo-Riemannian spaces in terms of the boost weight decomposition and define the S i - and N-properties, and show that if the curvature tensors of the space possess the N-property, then it is a VSI space. We then use this result to construct a set of metrics that are VSI. All of the VSI spaces constructed possess a geodesic, expansion-free, shear-free, and twist-free null congruence. We also discuss the related Walker metrics.

  14. Pseudo-Riemannian VSI spaces

    Energy Technology Data Exchange (ETDEWEB)

    Hervik, Sigbjoern [Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger (Norway); Coley, Alan, E-mail: sigbjorn.hervik@uis.no, E-mail: aac@mathstat.dal.ca [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2011-01-07

    In this paper we consider pseudo-Riemannian spaces of arbitrary signature for which all of the polynomial curvature invariants vanish (VSI spaces). We discuss an algebraic classification of pseudo-Riemannian spaces in terms of the boost weight decomposition and define the S{sub i}- and N-properties, and show that if the curvature tensors of the space possess the N-property, then it is a VSI space. We then use this result to construct a set of metrics that are VSI. All of the VSI spaces constructed possess a geodesic, expansion-free, shear-free, and twist-free null congruence. We also discuss the related Walker metrics.

  15. Pseudo-differential operators on manifolds with singularities

    CERN Document Server

    Schulze, B-W

    1991-01-01

    The analysis of differential equations in domains and on manifolds with singularities belongs to the main streams of recent developments in applied and pure mathematics. The applications and concrete models from engineering and physics are often classical but the modern structure calculus was only possible since the achievements of pseudo-differential operators. This led to deep connections with index theory, topology and mathematical physics. The present book is devoted to elliptic partial differential equations in the framework of pseudo-differential operators. The first chapter contains the Mellin pseudo-differential calculus on R+ and the functional analysis of weighted Sobolev spaces with discrete and continuous asymptotics. Chapter 2 is devoted to the analogous theory on manifolds with conical singularities, Chapter 3 to manifolds with edges. Employed are pseudo-differential operators along edges with cone-operator-valued symbols.

  16. The Fermi pseudo-potential in one dimension

    International Nuclear Information System (INIS)

    Coutinho, F A B; Nogami, Y; Tomio, Lauro; Toyama, F M

    2004-01-01

    Wu and Yu recently examined point interactions in one dimension in the form of the Fermi pseudo-potential. On the other hand there are point interactions in the form of self-adjoint extensions (SAEs) of the kinetic energy operator. We examine the relationship between the point interactions in these two forms in the one-channel and two-channel cases. In the one-channel case the pseudo-potential leads to the standard three-parameter family of SAEs. In the two-channel case the pseudo-potential furnishes a ten-parameter family of SAEs

  17. Digital-Analog Hybrid Scheme and Its Application to Chaotic Random Number Generators

    Science.gov (United States)

    Yuan, Zeshi; Li, Hongtao; Miao, Yunchi; Hu, Wen; Zhu, Xiaohua

    2017-12-01

    Practical random number generation (RNG) circuits are typically achieved with analog devices or digital approaches. Digital-based techniques, which use field programmable gate array (FPGA) and graphics processing units (GPU) etc. usually have better performances than analog methods as they are programmable, efficient and robust. However, digital realizations suffer from the effect of finite precision. Accordingly, the generated random numbers (RNs) are actually periodic instead of being real random. To tackle this limitation, in this paper we propose a novel digital-analog hybrid scheme that employs the digital unit as the main body, and minimum analog devices to generate physical RNs. Moreover, the possibility of realizing the proposed scheme with only one memory element is discussed. Without loss of generality, we use the capacitor and the memristor along with FPGA to construct the proposed hybrid system, and a chaotic true random number generator (TRNG) circuit is realized, producing physical RNs at a throughput of Gbit/s scale. These RNs successfully pass all the tests in the NIST SP800-22 package, confirming the significance of the scheme in practical applications. In addition, the use of this new scheme is not restricted to RNGs, and it also provides a strategy to solve the effect of finite precision in other digital systems.

  18. Theory of pseudo-classical confinement and transmutation to L-mode

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.; Azumi, M.

    1993-05-01

    Theory of the self-sustained turbulence is developed for resistive plasma in toroidal devices. Pseudo-classical confinement is obtained in the low temperature limit. As temperature increases, the current-diffusivity prevails upon resistivity, and the turbulence nature changes so as to recover the L-mode transport. Comparison with experimental observation on this transition is made. Hartmann number is also given. (author)

  19. Error Analysis of Deep Sequencing of Phage Libraries: Peptides Censored in Sequencing

    Directory of Open Access Journals (Sweden)

    Wadim L. Matochko

    2013-01-01

    Full Text Available Next-generation sequencing techniques empower selection of ligands from phage-display libraries because they can detect low abundant clones and quantify changes in the copy numbers of clones without excessive selection rounds. Identification of errors in deep sequencing data is the most critical step in this process because these techniques have error rates >1%. Mechanisms that yield errors in Illumina and other techniques have been proposed, but no reports to date describe error analysis in phage libraries. Our paper focuses on error analysis of 7-mer peptide libraries sequenced by Illumina method. Low theoretical complexity of this phage library, as compared to complexity of long genetic reads and genomes, allowed us to describe this library using convenient linear vector and operator framework. We describe a phage library as N×1 frequency vector n=ni, where ni is the copy number of the ith sequence and N is the theoretical diversity, that is, the total number of all possible sequences. Any manipulation to the library is an operator acting on n. Selection, amplification, or sequencing could be described as a product of a N×N matrix and a stochastic sampling operator (Sa. The latter is a random diagonal matrix that describes sampling of a library. In this paper, we focus on the properties of Sa and use them to define the sequencing operator (Seq. Sequencing without any bias and errors is Seq=Sa IN, where IN is a N×N unity matrix. Any bias in sequencing changes IN to a nonunity matrix. We identified a diagonal censorship matrix (CEN, which describes elimination or statistically significant downsampling, of specific reads during the sequencing process.

  20. ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads.

    Directory of Open Access Journals (Sweden)

    Christopher A Miller

    2011-01-01

    Full Text Available Copy number alterations are important contributors to many genetic diseases, including cancer. We present the readDepth package for R, which can detect these aberrations by measuring the depth of coverage obtained by massively parallel sequencing of the genome. In addition to achieving higher accuracy than existing packages, our tool runs much faster by utilizing multi-core architectures to parallelize the processing of these large data sets. In contrast to other published methods, readDepth does not require the sequencing of a reference sample, and uses a robust statistical model that accounts for overdispersed data. It includes a method for effectively increasing the resolution obtained from low-coverage experiments by utilizing breakpoint information from paired end sequencing to do positional refinement. We also demonstrate a method for inferring copy number using reads generated by whole-genome bisulfite sequencing, thus enabling integrative study of epigenomic and copy number alterations. Finally, we apply this tool to two genomes, showing that it performs well on genomes sequenced to both low and high coverage. The readDepth package runs on Linux and MacOSX, is released under the Apache 2.0 license, and is available at http://code.google.com/p/readdepth/.

  1. Variate generation for probabilistic fracture mechanics and fitness-for-service studies

    International Nuclear Information System (INIS)

    Walker, J.R.

    1987-01-01

    Atomic Energy of Canada Limited is conducting studies in Probabilistic Fracture Mechanics. These studies are being conducted as part of a fitness-for-service programme in support of CANDU reactors. The Monte Carlo analyses, which form part of the Probabilistic Fracture Mechanics studies, require that variates can be sampled from probability density functions. Accurate pseudo-random numbers are necessary for accurate variate generation. This report details the principles of variate generation, and describes the production and testing of pseudo-random numbers. A new algorithm has been produced for the correct performance of the lattice test for the independence of pseudo-random numbers. Two new pseudo-random number generators have been produced. These generators have excellent randomness properties and can be made fully machine-independent. Versions, in FORTRAN, for VAX and CDC computers are given. Accurate and efficient algorithms for the generation of variates from the specialized probability density functions of Probabilistic Fracture Mechanics are given. 38 refs

  2. Effective potential of the three-dimensional Ising model: The pseudo-ɛ expansion study

    Science.gov (United States)

    Sokolov, A. I.; Kudlis, A.; Nikitina, M. A.

    2017-08-01

    The ratios R2k of renormalized coupling constants g2k that enter the effective potential and small-field equation of state acquire the universal values at criticality. They are calculated for the three-dimensional scalar λϕ4 field theory (3D Ising model) within the pseudo-ɛ expansion approach. Pseudo-ɛ expansions for the critical values of g6, g8, g10, R6 =g6 / g42, R8 =g8 / g43 and R10 =g10 / g44 originating from the five-loop renormalization group (RG) series are derived. Pseudo-ɛ expansions for the sextic coupling have rapidly diminishing coefficients, so addressing Padé approximants yields proper numerical results. Use of Padé-Borel-Leroy and conformal mapping resummation techniques further improves the accuracy leading to the values R6* = 1.6488 and R6* = 1.6490 which are in a brilliant agreement with the result of advanced lattice calculations. For the octic coupling the numerical structure of the pseudo-ɛ expansions is less favorable. Nevertheless, the conform-Borel resummation gives R8* = 0.868, the number being close to the lattice estimate R8* = 0.871 and compatible with the result of 3D RG analysis R8* = 0.857. Pseudo-ɛ expansions for R10* and g10* are also found to have much smaller coefficients than those of the original RG series. They remain, however, fast growing and big enough to prevent obtaining fair numerical estimates.

  3. Experimental study of a quantum random-number generator based on two independent lasers

    Science.gov (United States)

    Sun, Shi-Hai; Xu, Feihu

    2017-12-01

    A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.

  4. Pseudo-capacitor device for aqueous electrolytes

    Science.gov (United States)

    Prakash, Jai; Thackeray, Michael M.; Dees, Dennis W.; Vissers, Donald R.; Myles, Kevin M.

    1998-01-01

    A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A.sub.2 ›B.sub.2-x Pb.sub.x !O.sub.7-y, where A=Pb, Bi, and B=Ru, Ir, and Ocapacitor. The amount of expensive ruthenate and iridium can be substantially reduced in the pseudo-capacitor by increasing the lead content while improving energy storage capacity.

  5. Mapping copy number variation by population-scale genome sequencing

    DEFF Research Database (Denmark)

    Mills, Ryan E.; Walter, Klaudia; Stewart, Chip

    2011-01-01

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is......, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications...

  6. Nearly pseudo-Kähler manifolds and related special holonomies

    CERN Document Server

    Schäfer, Lars

    2017-01-01

    Developing and providing an overview of recent results on nearly Kähler geometry on pseudo-Riemannian manifolds, this monograph emphasizes the differences with the classical Riemannian geometry setting. The focal objects of the text are related to special holonomy and Killing spinors and have applications in high energy physics, such as supergravity and string theory. Before starting into the field, a self-contained introduction to the subject is given, aimed at students with a solid background in differential geometry. The book will therefore be accessible to masters and Ph.D. students who are beginning work on nearly Kähler geometry in pseudo-Riemannian signature, and also to non-experts interested in gaining an overview of the subject.  Moreover, a number of results and techniques are provided which will be helpful for differential geometers as well as for high energy physicists interested in the mathematical background of the geometric objects they need.

  7. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Directory of Open Access Journals (Sweden)

    Brian B Tuch

    Full Text Available Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  8. Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour

    International Nuclear Information System (INIS)

    Mostafazadeh, Ali

    2005-01-01

    We describe a method that allows for a practical application of the theory of pseudo-Hermitian operators to PT-symmetric systems defined on a complex contour. We apply this method to study the Hamiltonians H = p 2 + x 2 (ix) ν with ν ε (-2, ∞) that are defined along the corresponding anti-Stokes lines. In particular, we reveal the intrinsic non-Hermiticity of H for the cases that ν is an even integer, so that H p 2 ± x 2+ν , and give a proof of the discreteness of the spectrum of H for all ν ε (-2, ∞). Furthermore, we study the consequences of defining a square-well Hamiltonian on a wedge-shaped complex contour. This yields a PT-symmetric system with a finite number of real eigenvalues. We present a comprehensive analysis of this system within the framework of pseudo-Hermitian quantum mechanics. We also outline a direct pseudo-Hermitian treatment of PT-symmetric systems defined on a complex contour which clarifies the underlying mathematical structure of the formulation of PT-symmetric quantum mechanics based on the charge-conjugation operator. Our results provide conclusive evidence that pseudo-Hermitian quantum mechanics provides a complete description of general PT-symmetric systems regardless of whether they are defined along the real line or a complex contour

  9. Random Number Simulations Reveal How Random Noise Affects the Measurements and Graphical Portrayals of Self-Assessed Competency

    Directory of Open Access Journals (Sweden)

    Edward Nuhfer

    2016-01-01

    Full Text Available Self-assessment measures of competency are blends of an authentic self-assessment signal that researchers seek to measure and random disorder or "noise" that accompanies that signal. In this study, we use random number simulations to explore how random noise affects critical aspects of self-assessment investigations: reliability, correlation, critical sample size, and the graphical representations of self-assessment data. We show that graphical conventions common in the self-assessment literature introduce artifacts that invite misinterpretation. Troublesome conventions include: (y minus x vs. (x scatterplots; (y minus x vs. (x column graphs aggregated as quantiles; line charts that display data aggregated as quantiles; and some histograms. Graphical conventions that generate minimal artifacts include scatterplots with a best-fit line that depict (y vs. (x measures (self-assessed competence vs. measured competence plotted by individual participant scores, and (y vs. (x scatterplots of collective average measures of all participants plotted item-by-item. This last graphic convention attenuates noise and improves the definition of the signal. To provide relevant comparisons across varied graphical conventions, we use a single dataset derived from paired measures of 1154 participants' self-assessed competence and demonstrated competence in science literacy. Our results show that different numerical approaches employed in investigating and describing self-assessment accuracy are not equally valid. By modeling this dataset with random numbers, we show how recognizing the varied expressions of randomness in self-assessment data can improve the validity of numeracy-based descriptions of self-assessment.

  10. Recurrence and Polya Number of General One-Dimensional Random Walks

    International Nuclear Information System (INIS)

    Zhang Xiaokun; Wan Jing; Lu Jingju; Xu Xinping

    2011-01-01

    The recurrence properties of random walks can be characterized by Polya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we consider recurrence properties for a general 1D random walk on a line, in which at each time step the walker can move to the left or right with probabilities l and r, or remain at the same position with probability o (l + r + o = 1). We calculate Polya number P of this model and find a simple expression for P as, P = 1 - Δ, where Δ is the absolute difference of l and r (Δ = |l - r|). We prove this rigorous expression by the method of creative telescoping, and our result suggests that the walk is recurrent if and only if the left-moving probability l equals to the right-moving probability r. (general)

  11. Pseudo-supersymmetry and the domain-wall/cosmology correspondence

    International Nuclear Information System (INIS)

    Skenderis, Kostas; Townsend, Paul K

    2007-01-01

    The correspondence between domain-wall and cosmological solutions of gravity coupled to scalar fields is explained. Any domain-wall solutions that admit a Killing spinor are shown to correspond to a cosmology that admits a pseudo-Killing spinor; whereas the Killing spinor obeys a Dirac-type equation with Hermitian 'mass'-matrix, the corresponding pseudo-Killing spinor obeys a Dirac-type equation with a anti-Hermitian 'mass'-matrix. We comment on some implications of (pseudo)supersymmetry

  12. Allelopathic potential of Robinia pseudo-acacia L.

    Science.gov (United States)

    Nasir, Habib; Iqbal, Zahida; Hiradate, Syuntaro; Fujii, Yoshiharu

    2005-09-01

    Robinia pseudo-acacia L. (black locust) is a nonindigenous species currently invading the central part of Japanese grasslands. Several allelochemicals were identified and characterized from the leaf tissue. The growth of both radicle and hypocotyl in the tested species (barnyard grass, white clover, lettuce, and Chinese cabbage) was reduced when grown in soil mixed with the leaves of R. pseudo-acacia at various concentrations. Aqueous leaf extracts, when bioassayed, exhibited a significant suppression of radicle growth. Chromatographic separation of an ethanolic extract of R. pseudo-acacia leaves resulted in isolation of three compounds, identified as robinetin (1), myricetin (2), and quercetin (3) by nuclear magnetic resonance and mass spectroscopy. All inhibited root and shoot growth of lettuce. Robinetin, found in a large amount, caused 50% suppression of the root and shoot growth of lettuce at 100 ppm. The presence of these bioactive substances in leaf tissue suggests a potential role for flavonoids in R. pseudo-acacia invasion in introduced habitats.

  13. Primary palpebral and orbital ossification in pseudo-pseudohypoparathyroidism

    DEFF Research Database (Denmark)

    Klauber, S.; Heegaard, S.; Prause, J.U.

    2002-01-01

    ophthalmology, Albright's heriditary osteodystrophy, ossification, pseudo-pseudohypoparathyroidism, pseodohypoparathyroidism, hypothyroidism, GNAS1 gene, history, eyelid, orbit......ophthalmology, Albright's heriditary osteodystrophy, ossification, pseudo-pseudohypoparathyroidism, pseodohypoparathyroidism, hypothyroidism, GNAS1 gene, history, eyelid, orbit...

  14. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Directory of Open Access Journals (Sweden)

    Marcin Piotr Pawlowski

    2015-10-01

    Full Text Available Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors have been analyzed. Additionally, the costs (i.e., time and memory consumption of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  15. Harvesting Entropy for Random Number Generation for Internet of Things Constrained Devices Using On-Board Sensors

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-01-01

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things. PMID:26506357

  16. Harvesting entropy for random number generation for internet of things constrained devices using on-board sensors.

    Science.gov (United States)

    Pawlowski, Marcin Piotr; Jara, Antonio; Ogorzalek, Maciej

    2015-10-22

    Entropy in computer security is associated with the unpredictability of a source of randomness. The random source with high entropy tends to achieve a uniform distribution of random values. Random number generators are one of the most important building blocks of cryptosystems. In constrained devices of the Internet of Things ecosystem, high entropy random number generators are hard to achieve due to hardware limitations. For the purpose of the random number generation in constrained devices, this work proposes a solution based on the least-significant bits concatenation entropy harvesting method. As a potential source of entropy, on-board integrated sensors (i.e., temperature, humidity and two different light sensors) have been analyzed. Additionally, the costs (i.e., time and memory consumption) of the presented approach have been measured. The results obtained from the proposed method with statistical fine tuning achieved a Shannon entropy of around 7.9 bits per byte of data for temperature and humidity sensors. The results showed that sensor-based random number generators are a valuable source of entropy with very small RAM and Flash memory requirements for constrained devices of the Internet of Things.

  17. Exploring Various Monte Carlo Simulations for Geoscience Applications

    Science.gov (United States)

    Blais, R.

    2010-12-01

    Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.

  18. Targeted exome sequencing identified novel USH2A mutations in Usher syndrome families.

    Directory of Open Access Journals (Sweden)

    Xiu-Feng Huang

    Full Text Available Usher syndrome (USH is a leading cause of deaf-blindness in autosomal recessive trait. Phenotypic and genetic heterogeneities in USH make molecular diagnosis much difficult. This is a pilot study aiming to develop an approach based on next-generation sequencing to determine the genetic defects in patients with USH or allied diseases precisely and effectively. Eight affected patients and twelve unaffected relatives from five unrelated Chinese USH families, including 2 pseudo-dominant ones, were recruited. A total of 144 known genes of inherited retinal diseases were selected for deep exome resequencing. Through systematic data analysis using established bioinformatics pipeline and segregation analysis, a number of genetic variants were released. Eleven mutations, eight of them were novel, in the USH2A gene were identified. Biparental mutations in USH2A were revealed in 2 families with pseudo-dominant inheritance. A proband was found to have triple mutations, two of them were supposed to locate in the same chromosome. In conclusion, this study revealed the genetic defects in the USH2A gene and demonstrated the robustness of targeted exome sequencing to precisely and rapidly determine genetic defects. The methodology provides a reliable strategy for routine gene diagnosis of USH.

  19. Pseudo LRM waveforms from CryoSat SARin acquisition

    Science.gov (United States)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso; Féménias, Pierre

    2016-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. The main payload of CryoSat is a Ku-band pulsewidth limited radar altimeter, called SIRAL (Synthetic interferometric radar altimeter). When commanded in SARIn (synthetic aperture radar interferometry) mode, through coherent along-track processing of the returns received from two antennas, the interferometric phase related to the first arrival of the echo is used to retrieve the angle of arrival of the scattering in the across-track direction. When SIRAL operates in SAR or SARin mode, the obtained waveforms have an along-track resolution and a speckle reduction which is increased with respect to the pulse-limited waveforms. Anyway, in order to analyze the continuity of the geophysical retrieved parameters among different acquisition modes, techniques to transform SARin mode data to pseudo-LRM mode data are welcome. The transformation process is known as SAR reduction and it is worth recalling here that only approximate pseudo-LRM waveforms can be obtained in case of closed burst acquisitions, as SIRAL operates. A SAR reduction processing scheme has been developed to obtain pseudo-LRM waveforms from CryoSat SARin acquisition. As a trade-off between the along-track length on Earth surface contributing to one SARin pseudo-LRM waveform and the noisiness of the waveform itself, it has been chosen a SAR reduction approach based on the averaging of all the SARin echoes received each 20Hz, resulting in one pseudo-LRM waveform for each SARin burst given the SARin burst repetition period. SARin pseudo-LRM waveforms have been produced for CryoSat acquisition both on ice and sea surfaces, aiming at verifying the continuity of the retracked surface height over the ellipsoid between genuine LRM products and pseudo-LRM products. Moreover, the retracked height from the SARin pseudo-LRM has been

  20. MEMS-LSI Integrated Microchip using Pseudo-SoC Technology

    Science.gov (United States)

    Funaki, Hideyuki; Itaya, Kazuhiko; Yamada, Hiroshi; Onozuka, Yutaka; Iida, Atsuko

    The authors have developed pseudo-SoC technology to realize MEMS-LSI integrated micro-chip. The pseudo-SoC technology consists of three technologies which are wafer reconfiguration technology, inter-chip redistribution layer technology, and pseudo-SoC thinning technology. In the wafer reconfiguration technology, the filling of resin and surface step between heterogeneous chips were improved through the optimization of vacuum printing process and resin material. These improvements reduced the warpage of reconfiguration wafer, leading to achievement of the reconfiguration wafer with 5 inch in diameter. In the inter-chip redistribution layer technology, the interface adherence between planar layer and inter-chip redistribution layer was improved, leading to the inter-chip redistribution layer with 1μm/1μm in line/space on reconfiguration wafer. In the pseudo-SoC thinning technology, thin pseudo-SoC device with 100μm in thickness was achieved through developing mechanical backside grinding process technology. Furthermore, ultra-thin pseudo-SoC which integrated electrostatic MEMS light valve and PWM driver IC was prototyped through developing the ultra-thin MEMS encapsulation technology.

  1. Emergence of Sequence Type 779 Methicillin-Resistant Staphylococcus aureus Harboring a Novel Pseudo Staphylococcal Cassette Chromosome mec (SCCmec)-SCC-SCCCRISPR Composite Element in Irish Hospitals

    Science.gov (United States)

    Kinnevey, Peter M.; Shore, Anna C.; Brennan, Grainne I.; Sullivan, Derek J.; Ehricht, Ralf; Monecke, Stefan; Slickers, Peter

    2013-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been a major cause of nosocomial infection in Irish hospitals for 4 decades, and replacement of predominant MRSA clones has occurred several times. An MRSA isolate recovered in 2006 as part of a larger study of sporadic MRSA exhibited a rare spa (t878) and multilocus sequence (ST779) type and was nontypeable by PCR- and DNA microarray-based staphylococcal cassette chromosome mec (SCCmec) element typing. Whole-genome sequencing revealed the presence of a novel 51-kb composite island (CI) element with three distinct domains, each flanked by direct repeat and inverted repeat sequences, including (i) a pseudo SCCmec element (16.3 kb) carrying mecA with a novel mec class region, a fusidic acid resistance gene (fusC), and two copper resistance genes (copB and copC) but lacking ccr genes; (ii) an SCC element (17.5 kb) carrying a novel ccrAB4 allele; and (iii) an SCC element (17.4 kb) carrying a novel ccrC allele and a clustered regularly interspaced short palindromic repeat (CRISPR) region. The novel CI was subsequently identified by PCR in an additional 13 t878/ST779 MRSA isolates, six from bloodstream infections, recovered between 2006 and 2011 in 11 hospitals. Analysis of open reading frames (ORFs) carried by the CI showed amino acid sequence similarity of 44 to 100% to ORFs from S. aureus and coagulase-negative staphylococci (CoNS). These findings provide further evidence of genetic transfer between S. aureus and CoNS and show how this contributes to the emergence of novel SCCmec elements and MRSA strains. Ongoing surveillance of this MRSA strain is warranted and will require updating of currently used SCCmec typing methods. PMID:23147725

  2. Emergence of sequence type 779 methicillin-resistant Staphylococcus aureus harboring a novel pseudo staphylococcal cassette chromosome mec (SCCmec)-SCC-SCCCRISPR composite element in Irish hospitals.

    LENUS (Irish Health Repository)

    Kinnevey, Peter M

    2013-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been a major cause of nosocomial infection in Irish hospitals for 4 decades, and replacement of predominant MRSA clones has occurred several times. An MRSA isolate recovered in 2006 as part of a larger study of sporadic MRSA exhibited a rare spa (t878) and multilocus sequence (ST779) type and was nontypeable by PCR- and DNA microarray-based staphylococcal cassette chromosome mec (SCCmec) element typing. Whole-genome sequencing revealed the presence of a novel 51-kb composite island (CI) element with three distinct domains, each flanked by direct repeat and inverted repeat sequences, including (i) a pseudo SCCmec element (16.3 kb) carrying mecA with a novel mec class region, a fusidic acid resistance gene (fusC), and two copper resistance genes (copB and copC) but lacking ccr genes; (ii) an SCC element (17.5 kb) carrying a novel ccrAB4 allele; and (iii) an SCC element (17.4 kb) carrying a novel ccrC allele and a clustered regularly interspaced short palindromic repeat (CRISPR) region. The novel CI was subsequently identified by PCR in an additional 13 t878\\/ST779 MRSA isolates, six from bloodstream infections, recovered between 2006 and 2011 in 11 hospitals. Analysis of open reading frames (ORFs) carried by the CI showed amino acid sequence similarity of 44 to 100% to ORFs from S. aureus and coagulase-negative staphylococci (CoNS). These findings provide further evidence of genetic transfer between S. aureus and CoNS and show how this contributes to the emergence of novel SCCmec elements and MRSA strains. Ongoing surveillance of this MRSA strain is warranted and will require updating of currently used SCCmec typing methods.

  3. Pseudo-classical theory of Majorana-Weyl particle

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.

    1996-01-01

    A pseudo-classical theory of Weyl particle in the space-time dimensions D = 2 n is constructed. The canonical quantization of that pseudo-classical theory is carried out and it results in the theory of the D = 2 n dimensional Weyl particle in the Foldy-Wouthuysen representation. 28 refs

  4. Mathematical conversations multicolor problems, problems in the theory of numbers, and random walks

    CERN Document Server

    Dynkin, E B

    2006-01-01

    Comprises Multicolor Problems, dealing with map-coloring problems; Problems in the Theory of Numbers, an elementary introduction to algebraic number theory; Random Walks, addressing basic problems in probability theory. 1963 edition.

  5. Configurational statistics of a polymer chain with random sequence of elements

    International Nuclear Information System (INIS)

    Obukhov, S.P.

    1984-10-01

    It is shown that for a disordered polymer chain the upper critical dimension is d c =3. At d≤3 the effect of randomness increases on large scales due to the space correlations of attractive and repulsive monomers, but it can also be screened by repulsive two- or three-body interaction. The renorm group equations indicate that near the theta point it can be the large dispersion of sizes of polymers which differ only in sequences of elements. (orig.)

  6. Robust random number generation using steady-state emission of gain-switched laser diodes

    International Nuclear Information System (INIS)

    Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.

    2014-01-01

    We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.

  7. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Nielsen, Morten

    2012-01-01

    Seq2Logo is a web-based sequence logo generator. Sequence logos are a graphical representation of the information content stored in a multiple sequence alignment (MSA) and provide a compact and highly intuitive representation of the position-specific amino acid composition of binding motifs, active...... related to amino acid enrichment and depletion. Besides allowing input in the format of peptides and MSA, Seq2Logo accepts input as Blast sequence profiles, providing easy access for non-expert end-users to characterize and identify functionally conserved/variable amino acids in any given protein...... sites, etc. in biological sequences. Accurate generation of sequence logos is often compromised by sequence redundancy and low number of observations. Moreover, most methods available for sequence logo generation focus on displaying the position-specific enrichment of amino acids, discarding the equally...

  8. Alignment efficiency and discomfort of three orthodontic archwire sequences: a randomized clinical trial.

    Science.gov (United States)

    Ong, Emily; Ho, Christopher; Miles, Peter

    2011-03-01

    To compare the efficiency of orthodontic archwire sequences produced by three manufacturers. Prospective, randomized clinical trial with three parallel groups. Private orthodontic practice in Caloundra, QLD, Australia. One hundred and thirty-two consecutive patients were randomized to one of three archwire sequence groups: (i) 3M Unitek, 0·014 inch Nitinol, 0·017 inch × 0·017 inch heat activated Ni-Ti; (ii) GAC international, 0·014 inch Sentalloy, 0·016 × 0·022 inch Bioforce; and (iii) Ormco corporation, 0·014 inch Damon Copper Ni-Ti, 0·014 × 0·025 inch Damon Copper Ni-Ti. All patients received 0·018 × 0·025 inch slot Victory Series™ brackets. Mandibular impressions were taken before the insertion of each archwire. Patients completed discomfort surveys according to a seven-point Likert Scale at 4 h, 24 h, 3 days and 7 days after the insertion of each archwire. Efficiency was measured by time required to reach the working archwire, mandibular anterior alignment and level of discomfort. No significant differences were found in the reduction of irregularity between the archwire sequences at any time-point (T1: P = 0·12; T2: P = 0·06; T3: P = 0·21) or in the time to reach the working archwire (P = 0·28). No significant differences were found in the overall discomfort scores between the archwire sequences (4 h: P = 0·30; 24 h: P = 0·18; 3 days: P = 0·53; 7 days: P = 0·47). When the time-points were analysed individually, the 3M Unitek archwire sequence induced significantly less discomfort than GAC and Ormco archwires 24 h after the insertion of the third archwire (P = 0·02). This could possibly be attributed to the progression in archwire material and archform. The archwire sequences were similar in alignment efficiency and overall discomfort. Progression in archwire dimension and archform may contribute to discomfort levels. This study provides clinical justification for three common archwire sequences in 0·018 × 0·025 inch slot brackets.

  9. Theory of analogous force on number sets

    Energy Technology Data Exchange (ETDEWEB)

    Canessa, Enrique [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2003-08-01

    A general statistical thermodynamic theory that considers given sequences of x-integers to play the role of particles of known type in an isolated elastic system is proposed. By also considering some explicit discrete probability distributions p{sub x} for natural numbers, we claim that they lead to a better understanding of probabilistic laws associated with number theory. Sequences of numbers are treated as the size measure of finite sets. By considering p{sub x} to describe complex phenomena, the theory leads to derive a distinct analogous force f{sub x} on number sets proportional to ({partial_derivative}p{sub x}/{partial_derivative}x){sub T} at an analogous system temperature T. In particular, this yields to an understanding of the uneven distribution of integers of random sets in terms of analogous scale invariance and a screened inverse square force acting on the significant digits. The theory also allows to establish recursion relations to predict sequences of Fibonacci numbers and to give an answer to the interesting theoretical question of the appearance of the Benford's law in Fibonacci numbers. A possible relevance to prime numbers is also analyzed. (author)

  10. 10.23  Mcps laser pseudo-code ranging system with 0.33  mm (1σ) pseudo-range measurement precision.

    Science.gov (United States)

    Yu, Xiaonan; Tong, Shoufeng; Zhang, Lei; Dong, Yan; Zhao, Xin; Qiao, Yue

    2017-07-01

    The inter-satellite laser link is the backbone of the next inter-satellite information network, and ranging and communication are the main functions of the inter-satellite laser link. This study focuses on the inter-satellite laser ranging based on the pseudo-code correlation technology. In this paper, several typical laser-ranging methods have been compared and we determined that the laser pseudo-code ranging architecture is more suitable for the inter-satellite laser communication link. The pseudo-code ranging system is easy to combine with a digital communication system, and we used it to calculate integer ambiguity by modulating the time information. The main challenge of the ranging system is range precision, which is the main focus of this paper. First, the framework of the pseudo-code ranging system is introduced; the ranging architecture of dual one-way ranging is used to eliminate the clock error between the two transceivers, and then the uncertainty of the phase detector is analyzed. In the analysis, the carrier to noise ratio and the ranging code rate are constrained by the laser communication link margin and the electronic hardware limitation. Therefore, the relationship between the sampling depth and the phase detector uncertainty is verified. A series of optical fiber channel laser pseudo-code ranging experiments demonstrated the effects of sampling depth on the ranging precision. By adjusting the depth of storage, such as the depth of 1.6 Mb, we obtained a pseudo-range measurement precision of 0.33 mm (1σ), which is equivalent to 0.0001 times code subdivision of 10.23 Mcps pseudo-code. This paper has achieved high precision in a pseudo-range measurements, which is the foundation of the inter-satellite laser link.

  11. Generating log-normally distributed random numbers by using the Ziggurat algorithm

    International Nuclear Information System (INIS)

    Choi, Jong Soo

    2016-01-01

    Uncertainty analyses are usually based on the Monte Carlo method. Using an efficient random number generator(RNG) is a key element in success of Monte Carlo simulations. Log-normal distributed variates are very typical in NPP PSAs. This paper proposes an approach to generate log normally distributed variates based on the Ziggurat algorithm and evaluates the efficiency of the proposed Ziggurat RNG. The proposed RNG can be helpful to improve the uncertainty analysis of NPP PSAs. This paper focuses on evaluating the efficiency of the Ziggurat algorithm from a NPP PSA point of view. From this study, we can draw the following conclusions. - The Ziggurat algorithm is one of perfect random number generators to product normal distributed variates. - The Ziggurat algorithm is computationally much faster than the most commonly used method, Marsaglia polar method

  12. PUFKEY: A High-Security and High-Throughput Hardware True Random Number Generator for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Dongfang Li

    2015-10-01

    Full Text Available Random number generators (RNG play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST randomness tests and is resilient to a wide range of security attacks.

  13. PUFKEY: a high-security and high-throughput hardware true random number generator for sensor networks.

    Science.gov (United States)

    Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin

    2015-10-16

    Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.

  14. Pseudo-arthrosis repair of a posterior cruciate ligament avulsion fracture

    OpenAIRE

    Hoogervorst, Paul; Gardeniers, J. W. M.; Moret-Wever, S.; van Kampen, A.

    2010-01-01

    A pseudo-arthrosis repair of a 4-year-old bony avulsion fracture of the PCL using a minimally invasive technique, screw fixation, and bone grafting is reported. The case presented seems to be rather unique due to the fragment size and the approach for pseudo-arthrosis repair. There was a good functional result following minimally invasive pseudo-arthrosis repair of a posterior cruciate ligament avulsion fracture. There are no previous reports of similar pseudo-arthrosis repairs, and other aut...

  15. Quantitative measure of randomness and order for complete genomes

    Science.gov (United States)

    Kong, Sing-Guan; Fan, Wen-Lang; Chen, Hong-Da; Wigger, Jan; Torda, Andrew E.; Lee, H. C.

    2009-06-01

    We propose an order index, ϕ , which gives a quantitative measure of randomness and order of complete genomic sequences. It maps genomes to a number from 0 (random and of infinite length) to 1 (fully ordered) and applies regardless of sequence length. The 786 complete genomic sequences in GenBank were found to have ϕ values in a very narrow range, ϕg=0.031-0.015+0.028 . We show this implies that genomes are halfway toward being completely random, or, at the “edge of chaos.” We further show that artificial “genomes” converted from literary classics have ϕ ’s that almost exactly coincide with ϕg , but sequences of low information content do not. We infer that ϕg represents a high information-capacity “fixed point” in sequence space, and that genomes are driven to it by the dynamics of a robust growth and evolution process. We show that a growth process characterized by random segmental duplication can robustly drive genomes to the fixed point.

  16. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole

    Science.gov (United States)

    Liu, Yang; Yuan, Xiao; Li, Ming-Han; Zhang, Weijun; Zhao, Qi; Zhong, Jiaqiang; Cao, Yuan; Li, Yu-Huai; Chen, Luo-Kan; Li, Hao; Peng, Tianyi; Chen, Yu-Ao; Peng, Cheng-Zhi; Shi, Sheng-Cai; Wang, Zhen; You, Lixing; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2018-01-01

    Quantum mechanics provides the means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a manner that is independent of implementation devices. Here, we present an experimental study of device-independent quantum random number generation based on a detection-loophole-free Bell test with entangled photons. In the randomness analysis, without the independent identical distribution assumption, we consider the worst case scenario that the adversary launches the most powerful attacks against the quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits /s , with a failure probability less than 10-5. This marks a critical step towards realistic applications in cryptography and fundamental physics tests.

  17. Cluster growing process and a sequence of magic numbers

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2003-01-01

    demonstrate that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms......We present a new theoretical framework for modeling the cluster growing process. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system, and absorbing its energy at each step, we find cluster growing paths up to the cluster sizes of more than 100 atoms. We...

  18. AFLP fragment isolation technique as a method to produce random sequences for single nucleotide polymorphism discovery in the green turtle, Chelonia mydas.

    Science.gov (United States)

    Roden, Suzanne E; Dutton, Peter H; Morin, Phillip A

    2009-01-01

    The green sea turtle, Chelonia mydas, was used as a case study for single nucleotide polymorphism (SNP) discovery in a species that has little genetic sequence information available. As green turtles have a complex population structure, additional nuclear markers other than microsatellites could add to our understanding of their complex life history. Amplified fragment length polymorphism technique was used to generate sets of random fragments of genomic DNA, which were then electrophoretically separated with precast gels, stained with SYBR green, excised, and directly sequenced. It was possible to perform this method without the use of polyacrylamide gels, radioactive or fluorescent labeled primers, or hybridization methods, reducing the time, expense, and safety hazards of SNP discovery. Within 13 loci, 2547 base pairs were screened, resulting in the discovery of 35 SNPs. Using this method, it was possible to yield a sufficient number of loci to screen for SNP markers without the availability of prior sequence information.

  19. Pseudo-Newtonian planar circular restricted 3-body problem

    International Nuclear Information System (INIS)

    Dubeibe, F.L.; Lora-Clavijo, F.D.; González, Guillermo A.

    2017-01-01

    We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.

  20. Pseudo-Newtonian planar circular restricted 3-body problem

    Energy Technology Data Exchange (ETDEWEB)

    Dubeibe, F.L., E-mail: fldubeibem@unal.edu.co [Facultad de Ciencias Humanas y de la Educación, Universidad de los Llanos, Villavicencio (Colombia); Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Lora-Clavijo, F.D., E-mail: fadulora@uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); González, Guillermo A., E-mail: guillermo.gonzalez@saber.uis.edu.co [Grupo de Investigación en Relatividad y Gravitación, Escuela de Física, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia)

    2017-02-12

    We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor–Hoenselaers–Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ϵ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.