WorldWideScience

Sample records for pseudo-first-order rate coefficients

  1. Rate kernel theory for pseudo-first-order kinetics of diffusion-influenced reactions and application to fluorescence quenching kinetics.

    Science.gov (United States)

    Yang, Mino

    2007-06-07

    Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.

  2. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    Science.gov (United States)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  3. Pseudo-first-order alkaline hydrolysis of diethyl tartrate: a baseline study for a polymer matrix used in controlled-release delivery systems.

    Science.gov (United States)

    Kalonia, D S; Simonelli, A P

    1990-04-01

    The hydrolysis kinetics of a bifunctional group compound, diethyl tartrate, was studied as a function of temperature and pH in the alkaline region. A pH-stat was used to maintain constant pH conditions in the alkaline region. This allowed the studies to be carried out at low ionic strengths and without the use of buffers. The results indicate that the hydrolysis for both steps followed specific base catalysis. The ratio of the two rate constants was 13.31, which was attributed to a strong charge effect in the second step. The results also show that the use of an overall average rate constant may not be acceptable for multifunctional group compounds.

  4. Type-I pseudo-first-order phase transition induced electrocaloric effect in lead-free Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics

    Science.gov (United States)

    Li, Feng; Chen, Guorui; Liu, Xing; Zhai, Jiwei; Shen, Bo; Li, Shandong; Li, Peng; Yang, Ke; Zeng, Huarong; Yan, Haixue

    2017-05-01

    In this study, the electrocaloric effect (ECE) of Bi0.5Na0.5TiO3-0.06BaTiO3 (BNT-0.06BT) ceramic has been directly measured using a home-made adiabatic calorimeter. The maximum adiabatic temperature change (ΔT) approaches 0.86 K under an electric field of 5 kV/mm at 110 °C, which provides experimental evidence for optimizing the ECE near the type-I pseudo-first-order phase transition (PFOPT). Most importantly, a considerable ΔT value can be maintained over a wide temperature range well above the temperature of the PFOPT under a high electric field. In addition, ΔT is closely related to the structural transition and electric field strength. This work provides a guideline to investigate the high ECE in BNT-based ferroelectric ceramics for applications in cooling technologies.

  5. Atmospheric chemistry of (Z)-CF3CH═CHCF3: OH radical reaction rate coefficient and global warming potential.

    Science.gov (United States)

    Baasandorj, Munkhbayar; Ravishankara, A R; Burkholder, James B

    2011-09-29

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (Z)-CF(3)CH═CHCF(3) (cis-1,1,1,4,4,4-hexafluoro-2-butene) were measured under pseudo-first-order conditions in OH using pulsed laser photolysis (PLP) to produce OH and laser-induced fluorescence (LIF) to detect it. Rate coefficients were measured over a range of temperatures (212-374 K) and bath gas pressures (20-200 Torr; He, N(2)) and found to be independent of pressure over this range of conditions. The rate coefficient has a non-Arrhenius behavior that is well-described by the expression k(1)(T) = (5.73 ± 0.60) × 10(-19) × T(2) × exp[(678 ± 10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K) was measured to be (4.91 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1) and the uncertainties are at the 2σ level and include estimated systematic errors. Rate coefficients for the analogous OD radical reaction were determined over a range of temperatures (262-374 K) at 100 Torr (He) to be k(2)(T) = (4.81 ± 0.20) × 10(-19) × T(2) × exp[(776 ± 15)/T], with k(2)(296 K) = (5.73 ± 0.50) × 10(-13) cm(3) molecule(-1) s(-1). OH radical rate coefficients were also measured at 296, 345, and 375 K using a relative rate technique and found to be in good agreement with the PLP-LIF results. A room-temperature rate coefficient for the O(3) + (Z)-CF(3)CH═CHCF(3) reaction was measured using an absolute method with O(3) in excess to be reaction was estimated to be ~20 days. Infrared absorption spectra of (Z)-CF(3)CH═CHCF(3) measured in this work were used to determine a (Z)-CF(3)CH═CHCF(3) global warming potential (GWP) of ~9 for the 100 year time horizon. A comparison of the OH reactivity of (Z)-CF(3)CH═CHCF(3) with other unsaturated fluorinated compounds is presented.

  6. Rate coefficient for the reaction N + NO

    Science.gov (United States)

    Fox, J. L.

    1994-01-01

    Evidence has been advanced that the rate coefficient for the reaction N + NO right arrow N2 + O has a small positive temperature dependence at the high temperatures (900 to 1500 K) that prevail in the terrestrial middle and upper thermosphere by Siskind and Rusch (1992), and at the low temperatures (100 to 200 K) of the Martian lower thermosphere by Fox (1993). Assuming that the rate coefficient recommended by the Jet Propulsion Laboratory evaluation (DeMore et al., 1992) is accurate at 300 K, we derive here the low temperature value of the activation energy for this reaction and thus the rate coefficient that best fits the Viking 1 measured NO densities. We find that the fit is acceptable for a rate coefficient of about 1.3 x 10(exp -10)(T/300)(exp 0.5)exp(-400/T) and better for a value of about 2.5 x 10(exp -10)(T/300)(exp 0.5)exp(-600/T)cu cm/s.

  7. Reaction rate calculations via transmission coefficients

    International Nuclear Information System (INIS)

    Feit, M.D.; Alder, B.J.

    1985-01-01

    The transmission coefficient of a wavepacket traversing a potential barrier can be determined by steady state calculations carried out in imaginary time instead of by real time dynamical calculations. The general argument is verified for the Eckart barrier potential by a comparison of transmission coefficients calculated from real and imaginary time solutions of the Schroedinger equation. The correspondence demonstrated here allows a formulation for the reaction rate that avoids difficulties due to both rare events and explicitly time dependent calculations. 5 refs., 2 figs

  8. Atomic rate coefficients in a degenerate plasma

    Science.gov (United States)

    Aslanyan, Valentin; Tallents, Greg

    2015-11-01

    The electrons in a dense, degenerate plasma follow Fermi-Dirac statistics, which deviate significantly in this regime from the usual Maxwell-Boltzmann approach used by many models. We present methods to calculate the atomic rate coefficients for the Fermi-Dirac distribution and present a comparison of the ionization fraction of carbon calculated using both models. We have found that for densities close to solid, although the discrepancy is small for LTE conditions, there is a large divergence from the ionization fraction by using classical rate coefficients in the presence of strong photoionizing radiation. We have found that using these modified rates and the degenerate heat capacity may affect the time evolution of a plasma subject to extreme ultraviolet and x-ray radiation such as produced in free electron laser irradiation of solid targets.

  9. Critically evaluated rate coefficients for free-radical polymerization, 5. Propagation rate coefficient for butyl acrylate

    NARCIS (Netherlands)

    Asua, J.M.; Beuermann, S.; Buback, M.; Castignolles, P.; Charleux, B.; Gilbert, R.G.; Hutchinson, R.A.; Leiza, J.R.; Nikitin, A.N.; Vairon, J.P.; Herk, van A.M.

    2004-01-01

    Propagation rate coefficients, kp, for free-radical polymerization of butyl acrylate (BA) previously reported by several groups are critically evaluated. All data were determined by the combination of pulsed-laser polymerization (PLP) and subsequent polymer analysis by size exclusion (SEC)

  10. The Influence of Particle Charge on Heterogeneous Reaction Rate Coefficients

    Science.gov (United States)

    Aikin, A. C.; Pesnell, W. D.

    2000-01-01

    The effects of particle charge on heterogeneous reaction rates are presented. Many atmospheric particles, whether liquid or solid are charged. This surface charge causes a redistribution of charge within a liquid particle and as a consequence a perturbation in the gaseous uptake coefficient. The amount of perturbation is proportional to the external potential and the square of the ratio of debye length in the liquid to the particle radius. Previous modeling has shown how surface charge affects the uptake coefficient of charged aerosols. This effect is now included in the heterogeneous reaction rate of an aerosol ensemble. Extension of this analysis to ice particles will be discussed and examples presented.

  11. Efficient calculation of atomic rate coefficients in dense plasmas

    Science.gov (United States)

    Aslanyan, Valentin; Tallents, Greg J.

    2017-03-01

    Modelling electron statistics in a cold, dense plasma by the Fermi-Dirac distribution leads to complications in the calculations of atomic rate coefficients. The Pauli exclusion principle slows down the rate of collisions as electrons must find unoccupied quantum states and adds a further computational cost. Methods to calculate these coefficients by direct numerical integration with a high degree of parallelism are presented. This degree of optimization allows the effects of degeneracy to be incorporated into a time-dependent collisional-radiative model. Example results from such a model are presented.

  12. Effective dose rate coefficients for exposure to contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States); Bellamy, M.B.; Hiller, M.M.; Dewji, S.A. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Hertel, N.E. [Oak Ridge National Laboratory, Center for Radiation Protection Knowledge, Oak Ridge, TN (United States); Georgia Institute of Technology, Atlanta, GA (United States); Manger, R. [University of California San Diego, Department of Radiation Medicine and Applied Sciences, La Jolla, CA (United States)

    2017-08-15

    The Oak Ridge National Laboratory Center for Radiation Protection Knowledge has undertaken calculations related to various environmental exposure scenarios. A previous paper reported the results for submersion in radioactive air and immersion in water using age-specific mathematical phantoms. This paper presents age-specific effective dose rate coefficients derived using stylized mathematical phantoms for exposure to contaminated soils. Dose rate coefficients for photon, electron, and positrons of discrete energies were calculated and folded with emissions of 1252 radionuclides addressed in ICRP Publication 107 to determine equivalent and effective dose rate coefficients. The MCNP6 radiation transport code was used for organ dose rate calculations for photons and the contribution of electrons to skin dose rate was derived using point-kernels. Bremsstrahlung and annihilation photons of positron emission were evaluated as discrete photons. The coefficients calculated in this work compare favorably to those reported in the US Federal Guidance Report 12 as well as by other authors who employed voxel phantoms for similar exposure scenarios. (orig.)

  13. ROVIBRATIONAL QUENCHING RATE COEFFICIENTS OF HD IN COLLISIONS WITH He

    International Nuclear Information System (INIS)

    Nolte, J. L.; Stancil, P. C.; Lee, T.-G.; Balakrishnan, N.; Forrey, R. C.

    2012-01-01

    Along with H 2 , HD has been found to play an important role in the cooling of the primordial gas for the formation of the first stars and galaxies. It has also been observed in a variety of cool molecular astrophysical environments. The rate of cooling by HD molecules requires knowledge of collisional rate coefficients with the primary impactors, H, He, and H 2 . To improve knowledge of the collisional properties of HD, we present rate coefficients for the He-HD collision system over a range of collision energies from 10 –5 to 5 × 10 3 cm –1 . Fully quantum mechanical scattering calculations were performed for initial HD rovibrational states of j = 0 and 1 for v = 0-17 which utilized accurate diatom rovibrational wave functions. Rate coefficients of all Δv = 0, –1, and –2 transitions are reported. Significant discrepancies with previous calculations, which adopted a small basis and harmonic HD wave functions for excited vibrational levels, were found for the highest previously considered vibrational state of v = 3. Applications of the He-HD rate coefficients in various astrophysical environments are briefly discussed.

  14. Determination of sedimentation rates and absorption coefficient of ...

    African Journals Online (AJOL)

    DR. MIKE HORSFALL

    particles have pores that can absorb radiation. Gamma rays have been used to study the absorption coefficients of cobalt(II) insoluble compounds (Essien and Ekpe, 1998), densities of marine sediments. (Gerland and Villinger, 1995) and soil particle-size distribution (Vaz et al., 1992). In this study, sedimentation rates of ...

  15. Dielectronic recombination rate coefficients of initially rubidium-like tungsten

    International Nuclear Information System (INIS)

    Wu, Z.; Zhang, Y.; Fu, Y.; Dong, C.; Surzhykov, A.; Fritzsche, S.

    2015-01-01

    Dielectric recombination (DR) is a dominant electron recombination process in plasmas. Tungsten ions are expected to be prominent impurities in fusion plasmas so the knowledge of DR rate coefficient of tungsten ions is important to model fusion plasmas. Ab initio calculations of DR rate coefficients of initially rubidium-like W 37+ ions have been performed for the electron temperatures from 1 eV to 5*10 4 eV, by using the Flexible Atomic Code based on the relativistic configuration-interaction method. Special attention has been paid to the partial contributions to total DR rate coefficients as associated with the excitation of individual subshells. A detailed comparison of the calculations shows that the excitation from 4p subshell dominates total DR rate coefficients followed by the excitations from 4s and 4d subshells, while the contribution of excitations from 3l (l = s, p, d) subshells becomes important only at high temperatures. Besides, it is found that the electron excitations associated with Δn = 0, 1 dominate at low-temperature plasmas, however, the excitations associated with Δn ≥ 2 become non-negligible at high-temperature ones

  16. Rate coefficients for hydrogen abstraction reaction of pinonaldehyde

    Indian Academy of Sciences (India)

    The H abstraction reaction from the –CHO group was found to be the most dominant reaction channelamong all the possible reaction pathways and its corresponding rate coefficient at 300 K is kEckart's unsymmetrical= 3.86 ×10-10 cm3 molecule-1 s-1. Whereas the channel with immediate lower activation energy is the ...

  17. The 95% confidence intervals of error rates and discriminant coefficients

    Directory of Open Access Journals (Sweden)

    Shuichi Shinmura

    2015-02-01

    Full Text Available Fisher proposed a linear discriminant function (Fisher’s LDF. From 1971, we analysed electrocardiogram (ECG data in order to develop the diagnostic logic between normal and abnormal symptoms by Fisher’s LDF and a quadratic discriminant function (QDF. Our four years research was inferior to the decision tree logic developed by the medical doctor. After this experience, we discriminated many data and found four problems of the discriminant analysis. A revised Optimal LDF by Integer Programming (Revised IP-OLDF based on the minimum number of misclassification (minimum NM criterion resolves three problems entirely [13, 18]. In this research, we discuss fourth problem of the discriminant analysis. There are no standard errors (SEs of the error rate and discriminant coefficient. We propose a k-fold crossvalidation method. This method offers a model selection technique and a 95% confidence intervals (C.I. of error rates and discriminant coefficients.

  18. The HD+ dissociative recombination rate coefficient at low temperature

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2015-01-01

    Full Text Available The effect of the rotational temperature of the ions is considered for low-energy dissociative recombination (DR of HD+. Merged beams measurements with HD+ ions of a rotational temperature near 300 K are compared to multichannel quantum defect theory calculations. The thermal DR rate coefficient for a Maxwellian electron velocity distribution is derived from the merged-beams data and compared to theoretical results for a range of rotational temperatures. Good agreement is found for the theory with 300 K rotational temperature. For a low-temperature plasma environment where also the rotational temperature assumes 10 K, theory predicts a considerably higher thermal DR rate coefficient. The origin of this is traced to predicted resonant structures of the collision-energy dependent DR cross section at few-meV collision energies for the particular case of HD+ ions in the rotational ground state.

  19. Gas-phase rate coefficients for the OH + n-, i-, s-, and t-butanol reactions measured between 220 and 380 K: non-Arrhenius behavior and site-specific reactivity.

    Science.gov (United States)

    McGillen, Max R; Baasandorj, Munkhbayar; Burkholder, James B

    2013-06-06

    Butanol (C4H9OH) is a potential biofuel alternative in fossil fuel gasoline and diesel formulations. The usage of butanol would necessarily lead to direct emissions into the atmosphere; thus, an understanding of its atmospheric processing and environmental impact is desired. Reaction with the OH radical is expected to be the predominant atmospheric removal process for the four aliphatic isomers of butanol. In this work, rate coefficients, k, for the gas-phase reaction of the n-, i-, s-, and t-butanol isomers with the OH radical were measured under pseudo-first-order conditions in OH using pulsed laser photolysis to produce OH radicals and laser induced fluorescence to monitor its temporal profile. Rate coefficients were measured over the temperature range 221-381 K at total pressures between 50 and 200 Torr (He). The reactions exhibited non-Arrhenius behavior over this temperature range and no dependence on total pressure with k(296 K) values of (9.68 ± 0.75), (9.72 ± 0.72), (8.88 ± 0.69), and (1.04 ± 0.08) (in units of 10(-12) cm(3) molecule(-1) s(-1)) for n-, i-, s-, and t-butanol, respectively. The quoted uncertainties are at the 2σ level and include estimated systematic errors. The observed non-Arrhenius behavior is interpreted here to result from a competition between the available H-atom abstraction reactive sites, which have different activation energies and pre-exponential factors. The present results are compared with results from previous kinetic studies, structure-activity relationships (SARs), and theoretical calculations and the discrepancies are discussed. Results from this work were combined with available high temperature (1200-1800 K) rate coefficient data and room temperature reaction end-product yields, where available, to derive a self-consistent site-specific set of reaction rate coefficients of the form AT(n) exp(-E/RT) for use in atmospheric and combustion chemistry modeling.

  20. Collisional excitation rate coefficients for lithium-like ions

    International Nuclear Information System (INIS)

    Cochrane, D.M.; McWhirter, R.W.P.

    1982-11-01

    This report takes all the available good quality quantal calculations of excitation cross-sections by electron collision for lithium-like ions and intercompares them. There is a comparison also with the small amount of experimental data of 2s 2 S - 2p 2 P cross-sections. On the basis of all of these data, a choice is made of the best cross-sections and these are integrated over Maxwellians to give excitation rate coefficients. In general data are available for up to seven transitions in five or six ions. When the results are compared along the iso-electronic sequence, trends are established which allow estimates to be made of the rate coefficients for these seven transitions for any lithium-like ion of nuclear charge greater than boron. The results are presented graphically and as simple formulae. The formulae reproduce the source data at various levels of accuracy from about +-1% for individual ions to universal formulae of accuracy better than +-15% in the relevant temperature ranges. (author)

  1. Automatic estimation of pressure-dependent rate coefficients.

    Science.gov (United States)

    Allen, Joshua W; Goldsmith, C Franklin; Green, William H

    2012-01-21

    A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information. Two aspects of this framework are discussed in detail. First, two methods of estimating the density of states of the species in the network are presented, including a new method based on characteristic functional group frequencies. Second, three methods of simplifying the full master equation model of the network to a single set of phenomenological rates are discussed, including a new method based on the reservoir state and pseudo-steady state approximations. Both sets of methods are evaluated in the context of the chemically-activated reaction of acetyl with oxygen. All three simplifications of the master equation are usually accurate, but each fails in certain situations, which are discussed. The new methods usually provide good accuracy at a computational cost appropriate for automated reaction mechanism generation.

  2. Thermodynamically based constraints for rate coefficients of large biochemical networks.

    Science.gov (United States)

    Vlad, Marcel O; Ross, John

    2009-01-01

    Wegscheider cyclicity conditions are relationships among the rate coefficients of a complex reaction network, which ensure the compatibility of kinetic equations with the conditions for thermodynamic equilibrium. The detailed balance at equilibrium, that is the equilibration of forward and backward rates for each elementary reaction, leads to compatibility between the conditions of kinetic and thermodynamic equilibrium. Therefore, Wegscheider cyclicity conditions can be derived by eliminating the equilibrium concentrations from the conditions of detailed balance. We develop matrix algebra tools needed to carry out this elimination, reexamine an old derivation of the general form of Wegscheider cyclicity condition, and develop new derivations which lead to more compact and easier-to-use formulas. We derive scaling laws for the nonequilibrium rates of a complex reaction network, which include Wegscheider conditions as a particular case. The scaling laws for the rates are used for clarifying the kinetic and thermodynamic meaning of Wegscheider cyclicity conditions. Finally, we discuss different ways of using Wegscheider cyclicity conditions for kinetic computations in systems biology.

  3. Automatic estimation of pressure-dependent rate coefficients

    KAUST Repository

    Allen, Joshua W.; Goldsmith, C. Franklin; Green, William H.

    2012-01-01

    A general framework is presented for accurately and efficiently estimating the phenomenological pressure-dependent rate coefficients for reaction networks of arbitrary size and complexity using only high-pressure-limit information. Two aspects of this framework are discussed in detail. First, two methods of estimating the density of states of the species in the network are presented, including a new method based on characteristic functional group frequencies. Second, three methods of simplifying the full master equation model of the network to a single set of phenomenological rates are discussed, including a new method based on the reservoir state and pseudo-steady state approximations. Both sets of methods are evaluated in the context of the chemically-activated reaction of acetyl with oxygen. All three simplifications of the master equation are usually accurate, but each fails in certain situations, which are discussed. The new methods usually provide good accuracy at a computational cost appropriate for automated reaction mechanism generation. This journal is © the Owner Societies.

  4. CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Karafas, Emmanuel S; Gierczak, Tomasz; Burkholder, James B

    2015-07-16

    The gas-phase CH3CO + O2 reaction is known to proceed via a chemical activation mechanism leading to the formation of OH and CH3C(O)OO radicals via bimolecular and termolecular reactive channels, respectively. In this work, rate coefficients, k, for the CH3CO + O2 reaction were measured over a range of temperature (241-373 K) and pressure (0.009-600 Torr) with He and N2 as the bath gas and used to characterize the bi- and ter-molecular reaction channels. Three independent experimental methods (pulsed laser photolysis-laser-induced fluorescence (PLP-LIF), pulsed laser photolysis-cavity ring-down spectroscopy (PLP-CRDS), and a very low-pressure reactor (VLPR)) were used to characterize k(T,M). PLP-LIF was the primary method used to measure k(T,M) in the high-pressure regime under pseudo-first-order conditions. CH3CO was produced by PLP, and LIF was used to monitor the OH radical bimolecular channel reaction product. CRDS, a complementary high-pressure method, measured k(295 K,M) over the pressure range 25-600 Torr (He) by monitoring the temporal CH3CO radical absorption following its production via PLP in the presence of excess O2. The VLPR technique was used in a relative rate mode to measure k(296 K,M) in the low-pressure regime (9-32 mTorr) with CH3CO + Cl2 used as the reference reaction. A kinetic mechanism analysis of the combined kinetic data set yielded a zero pressure limit rate coefficient, kint(T), of (6.4 ± 4) × 10(-14) exp((820 ± 150)/T) cm(3) molecule(-1) s(-1) (with kint(296 K) measured to be (9.94 ± 1.3) × 10(-13) cm(3) molecule(-1) s(-1)), k0(T) = (7.39 ± 0.3) × 10(-30) (T/300)(-2.2±0.3) cm(6) molecule(-2) s(-1), and k∞(T) = (4.88 ± 0.05) × 10(-12) (T/300)(-0.85±0.07) cm(3) molecule(-1) s(-1) with Fc = 0.8 and M = N2. A He/N2 collision efficiency ratio of 0.60 ± 0.05 was determined. The phenomenological kinetic results were used to define the pressure and temperature dependence of the OH radical yield in the CH3CO + O2 reaction. The

  5. Determination of sedimentation rates and absorption coefficient of ...

    African Journals Online (AJOL)

    2+ has a higher sedimentation rate of 5.10x10-2 s-1 while Ni2+ has the lowest sedimentation rates of 1.10 x10-3. The rate of sedimentation of the metal carbonates decreased in the order: Zn2+ > Cd2+ > Cu2+ > Co2+ > Ni2+. The order ...

  6. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad; Elwardani, Ahmed Elsaid; Farooq, Aamir

    2014-01-01

    -pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct

  7. Dielectronic recombination rate coefficients to the excited states of CI from CII

    International Nuclear Information System (INIS)

    Dubau, J.; Kato, T.; Safronova, U.I.

    1998-01-01

    The dielectronic recombination rate coefficients to the excited states for n=2-6 are calculated including 1s 2 2l 1 2l 2 2l 3 nl (n=2-6, l≤(n-1)) states. The values for the excited states higher than n=6 are extrapolated and the total dielectronic recombination rate coefficients are derived. The rate coefficients to the excited states are fitted to an analytical formula and the fit parameters are given. (author)

  8. Comparison of recombination rate coefficients given by empirical formulas for ions from hydrogen through nickel

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Asano, E. [National Institute for Fusion Science, Toki, Gifu (Japan)

    1999-06-01

    Recombination rate coefficients based on several empirical formulae are compared for ions of H, He, C, N, O, Ne, Na, Mg, Al, Si, S, P, Cl, Ar, Ca, Fe and Ni. The total rate coefficients including radiative recombination and dielectronic recombination are shown in graphs. (author)

  9. The rate coefficients of unimolecular reactions in the systems with power-law distributions

    Science.gov (United States)

    Yin, Cangtao; Guo, Ran; Du, Jiulin

    2014-08-01

    The rate coefficient formulae of unimolecular reactions are generalized to the systems with the power-law distributions based on nonextensive statistics, and the power-law rate coefficients are derived in the high and low pressure limits, respectively. The numerical analyses are made of the rate coefficients as functions of the ν-parameter, the threshold energy, the temperature and the number of degrees of freedom. We show that the new rate coefficients depend strongly on the ν-parameter different from one (thus from a Boltzmann-Gibbs distribution). Two unimolecular reactions, CH3CO→CH3+CO and CH3NC→CH3CN, are taken as application examples to calculate their power-law rate coefficients, which obtained with the ν-parameters slightly different from one can be exactly in agreement with all the experimental studies on these two reactions in the given temperature ranges.

  10. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  11. Dielectronic recombination rate coefficients to the excited states of CI from CII

    Energy Technology Data Exchange (ETDEWEB)

    Dubau, J. [Observatoire of Paris, 92 MEUDON (France); Kato, T.; Safronova, U.I.

    1998-01-01

    The dielectronic recombination rate coefficients to the excited states for n=2-6 are calculated including 1s{sup 2}2l{sub 1}2l{sub 2}2l{sub 3}nl (n=2-6, l{<=}(n-1)) states. The values for the excited states higher than n=6 are extrapolated and the total dielectronic recombination rate coefficients are derived. The rate coefficients to the excited states are fitted to an analytical formula and the fit parameters are given. (author)

  12. Dielectronic recombination rate coefficients to the excited states of CII from CIII

    International Nuclear Information System (INIS)

    Kato, Takako; Safronova, U.; Ohira, Mituhiko.

    1996-02-01

    Energy levels, radiative transition probabilities and autoionization rates for CII including 1s 2 2l2l'nl'' (n=2-6, l'≤(n-1)) states were calculated by using multi-configurational Hartree-Fock (Cowan code) method. Autoionizing levels above three thresholds: 1s 2 2s 2 ( 1 S), 1s 2 2s2p( 3 P), 1s 2 2s2p( 1 P) were considered. Branching ratios related to the first threshold and the intensity factor were calculated for satellite lines of CII ion. The dielectronic recombination rate coefficients to the excited states for n=2-6 are calculated with these atomic data. The rate coefficients are fitted to an analytical formula and the fit parameters are given. The values for higher excited states than n=6 are extrapolated and the total dielectronic recombination rate coefficients are derived. The effective recombination rate coefficient for different electron densities are also derived. (author)

  13. Dielectronic recombination rate coefficients to excited states of Be-like oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Izumi; Safronova, Ulyana I.; Kato, Takako

    2001-05-01

    We have calculated energy levels, radiative transition probabilities, and autoionization rates for Be-like oxygen (O{sup 4+}) including ls{sup 2}2lnl' (n=2 - 8, l {<=} n - 1) and 1s{sup 2}3l'nl (n=3 - 6, l {<=} n - l) states by multi-configurational Hartree-Fock method (Cowan code) and perturbation theory Z-expansion method (MZ code). The state selective dielectronic recombination rate coefficients to excited states of Be-like O ions are obtained. Configuration mixing plays an important role for the principal quantum number n distribution of the dielectronic recombination rate coefficients for 2snl (n {<=} 5) levels at low electron temperature. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at l = 4. The total dielectronic recombination rate coefficient is derived as a function of electron temperature. (author)

  14. On the use temperature parameterized rate coefficients in the estimation of non-equilibrium reaction rates

    Science.gov (United States)

    Shizgal, Bernie D.; Chikhaoui, Aziz

    2006-06-01

    The present paper considers a detailed analysis of the nonequilibrium effects for a model reactive system with the Chapman-Eskog (CE) solution of the Boltzmann equation as well as an explicit time dependent solution. The elastic cross sections employed are a hard sphere cross section and the Maxwell molecule cross section. Reactive cross sections which model reactions with and without activation energy are used. A detailed comparison is carried out with these solutions of the Boltzmann equation and the approximation introduced by Cukrowski and coworkers [J. Chem. Phys. 97 (1992) 9086; Chem. Phys. 89 (1992) 159; Physica A 188 (1992) 344; Chem. Phys. Lett. A 297 (1998) 402; Physica A 275 (2000) 134; Chem. Phys. Lett. 341 (2001) 585; Acta Phys. Polonica B 334 (2003) 3607.] based on the temperature of the reactive particles. We show that the Cukrowski approximation has limited applicability for the large class of reactive systems studied in this paper. The explicit time dependent solutions of the Boltzmann equation demonstrate that the CE approach is valid only for very slow reactions for which the corrections to the equilibrium rate coefficient are very small.

  15. Rate Coefficient Measurements of the Reaction CH3 + O2 = CH3O + O

    Science.gov (United States)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, sub -0.47 ) x 10(exp 13) e(-15813 +/- 587 K/T)/cubic cm.mol.s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  16. Rate Coefficient Measurements of the Reaction CH3+O2+CH3O+O

    Science.gov (United States)

    Hwang, S. M.; Ryu, Si-Ok; DeWitt, K. J.; Rabinowitz, M. J.

    1999-01-01

    Rate coefficients for the reaction CH3 + O2 = CH3O + O were measured behind reflected shock waves in a series of lean CH4-O2-Ar mixtures using hydroxyl and methyl radical diagnostics. The rate coefficients are well represented by an Arrhenius expression given as k = (1.60(sup +0.67, -0.47)) X 10(exp 13) exp(- 15813 +/- 587 K/T)cc/mol s. This expression, which is valid in the temperature range 1575-1822 K, supports the downward trend in the rate coefficients that has been reported in recent determinations. All measurements to date, including the present study, have been to some extent affected by secondary reactions. The complications due to secondary reactions, choice of thermochemical data, and shock-boundary layer interactions that affect the determination of the rate coefficients are examined.

  17. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    International Nuclear Information System (INIS)

    Veinot, K.G.; Dewji, S.A.; Hiller, M.M.; Eckerman, K.F.; Easterly, C.E.

    2017-01-01

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients. In this paper, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133. (orig.)

  18. Organ and effective dose rate coefficients for submersion exposure in occupational settings

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, K.G. [Easterly Scientific, Knoxville, TN (United States); Y-12 National Security Complex, Oak Ridge, TN (United States); Dewji, S.A.; Hiller, M.M. [Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Eckerman, K.F.; Easterly, C.E. [Easterly Scientific, Knoxville, TN (United States)

    2017-11-15

    External dose coefficients for environmental exposure scenarios are often computed using assumption on infinite or semi-infinite radiation sources. For example, in the case of a person standing on contaminated ground, the source is assumed to be distributed at a given depth (or between various depths) and extending outwards to an essentially infinite distance. In the case of exposure to contaminated air, the person is modeled as standing within a cloud of infinite, or semi-infinite, source distribution. However, these scenarios do not mimic common workplace environments where scatter off walls and ceilings may significantly alter the energy spectrum and dose coefficients. In this paper, dose rate coefficients were calculated using the International Commission on Radiological Protection (ICRP) reference voxel phantoms positioned in rooms of three sizes representing an office, laboratory, and warehouse. For each room size calculations using the reference phantoms were performed for photons, electrons, and positrons as the source particles to derive mono-energetic dose rate coefficients. Since the voxel phantoms lack the resolution to perform dose calculations at the sensitive depth for the skin, a mathematical phantom was developed and calculations were performed in each room size with the three source particle types. Coefficients for the noble gas radionuclides of ICRP Publication 107 (e.g., Ne, Ar, Kr, Xe, and Rn) were generated by folding the corresponding photon, electron, and positron emissions over the mono-energetic dose rate coefficients. Results indicate that the smaller room sizes have a significant impact on the dose rate per unit air concentration compared to the semi-infinite cloud case. For example, for Kr-85 the warehouse dose rate coefficient is 7% higher than the office dose rate coefficient while it is 71% higher for Xe-133. (orig.)

  19. Collisional Dissociation of CO: ab initio Potential Energy Surfaces and Quasiclassical Trajectory Rate Coefficients

    Science.gov (United States)

    Schwenke, David W.; Jaffe, Richard L.; Chaban, Galina M.

    2016-01-01

    We have generated accurate global potential energy surfaces for CO+Ar and CO+O that correlate with atom-diatom pairs in their ground electronic states based on extensive ab initio electronic structure calculations and used these potentials in quasi-classical trajectory nuclear dynamics calculations to predict the thermal dissociation rate coefficients over 5000- 35000 K. Our results are not compatible with the 20-45 year old experimental results. For CO + Ar we obtain fairly good agreement with the experimental rate coefficients of Appleton et al. (1970) and Mick and Roth (1993), but our computed rate coefficients exhibit a stronger temperature dependence. For CO + O our dissociation rate coefficient is in close agreement with the value from the Park model, which is an empirical adjustment of older experimental results. However, we find the rate coefficient for CO + O is only 1.5 to 3.3 times larger than CO + Ar over the temperature range of the shock tube experiments (8000-15,000 K). The previously accepted value for this rate coefficient ratio is 15, independent of temperature. We also computed the rate coefficient for the CO + O ex- change reaction which forms C + O2. We find this reaction is much faster than previously believed and is the dominant process in the removal of CO at temperatures up to 16,000 K. As a result, the dissociation of CO is accomplished in two steps (react to form C+O2 and then O2 dissociates) that are endothermic by 6.1 and 5.1 eV, instead of one step that requires 11.2 eV to break the CO bond.

  20. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    Science.gov (United States)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  1. On the Bias in the Danckwerts’ Plot Method for the Determination of the Gas–Liquid Mass-Transfer Coefficient and Interfacial Area

    Directory of Open Access Journals (Sweden)

    German E. Cortes Garcia

    2018-02-01

    Full Text Available The Danckwerts’ plot method is a commonly used graphical technique to independently determine the interfacial area and mass-transfer coefficient in gas–liquid contactors. The method was derived in 1963 when computational capabilities were limited and intensified process equipment did not exist. A numerical analysis of the underlying assumptions of the method in this paper has shown a bias in the technique, especially for situations where mass-transfer rates are intensified, or where there is limited liquid holdup in the bulk compared to the film layers. In fact, systematic errors of up to 50% in the interfacial area, and as high as 90% in the mass-transfer coefficients, can be expected for modern, intensified gas–liquid contactors, even within the commonly accepted validity limits of a pseudo-first-order reaction and Hatta numbers in the range of 0.3 < Ha < 3. Given the current computational capabilities and the intensified mass-transfer rates in modern gas–liquid contactors, it is therefore imperative that the equations for reaction and diffusion in the liquid films are numerically solved and subsequently used to fit the interfacial area and mass-transfer coefficient to experimental data, which would traditionally be used in the graphical Danckwerts’ method.

  2. Accurate Determination of Tunneling-Affected Rate Coefficients: Theory Assessing Experiment.

    Science.gov (United States)

    Zuo, Junxiang; Xie, Changjian; Guo, Hua; Xie, Daiqian

    2017-07-20

    The thermal rate coefficients of a prototypical bimolecular reaction are determined on an accurate ab initio potential energy surface (PES) using ring polymer molecular dynamics (RPMD). It is shown that quantum effects such as tunneling and zero-point energy (ZPE) are of critical importance for the HCl + OH reaction at low temperatures, while the heavier deuterium substitution renders tunneling less facile in the DCl + OH reaction. The calculated RPMD rate coefficients are in excellent agreement with experimental data for the HCl + OH reaction in the entire temperature range of 200-1000 K, confirming the accuracy of the PES. On the other hand, the RPMD rate coefficients for the DCl + OH reaction agree with some, but not all, experimental values. The self-consistency of the theoretical results thus allows a quality assessment of the experimental data.

  3. Dielectronic and Trielectronic Recombination Rate Coefficients of Be-like Ar14+

    Science.gov (United States)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Mahmood, S.; Wang, S. X.; Wang, H. B.; Dou, L. J.; Khan, N.; Badnell, N. R.; Preval, S. P.; Schippers, S.; Xu, T. H.; Yang, Y.; Yao, K.; Xu, W. Q.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Mao, L. J.; Ma, X. M.; Li, J.; Mao, R. S.; Yuan, Y. J.; Wu, B.; Sheng, L. N.; Yang, J. C.; Xu, H. S.; Zhu, L. F.; Ma, X.

    2018-03-01

    Electron–ion recombination of Be-like 40Ar14+ has been measured by employing the electron–ion merged-beams method at the cooler storage ring CSRm. The measured absolute recombination rate coefficients for collision energies from 0 to 60 eV are presented, covering all dielectronic recombination (DR) resonances associated with 2s 2 → 2s2p core transitions. In addition, strong trielectronic recombination (TR) resonances associated with 2s 2 → 2p 2 core transitions were observed. Both DR and TR processes lead to series of peaks in the measured recombination spectrum, which have been identified by the Rydberg formula. Theoretical calculations of recombination rate coefficients were performed using the state-of-the-art multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE to compare with the experimental results. The plasma rate coefficients for DR+TR of Ar14+ were deduced from the measured electron–ion recombination rate coefficients in the temperature range from 103 to 107 K, and compared with calculated data from the literature. The experimentally derived plasma rate coefficients are 60% larger and 30% lower than the previously recommended atomic data for the temperature ranges of photoionized plasmas and collisionally ionized plasmas, respectively. However, good agreement was found between experimental results and the calculations by Gu and Colgan et al. The plasma rate coefficients deduced from experiment and calculated by the current AUTOSTRUCTURE code show agreement that is better than 30% from 104 to 107 K. The present results constitute a set of benchmark data for use in astrophysical modeling.

  4. Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate

    Science.gov (United States)

    Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.

    2017-10-01

    Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.

  5. Determination of the N2 recombination rate coefficient in the ionosphere

    Science.gov (United States)

    Orsini, N.; Torr, D. G.; Brinton, H. C.; Brace, L. H.; Hanson, W. B.; Hoffman, J. H.; Nier, A. O.

    1977-01-01

    Measurements of aeronomic parameters made by the Atmosphere Explorer-C satellite are used to determine the recombination rate coefficient of N2(+) in the ionosphere. The rate is found to increase significantly with decreasing electron density. Values obtained range from approximately 1.4 x 10 to the -7th to 3.8 x 10 to the -7th cu cm/sec. This variation is explained in a preliminary way in terms of an increase in the rate coefficient with vibrational excitation. Thus, high electron densities depopulate high vibrational levels reducing the effective recombination rate, whereas, low electron densities result in an enhancement in the population of high vibrational levels, thus, increasing the effective recombination rate.

  6. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    Science.gov (United States)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  7. Simplified method of ''push-pull'' test data analysis for determining in situ reaction rate coefficients

    International Nuclear Information System (INIS)

    Haggerty, R.; Schroth, M.H.; Istok, J.D.

    1998-01-01

    The single-well, ''''push-pull'''' test method is useful for obtaining information on a wide variety of aquifer physical, chemical, and microbiological characteristics. A push-pull test consists of the pulse-type injection of a prepared test solution into a single monitoring well followed by the extraction of the test solution/ground water mixture from the same well. The test solution contains a conservative tracer and one or more reactants selected to investigate a particular process. During the extraction phase, the concentrations of tracer, reactants, and possible reaction products are measured to obtain breakthrough curves for all solutes. This paper presents a simplified method of data analysis that can be used to estimate a first-order reaction rate coefficient from these breakthrough curves. Rate coefficients are obtained by fitting a regression line to a plot of normalized concentrations versus elapsed time, requiring no knowledge of aquifer porosity, dispersivity, or hydraulic conductivity. A semi-analytical solution to the advective-dispersion equation is derived and used in a sensitivity analysis to evaluate the ability of the simplified method to estimate reaction rate coefficients in simulated push-pull tests in a homogeneous, confined aquifer with a fully-penetrating injection/extraction well and varying porosity, dispersivity, test duration, and reaction rate. A numerical flow and transport code (SUTRA) is used to evaluate the ability of the simplified method to estimate reaction rate coefficients in simulated push-pull tests in a heterogeneous, unconfined aquifer with a partially penetrating well. In all cases the simplified method provides accurate estimates of reaction rate coefficients; estimation errors ranged from 0.1 to 8.9% with most errors less than 5%

  8. Vibrationally resolved rate coefficients and branching fractions in the dissociative recombination of O2+

    NARCIS (Netherlands)

    Petrignani, A.; Zande, W.J. van der; Cosby, P.C.; Hellberg, F.; Thomas, R.; Larsson, M.

    2005-01-01

    We have studied the dissociative recombination of the first three vibrational levels of O-2(+) in its electronic ground X (2)Pi(g) state. Absolute rate coefficients, cross sections, quantum yields and branching fractions have been determined in a merged-beam experiment in the heavy-ion storage ring,

  9. Rate coefficients of open shell molecules and radicals: R-matrix ...

    Indian Academy of Sciences (India)

    2017-04-07

    Apr 7, 2017 ... Rate coefficients of open shell molecules and radicals: R-matrix method. JASMEET SINGH1 ... lasers, study of structure of DNA and astrophysics which require a ..... [6] CCPForge, http://ccpforge.cse.rl.ac.uk/projects/ukrmol-in/.

  10. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping.

    Science.gov (United States)

    Ranieri, Kayte; Delaittre, Guillaume; Barner-Kowollik, Christopher; Junkers, Thomas

    2014-12-01

    The β-scission rate coefficient of tert-butyl radicals fragmenting off the intermediate resulting from their addition to tert-butyl dithiobenzoate-a reversible addition-fragmentation chain transfer (RAFT) agent-is estimated via the recently introduced electron spin resonance (ESR)-trapping methodology as a function of temperature. The newly introduced ESR-trapping methodology is critically evaluated and found to be reliable. At 20 °C, a fragmentation rate coefficient of close to 0.042 s(-1) is observed, whereas the activation parameters for the fragmentation reaction-determined for the first time-read EA = 82 ± 13.3 kJ mol(-1) and A = (1.4 ± 0.25) × 10(13) s(-1) . The ESR spin-trapping methodology thus efficiently probes the stability of the RAFT adduct radical under conditions relevant for the pre-equilibrium of the RAFT process. It particularly indicates that stable RAFT adduct radicals are indeed formed in early stages of the RAFT poly-merization, at least when dithiobenzoates are employed as controlling agents as stipulated by the so-called slow fragmentation theory. By design of the methodology, the obtained fragmentation rate coefficients represent an upper limit. The ESR spin-trapping methodology is thus seen as a suitable tool for evaluating the fragmentation rate coefficients of a wide range of RAFT adduct radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nickel group cluster anion reactions with carbon monoxide: Rate coefficients and chemisorption efficiency

    Science.gov (United States)

    Hintz, Paul A.; Ervin, Kent M.

    1994-04-01

    Reactions of Ni-n(n=3-10), Pd-n(n=3-8), and Pt-n(n=3-7) with CO are studied in a flow tube reactor. Bimolecular rate coefficients are measured for the association reaction of CO adsorbing on the cluster surface. The rate coefficients range from about 10% of the collision rate for the trimer anions to near the collision rate for clusters larger than four atoms. The maximum number of CO molecules that bind to each cluster is determined. Whereas the saturation limits for nickel are typical for an 18 electron transition metal, the limits for platinum are lower, reflecting the electron deficient structures observed in condensed phase chemistry. The CO saturated palladium clusters represent the first examples of saturated binary palladium carbonyl compounds. Comparisons are made to similar studies on metal cation and neutral clusters and also to surface scattering studies of nickel group metals.

  12. A numerical evaluation of prediction accuracy of CO2 absorber model for various reaction rate coefficients

    Directory of Open Access Journals (Sweden)

    Shim S.M.

    2012-01-01

    Full Text Available The performance of the CO2 absorber column using mono-ethanolamine (MEA solution as chemical solvent are predicted by a One-Dimensional (1-D rate based model in the present study. 1-D Mass and heat balance equations of vapor and liquid phase are coupled with interfacial mass transfer model and vapor-liquid equilibrium model. The two-film theory is used to estimate the mass transfer between the vapor and liquid film. Chemical reactions in MEA-CO2-H2O system are considered to predict the equilibrium pressure of CO2 in the MEA solution. The mathematical and reaction kinetics models used in this work are calculated by using in-house code. The numerical results are validated in the comparison of simulation results with experimental and simulation data given in the literature. The performance of CO2 absorber column is evaluated by the 1-D rate based model using various reaction rate coefficients suggested by various researchers. When the rate of liquid to gas mass flow rate is about 8.3, 6.6, 4.5 and 3.1, the error of CO2 loading and the CO2 removal efficiency using the reaction rate coefficients of Aboudheir et al. is within about 4.9 % and 5.2 %, respectively. Therefore, the reaction rate coefficient suggested by Aboudheir et al. among the various reaction rate coefficients used in this study is appropriate to predict the performance of CO2 absorber column using MEA solution. [Acknowledgement. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF, funded by the Ministry of Education, Science and Technology (2011-0017220].

  13. Dielectronic recombination rate coefficients to the excited states of CIII from CIV

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, U.; Kato, Takako; Ohira, Mituhiko

    1996-07-01

    Energy levels, radiative transition probabilities and autoionization rates for CIII including 1s{sup 2}2pnl` (n=2/6, l`{<=}(n-1)) and 1s{sup 2}3lnl` (n=3/6, l`{<=}(n-1)) states were calculated by using multi-configurational Hartree-Fock (Cowan code) method. Autoionizing levels above the 1s{sup 2}2s and 1s{sup 2}2p thresholds were considered and their contributions were computed. Branching ratios on the autoionization rate to the first threshold and intensity factor were calculated for satellite lines of CIII ion. The dielectronic recombination rate coefficients to the excited states for n=2-6 were calculated. The values for the excited states higher than n=6 were extrapolated and the total dielectronic recombination rate coefficients were also derived. The rate coefficients to the excited states were fitted to an analytical formula and the fitting parameters are given. (author)

  14. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    International Nuclear Information System (INIS)

    Chen, Hang; Thill, Peter; Cao, Jianshu

    2016-01-01

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  15. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-07

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  16. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    Science.gov (United States)

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  17. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    International Nuclear Information System (INIS)

    Janev, R.K.; Kato, T.; Wang, J.G.

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C x H y charge exchange reactions from thermal energies up to several hundreds keV for all C x H y molecules with x=1, 2, 3 and 1 ≤ y ≤ 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  18. Cross sections and rate coefficients for charge exchange reactions of protons with hydrocarbon molecules

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Wang, J.G. [Department of Physics and Astronomy, University of Georgia, Athens (United States)

    2001-05-01

    The available experimental and theoretical cross section data on charge exchange processes in collisions of protons with hydrocarbon molecules have been collected and critically assessed. Using well established scaling relationships for the charge exchange cross sections at low and high collision energies, as well as the known rate coefficients for these reactions in the thermal energy region, a complete cross section database is constructed for proton-C{sub x}H{sub y} charge exchange reactions from thermal energies up to several hundreds keV for all C{sub x}H{sub y} molecules with x=1, 2, 3 and 1 {<=} y {<=} 2x + 2. Rate coefficients for these charge exchange reactions have also been calculated in the temperature range from 0.1 eV to 20 keV. (author)

  19. Laboratory Studies of Low Temperature Rate Coefficients: The Atmospheric Chemistry of the Outer Planets and Titan

    Science.gov (United States)

    Bogan, Denis

    1999-01-01

    Laboratory measurements have been carried out to determine low temperature chemical rate coefficients of ethynyl radical (C2H) for the atmospheres of the outer planets and their satellites. This effort is directly related to the Cassini mission which will explore Saturn and Titan. A laser-based photolysis/infrared laser probe setup was used to measure the temperature dependence of kinetic rate coefficients from approx. equal to 150 to 350 K for C2H radicals with H2, C2H2, CH4, CD4, C2H4, C2H6, C3H8, n-C4H10, i-C4H10, neo-C5H12, C3H4 (methylacetylene and allene), HCN, and CH3CN. The results revealed discrepancies of an order of magnitude or more compared with the low temperature rate coefficients used in present models. A new Laval nozzle, low Mach number supersonic expansion kinetics apparatus has been constructed, resulting in the first measurements of neutral C2H radical kinetics at 90 K and permitting studies on condensable gases with insufficient vapor pressure at low temperatures. New studies of C 2H with acetylene have been completed.

  20. Electron-impact excitation rate-coefficients and polarization of subsequent emission for Ar"+ ion

    International Nuclear Information System (INIS)

    Dipti; Srivastava, Rajesh

    2016-01-01

    Electron impact excitation in Ar"+ ions has been studied by using fully relativistic distorted wave theory. Calculations are performed to obtain the excitation cross-sections and rate-coefficients for the transitions from the ground state 3p"5 (J=3/2) to fine-structure levels of excited states 3p"44s, 3p"44p, 3p"45s, 3p"45p, 3p"43d and 3p"44d. Polarization of the radiation following the excitation has been calculated using the obtained magnetic sub-level cross-sections. Comparison of the present rate-coefficients is also done with the previously reported theoretical results for some unresolved fine structure transitions. - Highlights: • Fully relativistic distorted wave theory has been used to study the excitation of fine-structure states of Ar"+. • We have calculated electron-impact excitation cross-sections for the wide range of incident electron energies. • Electron impact excitation rate-coefficients are calculated as a function of electron temperature. • Polarization of photons emitted following the decay of the excited fine-structure states are also reported.

  1. Inverse method for determining radon diffusion coefficient and free radon production rate of fragmented uranium ore

    International Nuclear Information System (INIS)

    Ye, Yong-jun; Wang, Li-heng; Ding, De-xin; Zhao, Ya-li; Fan, Nan-bin

    2014-01-01

    The radon diffusion coefficient and the free radon production rate are important parameters for describing radon migration in the fragmented uranium ore. In order to determine the two parameters, the pure diffusion migration equation for radon was firstly established and its analytic solution with the two parameters to be determined was derived. Then, a self manufactured experimental column was used to simulate the pure diffusion of the radon, the improved scintillation cell method was used to measure the pore radon concentrations at different depths of the column loaded with the fragmented uranium ore, and the nonlinear least square algorithm was used to inversely determine the radon diffusion coefficient and the free radon production rate. Finally, the solution with the two inversely determined parameters was used to predict the pore radon concentrations at some depths of the column, and the predicted results were compared with the measured results. The results show that the predicted results are in good agreement with the measured results and the numerical inverse method is applicable to the determination of the radon diffusion coefficient and the free radon production rate for the fragmented uranium ore. - Highlights: • Inverse method for determining two transport parameters of radon is proposed. • A self-made experimental apparatus is used to simulate radon diffusion process. • Sampling volume and position for measuring radon concentration are optimized. • The inverse results of an experimental sample are verified

  2. Interpretation of biological-rate coefficients derived from radionuclide content, radionuclide concentration and specific activity experiments

    International Nuclear Information System (INIS)

    Vanderploeg, H.A.; Booth, R.S.

    1976-01-01

    Rigorous expressions are derived for the biological-rate coefficients (BRCs) determined from time-dependent measurements of three different dependent variables of radionuclide tracer experiments. These variables, which apply to a single organism, are radionuclide content, radionuclide concentration and specific activity. The BRCs derived from these variables have different mathematical expressions and, for high growth rates, their numerical values can be quite different. The precise mathematical expressions for the BRCs are presented here to aid modelers in selecting the correct parameters for their models and to aid experiments in interpreting their results. The usefulness of these three variables in quantifying elemental uptakes and losses by organisms is discussed. (U.K.)

  3. The functional correlation between rainfall rate and extinction coefficient for frequencies from 3 to 10 GHz

    Science.gov (United States)

    Jameson, A. R.

    1990-01-01

    The relationship between the rainfall rate (R) obtained from radiometric brightness temperatures and the extinction coefficient (k sub e) is investigated by computing the values of k sub e over a wide range of rainfall rates, for frequencies from 3 to 25 GHz. The results show that the strength of the relation between the R and the k sub e values exhibits considerable variation for frequencies at this range. Practical suggestions are made concerning the selection of particular frequencies for rain measurements to minimize the error in R determinations.

  4. Derivation of the chemical-equilibrium rate coefficient using scattering theory

    Science.gov (United States)

    Mickens, R. E.

    1977-01-01

    Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.

  5. A methodology for the parametric modelling of the flow coefficients and flow rate in hydraulic valves

    International Nuclear Information System (INIS)

    Valdés, José R.; Rodríguez, José M.; Saumell, Javier; Pütz, Thomas

    2014-01-01

    Highlights: • We develop a methodology for the parametric modelling of flow in hydraulic valves. • We characterize the flow coefficients with a generic function with two parameters. • The parameters are derived from CFD simulations of the generic geometry. • We apply the methodology to two cases from the automotive brake industry. • We validate by comparing with CFD results varying the original dimensions. - Abstract: The main objective of this work is to develop a methodology for the parametric modelling of the flow rate in hydraulic valve systems. This methodology is based on the derivation, from CFD simulations, of the flow coefficient of the critical restrictions as a function of the Reynolds number, using a generalized square root function with two parameters. The methodology is then demonstrated by applying it to two completely different hydraulic systems: a brake master cylinder and an ABS valve. This type of parametric valve models facilitates their implementation in dynamic simulation models of complex hydraulic systems

  6. Disalignment rate coefficient of neon excited atoms due to helium atom collisions at low temperatures

    International Nuclear Information System (INIS)

    Seo, M; Shimamura, T; Furutani, T; Hasuo, M; Bahrim, C; Fujimoto, T

    2003-01-01

    Disalignment of neon excited atoms in the fine-structure 2p i levels (in Paschen notation) of the 2p 5 3p configuration is investigated in a helium-neon glow discharge at temperatures between 15 and 77 K. At several temperatures, we plot the disalignment rate as a function of the helium atom density for Ne* (2p 2 or 2p 7 ) + He(1s 2 ) collisions. The slope of this dependence gives the disalignment rate coefficient. For both collisions, the experimental data for the disalignment rate coefficient show a more rapid decrease with the decrease in temperature below 40 K than our quantum close-coupling calculations based on the model potential of Hennecart and Masnou-Seeuws (1985 J. Phys. B: At. Mol. Phys. 18 657). This finding suggests that the disalignment cross section rapidly decreases below a few millielectronvolts, in disagreement with our theoretical quantum calculations which predict a strong increase below 1 meV. The disagreement suggests that the long-range electrostatic potentials are significantly more repulsive than in the aforementioned model

  7. Dose Rate and Mass Attenuation Coefficients of Gamma Ray for Concretes

    CERN Document Server

    Abdel-Latif, A A; Kansouh, W A; El-Sayed, F H

    2003-01-01

    This work is concerned with the study of the leakage gamma ray dose and mass attenuation coefficients for ordinary, basalt and dolomite concretes made from local ores. Concretes under investigation were constructed from gravel, basalt and dolomite ores, and then reconstructed with the addition of 3% steel fibers by weight. Measurements were carried out using a collimated beam from sup 6 sup 0 Co gamma ray source and sodium iodide (3x3) crystal with the genie 2000 gamma spectrometer. The obtained fluxes were transformed to gamma ray doses and displayed in the form of gamma ray dose rates distribution. The displayed curves were used to estimate the linear attenuation coefficients (mu), the relaxation lengths (lambda), half value layer (t sub 1 /2) and tenth value layer (t sub 1 /10). Also, The total mass attenuation coefficients of gamma ray have been calculated to the concerned concretes using XCOM (version 3.1) program and database elements cross sections from Z=1 to 100 at energies from 10 keV to 100 MeV. In...

  8. Relative measurement of the excitation rate coefficients of the FeXI ion

    International Nuclear Information System (INIS)

    Marotta, A.

    1982-01-01

    The collision rate coefficients for the iron atoms are measured through the hot plasma obtainment. The physical model used in this determination is the crown stationary model which consider that the excitation by electronic collisions is balanced by the spontaneous emission. This work was realized in a 15Kj theta pinch device, of high pulse reproductibility. The iron-pentacarbonyl [Fe(Co) 5 ] was used as the impurity source of a hydrogen gas. The temperature and density were determined by the scattering light analysis of a rubi laser using the Thomson scattering. (L.C.) [pt

  9. Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    Science.gov (United States)

    Leone, Stephen R.

    1995-01-01

    The objectives of the research are to measure low temperature laboratory rate coefficients for key reactions relevant to the atmospheres of Titan and Saturn. These reactions are, for example, C2H + H2, CH4, C2H2, and other hydrocarbons which need to be measured at low temperatures, down to approximately 150 K. The results of this work are provided to NASA specialists who study modeling of the hydrocarbon chemistry of the outer planets. The apparatus for this work consists of a pulsed laser photolysis system and a tunable F-center probe laser to monitor the disappearance of C2H. A low temperature cell with a cryogenic circulating fluid in the outer jacket provides the gas handling system for this work. These elements have been described in detail in previous reports. Several new results are completed and the publications are just being prepared. The reaction of C2H with C2H2 has been measured with an improved apparatus down to 154 K. An Arrhenius plot indicates a clear increase in the rate coefficient at the lowest temperatures, most likely because of the long-lived (C4H3) intermediate. The capability to achieve the lowest temperatures in this work was made possible by construction of a new cell and addition of a multipass arrangement for the probe laser, as well as improvements to the laser system.

  10. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Georgia Institute of Technology; Lu, C [Georgia Institute of Technology; Luo, Jian [Georgia Institute of Technology; Wu, Wei-min [Stanford University; Cheng, H. [Stanford University; Criddle, Craig [Stanford University; Kitanidis, Peter K. [Stanford University; Gu, Baohua [ORNL; Watson, David B [ORNL; Jardine, Philip M [ORNL; Brooks, Scott C [ORNL

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  11. Rate Coefficient Determinations for H + NO2 → OH + NO from High Pressure Flow Reactor Measurements.

    Science.gov (United States)

    Haas, Francis M; Dryer, Frederick L

    2015-07-16

    Rate coefficients for the reaction H + NO2 → OH + NO (R1) have been determined over the nominal temperature and pressure ranges of 737-882 K and 10-20 atm, respectively, from measurements in two different flow reactor facilities: one laminar and one turbulent. Considering the existing database of experimental k1 measurements, the present conditions add measurements of k1 at previously unconsidered temperatures between ∼820-880 K, as well as at pressures that exceed existing measurements by over an order of magnitude. Experimental measurements of NOx-perturbed H2 oxidation have been interpreted by a quasi-steady state NOx plateau (QSSP) method. At the QSSP conditions considered here, overall reactivity is sensitive only to the rates of R1 and H + O2 + M → HO2 + M (R2.M). Consequently, the ratio of k1 to k2.M may be extracted as a simple algebraic function of measured NO2, O2, and total gas concentrations with only minimal complication (within measurement uncertainty) due to treatment of overall gas composition M that differs slightly from pure bath gas B. Absolute values of k1 have been determined with reference to the relatively well-known, pressure-dependent rate coefficients of R2.B for B = Ar and N2. Rate coefficients for the title reaction determined from present experimental interpretation of both laminar and turbulent flow reactor results appear to be in very good agreement around a representative value of 1.05 × 10(14) cm(3) mol(-1) s(-1) (1.74 × 10(-10) cm(3) molecule(-1) s(-1)). Further, the results of this study agree both with existing low pressure flash photolysis k1 determinations of Ko and Fontijn (J. Phys. Chem. 95 3984) near 760 K as well as a present fit to the theoretical expression of Su et al. (J. Phys. Chem. A 106 8261). These results indicate that, over the temperature range considered in this study and up to at least 20 atm, net chemistry due to stabilization of the H-NO2 reaction intermediate to form isomers of HNO2 may proceed at

  12. Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products

    Science.gov (United States)

    Kustova, E. V.; Savelev, A. S.; Kunova, O. V.

    2018-05-01

    Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.

  13. Recommended data on proton-ion collision rate coefficients for Fe X-Fe XV ions

    International Nuclear Information System (INIS)

    Skobelev, I.; Murakami, I.; Kato, T.

    2006-01-01

    The proton-ion collisions are important for excitation of some ion levels in a high-temperature low density plasma. In the present work evaluation of data obtained for proton-induced transitions in Fe X - Fe XV ions with the help of different theoretical methods is carried out. It is suggested a simple analytical formula with 7 parameters allowing to describe dependency of proton rate coefficient on proton temperature in an enough wide temperature range. The values of free parameters have been determined by fitting of approximation formula to numerical data and are presented for recommended data together with fitting accuracies. By comparing of proton collision rates with electron ones it is shown that proton impact excitation processes may be important for Fe X, XI, XIII-XV ions. The results obtained can be used for plasma kinetics calculations and for development of spectroscopy methods of plasma diagnostics. (author)

  14. Mass-transport limitation to in-cloud reaction rates: Implications of new accommodation coefficient measurements

    International Nuclear Information System (INIS)

    Schwartz, S.E.

    1988-10-01

    Although it has been recognized for some time that the rate of reactive uptake of gases in cloudwater can depend on the value of the mass-accommodation coefficient (α) describing interfacial mass transport (MT), definitive evaluation of such rates is only now becoming possible with the availability of measurements of α for gases of atmospheric interest at air-water interfaces. Examination of MT limitation to the rate of in-cloud aqueous-phase oxidation of SO 2 by O 3 and H 2 O 2 shows that despite the low value of α/sub O3/ (5 /times/ 10/sup /minus/4/), interfacial MT of this species is not limiting under essentially all conditions of interest; the high values of α for SO 2 (≥ 0.2) and H 2 O 2 (≥ 0.08) indicate no interfacial MT limitation for these species also. Although gas- and aqueous-phase MT can be limiting under certain extremes of conditions, treating the system as under chemical kinetic control is generally an excellent approximation. Interfacial MT limitation also is found not to hinder the rate of H 2 O 2 formation by aqueous-phase disproportionation of HO 2 . Finally, the rapid uptake of N 2 O 5 by cloud droplets implies that the yield of aqueous HNO 3 from in-cloud gas-phase oxidation of NO 2 by O 3 can be substantial even under daytime conditions. This report consists of copies of viewgraphs prepared for this presentation

  15. Rate coefficients for the reactions of ions with polar molecules at interstellar temperatures

    International Nuclear Information System (INIS)

    Adams, N.G.; Smith, D.; Clary, D.C.

    1985-01-01

    A theory has been developed recently which predicts that the rate coefficients, k, for the reactions of ions with polar molecules at low temperatures will be much greater than the canonical value of 10 -9 cm 3 s -1 . The new theory indicates that k is greatest for low-lying rotational sates and increases rapidly with decreasing temperature. We refer to recent laboratory measurements which validate the theory, present calculated values of k for the reactions of H + 3 ions with several polar molecules, and discuss their significance to interstellar chemistry. For the reactions of ions with molecules having large dipole moments, we recommend that k values as large as 10 -7 cm 3 s -1 should be used in ion-chemical models of low-temperature interstellar clouds

  16. Rate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures

    KAUST Repository

    Es-sebbar, Et-touhami

    2016-09-28

    Allene (H2C═C═CH2; a-C3H4) and propyne (CH3C≡CH; p-C3H4) are important species in various chemical environments. In combustion processes, the reactions of hydroxyl radicals with a-C3H4 and p-C3H4 are critical in the overall fuel oxidation system. In this work, rate coefficients of OH radicals with allene (OH + H2C═C═CH2 → products) and propyne (OH + CH3C≡CH → products) were measured behind reflected shock waves over the temperature range of 843–1352 K and pressures near 1.5 atm. Hydroxyl radicals were generated by rapid thermal decomposition of tert-butyl hydroperoxide ((CH3)3–CO–OH), and monitored by narrow line width laser absorption of the well-characterized R1(5) electronic transition of the OH A–X (0,0) electronic system near 306.7 nm. Results show that allene reacts faster with OH radicals than propyne over the temperature range of this study. Measured rate coefficients can be expressed in Arrhenius form as follows: kallene+OH(T) = 8.51(±0.03) × 10–22T3.05 exp(2215(±3)/T), T = 843–1352 K; kpropyne+OH(T) = 1.30(±0.07) × 10–21T3.01 exp(1140(±6)/T), T = 846–1335 K.

  17. Cold collisions of SH- with He: Potential energy surface and rate coefficients

    Science.gov (United States)

    Bop, C. T.; Trabelsi, T.; Hammami, K.; Mogren Al Mogren, M.; Lique, F.; Hochlaf, M.

    2017-09-01

    Collisional energy transfer under cold conditions is of great importance from the fundamental and applicative point of view. Here, we investigate low temperature collisions of the SH- anion with He. We have generated a three-dimensional potential energy surface (PES) for the SH-(X1Σ+)-He(1S) van der Waals complex. The ab initio multi-dimensional interaction PES was computed using the explicitly correlated coupled cluster approach with simple, double, and perturbative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. The PES presents two minima located at linear geometries. Then, the PES was averaged over the ground vibrational wave function of the SH- molecule and the resulting two-dimensional PES was incorporated into exact quantum mechanical close coupling calculations to study the collisional excitation of SH- by He. We have computed inelastic cross sections among the 11 first rotational levels of SH- for energies up to 2500 cm-1. (De-)excitation rate coefficients were deduced for temperatures ranging from 1 to 300 K by thermally averaging the cross sections. We also performed calculations using the new PES for a fixed internuclear SH- distance. Both sets of results were found to be in reasonable agreement despite differences existing at low temperatures confirming that accurate predictions require the consideration of all internal degrees of freedom in the case of molecular hydrides. The rate coefficients presented here may be useful in interpreting future experimental work on the SH- negative ion colliding with He as those recently done for the OH--He collisional system as well as for possible astrophysical applications in case SH- would be detected in the interstellar medium.

  18. Spatial variation in deposition rate coefficients of an adhesion-deficient bacterial strain in quartz sand.

    Science.gov (United States)

    Tong, Meiping; Camesano, Terri A; Johnson, William P

    2005-05-15

    The transport of bacterial strain DA001 was examined in packed quartz sand under a variety of environmentally relevant ionic strength and flow conditions. Under all conditions, the retained bacterial concentrations decreased with distance from the column inlet at a rate that was faster than loglinear, indicating that the deposition rate coefficient decreased with increasing transport distance. The hyperexponential retained profile contrasted againstthe nonmonotonic retained profiles that had been previously observed for this same bacterial strain in glass bead porous media, demonstrating that the form of deviation from log-linear behavior is highly sensitive to system conditions. The deposition rate constants in quartz sand were orders of magnitude below those expected from filtration theory, even in the absence of electrostatic energy barriers. The degree of hyperexponential deviation of the retained profiles from loglinear behavior did not decrease with increasing ionic strength in quartz sand. These observations demonstrate thatthe observed low adhesion and deviation from log-linear behavior was not driven by electrostatic repulsion. Measurements of the interaction forces between DA001 cells and the silicon nitride tip of an atomic force microscope (AFM) showed that the bacterium possesses surface polymers with an average equilibrium length of 59.8 nm. AFM adhesion force measurements revealed low adhesion affinities between silicon nitride and DA001 polymers with approximately 95% of adhesion forces having magnitudes responsible for the low adhesion to silicon nitride, indicating that steric interactions from extracellular polymers controlled DA001 adhesion deficiency and deviation from log-linear behavior on quartz sand.

  19. Rate coefficients for dissociative attachment and resonant electron-impact dissociation involving vibrationally excited O{sub 2} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laporta, V. [Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari, Italy and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Celiberto, R. [Dipartimento di Ingegneria Civile, Ambientale, del Territorio, Edile e di Chimica, Politecnico di Bari, Italy and Istituto di Metodologie Inorganiche e dei Plasmi, CNR, Bari (Italy); Tennyson, J. [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2014-12-09

    Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.

  20. Technical characterization of dialysis fluid flow and mass transfer rate in dialyzers with various filtration coefficients using dimensionless correlation equation.

    Science.gov (United States)

    Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka

    2017-06-01

    The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.

  1. Cross-section and rate coefficient calculation for electron impact excitation, ionisation and dissociation of H2 and OH molecules

    International Nuclear Information System (INIS)

    Riahi, R.; Ben Lakhdar, Z.; Teulet, Ph.; Gleizes, A.

    2006-01-01

    The weighted total cross-sections (WTCS) theory is used to calculate electron impact excitation, ionization and dissociation cross-sections and rate coefficients of OH, H 2 , OH + , H 2 + , OH - and H 2 - diatomic molecules in the temperature range 1500-15000 K. Calculations are performed for H 2 (X, B, C), OH(X, A, B), H 2 + (X), OH + (X, a, A, b, c), H 2 - (X) and OH - (X) electronic states for which Dunham coefficients are available. Rate coefficients are calculated from WTCS assuming Maxwellian energy distribution functions for electrons and heavy particles. One and 2 temperatures (θ e and θ g respectively for electron and heavy particles kinetic temperatures) results are presented and fitting parameters (a, b and c) are given for each reaction rate coefficient: k(θ) a(θ b )exp(-c/θ). (authors)

  2. Determination of the reaction rate coefficient of sulphide mine tailings deposited under water.

    Science.gov (United States)

    Awoh, Akué Sylvette; Mbonimpa, Mamert; Bussière, Bruno

    2013-10-15

    The efficiency of a water cover to limit dissolved oxygen (DO) availability to underlying acid-generating mine tailings can be assessed by calculating the DO flux at the tailings-water interface. Fick's equations, which are generally used to calculate this flux, require knowing the effective DO diffusion coefficient (Dw) and the reaction (consumption) rate coefficient (Kr) of the tailings, or the DO concentration profile. Whereas Dw can be accurately estimated, few studies have measured the parameter Kr for submerged sulphide tailings. The objective of this study was to determine Kr for underwater sulphide tailings in a laboratory experiment. Samples of sulphide mine tailings (an approximately 6 cm layer) were placed in a cell under a water cover (approximately 2 cm) maintained at constant DO concentration. Two tailings were studied: TA1 with high sulphide content (83% pyrite) and TA2 with low sulphide content (2.8% pyrite). DO concentration was measured with a microelectrode at various depths above and below the tailings-water interface at 1 mm intervals. Results indicate that steady-state condition was rapidly attained. As expected, a diffusive boundary layer (DBL) was observed in all cases. An iterative back-calculation process using the numerical code POLLUTEv6 and taking the DBL into account provided the Kr values used to match calculated and experimental concentration profiles. Kr obtained for tailings TA1 and TA2 was about 80 d(-1) and 6.5 d(-1), respectively. For comparison purposes, Kr obtained from cell tests on tailings TA1 was lower than Kr calculated from the sulphate production rate obtained from shake-flask tests. Steady-state DO flux at the water-tailings interface was then calculated with POLLUTEv6 using tailings characteristics Dw and Kr. For the tested conditions, DO flux ranged from 608 to 758 mg O2/m(2)/d for tailings TA1 and from 177 to 221 mg O2/m(2)/d for tailings TA2. The impact of placing a protective layer of inert material over

  3. Effect of flow rate on the adsorption coefficient of radioactive krypton on activated carbon

    International Nuclear Information System (INIS)

    Sun, L.S.C.; Underhill, D.W.

    1981-01-01

    For some time, there have been questions relative to the effect of carrier gas velocity on the adsorption coefficient for radioactive noble gases on activated charcoal. Resolution of these questions is particularly important in terms of developing standard procedures for determining such coefficients under laboratory conditions. Studies at the Harvard Air Cleaning Laboratory appear to confirm that the adsorption coefficient for radioactive krypton on activated charcoal is independent of the velocity of the carrier gas

  4. Experimental Investigation of Friction Coefficient and Wear Rate of Composite Materials Sliding Against Smooth and Rough Mild Steel Counterfaces

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2013-12-01

    Full Text Available In the present study, friction coefficient and wear rate of gear fiber reinforced plastic (gear fiber and glass fiber reinforced plastic (glass fiber sliding against mild steel are investigated experimentally. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when smooth or rough mild steel pin slides on gear fiber and glass fiber disc. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative humidity 70%. Variations of friction coefficient with the duration of rubbing at different normal loads and sliding velocities are investigated. Results show that friction coefficient is influenced by duration of rubbing, normal load and sliding velocity. In general, friction coefficient increases for a certain duration of rubbing and after that it remains constant for the rest of the experimental time. The obtained results reveal that friction coefficient decreases with the increase in normal load for gear fiber and glass fiber mating with smooth or rough mild steel counterface. On the other hand, it is also found that friction coefficient increases with the increase in sliding velocity for both of the tested materials. Moreover, wear rate increases with the increase in normal load and sliding velocity. The magnitudes of friction coefficient and wear rate are different depending on sliding velocity and normal load for both smooth and rough counterface pin materials.

  5. Study of oxygen mass transfer coefficient and oxygen uptake rate in a stirred tank reactor for uranium ore bioleaching

    International Nuclear Information System (INIS)

    Zokaei-Kadijani, S.; Safdari, J.; Mousavian, M.A.; Rashidi, A.

    2013-01-01

    Highlights: ► Mass transfer coefficient does not depend on biomass concentration. ► The pulp density has a negative effect on mass transfer coefficient. ► The pulp density is the unique factor that affects maximum OUR. ► In this work, Neale’s correlation is corrected for prediction of mass transfer coefficient. ► Biochemical reaction is a limiting factor in the uranium bioleaching process. - Abstract: In this work, the volumetric oxygen mass transfer coefficient and the oxygen uptake rate (OUR) were studied for uranium ore bioleaching process by Acidthiobacillus ferrooxidans in a stirred tank reactor. The Box-Bohnken design method was used to study the effect of operating parameters on the oxygen mass transfer coefficient. The investigated factors were agitation speed (rpm), aeration rate (vvm) and pulp density (% weight/volume) of the stirred tank reactor. Analysis of experimental results showed that the oxygen mass transfer coefficient had low dependence on biomass concentration but had higher dependence on the agitation speed, aeration rate and pulp density. The obtained biological enhancement factors were equal to ones in experiments. On the other hand, the obtained values for Damkohler number (Da < 0.468) indicated that the process was limited by the biochemical reaction rate. Experimental results obtained for oxygen mass transfer coefficient were correlated with the empirical relations proposed by Garcia-Ochoa and Gomez (2009) and Neale and Pinches (1994). Due to the high relative error in the correlation of Neale and Pinches, that correlation was corrected and the coefficient of determination was calculated to be 89%. The modified correlation has been obtained based on a wide range of operating conditions, which can be used to determine the mass transfer coefficient in a bioreactor

  6. Uptake rate constants and partition coefficients for vapor phase organic chemicals using semipermeable membrane devices (SPMDs)

    Science.gov (United States)

    Cranor, W.L.; Alvarez, D.A.; Huckins, J.N.; Petty, J.D.

    2009-01-01

    To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07??m3??g-1??d-1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n??=??3) of anthracene and p,p???-DDE at 0.96 and 1.57??m3??g-1??d-1 with relative standard deviations of 8.4% and 8.6% respectively.

  7. Population densities and rate coefficients for electron impact excitation in singly ionized oxygen

    International Nuclear Information System (INIS)

    Awakowicz, P.; Behringer, K.

    1995-01-01

    In non-LTE arc plasmas, O II excited state number densities were measured relative to the O II ground and metastable states. The results were compared with collisional-radiative code calculations on the basis of the JET ADAS programs. Stationary He plasmas with small oxygen admixtures, generated in a 5 mm diameter cascade arc chamber (pressures 13-70 hPa, arc current 150 A), were investigated spectroscopically in the visible and the VUV spectral range. The continuum of a 2 mm diameter pure He arc (atmospheric pressure, current 100 A) served for calibration of the VUV system response. Plasma diagnostics on the basis of Hβ Stark broadening yielded electron densities between 2.4 x 10 14 and 2.0 x 10 15 cm -3 for the low-pressure O II mixture plasmas. The agreement of measured and calculated excited state populations is generally very satisfactory, thus confirming the rate coefficients in the code. This is of particular interest in this intermediate region between corona balance and LTE, where many atomic data are required in the simulation. Clear indications were found for the diffusion of metastables lowering their number densities significantly below their statistical values. (author)

  8. Analysis of the Lankford coefficient evolution at different strain rates for AA6016-T4, DP800 and DC06

    Science.gov (United States)

    Lenzen, Matthias; Merklein, Marion

    2017-10-01

    In the automotive sector, a major challenge is the deep-drawing of modern lightweight sheet metals with limited formability. Thus, conventional material models lack in accuracy due to the complex material behavior. A current field of research takes into account the evolution of the Lankford coefficient. Today, changes in anisotropy under increasing degree of deformation are not considered. Only a consolidated average value of the Lankford coefficient is included in conventional material models. This leads to an increasing error in prediction of the flow behavior and therefore to an inaccurate prognosis of the forming behavior. To increase the accuracy of the prediction quality, the strain dependent Lankford coefficient should be respected, because the R-value has a direct effect on the contour of the associated flow rule. Further, the investigated materials show a more or less extinct rate dependency of the yield stress. For this reason, the rate dependency of the Lankford coefficient during uniaxial tension is focused within this contribution. To quantify the influence of strain rate on the Lankford coefficient, tensile tests are performed for three commonly used materials, the aluminum alloy AA6016-T4, the advanced high strength steel DP800 and the deep drawing steel DC06 at three different strain rates. The strain measurement is carried out by an optical strain measurement system. An evolution of the Lankford coefficient was observed for all investigated materials. Also, an influence of the deformation velocity on the anisotropy could be detected.

  9. EFFECTS OF TIN ON HARDNESS, WEAR RATE AND COEFFICIENT OF FRICTION OF CAST CU-NI-SN ALLOYS

    Directory of Open Access Journals (Sweden)

    S. ILANGOVAN

    2013-02-01

    Full Text Available An investigation was carried out to understand the effects of Sn on hardness, wear rate and the coefficient of friction of spinodal Cu-Ni-Sn alloys. Alloys of appropriate compositions were melted in a crucible furnace under argon atmosphere and cast into sand moulds. Solution heat treated and aged specimens were tested for hardness, wear rate and the coefficient of friction. It was found that the hardness increases when the Sn content increases from 4% to 8% in the solution heat treated conditions. The peak aging time is found to decrease with an increase in the Sn content. Further, the coefficient of friction is independent of hardness whereas the wear rate decreases linearly with hardness irrespective of Sn content.

  10. Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds

    International Nuclear Information System (INIS)

    Herbst, E.; Leung, C.M.; Rensselaer Polytechnic Institute, Troy, NY)

    1986-01-01

    Pseudo-time-dependent models of the gas phase chemistry of dense interstellar clouds have been run with large rate coefficients for reactions between ions and polar neutral species, as advocated by Adams, Smith, and Clary. The higher rate coefficients normally lead to a reduction in both the peak and steady state abundances of polar neutrals, which can be as large as an order of magnitude but is more often smaller. Other differences between the results of these models and previous results are also discussed. 38 references

  11. Rate coefficients for the reaction of OH radicals with cis-3-hexene: an experimental and theoretical study.

    Science.gov (United States)

    Barbosa, Thaís da Silva; Peirone, Silvina; Barrera, Javier A; Abrate, Juan P A; Lane, Silvia I; Arbilla, Graciela; Bauerfeldt, Glauco Favilla

    2015-04-14

    The kinetics of the cis-3-hexene + OH reaction were investigated by an experimental relative rate method and at the density functional theory level. The experimental set-up consisted of a 200 L Teflon bag, operated at atmospheric pressure and 298 K. OH radicals were produced by the photolysis of H2O2 at 254 nm. Relative rate coefficients were determined by comparing the decays of the cis-3-hexene and reference compounds (cyclohexene, 2-buten-1-ol and allyl ether). The mean second-order rate coefficient value found was (6.27 ± 0.66) × 10(-11) cm(3) molecule(-1) s(-1), the uncertainty being estimated by propagation of errors. Theoretical calculations for the addition reaction of OH to cis-3-hexene have also been performed, at the BHandHLYP/aug-cc-pVDZ level, in order to investigate the reaction mechanism, to clarify the experimental observations and to model the reaction kinetics. Different conformations of the reactants, pre-barrier complexes and saddle points were considered in our calculations. The individual rate coefficients, calculated for each conformer of the reactant, at 298 K, using a microcanonical variational transition state method, are 4.19 × 10(-11) and 1.23 × 10(-10) cm(3) molecule(-1) s(-1). The global rate coefficient was estimated from the Boltzmann distribution of the conformers to be 8.10 × 10(-11) cm(3) molecule(-1) s(-1), which is in agreement with the experimental value. Rate coefficients calculated over the temperature range from 200-500 K are also given. Our results suggest that the complex mechanism, explicitly considering different conformations for the stationary points, must be taken into account for a proper description of the reaction kinetics.

  12. Gas-phase rate coefficients of the reaction of ozone with four sesquiterpenes at 295 ± 2 K.

    Science.gov (United States)

    Richters, Stefanie; Herrmann, Hartmut; Berndt, Torsten

    2015-05-07

    The rate coefficients of the reaction of ozone with the four atmospherically relevant sesquiterpenes β-caryophyllene, α-humulene, α-cedrene and isolongifolene were investigated at 295 ± 2 K and atmospheric pressure by at least two independent experimental investigations for each reaction. Relative rate experiments were carried out in a flow tube using two different experimental approaches with GC-MS detection (RR 1) and PTR-MS analysis (RR 2) as the analytical techniques. Absolute rate coefficients were determined in a stopped-flow experiment following the ozone depletion by means of UV spectroscopy. The average rate coefficients from the combined investigations representing the mean values of the different experimental methods are (unit: cm(3) molecule(-1) s(-1)): k(O3+β-caryophyllene) = (1.1 ± 0.3) × 10(-14) (methods: RR 1, RR 2, absolute), k(O3+α-humulene) = (1.2 ± 0.3) × 10(-14) (RR 1, RR 2), k(O3+α-cedrene) = (1.7 ± 0.5) × 10(-16) (RR 2, absolute) and k(O3+isolongifolene) = (1.1 ± 0.5) × 10(-17) (RR 2, absolute). The high ozonolysis rate coefficients for β-caryophyllene and α-humulene agree well with the results by Shu and Atkinson (Int. J. Chem. Kinet., 1994, 26) and lead to short atmospheric lifetimes of about two minutes with respect to the ozone reaction. The relatively small rate coefficients for α-cedrene and isolongifolene differ from the available literature values by a factor of about 2.5-6. Possible reasons for the deviations are discussed. Finally, calibrated sesquiterpene FT-IR spectra were recorded for the first time.

  13. Analyses of Spring Barley Evapotranspiration Rates Based on Gradient Measurements and Dual Crop Coefficient Model

    Czech Academy of Sciences Publication Activity Database

    Pozníková, Gabriela; Fischer, Milan; Pohanková, Eva; Trnka, Miroslav

    2014-01-01

    Roč. 62, č. 5 (2014), s. 1079-1086 ISSN 1211-8516 R&D Projects: GA MŠk LH12037; GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : evapotranspiration * dual crop coefficient model * Bowen ratio/energy balance method * transpiration * soil evaporation * spring barley Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  14. Extracting rate coefficients from single-molecule photon trajectories and FRET efficiency histograms for a fast-folding protein.

    Science.gov (United States)

    Chung, Hoi Sung; Gopich, Irina V; McHale, Kevin; Cellmer, Troy; Louis, John M; Eaton, William A

    2011-04-28

    Recently developed statistical methods by Gopich and Szabo were used to extract folding and unfolding rate coefficients from single-molecule Förster resonance energy transfer (FRET) data for proteins with kinetics too fast to measure waiting time distributions. Two types of experiments and two different analyses were performed. In one experiment bursts of photons were collected from donor and acceptor fluorophores attached to a 73-residue protein, α(3)D, freely diffusing through the illuminated volume of a confocal microscope system. In the second, the protein was immobilized by linkage to a surface, and photons were collected until one of the fluorophores bleached. Folding and unfolding rate coefficients and mean FRET efficiencies for the folded and unfolded subpopulations were obtained from a photon by photon analysis of the trajectories using a maximum likelihood method. The ability of the method to describe the data in terms of a two-state model was checked by recoloring the photon trajectories with the extracted parameters and comparing the calculated FRET efficiency histograms with the measured histograms. The sum of the rate coefficients for the two-state model agreed to within 30% with the relaxation rate obtained from the decay of the donor-acceptor cross-correlation function, confirming the high accuracy of the method. Interestingly, apparently reliable rate coefficients could be extracted using the maximum likelihood method, even at low (rate coefficients and mean FRET efficiencies were also obtained in an approximate procedure by simply fitting the FRET efficiency histograms, calculated by binning the donor and acceptor photons, with a sum of three-Gaussian functions. The kinetics are exposed in these histograms by the growth of a FRET efficiency peak at values intermediate between the folded and unfolded peaks as the bin size increases, a phenomenon with similarities to NMR exchange broadening. When comparable populations of folded and unfolded

  15. Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways

    Science.gov (United States)

    Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia

    2018-06-01

    The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.

  16. BETTER FINGERPRINT IMAGE COMPRESSION AT LOWER BIT-RATES: AN APPROACH USING MULTIWAVELETS WITH OPTIMISED PREFILTER COEFFICIENTS

    Directory of Open Access Journals (Sweden)

    N R Rema

    2017-08-01

    Full Text Available In this paper, a multiwavelet based fingerprint compression technique using set partitioning in hierarchical trees (SPIHT algorithm with optimised prefilter coefficients is proposed. While wavelet based progressive compression techniques give a blurred image at lower bit rates due to lack of high frequency information, multiwavelets can be used efficiently to represent high frequency information. SA4 (Symmetric Antisymmetric multiwavelet when combined with SPIHT reduces the number of nodes during initialization to 1/4th compared to SPIHT with wavelet. This reduction in nodes leads to improvement in PSNR at lower bit rates. The PSNR can be further improved by optimizing the prefilter coefficients. In this work genetic algorithm (GA is used for optimizing prefilter coefficients. Using the proposed technique, there is a considerable improvement in PSNR at lower bit rates, compared to existing techniques in literature. An overall average improvement of 4.23dB and 2.52dB for bit rates in between 0.01 to 1 has been achieved for the images in the databases FVC 2000 DB1 and FVC 2002 DB3 respectively. The quality of the reconstructed image is better even at higher compression ratios like 80:1 and 100:1. The level of decomposition required for a multiwavelet is lesser compared to a wavelet.

  17. Communication: Rate coefficients from quasiclassical trajectory calculations from the reverse reaction: The Mu + H2 reaction re-visited

    Science.gov (United States)

    Homayoon, Zahra; Jambrina, Pablo G.; Aoiz, F. Javier; Bowman, Joel M.

    2012-07-01

    In a previous paper [P. G. Jambrina et al., J. Chem. Phys. 135, 034310 (2011), 10.1063/1.3611400] various calculations of the rate coefficient for the Mu + H2 → MuH + H reaction were presented and compared to experiment. The widely used standard quasiclassical trajectory (QCT) method was shown to overestimate the rate coefficients by several orders of magnitude over the temperature range 200-1000 K. This was attributed to a major failure of that method to describe the correct threshold for the reaction owing to the large difference in zero-point energies (ZPE) of the reactant H2 and product MuH (˜0.32 eV). In this Communication we show that by performing standard QCT calculations for the reverse reaction and then applying detailed balance, the resulting rate coefficient is in very good agreement with the other computational results that respect the ZPE, (as well as with the experiment) but which are more demanding computationally.

  18. Reevaluation of the O+(2P) reaction rate coefficients derived from atmosphere explorer C observations

    International Nuclear Information System (INIS)

    Chang, T.; Torr, D.G.; Richards, P.G.; Solomon, S.C.

    1993-01-01

    O + ( 2 P) is an important species for studies of the ionosphere and thermosphere: its emission at 7320 angstrom can be used as a diagnostic of the thermospheric atomic oxygen density. Unfortunately, there are no laboratory measurements of the O and N 2 reaction rates which are needed to determine the major sinks of O + ( 2 P). The reaction rates that are generally used were determined from aeronomic data by Rusch et al. but there is evidence that several important inputs that they used should be changed. The authors have recalculated the O and N 2 reaction rates for O + ( 2 P) using recent improvements in the solar EUV flux, cross sections, and photoelectron fluxes. For the standard solar EUV flux, the new N 2 reaction rate of 3.4 ± 1.5 x 10 -10 cm 3 s -1 is close to the value obtained by Rusch et al., but the new O reaction rate of 4.0 ± 1.9 x 10 -10 cm 3 s -1 is about 8 times larger. These new reaction rates are derived using neutral densities, electron density, and solar EUV fluxes measured by Atmosphere Explorer C in 1974 during solar minimum. The new theoretical emission rates are in good agreement with the data for the two orbits studied by Rusch et al. and they are in reasonable agreement with data from five additional orbits that are used in this study. The authors have also examined the effect of uncertainties in the solar EUV flux on the derived reaction rates and found that 15% uncertainties in the solar flux could cause additional uncertainties of up to a factor of 1.5 in the O quenching rate. 19 refs., 4 figs., 8 tabs

  19. Rate Coefficient Measurements and Theoretical Analysis of the OH + ( E) CF3CH=CHCF3 Reaction.

    Science.gov (United States)

    Baasandorj, Munkhbayar; Marshall, Paul; Waterland, Robert L; Ravishankara, Akkihebbal R; Burkholder, James B

    2018-04-25

    Rate coefficients, k, for the gas-phase reaction of the OH radical with (E) CF3CH=CHCF3 ((E)-1,1,14,4,4-hexafluoro-2-butene, HFO-1336mzz(E)) were measured over a range of temperature (211-374 K) and bath gas pressure (20-300 Torr; He, N2) using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique. k1(T) was independent of pressure over this range of conditions with k1(296 K) = (1.31 ± 0.15) × 10 13 cm3 molecule 1 s 1 and k1(T) = (6.94 ± 0.80) × 10 13 exp[ (496 ± 10)/T] cm3 molecule 1 s 1, where the uncertainties are 2 and the pre-exponential term includes estimated systematic error. Rate coefficients for the OD reaction were also determined over a range of temperature (262-374 K) at 100 Torr (He). The OD rate coefficients were ~15% greater than the OH values and showed similar temperature dependent behavior with k2(T) = (7.52 ± 0.44) × 10 13 exp[ (476 ± 20)/T] and k2(296 K) = (1.53 ± 0.15) × 10 13 cm3 molecule 1 s 1. The rate coefficients for reaction 1 were also measured using a relative rate technique between 296 and 375 K with k1(296 K) measured to be (1.22 ± 0.1) × 10 13 cm3 molecule 1 s 1 in agreement with the PLP-LIF results. In addition, the 296 K rate coefficient for the O3 + (E) CF3CH=CHCF3 reaction was determined to be reaction and the significant decrease in OH reactivity compared to the (Z) CF3CH=CHCF3 stereoisomer reaction. The estimated atmospheric lifetime of (E) CF3CH=CHCF3, due to loss by reaction with OH, is estimated to be ~90 days, while the actual lifetime will depend on the location and season of its emission. Infrared absorption spectra of (E) CF3CH=CHCF3 were measured and used to estimate the 100-year time horizon global warming potentials (GWP) of 32 (atmospherically well-mixed) and 14 (lifetime-adjusted).

  20. Rate coefficients for low-energy electron dissociative attachment to molecular hydrogen

    International Nuclear Information System (INIS)

    Horacek, J.; Houfek, K.; Cizek, M.; Murakami, I.; Kato, T.

    2003-02-01

    Calculation of rate constants for dissociative electron attachment to molecular hydrogen is reported. The calculation is based on an improved nonlocal resonance model of Cizek, Horacek and Domcke which takes fully into account the nonlocality of the resonance dynamics and uses potentials with correct asymptotic forms. The rate constants are calculated for all quantum numbers v and J of the target molecules and for electron temperature in the range 0-30000 K. (author)

  1. Reevaluation of the O(+)(2P) reaction rate coefficients derived from Atmosphere Explorer C observations

    Science.gov (United States)

    Chang, T.; Torr, D. G.; Richards, P. G.; Solomon, S. C.

    1993-01-01

    O(+)(2P) is an important species for studies of the ionosphere and thermosphere: its emission at 7320 A can be used as a diagnostic of the thermospheric atomic oxygen density. Unfortunately, there are no laboratory measurements of the O and N2 reaction rates which are needed to determine the major sinks of (O+)(2p). We have recalculated the O and N2 reaction rates for O(+) (2P) using recent improvements in the solar EUV flux, cross sections, and photoelectron fluxes. For the standard solar EUV flux, the new N2 reaction rate of 3.4 +/- 1.5 x 10 exp -10 cu cm/s is close to the value obtained by Rusch et al. (1977), but the new O reaction rate of 4.0 +/- 1.9 x 10 exp -10 cu cm/sec is about 8 times larger. These new reaction rates are derived using neutral densities, electron density, and solar EUV fluxes measured by Atmosphere Explorer C in 1974 during solar minimum. The new theoretical emission rates are in good agreement with the data for the two orbits studied by Rusch et al.

  2. Calculation of rate coefficients of some proton-transfer ion-molecule reactions in weakly ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.

    1985-01-01

    A classical collision theory is used to describe thermal bimolecular rate coefficeints for reaction between positive and negative ions and polar molecules in a carrier gas. Special attention is paid to ion-molecule reaction in which proton transfer occurs. These reactions play an important role in terrestrial plasma devices, in ionosphere, in planetary atmospheres and in interstellar matter. The equilibrium rate coefficients of the reactions are calculated based on a microscopic reactive cross section derived from a long distance polar molecule-ion potential. The results are compared with experimental values of afterglow measurements. (D.Gy.)

  3. Measurements of Drag Coefficients and Rotation Rates of Free-Falling Helixes

    KAUST Repository

    Al-Omari, Abdulrhaman A.

    2016-05-01

    The motion of bacteria in the environment is relevant to several fields. At very small scales and with simple helical shapes, we are able to describe experimentally and mathematically the motion of solid spirals falling freely within a liquid pool. Using these shapes we intend to mimic the motion of bacteria called Spirochetes. We seek to experimentally investigate the linear and the rotational motion of such shapes. A better understanding of the dynamics of this process will be practical not only on engineering and physics, but the bioscience and environmental as well. In the following pages, we explore the role of the shape on the motion of passive solid helixes in different liquids. We fabricate three solid helical shapes and drop them under gravity in water, glycerol and a mixture of 30% glycerol in water. That generated rotation due to helical angle in water. However, we observe the rotation disappear in glycerol. The movement of the solid helical shapes is imaged using a high-speed video camera. Then, the images are analyzed using the supplied software and a computer. Using these simultaneous measurements, we examine the terminal velocity of solid helical shapes. Using this information we computed the drag coefficient and the drag force. We obtain the helical angular velocity and the torque applied to the solid. The results of this study will allow us to more accurately predict the motion of solid helical shape. This analysis will also shed light onto biological questions of bacteria movement.

  4. A Review of Rate Coefficients in the D2-F2 Chemical Laser System

    Science.gov (United States)

    1977-08-05

    analyzed by subjecting the mixture to a high-frequency dis- charge, then using EPR to assay the relative H and D atom concentrations. The rate...856 ( 1935 ). Anlauf, K. G. , P. E. Charters, D. S. Home, R. G. MacDonald, D. II. Maylotte, J. C. Polanyi, W. J

  5. Determination of the rate coefficient for the N2/+/ + O reaction in the ionosphere

    Science.gov (United States)

    Torr, D. G.; Torr, M. R.; Orsini, N.; Hanson, W. B.; Hoffman, J. H.; Walker, J. C. G.

    1977-01-01

    Using approximately 400 simultaneous measurements of ion and neutral densities and temperatures, and the spectrum of the solar flux measured by the Atmosphere Explorer C satellite, we have determined the rate constant k1 for the reaction between N2(+) and O in the ionosphere for ion temperatures between 600 and 700 K. We find that k1 = 1.1 x 10 to the minus 10th power cu cm per sec, with a standard deviation of + or - 15%. If we use the temperature dependence for this reaction determined in the laboratory then at 300 K we find excellent agreement with the recommended laboratory value.

  6. Experimental Investigation of Friction Coefficient and Wear Rate of Composite Materials Sliding Against Smooth and Rough Mild Steel Counterfaces

    OpenAIRE

    M.A. Chowdhury; D.M. Nuruzzaman; B.K. Roy; S. Samad; R. Sarker; A.H.M. Rezwan

    2013-01-01

    In the present study, friction coefficient and wear rate of gear fiber reinforced plastic (gear fiber) and glass fiber reinforced plastic (glass fiber) sliding against mild steel are investigated experimentally. In order to do so, a pin on disc apparatus is designed and fabricated. Experiments are carried out when smooth or rough mild steel pin slides on gear fiber and glass fiber disc. Experiments are conducted at normal load 10, 15 and 20 N, sliding velocity 1, 1.5 and 2 m/s and relative h...

  7. Direct Determination of the Rate Coefficient for the Reaction of OH Radicals with Monoethanol Amine (MEA) from 296 to 510 K.

    Science.gov (United States)

    Onel, L; Blitz, M A; Seakins, P W

    2012-04-05

    Monoethanol amine (H2NCH2CH2OH, MEA) has been proposed for large-scale use in carbon capture and storage. We present the first absolute, temperature-dependent determination of the rate coefficient for the reaction of OH with MEA using laser flash photolysis for OH generation, monitoring OH removal by laser-induced fluorescence. The room-temperature rate coefficient is determined to be (7.61 ± 0.76) × 10(-11) cm(3) molecule(-1) s(-1), and the rate coefficient decreases by about 40% by 510 K. The temperature dependence of the rate coefficient is given by k1= (7.73 ± 0.24) × 10(-11)(T/295)(-(0.79±0.11)) cm(3) molecule(-1) s(-1). The high rate coefficient shows that gas-phase processing in the atmosphere will be competitive with uptake onto aerosols.

  8. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Mahdi Alajmi

    2015-07-01

    Full Text Available The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE, Graphite/Epoxy composites (GE, and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE. The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR and coefficient of friction (COF of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs, as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  9. Gas-Phase Reaction Pathways and Rate Coefficients for the Dichlorosilane-Hydrogen and Trichlorosilane-Hydrogen Systems

    Science.gov (United States)

    Dateo, Christopher E.; Walch, Stephen P.

    2002-01-01

    As part of NASA Ames Research Center's Integrated Process Team on Device/Process Modeling and Nanotechnology our goal is to create/contribute to a gas-phase chemical database for use in modeling microelectronics devices. In particular, we use ab initio methods to determine chemical reaction pathways and to evaluate reaction rate coefficients. Our initial studies concern reactions involved in the dichlorosilane-hydrogen (SiCl2H2--H2) and trichlorosilane-hydrogen (SiCl2H-H2) systems. Reactant, saddle point (transition state), and product geometries and their vibrational harmonic frequencies are determined using the complete-active-space self-consistent-field (CASSCF) electronic structure method with the correlation consistent polarized valence double-zeta basis set (cc-pVDZ). Reaction pathways are constructed by following the imaginary frequency mode of the saddle point to both the reactant and product. Accurate energetics are determined using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations (CCSD(T)) extrapolated to the complete basis set limit. Using the data from the electronic structure calculations, reaction rate coefficients are obtained using conventional and variational transition state and RRKM theories.

  10. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites.

    Science.gov (United States)

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-07-08

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  11. New rate coefficients of CS in collision with para- and ortho-H2 and astrophysical implications

    Science.gov (United States)

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Guilloteau, Stéphane; Dutrey, Anne

    2018-05-01

    Astronomers use the CS molecule as a gas mass tracer in dense regions of the interstellar medium, either to measure the gas density through multi-line observations or the level of turbulence. This necessarily requires the knowledge of the rates coefficients with the most common colliders in the interstellar medium, He and H2. In the present work, the close coupling collisional rates are computed for the first thirty rotational states of CS in collision with para- and ortho-H2 using a recent rigid rotor potential energy surface. Some radiative transfer calculations, using typical astrophysical conditions, are also performed to test this new set of data and to compare with the existing ones.

  12. Atmospheric chemistry of HFE-7000 (CF(3)CF (2)CF (2)OCH (3)) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (CF (3)CF (2)CF (2)CH (2)OH): kinetic rate coefficients and temperature dependence of reactions with chlorine atoms.

    Science.gov (United States)

    Díaz-de-Mera, Yolanda; Aranda, Alfonso; Bravo, Iván; Rodríguez, Diana; Rodríguez, Ana; Moreno, Elena

    2008-10-01

    The adverse environmental impacts of chlorinated hydrocarbons on the Earth's ozone layer have focused attention on the effort to replace these compounds by nonchlorinated substitutes with environmental acceptability. Hydrofluoroethers (HFEs) and fluorinated alcohols are currently being introduced in many applications for this purpose. Nevertheless, the presence of a great number of C-F bonds drives to atmospheric long-lived compounds with infrared absorption features. Thus, it is necessary to improve our knowledge about lifetimes and global warming potentials (GWP) for these compounds in order to get a complete evaluation of their environmental impact. Tropospheric degradation is expected to be initiated mainly by OH reactions in the gas phase. Nevertheless, Cl atoms reaction may also be important since rate constants are generally larger than those of OH. In the present work, we report the results obtained in the study of the reactions of Cl radicals with HFE-7000 (CF(3)CF(2)CF(2)OCH(3)) (1) and its isomer CF(3)CF(2)CF(2)CH(2)OH (2). Kinetic rate coefficients with Cl atoms have been measured using the discharge flow tube-mass spectrometric technique at 1 Torr of total pressure. The reactions of these chlorofluorocarbons (CFCs) substitutes have been studied under pseudo-first-order kinetic conditions in excess of the fluorinated compounds over Cl atoms. The temperature ranges were 266-333 and 298-353 K for reactions of HFE-7000 and CF(3)CF(2)CF(2)CH(2)OH, respectively. The measured room temperature rate constants were k(Cl+CF(3)CF(2)CF(2)OCH(3)) = (1.24 +/- 0.28) x 10(-13) cm(3) molecule(-1) s(-1)and k(Cl+CF(3)CF(2)CF(2)CH(2)OH) = (8.35 +/- 1.63) x 10(-13) cm(3) molecule(-1) s(-1) (errors are 2sigma + 10% to cover systematic errors). The Arrhenius expression for reaction 1 was k (1)(266-333 K) = (6.1 +/- 3.8) x 10(-13)exp[-(445 +/- 186)/T] cm(3) molecule(-1) s(-1) and k (2)(298-353 K) = (1.9 +/- 0.7) x 10(-12)exp[-(244 +/- 125)/T] cm(3) molecule(-1) s(-1) (errors

  13. Determination of the Rate Coefficients of the SO2 plus O plus M yields SO3 plus M Reaction

    Science.gov (United States)

    Hwang, S. M.; Cooke, J. A.; De Witt, K. J.; Rabinowitz, M. J.

    2010-01-01

    Rate coefficients of the title reaction R(sub 31) (SO2 +O+M yields SO3 +M) and R(sub 56) (SO2 + HO2 yields SO3 +OH), important in the conversion of S(IV) to S(VI),were obtained at T =970-1150 K and rho (sub ave) = 16.2 micro mol/cubic cm behind reflected shock waves by a perturbation method. Shock-heated H2/ O2/Ar mixtures were perturbed by adding small amounts of SO2 (1%, 2%, and 3%) and the OH temporal profiles were then measured using laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the characteristic reaction times acquired from the individual experimental absorption profiles via simultaneous optimization of k(sub 31) and k(sub 56) values in the reaction modeling (for satisfactory matches to the observed characteristic times, it was necessary to take into account R(sub 56)). In the experimental conditions of this study, R(sub 31) is in the low-pressure limit. The rate coefficient expressions fitted using the combined data of this study and the previous experimental results are k(sub 31,0)/[Ar] = 2.9 10(exp 35) T(exp ?6.0) exp(?4780 K/T ) + 6.1 10(exp 24) T(exp ?3.0) exp(?1980 K/T ) cm(sup 6) mol(exp ?2)/ s at T = 300-2500 K; k(sub 56) = 1.36 10(exp 11) exp(?3420 K/T ) cm(exp 3)/mol/s at T = 970-1150 K. Computer simulations of typical aircraft engine environments, using the reaction mechanism with the above k(sub 31,0) and k(sub 56) expressions, gave the maximum S(IV) to S(VI) conversion yield of ca. 3.5% and 2.5% for the constant density and constant pressure flow condition, respectively. Moreover, maximum conversions occur at rather higher temperatures (?1200 K) than that where the maximum k(sub 31,0) value is located (approximately 800 K). This is because the conversion yield is dependent upon not only the k(sup 31,0) and k(sup 56) values (production flux) but also the availability of H, O, and HO2 in the system (consumption flux).

  14. Diffusion-controlled reaction. V. Effect of concentration-dependent diffusion coefficient on reaction rate in graft polymerization

    International Nuclear Information System (INIS)

    Imre, K.; Odian, G.

    1979-01-01

    The effect of diffusion on radiation-initiated graft polymerization has been studied with emphasis on the single- and two-penetrant cases. When the physical properties of the penetrants are similar, the two-penetrant problems can be reduced to the single-penetrant problem by redefining the characteristic parameters of the system. The diffusion-free graft polymerization rate is assumed to be proportional to the upsilon power of the monomer concentration respectively, and, in which the proportionality constant a = k/sub p/R/sub i//sup w//k/sub t//sup z/, where k/sub p/ and k/sub t/ are the propagation and termination rate constants, respectively, and R/sub i/ is the initiation rate. The values of upsilon, w, and z depend on the particular reaction system. The results of earlier work were generalized by allowing a non-Fickian diffusion rate which predicts an essentially exponential dependence on the monomer concentration of the diffusion coefficient, D = D 0 [exp(deltaC/M)], where M is the saturation concentration. A reaction system is characterized by the three dimensionless parameters, upsilon, delta, and A = (L/2)[aM/sup (upsilon--1)//D 0 ]/sup 1/2/, where L is the polymer film thickness. Graft polymerization tends to become diffusion controlled as A increases. Larger values of delta and ν cause a reaction system to behave closer to the diffusion-free regime. Transition from diffusion-free to diffusion-controlled reaction involves changes in the dependence of the reaction rate on film thickness, initiation rate, and monomer concentration. Although the diffusion-free rate is w order in initiation rate, upsilon order in monomer, and independent of film thickness, the diffusion-controlled rate is w/2 order in initiator rate and inverse first-order in film thickness. Dependence of the diffusion-controlled rate on monomer is dependent in a complex manner on the diffusional characteristics of the reaction system. 11 figures, 4 tables

  15. Atmospheric reactions of methylcyclohexanes with Cl atoms and OH radicals: determination of rate coefficients and degradation products.

    Science.gov (United States)

    Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José

    2015-04-01

    As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed

  16. Determination of the thermal rate coefficient, products, and branching ratios for the reaction of O/+/ /D-2/ with N2

    Science.gov (United States)

    Torr, D. G.; Torr, M. R.

    1980-01-01

    Atmosphere Explorer-C satellite measurements are used to determine rate coefficients (RCs) for the following reactions: O(+)(D-2) + N2 yields N2(+) + O (reaction 1), O(+)(D-2) + N2 yields O(+)(S-4) + N2 (reaction 2), and O(+)(D-2) + N2 yields NO(+) + N (reaction 3). Results show the RC for reaction 1 to be 1 (plus 1 or minus 0.5) x 10 to the -10th cu cm per sec, for reaction 2 to be 3 (plus 1 or minus 2) x 10 to the -11th cu cm per sec, and 3 to be less than 5.5 x 10 to the -11th cu cm per sec. It is also found that the reaction of O(+)(D-2) with N2 does not constitute a detectable source of NO(+) ions in the thermosphere.

  17. Thermal rate coefficients in collinear versus bent transition state reactions: the N+N{sub 2} case study

    Energy Technology Data Exchange (ETDEWEB)

    Lagana, Antonio; Faginas Lago, Noelia; Rampino, Sergio [Dipartimento di Chimica, Universita di Perugia, 06123 Perugia (Italy); Huarte-Larranaga, FermIn [Computer Simulation and Modeling Lab (CoSMoLab), Parc CientIfic de Barcelona, 08028 Barcelona (Spain); GarcIa, Ernesto [Departamento de Quimica Fisica, Universidad del PaIs Vasco, 01006 Vitoria (Spain)], E-mail: lagana05@gmail.com, E-mail: fhuarte@pcb.ub.es, E-mail: e.garcia@ehu.es

    2008-10-15

    Zero total angular momentum exact quantum calculations of the probabilities of the N+N{sub 2} reaction have been performed on the L3 potential energy surface having a bent transition state. This has allowed us to work out J-shifting estimates of the thermal rate coefficient based on the calculation of either detailed (state-to-state) or cumulative (multiconfiguration) probabilities. The results obtained are used to compare the numerical outcomes and the concurrent computational machineries of both quantum and semiclassical approaches as well as to exploit the potentialities of the J-shifting model. The implications of moving the barrier to reaction from the previously proposed collinear geometry of the LEPS to the bent one of L3 are also investigated by comparing the related detailed reactive probabilities.

  18. Determination of equilibrium electron temperature and times using an electron swarm model with BOLSIG+ calculated collision frequencies and rate coefficients

    International Nuclear Information System (INIS)

    Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei

    2015-01-01

    Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections

  19. Rate coefficients from quantum and quasi-classical cumulative reaction probabilities for the S(1D) + H2 reaction

    Science.gov (United States)

    Jambrina, P. G.; Lara, Manuel; Menéndez, M.; Launay, J.-M.; Aoiz, F. J.

    2012-10-01

    Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S(1D) + H2 → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002), 10.1063/1.1431280] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009), 10.1021/jp903790h]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S(1D).

  20. Rate coefficients for collisional population transfer between 3p54p argon levels at 300 0K

    International Nuclear Information System (INIS)

    Nguyen, T.D.; Sadeghi, N.

    1978-01-01

    The population transfer between excited 3p 5 4p argon levels induced by the collisional process Ar* (3p 5 4p)/sub i/ + Ar( 1 S 0 ) arrow-right-left Ar* (3p 5 4p)/sub j/ + Ar( 1 S 0 ) + ΔE was studied in the afterglow of an argon pulsed discharge, at the pressure range of 0.2--1 Torr. Selective population of one particular argon 3p 5 4p level was achieved by laser excitation from one metastable state by use of a tunable cw dye laser. The populations of the laser-excited level and of the collisional excited levels were determined by intensity measurements of the fluorescence line and of the sensitized fluorescence lines. The time-dependence study of the populations of the metastable state, of the laser-excited state, and of the collisional excited states was carried out to ascertain the product channel and to determine the collisional transfer rate coefficients

  1. A paradox: The thermal rate coefficient for the H+DCl → HCl+D exchange reaction

    International Nuclear Information System (INIS)

    Thompson, D.L.; Suzukawa, H.H. Jr.; Raff, L.M.

    1975-01-01

    Previously reported photolysis experiments indicate that the frequency factors associated with the hydrogen-exchange reactions H+DCl → HCl+D and D+HCl → DCl+H are on the order of 10 10 cm 3 /molcenter-dotsec. A series of unadjusted, quasiclassical trajectory calculations were been carried out to compute the thermal rate coefficients and activation parameters for a series of 13 thermal processes of the type A+BC → AB+C, where A=H, D, or Cl and BC=H 2 , D 2 , HCl, DCl, or Cl 2 . In addition, hot-atom yield ratios have been computed from the IRP equation for the reactions D*+DCl → D 2 +Cl, D*+Cl 2 → DCl + Cl as a function of the initial D* laboratory energy. The computations yield (1) hot-atom DCl/D 2 yield ratios within a factor of 2 of the experimental values; (2) thermal activation energies in satisfactory agreement with experiment for all processes investigated; and (3) frequency factors in reasonable accord with experiment for all the reactions except the hydrogen exchange reactions

  2. C02(nu2)-0 Quenching Rate Coefficient Derived from Coincidental Fort Collins Lidar and SABER Measurements

    Science.gov (United States)

    Feofilov, A. G.; Kutepov, A. A.; She, C. Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(V2) vibrational levels in collisions with oxygen atoms plays an important role. However, neither the rate coefficient of this process (k(CO2O)) nor the atomic oxygen concentrations ([O]) in the MLT are well known. The discrepancy between k(CO2O) measured in the lab and retrieved from atmospheric measurements is of about factor of 2.5. At the same time, the discrepancy between [O] in the MLT measured by different instruments is of the same order of magnitude. In this work we used a synergy of a ground based lidar and satellite infrared radiometer to make a further step in understanding of the physics of the region. In this study we apply the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado for retrieving the product of k(CO2-O) x [O] from the limb radiances in the 15 micron channel measured by the SABER/TIMED instrument for nearly simultaneous common volume measurements of both instruments within +/-1 degree in latitude, +/-2 degrees in longitude and +/-10 minutes in time. We derive k(CO2-O) and its possible variation range from the retrieved product by utilizing the [O] values measured by the SABER and other instruments.

  3. Population decay time and distribution of exciton states analyzed by rate equations based on theoretical phononic and electron-collisional rate coefficients

    Science.gov (United States)

    Oki, Kensuke; Ma, Bei; Ishitani, Yoshihiro

    2017-11-01

    Population distributions and transition fluxes of the A exciton in bulk GaN are theoretically analyzed using rate equations of states of the principal quantum number n up to 5 and the continuum. These rate equations consist of the terms of radiative, electron-collisional, and phononic processes. The dependence of the rate coefficients on temperature is revealed on the basis of the collisional-radiative model of hydrogen plasma for the electron-collisional processes and theoretical formulation using Fermi's "golden rule" for the phononic processes. The respective effects of the variations in electron, exciton, and lattice temperatures are exhibited. This analysis is a base of the discussion on nonthermal equilibrium states of carrier-exciton-phonon dynamics. It is found that the exciton dissociation is enhanced even below 150 K mainly by the increase in the lattice temperature. When the thermal-equilibrium temperature increases, the population fluxes between the states of n >1 and the continuum become more dominant. Below 20 K, the severe deviation from the Saha-Boltzmann distribution occurs owing to the interband excitation flux being higher than the excitation flux from the 1 S state. The population decay time of the 1 S state at 300 K is more than ten times longer than the recombination lifetime of excitons with kinetic energy but without the upper levels (n >1 and the continuum). This phenomenon is caused by a shift of population distribution to the upper levels. This phonon-exciton-radiation model gives insights into the limitations of conventional analyses such as the ABC model, the Arrhenius plot, the two-level model (n =1 and the continuum), and the neglect of the upper levels.

  4. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging: Relationship between apparent diffusion coefficient and split glomerular filtration rate

    International Nuclear Information System (INIS)

    Toyoshima, S.; Noguchi, K.; Seto, H.; Shimizu, M.; Watanabe, N.

    2000-01-01

    To determine the relationship between apparent diffusion coefficient (ADC) values measured by diffusion-weighted MR imaging and split renal function determined by renal scintigraphy in patients with hydronephrosis. Material and Methods: Diffusion-weighted imaging on a 1.5 T MR unit and renal scintigraphy were performed in 36 patients with hydronephrosis (45 hydronephrotic kidneys, 21 non-hydronephrotic kidneys). ADC values of the individual kidneys were measured by diffusion-weighted MR imaging. Split renal function (glomerular filtration rate (GFR)) was determined by renal scintigraphy using 99m Tc-DTPA. The relationship between ADC values and split GFR was examined in 66 kidneys. The hydronephrotic kidneys were further classified into three groups (severe renal dysfunction, GFR 25 ml/min, n=28), and mean values for ADCs were calculated. Results: In hydronephrotic kidneys, there was a moderate positive correlation between ADC values and split GFR (R2=0.56). On the other hand, in non-hydronephrotic kidneys, poor correlation between ADC values and split GFR was observed (R2=0.08). The mean values for ADCs of the dysfunctioning hydronephrotic kidneys (severe renal dysfunction, 1.32x10 -3 ±0.18x10 -3 mm 2 /s; moderate renal dysfunction, 1.38x10 -3 ±0.10x10 -3 mm2/s) were significantly lower than that of the normal functioning hydronephrotic kidneys (1.63x10 -3 ±0.12±10 -3 mm 2 /s). Conclusion: These results indicated that measurement of ADC values by diffusion-weighted MR imaging has a potential value in the evaluation of the functional status of hydronephrotic kidneys

  5. Application of Mathematical Models for Determination of Microorganisms Growth Rate Kinetic Coefficients for Wastewater Treatment Plant Evaluation

    Directory of Open Access Journals (Sweden)

    Mohammad Delnavaz

    2017-06-01

    Conclusion: Evaluation of Y, kd, k0 and Ks parameters in operation of Ekbatan wastewater treatment plant showed that ASM1 model could well determine the coefficients and therefore the conditions of biological treatment is appropriate.

  6. A self-consistent, multivariate method for the determination of gas-phase rate coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical

    Science.gov (United States)

    Shaw, Jacob T.; Lidster, Richard T.; Cryer, Danny R.; Ramirez, Noelia; Whiting, Fiona C.; Boustead, Graham A.; Whalley, Lisa K.; Ingham, Trevor; Rickard, Andrew R.; Dunmore, Rachel E.; Heard, Dwayne E.; Lewis, Ally C.; Carpenter, Lucy J.; Hamilton, Jacqui F.; Dillon, Terry J.

    2018-03-01

    Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs) observed in the troposphere. Here, a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of 19 VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k = 5.7 (±0.3) × 10-11 cm3 molecule-1 s-1. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10) K, was used to determine new OH rate coefficients for 12 aromatic, 5 alkane, 5 alkene and 3 monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. Due to difficulties with detection limits and fully resolving peaks, only 19 OH rate coefficients were derived from these ambient air samples, including 10 reactions for which data were previously unavailable at the elevated reaction temperature of T = 323 (±10) K.

  7. The effect of N2/+/ recombination on the aeronomic determination of the charge exchange rate coefficient of O/+//2D/ with N2

    Science.gov (United States)

    Torr, D. G.; Orsini, N.

    1978-01-01

    The Atmosphere Explorer (AE) data are reexamined in the light of new laboratory measurements of the N2(+) recombination rate coefficient alpha. The new measurements support earlier measurements which yielded values of alpha significantly lower than the AE values. It is found that the values for alpha determined from the satellite data can be reconciled with the laboratory measurements, if the charge exchange rate coefficient for O(+)(2D) with N2 is less than one-quarter of that derived in the laboratory by Rutherford and Vroom (1971).

  8. Thermal Rate Coefficients and Kinetic Isotope Effects for the Reaction OH + CH4 → H2O + CH3 on an ab Initio-Based Potential Energy Surface.

    Science.gov (United States)

    Li, Jun; Guo, Hua

    2018-03-15

    Thermal rate coefficients for the title reaction and its various isotopologues are computed using a tunneling-corrected transition-state theory on a global potential energy surface recently developed by fitting a large number of high-level ab initio points. The calculated rate coefficients are found to agree well with the measured ones in a wide temperature range, validating the accuracy of the potential energy surface. Strong non-Arrhenius effects are found at low temperatures. In addition, the calculations reproduced the primary and secondary kinetic isotope effects. These results confirm the strong influence of tunneling to this heavy-light-heavy hydrogen abstraction reaction.

  9. Temperature dependent electron transport and rate coefficient studies for e-beam-sustained diffuse gas discharge switching

    International Nuclear Information System (INIS)

    Carter, J.G.; Hunter, S.R.; Christophorou, L.G.

    1987-01-01

    Measurements of the electron drift velocity, w, attachment coefficient, eta/N/sub a/, and ionization coefficient, α/N, have been made in C 2 F 6 /Ar and C 2 F 6 /CH 4 gas mixtures at gas temperatures, T, of 300 and 500 0 K over the concentration range of 0.1 to 100% of the C 2 F 6 . These measurements are useful for modeling the expected behavior of repetitively operated electron-beam sustained diffuse gas discharge opening switches where gas temperatures within the switch are anticipated to rise several hundred degrees during switch operation

  10. Nitroxide-mediated living radical polymerization: determination of the rate coefficient for alkoxyamine C-O bond homolysis by quantitative ESR

    NARCIS (Netherlands)

    Bon, S.A.F.; Chambard, G.; German, A.L.

    1999-01-01

    The rate coefficient for alkoxyamine C-O bond homolysis has been determined over a range of temperatures for both 2-tert-butoxy-1-phenyl-1-(1-oxy-2,2,6,6-tetramethylpiperidinyl)ethane (1) and a polystyrene-TEMPO (approximately 75 units) adduct using quantitative ESR. In a thermostated solution of

  11. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters.

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915 measured samples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rate and heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08.

  12. The Atmospherically Important Reaction of Hydroxyl Radicals with Methyl Nitrate: A Theoretical Study Involving the Calculation of Reaction Mechanisms, Enthalpies, Activation Energies, and Rate Coefficients.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2017-09-07

    A theoretical study, involving the calculation of reaction enthalpies, activation energies, mechanisms, and rate coefficients, was made of the reaction of hydroxyl radicals with methyl nitrate, an important process for methyl nitrate removal in the earth's atmosphere. Four reaction channels were considered: formation of H 2 O + CH 2 ONO 2 , CH 3 OOH + NO 2 , CH 3 OH + NO 3 , and CH 3 O + HNO 3 . For all channels, geometry optimization and frequency calculations were performed at the M06-2X/6-31+G** level, while relative energies were improved at the UCCSD(T*)-F12/CBS level. The major channel is found to be the H abstraction channel, to give the products H 2 O + CH 2 ONO 2 . The reaction enthalpy (ΔH 298 K RX ) of this channel is computed as -17.90 kcal mol -1 . Although the other reaction channels are also exothermic, their reaction barriers are high (>24 kcal mol -1 ), and therefore these reactions do not contribute to the overall rate coefficient in the temperature range considered (200-400 K). Pathways via three transition states were identified for the H abstraction channel. Rate coefficients were calculated for these pathways at various levels of variational transition state theory including tunneling. The results obtained are used to distinguish between two sets of experimental rate coefficients, measured in the temperature range of 200-400 K, one of which is approximately an order of magnitude greater than the other. This comparison, as well as the temperature dependence of the computed rate coefficients, shows that the lower experimental values are favored. The implications of the results to atmospheric chemistry are discussed.

  13. Low temperature rate coefficients of the H + CH(+) → C(+) + H2 reaction: New potential energy surface and time-independent quantum scattering.

    Science.gov (United States)

    Werfelli, Ghofran; Halvick, Philippe; Honvault, Pascal; Kerkeni, Boutheïna; Stoecklin, Thierry

    2015-09-21

    The observed abundances of the methylidyne cation, CH(+), in diffuse molecular clouds can be two orders of magnitude higher than the prediction of the standard gas-phase models which, in turn, predict rather well the abundances of neutral CH. It is therefore necessary to investigate all the possible formation and destruction processes of CH(+) in the interstellar medium with the most abundant species H, H2, and e(-). In this work, we address the destruction process of CH(+) by hydrogen abstraction. We report a new calculation of the low temperature rate coefficients for the abstraction reaction, using accurate time-independent quantum scattering and a new high-level ab initio global potential energy surface including a realistic model of the long-range interaction between the reactants H and CH(+). The calculated thermal rate coefficient is in good agreement with the experimental data in the range 50 K-800 K. However, at lower temperatures, the experimental rate coefficient takes exceedingly small values which are not reproduced by the calculated rate coefficient. Instead, the latter rate coefficient is close to the one given by the Langevin capture model, as expected for a reaction involving an ion and a neutral species. Several recent theoretical works have reported a seemingly good agreement with the experiment below 50 K, but an analysis of these works show that they are based on potential energy surfaces with incorrect long-range behavior. The experimental results were explained by a loss of reactivity of the lowest rotational states of the reactant; however, the quantum scattering calculations show the opposite, namely, a reactivity enhancement with rotational excitation.

  14. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    Science.gov (United States)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  15. Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters

    Science.gov (United States)

    Liu, Zhijian; Liu, Kejun; Li, Hao; Zhang, Xinyu; Jin, Guangya; Cheng, Kewei

    2015-01-01

    Measurements of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, conventional measurement requires expensive detection devices and undergoes a series of complicated procedures. To simplify the measurement and reduce the cost, software based on artificial neural networks for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters was developed. Using multilayer feed-forward neural networks with back-propagation algorithm, we developed and tested our program on the basis of 915measuredsamples of water-in-glass evacuated tube solar water heaters. This artificial neural networks-based software program automatically obtained accurate heat collection rateand heat loss coefficient using simply "portable test instruments" acquired parameters, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, angle between tubes and ground and final temperature. Our results show that this software (on both personal computer and Android platforms) is efficient and convenient to predict the heat collection rate and heat loss coefficient due to it slow root mean square errors in prediction. The software now can be downloaded from http://t.cn/RLPKF08. PMID:26624613

  16. Extreme learning machine: a new alternative for measuring heat collection rate and heat loss coefficient of water-in-glass evacuated tube solar water heaters.

    Science.gov (United States)

    Liu, Zhijian; Li, Hao; Tang, Xindong; Zhang, Xinyu; Lin, Fan; Cheng, Kewei

    2016-01-01

    Heat collection rate and heat loss coefficient are crucial indicators for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, wasting too much time and manpower. To address this problem, we previously used artificial neural networks and support vector machine to develop precise knowledge-based models for predicting the heat collection rates and heat loss coefficients of water-in-glass evacuated tube solar water heaters, setting the properties measured by "portable test instruments" as the independent variables. A robust software for determination was also developed. However, in previous results, the prediction accuracy of heat loss coefficients can still be improved compared to those of heat collection rates. Also, in practical applications, even a small reduction in root mean square errors (RMSEs) can sometimes significantly improve the evaluation and business processes. As a further study, in this short report, we show that using a novel and fast machine learning algorithm-extreme learning machine can generate better predicted results for heat loss coefficient, which reduces the average RMSEs to 0.67 in testing.

  17. A self-consistent, multivariate method for the determination of gas-phase rate coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical

    Directory of Open Access Journals (Sweden)

    J. T. Shaw

    2018-03-01

    Full Text Available Gas-phase rate coefficients are fundamental to understanding atmospheric chemistry, yet experimental data are not available for the oxidation reactions of many of the thousands of volatile organic compounds (VOCs observed in the troposphere. Here, a new experimental method is reported for the simultaneous study of reactions between multiple different VOCs and OH, the most important daytime atmospheric radical oxidant. This technique is based upon established relative rate concepts but has the advantage of a much higher throughput of target VOCs. By evaluating multiple VOCs in each experiment, and through measurement of the depletion in each VOC after reaction with OH, the OH + VOC reaction rate coefficients can be derived. Results from experiments conducted under controlled laboratory conditions were in good agreement with the available literature for the reaction of 19 VOCs, prepared in synthetic gas mixtures, with OH. This approach was used to determine a rate coefficient for the reaction of OH with 2,3-dimethylpent-1-ene for the first time; k =  5.7 (±0.3  ×  10−11 cm3 molecule−1 s−1. In addition, a further seven VOCs had only two, or fewer, individual OH rate coefficient measurements available in the literature. The results from this work were in good agreement with those measurements. A similar dataset, at an elevated temperature of 323 (±10 K, was used to determine new OH rate coefficients for 12 aromatic, 5 alkane, 5 alkene and 3 monoterpene VOC + OH reactions. In OH relative reactivity experiments that used ambient air at the University of York, a large number of different VOCs were observed, of which 23 were positively identified. Due to difficulties with detection limits and fully resolving peaks, only 19 OH rate coefficients were derived from these ambient air samples, including 10 reactions for which data were previously unavailable at the elevated reaction temperature of T =  323 (±10 K.

  18. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images

    International Nuclear Information System (INIS)

    Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne

    1997-01-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK

  19. Reaction-rate coefficients, high-energy ions slowing-down, and power balance in a tokamak fusion reactor plasma

    International Nuclear Information System (INIS)

    Tone, Tatsuzo

    1978-07-01

    Described are the reactivity coefficient of D-T fusion reaction, slowing-down processes of deuterons injected with high energy and 3.52 MeV alpha particles generated in D-T reaction, and the power balance in a Tokamak reactor plasma. Most of the results were obtained in the first preliminary design of JAERI Experimental Fusion Reactor (JXFR) driven with stationary neutral beam injection. A manual of numerical computation program ''BALTOK'' developed for the calculations is given in the appendix. (auth.)

  20. Absolute and relative-rate measurement of the rate coefficient for reaction of perfluoro ethyl vinyl ether (C2F5OCF[double bond, length as m-dash]CF2) with OH.

    Science.gov (United States)

    Srinivasulu, G; Bunkan, A J C; Amedro, D; Crowley, J N

    2018-01-31

    The rate coefficient (k 1 ) for the reaction of OH radicals with perfluoro ethyl vinyl ether (PEVE, C 2 F 5 OCF[double bond, length as m-dash]CF 2 ) has been measured as a function of temperature (T = 207-300 K) using the technique of pulsed laser photolysis with detection of OH by laser-induced fluorescence (PLP-LIF) at pressures of 50 or 100 Torr N 2 bath gas. In addition, the rate coefficient was measured at 298 K and in one atmosphere of air by the relative-rate technique with loss of PEVE and reference reactant monitored in situ by IR absorption spectroscopy. The rate coefficient has a negative temperature dependence which can be parameterized as: k 1 (T) = 6.0 × 10 -13  exp[(480 ± 38/T)] cm 3 molecule -1 s -1 and a room temperature value of k 1 (298 K) = (3.0 ± 0.3) × 10 -12 cm 3 molecule -1 s -1 . Highly accurate rate coefficients from the PLP-LIF experiments were achieved by optical on-line measurements of PEVE and by performing the measurements at two different apparatuses. The large rate coefficient and the temperature dependence indicate that the reaction proceeds via OH addition to the C[double bond, length as m-dash]C double bond, the high pressure limit already being reached at 50 Torr N 2 . Based on the rate coefficient and average OH levels, the atmospheric lifetime of PEVE was estimated to be a few days.

  1. Evaluation of the difference in the rate coefficients of F2 + NOx (x = 1 or 2) → F + FNOx by the stereochemical arrangement using the density functional theory.

    Science.gov (United States)

    Tajima, Satomi; Hayashi, Toshio; Hori, Masaru

    2015-02-26

    The rate coefficient of F2 + NO → F + FNO is 2 to 5 orders of magnitude higher than that of F2 + NO2 → F + FNO2 even though bond energies of FNO and FNO2 only differ by ∼0.2 eV. To understand the cause of having different rate coefficients of these two reactions, the change in total energies was calculated by varying the stereochemical arrangement of F2 with respect to NOx (x = 1 or 2) by the density functional theory (DFT), using CAM-B3LYP/6-311 G+(d) in the Gaussian program. The permitted approaching angle between the x-axis and the plane consisting of O, N, F, and ϕ plays a key role to restrict the reaction of NO2 and F2 compared to the reaction of NO and F2. This restriction in the reaction space is considered to be the main cause of different rate coefficients depending on the selection of x = 1 or 2 of the reaction of F2 + NOx → F + FNOx, which was also confirmed by the difference in Si etch rate using the F formed by those reactions.

  2. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A A [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj M [Institute of Physics, PO Box 57, 11001 Belgrade (Serbia and Montenegro); Djuric, Z [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom); Ljepojevic, N N [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)

    2004-11-28

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T{sub a}, and electronic, T{sub e}, temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree {approx}<10{sup -4}), and therefore have to be included in appropriate models of such plasmas.

  3. The rate coefficients for the processes of (n - n')-mixing in collisions of Rydberg atoms H*(n) with H(1s) atoms

    International Nuclear Information System (INIS)

    Mihajlov, A A; Ignjatovic, Lj M; Djuric, Z; Ljepojevic, N N

    2004-01-01

    This paper presents the results of semi-classical calculations of rate coefficients of (n - n')-mixing processes in collisions of Rydberg atoms H*(n) with H(1s) atoms. These processes have been modelled by the mechanism of the resonant energy exchange within the electron component of the H*(n) + H collisional system. The calculations of the rate coefficients, based on this model, were performed for the series of principal quantum numbers, n and n', and atomic, T a , and electronic, T e , temperatures. It was shown that these processes can be of significant influence on the populations of Rydberg atoms in weakly ionized plasmas (ionization degree ∼ -4 ), and therefore have to be included in appropriate models of such plasmas

  4. Global minimum profile error (GMPE) - a least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions.

    Science.gov (United States)

    Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K

    2018-01-03

    Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.

  5. Simple Closed-Form Expression for Penning Reaction Rate Coefficients for Cold Molecular Collisions by Non-Hermitian Time-Independent Adiabatic Scattering Theory.

    Science.gov (United States)

    Pawlak, Mariusz; Ben-Asher, Anael; Moiseyev, Nimrod

    2018-01-09

    We present a simple expression and its derivation for reaction rate coefficients for cold anisotropic collision experiments based on adiabatic variational theory and time-independent non-Hermitian scattering theory. We demonstrate that only the eigenenergies of the resulting one-dimensional Schrödinger equation for different complex adiabats are required. The expression is applied to calculate the Penning ionization rate coefficients of an excited metastable helium atom with molecular hydrogen in an energy range spanning from hundreds of kelvins down to the millikelvin regime. Except for trivial quantities like the masses of the nuclei and the bond length of the diatomic molecule participating in the collision, one needs as input data only the complex potential energy surface (CPES). In calculations, we used recently obtained ab initio CPES by D. Bhattacharya et al. ( J. Chem. Theory Comput. 2017 , 13 , 1682 - 1690 ) without fitting parameters. The results show good accord with current measurements ( Nat. Phys. 2017 , 13 , 35 - 38 ).

  6. Collisional rate coefficients of C3H2 and the determination of physical conditions in molecular clouds

    Science.gov (United States)

    Avery, L. W.; Green, Sheldon

    1989-01-01

    Collisional excitation rates for C3H2, calculated using the coupled states approximation at temperatures of 10-30 K, are presented. C3H2 produces a number of spectral line pairs whose members are close together in frequency but arise from levels with different excitation energies. The rates are used in statistical equilibrium calculations to illustrate the excitation properties and density-dependent behavior of various C3H2 line ratios.

  7. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  8. Direct measurements of rate coefficients for thermal decomposition of CF3I using shock—tube ARAS technique

    Science.gov (United States)

    Bystrov, N. S.; Emelianov, A. V.; Eremin, A. V.; Yatsenko, P. I.

    2018-05-01

    The kinetics of the dissociation of CF3I behind shock waves was experimentally investigated. The reaction CF3I  +  Ar  →  CF3  +  I  +  Ar was studied at temperatures between 900 and 1250 K and pressures of 2–3 bar. For this purpose, the time profiles of the concentration of atomic iodine were measured using a highly sensitive atomic resonance absorption spectroscopy method at a wavelength of 183.04 nm. From these data, the experimental value of the dissociation rate constant of CF3I was obtained: . We found that the investigated range of pressures and temperatures for the CF3I dissociation lies in the pressure transition region. Based on the Rice-Ramsperger–Kassel–Marcus theory, the threshold high and low-pressure rate constants ( and k 0) and falloff curves are calculated for the temperatures of 950–1200 K. As a result of this calculation, the threshold rate constants could be evaluated in the forms: and , and the center broadening factor, which takes into account the contribution of strong and weak collisions in the transition region, is .

  9. Rate Coefficient for the (4)Heμ + CH4 Reaction at 500 K: Comparison between Theory and Experiment.

    Science.gov (United States)

    Arseneau, Donald J; Fleming, Donald G; Li, Yongle; Li, Jun; Suleimanov, Yury V; Guo, Hua

    2016-03-03

    The rate constant for the H atom abstraction reaction from methane by the muonic helium atom, Heμ + CH4 → HeμH + CH3, is reported at 500 K and compared with theory, providing an important test of both the potential energy surface (PES) and reaction rate theory for the prototypical polyatomic CH5 reaction system. The theory used to characterize this reaction includes both variational transition-state (CVT/μOMT) theory (VTST) and ring polymer molecular dynamics (RPMD) calculations on a recently developed PES, which are compared as well with earlier calculations on different PESs for the H, D, and Mu + CH4 reactions, the latter, in particular, providing for a variation in atomic mass by a factor of 36. Though rigorous quantum calculations have been carried out for the H + CH4 reaction, these have not yet been extended to the isotopologues of this reaction (in contrast to H3), so it is important to provide tests of less rigorous theories in comparison with kinetic isotope effects measured by experiment. In this regard, the agreement between the VTST and RPMD calculations and experiment for the rate constant of the Heμ + CH4 reaction at 500 K is excellent, within 10% in both cases, which overlaps with experimental error.

  10. Influence of Nitrogen Flow Rate on Friction Coefficient and Surface Roughness of TiN Coatings Deposited on Tool Steel Using Arc Method

    Science.gov (United States)

    Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor

    In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.

  11. Computer investigations on the asymptotic behavior of the rate coefficient for the annihilation reaction A + A → product and the trapping reaction in three dimensions.

    Science.gov (United States)

    Litniewski, Marek; Gorecki, Jerzy

    2011-06-28

    We have performed intensive computer simulations of the irreversible annihilation reaction: A + A → C + C and of the trapping reaction: A + B → C + B for a variety of three-dimensional fluids composed of identical spherical particles. We have found a significant difference in the asymptotic behavior of the rate coefficients for these reactions. Both the rate coefficients converge to the same value with time t going to infinity but the convergence rate is different: the O(t(-1/2)) term for the annihilation reaction is higher than the corresponding term for the trapping reaction. The simulation results suggest that ratio of the terms is a universal quantity with the value equal to 2 or slightly above. A model for the annihilation reaction based on the superposition approximation predicts the difference in the O(t(-1/2)) terms, but overestimates the value for the annihilation reaction by about 30%. We have also performed simulations for the dimerization process: A + A → E, where E stands for a dimer. The dimerization decreases the reaction rate due to the decrease in the diffusion constant for A. The effect is successfully predicted by a simple model.

  12. Cooperation between bound waters and hydroxyls in controlling isotope-exchange rates

    Science.gov (United States)

    Panasci, Adele F.; McAlpin, J. Gregory; Ohlin, C. André; Christensen, Shauna; Fettinger, James C.; Britt, R. David; Rustad, James R.; Casey, William H.

    2012-02-01

    Mineral oxides differ from aqueous ions in that the bound water molecules are usually attached to different metal centers, or vicinal, and thus separated from one another. In contrast, for most monomeric ions used to establish kinetic reactivity trends, such as octahedral aquo ions (e.g., Al(H 2O) 63+), the bound waters are closely packed, or geminal. Because of this structural difference, the existing literature about ligand substitution in monomer ions may be a poor guide to the reactions of geochemical interest. To understand how coordination of the reactive functional groups might affect the rates of simple water-exchange reactions, we synthesized two structurally similar Rh(III) complexes, [Rh(phen) 2(H 2O) 2] 3+ [ 1] and [Rh(phen) 2(H 2O)Cl] 2+ [ 2] where (phen) = 1,10-phenanthroline. Complex [ 1] has two adjacent, geminal, bound waters in the inner-coordination sphere and [ 2] has a single bound water adjacent to a bound chloride ion. We employed Rh(III) as a trivalent metal rather than a more geochemically relevant metal like Fe(III) or Al(III) to slow the rate of reaction, which makes possible measurement of the rates of isotopic substitution by simple mass spectrometry. We prepared isotopically pure versions of the molecules, dissolved them into isotopically dissimilar water, and measured the rates of exchange from the extents of 18O and 16O exchange at the bound waters. The pH dependency of rates differ enormously between the two complexes. Pseudo-first-order rate coefficients at 298 K for water exchanges from the fully protonated molecules are close: k0298 = 5 × 10 -8(±0.5 × 10 -8) s -1 for [ 1] and k0298 = 2.5 × 10 -9(±1 × 10 -9) for [ 2]. Enthalpy and entropy activation parameters (Δ H‡ and Δ S‡) were measured to be 119(±3) kJ mol -1, and 14(±1) J mol -1 K -1, respectively for [ 1]. The corresponding parameters for the mono-aquo complex, [ 2], are 132(±3) kJ mol -1 and 41.5(±2) J mol -1 K -1. Rates increase by many orders of magnitude

  13. Rate Coefficients for Reactions of Ethynyl Radical (C2H) With HCN and CH3CN: Implications for the Formation of Comples Nitriles on Titan

    Science.gov (United States)

    Hoobler, Ray J.; Leone, Stephen R.

    1997-01-01

    Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.

  14. Upper limits to the reaction rate coefficients of C(n)(-) and C(n)H(-) (n = 2, 4, 6) with molecular hydrogen.

    Science.gov (United States)

    Endres, Eric S; Lakhmanskaya, Olga; Hauser, Daniel; Huber, Stefan E; Best, Thorsten; Kumar, Sunil S; Probst, Michael; Wester, Roland

    2014-08-21

    In the interstellar medium (ISM) ion–molecule reactions play a key role in forming complex molecules. Since 2006, after the radioastronomical discovery of the first of by now six interstellar anions, interest has grown in understanding the formation and destruction pathways of negative ions in the ISM. Experiments have focused on reactions and photodetachment of the identified negatively charged ions. Hints were found that the reactions of CnH(–) with H2 may proceed with a low (rate [Eichelberger, B.; et al. Astrophys. J. 2007, 667, 1283]. Because of the high abundance of molecular hydrogen in the ISM, a precise knowledge of the reaction rate is needed for a better understanding of the low-temperature chemistry in the ISM. A suitable tool to analyze rare reactions is the 22-pole radiofrequency ion trap. Here, we report on reaction rates for Cn(–) and CnH(–) (n = 2, 4, 6) with buffer gas temperatures of H2 at 12 and 300 K. Our experiments show the absence of these reactions with an upper limit to the rate coefficients between 4 × 10(–16) and 5 × 10(–15) cm(3) s(–1), except for the case of C2(–), which does react with a finite rate with H2 at low temperatures. For the cases of C2H(–) and C4H(–), the experimental results were confirmed with quantum chemical calculations. In addition, the possible influence of a residual reactivity on the abundance of C4H(–) and C6H(–) in the ISM were estimated on the basis of a gas-phase chemical model based on the KIDA database. We found that the simulated ion abundances are already unaffected if reaction rate coefficients with H2 were below 10(–14) cm(3) s(–1).

  15. Altitude Variation of the CO2 (V2)-O Quenching Rate Coefficient in Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilovi, Artem; Kutepov, Alexander; She, Chiao-Yao; Smith, Anne K.; Pesnell, William Dean; Goldberg, Richard A.

    2010-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (mlt), the quenching of CO2(N2) vibrational levels by collisions with oxygen atoms plays an important role. However, the k(CO2-O) values measured in the lab and retrieved from atmospheric measurements vary from 1.5 x 10(exp -12) cubic centimeters per second through 9.0 x 10(exp -12) cubic centimeters per second that requires further studying. In this work we used synergistic data from a ground based lidar and a satellite infrared radiometer to estimate K(CO2-O). We used the night- and daytime temperatures between 80 and 110 km measured by the colorado state university narrow-band sodium (Na) lidar located at fort collins, colorado (41N, 255E) as ground truth of the saber/timed nearly simultaneous (plus or minus 10 minutes) and common volume (within plus or minus 1 degree in latitude, plus or minus 2 degrees in longitude) observations. For each altitude in 80-110 km interval we estimate an "optimal" value of K(CO2-O) needed to minimize the discrepancy between the simulated 15 mm CO2 radiance and that measured by the saber/timed instrument. The K(CO2-O) obtained in this way varies in altitude from 3.5 x 10(exp -12) cubic centimeters per second at 80 km to 5.2 x 10(exp -12) cubic centimeters pers second for altitudes above 95 km. We discuss this variation of the rate constant and its impact on temperature retrievals from 15 mm radiance measurements and on the energy budget of mlt.

  16. Rotational cross sections and rate coefficients of aluminium monoxide AlO(X2Σ+) induced by its collision with He(1 S) at low temperature

    Science.gov (United States)

    Tchakoua, Théophile; Nkot Nkot, Pierre René; Fifen, Jean Jules; Nsangou, Mama; Motapon, Ousmanou

    2018-06-01

    We present the first potential energy surface (PES) for the AlO(X2Σ+)-He(1 S) van der Waals complex. This PES has been calculated at the RCCSD(T) level of theory. The mixed Gaussian/Exponential Extrapolation Scheme of complete basis set [CBS(D,T,Q)] was employed. The PES was fitted using global analytical method. This fitted PES was used subsequently in the close-coupling approach for the computation of the state-to-state collisional excitation cross sections of the fine-structure levels of the AlO-He complex. Collision energies were taken up to 2500 cm-1 and they yield after thermal averaging, state-to-state rate coefficients up to 300 K. The propensity rules between the lowest fine-structure levels were studied. These rules show, on one hand, a strong propensity in favour of odd ΔN transitions, and on the other hand, that cross sections and collisional rate coefficients for Δj = ΔN transitions are larger than those for Δj ≠ ΔN transitions.

  17. State-to-state quantum mechanical calculations of rate coefficients for the D+ + H2 → HD + H+ reaction at low temperature.

    Science.gov (United States)

    Honvault, P; Scribano, Y

    2013-10-03

    The dynamics of the D(+) + H2 → HD + H(+) reaction on a recent ab initio potential energy surface (Velilla, L.; Lepetit, B.; Aguado, A.; Beswick, J. A.; Paniagua, M. J. Chem. Phys. 2008, 129, 084307) has been investigated by means of a time-independent quantum mechanical approach. Cross-sections and rate coefficients are calculated, respectively, for collision energies below 0.1 eV and temperatures up to 100 K for astrophysical application. An excellent accord is found for collision energy above 5 meV, while a disagreement between theory and experiment is observed below this energy. We show that the rate coefficients reveal a slightly temperature-dependent behavior in the upper part of the temperature range considered here. This is in agreement with the experimental data above 80 K, which give a temperature independent value. However, a significant decrease is found at temperatures below 20 K. This decrease can be related to quantum effects and the decay back to the reactant channel, which are not considered by simple statistical approaches, such as the Langevin model. Our results have been fitted to appropriate analytical expressions in order to be used in astrochemical and cosmological models.

  18. Co2(nu2)-o Quenching Rate Coefficient Derived from Coincidental SABER-TIMED and Fort Collins Lidar Observations of the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2012-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.

  19. The effect of the intermolecular potential formulation on the state-selected energy exchange rate coefficients in N2-N2 collisions.

    Science.gov (United States)

    Kurnosov, Alexander; Cacciatore, Mario; Laganà, Antonio; Pirani, Fernando; Bartolomei, Massimiliano; Garcia, Ernesto

    2014-04-05

    The rate coefficients for N2-N2 collision-induced vibrational energy exchange (important for the enhancement of several modern innovative technologies) have been computed over a wide range of temperature. Potential energy surfaces based on different formulations of the intramolecular and intermolecular components of the interaction have been used to compute quasiclassically and semiclassically some vibrational to vibrational energy transfer rate coefficients. Related outcomes have been rationalized in terms of state-to-state probabilities and cross sections for quasi-resonant transitions and deexcitations from the first excited vibrational level (for which experimental information are available). On this ground, it has been possible to spot critical differences on the vibrational energy exchange mechanisms supported by the different surfaces (mainly by their intermolecular components) in the low collision energy regime, though still effective for temperatures as high as 10,000 K. It was found, in particular, that the most recently proposed intermolecular potential becomes the most effective in promoting vibrational energy exchange near threshold temperatures and has a behavior opposite to the previously proposed one when varying the coupling of vibration with the other degrees of freedom. Copyright © 2014 Wiley Periodicals, Inc.

  20. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio

    2014-01-02

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which results in high-energy, non-thermal electrons, is analysed in detail at sub-breakdown conditions. The rates of inelastic collisions and the energy exchange between electrons and neutrals in the reaction zone of the flame are characterised quantitatively. The analysis includes attachment, ionisation, impact dissociation, and vibrational and electronic excitation processes. Our results suggest that Townsend breakdown occurs for E/N = 140 Td. Vibrational excitation is the dominant process up to breakdown, despite important rates of electronic excitation of CO, CO2 and N2 as well as impact dissociation of O2 being apparent from 50 Td onwards. Ohmic heating in the reaction zone is found to be negligible (less than 2% of peak heat release rate) up to breakdown field strengths for realistic electron densities equal to 1010 cm-3. The observed trends are largely independent of equivalence ratio. In the non-thermal regime, electron transport coefficients are insensitive to mixture composition and approximately constant across the flame, but are highly dependent on the electric field strength. In the thermal limit, kinetic parameters and transport coefficients vary substantially across the flame due to the spatially inhomogeneous concentration of water vapour. A practical approach for identifying the plasma regime (thermal versus non-thermal) in studies of electric field effects on flames is proposed. © 2014 Taylor & Francis.

  1. Removal Rate of Organic Matter Using Natural Cellulose via Adsorption Isotherm and Kinetic Studies.

    Science.gov (United States)

    Din, Mohd Fadhil Md; Ponraj, Mohanadoss; Low, Wen-Pei; Fulazzaky, Mohamad Ali; Iwao, Kenzo; Songip, Ahmad Rahman; Chelliapan, Shreeshivadasan; Ismail, Zulhilmi; Jamal, Mohamad Hidayat

    2016-02-01

    In this study, the removal of natural organic matter (NOM) using coconut fiber (CF) and palm oil fiber (POF) was investigated. Preliminary analysis was performed using a jar test for the selection of optimal medium before the fabricated column model experiment. The equilibrium studies on isotherms and kinetic models for NOM adsorption were analyzed using linearized correlation coefficient. Results showed that the equilibrium data were fitted to Langmuir isotherm model for both CF and POF. The most suitable adsorption model was the pseudo-first-order kinetic model for POF and pseudo-second-order kinetic model for CF. The adsorption capacities achieved by the CF and POF were 15.67 and 30.8 mg/g respectively. Based on this investigation, it can be concluded that the POF is the most suitable material for the removal of NOM in semi polluted river water.

  2. Laboratory Study of the OH + Permethylsiloxane (L2, L3, D3, and D4) Reaction Rate Coefficients Between 240 and 370 K

    Science.gov (United States)

    Burkholder, J. B.; Bernard, F.; Papadimitriou, V. C.

    2016-12-01

    The atmospheric chemistry of organosiloxanes has recently been implicated in the formation of new particles as well as regional and indoor air quality. Methylsiloxanes with Sitextiles, health care and household products and in industrial applications as solvents and lubricants. They are released into the atmosphere during manufacturing, use, and disposal and have been observed in the atmosphere in ppb levels in certain locations. However, the fundamental chemical properties of this class of compounds, particularly their reactivity with the OH radical, are presently not fully characterized. In this work, the temperature dependence of the rate coefficients for the OH radical reaction with the simplest linear (L2 and L3) and cyclic (D3 and D4) siloxanes were measured: OH + (CH3)3SiOSi(CH3)3 = Products L2OH + [(CH3)3SiO]2Si(CH3)2 = Products L3OH + [-Si(CH3)2O-]3 = Products D3OH + [-Si(CH3)2O-]4 = Products D4OH rate coefficients were measured under pseudo-first conditions in OH over the temperature range 240-370 K using a pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique and at 296 K using a relative rate method. The present results are compared with available literature data where possible and discrepancies are discussed. The results from this work will be discussed in terms of the atmospheric lifetimes of these methylsiloxanes and the reactivity trends for this class of compound.

  3. Pressure loss coefficient and flow rate of side hole in a lower end plug for dual-cooled annular nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang-Hwan, E-mail: shinch@kaeri.re.kr; Park, Ju-Yong, E-mail: juyong@kaeri.re.kr; In, Wang-Kee, E-mail: wkin@kaeri.re.kr

    2013-12-15

    Highlights: • A lower end plug with side flow holes is suggested to provide alternative flow paths of the inner channel. • The inlet loss coefficient of the lower end plug is estimated from the experiment. • The flow rate through the side holes is estimated in a complete entrance blockage of inner channel. • The consequence in the reactor core condition is evaluated with a subchannel analysis code. - Abstract: Dual-cooled annular nuclear fuel for a pressurized water reactor (PWR) has been introduced for a significant increase in reactor power. KAERI has been developing a dual-cooled annular fuel for a power uprate of 20% in an optimized PWR in Korea, the OPR1000. This annular fuel can help decrease the fuel temperature substantially relative to conventional cylindrical fuel at a power uprate. Annular fuel has dual flow channels around itself; however, the inner flow channel has a weakness in that it is isolated unlike the outer flow channel, which is open to other neighbouring outer channels for a coolant exchange in the reactor core. If the entrance of the inner channel is, as a hypothetical event, completely blocked by debris, the inner channel will then experience a rapid increase in coolant temperature such that a departure from nucleate boiling (DNB) may occur. Therefore, a remedy to avoid such a postulated accident is indispensable for the safety of annular fuel. A lower end plug with side flow holes was suggested to provide alternative flow paths in addition to the central entrance of the inner channel. In this paper, the inlet loss coefficient of the lower end plug and the flow rate through the side holes were estimated from the experimental results even in a complete entrance blockage of the inner channel. An optimization for the side hole was also performed, and the results are applied to a subchannel analysis to evaluate the consequence in the reactor core condition.

  4. Temperature Dependent Rate Coefficients for the Gas-Phase Reaction of the OH Radical with Linear (L2, L3) and Cyclic (D3, D4) Permethylsiloxanes.

    Science.gov (United States)

    Bernard, François; Papanastasiou, Dimitrios K; Papadimitriou, Vassileios C; Burkholder, James B

    2018-04-19

    Permethylsiloxanes are emitted into the atmosphere during production and use as personal care products, lubricants, and cleaning agents. The predominate atmospheric loss process for permethylsiloxanes is expected to be via gas-phase reaction with the OH radical. In this study, rate coefficients, k(T), for the OH radical gas-phase reaction with the two simplest linear and cyclic permethylsiloxanes were measured using a pulsed laser photolysis-laser induced fluorescence technique over the temperature range of 240-370 K and a relative rate method at 294 K: hexamethyldisiloxane ((CH 3 ) 3 SiOSi(CH 3 ) 3 , L 2 ), k 1 ; octamethyltrisiloxane ([(CH 3 ) 3 SiO] 2 Si(CH 3 ) 2 , L 3 ), k 2 ; hexamethylcyclotrisiloxane ([-Si(CH 3 ) 2 O-] 3 , D 3 ), k 3 ; and octamethylcyclotetrasiloxane ([-Si(CH 3 ) 2 O-] 4 , D 4 ), k 4 . The obtained k(294 K) values and temperature-dependence expressions for the 240-370 K temperature range are (cm 3 molecule -1 s -1 , 2σ absolute uncertainties): k 1 (294 K) = (1.28 ± 0.08) × 10 -12 , k 1 ( T) = (1.87 ± 0.18) × 10 -11 exp(-(791 ± 27)/ T); k 2 (294 K) = (1.72 ± 0.10) × 10 -12 , k 2 ( T) = 1.96 × 10 -13 (T/298) 4.34 exp(657/ T); k 3 (294 K) = (0.82 ± 0.05) × 10 -12 , k 3 ( T) = (1.29 ± 0.19) × 10 -11 exp(-(805 ± 43)/ T); and k 4 (294 K) = (1.12 ± 0.10) × 10 -12 , k 4 ( T) = (1.80 ± 0.26) × 10 -11 exp(-(816 ± 43)/ T). The cyclic molecules were found to be less reactive than the analogous linear molecule with the same number of -CH 3 groups, while the linear and cyclic permethylsiloxane reactivity both increase with the increasing number of CH 3 - groups. The present results are compared with previous rate coefficient determinations where available. The permethylsiloxanes included in this study are atmospherically short-lived compounds with estimated atmospheric lifetimes of 11, 8, 17, and 13 days, respectively.

  5. Rate Constants for the Reactions of OH with CO, NO and NO2, and of HO2 with NO2 in the Presence of Water Vapour at Lower-Tropospheric Conditions

    Science.gov (United States)

    Rolletter, Michael; Fuchs, Hendrik; Novelli, Anna; Ehlers, Christian; Hofzumahaus, Andreas

    2016-04-01

    Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm-3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and

  6. Stellar reaction rate for 22Mg+p→23Al from the asymptotic normalization coefficient in the mirror nuclear system 22Ne+n→23Ne

    International Nuclear Information System (INIS)

    Al-Abdullah, T.; Carstoiu, F.; Chen, X.; Clark, H. L.; Fu, C.; Gagliardi, C. A.; Lui, Y.-W.; Mukhamedzhanov, A.; Tabacaru, G.; Tokimoto, Y.; Trache, L.; Tribble, R. E.

    2010-01-01

    The production of 22 Na in ONe novae can be influenced by the 22 Mg(p,γ) 23 Al reaction. To investigate this reaction rate at stellar energies, we have determined the asymptotic normalization coefficient (ANC) for 22 Mg+p→ 23 Al through measurements of the ANCs in the mirror nuclear system 22 Ne+n→ 23 Ne. The peripheral neutron-transfer reactions 13 C( 12 C, 13 C) 12 C and 13 C( 22 Ne, 23 Ne) 12 C were studied. The identical entrance and exit channels of the first reaction make it possible to extract independently the ground-state ANC in 13 C. Our experiment gives C p 1/2 2 ( 13 C)=2.24±0.11 fm -1 , which agrees with the value obtained from several previous measurements. The weighted average for all the obtained C p 1/2 2 is 2.31±0.08 fm -1 . This value is adopted to be used in obtaining the ANCs in 23 Ne. The differential cross sections for the reaction 13 C( 22 Ne, 23 Ne) 12 C leading to the J π =5/2 + and 1/2 + states in 23 Ne have been measured at 12 MeV/u. Optical model parameters for use in the DWBA calculations were obtained from measurements of the elastic scatterings 22 Ne+ 13 C and 22 Ne+ 12 C. The extracted ANC for the ground state in 23 Ne, C d 5/2 2 =0.86±0.08±0.12 fm -1 , is converted to its corresponding value in 23 Al using mirror symmetry to give C d 5/2 2 ( 23 Al)=(4.63±0.77)x10 3 fm -1 . The astrophysical S factor S(0) for the 22 Mg(p,γ) reaction was determined to be 0.96±0.11 keV b. The consequences for nuclear astrophysics are discussed.

  7. Methyl-perfluoroheptene-ethers (CH3OC7F13): measured OH radical reaction rate coefficients for several isomers and enantiomers and their atmospheric lifetimes and global warming potentials.

    Science.gov (United States)

    Jubb, Aaron M; Gierczak, Tomasz; Baasandorj, Munkhbayar; Waterland, Robert L; Burkholder, James B

    2014-05-06

    Mixtures of methyl-perfluoroheptene-ethers (CH3OC7F13, MPHEs) are currently in use as replacements for perfluorinated alkanes (PFCs) and poly-ether heat transfer fluids, which are persistent greenhouse gases with lifetimes >1000 years. At present, the atmospheric processing and environmental impact from the use of MPHEs is unknown. In this work, rate coefficients at 296 K for the gas-phase reaction of the OH radical with six key isomers (including stereoisomers and enantiomers) of MPHEs used commercially were measured using a relative rate method. Rate coefficients for the six MPHE isomers ranged from ∼ 0.1 to 2.9 × 10(-12) cm(3) molecule(-1) s(-1) with a strong stereoisomer and -OCH3 group position dependence; the (E)-stereoisomers with the -OCH3 group in an α- position relative to the double bond had the greatest reactivity. Rate coefficients measured for the d3-MPHE isomer analogues showed decreased reactivity consistent with a minor contribution of H atom abstraction from the -OCH3 group to the overall reactivity. Estimated atmospheric lifetimes for the MPHE isomers range from days to months. Atmospheric lifetimes, radiative efficiencies, and global warming potentials for these short-lived MPHE isomers were estimated based on the measured OH rate coefficients along with measured and theoretically calculated MPHE infrared absorption spectra. Our results highlight the importance of quantifying the atmospheric impact of individual components in an isomeric mixture.

  8. Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2015-08-01

    Full Text Available The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs and support vector machines (SVM to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively.

  9. Rate coefficients of the CF3CHFCF3 + H → CF3CFCF3 + H2 reaction at different temperatures calculated by transition state theory with ab initio and DFT reaction paths.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2013-03-15

    The minimum energy path (MEP) of the reaction, CF(3)CHFCF(3) + H → transition state (TS) → CF(3)CFCF(3) + H(2), has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6-31++G**, BH&HLYP/cc-pVDZ, BMK/6-31++G**, M05/6-31+G**, M05-2X/6-31+G**, UMP2/6-31++G**, PUMP2/6-31++G**//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVDZ//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVTZ(spd,sp)//UMP2//6-31++G**, RCCSD(T)/CBS//M05/6-31+G**, and RCCSD(T)/CBS//UMP2/6-31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero-curvature, and small-curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000-1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6-31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. Copyright © 2012 Wiley Periodicals, Inc.

  10. Effect of Polypropylene Modification by Impregnation with Oil on Its Wear and Friction Coefficient at Variable Load and Various Friction Rates

    Directory of Open Access Journals (Sweden)

    Paweł Sędłak

    2017-01-01

    Full Text Available Laboratorial two-body wear testing was carried out in order to assess effects of polypropylene modification by impregnating it with oils on friction coefficient and wear in comparison to those parameters of unmodified polypropylene, Teflon, and polyamide during operation under conditions of sliding friction without lubrication. Wear behaviour of the tested specimens was investigated using ASTM G77-98 standard wear test equipment. Recording program made it possible to visualise and record the following parameters: rotational speed and load, linear wear, friction coefficient, temperature of the specimen, and ambient temperature. In addition, wear mechanisms of the analysed materials were determined with use of scanning electron microscopy. In the case of the remaining tested polymers, the most important mechanism of wear was adhesion (PP, PTFE, PA 6.6, and PA MoS2, microcutting (PTFE, PA 6.6, and PA MoS2, fatigue wear (PTFE, forming “roll-shaped particles” combined with plastic deformation (PA 6.6 and PA MoS2, and thermal wear (PP. Impregnation of polypropylene with engine oil, gear oil, or RME results in significant reduction of friction coefficient and thus of friction torque, in relation to not only unmodified polypropylene but also the examined polyamide and Teflon.

  11. Improvement of dose evaluation system for employees at severe accident in a nuclear power plant. Introduction of the dose rate conversion coefficient and addition of the access route edit function

    International Nuclear Information System (INIS)

    Sasaki, Yasuhiro; Minami, Noritoshi; Yoshida, Yoshitaka

    2006-01-01

    Institute of Nuclear Safety System, Inc. had developed the dose evaluation system to evaluate the radiation dose of employees at severe accident in a nuclear power plant. This system has features, which are (1) the dose rate of any evaluation point can be evaluated, (2) the dose rate at any time can be evaluated in consideration of the change in the radioactive source, (3) the dose rate map in the plant can be displayed (4) the dose along the access route when moving can be evaluated, and it is possible to use it for examination of the accident management guideline on the dose side etc.. To upgrade the dose evaluation function of this system, the improvements had been done which were introduction of the dose rate conversion coefficient and addition of the access route edit function. By introducing the dose rate conversion coefficient, the calculation time of the dose rate map in the plant was shortened at about 20 seconds, and a new function to evaluate time-dependent dose rate of any evaluation point was added. By adding the access route edit function, it became possible to re-calculate the dose easily at the route change. (author)

  12. Calculation of State Specific Rate Coefficients for Non-Equilibrium Hypersonics Applications: from H(Psi) = E(Psi) to k(T) = A *exp(-E(sub a)/RT)

    Science.gov (United States)

    Jaffe, Richard; Schwenke, David; Chaban, Galina; Panesi, Marco

    2014-01-01

    Development of High-Fidelity Physics-Based Models to describe hypersonic flight through the atmospheres of Earth and Mars is underway at NASA Ames Research Center. The goal is to construct chemistry models of the collisional and radiative processes that occur in the bow shock and boundary layers of spacecraft during atmospheric entry that are free of empiricism. In this talk I will discuss our philosophy and describe some of our progress. Topics to be covered include thermochemistry, internal energy relaxation, collisional dissociation and radiative emission and absorption. For this work we start by solving the Schrodinger equation to obtain accurate interaction potentials and radiative properties. Then we invoke classical mechanics to compute state-specific heavy particle collision cross sections and reaction rate coefficients. Finally, phenomenological rate coefficients and relaxation times are determined from master equation solutions.

  13. Determination of the rate coefficients of the CH{sub 4} + O{sub 2} → HO{sub 2}+CH{sub 3} and HCO+O{sub 2} → HO{sub 2} + CO reactions at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Si Ok [School of Chemical Engineering, Yeungnam University, Gyeongsan (Korea, Republic of); Shin, Kuan Soo [Dept. of Chemistry, Soongsil University, Seoul (Korea, Republic of); Hwang, Soon Muk [Science Applications International Corp oration, 3000 Aerospace Park way, Brook Park, Ohio (United States)

    2017-02-15

    Rate coefficients of the title reactions, R1 (CH{sub 4} + O{sub 2} → HO{sub 2}+CH{sub 3}) and R{sub 2} (HCO+O{sub 2} → HO{sub 2} + CO) were obtained over T = 1610 ⁓ 1810 K and T = 200 ⁓ 1760 K, respectively, and at ρ = 7.1 μmol/cm{sup 3}. A lean CH{sub 4}/O{sub 2}/Ar mixture (0.1% CH{sub 4}, ϕ = 0.02) was heated behind reflected shock waves and the temporal OH absorption profiles were measured using a laser absorption spectroscopy. Reaction rate coefficients were elucidated by matching the experimental profiles via optimization of k1 and k2 values in the reaction simulation. The rate coefficient expressions derived are k{sub 1} = 1.46 × 10{sup 14} exp (−26 210 K/T) cm{sup 3}/mol/s, T = 1610 ⁓ 1810 K and k{sub 2} = 1.9 × 10{sup 12} T{sup 0.1{sup 6}} exp (−245 K/T) cm{sup 3}/mol/s, T = 200 ⁓ 1760 K.

  14. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  15. Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2014-01-01

    The effects of an electric field on the collision rates, energy exchanges and transport properties of electrons in premixed flames are investigated via solutions to the Boltzmann kinetic equation. The case of high electric field strength, which

  16. Electron Excitation Rate Coefficients for Transitions from the IS21S Ground State to the 1S2S1,3S and 1S2P1,3P0 Excited States of Helium

    Science.gov (United States)

    Aggarwal, K. M.; Kingston, A. E.; McDowell, M. R. C.

    1984-03-01

    The available experimental and theoretical electron impact excitation cross section data for the transitions from the 1s2 1S ground state to the 1s2s 1,3S and 1s2p 1,3P0 excited states of helium are assessed. Based on this assessed data, excitation rate coefficients are calculated over a wide electron temperature range below 3.0×106K. A comparison with other published results suggests that the rates used should be lower by a factor of 2 or more.

  17. The rate coefficient for the reaction NO2 + NO3 yielding NO + NO2 + O2 from 273 to 313 K

    Science.gov (United States)

    Cantrell, Chris A.; Shetter, Richard E.; Mcdaniel, Anthony H.; Calvert, Jack G.

    1990-01-01

    The ratio of rate constants for the reaction NO3 + NO yielding 2 NO2 (k3) and the reaction NO2 + NO3 yielding NO + NO2 + O2 (k4) were determined by measuring of NO and NO2 concentrations of NO and NO2 in an N2O5/NO2/N2 mixture over the temperature range 273-313 K. The measured ratio was found to be expressed by the equation k3/k4 = 387 exp(-1375/T). The results are consistent with those of Hammer et al. (1986).

  18. Easy to use program “Simkine3” for simulating kinetic profiles of multi-step chemical Systems and optimisation of predictable rate coefficients therein

    Directory of Open Access Journals (Sweden)

    S.B. Jonnalagadda

    2012-08-01

    Full Text Available ‘Simkine3’, a Delphi based software is developed to simulate the kinetic schemes of complex reaction mechanisms involving multiple sequential and competitive elementary steps for homogeneous and heterogeneous chemical reactions. Simkine3 is designed to translate the user specified mechanism into chemical first-order differential equations (ODEs and optimise the estimated rate constants in such a way that simulated curves match the experimental kinetic profiles. TLSoda which uses backward differentiation method is utilised to solve resulting ODEs and Downhill Simplex method is used to optimise the estimated rate constants in a robotic way. An online help file is developed using HelpScrible Demo to guide the users of Simkine3. The versatility of the software is demonstrated by simulating the complex reaction between methylene violet and acidic bromate, a reaction which exhibits complex nonlinear kinetics. The new software is validated after testing it on a 19-step intricate mechanism involving 15 different species. The kinetic profiles of multiple simulated curves, illustrating the effect of initial concentrations of bromate, and bromide were matched with the corresponding experimental curves.DOI: http://dx.doi.org/10.4314/bcse.v26i2.10

  19. Use of code DTF-4 for determining the coefficient of back-reflection of the neutron within the thermonuclear plasma of a thermonuclear reactor controlled by the rate of the fission reactions. Pt. 1

    International Nuclear Information System (INIS)

    Cristea, G.

    1975-01-01

    The neutron problems are discussed of the thermonuclear reactor controlled by the rate of the fission reactions. The results obtained by rolling the DTF-4 program in a spherical geometry in the case of an ''external source'' problem permit to draw conclusions concerning the problems of the neutronics system of this thermonuclear reactor type. A relation is deduced for estimating the coefficient of back-reflection of the neutrons within the thermonuclear plasma and the focussion system is discussed of the neutronics of this reactor type

  20. [Diagnostic efficiency of decline rate of signal intensity and apparent diffusion coefficient with different b values for differentiating benign and malignant breast lesions on diffusion-weighted 3.0T magnetic resonance imaging].

    Science.gov (United States)

    Jiang, Jing; Liu, Wanhua; Ye, Yuanyuan; Wang, Rui; Li, Fengfang; Peng, Chengyu

    2014-06-17

    To investigate the diagnostic efficiency of decline rate of signal intensity and apparent diffusion coefficient with different b values for differentiating benign and malignant breast lesions on diffusion-weighted 3.0 T magnetic resonance imaging. A total of 152 patients with 162 confirmed histopathologically breast lesions (85 malignant and 77 benign) underwent 3.0 T diffusion-weighted magnetic resonance imaging. Four b values (0, 400, 800 and 1 000 s/mm²) were used. The signal intensity and ADC values of breast lesions were measured respectively. The signal intensity decline rate (SIDR) and apparent diffusion coefficient decline rate (ADCDR) were calculated respectively. SIDR = (signal intensity of lesions with low b value-signal intensity of lesions with high b value)/signal intensity of lesions with low b value, ADCDR = (ADC value of lesions with low b value-ADC value of lesions with high b value) /ADC value of lesions with low b value. The independent sample t-test was employed for statistical analyses and the receiver operating characteristic (ROC) curve for evaluating the diagnosis efficiency of SIDR and ADCDR values. Significant differences were observed in SIDR between benign and malignant breast lesions with b values of 0-400, 400-800 and 800-1 000 s/mm². The sensitivities of SIDR for differentiating benign and malignant breast lesions were 61.2%, 68.2% and 67.1%, the specificities 74.0%, 85.7% and 67.5%, the diagnosis accordance rates 67.3%, 76.5% and 67.3%, the positive predictive values 72.2%, 84.1% and 69.5% and the negative predictive values 63.3%, 71.0% and 65.0% respectively. Significant differences were observed in ADCDR between benign and malignant breast lesions with b values of 400-800 s/mm² and 800-1 000 s/mm². The sensitivities of SDR for differentiating benign and malignant breast lesions were 80.0% and 65.9%, the specificities 72.7% and 65.0%, the diagnostic accordance rates 76.5% and 65.4%, the positive predictive values 76.4% and 67

  1. Determination of the photolysis rate coefficient of monochlorodimethyl sulfide (MClDMS) in the atmosphere and its implications for the enhancement of SO2 production from the DMS + Cl2 reaction.

    Science.gov (United States)

    Copeland, G; Lee, E P F; Williams, R G; Archibald, A T; Shallcross, D E; Dyke, J M

    2014-01-01

    In this work, the photolysis rate coefficient of CH3SCH2Cl (MClDMS) in the lower atmosphere has been determined and has been used in a marine boundary layer (MBL) box model to determine the enhancement of SO2 production arising from the reaction DMS + Cl2. Absorption cross sections measured in the 28000-34000 cm(-1) region have been used to determine photolysis rate coefficients of MClDMS in the troposphere at 10 solar zenith angles (SZAs). These have been used to determine the lifetimes of MClDMS in the troposphere. At 0° SZA, a photolysis lifetime of 3-4 h has been obtained. The results show that the photolysis lifetime of MClDMS is significantly smaller than the lifetimes with respect to reaction with OH (≈ 4.6 days) and with Cl atoms (≈ 1.2 days). It has also been shown, using experimentally derived dissociation energies with supporting quantum-chemical calculations, that the dominant photodissocation route of MClDMS is dissociation of the C-S bond to give CH3S and CH2Cl. MBL box modeling calculations show that buildup of MClDMS at night from the Cl2 + DMS reaction leads to enhanced SO2 production during the day. The extra SO2 arises from photolysis of MClDMS to give CH3S and CH2Cl, followed by subsequent oxidation of CH3S.

  2. Communication: Equilibrium rate coefficients from atomistic simulations: The O(3P) + NO(2Π) → O2(X3Σg−) + N(4S) reaction at temperatures relevant to the hypersonic flight regime

    International Nuclear Information System (INIS)

    Castro-Palacio, Juan Carlos; Bemish, Raymond J.; Meuwly, Markus

    2015-01-01

    The O( 3 P) + NO( 2 Π) → O 2 (X 3 Σ g − ) + N( 4 S) reaction is among the N- and O- involving reactions that dominate the energetics of the reactive air flow around spacecraft during hypersonic atmospheric re-entry. In this regime, the temperature in the bow shock typically ranges from 1000 to 20 000 K. The forward and reverse rate coefficients for this reaction derived directly from trajectory calculations over this range of temperature are reported in this letter. Results compare well with the established equilibrium constants for the same reaction from thermodynamic quantities derived from spectroscopy in the gas phase which paves the way for large-scale in silico investigations of equilibrium rates under extreme conditions

  3. Communication: Equilibrium rate coefficients from atomistic simulations: The O((3)P) + NO((2)Π) → O2(X(3)Σg(-)) + N((4)S) reaction at temperatures relevant to the hypersonic flight regime.

    Science.gov (United States)

    Castro-Palacio, Juan Carlos; Bemish, Raymond J; Meuwly, Markus

    2015-03-07

    The O((3)P) + NO((2)Π) → O2(X(3)Σg(-)) + N((4)S) reaction is among the N- and O- involving reactions that dominate the energetics of the reactive air flow around spacecraft during hypersonic atmospheric re-entry. In this regime, the temperature in the bow shock typically ranges from 1000 to 20,000 K. The forward and reverse rate coefficients for this reaction derived directly from trajectory calculations over this range of temperature are reported in this letter. Results compare well with the established equilibrium constants for the same reaction from thermodynamic quantities derived from spectroscopy in the gas phase which paves the way for large-scale in silico investigations of equilibrium rates under extreme conditions.

  4. Atmospheric chemistry of CF3CF═CH2 and (Z)-CF3CF═CHF: Cl and NO3 rate coefficients, Cl reaction product yields, and thermochemical calculations.

    Science.gov (United States)

    Papadimitriou, Vassileios C; Lazarou, Yannis G; Talukdar, Ranajit K; Burkholder, James B

    2011-01-20

    Rate coefficients, k, for the gas-phase reactions of Cl atoms and NO(3) radicals with 2,3,3,3-tetrafluoropropene, CF(3)CF═CH(2) (HFO-1234yf), and 1,2,3,3,3-pentafluoropropene, (Z)-CF(3)CF═CHF (HFO-1225ye), are reported. Cl-atom rate coefficients were measured in the fall-off region as a function of temperature (220-380 K) and pressure (50-630 Torr; N(2), O(2), and synthetic air) using a relative rate method. The measured rate coefficients are well represented by the fall-off parameters k(0)(T) = 6.5 × 10(-28) (T/300)(-6.9) cm(6) molecule(-2) s(-1) and k(∞)(T) = 7.7 × 10(-11) (T/300)(-0.65) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and k(0)(T) = 3 × 10(-27) (T/300)(-6.5) cm(6) molecule(-2) s(-1) and k(∞)(T) = 4.15 × 10(-11) (T/300)(-0.5) cm(3) molecule(-1) s(-1) for (Z)-CF(3)C═CHF with F(c) = 0.6. Reaction product yields were measured in the presence of O(2) to be (98 ± 7)% for CF(3)C(O)F and (61 ± 4)% for HC(O)Cl in the CF(3)CF═CH(2) reaction and (108 ± 8)% for CF(3)C(O)F and (112 ± 8)% for HC(O)F in the (Z)-CF(3)CF═CHF reaction, where the quoted uncertainties are 2σ (95% confidence level) and include estimated systematic errors. NO(3) reaction rate coefficients were determined using absolute and relative rate methods. Absolute measurements yielded upper limits for both reactions between 233 and 353 K, while the relative rate measurements yielded k(3)(295 K) = (2.6 ± 0.25) × 10(-17) cm(3) molecule(-1) s(-1) and k(4)(295 K) = (4.2 ± 0.5) × 10(-18) cm(3) molecule(-1) s(-1) for CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF, respectively. The Cl-atom reaction with CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF leads to decreases in their atmospheric lifetimes and global warming potentials and formation of a chlorine-containing product, HC(O)Cl, for CF(3)CF═CH(2). The NO(3) reaction has been shown to have a negligible impact on the atmospheric lifetimes of CF(3)CF═CH(2) and (Z)-CF(3)CF═CHF. The energetics for the reaction of Cl, NO(3), and OH with CF

  5. A theoretical study of the mechanism of the atmospherically relevant reaction of chlorine atoms with methyl nitrate, and calculation of the reaction rate coefficients at temperatures relevant to the troposphere.

    Science.gov (United States)

    Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M

    2015-03-21

    The reaction between atomic chlorine (Cl) and methyl nitrate (CH3ONO2) is significant in the atmosphere, as Cl is a key oxidant, especially in the marine boundary layer, and alkyl nitrates are important nitrogen-containing organic compounds, which are temporary reservoirs of the reactive nitrogen oxides NO, NO2 and NO3 (NOx). Four reaction channels HCl + CH2ONO2, CH3OCl + NO2, CH3Cl + NO3 and CH3O + ClNO2 were considered. The major channel is found to be the H abstraction channel, to give the products HCl + CH2ONO2. For all channels, geometry optimization and frequency calculations were carried out at the M06-2X/6-31+G** level, while relative electronic energies were improved to the UCCSD(T*)-F12/CBS level. The reaction barrier (ΔE(‡)0K) and reaction enthalpy (ΔH(RX)298K) of the H abstraction channel were computed to be 0.61 and -2.30 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS//M06-2X/6-31+G** level. Reaction barriers (ΔE(‡)0K) for the other channels are more positive and these pathways do not contribute to the overall reaction rate coefficient in the temperature range considered (200-400 K). Rate coefficients were calculated for the H-abstraction channel at various levels of variational transition state theory (VTST) including tunnelling. Recommended ICVT/SCT rate coefficients in the temperature range 200-400 K are presented for the first time for this reaction. The values obtained in the 200-300 K region are particularly important as they will be valuable for atmospheric modelling calculations involving reactions with methyl nitrate. The implications of the results to atmospheric chemistry are discussed. Also, the enthalpies of formation, ΔHf,298K, of CH3ONO2 and CH2ONO2 were computed to be -29.7 and 19.3 kcal mol(-1), respectively, at the UCCSD(T*)-F12/CBS level.

  6. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.

    Science.gov (United States)

    Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina

    2018-06-22

    Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.

  7. Sediment distribution coefficients (KD) and concentration factors (CF) in fish for natural radionuclides in a pond of a tropical region and their contributions to estimations of internal absorbed dose rate in fish

    International Nuclear Information System (INIS)

    Souza Pereira, Wagner de; Kelecom, Alphonse

    2008-01-01

    Attention has been paid only recently to the protection of biota against radiation effects. Protection is being considered through modeling of the calculation of absorbed dose rate. In these models, the inputs are the fluxes of radionuclides of environmental concern and their resulting distribution between environmental compartments. Such distribution is estimated for dispersion models. In freshwater systems and when fish is used as biomaker, relevant environmental transfer parameters are transfer between sediment and water (sediment distribution coefficients KD, in l kg -1 ), and between water and fish (concentration factor CF, in l kg -1 ). These coefficients are under the influence of a number o physical, chemical and biological factors, and display following the literature a great variability. The present work establishes the KD's and CF's for uranium, thorium, radium and lead for two ponds: one that receives treated effluents from an ore treatment unit (UTM) situated at Pocos de Caldas, Minas Gerais, Brazil and the other pond from the uranium concentration unit (URA) situated at Caetite, Bahia, Brazil, and for fish used as biomarker. It intends also to compare these parameters with the values recommended by IAEA. Depending on considered radionuclide and on the site, CF's (l kg -1 ) observed values were of the same magnitude as, or one order of magnitude lower than recommended by IAEA. KD's (l kg -1 ) observed values were found of the same magnitude as those recommended by IAEA, approximately 10 times lower or up to 100 times higher than recommended by IAEA, again depending on the radionuclides and on the site. It can be concluded that local parameters should be established in order to obtain a more accurate estimative of biota exposition from man activities. (author)

  8. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  9. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity.

    Science.gov (United States)

    Lavelli, Vera; Vantaggi, Claudia

    2009-06-10

    Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid acid acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.

  10. A gain-coefficient switched Alexandrite laser

    International Nuclear Information System (INIS)

    Lee, Chris J; Van der Slot, Peter J M; Boller, Klaus-J

    2013-01-01

    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.

  11. Helioseismic Solar Cycle Changes and Splitting Coefficients

    Indian Academy of Sciences (India)

    tribpo

    Abstract. Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change signi- ficantly with rising phase of the solar cycle. We also find temporal varia- tions in the rotation rate near the solar ...

  12. High-temperature rate constant measurements for OH+xylenes

    KAUST Repository

    Elwardani, Ahmed Elsaid

    2015-06-01

    The overall rate constants for the reactions of hydroxyl (OH) radicals with o-xylene (k 1), m-xylene (k 2), and p-xylene (k 3) were measured behind reflected shock waves over 890-1406K at pressures of 1.3-1.8atm using OH laser absorption near 306.7nm. Measurements were performed under pseudo-first-order conditions. The measured rate constants, inferred using a mechanism-fitting approach, can be expressed in Arrhenius form as:k1=2.93×1013exp(-1350.3/T)cm3mol-1s-1(890-1406K)k2=3.49×1013exp(-1449.3/T)cm3mol-1s-1(906-1391K)k3=3.5×1013exp(-1407.5/T)cm3mol-1s-1(908-1383K)This paper presents, to our knowledge, first high-temperature measurements of the rate constants of the reactions of xylene isomers with OH radicals. Low-temperature rate-constant measurements by Nicovich et al. (1981) were combined with the measurements in this study to obtain the following Arrhenius expressions, which are applicable over a wider temperature range:k1=2.64×1013exp(-1181.5/T)cm3mol-1s-1(508-1406K)k2=3.05×109exp(-400/T)cm3mol-1s-1(508-1391K)k3=3.0×109exp(-440/T)cm3mol-1s-1(526-1383K) © 2015 The Combustion Institute.

  13. Attenuation coefficients of soils

    International Nuclear Information System (INIS)

    Martini, E.; Naziry, M.J.

    1989-01-01

    As a prerequisite to the interpretation of gamma-spectrometric in situ measurements of activity concentrations of soil radionuclides the attenuation of 60 to 1332 keV gamma radiation by soil samples varying in water content and density has been investigated. A useful empirical equation could be set up to describe the dependence of the mass attenuation coefficient upon photon energy for soil with a mean water content of 10%, with the results comparing well with data in the literature. The mean density of soil in the GDR was estimated at 1.6 g/cm 3 . This value was used to derive the linear attenuation coefficients, their range of variation being 10%. 7 figs., 5 tabs. (author)

  14. Heat transfer coefficient of cryotop during freezing.

    Science.gov (United States)

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  15. Kinetics of isotope exchange reactions involving intra- and intermolecular reactions: 1. Rate law for a system with two chemical compounds and three exchangeable atoms

    International Nuclear Information System (INIS)

    Xuelei Chu; Ohmoto, Hiroshi

    1991-01-01

    For an isotopic exchange reaction between two compounds (X and AB) in a homogeneous system, such as a gaseous or aqueous system, where one (AB) of them possesses two exchangeable atoms in non-equivalent positions and where one intramolecular isotope exchange (A ↔ B) and two intermolecular isotope exchange reactions (X ↔ A and X ↔ B) may occur, its rate law no longer obeys a pseudo-first order rate equation described for simple two-component systems by many previous investigators. The change with time of the δ value of each of the three components (X, A, and B) in a closed and homogeneous system is a complicated function of the initial δ values of the three components, the chemical concentrations of the two compounds, and the overall rate constants of the forward and reverse reactions involving the two intermolecular and one intramolecular reactions of isotope exchanges. Also, for some one of the three components, the change of its δ value with time may not be monotonic, and the relationship of 1n (1 - F) with time may be non-linear in a plot of 1n (1 - F) vs. t. In addition, the rate law of the isotope exchange reaction in this system also provides a quantitative method to estimate the overall rate constants for the one-intra-and two intermolecular isotope exchanges and the equilibrium isotopic fractionation factors among the three components

  16. The Truth About Ballistic Coefficients

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2007-01-01

    The ballistic coefficient of a bullet describes how it slows in flight due to air resistance. This article presents experimental determinations of ballistic coefficients showing that the majority of bullets tested have their previously published ballistic coefficients exaggerated from 5-25% by the bullet manufacturers. These exaggerated ballistic coefficients lead to inaccurate predictions of long range bullet drop, retained energy and wind drift.

  17. Determination of the asymptotic normalization coefficients for C-14 + n - C-15,the C-14(n,gamma)C-15 reaction rate, and evaluation of a new method to determine spectroscopic factors

    Czech Academy of Sciences Publication Activity Database

    McCleskey, M.; Mukhamedzhanov, A. M.; Trache, L.; Tribble, R. E.; Banu, A.; Eremenko, V.; Goldberg, V. Z.; Lui, Y. W.; McCleskey, E.; Roeder, B. T.; Spiridon, A.; Carstoiu, F.; Burjan, Václav; Hons, Zdeněk; Thompson, I. J.

    2014-01-01

    Roč. 89, č. 4 (2014), 044605 ISSN 0556-2813 R&D Projects: GA MŠk(CZ) LH11001 Institutional support: RVO:61389005 Keywords : capture reactions * cross-section * asymptotic normalization coefficient Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.733, year: 2014

  18. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    Directory of Open Access Journals (Sweden)

    T. William Bentley

    2015-05-01

    Full Text Available Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1 to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3 are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides. Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride.

  19. Estimating temperature reactivity coefficients by experimental procedures combined with isothermal temperature coefficient measurements and dynamic identification

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi

    2006-01-01

    A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)

  20. On the Kendall Correlation Coefficient

    OpenAIRE

    Stepanov, Alexei

    2015-01-01

    In the present paper, we first discuss the Kendall rank correlation coefficient. In continuous case, we define the Kendall rank correlation coefficient in terms of the concomitants of order statistics, find the expected value of the Kendall rank correlation coefficient and show that the later is free of n. We also prove that in continuous case the Kendall correlation coefficient converges in probability to its expected value. We then propose to consider the expected value of the Kendall rank ...

  1. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition.

    Science.gov (United States)

    Marrufo-Curtido, Almudena; Carrascón, Vanesa; Bueno, Mónica; Ferreira, Vicente; Escudero, Ana

    2018-05-15

    The rates at which wine consumes oxygen are important technological parameters for whose measurement there are not accepted procedures. In this work, volumes of 8 wines are contacted with controlled volumes of air in air-tight tubes containing oxygen-sensors and are further agitated at 25 °C until O 2 consumption is complete. Three exposure levels of O 2 were used: low (10 mg/L) and medium or high (18 or 32 mg/L plus the required amount to oxidize all wine SO 2 ). In each oxygen level, 2-4 independent segments following pseudo-first order kinetics were identified, plus an initial segment at which wine consumed O 2 very fast. Overall, multivariate data techniques identify six different Oxygen-Consumption-Rates (OCRs) as required to completely define wine O 2 consumption. Except the last one, all could be modeled from the wine initial chemical composition. Total acetaldehyde, Mn, Cu/Fe, blue and red pigments and gallic acid seem to be essential to determine these OCRs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Influence of the medium on the reaction rate of the t-butoxyl radical with iron(II)

    International Nuclear Information System (INIS)

    Mihaljevic, B.; Razem, D.

    2002-01-01

    Complete text of publication follows. Tert-butoxyl radicals (t-BuO.) were generated by homolytic photodecomposition of di-tert-butylperoxide using ruby laser flashes at 347 nm. The reaction of t-BuO. radicals with Fe 2+ was studied under pseudo-first order conditions. The quantum yield Φ(Fe 3+ ) was determined by measuring the absorbance of Fe 3+ ion as [FeCl] 2+ complex at 360 nm 2 μs after the flash. According to the equation derived from the reaction scheme, the rate constant k 3 was obtained from the relative rate constant k r (k r =k 0 /k 3 ) and the value of k 0 ; the latter refers to the overall rate of the competing disappearance of t-BuO. radicals from the system (reaction 2), including the highest contribution of β-cleavage. The rate constant k 0 was determined using diphenylmethanol instead of Fe 2+ . The known rate constant of the reaction of t-BuO. radical with diphenylmethanol giving ketyl radicals (6.9 x 10 6 dm 3 mol -1 s -1 ) was applied. The quantum yield of ketyl radicals was determined by measuring the maximum of absorbance at 535 nm. At acid concentration of 0.023 mol dm -3 HCl the rate constant k 3 = 3.4 x 10 8 dm 3 mol -1 s -1 was determined. The relative rate constant increased with an increase of the hydrochloric acid concentration which has been ascribed to the lower stability of t-BuO. radical at higher acidity of the medium. The effect of polarity of the medium on the reaction rate was also determined. Decreasing k 3 in media of increasing polarity were explained by increasing of the β-scission rate of t-BuO. radical with increasing polarity of the medium

  3. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives. © 2009 Elsevier B.V. All rights reserved.

  4. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    Science.gov (United States)

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  5. Coefficient estimates of negative powers and inverse coefficients for ...

    Indian Academy of Sciences (India)

    and the inequality is sharp for the inverse of the Koebe function k(z) = z/(1 − z)2. An alternative approach to the inverse coefficient problem for functions in the class S has been investigated by Schaeffer and Spencer [27] and FitzGerald [6]. Although, the inverse coefficient problem for the class S has been completely solved ...

  6. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  7. Curvature of Indoor Sensor Network: Clustering Coefficient

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available We investigate the geometric properties of the communication graph in realistic low-power wireless networks. In particular, we explore the concept of the curvature of a wireless network via the clustering coefficient. Clustering coefficient analysis is a computationally simplified, semilocal approach, which nevertheless captures such a large-scale feature as congestion in the underlying network. The clustering coefficient concept is applied to three cases of indoor sensor networks, under varying thresholds on the link packet reception rate (PRR. A transition from positive curvature (“meshed” network to negative curvature (“core concentric” network is observed by increasing the threshold. Even though this paper deals with network curvature per se, we nevertheless expand on the underlying congestion motivation, propose several new concepts (network inertia and centroid, and finally we argue that greedy routing on a virtual positively curved network achieves load balancing on the physical network.

  8. Lattice cell diffusion coefficients. Definitions and comparisons

    International Nuclear Information System (INIS)

    Hughes, R.P.

    1980-01-01

    Definitions of equivalent diffusion coefficients for regular lattices of heterogeneous cells have been given by several authors. The paper begins by reviewing these different definitions and the unification of their derivation. This unification makes clear how accurately each definition (together with appropriate cross-section definitions to preserve the eigenvalue) represents the individual reaction rates within the cell. The approach can be extended to include asymmetric cells and whereas before, the buckling describing the macroscopic flux shape was real, here it is found to be complex. A neutron ''drift'' coefficient as well as a diffusion coefficient is necessary to produce the macroscopic flux shape. The numerical calculation of the various different diffusion coefficients requires the solutions of equations similar to the ordinary transport equation for an infinite lattice. Traditional reactor physics codes are not sufficiently flexible to solve these equations in general. However, calculations in certain simple cases are presented and the theoretical results quantified. In difficult geometries, Monte Carlo techniques can be used to calculate an effective diffusion coefficient. These methods relate to those already described provided that correlation effects between different generations of neutrons are included. Again, these effects are quantified in certain simple cases. (author)

  9. Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2014-01-01

    into random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  10. Probabilistic optimization of safety coefficients

    International Nuclear Information System (INIS)

    Marques, M.; Devictor, N.; Magistris, F. de

    1999-01-01

    This article describes a reliability-based method for the optimization of safety coefficients defined and used in design codes. The purpose of the optimization is to determine the partial safety coefficients which minimize an objective function for sets of components and loading situations covered by a design rule. This objective function is a sum of distances between the reliability of the components designed using the safety coefficients and a target reliability. The advantage of this method is shown on the examples of the reactor vessel, a vapour pipe and the safety injection circuit. (authors)

  11. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  12. Quadrature formulas for Fourier coefficients

    KAUST Repository

    Bojanov, Borislav; Petrova, Guergana

    2009-01-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node

  13. Diffusion coefficient for anomalous transport

    International Nuclear Information System (INIS)

    1986-01-01

    A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport

  14. Fuel Temperature Coefficient of Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  15. Properties of Traffic Risk Coefficient

    Science.gov (United States)

    Tang, Tie-Qiao; Huang, Hai-Jun; Shang, Hua-Yan; Xue, Yu

    2009-10-01

    We use the model with the consideration of the traffic interruption probability (Physica A 387(2008)6845) to study the relationship between the traffic risk coefficient and the traffic interruption probability. The analytical and numerical results show that the traffic interruption probability will reduce the traffic risk coefficient and that the reduction is related to the density, which shows that this model can improve traffic security.

  16. Clustering Coefficients for Correlation Networks.

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  17. Clustering Coefficients for Correlation Networks

    Directory of Open Access Journals (Sweden)

    Naoki Masuda

    2018-03-01

    Full Text Available Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients

  18. Clustering Coefficients for Correlation Networks

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  19. Converting Sabine absorption coefficients to random incidence absorption coefficients

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...... impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model...

  20. Power coefficient anomaly in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H

    1980-12-15

    Operation of the JOYO experimental fast reactor with the MK-I core has been divided into two phases: (1) 50 MWt power ascension and operation; and (2) 75 MWt power ascension and operation. The 50 MWt power-up tests were conducted in August 1978. In these tests, the measured reactivity loss due to power increases from 15 MWt to 50 MWt was 0.28% ..delta.. K/K, and agreed well with the predicted value of 0.27% ..delta.. K/K. The 75 MWt power ascension tests were conducted in July-August 1979. In the process of the first power increase above 50 MWt to 65 MWt conducted on July 11, 1979, an anomalously large negative power coefficient was observed. The value was about twice the power coefficient values measured in the tests below 50 MW. In order to reproduce the anomaly, the reactor power was decreased and again increased up to the maximum power of 65 MWt. However, the large negative power coefficient was not observed at this time. In the succeeding power increase from 65 MWt to 75 MWt, a similar anomalous power coefficient was again observed. This anomaly disappeared in the subsequent power ascensions to 75 MWt, and the magnitude of the power coefficient gradually decreased with power cycles above the 50 MWt level.

  1. Asymptotic normalization coefficients and astrophysical factors

    International Nuclear Information System (INIS)

    Mukhamedzhanov, A.M.; Azhari, A.; Clark, H.L.; Gagliardi, C.A.; Lui, Y.-W.; Sattarov, A.; Trache, L.; Tribble, R.E.; Burjan, V.; Kroha, V.; Carstoiu, F.

    2000-01-01

    The S factor for the direct capture reaction 7 Be(p,γ) 8 B can be found at astrophysical energies from the asymptotic normalization coefficients (ANC's) which provide the normalization of the tails of the overlap functions for 8 B → 7 Be + p. Peripheral transfer reactions offer a technique to determine these ANC's. Using this technique, the 10 B( 7 Be, 8 B) 9 Be and 14 N( 7 Be, 8 B) 13 C reactions have been used to measure the asymptotic normalization coefficient for 7 Be(p, γ) 8 B. These results provide an indirect determination of S 17 (0). Analysis of the existing 9 Be(p, γ) 10 B experimental data within the framework of the R-matrix method demonstrates that experimentally measured ANC's can provide a reasonable determination of direct radiative capture rates. (author)

  2. Analysis of internal conversion coefficients

    International Nuclear Information System (INIS)

    Coursol, N.; Gorozhankin, V.M.; Yakushev, E.A.; Briancon, C.; Vylov, Ts.

    2000-01-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z=30 to Z=103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10≤Z≤104, Special Report of Leningrad Nuclear Physics Institute; Roesel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac-Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations

  3. Algebraic polynomials with random coefficients

    Directory of Open Access Journals (Sweden)

    K. Farahmand

    2002-01-01

    Full Text Available This paper provides an asymptotic value for the mathematical expected number of points of inflections of a random polynomial of the form a0(ω+a1(ω(n11/2x+a2(ω(n21/2x2+…an(ω(nn1/2xn when n is large. The coefficients {aj(w}j=0n, w∈Ω are assumed to be a sequence of independent normally distributed random variables with means zero and variance one, each defined on a fixed probability space (A,Ω,Pr. A special case of dependent coefficients is also studied.

  4. Irrational "Coefficients" in Renaissance Algebra.

    Science.gov (United States)

    Oaks, Jeffrey A

    2017-06-01

    Argument From the time of al-Khwārizmī in the ninth century to the beginning of the sixteenth century algebraists did not allow irrational numbers to serve as coefficients. To multiply by x, for instance, the result was expressed as the rhetorical equivalent of . The reason for this practice has to do with the premodern concept of a monomial. The coefficient, or "number," of a term was thought of as how many of that term are present, and not as the scalar multiple that we work with today. Then, in sixteenth-century Europe, a few algebraists began to allow for irrational coefficients in their notation. Christoff Rudolff (1525) was the first to admit them in special cases, and subsequently they appear more liberally in Cardano (1539), Scheubel (1550), Bombelli (1572), and others, though most algebraists continued to ban them. We survey this development by examining the texts that show irrational coefficients and those that argue against them. We show that the debate took place entirely in the conceptual context of premodern, "cossic" algebra, and persisted in the sixteenth century independent of the development of the new algebra of Viète, Decartes, and Fermat. This was a formal innovation violating prevailing concepts that we propose could only be introduced because of the growing autonomy of notation from rhetorical text.

  5. Integer Solutions of Binomial Coefficients

    Science.gov (United States)

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  6. Hydrolysis of VX on concrete: rate of degradation by direct surface interrogation using an ion trap secondary ion mass spectrometer.

    Science.gov (United States)

    Groenewold, Gary S; Williams, John M; Appelhans, Anthony D; Gresham, Garold L; Olson, John E; Jeffery, Mark T; Rowland, Brad

    2002-11-15

    The nerve agent VX (O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate) is lethal at very low levels of exposure, which can occur by dermal contact with contaminated surfaces. Hence, behavior of VX in contact with common urban or industrial surfaces is a subject of acute interest. In the present study, VX was found to undergo complete degradation when in contact with concrete surfaces. The degradation was directly interrogated at submonolayer concentrations by periodically performing secondary ion mass spectrometry (SIMS) analyses after exposure of the concrete to VX. The abundance of the [VX + H]+ ion in the SIMS spectra was observed to decrease in an exponential fashion, consistent with first-order or pseudo-first-order behavior. This phenomenon enabled the rate constant to be determined at 0.005 min(-1) at 25 degrees C, which corresponds to a half-life of about 3 h on the concrete surface. The decrease in [VX + H]+ was accompanied by an increase in the abundance of the principal degradation product diisopropylaminoethanethiol (DESH), which arises by cleavage of the P-S bond. Degradation to form DESH is accompanied by the formation of ethyl methylphosphonic acid, which is observable only in the negative ion spectrum. A second degradation product was also implicated, which corresponded to a diisopropylvinylamine isomer (perhaps N,N-diisopropyl aziridinium) that arose via cleavage of the S-C bond. No evidence was observed for the formation of the toxic S-2-diisopropylaminoethyl methylphosphonothioic acid. The degradation rate constants were measured at four different temperatures (24-50 degrees C), which resulted in a linear Arrhenius relationship and an activation energy of 52 kJ mol(-1). This value agrees with previous values observed for VX hydrolysis in alkaline solutions, which suggests that the degradation of submonolayer VX is dominated by alkaline hydrolysis within the adventitious water film on the concrete surface.

  7. Seeded emulsion polymerization of butadiene. 1. The propagation rate coefficient

    NARCIS (Netherlands)

    Verdurmen, E.M.F.J.; Dohmen, E.H.M.; Verstegen, J.M.; Maxwell, I.A.; German, A.L.; Gilbert, R.G.

    1993-01-01

    The kinetics of the emulsifier-free, seeded polymn. of butadiene (I) at 60 Deg in Smith-Ewart interval III were studied in presence of Na peroxodisulfate initiator and tert-dodecyl mercaptan. The fractional conversion was based on gravimetrically calibrated online densitometry and was highly

  8. Moderator temperature coefficient in BWR core

    International Nuclear Information System (INIS)

    Naito, Yoshitaka

    1977-01-01

    Temperature dependences of infinite multiplication factor k sub(infinity) and neutron leakage from the core must be examined for estimation of moderator temperature coefficient. Temperature dependence on k sub(infinity) has been investigated by many researchers, however, the dependence on neutron leakage of a BWR with cruciformed control rods has hardly been done. Because there are difficulties and necessity on calculations of three space dimensional and multi-energy groups neutron distribution in a BWR core. In this study, moderator temperature coefficients of JPDR-II (BWR) core were obtained by calculation with DIFFUSION-ACE, which is newly developed three-dimensional multi-group computer code. The results were compared with experimental data measured from 20 to 275 0 C of the moderator temperature and the good agreement was obtained between calculation and measurement. In order to evaluate neutron leakage from the core, the other two calculations were carried out, adjusting criticality by uniform absorption rate and by material buckling. The former underestimated neutron leakage and the latter overestimated it. Discussion on the results shows that in order to estimate the temperature coefficient of BWR, neutron leakage must be evaluated precisely, therefore the calculation at actual pattern of control rods is necessary. (auth.)

  9. Varying coefficients model with measurement error.

    Science.gov (United States)

    Li, Liang; Greene, Tom

    2008-06-01

    We propose a semiparametric partially varying coefficient model to study the relationship between serum creatinine concentration and the glomerular filtration rate (GFR) among kidney donors and patients with chronic kidney disease. A regression model is used to relate serum creatinine to GFR and demographic factors in which coefficient of GFR is expressed as a function of age to allow its effect to be age dependent. GFR measurements obtained from the clearance of a radioactively labeled isotope are assumed to be a surrogate for the true GFR, with the relationship between measured and true GFR expressed using an additive error model. We use locally corrected score equations to estimate parameters and coefficient functions, and propose an expected generalized cross-validation (EGCV) method to select the kernel bandwidth. The performance of the proposed methods, which avoid distributional assumptions on the true GFR and residuals, is investigated by simulation. Accounting for measurement error using the proposed model reduced apparent inconsistencies in the relationship between serum creatinine and GFR among different clinical data sets derived from kidney donor and chronic kidney disease source populations.

  10. Effective Diffusion Coefficients in Coal Chars

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker

    2001-01-01

    Knowledge of effective diffusion coefficients in char particles is important when interpreting experimental reactivity measurements and modeling char combustion or NO and N2O reduction. In this work, NO and N2O reaction with a bituminous coal char was studied in a fixed-bed quartz glass reactor....... In the case of strong pore diffusion limitations, the error in the interpretation of experimental results using the mean pore radius could be a factor of 5 on the intrinsic rate constant. For an average coal char reacting with oxygen at 1300 K, this would be the case for particle sizes larger than about 50...

  11. Calibration factor or calibration coefficient?

    International Nuclear Information System (INIS)

    Meghzifene, A.; Shortt, K.R.

    2002-01-01

    Full text: The IAEA/WHO network of SSDLs was set up in order to establish links between SSDL members and the international measurement system. At the end of 2001, there were 73 network members in 63 Member States. The SSDL network members provide calibration services to end-users at the national or regional level. The results of the calibrations are summarized in a document called calibration report or calibration certificate. The IAEA has been using the term calibration certificate and will continue using the same terminology. The most important information in a calibration certificate is a list of calibration factors and their related uncertainties that apply to the calibrated instrument for the well-defined irradiation and ambient conditions. The IAEA has recently decided to change the term calibration factor to calibration coefficient, to be fully in line with ISO [ISO 31-0], which recommends the use of the term coefficient when it links two quantities A and B (equation 1) that have different dimensions. The term factor should only be used for k when it is used to link the terms A and B that have the same dimensions A=k.B. However, in a typical calibration, an ion chamber is calibrated in terms of a physical quantity such as air kerma, dose to water, ambient dose equivalent, etc. If the chamber is calibrated together with its electrometer, then the calibration refers to the physical quantity to be measured per electrometer unit reading. In this case, the terms referred have different dimensions. The adoption by the Agency of the term coefficient to express the results of calibrations is consistent with the 'International vocabulary of basic and general terms in metrology' prepared jointly by the BIPM, IEC, ISO, OIML and other organizations. The BIPM has changed from factor to coefficient. The authors believe that this is more than just a matter of semantics and recommend that the SSDL network members adopt this change in terminology. (author)

  12. Extinction Coefficient of Gold Nanostars

    OpenAIRE

    de Puig, Helena; Tam, Justina O.; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-01-01

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 108 to 26.8 × 108 M−1cm−1. Measured values correl...

  13. Mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K fluorescence yield and Kβ/Kα relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source

    Science.gov (United States)

    Ménesguen, Y.; Lépy, M.-C.

    2010-08-01

    This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.

  14. Determination of the asymptotic normalization coefficients for 14C + n <--> 15C, the 14C(n, gamma)15C reaction rate, and evaluation of a new method to determine spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    McCleskey, M; Mukhamedzhanov, A M; Trache, L; Tribble, R E; Banu, A; Eremenko, V; Goldberg, V Z; Lui, Y W; McCleskey, E; Roeder, B T; Spiridon, A; Carstoiu, F; Burjan, V; Hons, Z; Thompson, I J

    2014-04-17

    The 14C + n <--> 15C system has been used as a test case in the evaluation of a new method to determine spectroscopic factors that uses the asymptotic normalization coefficient (ANC). The method proved to be unsuccessful for this case. As part of this experimental program, the ANCs for the 15C ground state and first excited state were determined using a heavy-ion neutron transfer reaction as well as the inverse kinematics (d,p) reaction, measured at the Texas A&M Cyclotron Institute. The ANCs were used to evaluate the astrophysical direct neutron capture rate on 14C, which was then compared with the most recent direct measurement and found to be in good agreement. A study of the 15C SF via its mirror nucleus 15F and a new insight into deuteron stripping theory are also presented.

  15. Form of multicomponent Fickian diffusion coefficients matrix

    International Nuclear Information System (INIS)

    Wambui Mutoru, J.; Firoozabadi, Abbas

    2011-01-01

    Highlights: → Irreversible thermodynamics establishes form of multicomponent diffusion coefficients. → Phenomenological coefficients and thermodynamic factors affect sign of diffusion coefficients. → Negative diagonal elements of diffusion coefficients matrix can occur in non-ideal mixtures. → Eigenvalues of the matrix of Fickian diffusion coefficients may not be all real. - Abstract: The form of multicomponent Fickian diffusion coefficients matrix in thermodynamically stable mixtures is established based on the form of phenomenological coefficients and thermodynamic factors. While phenomenological coefficients form a symmetric positive definite matrix, the determinant of thermodynamic factors matrix is positive. As a result, the Fickian diffusion coefficients matrix has a positive determinant, but its elements - including diagonal elements - can be negative. Comprehensive survey of reported diffusion coefficients data for ternary and quaternary mixtures, confirms that invariably the determinant of the Fickian diffusion coefficients matrix is positive.

  16. Friction analysis of kinetic schemes : the friction coefficient

    NARCIS (Netherlands)

    Lolkema, Juke S.

    1995-01-01

    Friction analysis is proposed as the application of general control analysis to single enzymes to describe the control of elementary kinetic steps on the overall catalytic rate. For each transition, a friction coefficient is defined that measures the sensitivity of the turnover rate to the free

  17. Modelling the change in the oxidation coefficient during the aerobic ...

    African Journals Online (AJOL)

    In this work the aerobic degradation of phenol by acclimated activated sludge was studied. Results demonstrate that while the phenol removal rate by acclimated activated sludge follows the Monod model, the oxygen uptake rate obeys a Haldane-type equation. The phenol oxidation coefficient obtained at different intial ...

  18. Study of transport coefficients of nanodiamond nanofluids

    Science.gov (United States)

    Pryazhnikov, M. I.; Minakov, A. V.; Guzei, D. V.

    2017-09-01

    Experimental data on the thermal conductivity coefficient and viscosity coefficient of nanodiamond nanofluids are presented. Distilled water and ethylene glycol were used as the base fluid. Dependences of transport coefficients on concentration are obtained. It was shown that the thermal conductivity coefficient increases with increasing nanodiamonds concentration. It was shown that base fluids properties and nanodiamonds concentration affect on the rheology of nanofluids.

  19. Reaction F + C2H4: Rate Constant and Yields of the Reaction Products as a Function of Temperature over 298-950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2018-03-29

    The kinetics and products of the reaction of F + C 2 H 4 have been studied in a discharge flow reactor combined with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium in the temperature range 298-950 K. The total rate constant of the reaction, k 1 = (1.78 ± 0.30) × 10 -10 cm 3 molecule -1 s -1 , determined under pseudo-first-order conditions, monitoring the kinetics of F atom consumption in excess of C 2 H 4 , was found to be temperature independent in the temperature range used. H, C 2 H 3 F, and HF were identified as the reaction products. Absolute measurements of the yields of these species allowed to determine the branching ratios, k 1b / k 1 = (0.73 ± 0.07) exp(-(425 ± 45)/ T) and k 1a / k 1 = 1 - (0.73 ± 0.07) exp(-(425 ± 45)/ T) and partial rate constants for addition-elimination (H + C 2 H 3 F) and H atom abstraction (HF + C 2 H 3 ) pathways of the title reaction: k 1a = (0.80 ± 0.07) × 10 -10 exp(189 ± 37/ T) and k 1b = (1.26 ± 0.13) × 10 -10 exp(-414 ± 45/ T) cm 3 molecule -1 s -1 , respectively, at T = 298-950 K and with 2σ quoted uncertainties. The overall reaction rate constant can be adequately described by both the temperature independent value and as a sum of k 1a and k 1b . The kinetic and mechanistic data from the present study are discussed in comparison with previous absolute and relative measurements and theoretical calculations.

  20. Evaluation of Rock Joint Coefficients

    Science.gov (United States)

    Audy, Ondřej; Ficker, Tomáš

    2017-10-01

    A computer method for evaluation of rock joint coefficients is described and several applications are presented. The method is based on two absolute numerical indicators that are formed by means of the Fourier replicas of rock joint profiles. The first indicator quantifies the vertical depth of profiles and the second indicator classifies wavy character of profiles. The absolute indicators have replaced the formerly used relative indicators that showed some artificial behavior in some cases. This contribution is focused on practical computations testing the functionality of the newly introduced indicators.

  1. Correlation coefficients in neutron β-decay

    International Nuclear Information System (INIS)

    Byrne, J.

    1978-01-01

    The various angular and polarisation coefficients in neutron decay are the principal sources of information on the β-interaction. Measurements of the electron-neutrino angular correlation coefficient (a), the neutron-spin-electron-momentum correlation coefficient (A), the neutron-spin-neutrino-momentum correlation coefficient (B), and the triple correlation coefficient D and time-reversal invariance are reviewed and the results discussed. (U.K.)

  2. Diffusion coefficients of decay products of radon and thoron

    International Nuclear Information System (INIS)

    Raghunath, B.; Kotrappa, P.

    1979-01-01

    The diffusion coefficients of the decay products of radon and thoron have relevance in the evaluation of inhalation hazards in uranium and thorium processing industries. A recently developed diffusion sampler, based on Mercer's theory of diffusional deposition between the concentric circular plates, has been used for determining the diffusion coefficients of the unattached decay products of radon and thoron (RaA, RaB, RaC and ThB). Experiments were conducted at different ventilation rates (6 and 60 changes/hr) at different relative humidities (10 and 90%) and both in air and argon atmospheres. Diffusion coefficients were found to increase with increasing ventilation rates and were found to decrease at higher relative humidities, the effect being more marked at lower ventilation rates. Both of these effects were less pronounced in argon than in air. Results are discussed in light of the known properties of these decay products. (author)

  3. The rate constant of the reaction NCN + H2 and its role in NCN and NO modeling in low pressure CH4/O2/N2-flames.

    Science.gov (United States)

    Faßheber, Nancy; Lamoureux, Nathalie; Friedrichs, Gernot

    2015-06-28

    Bimolecular reactions of the NCN radical play a key role in modeling prompt-NO formation in hydrocarbon flames. The rate constant of the so-far neglected reaction NCN + H2 has been experimentally determined behind shock waves under pseudo-first order conditions with H2 as the excess component. NCN3 thermal decomposition has been used as a quantitative high temperature source of NCN radicals, which have been sensitively detected by difference UV laser absorption spectroscopy at [small nu, Greek, tilde] = 30383.11 cm(-1). The experiments were performed at two different total densities of ρ≈ 4.1 × 10(-6) mol cm(-3) and ρ≈ 7.4 × 10(-6) mol cm(-3) (corresponding to pressures between p = 324 mbar and p = 1665 mbar) and revealed a pressure independent reaction. In the temperature range 1057 K rate constant can be represented by the Arrhenius expression k/(cm(3) mol(-1) s(-1)) = 4.1 × 10(13) exp(-101 kJ mol(-1)/RT) (Δlog k = ±0.11). The pressure independent reaction as well as the measured activation energy is consistent with a dominating H abstracting reaction channel yielding the products HNCN + H. The reaction NCN + H2 has been implemented together with a set of reactions for subsequent HNCN and HNC chemistry into the detailed GDFkin3.0_NCN mechanism for NOx flame modeling. Two fuel-rich low-pressure CH4/O2/N2-flames served as examples to quantify the impact of the additional chemical pathways. Although the overall NCN consumption by H2 remains small, significant differences have been observed for NO yields with the updated mechanism. A detailed flux analysis revealed that HNC, mainly arising from HCN/HNC isomerization, plays a decisive role and enhances NO formation through a new HNC → HNCO → NH2→ NH → NO pathway.

  4. Shock tube measurements of the rate constants for seven large alkanes+OH

    KAUST Repository

    Badra, Jihad

    2015-01-01

    Reaction rate constants for seven large alkanes + hydroxyl (OH) radicals were measured behind reflected shock waves using OH laser absorption. The alkanes, n-hexane, 2-methyl-pentane, 3-methyl-pentane, 2,2-dimethyl-butane, 2,3-dimethyl-butane, 2-methyl-heptane, and 4-methyl-heptane, were selected to investigate the rates of site-specific H-abstraction by OH at secondary and tertiary carbons. Hydroxyl radicals were monitored using narrow-line-width ring-dye laser absorption of the R1(5) transition of the OH spectrum near 306.7 nm. The high sensitivity of the diagnostic enabled the use of low reactant concentrations and pseudo-first-order kinetics. Rate constants were measured at temperatures ranging from 880 K to 1440 K and pressures near 1.5 atm. High-temperature measurements of the rate constants for OH + n-hexane and OH + 2,2-dimethyl-butane are in agreement with earlier studies, and the rate constants of the five other alkanes with OH, we believe, are the first direct measurements at combustion temperatures. Using these measurements and the site-specific H-abstraction measurements of Sivaramakrishnan and Michael (2009) [1,2], general expressions for three secondary and two tertiary abstraction rates were determined as follows (the subscripts indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon): S20=1.58×10-11exp(-1550K/T)cm3molecule-1s-1(887-1327K)S30=2.37×10-11exp(-1850K/T)cm3molecule-1s-1(887-1327K)S21=4.5×10-12exp(-793.7K/T)cm3molecule-1s-1(833-1440K)T100=2.85×10-11exp(-1138.3K/T)cm3molecule-1s-1(878-1375K)T101=7.16×10-12exp(-993K/T)cm3molecule-1s-1(883-1362K) © 2014 The Combustion Institute.

  5. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    Science.gov (United States)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  6. Extinction Coefficient of Gold Nanostars.

    Science.gov (United States)

    de Puig, Helena; Tam, Justina O; Yen, Chun-Wan; Gehrke, Lee; Hamad-Schifferli, Kimberly

    2015-07-30

    Gold nanostars (NStars) are highly attractive for biological applications due to their surface chemistry, facile synthesis and optical properties. Here, we synthesize NStars in HEPES buffer at different HEPES/Au ratios, producing NStars of different sizes and shapes, and therefore varying optical properties. We measure the extinction coefficient of the synthesized NStars at their maximum surface plasmon resonances (SPR), which range from 5.7 × 10 8 to 26.8 × 10 8 M -1 cm -1 . Measured values correlate with those obtained from theoretical models of the NStars using the discrete dipole approximation (DDA), which we use to simulate the extinction spectra of the nanostars. Finally, because NStars are typically used in biological applications, we conjugate DNA and antibodies to the NStars and calculate the footprint of the bound biomolecules.

  7. Kerr scattering coefficients via isomonodromy

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Bruno Carneiro da [Departamento de Física, Universidade Federal de Pernambuco,50670-901, Recife, Pernambuco (Brazil); Novaes, Fábio [International Institute of Physics, Federal University of Rio Grande do Norte,Av. Odilon Gomes de Lima 1722, Capim Macio, Natal-RN 59078-400 (Brazil)

    2015-11-23

    We study the scattering of a massless scalar field in a generic Kerr background. Using a particular gauge choice based on the current conservation of the radial equation, we give a generic formula for the scattering coefficient in terms of the composite monodromy parameter σ between the inner and the outer horizons. Using the isomonodromy flow, we calculate σ exactly in terms of the Painlevé V τ-function. We also show that the eigenvalue problem for the angular equation (spheroidal harmonics) can be calculated using the same techniques. We use recent developments relating the Painlevé V τ-function to Liouville irregular conformal blocks to claim that this scattering problem is solved in the combinatorial sense, with known expressions for the τ-function near the critical points.

  8. Sorption Coefficients for Iodine, Silver, and Cesium on Dust Particles

    International Nuclear Information System (INIS)

    Stempniewicz, M.M.; Goede, P.

    2014-01-01

    This paper describes the work performed to find relevant experimental data and find the sorption coefficients that represent well the available data for cesium, iodine, and silver on dust particles. The purpose of this work is to generate a set of coefficients that may be recommended for the computer code users. The work was performed using the computer code SPECTRA. Calculations were performed for the following data: • I-131 on AVR dust; • Ag-110m on AVR dust; • Cs-13 and Cs-137 on AVR dust. Available data was matched using the SPECTRA Sorption Model. S = A(T) · C_V-B(T) · C_d. The results are summarized as follows: • The available data can be correlated. The data scatter is about 4 orders of magnitude. Therefore the coefficients of the Langmuir isotherms vary by 4 orders of magnitude. • Sorption rates are higher at low temperatures and lower at high temperatures. This tendency has been observed in the data compiled at Oak Ridge. It is therefore surmised that the highest value of the sorption coefficients are appropriate for the low temperatures and the lowest value of the sorption coefficients are appropriate for the high temperatures. The recommended sorption coefficients are presented in this paper. • The present set of coefficients is very rough and should be a subject for future verification against experimental data. (author)

  9. Use of appropriate absorption coefficients in gamma-ray dosimetry

    International Nuclear Information System (INIS)

    Gopinath, D.V.; Natarajan, A.; Subbaiah, K.V.

    1985-01-01

    The current use of the different types of absorption coefficients in the computation of γ-ray energy deposition rates and air dose is critically analyzed. Transport calculations are presented to bring out the errors associated with the use of different absorption coefficients. It is observed that except for source energies in the range of 0.3 to 3.0 MeV the consistent use of the absorption coefficient, μ/sub a/ results in an underestimate of the air dose everywhere and of energy deposition at regions away from source. The underestimate becomes more significant with increased atomic number (Z) of the medium. Based on the computations and analysis it is concluded that the absorption coefficients μ/sub a/ and μ/sub k/ are of very limited use in practical γ-ray dosimetry

  10. [Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].

    Science.gov (United States)

    Zhou, Jinzhi; Tang, Xiaofang

    2015-08-01

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

  11. Path coefficient analysis of zinc dynamics in varying soil environment

    International Nuclear Information System (INIS)

    Rattan, R.K.; Phung, C.V.; Singhal, S.K.; Deb, D.L.; Singh, A.K.

    1994-01-01

    Influence of soil properties on labile zinc, as measured by diethylene-triamine pentaacetic acid (DTPA) and zinc-65, and self-diffusion coefficients of zinc was assessed on 22 surface soil samples varying widely in their characteristics following linear regression and path coefficient analysis techniques. DTPA extractable zinc could be predicted from organic carbon status and pH of the soil with a highly significant coefficient of determination (R 2 =0.84 ** ). Ninety seven per cent variation in isotopically exchangeable zinc was explained by pH, clay content and cation exchange capacity (CEC) of soil. The self-diffusion coefficients (DaZn and DpZn) and buffer power of zinc exhibited exponential relationship with soil properties, pH being the most dominant one. Soil properties like organic matter, clay content etc. exhibited indirect effects on zinc diffusion rates via pH only. (author). 13 refs., 6 tabs

  12. Factorization of Transport Coefficients in Macroporous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2000-01-01

    We prove the fundamental theorem about factorization of the phenomenological coefficients for transport in macroporous media. By factorization we mean the representation of the transport coefficients as products of geometric parameters of the porous medium and the parameters characteristic...

  13. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  14. Standards for Standardized Logistic Regression Coefficients

    Science.gov (United States)

    Menard, Scott

    2011-01-01

    Standardized coefficients in logistic regression analysis have the same utility as standardized coefficients in linear regression analysis. Although there has been no consensus on the best way to construct standardized logistic regression coefficients, there is now sufficient evidence to suggest a single best approach to the construction of a…

  15. Soccer Ball Lift Coefficients via Trajectory Analysis

    Science.gov (United States)

    Goff, John Eric; Carre, Matt J.

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin…

  16. Symmetry chains and adaptation coefficients

    International Nuclear Information System (INIS)

    Fritzer, H.P.; Gruber, B.

    1985-01-01

    Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains

  17. Pseudo-extravasation rate constant of dynamic susceptibility contrast-MRI determined from pharmacokinetic first principles.

    Science.gov (United States)

    Li, Xin; Varallyay, Csanad G; Gahramanov, Seymur; Fu, Rongwei; Rooney, William D; Neuwelt, Edward A

    2017-11-01

    Dynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected. Several approaches to correct this leakage effect have been proposed throughout the years. Amongst the most popular is the Boxerman-Schmainda-Weisskoff (BSW) K 2 leakage correction approach, in which the K 2 pseudo-first-order rate constant quantifies the leakage. In this work, we propose a new method for the BSW leakage correction approach. Based on the pharmacokinetic interpretation of the data, the commonly adopted R 2 * expression accounting for contributions from both intravascular and extravasating CR components is transformed using a method mathematically similar to Gjedde-Patlak linearization. Then, the leakage rate constant (K L ) can be determined as the slope of the linear portion of a plot of the transformed data. Using the DSC data of high-molecular-weight (~750 kDa), iron-based, intravascular Ferumoxytol (FeO), the pharmacokinetic interpretation of the new paradigm is empirically validated. The primary objective of this work is to empirically demonstrate that a linear portion often exists in the graph of the transformed data. This linear portion provides a clear definition of the Gd CR pseudo-leakage rate constant, which equals the slope derived from the linear segment. A secondary objective is to demonstrate that transformed points from the initial transient period during the CR wash-in often deviate from the linear trend of the linearized graph. The inclusion of these points will have a negative impact on the accuracy of the leakage

  18. Energy coefficients for a propeller series

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup

    2004-01-01

    The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use...... of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method....

  19. Kinetic coefficients for the biological treatment of tannery wastewater

    International Nuclear Information System (INIS)

    Haydar, S.

    2008-01-01

    Determination of kinetic coefficients for a particular wastewater is imperative for the rational design of biological treatment-facilities. The present study was undertaken with the objective of finding out kinetic coefficients for tannery wastewater. A bench-scale model of aerated lagoon, consisting of an aeration tank and final clarifier, was use to conduct the studies. The model was operated continuously for 96 days, by varying the detention times from 3 to 9 days. Influent for the aerated lagoon was settled tannery wastewater. Biochemical oxygen demand (BOD) of the influent and effluent and the mixed-liquor suspended solids (MLSS) of aeration tank were determined at various detention-times so as to generate data for kinetic coefficients. The kinetic coefficients k, Ks, Y and Ed were found to be 3.125 day/sup -1/, 488 mg/L, 0.64 and 0.035 day/sup -1/ respectively. Overall rate-constant of BOD, removal 'K' was also determined and was found to be 1.43 day/sup -1/. Kinetic coefficients were determined, at mean reactor-temperature of 30.2 degree C. These coefficients may be utilized for the design of biological-treatment facilities for tannery wastewater. (author)

  20. Dose coefficients for radionuclides produced in high energy proton accelerator facilities. Coefficients for radionuclides not listed in ICRP publications

    CERN Document Server

    Kawai, K; Noguchi, H

    2002-01-01

    Effective dose coefficients, the committed effective dose per unit intake, by inhalation and ingestion have been calculated for 304 nuclides, including (1) 230 nuclides with half-lives >= 10 min and their daughters that are not listed in ICRP Publications and (2) 74 nuclides with half-lives < 10 min that are produced in a spallation target. Effective dose coefficients for inhalation of soluble or reactive gases have been calculated for 21 nuclides, and effective dose rates for inert gases have been calculated for 9 nuclides. Dose calculation was carried out using a general-purpose nuclear decay database DECDC developed at JAERI and a decay data library newly compiled from the ENSDF for the nuclides abundantly produced in a spallation target. The dose coefficients were calculated with the computer code DOCAP based on the respiratory tract model and biokinetic model of ICRP. The effective dose rates were calculated by considering both external irradiation from the surrounding cloud and irradiation of the lun...

  1. Calculation of generalized secant integral using binomial coefficients

    International Nuclear Information System (INIS)

    Guseinov, I.I.; Mamedov, B.A.

    2004-01-01

    A single series expansion relation is derived for the generalized secant (GS) integral in terms of binomial coefficients, exponential integrals and incomplete gamma functions. The convergence of the series is tested by the concrete cases of parameters. The formulas given in this study for the evaluation of GS integral show good rate of convergence and numerical stability

  2. Heart rate index

    DEFF Research Database (Denmark)

    Haedersdal, C; Pedersen, F H; Svendsen, J H

    1992-01-01

    after the myocardial infarction. A significant correlation (Spearman's correlation coefficient rs, p less than 0.05) was found between LVEF at rest and the following variables assessed at exercise test: 1) the heart rate at rest, 2) rise in heart rate, 3) ratio between maximal heart rate and heart rate...... at rest, 4) rise in systolic blood pressure, 5) rate pressure product at rest, 6) rise in rate pressure product, 7) ratio (rHR) between maximal rate pressure product and rate pressure product at rest, 8) total exercise time. The heart rate was corrected for effects caused by age (heart index (HR...

  3. Local carbon diffusion coefficient measurement in the S-1 spheromak

    International Nuclear Information System (INIS)

    Mayo, R.M.; Levinton, F.M.; Meyerhofer, D.D.; Chu, T.K.; Paul, S.F.; Yamada, M.

    1988-10-01

    The local carbon diffusion coefficient was measured in the S - 1 spheromak by detecting the radial spread of injected carbon impurity. The radial impurity density profile is determined by the balance of ionization and diffusion. Using measured local electron temperature T/sub e/ and density n/sub e/, the ionization rate is determined from which the particle diffusion coefficient is inferred. The results found in this work are consistent with Bohm diffusion. The absolute magnitude of D/sub /perpendicular// was determined to be (4/approximately/6) /times/ D/sub Bohm/. 25 refs., 13 figs., 2 tabs

  4. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  5. Apparatus for measurement of coefficient of friction

    Science.gov (United States)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  6. New definition of the cell diffusion coefficient

    International Nuclear Information System (INIS)

    Koehler, P.

    1975-01-01

    As was shown in a recent work by Gelbard, the usually applied Benoist definition of the cell diffusion coefficient gives two different values if two different definitions of the cell are made. A new definition is proposed that preserves the neutron balance for the homogenized lattice and that is independent of the cell definition. The resulting diffusion coefficient is identical with the main term of Benoist's diffusion coefficient

  7. Transfer coefficients in ultracold strongly coupled plasma

    Science.gov (United States)

    Bobrov, A. A.; Vorob'ev, V. S.; Zelener, B. V.

    2018-03-01

    We use both analytical and molecular dynamic methods for electron transfer coefficients in an ultracold plasma when its temperature is small and the coupling parameter characterizing the interaction of electrons and ions exceeds unity. For these conditions, we use the approach of nearest neighbor to determine the average electron (ion) diffusion coefficient and to calculate other electron transfer coefficients (viscosity and electrical and thermal conductivities). Molecular dynamics simulations produce electronic and ionic diffusion coefficients, confirming the reliability of these results. The results compare favorably with experimental and numerical data from earlier studies.

  8. Comparing linear probability model coefficients across groups

    DEFF Research Database (Denmark)

    Holm, Anders; Ejrnæs, Mette; Karlson, Kristian Bernt

    2015-01-01

    of the following three components: outcome truncation, scale parameters and distributional shape of the predictor variable. These results point to limitations in using linear probability model coefficients for group comparisons. We also provide Monte Carlo simulations and real examples to illustrate......This article offers a formal identification analysis of the problem in comparing coefficients from linear probability models between groups. We show that differences in coefficients from these models can result not only from genuine differences in effects, but also from differences in one or more...... these limitations, and we suggest a restricted approach to using linear probability model coefficients in group comparisons....

  9. Local, zero-power void coefficient measurements in the ACPR

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, J B; Thome, F V [Sandia Laboratories (United States)

    1974-07-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from {approx}6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  10. Local, zero-power void coefficient measurements in the ACPR

    International Nuclear Information System (INIS)

    Rivard, J.B.; Thome, F.V.

    1974-01-01

    Changes in reactivity may be stimulated in the ACPR by the local introduction of voids into the reactor coolant. The local void coefficients of reactivity which describe this effect are of interest from a reactor safety point-of-view, and their determination is the subject of this presentation. Bottled nitrogen gas was used to produce the voids. The gas was forced out of a small diameter tube which was positioned vertically in the core lattice with its open end below the fuel. The gas was passed through a pressure regulator, a valve, and a flowmeter to establish a steady flow condition, following which a delayed-critical (zero-power) reactor state was established. Correlation of the average volume of core void created by the nitrogen flow with the reactivity worth of the delayed-critical control-rod bank position produced the values of the zero-power void coefficients of reactivity. The void coefficients were determined at various core positions from ∼6 mm to 142 mm beyond the central irradiation space and for three different flow rates. For the range of void fractions investigated, these coefficients are negative, with values ranging between -$0.02 and -$0.12. Tabular and graphical results of the measurements are presented, and details of the coefficient determination are explained. (author)

  11. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  12. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  13. Resummed coefficient function for the shape function

    OpenAIRE

    Aglietti, U.

    2001-01-01

    We present a leading evaluation of the resummed coefficient function for the shape function. It is also shown that the coefficient function is short-distance-dominated. Our results allow relating the shape function computed on the lattice to the physical QCD distributions.

  14. Problems with Discontinuous Diffusion/Dispersion Coefficients

    Directory of Open Access Journals (Sweden)

    Stefano Ferraris

    2012-01-01

    accurate on smooth solutions and based on a special numerical treatment of the diffusion/dispersion coefficients that makes its application possible also when such coefficients are discontinuous. Numerical experiments confirm the convergence of the numerical approximation and show a good behavior on a set of benchmark problems in two space dimensions.

  15. Meta-Analysis of Coefficient Alpha

    Science.gov (United States)

    Rodriguez, Michael C.; Maeda, Yukiko

    2006-01-01

    The meta-analysis of coefficient alpha across many studies is becoming more common in psychology by a methodology labeled reliability generalization. Existing reliability generalization studies have not used the sampling distribution of coefficient alpha for precision weighting and other common meta-analytic procedures. A framework is provided for…

  16. Alternatives to Pearson's and Spearman's Correlation Coefficients

    OpenAIRE

    Smarandache, Florentin

    2008-01-01

    This article presents several alternatives to Pearson's correlation coefficient and many examples. In the samples where the rank in a discrete variable counts more than the variable values, the mixtures that we propose of Pearson's and Spearman's correlation coefficients give better results.

  17. Anomaly coefficients: Their calculation and congruences

    International Nuclear Information System (INIS)

    Braden, H.W.

    1988-01-01

    A new method for the calculation of anomaly coefficients is presented. For su(n) some explicit and general expressions are given for these. In particular, certain congruences are discovered and investigated among the leading anomaly coefficients. As an application of these congruences, the absence of global six-dimensional gauge anomalies is shown

  18. Prediction of friction coefficients for gases

    Science.gov (United States)

    Taylor, M. F.

    1969-01-01

    Empirical relations are used for correlating laminar and turbulent friction coefficients for gases, with large variations in the physical properties, flowing through smooth tubes. These relations have been used to correlate friction coefficients for hydrogen, helium, nitrogen, carbon dioxide and air.

  19. Implications of NGA for NEHRP site coefficients

    Science.gov (United States)

    Borcherdt, Roger D.

    2012-01-01

    Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.

  20. Gini coefficient as a life table function

    Directory of Open Access Journals (Sweden)

    2003-06-01

    Full Text Available This paper presents a toolkit for measuring and analyzing inter-individual inequality in length of life by Gini coefficient. Gini coefficient and four other inequality measures are defined on the length-of-life distribution. Properties of these measures and their empirical testing on mortality data suggest a possibility for different judgements about the direction of changes in the degree of inequality by using different measures. A new computational procedure for the estimation of Gini coefficient from life tables is developed and tested on about four hundred real life tables. The estimates of Gini coefficient are precise enough even for abridged life tables with the final age group of 85+. New formulae have been developed for the decomposition of differences between Gini coefficients by age and cause of death. A new method for decomposition of age-components into effects of mortality and composition of population by group is developed. Temporal changes in the effects of elimination of causes of death on Gini coefficient are analyzed. Numerous empirical examples show: Lorenz curves for Sweden, Russia and Bangladesh in 1995, proportional changes in Gini coefficient and four other measures of inequality for the USA in 1950-1995 and for Russia in 1959-2000. Further shown are errors of estimates of Gini coefficient when computed from various types of mortality data of France, Japan, Sweden and the USA in 1900-95, decompositions of the USA-UK difference in life expectancies and Gini coefficients by age and cause of death in 1997. As well, effects of elimination of major causes of death in the UK in 1951-96 on Gini coefficient, age-specific effects of mortality and educational composition of the Russian population on changes in life expectancy and Gini coefficient between 1979 and 1989. Illustrated as well are variations in life expectancy and Gini coefficient across 32 countries in 1996-1999 and associated changes in life expectancy and Gini

  1. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...... of the drag coefficient with wind speed occurs for all of the calculation methods. A classification of flux calculation methods is constructed, which unifies the most common previous approaches. The roughness length corresponding to the usual Monin-Obukhov stability functions decreases with increasing wind...

  2. Diffusion coefficients of paracetamol in aqueous solutions

    International Nuclear Information System (INIS)

    Ribeiro, Ana C.F.; Barros, Marisa C.F.; Veríssimo, Luís M.P.; Santos, Cecilia I.A.V.; Cabral, Ana M.T.D.P.V.; Gaspar, Gualter D.; Esteso, Miguel A.

    2012-01-01

    Highlights: ► Mutual diffusion coefficients of paracetamol in aqueous dilute solutions. ► Influence of the thermodynamic factors on the variation of their mutual diffusion coefficients. ► Estimation of the mutual limiting diffusion coefficients of the molecular, D m 0 , and ionized forms, D ± 0 , of this drug. - Abstract: Binary mutual diffusion coefficients measured by the Taylor dispersion method, for aqueous solutions of paracetamol (PA) at concentrations from (0.001 to 0.050) mol·dm −3 at T = 298.15 K, are reported. From the Nernst–Hartley equation and our experimental results, the limiting diffusion coefficient of this drug and its thermodynamic factors are estimated, thereby contributing in this way to a better understanding of the structure of such systems and of their thermodynamic behaviour in aqueous solution at different concentrations.

  3. Estimation of the simple correlation coefficient.

    Science.gov (United States)

    Shieh, Gwowen

    2010-11-01

    This article investigates some unfamiliar properties of the Pearson product-moment correlation coefficient for the estimation of simple correlation coefficient. Although Pearson's r is biased, except for limited situations, and the minimum variance unbiased estimator has been proposed in the literature, researchers routinely employ the sample correlation coefficient in their practical applications, because of its simplicity and popularity. In order to support such practice, this study examines the mean squared errors of r and several prominent formulas. The results reveal specific situations in which the sample correlation coefficient performs better than the unbiased and nearly unbiased estimators, facilitating recommendation of r as an effect size index for the strength of linear association between two variables. In addition, related issues of estimating the squared simple correlation coefficient are also considered.

  4. Study for discharge coefficient of flow nozzles. Prediction by using numerical simulation

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi; Sakai, Norio; Yamamoto, Yasushi; Arai, Kenji; Matsumoto, Masaaki

    2008-01-01

    In nuclear plant, as water feeding into reactor have much effect on thermal power of plant, it is important to measure accurately the flow rate of water. Flow nozzle is on of typical differential pressure type flow meters and the discharge coefficient is used to calculate the flow rate. This coefficient is given by actual experiment and theory. We studied the theoretical assumption of the discharge coefficient curve using numerical simulation and evaluated the effect of flow nozzle configuration on the coefficient numerically and experimentally. As the result, numerical simulation can predict the discharge coefficient of theoretical curve within 0.3%. And we found that the throat length and throat tapping location of flow nozzle have much effect on the coefficient. (author)

  5. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  6. Development of database on the distribution coefficient. 1. Collection of the distribution coefficient data

    Energy Technology Data Exchange (ETDEWEB)

    Takebe, Shinichi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    The distribution coefficient is very important parameter for environmental impact assessment on the disposal of radioactive waste arising from research institutes. The literature survey in the country was mainly carried out for the purpose of selecting the reasonable distribution coefficient value on the utilization of this value in the safety evaluation. This report was arranged much informations on the distribution coefficient for inputting to the database for each literature, and was summarized as a literature information data on the distribution coefficient. (author)

  7. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  8. Variation in aerodynamic coefficients with altitude

    Science.gov (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  9. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...... between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's....

  10. Virial Coefficients for the Liquid Argon

    Science.gov (United States)

    Korth, Micheal; Kim, Saesun

    2014-03-01

    We begin with a geometric model of hard colliding spheres and calculate probability densities in an iterative sequence of calculations that lead to the pair correlation function. The model is based on a kinetic theory approach developed by Shinomoto, to which we added an interatomic potential for argon based on the model from Aziz. From values of the pair correlation function at various values of density, we were able to find viral coefficients of liquid argon. The low order coefficients are in good agreement with theoretical hard sphere coefficients, but appropriate data for argon to which these results might be compared is difficult to find.

  11. Soccer ball lift coefficients via trajectory analysis

    International Nuclear Information System (INIS)

    Goff, John Eric; Carre, Matt J

    2010-01-01

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  12. Soccer ball lift coefficients via trajectory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Goff, John Eric [Department of Physics, Lynchburg College, Lynchburg, VA 24501 (United States); Carre, Matt J, E-mail: goff@lynchburg.ed [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2010-07-15

    We performed experiments in which a soccer ball was launched from a machine while two high-speed cameras recorded portions of the trajectory. Using the trajectory data and published drag coefficients, we extracted lift coefficients for a soccer ball. We determined lift coefficients for a wide range of spin parameters, including several spin parameters that have not been obtained by today's wind tunnels. Our trajectory analysis technique is not only a valuable tool for professional sports scientists, it is also accessible to students with a background in undergraduate-level classical mechanics.

  13. On the Decrease of the Oceanic Drag Coefficient in High Winds

    Science.gov (United States)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  14. Recurrence relations between transformation coefficients of hyperspherical harmonics and their application to Moshinsky coefficients

    International Nuclear Information System (INIS)

    Raynal, J.

    1976-01-01

    Closed formulae and recurrence relations for the transformation of a two-body harmonic oscillator wave function to the hyperspherical formalism are given. With them Moshinsky or Smirnov coefficients are obtained from the transformation coefficients of hyperspheric harmonics. For these coefficients the diagonalization method of Talman and Lande reduces to simple recurrence relations which can be used directly to compute them. New closed formulae for these coefficients are also derived: they are needed to compute the two simplest coefficients which determine the sign for the recurrence relation. (Auth.)

  15. Friction coefficient dependence on electrostatic tribocharging

    Science.gov (United States)

    Burgo, Thiago A. L.; Silva, Cristiane A.; Balestrin, Lia B. S.; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers. PMID:23934227

  16. Revised Mark 22 coolant temperature coefficients

    International Nuclear Information System (INIS)

    Graves, W.E.

    1987-01-01

    Coolant temperature coefficients for the Mark 22 charge published previously are non-conservative because of the neglect of a significant mechanism which has a positive contribution to reactivity. Even after correcting for this effect, dynamic tests made on a Mark VIB charge in the early 60's suggest the results are still non-conservative. This memorandum takes both of these sources of information into account in making a best estimate of the prompt (coolant plus metal) temperature coefficient. Although no safety issues arise from this work (the overall temperature coefficient still strongly contributes to reactor stability), it is obviously desirable to use best estimates for prompt coefficients in limits and other calculations

  17. Friction coefficient dependence on electrostatic tribocharging.

    Science.gov (United States)

    Burgo, Thiago A L; Silva, Cristiane A; Balestrin, Lia B S; Galembeck, Fernando

    2013-01-01

    Friction between dielectric surfaces produces patterns of fixed, stable electric charges that in turn contribute electrostatic components to surface interactions between the contacting solids. The literature presents a wealth of information on the electronic contributions to friction in metals and semiconductors but the effect of triboelectricity on friction coefficients of dielectrics is as yet poorly defined and understood. In this work, friction coefficients were measured on tribocharged polytetrafluoroethylene (PTFE), using three different techniques. As a result, friction coefficients at the macro- and nanoscales increase many-fold when PTFE surfaces are tribocharged, but this effect is eliminated by silanization of glass spheres rolling on PTFE. In conclusion, tribocharging may supersede all other contributions to macro- and nanoscale friction coefficients in PTFE and probably in other insulating polymers.

  18. Roughness coefficients for stream channels in Arizona

    Science.gov (United States)

    Aldridge, B.N.; Garrett, J.M.

    1973-01-01

    When water flows in an open channel, energy is lost through friction along the banks and bed of the channel and through turbulence within the channel. The amount of energy lost is governed by channel roughness, which is expressed in terms of a roughness coefficient. An evaluation of the roughness coefficient is necessary in many hydraulic computations that involve flow in an open channel. Owing to the lack of satisfactory quantitative procedure, the ability of evaluate roughness coefficients can be developed only through experience; however, a basic knowledge of the methods used to assign the coefficients and the factors affecting them will be a great help. One of the most commonly used equations in open-channel hydraulics is that of Manning. The Manning equation is       1.486

  19. Experimental techniques of conversion coefficient measurements

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1975-01-01

    Discusses briefly the history of conversion electron spectra measurements, and the interpretation of the collected data. Then provides a comprehensive review of techniques presently available to measure the conversion coefficients. (Auth.)

  20. Form coefficient of helical toroidal solenoids

    International Nuclear Information System (INIS)

    Amelin, V.Z.; Kunchenko, V.B.

    1982-01-01

    For toroidal solenoids with continuous spiral coil, winded according to the laws of equiinclined and simple cylindrical spirals with homogeneous, linearly increasing to the coil periphery and ''Bitter'' distribution of current density, the analytical expressions for the dependence between capacity consumed and generated magnetic field, expressions for coefficients of form similar to Fabry coefficient for cylindrical solenoids are obtained and dependence of the form coefficient and relative volume of solenoid conductor on the number of revolutions of screw line per one circumvention over the large torus radius is also investigated. Analytical expressions of form coefficients and graphical material permit to select the optimum geometry as to capacity consumed both for spiral (including ''force-free'') and conventional toroidal solenoids of magnetic systems in thermonulear installations

  1. Explicit formulas for Clebsch-Gordan coefficients

    International Nuclear Information System (INIS)

    Rudnicki-Bujnowski, G.

    1975-01-01

    The problem is to obtain explicit algebraic formulas of Clebsch-Gordan coefficients for high values of angular momentum. The method of solution is an algebraic method based on the Racah formula using the FORMAC programming language. (Auth.)

  2. Diffusion Coefficients of Several Aqueous Alkanolamine Solutions

    NARCIS (Netherlands)

    Snijder, Erwin D.; Riele, Marcel J.M. te; Versteeg, Geert F.; Swaaij, W.P.M. van

    1993-01-01

    The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine

  3. Transport Coefficients from Large Deviation Functions

    Directory of Open Access Journals (Sweden)

    Chloe Ya Gao

    2017-10-01

    Full Text Available We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green–Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  4. Transport Coefficients from Large Deviation Functions

    Science.gov (United States)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  5. A new approach to estimate Angstrom coefficients

    International Nuclear Information System (INIS)

    Abdel Wahab, M.

    1991-09-01

    A simple quadratic equation to estimate global solar radiation with coefficients depending on some physical atmospheric parameters is presented. The importance of the second order and sensitivity to some climatic variations is discussed. (author). 8 refs, 4 figs, 2 tabs

  6. A new proposal for Lagrangian correlation coefficient

    International Nuclear Information System (INIS)

    Altinsoy, N.; Tugrul, A.B.

    2002-01-01

    The statistical description of dispersion in turbulent flow was first considered by Taylor (Proc. London Math. Soc. 20 (1921) 196) and the statistical properties of the field were determined by Lagrangian correlation coefficient R L (τ). Frenkiel (Adv. Appl. Mech. 3 (1953) 61) has proposed several simple forms for R L (τ). Some workers have investigated for a proper form of the Lagrangian correlation coefficient. In this work, a new proposal for the Lagrangian correlation coefficient is proposed and discussed. It can be written in general form with the one of the Frenkiel's (Adv. Appl. Mech. 3 (1953) 61) Lagrangian correlation coefficient. There is very satisfactory agreement between the new correlation and the experiment

  7. Modeling Ballasted Tracks for Runoff Coefficient C

    Science.gov (United States)

    2012-08-01

    In this study, the Regional Transportation District (RTD)s light rail tracks were modeled to determine the Rational Method : runoff coefficient, C, values corresponding to ballasted tracks. To accomplish this, a laboratory study utilizing a : rain...

  8. A nodal method applied to a diffusion problem with generalized coefficients

    International Nuclear Information System (INIS)

    Laazizi, A.; Guessous, N.

    1999-01-01

    In this paper, we consider second order neutrons diffusion problem with coefficients in L ∞ (Ω). Nodal method of the lowest order is applied to approximate the problem's solution. The approximation uses special basis functions in which the coefficients appear. The rate of convergence obtained is O(h 2 ) in L 2 (Ω), with a free rectangular triangulation. (authors)

  9. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  10. Torsion method for measuring piezooptic coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Skab, I.; Smaga, I.; Savaryn, V.; Vasylkiv, Yu.; Vlokh, R. [Institute of Physical Optics, Lviv (Ukraine)

    2011-01-15

    We develop and describe analytically a torsion method for measuring piezooptic coefficients associated with shear stresses. It is shown that the method enables to increase significantly the accuracy of determination of piezooptic coefficients. The method and the appropriate apparatus are verified experimentally on the example of LiNbO{sub 3} crystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Measuring Resource Inequality: The Gini Coefficient

    Directory of Open Access Journals (Sweden)

    Michael T. Catalano

    2009-07-01

    Full Text Available This paper stems from work done by the authors at the Mathematics for Social Justice Workshop held in June of 2007 at Middlebury College. We provide a description of the Gini coefficient and some discussion of how it can be used to promote quantitative literacy skills in mathematics courses. The Gini Coefficient was introduced in 1921 by Italian statistician Corrado Gini as a measure of inequality. It is defined as twice the area between two curves. One, the Lorenz curve for a given population with respect to a given resource, represents the cumulative percentage of the resource as a function of the cumulative percentage of the population that shares that percentage of the resource. The second curve is the line y = x which is the Lorenz curve for a population which shares the resource equally. The Gini coefficient can be interpreted as the percentage of inequality represented in the population with respect to the given resource. We propose that the Gini coefficient can be used to enhance students’ understanding of calculus concepts and provide practice for students in using both calculus and quantitative literacy skills. Our examples are based mainly on distribution of energy resources using publicly available data from the Energy Information Agency of the United States Government. For energy resources within the United States, we find that by household, the Gini coefficient is 0.346, while using the 51 data points represented by the states and Washington D.C., the Gini coefficient is 0.158. When we consider the countries of the world as a population of 210, the Gini coefficient is 0.670. We close with ideas for questions which can be posed to students and discussion of the experiences two other mathematics instructors have had incorporating the Gini coefficient into pre-calculus-level mathematics classes.

  12. The Binomial Coefficient for Negative Arguments

    OpenAIRE

    Kronenburg, M. J.

    2011-01-01

    The definition of the binomial coefficient in terms of gamma functions also allows non-integer arguments. For nonnegative integer arguments the gamma functions reduce to factorials, leading to the well-known Pascal triangle. Using a symmetry formula for the gamma function, this definition is extended to negative integer arguments, making the symmetry identity for binomial coefficients valid for all integer arguments. The agreement of this definition with some other identities and with the bin...

  13. Investigation of photon attenuation coefficients for marble

    International Nuclear Information System (INIS)

    Basyigit, C; Akkurt, I; Kilincarslan, S; Akkurt, A

    2005-01-01

    The total linear attenuation coefficients μ (cm -1 ) have been obtained using the XCOM program at photon energies of 1 keV to 1 GeV for six different natural marbles produced in different places in Turkey. The individual contribution of photon interaction processes to the total linear attenuation coefficients for marble has been investigated. The calculated results were also compared with the measurements. The results obtained for marble were also compared with concrete. (note)

  14. Analysis of flow coefficient in chair manufacture

    OpenAIRE

    Ivković Dragoljub; Živković Slaven

    2005-01-01

    The delivery on time is not possible without the good-quality planning of deadlines, i.e. planning of the manufacturing process duration. The study of flow coefficient enables the realistic forecasting of the manufacturing process duration. This paper points to the significance of the study of flow coefficient on scientific basis so as to determine the terms of the end of the manufacture of chairs made of sawn timber. Chairs are the products of complex construction, often almost completely ma...

  15. On computing Laplace's coefficients and their derivatives.

    Science.gov (United States)

    Gerasimov, I. A.; Vinnikov, E. L.

    The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.

  16. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Forsey, S.P.; Thomson, N.R.; Barker, J.F. [University of Waterloo, Waterloo, ON (Canada). Dept. of Civil & Environmental Engineering

    2010-04-15

    The reactivity of permanganate towards polycyclic aromatics hydrocarbons (PAHs) is well known but little kinetic information is available. This study investigated the oxidation kinetics of a selected group of coal tar creosote compounds and alkylbenzenes in water using permanganate, and the correlation between compound reactivity and physical/chemical properties. The oxidation of naphthalene, phenanthrene, chrysene, 1-methylnaphthalene, 2-methylnaphthalene, acenaphthene, fluorene, carbazole isopropylbenzene, ethylbenzene and methylbenzene closely followed pseudo first-order reaction kinetics. The oxidation of pyrene was initially very rapid and did not follow pseudo first-order kinetics at early times. Fluoranthene was only partially oxidized and the oxidation of anthracene was too fast to be captured. Biphenyl, dibenzofuran, benzene and tert-butylbenzene were non-reactive under the study conditions. The oxidation rate was shown to increase with increasing number of polycyclic rings because less energy is required to overcome the aromatic character of a polycyclic ring than is required for benzene. Thus the rate of oxidation increased in the series naphthalene < phenanthrene < pyrene. The rate of side chain reactivity is controlled by the C-H bond strength. For the alkyl substituted benzenes an excellent correlation was observed between the reaction rate coefficients and bond dissociation energies, but for the substituted PAHs the relationship was poor. A trend was found between the reaction rate coefficients and the calculated heats of complexation indicating that significant ring oxidation occurred in addition to side chain oxidation. Clar's aromatic sextet theory was used to predict the relative stability of arenes towards ring oxidation by permanganate.

  17. Drag Coefficient Estimation in Orbit Determination

    Science.gov (United States)

    McLaughlin, Craig A.; Manee, Steve; Lichtenberg, Travis

    2011-07-01

    Drag modeling is the greatest uncertainty in the dynamics of low Earth satellite orbits where ballistic coefficient and density errors dominate drag errors. This paper examines fitted drag coefficients found as part of a precision orbit determination process for Stella, Starlette, and the GEOSAT Follow-On satellites from 2000 to 2005. The drag coefficients for the spherical Stella and Starlette satellites are assumed to be highly correlated with density model error. The results using MSIS-86, NRLMSISE-00, and NRLMSISE-00 with dynamic calibration of the atmosphere (DCA) density corrections are compared. The DCA corrections were formulated for altitudes of 200-600 km and are found to be inappropriate when applied at 800 km. The yearly mean fitted drag coefficients are calculated for each satellite for each year studied. The yearly mean drag coefficients are higher for Starlette than Stella, where Starlette is at a higher altitude. The yearly mean fitted drag coefficients for all three satellites decrease as solar activity decreases after solar maximum.

  18. Monitoring device for local power peaking coefficients

    International Nuclear Information System (INIS)

    Mihashi, Ishi

    1987-01-01

    Purpose: To determine and monitor the local power peaking coefficients by a method not depending on the combination of fuel types. Constitution: Representative values for the local power distribution can be obtained by determining corresponding burn-up degrees based on the burn-up degree of each of fuel assembly segments obtained in a power distribution monitor and by the interpolation and extrapolation of void coefficients. The typical values are multiplied with compensation coefficients for the control rod effect and coefficients for compensating the effect of adjacent fuel assemblies in a calculation device to obtain typical values for the present local power distribution compensated with all of the effects. Further, the calculation device compares them with typical values of the present local power distribution to obtain an aimed local power peaking coefficient as the maximum value thereof. According to the present invention, since the local power peaking coefficients can be determined not depending on the combination of the kind of fuels, if the combination of fuel assemblies is increased upon fuel change, the amount of operation therefor is not increased. (Kamimura, M.)

  19. Monitoring device for local power peaking coefficient

    International Nuclear Information System (INIS)

    Mitsuhashi, Ishi

    1987-01-01

    Purpose: To monitor the local power peaking coefficients obtained by the method not depending on the combination of fuel types. Method: A plurality of representative values for the local power distribution determined by the nuclear constant calculation for one fuel assembly are memorized regarding each of the burn-up degree and the void coefficient on every positions and fuel types in fuel rod assemblies. While on the other hand, the representative values for the local power distribution as described above are compensated by a compensation coefficient considering the effect of adjacent segments and a control rod compensation coefficient considering the effect due to the control rod insertion relative to the just-mentioned compensation coefficient. Then, the maximum value among them is selected to determine the local power peaking coefficient at each of the times and each of the segments, which is monitored. According to this system, the calculation and the working required for the fitting work depending on the combination of fuel types are no more required at all to facilitate the maintenance as well. (Horiuchi, T.)

  20. Problems is applying new internal dose coefficients to radiation control

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuichi [Oarai Laboratory, Chiyoda Technol Corporation, Ibaraki (Japan)

    1998-06-01

    The author discussed problems concerning the conceivable influence in the radiation control and those newly developing when the new internal dose coefficients are applied in the law in the future. For the conceivable influence, the occupational and public exposure was discussed: In the former, the effective dose equivalent limit (at present, 50 mSv/y) was thought to be reduced and in the latter, the limit to be obscure although it might be more greatly influenced by the new coefficients. For newly developing problems, since the new biological model which is more realistic was introduced for calculation of the internal dose and made the calculation more complicated, use of computer is requisite. The effective dose of the internal exposure in the individual monitoring should be conveniently calculated as done at present even after application of the new coefficients. For calculation of the effective dose of the internal exposure, there are such problems as correction of the inhaled particle size and of the individual personal parameter. A model calculation of residual rate in the chest where the respiratory tract alone participated was presented as an example but for the whole body, more complicated functions were pointed out necessary. The concept was concluded to be incorporated in the law in a convenient and easy manner and a software for calculation of internal dose using the new coefficients was wanted. (K.H.)

  1. On the size distribution of cities: an economic interpretation of the Pareto coefficient.

    Science.gov (United States)

    Suh, S H

    1987-01-01

    "Both the hierarchy and the stochastic models of size distribution of cities are analyzed in order to explain the Pareto coefficient by economic variables. In hierarchy models, it is found that the rate of variation in the productivity of cities and that in the probability of emergence of cities can explain the Pareto coefficient. In stochastic models, the productivity of cities is found to explain the Pareto coefficient. New city-size distribution functions, in which the Pareto coefficient is decomposed by economic variables, are estimated." excerpt

  2. Experimental Evaluation of the Discharge Coefficient of a Centre-Pivot Roof Window

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Afshari, Alireza; Heiselberg, Per

    2013-01-01

    equation. This equation involves a discharge coefficient of the window. The value of the discharge coefficient is the major cause of erroneous estimation of airflow rates. This paper focuses on the experimental study of the discharge coefficient (CD) of a centre-pivot roof window. The measurements were...... performed in the energy flex house of the Technological Institute - Denmark. The discharge coefficient is evaluated for both inflows and outflows. It is concluded that the use of single value of CD for different flap opening angles is one of the cause of erroneous estimation. Likewise, the value of CD...

  3. Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients

    Directory of Open Access Journals (Sweden)

    Yuejun Chen

    2018-02-01

    Full Text Available Rectangular short-crested weirs are widely used for simple structure and high discharge capacity. As one of the most important and influential factors of discharge capacity, side slope can improve the hydraulic characteristics of weirs at special conditions. In order to systemically study the effects of upstream and downstream slope coefficients S1 and S2 on overflow discharge coefficient in a rectangular short-crested weir the Volume of Fluid (VOF method and the Renormalization Group (RNG κ-ε turbulence model are used. In this study, the slope coefficient ranges from V to 3H:1V and each model corresponds to five total energy heads of H0 ranging from 8.0 to 24.0 cm. Comparisons of discharge coefficients and free surface profiles between simulated and laboratory results display a good agreement. The simulated results show that the difference of discharge coefficients will decrease with upstream slopes and increase with downstream slopes as H0 increases. For a given H0, the discharge coefficient has a convex parabolic relation with S1 and a piecewise linearity relation with S2. The maximum discharge coefficient is always obtained at S2 = 0.8. There exists a difference between upstream and downstream slope coefficients in the influence range of free surface curvatures. Furthermore, a proposed discharge coefficient equation by nonlinear regression is a function of upstream and downstream slope coefficients.

  4. Research of fuel temperature control in fuel pipeline of diesel engine using positive temperature coefficient material

    Directory of Open Access Journals (Sweden)

    Xiaolu Li

    2016-01-01

    Full Text Available As fuel temperature increases, both its viscosity and surface tension decrease, and this is helpful to improve fuel atomization and then better combustion and emission performances of engine. Based on the self-regulated temperature property of positive temperature coefficient material, this article used a positive temperature coefficient material as electric heating element to heat diesel fuel in fuel pipeline of diesel engine. A kind of BaTiO3-based positive temperature coefficient material, with the Curie temperature of 230°C and rated voltage of 24 V, was developed, and its micrograph and element compositions were also analyzed. By the fuel pipeline wrapped in six positive temperature coefficient ceramics, its resistivity–temperature and heating characteristics were tested on a fuel pump bench. The experiments showed that in this installation, the surface temperature of six positive temperature coefficient ceramics rose to the equilibrium temperature only for 100 s at rated voltage. In rated power supply for six positive temperature coefficient ceramics, the temperature of injection fuel improved for 21°C–27°C within 100 s, and then could keep constant. Using positive temperature coefficient material to heat diesel in fuel pipeline of diesel engine, the injection mass per cycle had little change, approximately 0.3%/°C. This study provides a beneficial reference for improving atomization of high-viscosity liquids by employing positive temperature coefficient material without any control methods.

  5. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  6. Radon emanation coefficients in sandy soils

    International Nuclear Information System (INIS)

    Holy, K.; Polaskova, A.; Baranova, A.; Sykora, I.; Hola, O.

    1998-01-01

    In this contribution the results of the study of an influence of the water content on the emanation coefficient for two sandy soil samples are reported. These samples were chosen on the because of the long-term continual monitoring of the 222 Rn concentration just in such types of soils and this radon concentration showed the significant variations during a year. These variations are chiefly given in connection with the soil moisture. Therefore, the determination of the dependence of the emanation coefficient of radon on the water content can help to evaluate the influence of the soil moisture variations of radon concentrations in the soil air. The presented results show that the emanation coefficient reaches the constant value in the wide interval of the water content for both sandy soil samples. Therefore, in the common range of the soil moisture (5 - 20 %) it is impossible to expect the variations of the radon concentration in the soil air due to the change of the emanation coefficient. The expressive changes of the radon concentration in the soil air can be observed in case of the significant decrease of the emanation coefficient during the soil drying when the water content decreases under 5 % or during the complete filling of the soil pores by the water. (authors)

  7. Temporal correlation coefficient for directed networks.

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    Previous studies dealing with network theory focused mainly on the static aggregation of edges over specific time window lengths. Thus, most of the dynamic information gets lost. To assess the quality of such a static aggregation the temporal correlation coefficient can be calculated. It measures the overall possibility for an edge to persist between two consecutive snapshots. Up to now, this measure is only defined for undirected networks. Therefore, we introduce the adaption of the temporal correlation coefficient to directed networks. This new methodology enables the distinction between ingoing and outgoing edges. Besides a small example network presenting the single calculation steps, we also calculated the proposed measurements for a real pig trade network to emphasize the importance of considering the edge direction. The farm types at the beginning of the pork supply chain showed clearly higher values for the outgoing temporal correlation coefficient compared to the farm types at the end of the pork supply chain. These farm types showed higher values for the ingoing temporal correlation coefficient. The temporal correlation coefficient is a valuable tool to understand the structural dynamics of these systems, as it assesses the consistency of the edge configuration. The adaption of this measure for directed networks may help to preserve meaningful additional information about the investigated network that might get lost if the edge directions are ignored.

  8. Quenching of Einstein A-Coefficients in plasmas and lasers

    International Nuclear Information System (INIS)

    Suckewer, S.; Princeton Univ., NJ

    1991-03-01

    The coefficient of spontaneous emission (Einstein A-coefficient) is considered to be one of the basic constants of a given transition in atom or ion. The formula for the Einstein A-coefficient was derived in the pioneering works of Weisskopf and Wigner (WW) based on Dirac's theory of light. More recently, however, it was noted in several papers that the rate of spontaneous radiative decay can deviate significantly from the WW expression in certain conditions, for example in a laser cavity. A different type of change in A- coefficients was inferred from measurements of changes in the intensity branching ratio of spectral lines in a plasma. A change of branching ratio of up to a factor of 10 was observed in CIV for 3p-3s (580.1--581.2nm) and 3p-2s (31.2-nm) transitions when the electron density changed from approximately N e ∼ 1 x 10 18 to 5 x 10 18 cm -3 . This effect was also observed in CIII and NV. An initial theoretical approach to the problem based on the integration of the Schroedinger equation with the ion Coulomb potential modified by the electron cloud within the Debye radius was unsuccessfully in predicting the experimental observations. The effect of quenching of spontaneous emission coefficients was observed also in an Ar-ion laser as a function of the intracavity power density (photon density) for lines originating from the same upper level as the lasing line. Measurements of these line profiles absorption for different lasing conditions and related discussions are also presented. 14 refs., 6 figs

  9. Modeling the Design Flow Coefficient of a Centrifugal Compressor Impeller

    Directory of Open Access Journals (Sweden)

    A. A. Drozdov

    2017-01-01

    Full Text Available In calculating gas-dynamic characteristics by the universal modeling method it is necessary to determine a non-incidence flow rate through the blades of an impeller because of its relationship with the magnitude of incidence losses. The flow area decreased by the blades of finite thickness and the blades load have impact on the critical streamline direction. The universal modeling method in primary designing uses for this a scheme of replacing the influence of the blade load by the vortex effect with identical circulation. Finally, calculating the inviscid flow around the blades allows selecting a value of the inlet blade angle. For impellers with small design flow coefficients, the condition of the non-incidence inlet for the primary design and for the calculation of the inviscid flow is significantly different. The calculating correctness of the non-incidence regime for the non-viscous flow was checked earlier by measurements of the flow in the impellers. The paper presents CFD calculations of twenty impellers in a tenfold range of design flow coefficients. To provide correct comparison, it takes into account the differences in the value of the loading factor calculated by the programs of inviscid quasi-three-dimensional calculation and CFD programs. Shows the identity of inlet conditions for both methods. To increase primary design accuracy, the calculation model was refined. The formula for calculating vortex-induced velocity involves an empirical coefficient. The analysis of data for 32 impellers with different blade profiling allowed working out formulas for calculating empirical coefficient, depending on the type of an impeller, the blade load and the width of the throat at an impeller inlet. The new scheme-based calculation with the empirical coefficient is accurate enough for the primary design.

  10. Computation of Clebsch-Gordan and Gaunt coefficients using binomial coefficients

    International Nuclear Information System (INIS)

    Guseinov, I.I.; Oezmen, A.; Atav, Ue

    1995-01-01

    Using binomial coefficients the Clebsch-Gordan and Gaunt coefficients were calculated for extremely large quantum numbers. The main advantage of this approach is directly calculating these coefficients, instead of using recursion relations. Accuracy of the results is quite high for quantum numbers l 1 , and l 2 up to 100. Despite direct calculation, the CPU times are found comparable with those given in the related literature. 11 refs., 1 fig., 2 tabs

  11. Kinetic study of olive oil degradation monitored by fourier transform infrared spectrometry. Application to oil characterization.

    Science.gov (United States)

    Román Falcó, Iván P; Grané Teruel, Nuria; Prats Moya, Soledad; Martín Carratalá, M Luisa

    2012-11-28

    A new approach for the determination of kinetic parameters of the cis/trans isomerization during the oxidation process of 24 virgin olive oils belonging to 8 different varieties is presented. The accelerated process of degradation at 100 °C was monitored by recording the Fourier transform infrared spectra. The parameters obtained confirm pseudo-first-order kinetics for the degradation of cis and the appearance of trans double bonds. The kinetic approach affords the induction time and the rate coefficient; these parameters are related to the fatty acid profile of the fresh olive oils. The data obtained were used to compare the oil stability of the samples with the help of multivariate statistical techniques. Fatty acid allowed a classification of the samples in five groups, one of them constituted by the cultivars with higher stability. Meanwhile, the kinetic parameters showed greater ability for the characterization of olive oils, allowing the classification in seven groups.

  12. Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics

    Science.gov (United States)

    Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz

    2015-01-01

    The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430

  13. Permeability coefficient of proton irradiated polyethylene terephatalate thin films

    International Nuclear Information System (INIS)

    Bassani, L.C.; Santos, W.M.S.; Marechal, B.

    1983-01-01

    The principle of operation of an apparatus developed to study gas permation through thin films is described and the measurement method is discussed. Use is made of diffusion theory to obtain a expression for the permeability coefficient as a function of the rate of increase of the pressure in the receiving volume. The Gibbs function for permeation of Helium through Polyethylene Terephtalate (P.E.T.) is determined. The permeability coefficient of Helium is found to increase significantly with the range of the implanted protons although the incident charge has been kept constant. The hypothesis of structural modifications of the proton implanted P.E.T. seems to be confirmed by small angles X-rays scattering experiments on the irradiated samples. (Author) [pt

  14. Correlation of heat transfer coefficient in quenching process using ABAQUS

    Science.gov (United States)

    Davare, Sandeep Kedarnath; Balachandran, G.; Singh, R. K. P.

    2018-04-01

    During the heat treatment by quenching in a liquid medium the convective heat transfer coefficient plays a crucial role in the extraction of heat. The heat extraction ultimately influences the cooling rate and hence the hardness and mechanical properties. A Finite Element analysis of quenching a simple flat copper sample with different orientation of sample and with different quenchant temperatures were carried out to check and verify the results obtained from the experiments. The heat transfer coefficient (HTC) was calculated from temperature history in a simple flat copper disc sample experimentally. This HTC data was further used as input to simulation software and the cooling curves were back calculated. The results obtained from software and using experimentation shows nearly consistent values.

  15. Denoising in Wavelet Packet Domain via Approximation Coefficients

    Directory of Open Access Journals (Sweden)

    Zahra Vahabi

    2012-01-01

    Full Text Available In this paper we propose a new approach in the wavelet domain for image denoising. In recent researches wavelet transform has introduced a time-Frequency transform for computing wavelet coefficient and eliminating noise. Some coefficients have effected smaller than the other's from noise, so they can be use reconstruct images with other subbands. We have developed Approximation image to estimate better denoised image. Naturally noiseless subimage introduced image with lower noise. Beside denoising we obtain a bigger compression rate. Increasing image contrast is another advantage of this method. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.100 images of LIVE Dataset were tested, comparing signal to noise ratios (SNR,soft thresholding was %1.12 better than hard thresholding, POAC was %1.94 better than soft thresholding and POAC with wavelet packet was %1.48 better than POAC.

  16. Estimating Runoff Coefficients Using Weather Radars

    DEFF Research Database (Denmark)

    Ahm, Malte; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2012-01-01

    This paper presents a method for estimating runoff coefficients of urban drainage catchments based on a combination of high resolution weather radar data and insewer flow measurements. By utilising the spatial variability of the precipitation it is possible to estimate the runoff coefficients...... of separate subcatchments. The method is demonstrated through a case study of an urban drainage catchment (678ha) located in the municipality of Aarhus, Denmark. The study has proven it is possible to use corresponding measurements of the relative rainfall distribution over the catchment and runoff...... measurements to identify the runoff coefficients at subcatchment level. The number of potential subcatchments is limited by the number of available rainfall events with a sufficient spatial variability....

  17. Experimental determination of fission gas adsorption coefficients

    International Nuclear Information System (INIS)

    Lovell, R.; Underhill, D.W.

    1979-01-01

    Large charcoal beds have been used for a number of years for the holdup and decay of radioactive isotopes of krypton and xenon. Reliable design of these beds depends on an accurate knowledge of the adsorption coefficient of krypton and xenon on the adsorbents used in these beds. It is somewhat surprising that there is no standard procedure of determining the adsorption coefficient for krypton and xenon. Fundamental information needed to establish a standardized reproducible test procedure is given emphasizing the breakthrough curves commonly used to analyze dynamic adsorption data can lead to serious systematic errors and the fact that the adsorption coefficient, if calculated from the arithmetic holding time, is independent of geometric factors such as the shape of the adsorption bed and the irregular shape of the adsorbent

  18. Ideal related K-theory with coefficients

    DEFF Research Database (Denmark)

    Eilers, Soren; Restorff, Gunnar; Ruiz, Efren

    2017-01-01

    In this paper, we define an invariant, which we believe should be the substitute for total K-theory in the case when there is one distinguished ideal. Moreover, some diagrams relating the new groups to the ordinary K-groups with coefficients are constructed. These diagrams will in most cases help...... to determine the new groups, and will in a companion paper be used to prove a universal multi-coefficient theorem for the one distinguished ideal case for a large class of algebras......In this paper, we define an invariant, which we believe should be the substitute for total K-theory in the case when there is one distinguished ideal. Moreover, some diagrams relating the new groups to the ordinary K-groups with coefficients are constructed. These diagrams will in most cases help...

  19. Nozzle geometry variations on the discharge coefficient

    Directory of Open Access Journals (Sweden)

    M.M.A. Alam

    2016-03-01

    Full Text Available Numerical works have been conducted to investigate the effect of nozzle geometries on the discharge coefficient. Several contoured converging nozzles with finite radius of curvatures, conically converging nozzles and conical divergent orifices have been employed in this investigation. Each nozzle and orifice has a nominal exit diameter of 12.7×10−3 m. A 3rd order MUSCL finite volume method of ANSYS Fluent 13.0 was used to solve the Reynolds-averaged Navier–Stokes equations in simulating turbulent flows through various nozzle inlet geometries. The numerical model was validated through comparison between the numerical results and experimental data. The results obtained show that the nozzle geometry has pronounced effect on the sonic lines and discharge coefficients. The coefficient of discharge was found differ from unity due to the non-uniformity of flow parameters at the nozzle exit and the presence of boundary layer as well.

  20. Criterions for fixing regulatory seismic acceleration coefficients

    International Nuclear Information System (INIS)

    Costes, D.

    1988-03-01

    Acceleration coeffficients to be taken into account in seismic areas for calculation of structures are defined in national seismic regulations. Joined to the described qualitative requirements, these coefficients represent a balance between precaution costs and avoided damages, both in terms of material repairing costs and damage to human life. Persons in charge of fixing these coefficients must be informed of corresponding quantitative aspects. Data on seismic motions occurrencies and consequences are gathered here and convoluted to mean damage evaluations. Indications on precaution costs are joined, which shows that currently recommended levels of seismic motions are high relatively to financial profitability, and represent in fact an aethical choice about human life value [fr

  1. Diffusion and transport coefficients in synthetic opals

    International Nuclear Information System (INIS)

    Sofo, J. O.; Mahan, G. D.

    2000-01-01

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society

  2. A Simple Measure of Price Adjustment Coefficients.

    OpenAIRE

    Damodaran, Aswath

    1993-01-01

    One measure of market efficiency is the speed with which prices adjust to new information. The author develops a simple approach to estimating these price adjustment coefficients by using the information in return processes. This approach is used to estimate t he price adjustment coefficients for firms listed on the NYSE and the A MEX as well as for over-the-counter stocks. The author finds evidence of a lagged adjustment to new information in shorter return intervals for firms in all market ...

  3. Absorption coefficient instrument for turbid natural waters

    Science.gov (United States)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  4. Transfer of risk coefficients across populations

    International Nuclear Information System (INIS)

    Rasmussen, L.R.

    1992-01-01

    The variation of lifetime risk projections for a Canadian population caused by the uncertainty in the choice of method for transferring excess relative risk coefficients between populations is assessed. Site-specific projections, varied by factors up to 3.5 when excess risk coefficients of the BEIR V relative risk models were transferred to the Canadian population using an additive and multiplicative method. When the risk from all cancers are combined, differences between transfer methods were no longer significant. The Canadian projections were consistent with the ICRP-60 nominal fatal cancer risk estimates. (author)

  5. Dependence of sputtering coefficient on ion dose

    International Nuclear Information System (INIS)

    Colligon, J.S.; Patel, M.H.

    1977-01-01

    The sputtering coefficient of polycrystalline gold bombarded by 10-40 keV Ar + ions had been measured as a function of total ion dose and shown to exhibit oscillations in magnitude between 30 and 100%. Possible experimental errors which would give rise to such an oscillation have been considered, but it is apparent that these factors are unable to explain the measurements. It is proposed that a change in the Sublimation Energy associated with either bulk damage or formation of surface topographical features arising during ion bombardment may be responsible for the observed variations in sputtering coefficient. (author)

  6. ANL results for LMFR reactivity coefficients benchmark

    International Nuclear Information System (INIS)

    Hill, Robert

    2000-01-01

    The fast reactor analysis methods developed at ANL were extensively tested in ZPR and ZPPR experiments, applied to EBR-2 and FFTF test reactors. The basic nuclear data library used was ENDF/B-V.2 with the ETOE-2 data processing code and the ENDF/B-VI. Multigroup constants were generated by Monte Carlo code MCNP 2 -2. Neutron flux calculation were done by DIF3D code applying neutron diffusion theory and finite difference method. The results obtained include basic parameters; fuel and structure regional Doppler coefficients; geometry expansion fuel coefficients; kinetics parameters. In general, agreement between phase 1 and 2 results were excellent

  7. Friction Coefficient Determination by Electrical Resistance Measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-01-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino…

  8. Bayesian Meta-Analysis of Coefficient Alpha

    Science.gov (United States)

    Brannick, Michael T.; Zhang, Nanhua

    2013-01-01

    The current paper describes and illustrates a Bayesian approach to the meta-analysis of coefficient alpha. Alpha is the most commonly used estimate of the reliability or consistency (freedom from measurement error) for educational and psychological measures. The conventional approach to meta-analysis uses inverse variance weights to combine…

  9. Tracking time-varying coefficient-functions

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Nielsen, Torben Skov; Joensen, Alfred K.

    2000-01-01

    is a combination of recursive least squares with exponential forgetting and local polynomial regression. It is argued, that it is appropriate to let the forgetting factor vary with the value of the external signal which is the argument of the coefficient functions. Some of the key properties of the modified method...... are studied by simulation...

  10. On finding algebraic expressions for genealogical coefficients

    International Nuclear Information System (INIS)

    Kanyauskas, J.M.; Shimonis, V.Ch.; Rudzikas, Z.B.

    1979-01-01

    It has been attempted to obtain analytical expressions for genealogical coefficients with one detached electron in the case of L-S coupling. A method of second quantization and tensorial properties of the quasi-spin operator are applied. It is restricted to the states for the classification of which the seigniority quantum number v is sufficient. Three ways of the acquirement of these expressions are discussed: 1. In the recurrent way wave functions of N and N-1 electrons are built, consequently expressing these functions in terms of the creation-annihilation operators. 2. Recurrent summation with the use of evident, simple genealogical coefficients. 3. Using the ratios, connecting the genealogical coefficients with the normalized multiplier. The data are presented in formulae and discussions. The generalization of the Redmond's formula is obtained and relatively simple algebraic expressions of the genealogical coefficients of the equivalent electron configurations, for the distinction of the recurrent terms of which introduction of the seigniority quantum number v is sufficient, are given

  11. Power coefficient anomaly in Joyo, (2)

    International Nuclear Information System (INIS)

    Ishikawa, Makoto; Yamashita, Yoshioki; Sasaki, Makoto; Nara, Yoshihiko.

    1981-12-01

    In this report, the presumption about the mechanism having caused the power coefficient anomaly in Joyo during the 75 MW power-raising test in 1979 is described. After the previous report, the new information about the results of the post-irradiation examination and the analysis of the power coefficient of Joyo were able to be obtained. From these information, the mechanism of causing the anomaly was presumed as follows. In 50 MW operation, the fuel burnup reached about 10,000 MWD/ton at the end of second cycle, and produced fission gas was almost retained in fuel pellets. When the power was raised from 50 MW to 75 MW for the first time, the fission gas began to be released when 50 MW was somewhat exceeded. The fission gas release caused the temperature rise and cracking of fuel pellets, and elongated fuel stack length abruptly. These phenomena induced to enlarge the fuel expansion reactivity effect and Doppler reactivity effect, and caused the anomalous behavior of power coefficient. After reaching 75 MW, the fuel stack length did not respond normally to reactor power change, and the magnitude of power coefficient became smaller. The reactivity was lost considerably from the core after the anomaly. (Kako, I.)

  12. Problems on Divisibility of Binomial Coefficients

    Science.gov (United States)

    Osler, Thomas J.; Smoak, James

    2004-01-01

    Twelve unusual problems involving divisibility of the binomial coefficients are represented in this article. The problems are listed in "The Problems" section. All twelve problems have short solutions which are listed in "The Solutions" section. These problems could be assigned to students in any course in which the binomial theorem and Pascal's…

  13. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, M.M.; Fabricius, I.L.

    2012-01-01

    one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...... determined under uniaxial strain condition will be more relevant in reservoir studies. Copyright 2012 ARMA, American Rock Mechanics Association....

  14. Molecular Diffusion Coefficients: Experimental Determination and Demonstration.

    Science.gov (United States)

    Fate, Gwendolyn; Lynn, David G.

    1990-01-01

    Presented are laboratory methods which allow the demonstration and determination of the diffusion coefficients of compounds ranging in size from water to small proteins. Included are the procedures involving the use of a spectrometer, UV cell, triterated agar, and oxygen diffusion. Results including quantification are described. (CW)

  15. Absorption coefficients of silicon: A theoretical treatment

    Science.gov (United States)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  16. Control in the coefficients with variational crimes

    DEFF Research Database (Denmark)

    Evgrafov, Anton; Marhadi, Kun Saptohartyadi

    2012-01-01

    We study convergence of discontinuous Galerkin-type discretizations of the problems of control in the coefficients of uniformly elliptic partial differential equations (PDEs). As a model problem we use that of the optimal design of thin (Kirchhoff) plates, where the governing equations...

  17. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    Science.gov (United States)

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  18. Activity risk coefficients for living generations

    International Nuclear Information System (INIS)

    Raicevic, J.; Merkle, M.; Ninkovic, M. M.

    1993-01-01

    This paper deals with the new concept of the Activity risk coefficients, ARCs, which are in Probabilistic risk assessment PRA computer codes used for the calculation of the stochastic effects due to low dose exposures. As an example, ARC expressions for the Cloudshine is derived. (author)

  19. The Evolution of Pearson's Correlation Coefficient

    Science.gov (United States)

    Kader, Gary D.; Franklin, Christine A.

    2008-01-01

    This article describes an activity for developing the notion of association between two quantitative variables. By exploring a collection of scatter plots, the authors propose a nonstandard "intuitive" measure of association; and by examining properties of this measure, they develop the more standard measure, Pearson's Correlation Coefficient. The…

  20. Probability based calibration of pressure coefficients

    DEFF Research Database (Denmark)

    Hansen, Svend Ole; Pedersen, Marie Louise; Sørensen, John Dalsgaard

    2015-01-01

    Normally, a consistent basis for calculating partial factors focuses on a homogeneous reliability index neither depending on which material the structure is constructed of nor the ratio between the permanent and variable actions acting on the structure. Furthermore, the reliability index should n...... the characteristic shape coefficients are based on mean values as specified in background documents to the Eurocodes. Importance of hidden safeties judging the reliability is discussed for wind actions on low-rise structures....... not depend on the type of variable action. A probability based calibration of pressure coefficients have been carried out using pressure measurements on the standard CAARC building modelled on scale of 1:383. The extreme pressures measured on the CAARC building model in the wind tunnel have been fitted.......3, the Eurocode partial factor of 1.5 for variable actions agrees well with the inherent uncertainties of wind actions when the pressure coefficients are determined using wind tunnel test results. The increased bias and uncertainty when pressure coefficients mainly are based on structural codes lead to a larger...

  1. Correlation Coefficients: Appropriate Use and Interpretation.

    Science.gov (United States)

    Schober, Patrick; Boer, Christa; Schwarte, Lothar A

    2018-05-01

    Correlation in the broadest sense is a measure of an association between variables. In correlated data, the change in the magnitude of 1 variable is associated with a change in the magnitude of another variable, either in the same (positive correlation) or in the opposite (negative correlation) direction. Most often, the term correlation is used in the context of a linear relationship between 2 continuous variables and expressed as Pearson product-moment correlation. The Pearson correlation coefficient is typically used for jointly normally distributed data (data that follow a bivariate normal distribution). For nonnormally distributed continuous data, for ordinal data, or for data with relevant outliers, a Spearman rank correlation can be used as a measure of a monotonic association. Both correlation coefficients are scaled such that they range from -1 to +1, where 0 indicates that there is no linear or monotonic association, and the relationship gets stronger and ultimately approaches a straight line (Pearson correlation) or a constantly increasing or decreasing curve (Spearman correlation) as the coefficient approaches an absolute value of 1. Hypothesis tests and confidence intervals can be used to address the statistical significance of the results and to estimate the strength of the relationship in the population from which the data were sampled. The aim of this tutorial is to guide researchers and clinicians in the appropriate use and interpretation of correlation coefficients.

  2. Modelling of power-reactivity coefficient measurement

    International Nuclear Information System (INIS)

    Strmensky, C.; Petenyi, V.; Jagrik, J.; Minarcin, M.; Hascik, R.; Toth, L.

    2005-01-01

    Report describes results of modeling of power-reactivity coefficient analysis on power-level. In paper we calculate values of discrepancies arisen during transient process. These discrepancies can be arisen as result of experiment evaluation and can be caused by disregard of 3D effects on neutron distribution. The results are critically discussed (Authors)

  3. Regularity of the Interband Light Absorption Coefficient

    Indian Academy of Sciences (India)

    In this paper we consider the interband light absorption coefficient (ILAC), in a symmetric form, in the case of random operators on the -dimensional lattice. We show that the symmetrized version of ILAC is either continuous or has a component which has the same modulus of continuity as the density of states.

  4. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    largely depending on the test room. Several conversion methods for porous absorbers from the Sabine absorption coefficient to the random incidence absorption coefficient were suggested by considering the finite size of a test specimen and non-uniformly incident energy onto the specimen, which turned out...... resistivity optimization outperforms the surface impedance optimization in terms of the reproducibility....

  5. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    Science.gov (United States)

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  6. Drag coefficient Variability and Thermospheric models

    Science.gov (United States)

    Moe, Kenneth

    Satellite drag coefficients depend upon a variety of factors: The shape of the satellite, its altitude, the eccentricity of its orbit, the temperature and mean molecular mass of the ambient atmosphere, and the time in the sunspot cycle. At altitudes where the mean free path of the atmospheric molecules is large compared to the dimensions of the satellite, the drag coefficients can be determined from the theory of free-molecule flow. The dependence on altitude is caused by the concentration of atomic oxygen which plays an important role by its ability to adsorb on the satellite surface and thereby affect the energy loss of molecules striking the surface. The eccentricity of the orbit determines the satellite velocity at perigee, and therefore the energy of the incident molecules relative to the energy of adsorption of atomic oxygen atoms on the surface. The temperature of the ambient atmosphere determines the extent to which the random thermal motion of the molecules influences the momentum transfer to the satellite. The time in the sunspot cycle affects the ambient temperature as well as the concentration of atomic oxygen at a particular altitude. Tables and graphs will be used to illustrate the variability of drag coefficients. Before there were any measurements of gas-surface interactions in orbit, Izakov and Cook independently made an excellent estimate that the drag coefficient of satellites of compact shape would be 2.2. That numerical value, independent of altitude, was used by Jacchia to construct his model from the early measurements of satellite drag. Consequently, there is an altitude dependent bias in the model. From the sparce orbital experiments that have been done, we know that the molecules which strike satellite surfaces rebound in a diffuse angular distribution with an energy loss given by the energy accommodation coefficient. As more evidence accumulates on the energy loss, more realistic drag coefficients are being calculated. These improved drag

  7. Saponification reaction system: a detailed mass transfer coefficient determination.

    Science.gov (United States)

    Pečar, Darja; Goršek, Andreja

    2015-01-01

    The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.

  8. Laser alteration of accommodation coefficient for isotope separation

    International Nuclear Information System (INIS)

    Keck, J.C.

    1976-01-01

    This patent describes a method and an apparatus for separating isotope types by inducing an isotopically selective vibrational excitation of molecules containing at least one atom of the element type whose isotopes are to be separated. Vibrational excitation is induced in the molecules by finely tuned, narrow bandwidth laser radiation applied to a gaseous flow of the molecules. Isotopic separation of the molecules is achieved from the enhanced difference in diffusion rates for the molecules due to an alteration of the accommodation coefficients in the excited molecules. 40 claims, 4 figures

  9. Determination of kinetic coefficients for some selected wastes (research note)

    International Nuclear Information System (INIS)

    Qaisi, M. K.; Samaneh, T; Zoubi, O.

    1999-01-01

    This study was undertaken to estimate the kinetic constants of different wastes experimentally using laboratory scale reactors. three wastes were close n; domestic, brewery, and whey. The resulting data for the three wastes fit well both sludge growth and oxygen utilization kinetic models with high correlation coefficients, and were found to be within the reported values by others. The study shows that oxygen utilization rate was higher for domestic than those for the two other wastes. Also it shows that suspended growth treating brewery and whey wastes are more sensitive to any increase in BOD 5 than that treating domestic wastewater. (authors). 7 refs., 7 figs., 5 tabs

  10. Uncertainties in Cancer Risk Coefficients for Environmental Exposure to Radionuclides. An Uncertainty Analysis for Risk Coefficients Reported in Federal Guidance Report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, David [U.S. Environmental Protection Agency; Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; Nelson, Christopher [U.S. Environmental Protection Agency

    2007-01-01

    Federal Guidance Report No. 13 (FGR 13) provides risk coefficients for estimation of the risk of cancer due to low-level exposure to each of more than 800 radionuclides. Uncertainties in risk coefficients were quantified in FGR 13 for 33 cases (exposure to each of 11 radionuclides by each of three exposure pathways) on the basis of sensitivity analyses in which various combinations of plausible biokinetic, dosimetric, and radiation risk models were used to generate alternative risk coefficients. The present report updates the uncertainty analysis in FGR 13 for the cases of inhalation and ingestion of radionuclides and expands the analysis to all radionuclides addressed in that report. The analysis indicates that most risk coefficients for inhalation or ingestion of radionuclides are determined within a factor of 5 or less by current information. That is, application of alternate plausible biokinetic and dosimetric models and radiation risk models (based on the linear, no-threshold hypothesis with an adjustment for the dose and dose rate effectiveness factor) is unlikely to change these coefficients by more than a factor of 5. In this analysis the assessed uncertainty in the radiation risk model was found to be the main determinant of the uncertainty category for most risk coefficients, but conclusions concerning the relative contributions of risk and dose models to the total uncertainty in a risk coefficient may depend strongly on the method of assessing uncertainties in the risk model.

  11. Nondestructive hall coefficient measurements using ACPD techniques

    Science.gov (United States)

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  12. Rate theory

    International Nuclear Information System (INIS)

    Maillard, S.; Skorek, R.; Maugis, P.; Dumont, M.

    2015-01-01

    This chapter presents the basic principles of cluster dynamics as a particular case of mesoscopic rate theory models developed to investigate fuel behaviour under irradiation such as in UO 2 . It is shown that as this method simulates the evolution of the concentration of every type of point or aggregated defect in a grain of material. It produces rich information that sheds light on the mechanisms involved in microstructure evolution and gas behaviour that are not accessible through conventional models but yet can provide for improvements in those models. Cluster dynamics parameters are mainly the energetic values governing the basic evolution mechanisms of the material (diffusion, trapping and thermal resolution). In this sense, the model has a general applicability to very different operational situations (irradiation, ion-beam implantation, annealing) provided that they rely on the same basic mechanisms, without requiring additional data fitting, as is required for more empirical conventional models. This technique, when applied to krypton implanted and annealed samples, yields a precise interpretation of the release curves and helps assess migration mechanisms and the krypton diffusion coefficient, for which data is very difficult to obtain due to the low solubility of the gas. (authors)

  13. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    Science.gov (United States)

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  14. Weyl q-coefficients for uq(3) and Racah q -coefficients for suq(2)

    International Nuclear Information System (INIS)

    Asherova, R.M.; Smirnov, Yu.F.; Tolstoy, V.N.

    1996-01-01

    With the aid of the projection-operator technique, the general analytic expression for the elements of the matrix that relates the U and T bases of an arbitrary finite-dimensional irreducible representation of the uq(3) quantum algebra (Weyl q-coefficients) is obtained for the case where the deformation parameter q is not equal to a square root of unity. The procedure for resummation of q-factorial expressions is used to prove that, modulo phase factors, these Weyl q-coefficients coincide with Racah q-coefficients for the suq(2) quantum algebra. It is also shown that, on the basis of one general formula, the q-analogs of all known general analytic expressions for the 6j symbols (and Racah coefficients) of the Lie algebras of the angular momentum can be obtained by using this resummation procedure. The symmetry properties of these q coefficients are discussed. The result is formulated in the following way: the general formulas for the q-6j symbols (Racah q-coefficients) of the suq(2) quantum algebra are obtained from the general formulas for the conventional 6j symbols (Racah coefficients) of the su(2) Lie algebra by replacing directly all factorials with q-factorials, the symmetry properties of the q-6j symbols being completely coincident with the symmetry properties of the conventional 6j symbols

  15. Meromorphic univalent function with negative coefficient

    Directory of Open Access Journals (Sweden)

    A. Dernek

    1994-01-01

    Full Text Available Let Mn be the classes of regular functions f(z=z−1+a0+a1z+… defined in the annulus 00, (n∈ℕ0, where I0f(z=f(z, If(z=(z−1−z(z−1−2∗f(z, Inf(z=I(In−1f(z, and ∗ is the Hadamard convolution. We denote by Γn=Mn⋃Γ, where Γ denotes the class of functions of the form f(z=z−1+∑k=1∞|ak|zk. We obtained that relates the modulus of the coefficients to starlikeness for the classes Mn and Γn, and coefficient inequalities for the classes Γn.

  16. Heat transfer coefficients during quenching of steels

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, H.S.; Jalil, J.M. [University of Technology, Department of Electromechanical Engineering, Baghdad (Iraq); Peet, M.J.; Bhadeshia, H.K.D.H. [University of Cambridge, Department of Materials Science and Metallurgy, Cambridge (United Kingdom)

    2011-03-15

    Heat transfer coefficients for quenching in water have been measured as a function of temperature using steel probes for a variety of iron alloys. The coefficients were derived from measured cooling curves combined with calculated heat-capacities. The resulting data were then used to calculate cooling curves using the finite volume method for a large steel sample and these curves have been demonstrated to be consistent with measured values for the large sample. Furthermore, by combining the estimated cooling curves with time-temperature-transformation (TTT) diagrams it has been possible to predict the variation of hardness as a function of distance via the quench factor analysis. The work should prove useful in the heat treatment of the steels studied, some of which are in the development stage. (orig.)

  17. Fractal diffusion coefficient from dynamical zeta functions

    Energy Technology Data Exchange (ETDEWEB)

    Cristadoro, Giampaolo [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, D 01187 Dresden (Germany)

    2006-03-10

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  18. Fractal diffusion coefficient from dynamical zeta functions

    International Nuclear Information System (INIS)

    Cristadoro, Giampaolo

    2006-01-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero. (letter to the editor)

  19. Differences between charged-current coefficient functions

    International Nuclear Information System (INIS)

    Moch, S.; Rogal, M.; Vogt, A.

    2007-08-01

    Second- and third-order results are presented for the structure functions of charged-current deepinelastic scattering in the framework of massless perturbative QCD. We write down the two-loop differences between the corresponding crossing-even and -odd coefficient functions, including those for the longitudinal structure function not covered in the literature so far. At three loops we compute the lowest five moments of these differences for all three structure functions and provide approximate expressions in Bjorken-x space. Also calculated is the related third-order coefficient-function correction to the Gottfried sum rule. We confirm the conjectured suppression of these quantities if the number of colours is large. Finally we derive the second- and third-order QCD contributions to the Paschos-Wolfenstein ratio used for the determination of the weak mixing angle from neutrino-nucleon deep-inelastic scattering. These contributions are found to be small. (orig.)

  20. Activity coefficient of aqueous sodium bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, Kenneth S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Peiper, J. Christopher [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    1980-09-01

    The determination of the activity coefficient and related properties of sodium bicarbonate presents special problems because of the appreciable vapor pressure of CO2 above such solutions. With the development of reliable equations for the thermodynamic properties of mixed electrolytes, it is possible to determine the parameters for NaHCO3 from cell measurements or NaCl-NaHCO3 mixtures. Literature data are analyzed to illustrate the method and provide interim values, hoever it is noted that further measurements over a wider range of concentrations would yield more definitive results. Lastly, an estimate is also given for the activity coefficient of KHCO3.

  1. Gate Control Coefficient Effect on CNFET Characteristic

    International Nuclear Information System (INIS)

    Sanudin, Rahmat; Ma'Radzi, Ahmad Alabqari; Nayan, Nafarizal

    2009-01-01

    The development of carbon nanotube field-effect transistor (CNFET) as alternative to existing transistor technology has long been published and discussed. The emergence of this device offers new material and structure in building a transistor. This paper intends to do an analysis of gate control coefficient effect on CNFET performance. The analysis is based on simulation study of current-voltage (I-V) characteristic of ballistic CNFET. The simulation study used the MOSFET-like CNFET mathematical model to establish the device output characteristic. Based on the analysis of simulation result, it is found that the gate control coefficient contributes to a significant effect on the performance of CNFET. The result also shown the parameter could help to improve the device performance in terms of its output and response as well. Nevertheless, the characteristic of the carbon nanotube that acts as the channel is totally important in determining the performance of the transistor as a whole.

  2. Relations between coefficients of fractional parentage

    International Nuclear Information System (INIS)

    Zamick, L.

    2007-01-01

    For each of the (9/2) (11/2), and (13/2) single j shells we have only one state with J=j v=3 for a five particle system. For four identical particles there can be more than one state of seniority four. We note some 'ratio' relations for the coefficients of fractional parentage for the four and five identical particle systems, which are found in the works of de Shalit and Talmi [Nuclear Shell Theory (Academic Press, New York, 1963)] and Talmi [Simple Models of Complex Nuclei (Harwood Academic, Reading, UK, 1993)] to be useful for explaining the vanishing of a five particle coefficients of fractional parentage (cfp). These relations are used to show that there is a special (g 9/2 ) 4 I=4 v=4 wave function that cannot be admixed with an I=4 v=2 wave function, even with seniority violating interactions

  3. The coefficient of friction, particularly of ice

    International Nuclear Information System (INIS)

    Mills, Allan

    2008-01-01

    The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04–0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found

  4. Diffusion coefficient calculations for cylindrical cells

    International Nuclear Information System (INIS)

    Lam-Hime, M.

    1983-03-01

    An accurate and general diffusion coefficient calculation for cylindrical cells is described using isotropic scattering integral transport theory. This method has been particularly applied to large regular lattices of graphite-moderated reactors with annular coolant channels. The cells are divided into homogeneous zones, and a zone-wise flux expansion is used to formulate a collision probability problem. The reflection of neutrons at the cell boundary is accounted for by the conservation of the neutron momentum. The uncorrected diffusion coefficient Benoist's definition is used, and the described formulation does not neglect any effect. Angular correlation terms, energy coupling non-uniformity and anisotropy of the classical flux are exactly taken into account. Results for gas-graphite typical cells are given showing the importance of these approximations

  5. Doppler coefficient measurements in Zebra Core 5

    International Nuclear Information System (INIS)

    Baker, A.R.; Wheeler, R.C.

    1965-11-01

    Measurements using a central hot loop in Zebra Core 5 are described. Results are given for the Doppler coefficients found in a number of assemblies with PuO 2 and 16% PuO 2 /84% depleted UO 2 pins, loaded with different combinations of steel, sodium or void pins. The mixed oxide results are in general about 20% more negative than was calculated using the FD2 data set, but agreement is good if the plutonium contributions in the calculations are omitted. The small positive Doppler coefficient calculated for Pu239 was not observed, and two measurements indicated instead a small negative effect. The Doppler effect in the mixed oxide systems was found to vary approximately as 1/T. The results from the empty loop and non-fissile assemblies indicate either a small negative Doppler effect in steel or alternatively the presence of an unexplained expansion effect. (author)

  6. Activity coefficients of solutes in binary solvents

    International Nuclear Information System (INIS)

    Gokcen, N.A.

    1982-01-01

    The activity coefficients in dilute ternary systems are discussed in detail by using the Margules equations. Analyses of some relevant data at high temperatures show that the sparingly dissolved solutes in binary solvents follow complex behavior even when the binary solvents are very nearly ideal. It is shown that the activity data on the solute or the binary system cannot permit computation of the remaining activities except for the regular solutions. It is also shown that a fourth-order equation is usually adequate in expressing the activity coefficient of a solute in binary solvents at high temperatures. When the activity data for a binary solvent are difficult to obtain in a certain range of composition, the activity data for a sparingly dissolved solute can be used to supplement determination of the binary activities

  7. Differences between charged-current coefficient functions

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S.; Rogal, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vogt, A. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences

    2007-08-15

    Second- and third-order results are presented for the structure functions of charged-current deepinelastic scattering in the framework of massless perturbative QCD. We write down the two-loop differences between the corresponding crossing-even and -odd coefficient functions, including those for the longitudinal structure function not covered in the literature so far. At three loops we compute the lowest five moments of these differences for all three structure functions and provide approximate expressions in Bjorken-x space. Also calculated is the related third-order coefficient-function correction to the Gottfried sum rule. We confirm the conjectured suppression of these quantities if the number of colours is large. Finally we derive the second- and third-order QCD contributions to the Paschos-Wolfenstein ratio used for the determination of the weak mixing angle from neutrino-nucleon deep-inelastic scattering. These contributions are found to be small. (orig.)

  8. Determination of Flow Resistance Coefficient for Vegetation in Open Channel: Laboratory study

    Science.gov (United States)

    Aliza Ahmad, Noor; Ali, ZarinaMd; Arish, Nur Aini Mohd; Munirah Mat Daud, Azra; Fatin Amirah Alias, Nur

    2018-04-01

    This study focused on determination of flow resistances coefficient for grass in an open channel. Laboratory works were conducted to examine the effects of varying of roughness elements on the flume to determine flow resistance coefficient and also to determine the optimum flow resistance with five different flow rate, Q. Laboratory study with two type of vegetation which are Cow Grass and Pearl Grass were implementing to the bed of a flume. The roughness coefficient, n value is determine using Manning’s equation while Soil Conservation Services (SCS) method was used to determine the surface resistance. From the experiment, the flow resistance coefficient for Cow Grass in range 0.0008 - 0.0039 while Pearl Grass value for the flow resistance coefficient are in between 0.0013 - 0.0054. As a conclusion the vegetation roughness value in open channel are depends on density, distribution type of vegetation used and physical characteristic of the vegetation itself

  9. New Inference Procedures for Semiparametric Varying-Coefficient Partially Linear Cox Models

    Directory of Open Access Journals (Sweden)

    Yunbei Ma

    2014-01-01

    Full Text Available In biomedical research, one major objective is to identify risk factors and study their risk impacts, as this identification can help clinicians to both properly make a decision and increase efficiency of treatments and resource allocation. A two-step penalized-based procedure is proposed to select linear regression coefficients for linear components and to identify significant nonparametric varying-coefficient functions for semiparametric varying-coefficient partially linear Cox models. It is shown that the penalized-based resulting estimators of the linear regression coefficients are asymptotically normal and have oracle properties, and the resulting estimators of the varying-coefficient functions have optimal convergence rates. A simulation study and an empirical example are presented for illustration.

  10. Dynamics analysis of SIR epidemic model with correlation coefficients and clustering coefficient in networks.

    Science.gov (United States)

    Zhang, Juping; Yang, Chan; Jin, Zhen; Li, Jia

    2018-07-14

    In this paper, the correlation coefficients between nodes in states are used as dynamic variables, and we construct SIR epidemic dynamic models with correlation coefficients by using the pair approximation method in static networks and dynamic networks, respectively. Considering the clustering coefficient of the network, we analytically investigate the existence and the local asymptotic stability of each equilibrium of these models and derive threshold values for the prevalence of diseases. Additionally, we obtain two equivalent epidemic thresholds in dynamic networks, which are compared with the results of the mean field equations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Analytical expressions for the electron backscattering coefficient

    International Nuclear Information System (INIS)

    August, H.J.; Wernisch, J.

    1989-01-01

    Several analytical expressions for the electron backscattering coefficient for massive homogeneous samples are compared with experimental data, directing special attention to the dependence of this quantity on the electron acceleration energy. It is shown that this dependence generally cannot be neglected. The expression proposed by Hunger and Kuechler turns out to be better than that of Love and Scott, although even the better formula can be slightly improved by a small modification. (author)

  12. Thin film description by wavelet coefficients statistics

    Czech Academy of Sciences Publication Activity Database

    Boldyš, Jiří; Hrach, R.

    2005-01-01

    Roč. 55, č. 1 (2005), s. 55-64 ISSN 0011-4626 Grant - others:GA UK(CZ) 173/2003 Institutional research plan: CEZ:AV0Z10750506 Keywords : thin films * wavelet transform * descriptors * histogram model Subject RIV: BD - Theory of Information Impact factor: 0.360, year: 2005 http://library.utia.cas.cz/separaty/2009/ZOI/boldys-thin film description by wavelet coefficients statistics .pdf

  13. Analytic posteriors for Pearson's correlation coefficient.

    Science.gov (United States)

    Ly, Alexander; Marsman, Maarten; Wagenmakers, Eric-Jan

    2018-02-01

    Pearson's correlation is one of the most common measures of linear dependence. Recently, Bernardo (11th International Workshop on Objective Bayes Methodology, 2015) introduced a flexible class of priors to study this measure in a Bayesian setting. For this large class of priors, we show that the (marginal) posterior for Pearson's correlation coefficient and all of the posterior moments are analytic. Our results are available in the open-source software package JASP.

  14. Analytic posteriors for Pearson's correlation coefficient

    OpenAIRE

    Ly, A.; Marsman, M.; Wagenmakers, E.-J.

    2018-01-01

    Pearson's correlation is one of the most common measures of linear dependence. Recently, Bernardo (11th International Workshop on Objective Bayes Methodology, 2015) introduced a flexible class of priors to study this measure in a Bayesian setting. For this large class of priors, we show that the (marginal) posterior for Pearson's correlation coefficient and all of the posterior moments are analytic. Our results are available in the open‐source software package JASP.

  15. Transport Coefficients from Large Deviation Functions

    OpenAIRE

    Gao, Chloe Ya; Limmer, David T.

    2017-01-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation functions. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which are scaled cumulant generating functions analogous to the free energies. A diffusion Monte Carlo algorithm is used to evaluate th...

  16. Correlation and prediction of gaseous diffusion coefficients.

    Science.gov (United States)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  17. Analysis of flow coefficient in chair manufacture

    Directory of Open Access Journals (Sweden)

    Ivković Dragoljub

    2005-01-01

    Full Text Available The delivery on time is not possible without the good-quality planning of deadlines, i.e. planning of the manufacturing process duration. The study of flow coefficient enables the realistic forecasting of the manufacturing process duration. This paper points to the significance of the study of flow coefficient on scientific basis so as to determine the terms of the end of the manufacture of chairs made of sawn timber. Chairs are the products of complex construction, often almost completely made of sawn timber as the basic material. They belong to the group of export products, so it is especially significant to analyze the duration of the production cycle, and the type and the degree of stoppages in this type of production. Parallel method of production is applied in chair manufacture. The study shows that the value of flow coefficient is close to one or higher, in most cases. The results indicate that the percentage of interoperational stoppage is unjustifiably high, so it is proposed how to decrease the percentage of stoppages in the manufacturing process.

  18. Download this PDF file

    African Journals Online (AJOL)

    Rates of reaction of l-aryl-3,3-diethyltriazines with. B-naphthol in acid media to yield azo ayes have been measured in dimethylformamide solution at 25°. For a series of four acids of different acid strengths, pseudo-first-order rate constants were obtained, and the reaction was found to be follow third order kinetics, first order ...

  19. Persistence and fate of some organophosphorus pesticides in sea sediments along east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.; SenGupta, R.

    and fate of these pesticides Rate of hydrolysis of these pesticides in freshwater, brackish water and sea-sediments followed the path of pseudo first order reaction The rate constants (K1) and the half life periods (T2) of these pesticides were determined...

  20. Reductieve dehalogenering van heterocyclische verbindingen, relatie tussen structuur en omzettingssnelheid

    NARCIS (Netherlands)

    de Beer KGM; Peijnenburg WJGM; Verboom JH

    1992-01-01

    A relationship was derived between the structure of halogenated heterocyclic aromatic compounds and their rate of dehalogenation in anaerobic sediment-water mixtures. Of all compounds selected, the pseudo-first order reaction rate constant was determined from the concentration-time profile, as

  1. Modelling diurnal courses of photosynthesis and transpiration of leaves on the basis of stomatal and non-stomatal responses

    NARCIS (Netherlands)

    Yu, Q.; Goudriaan, J.; Wang, T.D.

    2001-01-01

    A mathematical model for photoinhibition of leaf photosynthesis was developed by formalising the assumptions that (1) the rate of photoinhibition is proportional to irradiance; and (2) the rate of recovery, derived from the formulae for a pseudo first-order process, is proportional to the extent of

  2. Material balance and diets in biological life support systems: a relationship with a coefficient of closure

    Science.gov (United States)

    Manukovsky, N. S.; Kovalev, V. S.; Somova, L. A.

    Biological life support systems (BLSS) of various coefficients of closure were considered The basic coefficient of closure was accepted equal to 66%. With increase in coefficient of closure food requirements for the greater degree should be satisfied due to the manufacture of food inside the BLSS. In this connection food values were estimated both in the basic variant, and in those with increased coefficients of closure. Metabolic massflow rates were estimated at the input and output of the BLSS as well as inside it. Human massflow rates were submitted on the basis of characteristics of the 'reference man'. Stoichiometric synthesis - degradation equations of organic substances in the BLSS were obtained. A problem of nitrogen imbalance was shown to occur under an incomplete BLSS closure. To compensate losses of nitrogen with urine and feces, food and nitrogen-containing additives should be introduced into the BLSS.

  3. Ratio of dialytic coefficients of hydrogen and tritium in permeation through palladium alloy film

    International Nuclear Information System (INIS)

    Fujita, Haruyuki; Fujita, Kunio; Sakamoto, Hiroshi; Higashi, Kunio; Okada, Sakae.

    1982-01-01

    The dialytic coefficient for hydrogen is especially large in palladium and its alloys. Recently, with the research on fusion reactors, the dialytic coefficient of tritium permeating through solids and its isotopic effect have been the object of interest. The ratio of the dialytic coefficients of tritium and hydrogen has been usually assumed to be 3. The measurement of the dialytic coefficient in solids using pure tritium is practically difficult. Therefore, the authors carried out the experiment to determine the ratio of the dialytic coefficients of pure T 2 and pure H 2 by permeating the mixed gas of T and H through Pd-Au-Ag alloy. The mixed hydrogen gas was filled in a separation cell containing a palladium alloy tube, and the separation factor of tritium and hydrogen was measured by changing pressure, flow rate and temperature. The separation factor depends mainly on the relative dialytic coefficients of tritium and hydrogen, therefore, the ratio of dialytic coefficients can be determined by the simple analysis of the experimental results. This experimental method is suitable to determine the relative value of dialytic coefficients, and the obtained ratio was about 2.1. (Kako, I.)

  4. Preliminary Experimental Study on Pressure Loss Coefficients of Exhaust Manifold Junction

    Directory of Open Access Journals (Sweden)

    Xiao-lu Lu

    2014-01-01

    Full Text Available The flow characteristic of exhaust system has an important impact on inlet boundary of the turbine. In this paper, high speed flow in a diesel exhaust manifold junction was tested and simulated. The pressure loss coefficient of the junction flow was analyzed. The steady experimental results indicated that both of static pressure loss coefficients L13 and L23 first increased and then decreased with the increase of mass flow ratio of lateral branch and public manifold. The total pressure loss coefficient K13 always increased with the increase of mass flow ratio of junctions 1 and 3. The total pressure loss coefficient K23 first increased and then decreased with the increase of mass flow ratio of junctions 2 and 3. These pressure loss coefficients of the exhaust pipe junctions can be used in exhaust flow and turbine inlet boundary conditions analysis. In addition, simulating calculation was conducted to analyze the effect of branch angle on total pressure loss coefficient. According to the calculation results, total pressure loss coefficient was almost the same at low mass flow rate of branch manifold 1 but increased with lateral branch angle at high mass flow rate of branch manifold 1.

  5. Comparison of field-measured radon diffusion coefficients with laboratory-measured coefficients

    International Nuclear Information System (INIS)

    Lepel, E.A.; Silker, W.B.; Thomas, V.W.; Kalkwarf, D.R.

    1983-04-01

    Experiments were conducted to compare radon diffusion coefficients determined for 0.1-m depths of soils by a steady-state method in the laboratory and diffusion coefficients evaluated from radon fluxes through several-fold greater depths of the same soils covering uranium-mill tailings. The coefficients referred to diffusion in the total pore volume of the soils and are equivalent to values for the quantity, D/P, in the Generic Environmental Impact Statement on Uranium Milling prepared by the US Nuclear Regulatory Commission. Two soils were tested: a well-graded sand and an inorganic clay of low plasticity. For the flux evaluations, radon was collected by adsorption on charcoal following passive diffusion from the soil surface and also from air recirculating through an aluminum tent over the soil surface. An analysis of variance in the flux evaluations showed no significant difference between these two collection methods. Radon diffusion coefficients evaluated from field data were statistically indistinguishable, at the 95% confidence level, from those measured in the laboratory; however, the low precision of the field data prevented a sensitive validation of the laboratory measurements. From the field data, the coefficients were calculated to be 0.03 +- 0.03 cm 2 /s for the sand cover and 0.0036 +- 0.0004 cm 2 /s for the clay cover. The low precision in the coefficients evaluated from field data was attributed to high variation in radon flux with time and surface location at the field site

  6. Estimation of the heat transfer coefficient in melt spinning process

    International Nuclear Information System (INIS)

    Tkatch, V I; Maksimov, V V; Grishin, A M

    2009-01-01

    Effect of the quenching wheel velocity in the range 20.7-26.5 m/s on the cooling rate as well as on the structure and microtopology of the contact surfaces of the glass-forming FeNiPB melt-spun ribbons has been experimentally studied. Both the values of the cooling rate and heat transfer coefficient at the wheel-ribbon interface estimated from the temperature vs. time curves recorded during melt spinning runs are in the ranges (1.6-5.2)x10 6 K/s and (2.8-5.2)x10 5 Wm -2 K -1 , respectively, for ribbon thicknesses of 31.4-22.0 μm. It was found that the density of the air pockets at the underside surface of ribbons decreases while its average depth remains essentially unchanged with the wheel velocity. Using the surface quality parameters the values of the heat transfer coefficient in the areas of direct ribbon-wheel contact were evaluated to be ranging from 5.75 to 6.65x10 5 Wm -2 K -1 .

  7. Compilation report of VHTRC temperature coefficient benchmark calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi; Yamane, Tsuyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1995-11-01

    A calculational benchmark problem has been proposed by JAERI to an IAEA Coordinated Research Program, `Verification of Safety Related Neutronic Calculation for Low-enriched Gas-cooled Reactors` to investigate the accuracy of calculation results obtained by using codes of the participating countries. This benchmark is made on the basis of assembly heating experiments at a pin-in block type critical assembly, VHTRC. Requested calculation items are the cell parameters, effective multiplication factor, temperature coefficient of reactivity, reaction rates, fission rate distribution, etc. Seven institutions from five countries have joined the benchmark works. Calculation results are summarized in this report with some remarks by the authors. Each institute analyzed the problem by applying the calculation code system which was prepared for the HTGR development of individual country. The values of the most important parameter, k{sub eff}, by all institutes showed good agreement with each other and with the experimental ones within 1%. The temperature coefficient agreed within 13%. The values of several cell parameters calculated by several institutes did not agree with the other`s ones. It will be necessary to check the calculation conditions again for getting better agreement. (J.P.N.).

  8. Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.

    Science.gov (United States)

    Fukuda, M; Mishima, T; Nakayama, N; Masuda, T

    2010-08-01

    The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.

  9. Numerical study on over reading coefficient in wet steam flow measurement

    International Nuclear Information System (INIS)

    Bai Xuesong; Yuan Dewen; Yan Xiao; Peng Xingjian

    2013-01-01

    This paper investigated the flow process of wet steam in Venturi under interested conditions with CFD simulation software. The effect of pressure, mass flow rate, throat radius on over reading factor was analyzed. This paper aims to improve the wet steam over reading model and the prediction accuracy in wet steam. The results prove that the mass flow has a small effect on over reading coefficient, while the effect that throat radius has on over reading coefficient increases as the pressure rises. (authors)

  10. Determination of coefficient matrices for ARMA model

    International Nuclear Information System (INIS)

    Tran Dinh Tri.

    1990-10-01

    A new recursive algorithm for determining coefficient matrices of ARMA model from measured data is presented. The Yule-Walker equations for the case of ARMA model are derived from the ARMA innovation equation. The recursive algorithm is based on choosing appropriate form of the operator functions and suitable representation of the (n+1)-th order operator functions according to ones with the lower order. Two cases, when the order of the AR part is equal to one of the MA part, and the optimal case, were considered. (author) 5 refs

  11. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Skinner, C.H.; Suckewer, S.; Princeton Univ., NJ; Lee, W.

    1991-02-01

    Experimental evidence is presented for the change of Einstein's A-coefficients for spontaneous transitions from the upper laser level of an argon ion laser discharge due to the presence of the high-intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  12. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Lee, W.; Skinner, C.H.; Suckewer, S.

    1991-03-01

    Experimental evidence is presented for the change of Einstein's A- coefficients for spontaneous transitions from the upper laser level of argon ion laser discharge due to the presence of the high- intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  13. Kinetic coefficients in isotopically disordered crystals

    International Nuclear Information System (INIS)

    Zhernov, Arkadii P; Inyushkin, Alexander V

    2002-01-01

    Peculiarities of the behavior of kinetic coefficients, like thermal conductivity, electric conductivity, and thermoelectric power, in isotopically disordered materials are reviewed in detail. New experimental and theoretical results on the isotope effects in the thermal conductivity of diamond, Ge, and Si semiconductors are presented. The suppression effect of phonon-drag thermopower in the isotopically disordered Ge crystals is discussed. The influence of dynamic and static crystal lattice deformations on the electric conductivity of metals as well as on the ordinary phonon spectrum deformations is considered. (reviews of topical problems)

  14. Peltier coefficient measurement in a thermoelectric module

    International Nuclear Information System (INIS)

    Garrido, Javier; Casanovas, Alejandro; Chimeno, José María

    2013-01-01

    A new method for measuring the Peltier coefficient in a thermocouple X/Y based on the energy balance at the junction has been proposed recently. This technique needs only the hot and cold temperatures of a thermoelectric module when an electric current flows through it as the operational variables. The temperature evolutions of the two module sides provide an evident and accurate idea of the Peltier effect. From these temperatures, the heat transfer between the module and the ambient is also evaluated. The thermoelectric phenomena are described in the framework of an observable theory. Based on this procedure, an experiment is presented for a university teaching laboratory at the undergraduate level. (paper)

  15. Friction coefficient determination by electrical resistance measurements

    Science.gov (United States)

    Tunyagi, A.; Kandrai, K.; Fülöp, Z.; Kapusi, Z.; Simon, A.

    2018-05-01

    A simple and low-cost, DIY-type, Arduino-driven experiment is presented for the study of friction and measurement of the friction coefficient, using a conductive rubber cord as a force sensor. It is proposed for high-school or college/university-level students. We strongly believe that it is worthwhile planning, designing and performing Arduino and compatible sensor-based experiments in physics class in order to ensure a better understanding of phenomena, develop theoretical knowledge and multiple experimental skills.

  16. Kinetic coefficients for quark-antiquark plasma

    International Nuclear Information System (INIS)

    Czyz, W.; Florkowski, W.

    1986-03-01

    The quark-antiquark plasma near equilibrium is studied. The results are based on the Heinz kinetic equations with the Boltzmann collision operator approximated by a relaxation term with the relaxation time, τ, treated as a small parameter. Linear in τ solutions of these equations are used to calculate the transport coefficients: the non-abelian version of Ohm's law, and the shear and volume viscosities. We introduce new chemical potentials which determine the color density matrix of quarks (antiquarks). Gradients of these potentials generate color currents. 12 refs. (author)

  17. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel

    Science.gov (United States)

    Manjuladevi, M.; Anitha, R.; Manonmani, S.

    2018-03-01

    The adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II), ions from aqueous solutions by Cucumis melo peel-activated carbon was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto CMAC was analyzed with Elovich, intra-particle diffusion rate equations and pseudo-first-order model. The rate constant of Elovich and intra-particle diffusion on CMAC increased in the sequence of Cr(VI) > Ni(II) > Cd(II) > Pb(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-first-order model compared to the second-order Lagergren's model with R 2 > 0.957. The maximum adsorption of metal ions onto the CMAC was found to be 97.95% for Chromium(VI), 98.78% for Ni(II), 98.55% for Pb(II) and 97.96% for Cd(II) at CMAC dose of 250 mg. The adsorption capacities followed the sequence Ni(II) ≈ Pb(II) > Cr(VI) ≈ Cd(II) and Ni(II) > Pb(II) > Cd(II) > Cr(VI). The optimum adsorption conditions selected were adsorbent dosage of 250 mg, pH of 3.0 for Cr(VI) and 6.0 for Ni(II), Cd(II) and Pb(II), adsorption concentration of 250 mg/L and contact time of 180.

  18. Forecast Correlation Coefficient Matrix of Stock Returns in Portfolio Analysis

    OpenAIRE

    Zhao, Feng

    2013-01-01

    In Modern Portfolio Theory, the correlation coefficients decide the risk of a set of stocks in the portfolio. So, to understand the correlation coefficients between returns of stocks, is a challenge but is very important for the portfolio management. Usually, the stocks with small correlation coefficients or even negative correlation coefficients are preferred. One can calculate the correlation coefficients of stock returns based on the historical stock data. However, in order to control the ...

  19. Link prediction with node clustering coefficient

    Science.gov (United States)

    Wu, Zhihao; Lin, Youfang; Wang, Jing; Gregory, Steve

    2016-06-01

    Predicting missing links in incomplete complex networks efficiently and accurately is still a challenging problem. The recently proposed Cannistrai-Alanis-Ravai (CAR) index shows the power of local link/triangle information in improving link-prediction accuracy. Inspired by the idea of employing local link/triangle information, we propose a new similarity index with more local structure information. In our method, local link/triangle structure information can be conveyed by clustering coefficient of common-neighbors directly. The reason why clustering coefficient has good effectiveness in estimating the contribution of a common-neighbor is that it employs links existing between neighbors of a common-neighbor and these links have the same structural position with the candidate link to this common-neighbor. In our experiments, three estimators: precision, AUP and AUC are used to evaluate the accuracy of link prediction algorithms. Experimental results on ten tested networks drawn from various fields show that our new index is more effective in predicting missing links than CAR index, especially for networks with low correlation between number of common-neighbors and number of links between common-neighbors.

  20. Graphical comparison of calculated internal conversion coefficients

    International Nuclear Information System (INIS)

    Ewbank, W.B.

    1980-11-01

    Calculated values of the coefficients of internal conversion of gamma rays in the K shell and L 1 , L 2 , L 3 subshells from published tabulations by Band and Trzhaskovskaya and by Roesel et al. at Data Nucl. Data Tables, 21, 92-514(1978) are compared with values obtained by computer interpolation among tabulated values of Hager and Seltzer Nucl. Data, A4, 1-235(1968). In some cases, agreement among the three calculations is remarkably good, and differences are generally less than 5%. In a few cases, there are differences as large as 20 to 50%, corresponding to the threshold effect described by Roesel et al. The Z-dependent resonance minimum described by Roesel et al. is also observed in the comparison of E1-E4 conversion in the L 1 subshell. In several cases (notably M1-M4 conversion in the K shell and L 1 subshell), the Band and Roesel calculations show dramatically different dependence on gamma energy and atomic number. For Z = 100, the Band calculation for E4 conversion in the L 3 subshell shows irregular behavior at energies below the K-shell binding energy. A few high-quality measurements of internal conversion coefficients (+-5%) would help greatly to establish a basis for choice among the theoretical calculations. 32 figures

  1. Transport coefficients of a dissociating gas

    International Nuclear Information System (INIS)

    Lebed', I.V.

    1987-01-01

    The calculation of the transport coefficients of a dissociating gas involves fundamental difficulties which arise when the internal degrees of freedom of the molecules are taken strictly into account. In practical calculations extensive use is made of the approximation in the context of which the dependence of a diffusion velocity of the molecule on its internal state is totally neglected. In this case the expressions for the stress tensor and the diffusion velocities coincide with the corresponding expressions for a mixture of structureless particles; in the expression for the heat flux the diffusion transport of internal energy is taken only approximately into account. Here, analytic expressions for the diffusion velocities, heat flux and stress tensor are obtained without introducing simplifying assumptions. The calculation method is based on an approximate method of calculating the transport coefficients of a multicomponent mixture of structureless particles. The relations obtained are analyzed and compared with the existing results; their accuracy is estimated. A closed system of equations of gas dynamics is presented for a number of cases of practical importance

  2. Sets of Fourier coefficients using numerical quadrature

    International Nuclear Information System (INIS)

    Lyness, J. N.

    2001-01-01

    One approach to the calculation of Fourier trigonometric coefficients f(r) of a given function f(x) is to apply the trapezoidal quadrature rule to the integral representation f(r)=(line i ntegral)(sub 0)(sup 1) f(x)e(sup -2(pi)irx)dx. Some of the difficulties in this approach are discussed. A possible way of overcoming many of these is by means of a subtraction function. Thus, one sets f(x)= h(sub p-1)(x)+ g(sub p)(x), where h(sub -1)(x) is an algebraic polynomial of degree p-1, specified in such a way that the Fourier series of g(sub p)(x) converges more rapidly than that of f(x). To obtain the Fourier coefficients of f(x), one uses an analytic expression for those of h(sub p-1)(x) and numerical quadrature to approximately those of g(sub p)(x)

  3. Shear viscosity coefficient from microscopic models

    International Nuclear Information System (INIS)

    Muronga, Azwinndini

    2004-01-01

    The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the ultrarelativistic quantum molecular dynamics (UrQMD), using the Green-Kubo formulas. Molecular-dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of π,η,ω,ρ,φ with a uniform phase-space distribution, the evolution takes place through elastic collisions, production, and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green-Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times

  4. Soil plant transfer coefficient of 14C-carbofuran in brassica sp. vegetable agroecosystem

    International Nuclear Information System (INIS)

    Nashriyah Mat; Mazleha Maskin; Kubiak, R.

    2006-01-01

    The soil plant transfer coefficient or f factor of 14 C-carbofuran pesticide was studied in outdoor lysimeter experiment consisting of Brassica sp. vegetable crop, riverine alluvial clayey soil and Bungor series sandy loam soil. Soil transfer coefficients at 0-10 cm soil depth were 4.38 ± 0.30, 5.76 ± 1.04, 0.99 ± 0.25 and 2.66 ± 0.71; from IX recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, IX recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 0-25 cm soil depth, soil plant transfer coefficients were 8.96 ± 0.91, 10.40 ± 2.63, 2.34 ± 0.68 and 619 ±1.40, from IX recommended application rate in alluvial soil, 2X recommended application rate in alluvial soil, IX recommended application rate in Bungor soil and 2X recommended application rate in Bungor soil, respectively. At 77 days after treatment (DAT), the soil plant transfer coefficient was significantly higher in riverine alluvial soil than Bungor soil whereas shoot and root growth was significantly higher in Bungor soil than in riverine alluvial soil. At both 0-10 cm Brassica sp. rooting depth and 0-25 cm soil depth, the soil plant transfer coefficient was significantly higher in 2X recommended application rate of 14 C-carbofuran as compared to IX recommended application rate, in both Bungor and riverine alluvial soils. (Author)

  5. Reaction rate and isomer-specific product branching ratios of C2H + C4H8: 1-butene, cis-2-butene, trans-2-butene, and isobutene at 79 K.

    Science.gov (United States)

    Bouwman, Jordy; Fournier, Martin; Sims, Ian R; Leone, Stephen R; Wilson, Kevin R

    2013-06-20

    The reactions of C2H radicals with C4H8 isomers 1-butene, cis-2-butene, trans-2-butene, and isobutene are studied by laser photolysis-vacuum ultraviolet mass spectrometry in a Laval nozzle expansion at 79 K. Bimolecular-reaction rate constants are obtained by measuring the formation rate of the reaction product species as a function of the reactant density under pseudo-first-order conditions. The rate constants are (1.9 ± 0.5) × 10(-10), (1.7 ± 0.5) × 10(-10), (2.1 ± 0.7) × 10(-10), and (1.8 ± 0.9) × 10(-10) cm(3) s(-1) for the reaction of C2H with 1-butene, cis-2-butene, trans-2-butene, and isobutene, respectively. Bimolecular rate constants for 1-butene and isobutene compare well to values measured previously at 103 K using C2H chemiluminescence. Photoionization spectra of the reaction products are measured and fitted to ionization spectra of the contributing isomers. In conjunction with absolute-ionization cross sections, these fits provide isomer-resolved product branching fractions. The reaction between C2H and 1-butene yields (65 ± 10)% C4H4 in the form of vinylacetylene and (35 ± 10)% C5H6 in the form of 4-penten-1-yne. The cis-2-butene and trans-2-butene reactions yield solely 3-penten-1-yne, and no discrimination is made between cis- and trans-3-penten-1-yne. Last, the isobutene reaction yields (26 ± 15)% 3-penten-1-yne, (35 ± 15)% 2-methyl-1-buten-3-yne, and (39 ± 15)% 4-methyl-3-penten-1-yne. The branching fractions reported for the C2H and butene reactions indicate that these reactions preferentially proceed via CH3 or C2H3 elimination rather than H-atom elimination. Within the experimental uncertainties, no evidence is found for the formation of cyclic species.

  6. Determination of friction coefficient in unconfined compression of brain tissue.

    Science.gov (United States)

    Rashid, Badar; Destrade, Michel; Gilchrist, Michael D

    2012-10-01

    Unconfined compression tests are more convenient to perform on cylindrical samples of brain tissue than tensile tests in order to estimate mechanical properties of the brain tissue because they allow homogeneous deformations. The reliability of these tests depends significantly on the amount of friction generated at the specimen/platen interface. Thus, there is a crucial need to find an approximate value of the friction coefficient in order to predict a possible overestimation of stresses during unconfined compression tests. In this study, a combined experimental-computational approach was adopted to estimate the dynamic friction coefficient μ of porcine brain matter against metal platens in compressive tests. Cylindrical samples of porcine brain tissue were tested up to 30% strain at variable strain rates, both under bonded and lubricated conditions in the same controlled environment. It was established that μ was equal to 0.09±0.03, 0.18±0.04, 0.18±0.04 and 0.20±0.02 at strain rates of 1, 30, 60 and 90/s, respectively. Additional tests were also performed to analyze brain tissue under lubricated and bonded conditions, with and without initial contact of the top platen with the brain tissue, with different specimen aspect ratios and with different lubricants (Phosphate Buffer Saline (PBS), Polytetrafluoroethylene (PTFE) and Silicone). The test conditions (lubricant used, biological tissue, loading velocity) adopted in this study were similar to the studies conducted by other research groups. This study will help to understand the amount of friction generated during unconfined compression of brain tissue for strain rates of up to 90/s. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. peroxo complexes

    Indian Academy of Sciences (India)

    Administrator

    present kinetic studies of the decomposition of a group of closely related ... tuted benzoic acid; n = 1 or 2) at low temperature shows a pseudo first order rate of decay. ... species. References. 1. Que Jr L 1997 J. Chem. Soc., Dalton Trans. 3933.

  8. An Analogy Using Pennies and Dimes to Explain Chemical Kinetics Concepts

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Perez, Wanda I.; Lopez, Jose R.; Moore-Russo, Deborah A.

    2011-01-01

    In this article, the authors present an analogy that uses coins and graphical analysis to teach kinetics concepts and resolve pseudo-first-order rate constants related to transition-metal complexes ligand-solvent exchange reactions. They describe an activity that is directed to upper-division undergraduate and graduate students. The activity…

  9. Kinetics of the Adsorption of Bovine Serum Albumin of White Wine ...

    African Journals Online (AJOL)

    This study investigates the kinetics of adsorption of bovine serum albumin, BSA, in white wine model solutions onto activated carbon, AC, and alumina, AL. Pseudo-first order and pseudo-second order models were applied to determine the rate and mechanism of adsorption of the white wine protein during the haze removal ...

  10. A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO 2 loaded polymer nanofiber membranes

    KAUST Repository

    Dilpazir, S.; Usman, M.; Rasul, Shahid; Arshad, S. N.

    2016-01-01

    . The photocatalytic activity improved by a factor of ∼2 and the kinetics of photodegradation switched from pseudo-first order to pseudo-second order with increasing TiO2 content with a maximum rate constant of 20.7 h-1. © The Royal Society of Chemistry 2016.

  11. Photoelectrocatalytic removal of color from water using TiO 2 and ...

    African Journals Online (AJOL)

    ... a pseudo first order model and the apparent rate constant may depend on several factors such as, the nature and concentration of the organic compound, radiant flux, the solution pH and the presence of other organic substances. KEY WORDS: Photoelectrocatalysis, Titanium dioxide, Cuprous oxide, Composite thin film, ...

  12. Questionnaire discrimination: (re-introducing coefficient δ

    Directory of Open Access Journals (Sweden)

    Hankins Matthew

    2007-05-01

    Full Text Available Abstract Background Questionnaires are used routinely in clinical research to measure health status and quality of life. Questionnaire measurements are traditionally formally assessed by indices of reliability (the degree of measurement error and validity (the extent to which the questionnaire measures what it is supposed to measure. Neither of these indices assesses the degree to which the questionnaire is able to discriminate between individuals, an important aspect of measurement. This paper introduces and extends an existing index of a questionnaire's ability to distinguish between individuals, that is, the questionnaire's discrimination. Methods Ferguson (1949 1 derived an index of test discrimination, coefficient δ, for psychometric tests with dichotomous (correct/incorrect items. In this paper a general form of the formula, δG, is derived for the more general class of questionnaires allowing for several response choices. The calculation and characteristics of δG are then demonstrated using questionnaire data (GHQ-12 from 2003–2004 British Household Panel Survey (N = 14761. Coefficients for reliability (α and discrimination (δG are computed for two commonly-used GHQ-12 coding methods: dichotomous coding and four-point Likert-type coding. Results Both scoring methods were reliable (α > 0.88. However, δG was substantially lower (0.73 for the dichotomous coding of the GHQ-12 than for the Likert-type method (δG = 0.96, indicating that the dichotomous coding, although reliable, failed to discriminate between individuals. Conclusion Coefficient δG was shown to have decisive utility in distinguishing between the cross-sectional discrimination of two equally reliable scoring methods. Ferguson's δ has been neglected in discussions of questionnaire design and performance, perhaps because it has not been implemented in software and was restricted to questionnaires with dichotomous items, which are rare in health care research. It is

  13. Molar extinction coefficients of some fatty acids

    DEFF Research Database (Denmark)

    Sandhu, G.K.; Singh, K.; Lark, B.S.

    2002-01-01

    ) and stearic acid (C18H36O2), has been measured at the photon energies 81, 356, 511, 662, 1173 and 1332 keV. Experimental values for the molar extinction coefficient, the effective atomic number and the electron density have been derived and compared with theoretical calculations. There is good agreement......The attenuation of gamma rays in some fatty acids, viz. formic acid (CH2O2), acetic acid (C2H4O2), propionic acid (C3H6O2), butyric acid (C4H8O2), n-hexanoic acid (C6H12O2), n-caprylic acid (C8H16O2), lauric acid (C12H24O2), myristic acid (C14H28O2), palmitic acid (C16H32O2), oleic acid (C18H34O2...

  14. Coefficient alpha and interculture test selection.

    Science.gov (United States)

    Thurber, Steven; Kishi, Yasuhiro

    2014-04-01

    The internal consistency reliability of a measure can be a focal point in an evaluation of the potential adequacy of an instrument for adaptation to another cultural setting. Cronbach's alpha (α) coefficient is often used as the statistical index for such a determination. However, alpha presumes a tau-equivalent test and may constitute an inaccurate population estimate for multidimensional tests. These notions are expanded and examined with a Japanese version of a questionnaire on nursing attitudes toward suicidal patients, originally constructed in Sweden using the English language. The English measure was reported to have acceptable internal consistency (α) albeit the dimensionality of the questionnaire was not addressed. The Japanese scale was found to lack tau-equivalence. An alternative to alpha, "composite reliability," was computed and found to be below acceptable standards in magnitude and precision. Implications for research application of the Japanese instrument are discussed. © The Author(s) 2012.

  15. Thermal expansion coefficient determination by CBED

    International Nuclear Information System (INIS)

    Angelini, P.; Bentley, J.

    1984-01-01

    The present application of CBED involves measurements of thermal-expansion coefficients by measurement of changes in HOLZ line positions as a function of temperature. Previous work on this subject was performed on Si at a constant accelerating voltage of 100 kV between about 90 and 600 K. Diffraction patterns were recorded and line shifts correlated to lattice parameter changes. Differences were noted between values determined by CBED and accepted thermal expansion values. Significant HOLZ line interactions and splitting occurring in the (111) patterns were noted to contribute to the differences. Preliminary measurements have been made on Al, Al 2 O 3 , and single-crystal tau (Ni/sub 20.3/Ti/sub 2.7/B 6 ). An example of changes in HOLZ lines present in (114) patterns for Al are shown and the effect of temperature on the position of lines in the pattern illustrated

  16. Friction Experiments for Dynamical Coefficient Measurement

    Directory of Open Access Journals (Sweden)

    J. J. Arnoux

    2011-01-01

    Full Text Available An experimental study, including three experimental devices, is presented in order to investigate dry friction phenomena in a wide range of sliding speeds for the steel on steel contact. A ballistic setup, with an air gun launch, allows to estimate the friction coefficient between 20 m/s and 80 m/s. Tests are completed by an adaptation of the sensor on a hydraulic tensile machine (0.01 m/s to 3 m/s and a pin-on-disk tribometer mounted on a CNC lathe (1 to 30 m/s. The interactions at the asperity scale are characterized by a white light interferometer surface analysis.

  17. Transport coefficients in superfluid neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)

    2016-01-22

    We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.

  18. Clustering stocks using partial correlation coefficients

    Science.gov (United States)

    Jung, Sean S.; Chang, Woojin

    2016-11-01

    A partial correlation analysis is performed on the Korean stock market (KOSPI). The difference between Pearson correlation and the partial correlation is analyzed and it is found that when conditioned on the market return, Pearson correlation coefficients are generally greater than those of the partial correlation, which implies that the market return tends to drive up the correlation between stock returns. A clustering analysis is then performed to study the market structure given by the partial correlation analysis and the members of the clusters are compared with the Global Industry Classification Standard (GICS). The initial hypothesis is that the firms in the same GICS sector are clustered together since they are in a similar business and environment. However, the result is inconsistent with the hypothesis and most clusters are a mix of multiple sectors suggesting that the traditional approach of using sectors to determine the proximity between stocks may not be sufficient enough to diversify a portfolio.

  19. Ghost imaging based on Pearson correlation coefficients

    International Nuclear Information System (INIS)

    Yu Wen-Kai; Yao Xu-Ri; Liu Xue-Feng; Li Long-Zhen; Zhai Guang-Jie

    2015-01-01

    Correspondence imaging is a new modality of ghost imaging, which can retrieve a positive/negative image by simple conditional averaging of the reference frames that correspond to relatively large/small values of the total intensity measured at the bucket detector. Here we propose and experimentally demonstrate a more rigorous and general approach in which a ghost image is retrieved by calculating a Pearson correlation coefficient between the bucket detector intensity and the brightness at a given pixel of the reference frames, and at the next pixel, and so on. Furthermore, we theoretically provide a statistical interpretation of these two imaging phenomena, and explain how the error depends on the sample size and what kind of distribution the error obeys. According to our analysis, the image signal-to-noise ratio can be greatly improved and the sampling number reduced by means of our new method. (paper)

  20. Thermal linear expansion coefficient of structural graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.

    1995-01-01

    The data now available on radiation induced changes of linear thermal expansion coefficients (CTE) for native structural carbon materials (SCM) irradiated with high fluences are summarized. For different types of native and foreign SCM dose dependences of CTE changes in the temperature range of 300...1600 K and at fluences up to (2...3)x10 22 n/cm 2 (E>0.18 meV) are compared. On the base of this comparison factors defined the CTE changes under neutron irradiation are revealed and the explanation of observed phenomena is offered. Large number of the factors revealed does not allowed to calculate CTE radiation induced changes. 39 refs.; 16 figs.; 5 tabs

  1. Coefficient of performance of Stirling refrigerators

    Science.gov (United States)

    E Mungan, Carl

    2017-09-01

    Stirling coolers transfer heat in or out of the working fluid during all four stages of their operation, and their coefficient of performance depends on whether the non-isothermal heat exchanges are performed reversibly or irreversibly. Both of these possibilities can in principle be arranged. Notably, if the working fluid is an ideal gas, the input of energy in the form of heat during one isochoric step is equal in magnitude to the output during the other isochoric step in the cycle. The theoretical performance of the fridge can then attain the reversible Carnot limit if a regenerator is used, which is a high heat capacity material through which the gas flows. Various Stirling refrigerator configurations are analysed in this article at a level of presentation suitable for an introductory undergraduate thermodynamics course.

  2. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    Science.gov (United States)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  3. Diagnosing cysts with correlation coefficient images from 2-dimensional freehand elastography.

    Science.gov (United States)

    Booi, Rebecca C; Carson, Paul L; O'Donnell, Matthew; Richards, Michael S; Rubin, Jonathan M

    2007-09-01

    We compared the diagnostic potential of using correlation coefficient images versus elastograms from 2-dimensional (2D) freehand elastography to characterize breast cysts. In this preliminary study, which was approved by the Institutional Review Board and compliant with the Health Insurance Portability and Accountability Act, we imaged 4 consecutive human subjects (4 cysts, 1 biopsy-verified benign breast parenchyma) with freehand 2D elastography. Data were processed offline with conventional 2D phase-sensitive speckle-tracking algorithms. The correlation coefficient in the cyst and surrounding tissue was calculated, and appearances of the cysts in the correlation coefficient images and elastograms were compared. The correlation coefficient in the cysts was considerably lower (14%-37%) than in the surrounding tissue because of the lack of sufficient speckle in the cysts, as well as the prominence of random noise, reverberations, and clutter, which decorrelated quickly. Thus, the cysts were visible in all correlation coefficient images. In contrast, the elastograms associated with these cysts each had different elastographic patterns. The solid mass in this study did not have the same high decorrelation rate as the cysts, having a correlation coefficient only 2.1% lower than that of surrounding tissue. Correlation coefficient images may produce a more direct, reliable, and consistent method for characterizing cysts than elastograms.

  4. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  5. Axially symmetric reconstruction of plasma emission and absorption coefficients

    International Nuclear Information System (INIS)

    Yang Lixin; Jia Hui; Yang Jiankun; Li Xiujian; Chen Shaorong; Liu Xishun

    2013-01-01

    A layered structure imaging model is developed in order to reconstruct emission coefficients and absorption coefficients simultaneously, in laser fusion core plasma diagnostics. A novel axially symmetric reconstruction method that utilizes the LM (Levenberg-Marquardt) nonlinear least squares minimization algorithm is proposed based on the layered structure. Numerical simulation results demonstrate that the proposed method is sufficiently accurate to reconstruct emission coefficients and absorption coefficients, and when the standard deviation of noise is 0.01, the errors of emission coefficients and absorption coefficients are 0.17, 0.22, respectively. Furthermore, this method could perform much better on reconstruction effect compared with traditional inverse Abel transform algorithms. (authors)

  6. Evaporation Kinetics of Polyol Droplets: Determination of Evaporation Coefficients and Diffusion Constants

    Science.gov (United States)

    Su, Yong-Yang; Marsh, Aleksandra; Haddrell, Allen E.; Li, Zhi-Ming; Reid, Jonathan P.

    2017-11-01

    In order to quantify the kinetics of mass transfer between the gas and condensed phases in aerosol, physicochemical properties of the gas and condensed phases and kinetic parameters (mass/thermal accommodation coefficients) are crucial for estimating mass fluxes over a wide size range from the free molecule to continuum regimes. In this study, we report measurements of the evaporation kinetics of droplets of 1-butanol, ethylene glycol (EG), diethylene glycol (DEG), and glycerol under well-controlled conditions (gas flow rates and temperature) using the previously developed cylindrical electrode electrodynamic balance technique. Measurements are compared with a model that captures the heat and mass transfer occurring at the evaporating droplet surface. The aim of these measurements is to clarify the discrepancy in the reported values of mass accommodation coefficient (αM, equals to evaporation coefficient based on microscopic reversibility) for 1-butanol, EG, and DEG and improve the accuracy of the value of the diffusion coefficient for glycerol in gaseous nitrogen. The uncertainties in the thermophysical and experimental parameters are carefully assessed, the literature values of the vapor pressures of these components are evaluated, and the plausible ranges of the evaporation coefficients for 1-butanol, EG, and DEG as well as uncertainty in diffusion coefficient for glycerol are reported. Results show that αM should be greater than 0.4, 0.2, and 0.4 for EG, DEG, and 1-butanol, respectively. The refined values are helpful for accurate prediction of the evaporation/condensation rates.

  7. Interpretation of Nonlinear Well Loss Coefficients for Rorabaugh (1953) Method.

    Science.gov (United States)

    Kurtulus, B.; Yaylım, T. N.; Avşar

    2016-12-01

    Step drawdown test (SDT) are essential for hydrogeologist to determine aquifer loss and well loss parameters. In a SDT, different series of constant-discharges with incremental rates are conducted to obtain incremental drawdown into the pumping well. Pumping well efficiency (if the well is properly developed and designed), aquifer characteristics (transmissivity, storativity) and discharge-drawdown relationship can be derived from SDT. The well loss parameter directly associate with the well efficiency. The main problem is to determine the correct well loss parameter in order to estimate aquifer characteristics. Walton (1962) stated that the interpretation of the well efficiency is possible to determine the nonlinear head loss coefficient (C) with p equals to 2 and Walton (1962) presented a criteria that suggested the following terms: If C is less than 1800 m2/s5, the is properly developed and designed, If C is ranged from 1800 m2/s5 to 3600 m2/s5, the well has a mild deterioration, If C is greater than 3600 m2/s5, the well has a severe clogging. Until now, several well-known computer techniques such as Aqutesolv, AquiferWin32 , AquifertestPro can be found in the literature to evaluate well efficiency when exponential parameter (p) equals to 2. However, there exist a lack of information to evaluate well efficiency for different number of exponential parameter (p). Strategic Water Storage & Recovery (SWSR) Project in Liwa, Abu Dhabi is the leading and unique hydrogeology project in the world because of its both financial and scientific dimension. A total of 315 recovery wells have been drilled in pursuance of the scope of the SWSR project. A Universal Well Efficiency Criteria (UWEC) is developed using 315 Step Drawdown Test (SDT). UWEC is defined for different number of head loss equation coefficients. The results reveal that there is a strong correlation between non-linear well loss coefficient (C) and exponential parameter (p) up to a coefficient of determination

  8. Coefficient αcc in design value of concrete compressive strength

    Directory of Open Access Journals (Sweden)

    Goleš Danica

    2016-01-01

    Full Text Available Coefficient αcc introduces the effects of rate and duration of loading on compressive strength of concrete. These effects may be partially or completely compensated by the increase in concrete strength over time. Selection of the value of this coefficient, in recommended range between 0.8 and 1.0, is carried out through the National Annexes to Eurocode 2. This paper presents some considerations related to the introduction of this coefficient and its value adopted in some European countries. The article considers the effect of the adoption of conservative value αcc=0.85 on design value of compressive and flexural resistance of rectangular cross-section made of normal and high strength concrete. It analyzes the influence of different values of coefficient αcc on the area of reinforcement required to achieve the desired resistance of cross-section.

  9. Determination of the Peltier Coefficient of Germanium in a Vertical Bridgeman-Stockbarger Furnace

    Science.gov (United States)

    Weigel, Michaela E. K.; Matthiesen, David H.

    1997-01-01

    The Peltier effect is the fundamental mechanism that makes interface demarcation through current pulsing possible. If a method for calculating the necessary current density for effective demarcation is to be developed, it will be necessary to know the value of the Peltier coefficient. This study determined experimentally the value of the Peltier coefficient for gallium-doped germanium by comparing the change in average growth rates between current-on and current-off periods. Current-on and current-off layer thickness measurements were made using differential interference contrast microscopy and atomic force microscopy. It was found that the Joule and Thomson effects could not be neglected. Peltier coefficients calculated from the experimental data with an analysis that accounts for Joule, Thomson, and Peltier effects yielded an average value for the Peltier coefficient of 0.076 +/- 0.015 V.

  10. Computing exact Fourier series coefficients of IC rectilinear polygons from low-resolution fast Fourier coefficients

    Science.gov (United States)

    Scheibler, Robin; Hurley, Paul

    2012-03-01

    We present a novel, accurate and fast algorithm to obtain Fourier series coefficients from an IC layer whose description consists of rectilinear polygons on a plane, and how to implement it using off-the-shelf hardware components. Based on properties of Fourier calculus, we derive a relationship between the Discrete Fourier Transforms of the sampled mask transmission function and its continuous Fourier series coefficients. The relationship leads to a straightforward algorithm for computing the continuous Fourier series coefficients where one samples the mask transmission function, compute its discrete Fourier transform and applies a frequency-dependent multiplicative factor. The algorithm is guaranteed to yield the exact continuous Fourier series coefficients for any sampling representing the mask function exactly. Computationally, this leads to significant saving by allowing to choose the maximal such pixel size and reducing the fast Fourier transform size by as much, without compromising accuracy. In addition, the continuous Fourier series is free from aliasing and follows closely the physical model of Fourier optics. We show that in some cases this can make a significant difference, especially in modern very low pitch technology nodes.

  11. Pade approximants for entire functions with regularly decreasing Taylor coefficients

    International Nuclear Information System (INIS)

    Rusak, V N; Starovoitov, A P

    2002-01-01

    For a class of entire functions the asymptotic behaviour of the Hadamard determinants D n,m as 0≤m≤m(n)→∞ and n→∞ is described. This enables one to study the behaviour of parabolic sequences from Pade and Chebyshev tables for many individual entire functions. The central result of the paper is as follows: for some sequences {(n,m(n))} in certain classes of entire functions (with regular Taylor coefficients) the Pade approximants {π n,m(n) }, which provide the locally best possible rational approximations, converge to the given function uniformly on the compact set D={z:|z|≤1} with asymptotically best rate

  12. Attenuation Coefficient of Single-Mode Periodic Waveguides

    Science.gov (United States)

    Baron, A.; Mazoyer, S.; Smigaj, W.; Lalanne, P.

    2011-10-01

    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln⁡(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.

  13. Improved cryo-resistors with low temperature coefficients

    International Nuclear Information System (INIS)

    Warnecke, P.; Braun, E.

    1989-01-01

    A new type of 10- and 12.9κΩ cryo-resistors operating in a liquid helium bath with small temperature coefficient of resistivity have been built. Details for the fabrication of these improved cryo-resistors are reported. Experimental evidence of their drift rates are on the order of a few parts in 10 9 per day. A reduction of the mean pressure of 98.7 kPa in the helium dewar to 86.1 kPa, corresponding to a temperature decrease from 4.19 to 4.07 Κ, did not change the resistance value by more than the experimental resolution of 4 parts in 10 8

  14. Addition and elimination kinetics in OH radical induced oxidation of phenol and cresols in acidic and alkaline solutions

    International Nuclear Information System (INIS)

    Roder, M.; Wojnarovits, L.; Foeldiak, G.; Emmi, S.S.; Beggiato, G.; D'Angelantonio, M.

    1999-01-01

    The rates of the two consecutive reactions, OH radical addition and H 2 O/OH - elimination, were studied by pulse radiolysis in highly acidic (pH=1.3-1.9) and alkaline (pH∼11) solutions, respectively, for phenol and for the three cresol isomers. The rate coefficient of the addition as measured by the build-up of phenoxyl radical absorbance and by a competitive method is the same (1.4±0.1)x10 10 mol -1 dm 3 s -1 both in acidic and alkaline solution. The rate coefficient of the H 2 O elimination in acidic solution is (1.6±0.2)x10 6 s -1 , whereas the coefficient of the OH - elimination in alkaline solutions is 6-8 times higher. The kinetics of the phenoxyl radical formation was described by the two-exponential equation of the consecutive reactions: the first exponential is related to the pseudo-first-order addition, while the second to the elimination reaction. No considerable structure dependence was found in the rate coefficients, indicating that the methyl substitutent in these highly acidic or alkaline solutions influences neither the addition nor the elimination rate

  15. Partially linear varying coefficient models stratified by a functional covariate

    KAUST Repository

    Maity, Arnab; Huang, Jianhua Z.

    2012-01-01

    We consider the problem of estimation in semiparametric varying coefficient models where the covariate modifying the varying coefficients is functional and is modeled nonparametrically. We develop a kernel-based estimator of the nonparametric

  16. Variable-coefficient nonisospectral Toda lattice hierarchy and its ...

    Indian Academy of Sciences (India)

    In this paper, a hierarchy of nonisospectral equations with variable coefficients is derived from the ..... from the definitions of Lax integrability and Lax pairs [26] that the variable-coefficient ..... studying which will be the topic for our future study.

  17. Solving Variable Coefficient Fourth-Order Parabolic Equation by ...

    African Journals Online (AJOL)

    Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.

  18. The Attenuation of Correlation Coefficients: A Statistical Literacy Issue

    Science.gov (United States)

    Trafimow, David

    2016-01-01

    Much of the science reported in the media depends on correlation coefficients. But the size of correlation coefficients depends, in part, on the reliability with which the correlated variables are measured. Understanding this is a statistical literacy issue.

  19. Experimental Research on the Determination of the Coefficient of Sliding Wear under Iron Ore Handling Conditions

    Directory of Open Access Journals (Sweden)

    G. Chen

    2017-09-01

    Full Text Available The handling of iron ore bulk solids maintains an increasing trend due to economic development. Because iron ore particles have hard composites and irregular shapes, the bulk solids handling equipment surface can suffer from severe sliding wear. Prediction of equipment surface wear volume is beneficial to the efficient maintenance of worn areas. Archard’s equation provides a theoretical solution to predict wear volume. To use Archard’s equation, the coefficient of sliding wear must be determined. To our best knowledge, the coefficient of sliding wear for iron ore handling conditions has not yet been determined. In this research, using a pin-on-disk tribometer, the coefficients of sliding wear for both Sishen particles and mild steel are determined with regard to iron ore handling conditions. Both naturally irregular and spherical shapes of particles are used to estimate average values of wear rate. Moreover, the hardness and inner structures of Sishen particles are examined, which adds the evidence of the interpretation of wear results. It is concluded that the coefficients of sliding wear can vary largely for both Sishen particle and mild steel. The wear rate decreases from transient- to steady-state. The average coefficient of sliding wear is capable of predicting wear with respect to long distances at the steady-state. Two types of sliding friction are distinguished. In addition, it is found that the temperature rise of the friction pairs has negligible influence on wear rate.

  20. Multiphoton absorption coefficients in solids: an universal curve

    International Nuclear Information System (INIS)

    Brandi, H.S.; Araujo, C.B. de

    1983-04-01

    An universal curve for the frequency dependence of the multiphoton absorption coefficient is proposed based on a 'non-perturbative' approach. Specific applications have been made to obtain two, three, four and five photons absorption coefficient in different materials. Properly scaling of the two photon absorption coefficient and the use of the universal curve yields results for the higher order absorption coefficients in good agreement with the experimental data. (Author) [pt

  1. On the Occurrence of Standardized Regression Coefficients Greater than One.

    Science.gov (United States)

    Deegan, John, Jr.

    1978-01-01

    It is demonstrated here that standardized regression coefficients greater than one can legitimately occur. Furthermore, the relationship between the occurrence of such coefficients and the extent of multicollinearity present among the set of predictor variables in an equation is examined. Comments on the interpretation of these coefficients are…

  2. Transfer coefficients in elliptical tubes and plate fin heat exchangers

    International Nuclear Information System (INIS)

    Saboya, S.M.

    1979-09-01

    Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.) [pt

  3. An Investigation of the Sampling Distribution of the Congruence Coefficient.

    Science.gov (United States)

    Broadbooks, Wendy J.; Elmore, Patricia B.

    This study developed and investigated an empirical sampling distribution of the congruence coefficient. The effects of sample size, number of variables, and population value of the congruence coefficient on the sampling distribution of the congruence coefficient were examined. Sample data were generated on the basis of the common factor model and…

  4. Asymmetrical slip propensity: required coefficient of friction.

    Science.gov (United States)

    Seo, Jung-suk; Kim, Sukwon

    2013-07-31

    Most studies in performing slips and falls research reported their results after the ipsilateral leg of subjects (either right foot or left foot) was guided to contact the contaminated floor surface although many studies indicated concerns for asymmetries of legs in kinematic or kinetic variables. Thus, the present study evaluated if dominant leg's slip tendency would be different from non-dominant leg's slip tendency by comparing the Required Coefficient of Friction (RCOF) of the two lower limbs. Forty seven health adults participated in the present study. RCOF was measured when left or right foot of subjects contacted the force platforms respectively. Paired t-test was performed to test if RCOF and heel velocity (HCV) of dominant legs was different from that of non-dominant legs. It was suggested that the asymmetry in RCOFs and HCV between the two lower limbs existed. The RCOFs of non-dominant legs were higher than that of dominant legs. The results indicated that asymmetry in slip propensity, RCOF, was existed in lower extremity. The results from the study suggested that it would be benefit to include a variable, such as asymmetry, in slips and falls research.

  5. Coefficient of Friction of Human Corneal Tissue.

    Science.gov (United States)

    Wilson, Tawnya; Aeschlimann, Rudolf; Tosatti, Samuele; Toubouti, Youssef; Kakkassery, Joseph; Osborn Lorenz, Katherine

    2015-09-01

    A novel property evaluation methodology was used to determine the elusive value for the human corneal coefficient of friction (CoF). Using a microtribometer on 28 fresh human donor corneas with intact epithelia, the CoF was determined in 4 test solutions (≥5 corneas/solution): tear-mimicking solution (TMS) in borate-buffered saline (TMS-PS), TMS in phosphate-buffered saline (TMS-PBS), TMS with HEPES-buffered saline (TMS-HEPES), and tear-like fluid in PBS (TLF-PBS). Mean (SD) CoF values ranged from 0.006 to 0.015 and were 0.013 (0.010) in TMS-PS, 0.006 (0.003) in TMS-PBS, 0.014 (0.005) in TMS-HEPES, and 0.015 (0.009) in TLF-PBS. Statistically significant differences were shown for TMS-PBS versus TLF (P = 0.0424) and TMS-PBS versus TMS-HEPES (P = 0.0179), but not for TMS-PBS versus TMS-PS (P = 0.2389). Successful measurement of the fresh human corneal tissue CoF was demonstrated, with values differing in the evaluated buffer solutions, within this limited sample size.

  6. Local diffusion coefficient determination: Mediterranean Sea experiments

    International Nuclear Information System (INIS)

    Bacciola, D.; Borghini, M.; Cannarsa, S.

    1993-10-01

    The Mediterranean is a semi/enclosed basin characterized by the presence of channels and straits influencing the circulation, temperature and salinity fields. The tides generally have amplitudes of the order of 10 cm and velocities of few cm/s. Conversely, the wind forced circulation is very strong and can assume velocity values of 1 m/s at the sea surface. The temperature and salinity fields have a high temporal and spatial variability, because of many mixing processes existing in the sea. For example, the waters coming from the Provencal basin meet those waters coming from the Tyrrhenian Sea in the eastern Ligurian Sea, creating meanders and eddies. Local runoff influences significantly the coastal circulation. This paper describes diffusion experiments carried out in this complex environment. The experimental apparatus for the detection of the fluorescine released at sea was composed by two Turner mod. 450 fluorometres. During the experiments, temperature and salinity vertical profiles were measured by using a CTD; meteorological data were acquired on a dinghy. The positioning was obtained by means of a Motorola system, having a precision of about 1 meter. The experiments were carried out under different stratification and wind conditions. From data analysis it was found that the horizontal diffusion coefficient does not depend on time or boundary conditions. The role of stratification is important with regard to vertical displacement of the dye. However, its role with regard to vertical diffusion cannot be assessed with the actual experimental apparatus

  7. Assessment of satellite derived diffuse attenuation coefficients ...

    Science.gov (United States)

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. The products included the diffuse attenuation coefficient at 490 nm (Kd_490) and for the visible range (Kd_PAR), and euphotic depth (Zeu, corresponding to 1% of the surface incident photosynthetically available radiation or PAR). Above-water hyperspectral reflectance data collected over optically shallow waters of the Florida Keys between June 1997 and August 2011 were used to help understand algorithm performance over optically shallow waters. The in situ data covered a variety of water types in South Florida and the Caribbean Sea, ranging from deep clear waters, turbid coastal waters, and optically shallow waters (Kd_490 range of ~0.03 – 1.29m-1). An algorithm based on Inherent Optical Properties (IOPs) showed the best performance (RMSD turbidity or shallow bottom contamination. Similar results were obtained when only in situ data were used to evaluate algorithm performance. The excellent agreement between satellite-derived remote sensing reflectance (Rrs) and in situ Rrs suggested that

  8. Townsend coefficients of gases in avalanche counters

    International Nuclear Information System (INIS)

    Brunner, G.

    1978-01-01

    Though much work has been done by many authors in the last few years in the development and application of avalanche counters for ion radiation, it is based upon values of the Townsend coefficients as the essential gas parameter, which were determined many years ago for much lower reduced field strengths F/p than prevail in such counters. Therefore absolute determinations of α in vapours of methyl alcohol, cyclohexane, acetone, and n-heptene were performed under original conditions of avalanche counters. The values obtained do not differ by more than 30%-50% from the former values indeed, extrapolated over F/p for the first three mentioned substances, but the amounts of A and B in the usual representation α/p=A exp(-B(F/p)) are much greater for the stronger reduced fields. This is of importance for such counter properties as the dependence of pulse heights on pressure, voltage, electrode distance etc., which are governed by other combinations of A and B than α/p itself. A comparison of results for different ionic radiations shows a marked influence of the primary ionization density along the particle tracks which is hard to explain. (Auth.)

  9. Volatilization: a soil degassing coefficient for iodine

    International Nuclear Information System (INIS)

    Sheppard, M.I.; Thibault, D.H.; Smith, P.A.; Hawkins, J.L.

    1994-01-01

    Iodine, an element essential to some animals, is ubiquitous in the biosphere. Unlike other metallic elements, molecular I is volatile, and other inorganic species present in aerated soils, such as I - and IO 3 - , may also volatilize as hydrides, hydrogen iodide (HI), or hydrogen iodates (HIO 3 , HIO 4 ). Methyl iodide has been measured in soils, and it is likely evolved from soils and plants. The long-lived radioisotope 129 I is abundant in nuclear wastes, and its high solubility in groundwater makes it an important element in the performance assessment of underground disposal facilities. Overestimates of soil I residence half-times by traditional foodchain models may be due to underestimation of volatilization. Field and lysimeter experiments over a 3-year period, and direct trapping experiments in the laboratory are reported. The results, combined with values from the literature, indicate the soil I degassing coefficient for a wide range of soil types, vegetated and bare, wet and dry, is lognormally distributed with a geometric mean of 2.1 x 10 -2 year -1 , a range of 1.8 x 10 -4 to 3.1 year -1 and a geometric standard deviation of 3.0. The results of a biosphere model simulation including degassing reduces soil I concentrations fivefold and increases air concentrations 25-fold at steady state, compared to simulations without degassing. (author)

  10. Systematic Risk on Istanbul Stock Exchange: Traditional Beta Coefficient Versus Downside Beta Coefficient

    Directory of Open Access Journals (Sweden)

    Gülfen TUNA

    2013-03-01

    Full Text Available The aim of this study is to test the validity of Downside Capital Asset Pricing Model (D-CAPM on the ISE. At the same time, the explanatory power of CAPM's traditional beta and D-CAPM's downside beta on the changes in the average return values are examined comparatively. In this context, the monthly data for seventy three stocks that are continuously traded on the ISE for the period 1991-2009 is used. Regression analysis is applied in this study. The research results have shown that D-CAPM is valid on the ISE. In addition, it is obtained that the power of downside beta coefficient is higher than traditional beta coefficient on explaining the return changes. Therefore, it can be said that the downside beta is superior to traditional beta in the ISE for chosen period.

  11. The development from kinetic coefficients of a predictive model for the growth of Eichhomia crassipes in the field. I. Generating kinetic coefficients for the model in greenhouse culture

    Directory of Open Access Journals (Sweden)

    C. F. Musil

    1984-12-01

    Full Text Available The kinetics of N- and P- limited growth of Eichhornia crassipes (Mart . Solms were investigated in greenhouse culture with the object of developing a model for predicting population sizes, yields, growth rates and frequencies and amounts of harvest, under varying conditions of nutrient loading and climate, to control both nutrient inputs and excessive growth in eutrophied aquatic systems. The kinetic coefficients, maximum specific growth rate (Umax, half saturation coefficient (Ks and yield coefficient (Yc were measured under N and P limitation in replicated batch culture experiments. Umax values and Ks concentrations derived under N limitation ranged from 5,37 to 8,86% d + and from 400 to 1 506 µg  N ℓ1respectively. Those derived under P limitation ranged from 4,51 to 10,89% d 1 and from 41 to 162 fig P ℓ1 respectively. Yc values (fresh mass basis determined ranged from 1 660 to 1 981 (87 to 98 dry mass basis for N and from 16 431 to 18 671 (867 to 980 dry mass basis for P. The reciprocals of Yc values (dry mass basis, expressed as percentages, adequately estimated the minimum limiting concentrations of N and P {% dry mass in the plant tissues. Kinetic coefficients determined are compared with those reported for algae. The experimental method used and results obtained are critically assessed.

  12. Transfer coefficients for terrestrial foodchain: their derivation and limitations

    International Nuclear Information System (INIS)

    Ng, Y.C.; Colsher, C.S.; Thompson, S.E.

    1979-01-01

    Transfer coefficients to predict the passage of isotopes from the environment to terrestrial foods have been derived for various radionuclides of importance in the nuclear fuel cycle. These data update and extend previously recommended handbook values. We derive transfer coefficients to terrestrial foods and describe the systematics of the derived transfer coefficients. Suggestions are offered for changes in the values of transfer coefficients to terrestrial foods that now appear in federal regulatory guides. Deficiencies in our present knowledge concerning transfer coefficients and limitations in the use of these values to ensure compliance with radiation protection standards are discussed

  13. Transport coefficients of strongly interacting matter

    International Nuclear Information System (INIS)

    Heckmann, Klaus

    2011-01-01

    In this thesis, we investigate the dissipative transport phenomena of strongly interacting matter. The special interest is in the shear viscosity and its value divided by entropy density. The performed calculations are based on effective models for Quantum Chromodynamics, mostly focused on the 2-flavor Nambu-Jona-Lasinio model. This allows us to study the hadronic sector as well as the quark sector within one single model. We expand the models up to next-to-leading order in inverse numbers of colors. We present different possibilities of calculating linear transport coefficients and give an overview over qualitative properties as well as over recent ideas concerning ideal fluids. As present methods are not able to calculate the quark two-point function in Minkowski space-time in the self-consistent approximation scheme of the Nambu-Jona-Lasinio model, a new method for this purpose is developed. This self-energy parametrization method is applied to the expansion scheme, yielding the quark spectral function with meson back-coupling effects. The usage of this spectral function in the transport calculation is only one result of this work. We also test the application of different transport approaches in the NJL model, and find an interesting behavior of the shear viscosity at the critical end point of the phase diagram. We also use the NJL model to calculate the viscosity of a pion gas in the dilute regime. After an analysis of other models for pions and their interaction, we find that the NJL-result leads to an important modification of transport properties in comparison with the calculations which purely rely on pion properties in the vacuum. (orig.)

  14. Mapping Pesticide Partition Coefficients By Electromagnetic Induction

    Science.gov (United States)

    A potential method for reducing pesticide leaching is to base application rates on the leaching potential of a specific chemical and soil combination. However, leaching is determined in part by the partitioning of the chemical between the soil and soil solution, which varies across a field. Standard...

  15. Transfer coefficients to terrestrial food products in equilibrium assessment models for nuclear installations

    International Nuclear Information System (INIS)

    Zach, R.

    1980-09-01

    Transfer coefficients have become virtually indispensible in the study of the fate of radioisotopes released from nuclear installations. These coefficients are used in equilibrium assessment models where they specify the degree of transfer in food chains of individual radioisotopes from soil to plant products and from feed or forage and drinking water to animal products and ultimately to man. Information on transfer coefficients for terrestrial food chain models is very piecemeal and occurs in a wide variety of journals and reports. To enable us to choose or determine suitable values for assessments, we have addressed the following aspects of transfer coefficients on a very broad scale: (1) definitions, (2) equilibrium assumption, which stipulates that transfer coefficients be restricted to equilibrium or steady rate conditions, (3) assumption of linearity, that is the idea that radioisotope concentrations in food products increase linearly with contamination levels in the soil or animal feed, (4) methods of determination, (5) variability, (6) generic versus site-specific values, (7) statistical aspects, (8) use, (9) sources of currently used values, (10) criteria for revising values, (11) establishment and maintenance of files on transfer coefficients, and (12) future developments. (auth)

  16. Electron excitation coefficients of neutral and ionic levels of krypton in Townsend discharges

    International Nuclear Information System (INIS)

    Malovic, G.N.; Strinic, A.I.; Petrovic, Z.Lj.; Sadeghi, N.

    2006-01-01

    In this paper, we present experimental results for excitation coefficients of krypton atoms to several Kr and Kr + excited levels for E/N (electric field to gas particle number density ratio usually in units of Townsend, 1 Td = 10 -21 V m 2 ) values from 7 x 10 -20 V m 2 to above 1 x 10 -17 V m 2 . The data have been obtained in two different parallel plate self-sustained Townsend discharge drift tubes. The spatial distribution of the emission intensities were recorded and then normalized to give excitation coefficients at the anode, by using the electron flux at this point. The values of these coefficients are placed on an absolute scale by using a standard tungsten ribbon lamp calibrated against a primary blackbody radiation standard. The ionization rates at different E/N are obtained from the spatial emission profiles. The data for atomic krypton levels 2p 2 , 2p 3 , 2p 5 , 2p 6 , 2p 7 , 2p 8 , 3p 5 and 3p 6 (in Paschen notation) were converted to excitation coefficients by using quenching coefficients from the literature. The emission coefficients of eight 4s 2 4p 4 ( 3 P)5p levels of Kr + have also been measured for E/N values from about 1 x 10 -18 V m 2 up to nearly 8 x 10 -18 V m 2

  17. Changes in Electrokinetic Coupling Coefficients of Granite under Triaxial Deformation

    Directory of Open Access Journals (Sweden)

    Osamu Kuwano

    2012-01-01

    Full Text Available Electrokinetic phenomena are believed to be the most likely origin of electromagnetic signals preceding or accompanying earthquakes. The intensity of the source current due to the electrokinetic phenomena is determined by the fluid flux and the electrokinetic coupling coefficient called streaming current coefficient; therefore, how the coefficient changes before rupture is essential. Here, we show how the electrokinetic coefficients change during the rock deformation experiment up to failure. The streaming current coefficient did not increase before failure, but continued to decrease up to failure, which is explained in terms of the elastic closure of capillary. On the other hand, the streaming potential coefficient, which is the product of the streaming current coefficient and bulk resistivity of the rock, increased at the onset of dilatancy. It may be due to change in bulk resistivity. Our result indicates that the zeta potential of the newly created surface does not change so much from that of the preexisting fluid rock interface.

  18. Determination of beta attenuation coefficients by means of timing method

    International Nuclear Information System (INIS)

    Ermis, E.E.; Celiktas, C.

    2012-01-01

    Highlights: ► Beta attenuation coefficients of absorber materials were found in this study. ► For this process, a new method (timing method) was suggested. ► The obtained beta attenuation coefficients were compatible with the results from the traditional one. ► The timing method can be used to determine beta attenuation coefficient. - Abstract: Using a counting system with plastic scintillation detector, beta linear and mass attenuation coefficients were determined for bakelite, Al, Fe and plexiglass absorbers by means of timing method. To show the accuracy and reliability of the obtained results through this method, the coefficients were also found via conventional energy method. Obtained beta attenuation coefficients from both methods were compared with each other and the literature values. Beta attenuation coefficients obtained through timing method were found to be compatible with the values obtained from conventional energy method and the literature.

  19. Static pressure and temperature coefficients of working standard microphones

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Cutanda Henriquez, Vicente; Torras Rosell, Antoni

    2016-01-01

    be a significant contribution to the uncertainty of the measurement. Determining the environmental coefficients of individual specimens of measurement microphones can be a straightforward though time-consuming procedure provided the appropriate facilities are available. An alternative is to determine them using...... coefficients. For this purpose, the environmental coefficients of some commercially available microphones have been determined experimentally, and whenever possible, compared with the coefficients determined numerically using the Boundary Element Method....... for these coefficients which are used for calibration purposes. Working standard microphones are not exempt of these influences. However, manufacturers usually provide a low frequency value of the environmental coefficient. While in some applications the influence of this coefficient may be negligible, in others it may...

  20. Radionuclides distribution coefficient of soil to soil-solution

    International Nuclear Information System (INIS)

    1990-06-01

    The present book addresses various issues related with the coefficient of radionuclides distribution between soil and soil solution. It consists of six sections and two appendices. The second section, following an introductory one, describes the definition of the coefficient and a procedures of its calculation. The third section deals with the application of the distribution coefficient to the prediction of movements of radionuclides through soil. Various methods for measuring the coefficient are described in the fourth section. The next section discusses a variety of factors (physical and chemical) that can affect the distribution coefficient. Measurements of the coefficient for different types of oils are listed in the sixth section. An appendix is attached to the book to show various models that can be helpful in applying the coefficient of distribution of radionuclides moving from soil into agricultural plants. (N.K.)

  1. Modelling water evaporation during frying with an evaporation dependent heat transfer coefficient

    NARCIS (Netherlands)

    Koerten, van K.N.; Somsen, D.; Boom, R.M.; Schutyser, M.A.I.

    2017-01-01

    In this study a cylindrical crust-core frying model was developed including an evaporation rate dependent heat transfer coefficient. For this, we applied a Nusselt relation for cylindrical bodies and view the release of vapour bubbles during the frying process as a reversed fluidised bed. The

  2. Estimates of the integral modulus of continuity of functions with rarely changing Fourier coefficients

    International Nuclear Information System (INIS)

    Telyakovskii, S A

    2002-01-01

    The functions under consideration are those satisfying the condition Δa i =Δb i =0 for all i≠n j , where {n j } is a lacunary sequence. An asymptotic estimate of the rate of decrease of the modulus of continuity in the L-metric of such functions in terms of their Fourier coefficients is obtained

  3. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  4. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik [Sogang University, Seoul (Korea, Republic of); Yasin, Muhammad; Park, Shinyoung; Chang, In Seop [Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lee, Eun Yeol [Kyung Hee University, Yongin (Korea, Republic of)

    2015-06-15

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k{sub L}a). The feasibility of the new reactor was demonstrated by measuring k{sub L}a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k{sub L}a value of 102.9 h{sup -1} was obtained.

  5. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    International Nuclear Information System (INIS)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik; Yasin, Muhammad; Park, Shinyoung; Chang, In Seop; Lee, Eun Yeol

    2015-01-01

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k L a). The feasibility of the new reactor was demonstrated by measuring k L a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k L a value of 102.9 h -1 was obtained

  6. Oxygen transport in waterlogged soils, Part II. Diffusion coefficients

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to

  7. Eddy diffusion coefficients and their upper limits based on application of the similarity theory

    Directory of Open Access Journals (Sweden)

    M. N. Vlasov

    2015-07-01

    Full Text Available The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981. The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921 and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s−1 for the maximum value of the energy dissipation rate of 2 W kg−1 measured in the mesosphere and the lower thermosphere (MLT. This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s−1 estimated in the Turbulent Oxygen Mixing Experiment (TOMEX do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997 meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes

  8. Measurement of model coefficients of skin sympathetic vasoconstriction

    International Nuclear Information System (INIS)

    Severens, Natascha M W; Van Marken Lichtenbelt, Wouter D; Frijns, Arjan J H; Kingma, Boris R M; De Mol, Bas A J M; Van Steenhoven, Anton A

    2010-01-01

    Many researchers have already attempted to model vasoconstriction responses, commonly using the mathematical representation proposed by Stolwijk (1971 NASA Contractor Report CR-1855 (Washington, DC: NASA)). Model makers based the parameter values in this formulation either on estimations or by attributing the difference between their passive models and measurement data fully to thermoregulation. These methods are very sensitive to errors. This study aims to present a reliable method for determining physiological values in the vasoconstriction formulation. An experimental protocol was developed that enabled us to derive the local proportional amplification coefficients of the toe, leg and arm and the transient vasoconstrictor tone. Ten subjects participated in a cooling experiment. During the experiment, core temperature, skin temperature, skin perfusion, forearm blood flow and heart rate variability were measured. The contributions to the normalized amplification coefficient for vasoconstriction of the toe, leg and arm were 84%, 11% and 5%, respectively. Comparison with relative values in the literature showed that the estimated values of Stolwijk and the values mentioned by Tanabe et al (2002 Energy Build. 34 637–46) were comparable with our measured values, but the values of Gordon (1974 The response of a human temperature regulatory system model in the cold PhD Thesis University of California, Santa Barbara) and Fiala et al (2001 Int. J. Biometeorol. 45 143159) differed significantly. With the help of regression analysis a relation was formulated between the error signal of the standardized core temperature and the vasoconstrictor tone. This relation was formulated in a general applicable way, which means that it can be used for situations where vasoconstriction thresholds are shifted, like under anesthesia or during motion sickness

  9. Deploying Fourier Coefficients to Unravel Soybean Canopy Diversity.

    Science.gov (United States)

    Jubery, Talukder Z; Shook, Johnathon; Parmley, Kyle; Zhang, Jiaoping; Naik, Hsiang S; Higgins, Race; Sarkar, Soumik; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar

    2016-01-01

    Soybean canopy outline is an important trait used to understand light interception ability, canopy closure rates, row spacing response, which in turn affects crop growth and yield, and directly impacts weed species germination and emergence. In this manuscript, we utilize a methodology that constructs geometric measures of the soybean canopy outline from digital images of canopies, allowing visualization of the genetic diversity as well as a rigorous quantification of shape parameters. Our choice of data analysis approach is partially dictated by the need to efficiently store and analyze large datasets, especially in the context of planned high-throughput phenotyping experiments to capture time evolution of canopy outline which will produce very large datasets. Using the Elliptical Fourier Transformation (EFT) and Fourier Descriptors (EFD), canopy outlines of 446 soybean plant introduction (PI) lines from 25 different countries exhibiting a wide variety of maturity, seed weight, and stem termination were investigated in a field experiment planted as a randomized complete block design with up to four replications. Canopy outlines were extracted from digital images, and subsequently chain coded, and expanded into a shape spectrum by obtaining the Fourier coefficients/descriptors. These coefficients successfully reconstruct the canopy outline, and were used to measure traditional morphometric traits. Highest phenotypic diversity was observed for roundness, while solidity showed the lowest diversity across all countries. Some PI lines had extraordinary shape diversity in solidity. For interpretation and visualization of the complexity in shape, Principal Component Analysis (PCA) was performed on the EFD. PI lines were grouped in terms of origins, maturity index, seed weight, and stem termination index. No significant pattern or similarity was observed among the groups; although interestingly when genetic marker data was used for the PCA, patterns similar to canopy

  10. Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    Science.gov (United States)

    Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  11. Determination of the evaporation coefficient of D2O

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2008-11-01

    Full Text Available The evaporation rate of D2O has been determined by Raman thermometry of a droplet train (12–15 μm diameter injected into vacuum (~10-5 torr. The cooling rate measured as a function of time in vacuum was fit to a model that accounts for temperature gradients between the surface and the core of the droplets, yielding an evaporation coefficient (γe of 0.57±0.06. This is nearly identical to that found for H2O (0.62±0.09 using the same experimental method and model, and indicates the existence of a kinetic barrier to evaporation. The application of a recently developed transition-state theory (TST model suggests that the kinetic barrier is due to librational and hindered translational motions at the liquid surface, and that the lack of an isotope effect is due to competing energetic and entropic factors. The implications of these results for cloud and aerosol particles in the atmosphere are discussed.

  12. Roughness coefficient and its uncertainty in gravel-bed river

    Directory of Open Access Journals (Sweden)

    Ji-Sung Kim

    2010-06-01

    Full Text Available Manning's roughness coefficient was estimated for a gravel-bed river reach using field measurements of water level and discharge, and the applicability of various methods used for estimation of the roughness coefficient was evaluated. Results show that the roughness coefficient tends to decrease with increasing discharge and water depth, and over a certain range it appears to remain constant. Comparison of roughness coefficients calculated by field measurement data with those estimated by other methods shows that, although the field-measured values provide approximate roughness coefficients for relatively large discharge, there seems to be rather high uncertainty due to the difference in resultant values. For this reason, uncertainty related to the roughness coefficient was analyzed in terms of change in computed variables. On average, a 20% increase of the roughness coefficient causes a 7% increase in the water depth and an 8% decrease in velocity, but there may be about a 15% increase in the water depth and an equivalent decrease in velocity for certain cross-sections in the study reach. Finally, the validity of estimated roughness coefficient based on field measurements was examined. A 10% error in discharge measurement may lead to more than 10% uncertainty in roughness coefficient estimation, but corresponding uncertainty in computed water depth and velocity is reduced to approximately 5%. Conversely, the necessity for roughness coefficient estimation by field measurement is confirmed.

  13. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1976-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount. For example, a deuterium plasma with 1.3 percent oxygen, one of the particle transport coefficients is increased by a factor of about four. The transport coefficients for the toroidal magnetic flux are reduced by about 20 percent. The increase in the particle transport coefficient is due to the collisional scattering of the deuterons by the heavy oxygen ions which is larger than the deuteron electron scattering, the normal process for particle transport in a two species plasma. The reduction in the toroidal magnetic flux transport coefficients are left unexplained

  14. Study of Stirling Engine Efficiency Coefficient under Conditions Being Close to Real Ones

    Directory of Open Access Journals (Sweden)

    R. M. Abramian

    2013-01-01

    Full Text Available An absolute internal efficiency coefficient of the Stirling engine has been obtained without regenerator and with regenerator under conditions when van der Waals gas serves as a working medium. The paper reveals that while taking into account own volume of molecules thermal efficiency coefficient of the Stirling engine depends on mole number of the working medium  and it is slightly increasing  in comparison with the case of an ideal gas. The paper gives consideration to heat losses while the Stirling machine operates with heat regeneration. Dependence of regeneration rate on time of heat transfer has been obtained in the paper. 

  15. Directed clustering coefficient as a measure of systemic risk in complex banking networks

    Science.gov (United States)

    Tabak, Benjamin M.; Takami, Marcelo; Rocha, Jadson M. C.; Cajueiro, Daniel O.; Souza, Sergio R. S.

    2014-01-01

    Recent literature has focused on the study of systemic risk in complex networks. It is clear now, after the crisis of 2008, that the aggregate behavior of the interaction among agents is not straightforward and it is very difficult to predict. Contributing to this debate, this paper shows that the directed clustering coefficient may be used as a measure of systemic risk in complex networks. Furthermore, using data from the Brazilian interbank network, we show that the directed clustering coefficient is negatively correlated with domestic interest rates.

  16. Choosing the best index for the average score intraclass correlation coefficient.

    Science.gov (United States)

    Shieh, Gwowen

    2016-09-01

    The intraclass correlation coefficient (ICC)(2) index from a one-way random effects model is widely used to describe the reliability of mean ratings in behavioral, educational, and psychological research. Despite its apparent utility, the essential property of ICC(2) as a point estimator of the average score intraclass correlation coefficient is seldom mentioned. This article considers several potential measures and compares their performance with ICC(2). Analytical derivations and numerical examinations are presented to assess the bias and mean square error of the alternative estimators. The results suggest that more advantageous indices can be recommended over ICC(2) for their theoretical implication and computational ease.

  17. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  18. Calculation of transport coefficients in an axisymmetric plasma

    International Nuclear Information System (INIS)

    Shumaker, D.E.

    1977-01-01

    A method of calculating the transport coefficient in an axisymmetric toroidal plasma is presented. This method is useful in calculating the transport coefficients in a Tokamak plasma confinement device. The particle density and temperature are shown to be a constant on a magnetic flux surface. Transport equations are given for the total particle flux and total energy flux crossing a closed toroidal surface. Also transport equations are given for the toroidal magnetic flux. A computer code was written to calculate the transport coefficients for a three species plasma, electrons and two species of ions. This is useful for calculating the transport coefficients of a plasma which contains impurities. It was found that the particle and energy transport coefficients are increased by a large amount, and the transport coefficients for the toroidal magnetic field are reduced by a small amount

  19. Object detection by correlation coefficients using azimuthally averaged reference projections.

    Science.gov (United States)

    Nicholson, William V

    2004-11-01

    A method of computing correlation coefficients for object detection that takes advantage of using azimuthally averaged reference projections is described and compared with two alternative methods-computing a cross-correlation function or a local correlation coefficient versus the azimuthally averaged reference projections. Two examples of an application from structural biology involving the detection of projection views of biological macromolecules in electron micrographs are discussed. It is found that a novel approach to computing a local correlation coefficient versus azimuthally averaged reference projections, using a rotational correlation coefficient, outperforms using a cross-correlation function and a local correlation coefficient in object detection from simulated images with a range of levels of simulated additive noise. The three approaches perform similarly in detecting macromolecular views in electron microscope images of a globular macrolecular complex (the ribosome). The rotational correlation coefficient outperforms the other methods in detection of keyhole limpet hemocyanin macromolecular views in electron micrographs.

  20. Research on friction coefficient of nuclear Reactor Vessel Internals Hold Down Spring: Stress coefficient test analysis method

    International Nuclear Information System (INIS)

    Linjun, Xie; Guohong, Xue; Ming, Zhang

    2016-01-01

    Graphical abstract: HDS stress coefficient test apparatus. - Highlights: • This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. • The mathematical relation between the load and the strain is obtained about the HDS, and the mathematical model of the stress coefficient and the friction coefficient is established. So, a set of test apparatuses for obtaining the stress coefficient is designed according to the model scaling criterion and the friction coefficient of the K1000 HDS is calculated to be 0.336 through the obtained stress coefficient. • The relation curve between the theoretical load and the friction coefficient is obtained through analysis and indicates that the change of the friction coefficient f would influence the pretightening load under the condition of designed stress. The necessary pretightening load in the design process is calculated to be 5469 kN according to the obtained friction coefficient. Therefore, the friction coefficient and the pretightening load under the design conditions can provide accurate pretightening data for the analysis and design of the reactor HDS according to the operations. - Abstract: This paper performs mathematic deduction to the physical model of Hold Down Spring (HDS), establishes a mathematic model of axial load P and stress, stress coefficient and friction coefficient and designs a set of test apparatuses for simulating the pretightening process of the HDS for the first time according to a model similarity criterion. By carrying out tests and researches through a stress testing technique, P–σ curves in loading and unloading processes of the HDS are obtained and the stress coefficient k f of the HDS is obtained. So, the