WorldWideScience

Sample records for prx mntabc trxb

  1. Signaling pathways regulating the expression of Prx1 and Prx2 in the Chick Mandibular Mesenchyme

    Science.gov (United States)

    Doufexi, Aikaterini-El; Mina, Mina

    2009-01-01

    Prx1 and Prx2 are members of the aristaless-related homeobox genes shown to play redundant but essential roles in morphogenesis of the mandibular processes. To gain insight into the signaling pathways that regulate expression of Prx genes in the mandibular mesenchyme, we used the chick as a model system. We examined the patterns of gene expression in the face and the roles of signals derived from the epithelium on the expression of Prx genes in the mandibular mesenchyme. Our results demonstrated stage-dependent roles of mandibular epithelium on the expression of Prx in the mandibular mesenchyme and provide evidence for positive roles of members of the fibroblast and hedgehog families derived from mandibular epithelium on the expression of Prx genes in the mandibular mesenchyme. Our studies suggest that endothelin-1 signaling derived from the mesenchyme is involved in restricting the expression of Prx2 to the medial mandibular mesenchyme. PMID:18942149

  2. Prx1 and Prx2 cooperatively regulate the morphogenesis of the medial region of the mandibular process

    Science.gov (United States)

    Balic, Anamaria; Adams, Douglas; Mina, Mina

    2009-01-01

    Mice lacking both Prx1 and Prx2 display severe abnormalities in the mandible. Our analysis showed that complete loss of Prx gene products leads to growth abnormalities in the mandibular processes evident as early as E10.5 associated with changes in the survival of the mesenchyme in the medial region. Changes in the gene expression in the medial and lateral regions were related to gradual loss of a subpopulation of mesenchyme in the medial region expressing eHand. Our analysis also showed that Prx gene products are required for the initiation and maintenance of chondrogenesis and terminal differentiation of the chondrocytes in the caudal and rostral ends of Meckel’s cartilage. The fusion of the mandibular processes in the Prx1/Prx2 double mutants is caused by accelerated ossification. These observations together show that during mandibular morphogenesis Prx gene products play multiple roles including the cell survival, the region-specific terminal differentiation of Meckelian chondrocytes and osteogenesis. PMID:19777594

  3. The Composition and Metabolic Phenotype of Neisseria gonorrhoeae Biofilms

    Directory of Open Access Journals (Sweden)

    Michael A Apicella

    2011-04-01

    Full Text Available N. gonorrhoeae has been shown to form biofilms during cervical infection. Thus, biofilm formation may play an important role in the infection of women. The ability of N. gonorrhoeae to form membrane blebs is crucial to biofilm formation. Blebs contain DNA and outer membrane structures, which have been shown to be major constituents of the biofilm matrix. The organism expresses a DNA thermonuclease that is involved in remodeling of the biofilm matrix. Comparison of the transcriptional profiles of gonococcal biofilms and planktonic runoff indicate that genes involved in anaerobic metabolism and oxidative stress tolerance are more highly expressed in biofilm. The expression of aniA, ccp, and norB, which encode nitrite reductase, cytochrome c peroxidase, and nitric oxide reductase respectively, is required for mature biofilm formation over glass and human cervical cells. In addition, anaerobic respiration occurs in the substratum of gonococcal biofilms and disruption of the norB gene required for anaerobic respiration, results in a severe biofilm attenuation phenotype. It has been demonstrated that accumulation of nitric oxide (NO contributes to the phenotype of a norB mutant and can retard biofilm formation. However, NO can also enhance biofilm formation, and this is largely dependent on the concentration and donation rate or steady state kinetics of NO. The majority of the genes involved in gonococcal oxidative stress tolerance are also required for normal biofilm formation, as mutations in the following genes result in attenuated biofilm formation over cervical cells and/or glass: oxyR, gor, prx, mntABC, trxB, and estD. Overall, biofilm formation appears to be an adaptation for coping with the environmental stresses present in the female genitourinary tract. Therefore, this review will discuss the studies, which describe the composition and metabolic phenotype of gonococcal biofilms.

  4. OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice.

    Science.gov (United States)

    Mao, Xiaohui; Zheng, Yanmei; Xiao, Kaizhuan; Wei, Yidong; Zhu, Yongsheng; Cai, Qiuhua; Chen, Liping; Xie, Huaan; Zhang, Jianfu

    2018-01-01

    Peroxiredoxins (Prxs) which are thiol-based peroxidases have been implicated in the toxic reduction and intracellular concentration regulation of hydrogen peroxide. In Arabidopsis thaliana At2-CysPrxB (At5g06290) has been demonstrated to be essential in maintaining the water-water cycle for proper H 2 O 2 scavenging. Although the mechanisms of 2-Cys Prxs have been extensively studied in Arabidopsis thaliana, the function of 2-Cys Prxs in rice is unclear. In this study, a rice homologue gene of At2-CysPrxB, OsPRX2 was investigated aiming to characterize the effect of 2-Cys Prxs on the K + -deficiency tolerance in rice. We found that OsPRX2 was localized in the chloroplast. Overexpressed OsPRX2 causes the stomatal closing and K + -deficiency tolerance increasing, while knockout of OsPRX2 lead to serious defects in leaves phenotype and the stomatal opening under the K + -deficiency tolerance. Detection of K + accumulation, antioxidant activity of transgenic plants under the starvation of potassium, further confirmed that OsPRX2 is a potential target for engineering plants with improved potassium deficiency tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Tissue Prx I in the protection against Fe-NTA and the reduction of nitroxyl radicals

    International Nuclear Information System (INIS)

    Uwayama, Junya; Hirayama, Aki; Yanagawa, Toru; Warabi, Eiji; Sugimoto, Rika; Itoh, Ken; Yamamoto, Masayuki; Yoshida, Hiroshi; Koyama, Akio; Ishii, Tetsuro

    2006-01-01

    Peroxiredoxin I (Prx I) is a key cytoplasmic peroxidase that reduces intracellular hydroperoxides in concert with thioredoxin. To study the role of tissue Prx I in protection from oxidative stress, we generated Prx I -/- mice by gene trapping. We then evaluated the acute-phase tissue damage caused by ferric-nitrilotriacetate (Fe-NTA). Increases in serum aspartate aminotransferase and alanine aminotransferase levels were significantly greater in Prx I -/- than wild-type mice, 4 and 12 h after the injection of Fe-NTA. Using real-time EPR imaging, we examined the reduction of the stable paramagnetic nitroxyl radical 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl in vivo, and found that the half-life of this spin probe in the liver and kidney was significantly prolonged in the Prx I -/- mice. These results demonstrate that Prx I -/- mice have less reducing activity and are more susceptible to the damage mediated by reactive oxygen species in vivo than wild-type mice

  6. Hypoxia and Prx1 in Malignant Progression of Prostate Cancer

    Science.gov (United States)

    2007-09-01

    promoter composition of human prx1 gene and identified EpRE elements and Nrf2 as critical regulatory component of its up- regulation in prostate cancer...nucleus as well as in the cytoplasm in the rat kidney (42). The presence of Prx1 in the nucleolus of hepatic parenchymal cells has also been shown in the...Gpx; KO, knock-out; JNK, c-Jun N-terminal kinase. THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 282, NO. 30, pp. 22011–22022, July 27, 2007 © 2007 by The

  7. Hexameric oligomerization of mitochondrial peroxiredoxin PrxIIF and formation of an ultrahigh affinity complex with its electron donor thioredoxin Trx-o.

    Science.gov (United States)

    Barranco-Medina, Sergio; Krell, Tino; Bernier-Villamor, Laura; Sevilla, Francisca; Lázaro, Juan-José; Dietz, Karl-Josef

    2008-01-01

    Mitochondria from plants, yeast, and animals each contain at least one peroxiredoxin (Prx) that is involved in peroxide detoxification and redox signalling. The supramolecular dynamics of atypical type II Prx targeted to the mitochondrion was addressed in pea. Microcalorimetric (ITC) titrations identified an extremely high-affinity binding between the mitochondrial PsPrxIIF and Trx-o with a K(D) of 126+/-14 pM. Binding was driven by a favourable enthalpy change (DeltaH= -60.6 kcal mol(-1)) which was counterbalanced by unfavourable entropy changes (TDeltaS= -47.1 kcal mol(-1)). This is consistent with the occurrence of large conformational changes during binding which was abolished upon site-directed mutaganesis of the catalytic C59S and C84S. The redox-dependent interaction was confirmed by gel filtration of mitochondrial extracts and co-immunoprecipitation from extracts. The heterocomplex of PsPrxIIF and Trx-o reduced peroxide substrates more efficiently than free PsPrxIIF suggesting that Trx-o serves as an efficient and specific electron donor to PsPrxIIF in vivo. Other Trx-s tested by ITC analysis failed to interact with PsPrxIIF indicating a specific recognition of PsPrxIIF by Trx-o. PsPrxIIF exists primarily as a dimer or a hexamer depending on the redox state. In addition to the well-characterized oligomerization of classical 2-Cys Prx the results also show that atypical Prx undergo large structural reorganization with implications for protein-protein interaction and function.

  8. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    International Nuclear Information System (INIS)

    Atsmon, Jacob; Brill-Almon, Einat; Nadri-Shay, Carmit; Chertkoff, Raul; Alon, Sari; Shaikevich, Dimitri; Volokhov, Inna; Haim, Kirsten Y.; Bartfeld, Daniel; Shulman, Avidor; Ruderfer, Ilya; Ben-Moshe, Tehila; Shilovitzky, Orit; Soreq, Hermona; Shaaltiel, Yoseph

    2015-01-01

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2 min before being exposed to 1.33 × LD 50 and 1.5 × LD 50 of toxin and 10 min after exposure to 1.5 × LD 50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t ½ ) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t ½ in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study exhibited its safety

  9. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R

    Energy Technology Data Exchange (ETDEWEB)

    Atsmon, Jacob [Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University (Israel); Brill-Almon, Einat; Nadri-Shay, Carmit; Chertkoff, Raul; Alon, Sari [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Shaikevich, Dimitri; Volokhov, Inna; Haim, Kirsten Y. [Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv (Israel); Sackler Faculty of Medicine, Tel Aviv University (Israel); Bartfeld, Daniel [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Shulman, Avidor, E-mail: avidors@protalix.com [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Ruderfer, Ilya; Ben-Moshe, Tehila; Shilovitzky, Orit [Protalix Biotherapeutics, Science Park, Carmiel (Israel); Soreq, Hermona [Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem (Israel); Shaaltiel, Yoseph [Protalix Biotherapeutics, Science Park, Carmiel (Israel)

    2015-09-15

    PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2 min before being exposed to 1.33 × LD{sub 50} and 1.5 × LD{sub 50} of toxin and 10 min after exposure to 1.5 × LD{sub 50} survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t{sub ½}) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t{sub ½} in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study

  10. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    Science.gov (United States)

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  11. Proteomic identification of an embryo-specific 1Cys-Prx promoter and analysis of its activity in transgenic rice.

    Science.gov (United States)

    Kim, Je Hein; Jung, In Jung; Kim, Dool Yi; Fanata, Wahyu Indra; Son, Bo Hwa; Yoo, Jae Yong; Harmoko, Rikno; Ko, Ki Seong; Moon, Jeong Chan; Jang, Ho Hee; Kim, Woe Yeon; Kim, Jae-Yean; Lim, Chae Oh; Lee, Sang Yeol; Lee, Kyun Oh

    2011-04-29

    Proteomic analysis of a rice callus led to the identification of 10 abscisic acid (ABA)-induced proteins as putative products of the embryo-specific promoter candidates. 5'-flanking sequence of 1 Cys-Prx, a highly-induced protein gene, was cloned and analyzed. The transcription initiation site of 1 Cys-Prx maps 96 nucleotides upstream of the translation initiation codon and a TATA-box and putative seed-specific cis-acting elements, RYE and ABRE, are located 26, 115 and 124 bp upstream of the transcription site, respectively. β-glucuronidase (GUS) expression driven by the 1 Cys-Prx promoters was strong in the embryo and aleurone layer and the activity reached up to 24.9 ± 3.3 and 40.5 ± 2.1 pmol (4 MU/min/μg protein) in transgenic rice seeds and calluses, respectively. The activity of the 1 Cys-Prx promoters is much higher than that of the previously-identified embryo-specific promoters, and comparable to that of strong endosperm-specific promoters in rice. GUS expression driven by the 1 Cys-Prx promoters has been increased by ABA treatment and rapidly induced by wounding in callus and at the leaf of the transgenic plants, respectively. Furthermore, ectopic expression of the GUS construct in Arabidopsis suggested that the 1 Cys-Prx promoter also has strong activity in seeds of dicot plants. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Examining tissue composition, whole-bone morphology and mechanical behavior of GorabPrx1 mice tibiae: A mouse model of premature aging.

    Science.gov (United States)

    Yang, Haisheng; Albiol, Laia; Chan, Wing-Lee; Wulsten, Dag; Seliger, Anne; Thelen, Michael; Thiele, Tobias; Spevak, Lyudmila; Boskey, Adele; Kornak, Uwe; Checa, Sara; Willie, Bettina M

    2017-12-08

    Gerodermia osteodysplastica (GO) is a segmental progeroid disorder caused by loss-of-function mutations in the GORAB gene, associated with early onset osteoporosis and bone fragility. A conditional mouse model of GO (Gorab Prx1 ) was generated in which the Gorab gene was deleted in long bones. We examined the biomechanical/functional relevance of the Gorab Prx1 mutants as a premature aging model by characterizing bone composition, tissue-level strains, and whole-bone morphology and mechanical properties of the tibia. MicroCT imaging showed that Gorab Prx1 tibiae had an increased anterior convex curvature and decreased cortical cross-sectional area, cortical thickness and moments of inertia, compared to littermate control (LC) tibiae. Fourier transform infrared (FTIR) imaging indicated a 34% decrease in mineral/matrix ratio and a 27% increase in acid phosphate content in the posterior metaphyseal cortex of the Gorab Prx1 tibiae (p finite element analysis showed ∼two times higher tissue-level strains within the Gorab Prx1 tibiae relative to LC tibiae when subjected to axial compressive loads of the same magnitude. Three-point bending tests suggested that Gorab Prx1 tibiae were weaker and more brittle, as indicated by decreasing whole-bone strength (46%), stiffness (55%), work-to-fracture (61%) and post-yield displacement (47%). Many of these morphological and biomechanical characteristics of the Gorab Prx1 tibia recapitulated changes in other animal models of skeletal aging. Future studies are necessary to confirm how our observations might guide the way to a better understanding and treatment of GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. PRX1 knockdown potentiates vitamin K3 toxicity in cancer cells: a potential new therapeutic perspective for an old drug.

    Science.gov (United States)

    He, Tiantian; Hatem, Elie; Vernis, Laurence; Lei, Ming; Huang, Meng-Er

    2015-12-21

    Many promising anticancer molecules are abandoned during the course from bench to bedside due to lack of clear-cut efficiency and/or severe side effects. Vitamin K3 (vitK3) is a synthetic naphthoquinone exhibiting significant in vitro and in vivo anticancer activity against multiple human cancers, and has therapeutic potential when combined with other anticancer molecules. The major mechanism for the anticancer activity of vitK3 is the generation of cytotoxic reactive oxygen species (ROS). We thus reasoned that a rational redox modulation of cancer cells could enhance vitK3 anticancer efficiency. Cancer cell lines with peroxiredoxin 1 (PRX1) gene transiently or stably knocked-down and corresponding controls were exposed to vitK3 as well as a set of anticancer molecules, including vinblastine, taxol, doxorubicin, daunorubicin, actinomycin D and 5-fluorouracil. Cytotoxic effects and cell death events were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-based assay, cell clonogenic assay, measurement of mitochondrial membrane potential and annexin V/propidium iodide double staining. Global ROS accumulation and compartment-specific H2O2 generation were determined respectively by a redox-sensitive chemical probe and H2O2-sensitive sensor HyPer. Oxidation of endogenous antioxidant proteins including TRX1, TRX2 and PRX3 was monitored by redox western blot. We observed that the PRX1 knockdown in HeLa and A549 cells conferred enhanced sensitivity to vitK3, reducing substantially the necessary doses to kill cancer cells. The same conditions (combination of vitK3 and PRX1 knockdown) caused little cytotoxicity in non-cancerous cells, suggesting a cancer-cell-selective property. Increased ROS accumulation had a crucial role in vitK3-induced cell death in PRX1 knockdown cells. The use of H2O2-specific sensors HyPer revealed that vitK3 lead to immediate accumulation of H2O2 in the cytosol, nucleus, and mitochondrial matrix. PRX1 silencing

  14. Electronic and ionic transport in Ce0.8PrxTb0.2-xO2-δ and evaluation of performance as oxygen permeation membranes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2012-01-01

    is significantly enhanced relative to that of a Ce0.9Gd0.1O1.95-δ membrane at high oxygen activities of the permeate gas (aO2 an > 10-15) due to the enhanced electronic conductivity of the Ce0.8PrxTb0.2-xO2-δ compounds. Interference between the ionic and electronic flows has a significant positive effect......The electronic conductivity of Ce0.8PrxTb0.2-xO2-δ (x = 0, 0.05, 0.10, 0.15, 0.20) was determined in the oxygen activity range aO2 ≈ 103 to aO2 ≈ 10-17 at 700- 900 °C by means of Hebb-Wagner polarisation. The electronic conductivity of all the Ce0.8PrxTb0.2-xO2-δ compositions was significantly...... enhanced as compared to that of Ce0.9Gd0.1O1.95-δ, and its value was found to increase with increasing Pr/Tb ratio. The ionic mobility of Ce0.8PrxTb0.2-xO2-δ is similar to that of Ce1- 2δGd2δO2-δ at the same oxygen vacancy concentration. The calculated oxygen flux of a Ce0.8PrxTb0.2-xO2-δ membrane...

  15. Electronic and Ionic Transport in Ce0.8PrxTb0.2−xO2−δ and Evaluation of Performance as Oxygen Permeation Membranes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang

    2012-01-01

    to that of Ce0.9Gd0.1O1.95−δ, and was found to increase with increasing Pr/Tb ratio. The oxide ion mobility in Ce0.8PrxTb0.2−xO2−δ is similar to that in Ce1−2δGd2δO2−δ at the same oxygen vacancy concentration. Based on the measured ionic and electronic conductivities, fluxes through thin film Ce0.8PrxTb0.2−xO2......The electronic conductivity of Ce0.8PrxTb0.2−xO2−δ (x = 0, 0.05, 0.10, 0.15, 0.20) was determined in the oxygen activity range aO2 ≈ 103 – 10−17 at 700–900°C by Hebb-Wagner polarization. The electronic conductivity of all the Ce0.8PrxTb0.2−xO2−δ compositions was significantly enhanced as compared......−δ membranes were calculated. Calculated fluxes exceed 10 Nml min−1 cm−2 under oxyfuel relevant conditions (T = 800°C, aO2,permeate side = 10−3). Hence, in terms of transport properties, these materials are promising for this application. Interference between the ionic and electronic flows has...

  16. Novel mutations in the PRX and the MTMR2 genes are responsible for unusual Charcot-Marie-Tooth disease phenotypes.

    Science.gov (United States)

    Nouioua, Sonia; Hamadouche, Tarik; Funalot, Benoit; Bernard, Rafaëlle; Bellatache, Nora; Bouderba, Radia; Grid, Djamel; Assami, Salima; Benhassine, Traki; Levy, Nicolas; Vallat, Jean-Michel; Tazir, Meriem

    2011-08-01

    Autosomal recessive Charcot-Marie-Tooth diseases, relatively common in Algeria due to high prevalence of consanguineous marriages, are clinically and genetically heterogeneous. We report on two consanguineous families with demyelinating autosomal recessive Charcot-Marie-Tooth disease (CMT4) associated with novel homozygous mutations in the MTMR2 gene, c.331dupA (p.Arg111LysfsX24) and PRX gene, c.1090C>T (p.Arg364X) respectively, and peculiar clinical phenotypes. The three patients with MTMR2 mutations (CMT4B1 family) had a typical phenotype of severe early onset motor and sensory neuropathy with typical focally folded myelin on nerve biopsy. Associated clinical features included vocal cord paresis, prominent chest deformities and claw hands. Contrasting with the classical presentation of CMT4F (early-onset Dejerine-Sottas phenotype), the four patients with PRX mutations (CMT4F family) had essentially a late age of onset and a protracted and relatively benign evolution, although they presented marked spine deformities. These observations broaden the spectrum of clinical phenotypes associated with these two CMT4 forms. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Thioredoxin reductase is a key factor in the oxidative stress response of Lactobacillus plantarum WCFS1

    Directory of Open Access Journals (Sweden)

    Teusink Bas

    2007-08-01

    Full Text Available Abstract Background Thioredoxin (TRX is a powerful disulfide oxido-reductase that catalyzes a wide spectrum of redox reactions in the cell. The aim of this study is to elucidate the role of the TRX system in the oxidative stress response in Lactobacillus plantarum WCFS1. Results We have identified the trxB1-encoded thioredoxin reductase (TR as a key enzyme in the oxidative stress response of Lactobacillus plantarum WCFS1. Overexpression of the trxB1 gene resulted in a 3-fold higher TR activity in comparison to the wild-type strain. Subsequently, higher TR activity was associated with an increased resistance towards oxidative stress. We further determined the global transcriptional response to hydrogen peroxide stress in the trxB1-overexpression and wild-type strains grown in continuous cultures. Hydrogen peroxide stress and overproduction of TR collectively resulted in the up-regulation of 267 genes. Additionally, gene expression profiling showed significant differential expression of 27 genes in the trxB1-overexpression strain. Over expression of trxB1 was found to activate genes associated with DNA repair and stress mechanisms as well as genes associated with the activity of biosynthetic pathways for purine and sulfur-containing amino acids. A total of 16 genes showed a response to both TR overproduction and hydrogen peroxide stress. These genes are involved in the purine metabolism, energy metabolism (gapB as well as in stress-response (groEL, npr2, and manganese transport (mntH2. Conclusion Based on our findings we propose that overproduction of the trxB1-encoded TR in L. plantarum improves tolerance towards oxidative stress. This response coincides with simultaneous induction of a group of 16 transcripts of genes. Within this group of genes, most are associated with oxidative stress response. The obtained crossover between datasets may explain the phenotype of the trxB1-overexpression strain, which appears to be prepared for encountering

  18. Wt-ko_trxB1_Filtered bkg correc transf-norm

    OpenAIRE

    Serrano, L.M.; Molenaar, Douwe; Teusink, Bas; Vos, de, Willem; Smid, Eddy

    2007-01-01

    In this experiment we analyzed the impact of the disruption of trxB1in Lactobacillus plantarum at the transcriptome level. Furthermore we studied the effect of 3.5 mM peroxide effect on both Lactobacillus plantarum wild type (strain WCFS1) and a trxB1 mutant (strain NZ7608).

  19. Synchrotron radiation x-ray photoelectron spectroscopy study on the interface chemistry of high-k PrxAl2-xO3 (x=0-2) dielectrics on TiN for dynamic random access memory applications

    Science.gov (United States)

    Schroeder, T.; Lupina, G.; Sohal, R.; Lippert, G.; Wenger, Ch.; Seifarth, O.; Tallarida, M.; Schmeisser, D.

    2007-07-01

    Engineered dielectrics combined with compatible metal electrodes are important materials science approaches to scale three-dimensional trench dynamic random access memory (DRAM) cells. Highly insulating dielectrics with high dielectric constants were engineered in this study on TiN metal electrodes by partly substituting Al in the wide band gap insulator Al2O3 by Pr cations. High quality PrAlO3 metal-insulator-metal capacitors were processed with a dielectric constant of 19, three times higher than in the case of Al2O3 reference cells. As a parasitic low dielectric constant interface layer between PrAlO3 and TiN limits the total performance gain, a systematic nondestructive synchrotron x-ray photoelectron spectroscopy study on the interface chemistry of PrxAl2-xO3 (x =0-2) dielectrics on TiN layers was applied to unveil its chemical origin. The interface layer results from the decreasing chemical reactivity of PrxAl2-xO3 dielectrics with increasing Pr content x to reduce native Ti oxide compounds present on unprotected TiN films. Accordingly, PrAlO3 based DRAM capacitors require strict control of the surface chemistry of the TiN electrode, a parameter furthermore of importance to engineer the band offsets of PrxAl2-xO3/TiN heterojunctions.

  20. Insights into the multifunctional role of natural killer enhancing factor-A (NKEF-A/Prx1) in big-belly seahorse (Hippocampus abdominalis): DNA protection, insulin reduction, H2O2 scavenging, and immune modulation activity.

    Science.gov (United States)

    Godahewa, G I; Perera, N C N; Lee, Jehee

    2018-02-05

    Natural killer enhancing factor A (NKEF-A), also known as peroxiredoxin 1 (Prx1), is a well-known antioxidant involved in innate immunity. Although NKEF-A/Prx1 has been studied in different fish species, the present study broadens the knowledge of NKEF-A gene in terms of molecular structure, function, and immune responses in fish species. Hippocampus abdominalis NKEF-A (HaNKEF-A) cDNA encoded a putative protein of 198 amino acids containing a thioredoxin_2 domain, VCP motifs, and three conserved cysteine residues including peroxidatic and resolving cysteines. Amino acid sequence comparison and phylogenetic breakdown showed the higher sequence identity and closer evolutionary position of HaNKEF-A to those of other fish counterparts. A recombinant protein of HaNKEF-A was shown to i) protect supercoiled DNA against mixed catalyzed oxidation, ii) reduce insulin disulfide bonds, and iii) scavenge extracellular H 2 O 2 . Results of in vitro assays demonstrated the concentration dependent antioxidant function of recombinant HaNKEF-A. In addition, qPCR assessments revealed that the HaNKEF-A transcripts were constitutively expressed in fourteen tissues with the highest expression in liver. As an innate immune response, HaNKEF-A transcripts were up-regulated in liver post injection of LPS, Edwardsiella tarda, Streptococcus iniae, and polyinosinic-polycytidylic acid. Thus, HaNKEF-A can safeguards big-belly seahorse from oxidative damage and pathogenic infections. This study provides insight into the functions of NKEF-A/Prx1 in fish species. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Electrochemical reduction of oxygen and nitric oxide at low temperature on Ce1−xPrxO2−δ cathodes

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Kammer Hansen, Kent

    2013-01-01

    The ability of praseodymium doped cerium oxide materials to electrochemically reduce NO and O2 was studied using cone-shaped electrodes in conjunction with cyclic voltammetry, in the temperature range 200–400 °C. Four samples were studied; Ce1−xPrxO2−δ (x = 0.1, 0.2, 0.3 and 0.4). It was shown...... the highest ratio of maximum cathodic current density (iNO/iO2iNO/iO2), which is used as an indication of a higher activity toward reduction of NO compared to reduction of O2. The apparent selectivity generally decreased with increasing temperature for all the compositions....

  2. Order parameter effect critical fields and current of Y1–xPrx:123 superconductors

    Directory of Open Access Journals (Sweden)

    Sedky A.

    2018-03-01

    Full Text Available Fluctuation induced conductivity by Pr substitution at Y sites of Y1-xPrx:123 superconductors is reported. It is found that the mean field temperature Tcmf, deduced from the peak of dρ/dT versus T plot, gradually decreases by increasing Pr up to 0.40. The order parameter dimensionality (OPD is estimated from the slope of the logarithmic plot between excess conductivity Δσ and reduced temperature є. Interestingly, the crossover from 2D to 3D is obtained for samples with Pr = 0.00, 0.10 and 0.20, while with increasing Pr up to 0.40, the crossover from 0D to quasi-2D is obtained. On the other hand, the calculated values of interlayer coupling, coherence lengths, critical fields and critical current decrease with increasing Pr up to 0.20, but with the further increase of Pr, up to 0.40, they increase. The hole carriers/Cu ions anisotropy and G-L parameter gradually increase with Pr up to 0.40. Our results are discussed in terms of the effects of Pr substitution at Y site, such as oxygen rearrangements, anisotropy, hybridization and localization of holes in the overdoped region.

  3. Acid stress response and protein induction in Campylobacter jejuni isolates with different acid tolerance

    DEFF Research Database (Denmark)

    Birk, Tina; Wik, Monica Takamiya; Lametsch, René

    2012-01-01

    with MALDI-TOF-TOF. The most acid-sensitive isolate was C. jejuni 327, followed by NCTC 11168 and isolate 305 as the most tolerant. Overall, induction of five proteins was observed within the pI range investigated: 19 kDa periplasmic protein (p19), thioredoxin-disulfide (TrxB), a hypothetical protein Cj0706......RT-PCR. In this transcriptomic analysis, only up-regulation of trxB and p19 was observed. CONCLUSIONS: A defined medium that supports the growth of a range of Campylobacter strains and suitable for proteomic analysis was developed. Mainly proteins normally involved in iron control and oxidative stress defence were induced...

  4. Magnetic flux motion in (PrxY1−xBa2Cu3O7−δ polycrystal samples sintered in Ar and O2 atmospheres

    Directory of Open Access Journals (Sweden)

    S. Favre

    2016-09-01

    Full Text Available We present a comparative study of the magnetic flux motion in ceramic pellets made of (PrxY1−xBa2Cu3O7−δ as a function of their composition and morphology. Samples produced in Ar or O2 atmosphere present noticeable differences in their magnetic response that we explain in terms of their structural parameters. The material’s parameters that most influence the flux dynamics are morphology and oxygen content, that change dramatically with the sintering atmosphere. Moderate changes are also observed as a function of the Pr content. Magnetic pinning efficiency is discussed in terms of intergranular couplings and effective activation energies, estimated from AC-susceptibility and magnetoresistance measurements.

  5. Ionic/Electronic Conductivity, Thermal/Chemical Expansion and Oxygen Permeation in Pr and Gd Co-Doped Ceria PrxGd0.1Ce0.9-xO1.95-δ

    DEFF Research Database (Denmark)

    Cheng, Shiyang; Chatzichristodoulou, Christodoulos; Søgaard, Martin

    2017-01-01

    Pr. A series of compositions of PrxGd0.1Ce0.9-xO1.95-δ (x = 0, 0.02, 0.05, 0.08, 0.15, 0.25, 0.3 and 0.4) was prepared by solid state reaction. X-ray powder diffraction (XPD) indicates that Pr is completely dissolved in the fluorite structure up to 40 at.%. Pronounced nonlinear thermal expansion...... behavior was observed as a function of temperature, due to the simultaneous contributions of both thermal and chemical expansion. The electronic and ionic conductivities were measured as a function of temperature and oxygen partial pressure. Within the range from 10 to 15 at.% Pr, a drastic drop...

  6. Impurity quadrupole Kondo ground state in a dilute Pr system Y1-xPrxIr2Zn20

    Science.gov (United States)

    Yamane, Yu; Onimaru, Takahiro; Uenishi, Kazuto; Wakiya, Kazuhei; Matsumoto, Keisuke T.; Umeo, Kazunori; Takabatake, Toshiro

    2018-05-01

    The electrical resistivity ρ and specific heat C of a dilute Pr system Y1-xPrxIr2Zn20 for 0 ≤ x ≤ 0.44 were measured to study the phenomena arising from active quadrupoles of the Pr3+ ion with 4f2 configuration. On cooling, ρ's of all samples monotonically decrease, while the residual resistivity ratio ρ(300 K)/ρ(3 K) drastically decreases with x. In the whole range x ≤ 0.44, the magnetic contribution to the specific heat divided by temperature Cm/T shows a broad maximum at around 10 K, which can be reproduced by a two-level model with a first-excited triplet separated by 30 K from a ground state doublet. This indicates that the crystalline electric field ground state of the Pr ions remains in the Γ3 doublet for the cubic Td point group. On cooling, the Cm/T data for x = 0.085 and 0.44 approach constant values at Texpected from the random two-level model. By contrast, Cm/T for x = 0.044 increases continuously down to 0.08 K, suggesting a non-Fermi liquid state due to the impurity quadrupole Kondo effect.

  7. Symmetrical Staircase in the Profile of Lattice-Modulation Period versus Pr-Concentration in Bi 2Sr 2(Ca 1-xPrx)Cu 2O 8+δ

    Science.gov (United States)

    Onozuka, Takashi; Niizeki, Komajiro

    1998-09-01

    Variation of the lattice-modulation period p a of the “incommensurate” phase Bi2Br2(Ca1-xPrx)Cu2O8+δ (0≦x≦0.72) with Pr-concentration x was examined by electron diffraction. The plot of p a versus x exhibits roughly a linear decrease but it has a staircase structure. The period of each stair, p a, agrees with a value expected for a commensurate structure. We observed nine stairs which are symmetrically arranged; the central stair corresponds to the primary structure with a simple modulation, and a stair on the left (or right) corresponds to a structure which is derived from the primary structure by introducing an advanced (or delayed) discommensuration. The observed structures cover a full range of commensurate structures predicted theoretically.

  8. Herança e ligação em locos isoenzimáticos de Caesalpinia echinata L. (pau-brasil. Inheritance and linkage in isozyme loci of Caesalpinia echinata L. (pau-brasil.

    Directory of Open Access Journals (Sweden)

    João del GIUDICE-NETO

    2004-12-01

    Full Text Available Este artigo apresenta o estudo davariação isoenzimática em Caesalpinia echinata L.(pau-brasil. Onze sistemas enzimáticos (ACP,DIA, EST, G6PDH, GOT, LAP, MDH, PGI, PRX,SKDH e 6PGDH codificando dezoito locos (Acp-1,Est-3, Dia-1, G6pdh-1, Got-1, Lap-1, Mdh-1,Mdh-2, Mdh-3, Pgi-1, Pgi-2, Prx-1, Prx-2, Prx-3,Prx-4, Skdh-1, 6pgdh-1 e 6pgdh-2 foraminvestigados. Entre esses locos, Pgi-1 e Got-1foram detectados como monomórficos. Três locos(Mdh-2, G6pdh-1 e 6pgdh-1 não tiveram suaherança analisada devido à ausência de progênies deárvores heterozigotas na amostra. A herançamendeliana simples foi confirmada para dez locos(Acp-1, Dia-1, Est-3, Lap-1, Mdh-1, Mdh-3, Prx-1,Prx-3, Skdh-1 e 6pgdh-2. Três locos (Pgi-2, Prx-2e Prx-4 apresentaram desvios altamentesignificativos (P < 0,01 para a hipótese desegregação regular 1:1. As relações dedesequilíbrios de ligações foram avaliadas em 120pares de locos isoenzimáticos. Seis pares de locosapresentaram ligação: Mdh-3:Dia-1, Mdh-3:Prx-3,6pgdh-1:Pgi-2, 6pgdh-1:Prx-1, 6pgdh-2:Prx-3 ePgi-2:Prx-4.This article presents a study of isozymevariation in Caesalpinia echinata L. (brazilwood.Eleven isozyme systems (ACP, DIA, EST,G6PDH, GOT, LAP, MDH, PGI, PRX, SKDH and6PGDH codifying eighteen loci (Acp-1, Est-3,Dia-1, G6pdh-1, Got-1, Lap-1, Mdh-1, Mdh-2,Mdh-3, Pgi-1, Pgi-2, Prx-1, Prx-2, Prx-3, Prx-4,Skdh-1, 6pgdh-1 and 6pgdh-2 were investigated.Among these loci, Pgi-1 and Got-1 weremonomorphic. Three loci (Mdh-2, G6pdh-1 and6pgdh-1 were not evaluated for inheritance duethe lack of families from heterozygous mothertrees in the sampling. Mendelian inheritance wasconfirmed for ten allozyme loci (Acp-1, Dia-1,Est-3, Lap-1, Mdh-1, Mdh-3, Prx-1, Prx-3, Skdh-1,and 6pgdh-2. Three loci (Pgi-2, Prx-2 and Prx-4showed significant deviations (P < 0.01 from expectedsegregation 1:1 hypothesis. Linkage relationshipswere examined for 120 pairs of allozyme loci.Six pairs of loci showed linked: Mdh-3:Dia-1,Mdh-3:Prx-3, 6

  9. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1

    International Nuclear Information System (INIS)

    Kim, Ji-Hee; Lee, Jeong-Mi; Lee, Hae Na; Kim, Eun-Kyung; Ha, Bin; Ahn, Sung-Min; Jang, Ho Hee; Lee, Sang Yeol

    2012-01-01

    Highlights: ► hPrx1 has RNA-binding properties. ► hPrx1 exhibits helix-destabilizing activity. ► Cold stress increases hPrx1 level in the nuclear fraction. ► hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwound nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem–loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.

  10. Formulation strategy and evaluation of nanocrystal piroxicam orally disintegrating tablets manufacturing by freeze-drying.

    Science.gov (United States)

    Lai, Francesco; Pini, Elena; Corrias, Francesco; Perricci, Jacopo; Manconi, Maria; Fadda, Anna Maria; Sinico, Chiara

    2014-06-05

    Piroxicam (PRX) is a non-steroidal anti-inflammatory drug characterized by a poor water solubility and consequently by a low oral bioavailability. In this work, different nanocrystal orally disintegrating tablets (ODT) were prepared to enhance piroxicam dissolution rate and saturation solubility. PRX nanocrystals were prepared by means of high pressure homogenization technique using poloxamer 188 as stabilizer. Three different ODTs were prepared with the same nanosuspension using different excipients in order to study their effect on the PRX dissolution properties. PRX nanocrystal size and zeta potential were determined by photon correlation spectroscopy. Additional characterization of PRX nanocrystal ODT was carried out by infrared spectroscopy, X-ray powder diffractometry, differential scanning calorimetry. Dissolution study was performed in distilled water (pH 5.5) and compared with PRX coarse suspension ODT, PRX/poloxamer 188 physical mixture, bulk PRX samples and a PRX commercial ODT. All PRX nanocrystal ODT formulations showed a higher drug dissolution rate than coarse PRX ODT. PRX nanocrystal ODT prepared using gelatin or croscarmellose as excipient showed a higher PRX dissolution rate compared with the commercial formulation and ODT prepared using xanthan gum. Overall results confirmed that improved PRX dissolution rate is due to the increased surface-to-volume ratio due to the nanosized drug particle but also revealed the important role of different excipients used. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Peroxiredoxin 5 promotes the epithelial-mesenchymal transition in colon cancer

    International Nuclear Information System (INIS)

    Ahn, Hye-Mi; Yoo, Jin-Woo; Lee, Seunghoon; Lee, Hong Jun; Lee, Hyun-Shik; Lee, Dong-Seok

    2017-01-01

    Globally, colorectal cancer (CRC) is common cause of cancer-related deaths. The high mortality rate of patients with colon cancer is due to cancer cell invasion and metastasis. Initiation of the epithelial-to-mesenchymal transition (EMT) is essential for the tumorigenesis. Peroxiredoinxs (PRX1-6) have been reported to be overexpressed in various tumor tissues, and involved to be responsible for tumor progression. However, the exact role of PRX5 in colon cancer remains to be investigated enhancing proliferation and promoting EMT properties. In this study, we constructed stably overexpressing PRX5 and suppressed PRX5 expression in CRC cells. Our results revealed that PRX5 overexpression significantly enhanced CRC cell proliferation, migration, and invasion. On the other hand, PRX5 suppression markedly inhibited these EMT properties. PRX5 was also demonstrated to regulate the expression of two hallmark EMT proteins, E-cadherin and Vimentin, and the EMT-inducing transcription factors, Snail and Slug. Moreover, in the xenograft mouse model, showed that PRX5 overexpression enhances tumor growth of CRC cells. Thus, our findings first provide evidence in CRC that PRX5 promotes EMT properties by inducing the expression of EMT-inducing transcription factors. Therefore, PRX5 can be used as a predictive biomarker and serves as a putative therapeutic target for the development of clinical treatments for human CRC. - Highlights: • PRX5 promoted colorectal cancer cell proliferation. • PRX5 enhanced EMT properties in colorectal cancer. • PRX5 mediated the EMT by inducing the expression of Snail and Slug. • PRX5 promoted tumor growth of colorectal cancer cells.

  12. Peroxiredoxin IV Protects Cells From Radiation-Induced Apoptosis in Head-and-Neck Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Park, Jung Je; Chang, Hyo Won; Jeong, Eun-Jeong; Roh, Jong-Lyel; Choi, Seung-Ho; Jeon, Sea-Yuong; Ko, Gyung Hyuck; Kim, Sang Yoon

    2009-01-01

    Purpose: Human peroxiredoxins (Prxs) are known as a family of thiol-specific antioxidant enzymes, among which Prx-I and -II play an important role in protecting cells from irradiation-induced cell death. It is not known whether Prx-IV also protects cells from ionizing radiation (IR). Methods and Materials: To evaluate the protective role of Prx-IV in IR, we transfected full-length Prx-IV cDNA into AMC-HN3 cells, which weakly express endogenous Prx-IV, and knocked down the expression of Prx-IV with siRNA methods using AMC-HN7 cells, which express high levels of endogenous Prx-IV. Radiosensitivity profiles in these cells were evaluated using clonogenic assay, FACS analysis, cell viability, and TUNEL assay. Results: Three Prx-IV expressing clones were isolated. Prx-IV regulated intracellular reactive oxygen species (ROS) levels and made cells more resistant to IR-induced apoptosis. Furthermore, the knockdown of Prx-IV with siRNA made cells more sensitive to IR-induced apoptosis. Conclusion: The results of these studies suggest that Prx-IV may play an important role in protecting cells from IR-induced apoptosis in head-and-neck squamous cell carcinoma

  13. Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea.

    Directory of Open Access Journals (Sweden)

    Fu-Quan Chen

    Full Text Available This study delineates the role of peroxiredoxin 3 (Prx3 in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age. In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss.

  14. Molecular cloning and partial characterization of a peroxidase gene expressed in the roots of Portulaca oleracea cv., one potentially useful in the remediation of phenolic pollutants.

    Science.gov (United States)

    Matsui, Takeshi; Nomura, Yuki; Takano, Mai; Imai, Sofue; Nakayama, Hideki; Miyasaka, Hitoshi; Okuhata, Hiroshi; Tanaka, Satoshi; Matsuura, Hideyuki; Harada, Kazuo; Bamba, Takeshi; Hirata, Kazumasa; Kato, Ko

    2011-01-01

    Portulaca (Portulaca oleracea cv.) efficiently removes phenolic pollutants from hydroponic solution. In plant roots, peroxidase (PRX) is thought to be involved in the removal of phenolic pollutants by the cross-linking them to cell wall polysaccharides or proteins at the expense of reduction of hydrogen peroxide (H(2)O(2)). In this study, we found that portulaca roots secreted an acidic PRX isozyme that had relatively high H(2)O(2) affinity. We isolated five PRX genes, and the recombinant PRX proteins produced in cultured tobacco cells were partially characterized. Among these genes, PoPRX2 probably encoded the acidic PRX isozyme. PoPRX2 had an extra N-terminal region which has not been reported for other PRX proteins. We found that PoPRX2 oxidized phenolic pollutants, including bisphenol A, octylphenol, nonylphenol, and 17β-estradiol. In addition, we found that the Cys261 residue of PoPRX2 played an important role in the determination of affinity for H(2)O(2) and stability toward H(2)O(2).

  15. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature.

    Science.gov (United States)

    Movahed, Nooshin; Pastore, Chiara; Cellini, Antonio; Allegro, Gianluca; Valentini, Gabriele; Zenoni, Sara; Cavallini, Erika; D'Incà, Erica; Tornielli, Giovanni Battista; Filippetti, Ilaria

    2016-05-01

    Anthocyanin levels decline in some red grape berry varieties ripened under high-temperature conditions, but the underlying mechanism is not yet clear. Here we studied the effects of two different temperature regimes, representing actual Sangiovese (Vitis vinifera L.) viticulture regions, on the accumulation of mRNAs and enzymes controlling berry skin anthocyanins. Potted uniform plants of Sangiovese were kept from veraison to harvest, in two plastic greenhouses with different temperature conditions. The low temperature (LT) conditions featured average and maximum daily air temperatures of 20 and 29 °C, respectively, whereas the corresponding high temperature (HT) conditions were 22 and 36 °C, respectively. The anthocyanin concentration at harvest was much lower in HT berries than LT berries although their profile was similar under both conditions. Under HT conditions, the biosynthesis of anthocyanins was suppressed at both the transcriptional and enzymatic levels, but peroxidase activity was higher. This suggests that the low anthocyanin content of HT berries reflects the combined impact of reduced biosynthesis and increased degradation, particularly the direct role of peroxidases in anthocyanin catabolism. Overexpression of VviPrx31 decreased anthocyanin contents in Petunia hybrida petals under heat stress condition. These data suggest that high temperature can stimulate peroxidase activity thus anthocyanin degradation in ripening grape berries.

  16. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense.

    Science.gov (United States)

    O'Brien, Jose A; Daudi, Arsalan; Finch, Paul; Butt, Vernon S; Whitelegge, Julian P; Souda, Puneet; Ausubel, Frederick M; Bolwell, G Paul

    2012-04-01

    Perception by plants of so-called microbe-associated molecular patterns (MAMPs) such as bacterial flagellin, referred to as pattern-triggered immunity, triggers a rapid transient accumulation of reactive oxygen species (ROS). We previously identified two cell wall peroxidases, PRX33 and PRX34, involved in apoplastic hydrogen peroxide (H2O2) production in Arabidopsis (Arabidopsis thaliana). Here, we describe the generation of Arabidopsis tissue culture lines in which the expression of PRX33 and PRX34 is knocked down by antisense expression of a heterologous French bean (Phaseolus vulgaris) peroxidase cDNA construct. Using these tissue culture lines and two inhibitors of ROS generation, azide and diphenylene iodonium, we found that perxoxidases generate about half of the H2O2 that accumulated in response to MAMP treatment and that NADPH oxidases and other sources such as mitochondria account for the remainder of the ROS. Knockdown of PRX33/PRX34 resulted in decreased expression of several MAMP-elicited genes, including MYB51, CYP79B2, and CYP81F2. Similarly, proteomic analysis showed that knockdown of PRX33/PRX34 led to the depletion of various MAMP-elicited defense-related proteins, including the two cysteine-rich peptides PDF2.2 and PDF2.3. Knockdown of PRX33/PRX34 also led to changes in the cell wall proteome, including increases in enzymes involved in cell wall remodeling, which may reflect enhanced cell wall expansion as a consequence of reduced H2O2-mediated cell wall cross-linking. Comparative metabolite profiling of a CaCl2 extract of the PRX33/PRX34 knockdown lines showed significant changes in amino acids, aldehydes, and keto acids but not fatty acids and sugars. Overall, these data suggest that PRX33/PRX34-generated ROS production is involved in the orchestration of pattern-triggered immunity in tissue culture cells.

  17. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    Science.gov (United States)

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  18. Role of Peroxiredoxin III in the Pathogenesis of Pre-eclampsia as Evidenced in Mice

    Directory of Open Access Journals (Sweden)

    Lianqin Li

    2010-01-01

    Full Text Available As a member of peroxiredoxin (Prx family, PrxIII has been demonstrated to play an important role in scavenging intracellular reactive oxygen species (ROS. Since PrxIII knockout mice exhibited oxidative stress in placentas resembling pathophysiologic changes in placentas of human pre-eclampsia, we measured blood pressure through the carotid artery and detected oxidative status by western blotting in pregnant mice. We did not notice hypertension in pregnant PrxIII knockout mice as compared with wild-type littermates, although endothelin-1 was overexpressed in PrxIII-deficient placentas. Our results indicate that PrxIII is not involved in pre-eclamptic development. Instead, PrxIII is an indispensable antioxidant in placentas where oxidative stress exists.

  19. Overexpression of peroxiredoxin I and thioredoxin1 in human breast carcinoma

    Directory of Open Access Journals (Sweden)

    Kim Il-Han

    2009-06-01

    Full Text Available Abstract Background Peroxiredoxins (Prxs are a novel group of peroxidases containing high antioxidant efficiency. The mammalian Prx family has six distinct members (Prx I-VI in various subcellular locations, including peroxisomes and mitochondria, places where oxidative stress is most evident. The function of Prx I in particular has been implicated in regulating cell proliferation, differentiation, and apoptosis. Since thioredoxin1 (Trx1 as an electron donor is functionally associated with Prx I, we investigated levels of expression of both Prx I and Trx1. Methods We investigated levels of expression of both Prx I and Trx1 in breast cancer by real-time polymerase chain reaction (RT-PCR and Western blot. Results Levels of messenger RNA (mRNA for both Prx I and Trx1 in normal human breast tissue were very low compared to other major human tissues, whereas their levels in breast cancer exceeded that in other solid cancers (colon, kidney, liver, lung, ovary, prostate, and thyroid. Among members of the Prx family (Prx I-VI and Trx family (Trx1, Trx2, Prx I and Trx1 were preferentially induced in breast cancer. Moreover, the expression of each was associated with progress of breast cancer and correlated with each other. Western blot analysis of different and paired breast tissues revealed consistent and preferential expression of Prx I and Trx1 protein in breast cancer tissue. Conclusion Prx I and Trx1 are overexpressed in human breast carcinoma and the expression levels are associated with tumor grade. The striking induction of Prx I and Trx1 in breast cancer may enable their use as breast cancer markers.

  20. Expression Analysis of Four Peroxiredoxin Genes from Tamarix hispida in Response to Different Abiotic Stresses and Exogenous Abscisic Acid (ABA

    Directory of Open Access Journals (Sweden)

    Guiyan Yang

    2012-03-01

    Full Text Available Peroxiredoxins (Prxs are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO3, PEG, CdCl2 and abscisic acid (ABA in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO3 and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl2 stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  1. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).

    Science.gov (United States)

    Gao, Caiqiu; Zhang, Kaimin; Yang, Guiyan; Wang, Yucheng

    2012-01-01

    Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  2. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Composition-driven magnetic and structural phase transitions in Bi1-xPrxFe1-xMnxO3 multiferroics

    Science.gov (United States)

    Khomchenko, V. A.; Ivanov, M. S.; Karpinsky, D. V.; Paixão, J. A.

    2017-09-01

    Magnetic ferroelectrics continue to attract much attention as promising multifunctional materials. Among them, BiFeO3 is distinguished by exceptionally high transition temperatures and, thus, is considered as a prototype room-temperature multiferroic. Since its properties are known to be strongly affected by chemical substitution, recognition of the doping-related factors determining the multiferroic behavior of the material would pave the way towards designing the structures with enhanced magnetoelectric functionality. In this paper, we report on the crystal structure and magnetic and local ferroelectric properties of the Bi1-xPrxFe1-xMnxO3 (x ≤ 0.3) compounds prepared by a solid state reaction method. The polar R3c structure specific to the parent BiFeO3 has been found to be unstable with respect to doping for x ≳ 0.1. Depending on the Pr/Mn concentration, either the antipolar PbZrO3-like or nonpolar PrMnO3-type structure can be observed. It has been shown that the non-ferroelectric compounds are weak ferromagnetic with the remanent/spontaneous magnetization linearly decreasing with an increase in x. The samples containing the polar R3c phase exhibit a mixed antiferromagnetic/weak ferromagnetic behavior. The origin of the magnetic phase separation taking place in the ferroelectric phase is discussed as related to the local, doping-introduced structural heterogeneity contributing to the suppression of the cycloidal antiferromagnetic ordering characteristic of the pure BiFeO3.

  4. Characterization of a 1-cysteine peroxiredoxin from big-belly seahorse (Hippocampus abdominalis); insights into host antioxidant defense, molecular profiling and its expressional response to septic conditions.

    Science.gov (United States)

    Godahewa, G I; Perera, N C N; Elvitigala, Don Anushka Sandaruwan; Jayasooriya, R G P T; Kim, Gi-Young; Lee, Jehee

    2016-10-01

    1-cysteine peroxiredoxin (Prx6) is an antioxidant enzyme that protects cells by detoxifying multiple peroxide species. This study aimed to describe molecular features, functional assessments and potential immune responses of Prx6 identified from the big-belly seahorse, Hippocampus abdominalis (HaPrx6). The complete ORF (666 bp) of HaPrx6 encodes a polypeptide (24 kDa) of 222 amino acids, and harbors a prominent peroxiredoxin super-family domain, a peroxidatic catalytic center, and a peroxidatic cysteine. The deduced amino acid sequence of HaPrx6 shares a relatively high amino acid sequence similarity and close evolutionary relationship with Oplegnathus fasciatus Prx6. The purified recombinant HaPrx6 protein (rHaPrx6) was shown to protect plasmid DNA in the Metal Catalyzed Oxidation (MCO) assay and, together with 1,4-Dithiothreitol (DTT), protected human leukemia THP-1 cells from extracellular H2O2-mediated cell death. In addition, quantitative real-time PCR revealed that HaPrx6 mRNA was constitutively expressed in 14 different tissues, with the highest expression observed in liver tissue. Inductive transcriptional responses were observed in liver and kidney tissues of fish after treating them with bacterial stimuli, including LPS, Edwardsiella tarda, and Streptococcus iniae. These results suggest that HaPrx6 may play an important role in the immune response of the big-belly seahorse against microbial infection. Collectively, these findings provide structural and functional insights into HaPrx6. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A thioredoxin-dependent peroxiredoxin Q from Corynebacterium glutamicum plays an important role in defense against oxidative stress.

    Directory of Open Access Journals (Sweden)

    Tao Su

    Full Text Available Peroxiredoxin Q (PrxQ that belonged to the cysteine-based peroxidases has long been identified in numerous bacteria, but the information on the physiological and biochemical functions of PrxQ remain largely lacking in Corynebacterium glutamicum. To better systematically understand PrxQ, we reported that PrxQ from model and important industrial organism C. glutamicum, encoded by the gene ncgl2403 annotated as a putative PrxQ, played important roles in adverse stress resistance. The lack of C. glutamicum prxQ gene resulted in enhanced cell sensitivity, increased ROS accumulation, and elevated protein carbonylation levels under adverse stress conditions. Accordingly, PrxQ-mediated resistance to adverse stresses mainly relied on the degradation of ROS. The physiological roles of PrxQ in resistance to adverse stresses were corroborated by its induced expression under adverse stresses, regulated directly by the stress-responsive ECF-sigma factor SigH. Through catalytical kinetic activity, heterodimer formation, and bacterial two-hybrid analysis, we proved that C. glutamicum PrxQ catalytically eliminated peroxides by exclusively receiving electrons from thioredoxin (Trx/thioredoxin reductase (TrxR system and had a broad range of oxidizing substrates, but a better efficiency for peroxynitrite and cumene hydroperoxide (CHP. Site-directed mutagenesis confirmed that the conserved Cys49 and Cys54 are the peroxide oxidation site and the resolving Cys residue, respectively. It was also discovered that C. glutamicum PrxQ mainly existed in monomer whether under its native state or functional state. Based on these results, a catalytic model of PrxQ is being proposed. Moreover, our result that C. glutamicum PrxQ can prevent the damaging effects of adverse stresses by acting as thioredoxin-dependent monomeric peroxidase could be further applied to improve the survival ability and robustness of the important bacterium during fermentation process.

  6. Role of Peroxiredoxin I in Rectal Cancer and Related to p53 Status

    International Nuclear Information System (INIS)

    Chen, Miao-Fen; Lee, Kuan-Der; Yeh, Chung-Hung; Chen, Wen-Cheng; Huang, Wen-Shih; Chin, Chih-Chien; Lin, Paul- Yang; Wang, Jeng-Yi

    2010-01-01

    Background: Neoadjuvant chemoradiotherapy is widely accepted for the treatment of localized rectal cancer. Although peroxiredoxin I (PrxI) and p53 have been implicated in carcinogenesis and cancer treatment, the role of PrxI and its interaction with p53 in the prognosis and treatment response of rectal cancer remain relatively unstudied. Methods and Materials: In the present study, we examined the levels of PrxI and p53 in rectal cancer patients using membrane arrays and compared them with normal population samples. To demonstrate the biologic changes after manipulation of PrxI expression, we established stable transfectants of HCT-116 (wild-type p53) and HT-29 (mutant p53) cells with a PrxI silencing vector. The predictive capacities of PrxI and p53 were also assessed by relating the immunohistochemical staining of a retrospective series of rectal cancer cases to the clinical outcome. Results: The membrane array and immunochemical staining data showed that PrxI, but not p53, was significantly associated with the tumor burden. Our immunochemistry findings further indicated that PrxI positivity was linked to a poor response to neoadjuvant therapy and worse survival. In cellular and animal experiments, the inhibition of PrxI significantly decreased tumor growth and sensitized the tumor to irradiation, as indicated by a lower capacity to scavenge reactive oxygen species and more extensive DNA damage. The p53 status might have contributed to the difference between HCT-116 and HT-29 after knockdown of PrxI. Conclusion: According to our data, the level of PrxI combined with the p53 status is relevant to the prognosis and the treatment response. We suggested that PrxI might be a new biomarker for rectal cancer.

  7. Evaluation of the cerebrovascular pressure reactivity index using non-invasive finapres arterial blood pressure

    International Nuclear Information System (INIS)

    Kasprowicz, M; Kim, D J; Haubrich, C; Czosnyka, Z; Smielewski, P; Czosnyka, M; Schmidt, E

    2010-01-01

    A pressure reactivity index (PRx) can be assessed in patients with continuous monitoring of arterial blood pressure (ABP) and intracranial pressure (ICP) as a moving correlation coefficient between slow fluctuations of these two signals within a low frequency bandwidth. The study aimed to investigate whether the invasive ABP monitoring can be replaced with non-invasive measurement of ABP using a Finapres plethysmograph (fABP) to calculate the fPRx. There is a well-defined group of patients, suffering from hydrocephalus and undergoing CSF pressure monitoring, which may benefit from such a measurement. 41 simultaneous day-by-day monitoring of ICP, ABP and fABP were performed for about 30 min in 10 head injury patients. A Bland–Altman assessment for agreement was used to compare PRx and fPRx calculations. Performance metrics and the McNemary test were used to determine whether fPRx is sensitive enough to distinguish between functioning and disturbed cerebrovascular pressure reactivity. The fPRx correlated with PRx (R Spearman = 0.92, p < 0.001; bias = −0.04; lower and upper limits of agreement: −0.26 and 0.17, respectively). The fPRx distinguished between active and passive reactivity in more than 89% cases. The fPRx can be used with care for assessment of cerebrovascular reactivity in patients for whom invasive ABP measurement is not feasible. The fPRx is sensitive enough to distinguish between functional and deranged reactivity

  8. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability.

    Science.gov (United States)

    Wu, Jian X; Yang, Mingshi; Berg, Frans van den; Pajander, Jari; Rades, Thomas; Rantanen, Jukka

    2011-12-18

    New chemical entities (NCEs) often show poor water solubility necessitating solid dispersion formulation. The aim of the current study is to employ design of experiments in investigating the influence of one critical process factor (solvent evaporation rate) and two formulation factors (PVP:piroxicam ratio (PVP:PRX) and PVP molecular weight (P(MW))) on the physical stability of PRX solid dispersion prepared by the solvent evaporation method. The results showed the rank order of an increase in factors contributing to a decrease in the extent of PRX nucleation being evaporation rate>PVP:PRX>P(MW). The same rank order was found for the decrease in the extent of PRX crystal growth in PVP matrices from day 0 up to day 12. However, after 12days the rank became PVP:PRX>evaporation rate>P(MW). The effects of an increase in evaporation rate and PVP:PRX ratio in stabilizing PRX were of the same order of magnitude, while the effect from P(MW) was much smaller. The findings were confirmed by XRPD. FT-IR showed that PRX recrystallization in the PVP matrix followed Ostwald's step rule, and an increase in the three factors all led to increased hydrogen bonding interaction between PRX and PVP. The present study showed the applicability of the Quality by Design approach in solid dispersion research, and highlights the need for multifactorial analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Chloroplast NADPH-Dependent Thioredoxin Reductase from Chlorella vulgaris Alleviates Environmental Stresses in Yeast Together with 2-Cys Peroxiredoxin

    Science.gov (United States)

    Machida, Takeshi; Ishibashi, Akiko; Kirino, Ai; Sato, Jun-ichi; Kawasaki, Shinji; Niimura, Youichi; Honjoh, Ken-ichi; Miyamoto, Takahisa

    2012-01-01

    Chloroplast NADPH-dependent thioredoxin reductase (NTRC) catalyzes the reduction of 2-Cys peroxiredoxin (2-Cys Prx) and, thus, probably functions as an antioxidant system. The functions of the enzyme in oxidative and salt stresses have been reported previously. We have previously identified and characterized NTRC in Chlorella vulgaris. In the present study, we isolated a full-length cDNA clone encoding 2-Cys Prx from C. vulgaris and investigated the involvement of Chlorella NTRC/2-Cys Prx system in several environmental stress tolerances by using yeast as a eukaryotic model. Deduced Chlorella 2-Cys Prx was homologous to those of chloroplast 2-Cys Prxs from plants, and two conserved cysteine residues were found in the deduced sequence. Enzyme assay showed that recombinant mature C. vulgaris NTRC (mCvNTRC) transferred electrons from NADPH to recombinant mature C. vulgaris 2-Cys Prx (mCvPrx), and mCvPrx decomposed hydrogen peroxide, tert-butyl hydroperoxide, and peroxynitrite by cooperating with mCvNTRC. Based on the results, the mCvNTRC/mCvPrx antioxidant system was identified in Chlorella. The antioxidant system genes were expressed in yeast separately or coordinately. Stress tolerances of yeast against freezing, heat, and menadione-induced oxidative stresses were significantly improved by expression of mCvNTRC, and the elevated tolerances were more significant when both mCvNTRC and mCvPrx were co-expressed. Our results reveal a novel feature of NTRC: it functions as an antioxidant system with 2-Cys Prx in freezing and heat stress tolerances. PMID:23029353

  10. Symmetrical Staircase in the Profile of Lattice-Modulation Period versus Pr-Concentration and Domain Configurations in Bi 2Sr 2(Ca 1-xPrx)Cu 2O 8+δ

    Science.gov (United States)

    Onozuka, Takashi; Niizeki, Komajiro

    2000-04-01

    Variation of the lattice-modulation period p a of the`incommensurate' phase Bi2Sr2(Ca1-xPrx)Cu2O8+δ(0≦x≦0.72) with Pr-concentration x was examinedby electron diffraction, and the domain configuration byhigh-resolution transmission electron microscopy (HRTEM). The plotof p a versus x exhibits roughly a linear decreasebut it has a staircase structure. The period of each stair,p a, agrees with a value expected for a commensuratestructure. We observed nine stairs which are symmetricallyarranged; the central stair corresponds to the primary structurewith a simple modulation, and a stair on the left (or right) isassociated with an advanced (or delayed) discommensuration. On theother hand, the number of domain configurations i.e. commensuratestructures observed by HRTEM is seventeen. The observed staircasestructure covers a full range of commensurate structures predictedtheoretically. The pattern observed in the plot of p aversus x is consistent with the simulation based on theFrenkel-Kontrova model and an inhomogeneity hypothesis.

  11. Evolution and function of the Mycoplasma hyopneumoniae peroxiredoxin, a 2-Cys-like enzyme with a single Cys residue.

    Science.gov (United States)

    Gonchoroski, Taylor; Virginio, Veridiana G; Thompson, Claudia E; Paes, Jéssica A; Machado, Cláudio X; Ferreira, Henrique B

    2017-04-01

    The minimal genome of the mollicute Mycoplasma hyopneumoniae, the etiological agent of porcine enzootic pneumonia, encodes a limited repertoire of antioxidant enzymes that include a single and atypical peroxiredoxin (MhPrx), whose evolution and function were studied here. MhPrx has only one catalytic cysteine, in contrast with some of its possible ancestors (2-Cys peroxiredoxins), which have two. Although it is more similar to 2-Cys orthologs, MhPrx can still function with a single peroxidatic cysteine (Cys P ), using non-thiolic electron donors to reduce it. Therefore, MhPrx could be a representative of a possible group of 2-Cys peroxiredoxins, which have lost the resolving cysteine (Cys R ) residue without losing their catalytic properties. To further investigate MhPrx evolution, we performed a comprehensive phylogenetic analysis in the context of several bacterial families, including Prxs belonging to Tpx and AhpE families, shedding light on the evolutionary history of Mycoplasmataceae Prxs and giving support to the hypothesis of a relatively recent loss of the Cys R within this family. Moreover, mutational analyses provided insights into MhPrx function with one, two, or without catalytic cysteines. While removal of the MhPrx putative Cys P caused complete activity loss, confirming its catalytic role, the introduction of a second cysteine in a site correspondent to that of the Cys R of a 2-Cys orthologue, as in the MhPrx supposed ancestral form, was compatible with enzyme activity. Overall, our phylogenetic and mutational studies support that MhPrx recently diverged from a 2-Cys Prx ancestor and pave the way for future studies addressing structural, functional, and evolutive aspects of peroxiredoxin subfamilies in Mollicutes and other bacteria.

  12. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Cui Hongli

    2012-11-01

    Full Text Available Abstract Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS. PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic

  13. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.

    Science.gov (United States)

    Cui, Hongli; Wang, Yipeng; Wang, Yinchu; Qin, Song

    2012-11-16

    Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins

  14. Peroxiredoxin II is an antioxidant enzyme that negatively regulates collagen-stimulated platelet function.

    Science.gov (United States)

    Jang, Ji Yong; Wang, Su Bin; Min, Ji Hyun; Chae, Yun Hee; Baek, Jin Young; Yu, Dae-Yeul; Chang, Tong-Shin

    2015-05-01

    Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Profiling of wheat class III peroxidase genes derived from powdery mildew-attacked epidermis reveals distinct sequence-associated expression patterns.

    Science.gov (United States)

    Liu, Guosheng; Sheng, Xiaoyan; Greenshields, David L; Ogieglo, Adam; Kaminskyj, Susan; Selvaraj, Gopalan; Wei, Yangdou

    2005-07-01

    A cDNA library was constructed from leaf epidermis of diploid wheat (Triticum monococcum) infected with the powdery mildew fungus (Blumeria graminis f. sp. tritici) and was screened for genes encoding peroxidases. From 2,500 expressed sequence tags (ESTs), 36 cDNAs representing 10 peroxidase genes (designated TmPRX1 to TmPRX10) were isolated and further characterized. Alignment of the deduced amino acid sequences and phylogenetic clustering with peroxidases from other plant species demonstrated that these peroxidases fall into four distinct groups. Differential expression and tissue-specific localization among the members were observed during the B. graminis f. sp. tritici attack using Northern blots and reverse-transcriptase polymerase chain reaction analyses. Consistent with its abundance in the EST collection, TmPRX1 expression showed the highest induction during pathogen attack and fluctuated in response to the fungal parasitic stages. TmPRX1 to TmPRX6 were expressed predominantly in mesophyll cells, whereas TmPRX7 to TmPRX10, which feature a putative C-terminal propeptide, were detectable mainly in epidermal cells. Using TmPRX8 as a representative, we demonstrated that its C-terminal propeptide was sufficient to target a green fluorescent protein fusion protein to the vacuoles in onion cells. Finally, differential expression profiles of the TmPRXs after abiotic stresses and signal molecule treatments were used to dissect the potential role of these peroxidases in multiple stress and defense pathways.

  16. An Atlas of Peroxiredoxins Created Using an Active Site Profile-Based Approach to Functionally Relevant Clustering of Proteins.

    Directory of Open Access Journals (Sweden)

    Angela F Harper

    2017-02-01

    Full Text Available Peroxiredoxins (Prxs or Prdxs are a large protein superfamily of antioxidant enzymes that rapidly detoxify damaging peroxides and/or affect signal transduction and, thus, have roles in proliferation, differentiation, and apoptosis. Prx superfamily members are widespread across phylogeny and multiple methods have been developed to classify them. Here we present an updated atlas of the Prx superfamily identified using a novel method called MISST (Multi-level Iterative Sequence Searching Technique. MISST is an iterative search process developed to be both agglomerative, to add sequences containing similar functional site features, and divisive, to split groups when functional site features suggest distinct functionally-relevant clusters. Superfamily members need not be identified initially-MISST begins with a minimal representative set of known structures and searches GenBank iteratively. Further, the method's novelty lies in the manner in which isofunctional groups are selected; rather than use a single or shifting threshold to identify clusters, the groups are deemed isofunctional when they pass a self-identification criterion, such that the group identifies itself and nothing else in a search of GenBank. The method was preliminarily validated on the Prxs, as the Prxs presented challenges of both agglomeration and division. For example, previous sequence analysis clustered the Prx functional families Prx1 and Prx6 into one group. Subsequent expert analysis clearly identified Prx6 as a distinct functionally relevant group. The MISST process distinguishes these two closely related, though functionally distinct, families. Through MISST search iterations, over 38,000 Prx sequences were identified, which the method divided into six isofunctional clusters, consistent with previous expert analysis. The results represent the most complete computational functional analysis of proteins comprising the Prx superfamily. The feasibility of this novel method is

  17. Serum peroxiredoxin 4: a marker of oxidative stress associated with mortality in type 2 diabetes (ZODIAC-28.

    Directory of Open Access Journals (Sweden)

    Esther G Gerrits

    Full Text Available BACKGROUND: Oxidative stress plays an underlying pathophysiologic role in the development of diabetes complications. The aim of this study was to investigate peroxiredoxin 4 (Prx4, a proposed novel biomarker of oxidative stress, and its association with and capability as a biomarker in predicting (cardiovascular mortality in type 2 diabetes mellitus. METHODS: Prx4 was assessed in baseline serum samples of 1161 type 2 diabetes patients. Cox proportional hazard models were used to evaluate the relationship between Prx4 and (cardiovascular mortality. Risk prediction capabilities of Prx4 for (cardiovascular mortality were assessed with Harrell's C statistic, the integrated discrimination improvement and net reclassification improvement. RESULTS: Mean age was 67 and the median diabetes duration was 4.0 years. After a median follow-up period of 5.8 years, 327 patients died; 137 cardiovascular deaths. Prx4 was associated with (cardiovascular mortality. The Cox proportional hazard models added the variables: Prx4 (model 1; age and gender (model 2, and BMI, creatinine, smoking, diabetes duration, systolic blood pressure, cholesterol-HDL ratio, history of macrovascular complications, and albuminuria (model 3. Hazard ratios (HR (95% CI for cardiovascular mortality were 1.93 (1.57 - 2.38, 1.75 (1.39 - 2.20, and 1.63 (1.28 - 2.09 for models 1, 2 and 3, respectively. HR for all-cause mortality were 1.73 (1.50 - 1.99, 1.50 (1.29 - 1.75, and 1.44 (1.23 - 1.67 for models 1, 2 and 3, respectively. Addition of Prx4 to the traditional risk factors slightly improved risk prediction of (cardiovascular mortality. CONCLUSIONS: Prx4 is independently associated with (cardiovascular mortality in type 2 diabetes patients. After addition of Prx4 to the traditional risk factors, there was a slightly improvement in risk prediction of (cardiovascular mortality in this patient group.

  18. Serum peroxiredoxin 4: a marker of oxidative stress associated with mortality in type 2 diabetes (ZODIAC-28).

    Science.gov (United States)

    Gerrits, Esther G; Alkhalaf, Alaa; Landman, Gijs W D; van Hateren, Kornelis J J; Groenier, Klaas H; Struck, Joachim; Schulte, Janin; Gans, Reinold O B; Bakker, Stephan J L; Kleefstra, Nanne; Bilo, Henk J G

    2014-01-01

    Oxidative stress plays an underlying pathophysiologic role in the development of diabetes complications. The aim of this study was to investigate peroxiredoxin 4 (Prx4), a proposed novel biomarker of oxidative stress, and its association with and capability as a biomarker in predicting (cardiovascular) mortality in type 2 diabetes mellitus. Prx4 was assessed in baseline serum samples of 1161 type 2 diabetes patients. Cox proportional hazard models were used to evaluate the relationship between Prx4 and (cardiovascular) mortality. Risk prediction capabilities of Prx4 for (cardiovascular) mortality were assessed with Harrell's C statistic, the integrated discrimination improvement and net reclassification improvement. Mean age was 67 and the median diabetes duration was 4.0 years. After a median follow-up period of 5.8 years, 327 patients died; 137 cardiovascular deaths. Prx4 was associated with (cardiovascular) mortality. The Cox proportional hazard models added the variables: Prx4 (model 1); age and gender (model 2), and BMI, creatinine, smoking, diabetes duration, systolic blood pressure, cholesterol-HDL ratio, history of macrovascular complications, and albuminuria (model 3). Hazard ratios (HR) (95% CI) for cardiovascular mortality were 1.93 (1.57 - 2.38), 1.75 (1.39 - 2.20), and 1.63 (1.28 - 2.09) for models 1, 2 and 3, respectively. HR for all-cause mortality were 1.73 (1.50 - 1.99), 1.50 (1.29 - 1.75), and 1.44 (1.23 - 1.67) for models 1, 2 and 3, respectively. Addition of Prx4 to the traditional risk factors slightly improved risk prediction of (cardiovascular) mortality. Prx4 is independently associated with (cardiovascular) mortality in type 2 diabetes patients. After addition of Prx4 to the traditional risk factors, there was a slightly improvement in risk prediction of (cardiovascular) mortality in this patient group.

  19. Peroxiredoxin 1 protects the pea aphid Acyrthosiphon pisum from oxidative stress induced by Micrococcus luteus infection.

    Science.gov (United States)

    Zhang, Yongdong; Lu, Zhiqiang

    2015-05-01

    Reactive oxygen species (ROSs) are generated in organisms in response to infections caused by invading microbes. However, excessive ROSs will inflict oxidative damage on the host. Peroxiredoxins (Prxs) are antioxidative enzymes that may eliminate ROSs efficiently. In this study, ApPrx1 from the pea aphid Acyrthosiphon pisum was cloned, and its function was investigated in vitro and in vivo. In the presence of DTT, recombinant ApPrx1 protein from Escherichia coli showed antioxidative activity by eliminating H2O2 effectively. The H2O2 levels were significantly higher in Micrococcus luteus-infected aphids than in uninfected aphids, and ApPrx1 expression was remarkably up-regulated when the aphids were infected with M. luteus or injected with H2O2. When ApPrx1 expression was reduced by dsRNA injection, the survival of the aphids decreased significantly after M. luteus infection. Knockdown of ApPrx1 decreased M. luteus loads inside the aphids 48h post-infection. While under infection conditions, the H2O2 levels were much higher in ApPrx1 knockdown aphids than in dsGFP-injected aphids, indicating that the decreased survival of the aphids was caused by increased oxidative stress. Taken together, our results reveal that ApPrx1 plays a protective role in oxidative stress caused by bacterial infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mitochondrial H2O2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm.

    Science.gov (United States)

    Rhee, Sue Goo; Kil, In Sup

    2016-11-01

    Mitochondria produce hydrogen peroxide (H 2 O 2 ) during energy metabolism in most mammalian cells as well as during the oxidation of cholesterol associated with the synthesis of steroid hormones in steroidogenic cells. Some of the H 2 O 2 produced in mitochondria is released into the cytosol, where it serves as a key regulator of various signaling pathways. Given that mitochondria are equipped with several H 2 O 2 -eliminating enzymes, however, it had not been clear how mitochondrial H 2 O 2 can escape destruction by these enzymes for such release. Peroxiredoxin III (PrxIII) is the most abundant and efficient H 2 O 2 -eliminating enzyme in mitochondria of most cell types. We found that PrxIII undergoes reversible inactivation through hyperoxidation of its catalytic cysteine residue to cysteine sulfinic acid, and that release of mitochondrial H 2 O 2 likely occurs as a result of such PrxIII inactivation. The hyperoxidized form of PrxIII (PrxIII-SO 2 H) is reduced and reactivated by sulfiredoxin (Srx). We also found that the amounts of PrxIII-SO 2 H and Srx undergo antiphasic circadian oscillation in mitochondria of the adrenal gland, heart, and brown adipose tissue of mice maintained under normal conditions. Cytosolic Srx was found to be imported into mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is likely promoted by H 2 O 2 released from mitochondria. The imported Srx was found to be degraded by Lon protease in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of Srx underlie Srx oscillation and consequent PrxIII-SO 2 H oscillation in mitochondria. The rhythmic change in the amount of PrxIII-SO 2 H suggests that mitochondrial release of H 2 O 2 is also likely a circadian event that conveys temporal information on steroidogenesis in the adrenal gland and on energy metabolism in heart and brown adipose tissue to cytosolic signaling pathways. Copyright

  1. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays.

    Science.gov (United States)

    Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G

    2017-12-06

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.

  2. Peroxiredoxin Expression of Human Osteosarcoma Cells Is Influenced by Cold Atmospheric Plasma Treatment.

    Science.gov (United States)

    Gümbel, Denis; Gelbrich, Nadine; Napp, Matthias; Daeschlein, Georg; Kramer, Axel; Sckell, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2017-03-01

    To evaluate the potential involvement of redox-specific signalling pathways in cold atmospheric plasma (CAP)-induced apoptosis on human osteosarcoma cells. Osteosarcoma cell lines were treated with CAP with or without antioxidative agents and seeded in cell culture plates. Cell proliferation was determined by counting viable cells. Carrier gas-treated cells served as control. Peroxiredoxin (PRX) 1-3 expression and secretion were assessed. CAP treatment exhibited strongly attenuated proliferation rates. This effect was significantly attenuated by the addition of N-acetylcysteine (NAC). CAP-treated cells exhibited an increase of PRX 1 and 2 10 sec after treatment. The ratio of oxidized to reduced PRX1 and PRX2 was significantly altered with increasing cellular concentration of the oxidized dimer. Antioxidant supplementation with NAC increases proliferation of CAP-treated osteosarcoma cells, implicating an involvement of redox signalling. Activation of PRX1 and -2 indicate CAP affects redox homeostasis. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Synergistic cooperation of PDI family members in peroxiredoxin 4-driven oxidative protein folding.

    Science.gov (United States)

    Sato, Yoshimi; Kojima, Rieko; Okumura, Masaki; Hagiwara, Masatoshi; Masui, Shoji; Maegawa, Ken-ichi; Saiki, Masatoshi; Horibe, Tomohisa; Suzuki, Mamoru; Inaba, Kenji

    2013-01-01

    The mammalian endoplasmic reticulum (ER) harbors disulfide bond-generating enzymes, including Ero1α and peroxiredoxin 4 (Prx4), and nearly 20 members of the protein disulfide isomerase family (PDIs), which together constitute a suitable environment for oxidative protein folding. Here, we clarified the Prx4 preferential recognition of two PDI family proteins, P5 and ERp46, and the mode of interaction between Prx4 and P5 thioredoxin domain. Detailed analyses of oxidative folding catalyzed by the reconstituted Prx4-PDIs pathways demonstrated that, while P5 and ERp46 are dedicated to rapid, but promiscuous, disulfide introduction, PDI is an efficient proofreader of non-native disulfides. Remarkably, the Prx4-dependent formation of native disulfide bonds was accelerated when PDI was combined with ERp46 or P5, suggesting that PDIs work synergistically to increase the rate and fidelity of oxidative protein folding. Thus, the mammalian ER seems to contain highly systematized oxidative networks for the efficient production of large quantities of secretory proteins.

  4. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control

    International Nuclear Information System (INIS)

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2011-01-01

    Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival.

  5. Close teamwork between Nrf2 and peroxiredoxins 1 and 6 for the regulation of prostaglandin D2 and E2 production in macrophages in acute inflammation.

    Science.gov (United States)

    Ishii, Tetsuro

    2015-11-01

    Inflammation is a complex biological self-defense reaction triggered by tissue damage or infection by pathogens. Acute inflammation is regulated by the time- and cell type-dependent production of cytokines and small signaling molecules including reactive oxygen species and prostaglandins. Recent studies have unveiled the important role of the transcription factor Nrf2 in the regulation of prostaglandin production through transcriptional regulation of peroxiredoxins 1 and 6 (Prx1 and Prx6) and lipocalin-type prostaglandin D synthase (L-PGDS). Prx1 and Prx6 are multifunctional proteins important for cell protection against oxidative stress, but also work together to facilitate production of prostaglandins E2 and D2 (PGE2 and PGD2). Prx1 secreted from cells under mild oxidative stress binds Toll-like receptor 4 and induces NF-κB activation, important for the expression of cyclooxygenase-2 and microsomal PGE synthase-1 (mPGES-1) expression. The activated MAPKs p38 and ERK phosphorylate Prx6, leading to NADPH oxidase-2 activation, which contributes to production of PGD2 by hematopoietic prostaglandin D synthase (H-PGDS). PGD2 and its end product 15-deoxy-∆(12,14)-prostaglandin J2 (15d-PGJ2) activate Nrf2 thereby forming a positive feedback loop for further production of PGD2 by L-PGDS. Maintenance of cellular glutathione levels is an important role of Nrf2 not only for cell protection but also for the synthesis of prostaglandins, as mPGES-1 and H-PGDS require glutathione for their activities. This review is aimed at describing the functions of Prx1 and Prx6 in the regulation of PGD2 and PGE2 production in acute inflammation in macrophages and the importance of 15d-PGJ2 as an intrinsic Nrf2 activator. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Wound-induced expression of horseradish peroxidase.

    Science.gov (United States)

    Kawaoka, A; Kawamoto, T; Ohta, H; Sekine, M; Takano, M; Shinmyo, A

    1994-01-01

    Peroxidases have been implicated in the responses of plants to physiological stress and to pathogens. Wound-induced peroxidase of horseradish (Armoracia rusticana) was studied. Total peroxidase activity was increased by wounding in cell wall fractions extracted from roots, stems and leaves of horseradish. On the other hand, wounding decreased the peroxidase activity in the soluble fraction from roots. The enzyme activities of the basic isozymes were induced by wounding in horseradish leaves based on data obtained by fractionation of crude enzyme in isoelectric focusing gel electrophoresis followed by activity staining. We have previously isolated genomic clones for four peroxidase genes, namely, prxC1a, prxC1b, prxC2 and prxC3. Northern blot analysis using gene-specific probes showed that mRNA of prxC2, which encodes a basic isozyme, accumulated by wounding, while the mRNAs for other peroxidase genes were not induced. Tobacco (Nicotiana tabacum) plants were transformed with four chimeric gene constructs, each consisting of a promoter from one of the peroxidase genes and the β-glucuronidase (GUS) structural gene. High level GUS activity induced in response to wounding was observed in tobacco plants containing the prxC2-GUS construct.

  7. Mutational analysis of Peroxiredoxin IV: exclusion of a positional candidate for multinodular goitre

    Directory of Open Access Journals (Sweden)

    Bonifazi Emanuela

    2002-07-01

    Full Text Available Abstract Background Multinodular goitre (MNG is a common disorder characterised by an enlargement of the thyroid, occurring as a compensatory response to hormonogenesis impairment. The incidence of MNG is dependent on sex (female:male ratio 5:1 and several reports have documented a genetic basis for the disease. Last year we mapped a MNG locus to chromosome Xp22 in a region containing the peroxiredoxin IV (Prx-IV gene. Since Prx-IV is involved in the removal of H2O2 in thyroid cells, we hypothesize that mutations in Prx-IV gene are involved in pathogenesis of MNG. Methods Four individuals (2 affected, 2 unrelated unaffected were sequenced using automated methods. All individuals were originated from the original three-generation Italian family described in previous studies. A Southern blot analysis using a Prx-IV full-length cDNA as a probe was performed in order to exclude genomic rearrangements and/or intronic mutations. In addition a RT-PCR of PRX-IV was performed in order to investigate expression alterations. Results No causative mutations were found. Two adjacent nucleotide substitutions were detected within introns 1 and 4. These changes were also detected in unaffected individuals, suggesting that they were innocuous polymorphisms. No gross genomic rearrangements and/or restriction fragment alterations were observed on Southern analysis. Finally, using RT-PCR from tissue-specific RNA, no differences of PRX-IV expression-levels were detected between affected and unaffected samples. Conclusions Based on sequence and genomic analysis, Prx-IV is very unlikely to be the MNG2 gene.

  8. Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure.

    Science.gov (United States)

    Matsui, Takeshi; Tabayashi, Ayako; Iwano, Megumi; Shinmyo, Atsuhiko; Kato, Ko; Nakayama, Hideki

    2011-02-01

    Plant class III peroxidase (PRX) catalyzes the oxidation and oxidative polymerization of a variety of phenolic compounds while reducing hydrogen peroxide. PRX proteins are classified into apoplast type and vacuole type based on the absence or the presence of C-terminal propeptides, which probably function as vacuolar sorting signals (VSSs). In this study, in order to improve our understanding of vacuole-type PRX, we analyzed regulatory mechanisms of vacuolar sorting of a model vacuole-type PRX, the C1a isozyme of horseradish (Armoracia rusticana) (HRP C1a). Using cultured transgenic tobacco cells and protoplasts derived from horseradish leaves, we characterized HRP C1a's VSS, which is a 15 amino acid C-terminal propeptide (C15). We found that the C-terminal hexapeptide of C15 (C6), which is well conserved among vacuole-type PRX proteins, forms the core of the C-terminal-dependent VSS. We also found that the function of C6 is enhanced by the remaining N-terminal part of C15 which probably folds into an amphiphilic α-helix.

  9. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.

    Science.gov (United States)

    Cerveau, Delphine; Ouahrani, Djelloul; Marok, Mohamed Amine; Blanchard, Laurence; Rey, Pascal

    2016-01-01

    Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed. © 2015 John Wiley & Sons Ltd.

  10. Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system.

    Science.gov (United States)

    Lopert, Pamela; Patel, Manisha

    2014-05-30

    Mitochondrial reactive oxygen species are implicated in the etiology of multiple neurodegenerative diseases, including Parkinson disease. Mitochondria are known to be net producers of ROS, but recently we have shown that brain mitochondria can consume mitochondrial hydrogen peroxide (H2O2) in a respiration-dependent manner predominantly by the thioredoxin/peroxiredoxin system. Here, we sought to determine the mechanism linking mitochondrial respiration with H2O2 catabolism in brain mitochondria and dopaminergic cells. We hypothesized that nicotinamide nucleotide transhydrogenase (Nnt), which utilizes the proton gradient to generate NADPH from NADH and NADP(+), provides the link between mitochondrial respiration and H2O2 detoxification through the thioredoxin/peroxiredoxin system. Pharmacological inhibition of Nnt in isolated brain mitochondria significantly decreased their ability to consume H2O2 in the presence, but not absence, of respiration substrates. Nnt inhibition in liver mitochondria, which do not require substrates to detoxify H2O2, had no effect. Pharmacological inhibition or lentiviral knockdown of Nnt in N27 dopaminergic cells (a) decreased H2O2 catabolism, (b) decreased NADPH and increased NADP(+) levels, and (c) decreased basal, spare, and maximal mitochondrial oxygen consumption rates. Nnt-deficient cells possessed higher levels of oxidized mitochondrial Prx, which rendered them more susceptible to steady-state increases in H2O2 and cell death following exposure to subtoxic levels of paraquat. These data implicate Nnt as the critical link between the metabolic and H2O2 antioxidant function in brain mitochondria and suggests Nnt as a potential therapeutic target to improve the redox balance in conditions of oxidative stress associated with neurodegenerative diseases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Identification of differentially expressed proteins during human urinary bladder cancer progression

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; chang, Jong. w; Oh, Bong R.

    2005-01-01

    and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder...... cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may...

  12. Regulatory redox state in tree seeds

    Directory of Open Access Journals (Sweden)

    Ewelina Ratajczak

    2017-12-01

    Full Text Available Peroxiredoxins (Prx are important regulators of the redox status of tree seeds during maturation and long-term storage. Thioredoxins (Trx are redox transmitters and thereby regulate Prx activity. Current research is focused on the association of Trx with Prx in tree seeds differing in the tolerance to desiccation. The results will allow for better understanding the regulation of the redox status in orthodox, recalcitrant, and intermediate seeds. The findings will also elucidate the role of the redox status during the loss of viability of sensitive seeds during drying and long-term storage.

  13. A step toward development of printable dosage forms for poorly soluble drugs

    DEFF Research Database (Denmark)

    Raijada, Dharaben Kaushikkumar; Genina, Natalja; Fors, Daniela

    2013-01-01

    The purpose of this study was to formulate printable dosage forms for a poorly soluble drug (piroxicam; PRX) and to gain understanding of critical parameters to be considered during development of such dosage forms. Liquid formulations of PRX were printed on edible paper using piezoelectric inkjet...

  14. Role of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo.

    Science.gov (United States)

    Hu, Chao-Chien; Liao, Jiahn-Haur; Hsu, Kuang-Yang; Lin, I-Lin; Tsai, Ming-Hsuan; Wu, Wen-Hsin; Wei, Tzu-Tang; Huang, Yi-Shiang; Chiu, Shih-Jiuan; Chen, Hsiang-Yin; Wu, Shih-Hsiung; Wu, Tzu-Hua

    2011-01-01

    In this study, we investigated the biochemical pharmacology of pirenoxine (PRX) and catalin under in vitro selenite/calcium- and ultraviolet (UV)-induced lens protein turbidity challenges. The systemic effects of catalin were determined using a selenite-induced cataractogenesis rat model. In vitro cataractogenesis assay systems (including UVB/C photo-oxidation of lens crystallins, calpain-induced proteolysis, and selenite/calcium-induced turbidity of lens crystallin solutions) were used to screen the activity of PRX and catalin eye drop solutions. Turbidity was identified as the optical density measured using spectroscopy at 405 nm. We also determined the in vivo effects of catalin on cataract severity in a selenite-induced cataract rat model. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was applied to analyze the integrity of crystallin samples. PRX at 1,000 μM significantly delayed UVC-induced turbidity formation compared to controls after 4 h of UVC exposure (pturbidity induced by 4 h of UVC exposure was ameliorated in the presence of catalin equivalent to 1~100 μM PRX in a concentration-dependent manner. Samples with catalin-formulated vehicle only (CataV) and those containing PRX equivalent to 100 μM had a similar protective effect after 4 h of UVC exposure compared to the controls (pturbidity formation compared to controls on days 0~4 (pturbidity on day 1 (pturbidity but required millimolar levels to protect against UVC irradiation. The observed inhibition of UVC-induced turbidity of lens crystallins by catalin at micromolar concentrations may have been a result of the catalin-formulated vehicle. Transient protection by catalin against selenite-induced turbidity of crystallin solutions in vitro was supported by the ameliorated cataract scores in the early stage of cataractogenesis in vivo by subcutaneously administered catalin. PRX could not inhibit calpain-induced proteolysis activated by calcium or catalin itself, and may be

  15. Drought tolerance in transgenic tropical maize ( Zea mays L.) by ...

    African Journals Online (AJOL)

    Successful integration of XvPrx2 gene into maize we achieved and recovered 10 independent transgenic events. Transformation and regeneration frequencies were 12.9 and 31.3%, respectively. Reverse transcription polymerase chain reaction (PCR) revealed the expression of the XvPrx2 gene in transformed plants under ...

  16. Circulating peroxiredoxin 4 and type 2 diabetes risk : the Prevention of Renal and Vascular Endstage Disease (PREVEND) study

    NARCIS (Netherlands)

    Abbasi, Ali; Corpeleijn, Eva; Gansevoort, Ron T; Gans, Rijk O B; Struck, Joachim; Schulte, Janin; Hillege, Hans L; van der Harst, Pim van der; Stolk, Ronald P; Navis, Gerarda; Bakker, Stephan J L

    2014-01-01

    AIMS/HYPOTHESIS: Oxidative stress plays a key role in the development of type 2 diabetes mellitus. We previously showed that the circulating antioxidant peroxiredoxin 4 (Prx4) is associated with cardiometabolic risk factors. We aimed to evaluate the association of Prx4 with type 2 diabetes risk in

  17. Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection.

    Science.gov (United States)

    Kim, Sung Rae; Ho, Myoung Jin; Kim, Sang Hyun; Cho, Ha Ra; Kim, Han Sol; Choi, Yong Seok; Choi, Young Wook; Kang, Myung Joo

    2016-01-01

    Piroxicam (PRX), a potent nonsteroidal anti-inflammatory drug, is prescribed to relieve postoperative and/or chronic joint pain. However, its oral administration often results in serious gastrointestinal adverse effects including duodenal ulceration. Thus, a novel cationic nanoparticle (NP) was explored to minimize the systemic exposure and increase the retention time of PRX in the joint after intra-articular (IA) injection, by forming micrometer-sized electrostatic clusters with endogenous hyaluronic acid (HA) in the synovial cavity. PRX-loaded NPs consisting of poly(lactic- co -glycolic acid), Eudragit RL, and polyvinyl alcohol were constructed with the following characteristics: particle size of 220 nm, zeta potential of 11.5 mV in phosphate-buffered saline, and loading amount of 4.0% (w/w) of PRX. In optical and hyperspectral observations, the cationic NPs formed more than 50 μm-sized aggregates with HA, which was larger than the intercellular gaps between synoviocytes. In an in vivo pharmacokinetic study in rats, area under the plasma concentration-time curve (AUC 0-24 h ) and maximum plasma concentration ( C max ) of PRX after IA injection of the cationic NPs were <70% ( P <0.05) and 60% ( P <0.05), respectively, compared to those obtained from drug solution. Moreover, the drug concentration in joint tissue 24 h after dosing with the cationic NPs was 3.2-fold ( P <0.05) and 1.8-fold ( P <0.05) higher than that from drug solution and neutrally charged NPs, respectively. Therefore, we recommend the IA cationic NP therapy as an effective alternative to traditional oral therapy with PRX, as it increases drug retention selectively in the joint.

  18. Impact of xerostomia on dysphagia after chemotherapy-intensity-modulated radiotherapy for oropharyngeal cancer: Prospective longitudinal study.

    Science.gov (United States)

    Vainshtein, Jeffrey M; Samuels, Stuart; Tao, Yebin; Lyden, Teresa; Haxer, Marc; Spector, Matthew; Schipper, Matthew; Eisbruch, Avraham

    2016-04-01

    The purpose of this study was to assess how xerostomia affects dysphagia. Prospective longitudinal studies of 93 patients with oropharyngeal cancer treated with definitive chemotherapy-intensity-modulated radiotherapy (IMRT). Observer-rated dysphagia (ORD), patient-reported dysphagia (PRD), and patient-reported xerostomia (PRX) assessment of the swallowing mechanics by videofluoroscopy (videofluoroscopy score), and salivary flow rates, were prospectively assessed from pretherapy through 2 years. ORD grades ≥2 were rare and therefore not modeled. Of patients with no/mild videofluoroscopy abnormalities, a substantial proportion had PRD that peaked 3 months posttherapy and subsequently improved. Through 2 years, highly significant correlations were observed between PRX and PRD scores for all patients, including those with no/mild videofluoroscopy abnormalities. Both PRX and videofluoroscopy scores were highly significantly associated with PRD. On multivariate analysis, PRX score was a stronger predictor of PRD than the videofluoroscopy score. Xerostomia contributes significantly to PRD. Efforts to further decrease xerostomia, in addition to sparing parotid glands, may translate into improvements in PRD. © 2015 Wiley Periodicals, Inc. Head Neck 38: E1605-E1612, 2016. © 2015 Wiley Periodicals, Inc.

  19. Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring.

    Science.gov (United States)

    Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Di Leandro, Luana; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo

    2016-03-28

    Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.

  20. Data demonstrating the role of peroxiredoxin 2 as important anti-oxidant system in lung homeostasis

    Directory of Open Access Journals (Sweden)

    Enrica Federti

    2017-12-01

    Full Text Available The data presented in this article are related to the research paper entitled “peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension” (Federti et al., 2017 [1]. Data show that the absence of peroxiredoxin-2 (Prx2 is associated with increased lung oxidation and pulmonary vascular endothelial dysfunction. Prx2−/− mice displayed activation of the redox-sensitive transcriptional factors, NF-kB and Nrf2, and increased expression of cytoprotective system such as heme-oxygenase-1 (HO-1. We also noted increased expression of both markers of vascular activation and extracellular matrix remodeling. The administration of the recombinant fusion protein PEP Prx2 reduced the activation of NF-kB and Nrf2 and was paralleled by a decrease in HO-1 and in vascular endothelial abnormal activation. Prolonged hypoxia was used to trigger pulmonary artery hypertension (PAH. Prx2−/− precociously developed PAH compared to wildtype animals.

  1. Vesicular transport route of horseradish C1a peroxidase is regulated by N- and C-terminal propeptides in tobacco cells.

    Science.gov (United States)

    Matsui, T; Nakayama, H; Yoshida, K; Shinmyo, A

    2003-10-01

    Peroxidases (PRX, EC 1.11.1.7) are widely distributed across microorganisms, plants, and animals; and, in plants, they have been implicated in a variety of secondary metabolic reactions. In particular, horseradish (Armoracia rusticana) root represents the main source of commercial PRX production. The prxC1a gene, which encodes horseradish PRX (HRP) C, is expressed mainly in the roots and stems of the horseradish plant. HRP C1a protein is shown to be synthesized as a preprotein with both a N-terminal (NTPP) and a C-terminal propeptide (CTPP). These propeptides, which might be responsible for intracellular localization or secretion, are removed before or concomitant with production of the mature protein. We investigated the functional role of HRP C1a NTPP and CTPP in the determination of the vesicular transport route, using an analytical system of transgenically cultured tobacco cells (Nicotiana tabacum, BY2). Here, we report that NTPP and CTPP are necessary and sufficient for accurate localization of mature HRP C1a protein to vacuoles of the vesicular transport system. We also demonstrate that HRP C1a derived from a preprotein lacking CTPP is shunted into the secretory pathway.

  2. Electron-beam induced structural and function change of microbial peroxiredoxin

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S. H.; An, B. C.; Lee, S. S.; Lee, E. M.; Chung, B. Y. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Pseudomonas aerogenes peroxiredoxin (PaPrx) has dual functions acting as thioredoxin (Trx)-dependent peroxidase and molecular chaperone. The function of PaPrx is controlled by its structural status. In this study, we examined the effect of electron beam on structural modification related to chaperone activity. When irradiated electron beam at 1 kGy, the structural and functional changes of PaPrx were initiated. The enhanced chaperone activity was increased about 3- 40 4-fold at 2 kGy compared with non-irradiated, while the peroxidase activity was decreased. We also investigated the influence of the electron beam on protein physical property factors such as hydrophobicity and secondary structure. The exposure of hydrophobic domains reached a peak at 2 kGy of electron beam and then dose-dependently decreased with increasing electron beam irradiation. In addition, the electron beam irradiated PaPrx significantly increased exposure of {beta}-sheet and random coil elements on the protein surface whereas exposure of {alpha}-helix and turn elements was decreased. Our results suggest that highly enhanced chaperone activity could be applied to use in bio-engineering system and various industrial applications.

  3. Electron-beam induced structural and function change of microbial peroxiredoxin

    International Nuclear Information System (INIS)

    Hong, S. H.; An, B. C.; Lee, S. S.; Lee, E. M.; Chung, B. Y.

    2012-01-01

    Pseudomonas aerogenes peroxiredoxin (PaPrx) has dual functions acting as thioredoxin (Trx)-dependent peroxidase and molecular chaperone. The function of PaPrx is controlled by its structural status. In this study, we examined the effect of electron beam on structural modification related to chaperone activity. When irradiated electron beam at 1 kGy, the structural and functional changes of PaPrx were initiated. The enhanced chaperone activity was increased about 3- 40 4-fold at 2 kGy compared with non-irradiated, while the peroxidase activity was decreased. We also investigated the influence of the electron beam on protein physical property factors such as hydrophobicity and secondary structure. The exposure of hydrophobic domains reached a peak at 2 kGy of electron beam and then dose-dependently decreased with increasing electron beam irradiation. In addition, the electron beam irradiated PaPrx significantly increased exposure of β-sheet and random coil elements on the protein surface whereas exposure of α-helix and turn elements was decreased. Our results suggest that highly enhanced chaperone activity could be applied to use in bio-engineering system and various industrial applications

  4. Enhanced radiation response in radioresistant MCF-7 cells by targeting peroxiredoxin II

    Directory of Open Access Journals (Sweden)

    Diaz AJG

    2013-10-01

    Full Text Available Anthony Joseph Gomez Diaz,1 Daniel Tamae,2 Yun Yen,3 JianJian Li,4 Tieli Wang1 1Department of Chemistry and Biochemistry, California State University at Dominguez Hills, Carson, CA, 2Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, 3Department of Clinical and Molecular Pharmacology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 4Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA Abstract: In our previous study, we identified that a protein target, peroxiredoxin II (PrxII, is overexpressed in radioresistant MCF+FIR3 breast-cancer cells and found that its expression and function is associated with breast-cancer radiation sensitivity or resistance. Small interference RNA (siRNA targeting PrxII gene expression was able to sensitize MCF+FIR3 radioresistant breast-cancer cells to ionizing radiation. The major focus of this work was to investigate how the radiation response of MCF+FIR3 radioresistant cells was affected by the siRNA that inhibits PrxII gene expression. Our results, presented here, show that silencing PrxII gene expression increased cellular toxicity by altering cellular thiol status, inhibiting Ca2+ efflux from the cells, and perturbing the intracellular Ca2+ homeostasis. By combining radiotherapy and siRNA technology, we hope to develop new therapeutic strategies that may have potential to enhance the efficacy of chemotherapeutic agents due to this technology's property of targeting to specific cancer-related genes. Keywords: siRNA, PrxII, radiation resistance, Ca2+, MCF+FIR3

  5. Increased localized delivery of piroxicam by cationic nanoparticles after intra-articular injection

    Directory of Open Access Journals (Sweden)

    Kim SR

    2016-11-01

    Full Text Available Sung Rae Kim,1 Myoung Jin Ho,2 Sang Hyun Kim,1 Ha Ra Cho,2 Han Sol Kim,2 Yong Seok Choi,2 Young Wook Choi,1 Myung Joo Kang2 1Division of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, 2College of Pharmacy, Dankook University, Cheonan, Chungnam, South Korea Abstract: Piroxicam (PRX, a potent nonsteroidal anti-inflammatory drug, is prescribed to relieve postoperative and/or chronic joint pain. However, its oral administration often results in serious gastrointestinal adverse effects including duodenal ulceration. Thus, a novel cationic nanoparticle (NP was explored to minimize the systemic exposure and increase the retention time of PRX in the joint after intra-articular (IA injection, by forming micrometer-sized electrostatic clusters with endogenous hyaluronic acid (HA in the synovial cavity. PRX-loaded NPs consisting of poly(lactic-co-glycolic acid, Eudragit RL, and polyvinyl alcohol were constructed with the following characteristics: particle size of 220 nm, zeta potential of 11.5 mV in phosphate-buffered saline, and loading amount of 4.0% (w/w of PRX. In optical and hyperspectral observations, the cationic NPs formed more than 50 µm-sized aggregates with HA, which was larger than the intercellular gaps between synoviocytes. In an in vivo pharmacokinetic study in rats, area under the plasma concentration–time curve (AUC0–24 h and maximum plasma concentration (Cmax of PRX after IA injection of the cationic NPs were <70% (P<0.05 and 60% (P<0.05, respectively, compared to those obtained from drug solution. Moreover, the drug concentration in joint tissue 24 h after dosing with the cationic NPs was 3.2-fold (P<0.05 and 1.8-fold (P<0.05 higher than that from drug solution and neutrally charged NPs, respectively. Therefore, we recommend the IA cationic NP therapy as an effective alternative to traditional oral therapy with PRX, as it increases drug retention selectively in the joint. Keywords: piroxicam

  6. Flavoprotein-mediated tellurite reduction: structural basis and applications to the synthesis of tellurium-containing nanostructures

    Directory of Open Access Journals (Sweden)

    Mauricio Arenas-Salinas

    2016-07-01

    Full Text Available The tellurium oxyanion tellurite (TeO32- is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(PH-dependent, reduction to the less toxic form elemental tellurium (Te0. To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3, among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR. Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P+-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB, alkyl hydroperoxide reductase (AhpF, glutathione reductase (GorA, mercuric reductase (MerA, NADH: flavorubredoxin reductase (NorW, dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9-10 and 37 °C.Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS. While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (> 100 nm. Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA and YkgC.

  7. Four novel cases of periaxin-related neuropathy and review of the literature.

    Science.gov (United States)

    Marchesi, C; Milani, M; Morbin, M; Cesani, M; Lauria, G; Scaioli, V; Piccolo, G; Fabrizi, G M; Cavallaro, T; Taroni, F; Pareyson, D

    2010-11-16

    To report 4 cases of autosomal recessive hereditary neuropathy associated with novel mutations in the periaxin gene (PRX) with a review of the literature. Periaxin protein is required for the maintenance of peripheral nerve myelin. Patients with PRX mutations have early-onset autosomal recessive demyelinating Charcot-Marie-Tooth disease (CMT4F) or Déjèrine-Sottas neuropathy (DSN). Only 12 different mutations have been described thus far. Case reports and literature review. Four patients from 3 unrelated families (2 siblings and 2 unrelated patients) were affected by an early-onset, slowly progressive demyelinating neuropathy with relevant sensory involvement. All carried novel frameshift or nonsense mutations in the PRX gene. The 2 siblings were compound heterozygotes for 2 PRX null mutations (p.Q547X and p.K808SfsX2), the third patient harbored a homozygous nonsense mutation (p.E682X), and the last patient had a homozygous 2-nt insertion predicting a premature protein truncation (p.S259PfsX55). Electrophysiologic analysis showed a severe slowing of motor nerve conduction velocities (MNCVs, between 3 and 15.3 m/s) with undetectable sensory nerve action potentials (SNAPs). Sural nerve biopsy, performed in 2 patients, demonstrated a severe demyelinating neuropathy and onion bulb formations. Interestingly, we observed some variability of disease severity within the same family. These cases and review of the literature indicate that PRX-related neuropathies have early onset but overall slow progression. Typical features are prominent sensory involvement, often with sensory ataxia; a moderate-to-dramatic reduction of MNCVs and almost invariable absence of SNAPs; and pathologic demyelination with classic onion bulbs, and less commonly myelin folding and basal lamina onion bulbs.

  8. Predicting storage-dependent damage to red blood cells using nitrite oxidation kinetics, peroxiredoxin-2 oxidation, and hemoglobin and free heme measurements.

    Science.gov (United States)

    Oh, Joo-Yeun; Stapley, Ryan; Harper, Victoria; Marques, Marisa B; Patel, Rakesh P

    2015-12-01

    Storage-dependent damage to red blood cells (RBCs) varies significantly. Identifying RBC units that will undergo higher levels of hemolysis during storage may allow for more efficient inventory management decision-making. Oxidative-stress mediates storage-dependent damage to RBCs and will depend on the oxidant:antioxidant balance. We reasoned that this balance or redox tone will serve as a determinant of how a given RBC unit stores and that its assessment in "young" RBCs will predict storage-dependent hemolysis. RBCs were sampled from bags and segments stored for 7 to 42 days. Redox tone was assessed by nitrite oxidation kinetics and peroxiredoxin-2 (Prx-2) oxidation. In parallel, hemolysis was assessed by measuring cell-free hemoglobin (Hb) and free heme (hemin). Correlation analyses were performed to determine if Day 7 measurements predicted either the level of hemolysis at Day 35 or the increase in hemolysis during storage. Higher Day 7 Prx-2 oxidation was associated with higher Day 35 Prx-2 oxidation, suggesting that early assessment of this variable may identify RBCs that will incur the most oxidative damage during storage. RBCs that oxidized nitrite faster on Day 7 were associated with the greatest levels of storage-dependent hemolysis and increases in Prx-2 oxidation. An inverse relationship between storage-dependent changes in oxyhemoglobin and free heme was observed underscoring an unappreciated reciprocity between these molecular species. Moreover, free heme was higher in the bag compared to paired segments, with opposite trends observed for free Hb. Measurement of Prx-2 oxidation and nitrite oxidation kinetics early during RBC storage may predict storage-dependent damage to RBC including hemolysis-dependent formation of free Hb and heme. © 2015 AABB.

  9. The effects of acrolein on peroxiredoxins, thioredoxins, and thioredoxin reductase in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Myers, Charles R.; Myers, Judith M.

    2009-01-01

    Inhalation is a common form of exposure to acrolein, a toxic reactive volatile aldehyde that is a ubiquitous environmental pollutant. Bronchial epithelial cells would be directly exposed to inhaled acrolein. The thioredoxin (Trx) system is essential for the maintenance of cellular thiol redox balance, and is critical for cell survival. Normally, thioredoxin reductase (TrxR) maintains the cytosolic (Trx1) and mitochondrial (Trx2) thioredoxins in the reduced state, and the thioredoxins keep the peroxiredoxins (Prx) reduced, thereby supporting their peroxidase function. The effects of acrolein on TrxR, Trx and Prx in human bronchial epithelial (BEAS-2B) cells were determined. A 30-min exposure to 5 μM acrolein oxidized both Trx1 and Trx2, although significant effects were noted for Trx1 at even lower acrolein concentrations. The effects on Trx1 and Trx2 could not be reversed by treatment with disulfide reductants. TrxR activity was inhibited 60% and >85% by 2.5 and 5 μM acrolein, respectively. The endogenous electron donor for TrxR, NADPH, could not restore its activity, and activity did not recover in cells during a 4-h acrolein-free period in complete medium. The effects of acrolein on TrxR and Trx therefore extend beyond the duration of exposure. While there was a strong correlation between TrxR inhibition and Trx1 oxidation, the irreversible effects on Trx1 suggest direct effects of acrolein rather than loss of reducing equivalents from TrxR. Trx2 did not become oxidized until ≥90% of TrxR was inhibited, but irreversible effects on Trx2 also suggest direct effects of acrolein. Prx1 (cytosolic) and Prx3 (mitochondrial) shifted to a largely oxidized state only when >90 and 100% of their respective Trxs were oxidized. Prx oxidation was readily reversed with a disulfide reductant, suggesting that Prx oxidation resulted from lack of reducing equivalents from Trx and not direct reaction with acrolein. The effects of acrolein on the thioredoxin system and

  10. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    Science.gov (United States)

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  11. Learning SAS’s Perl Regular Expression Matching the Easy Way: By Doing

    Science.gov (United States)

    2015-01-12

    Doing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Paul Genovesi 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...regex_learning_tool allows both beginner and expert to efficiently practice PRX matching by selecting and processing only the match records that the user is interested...perl regular expression and/or source string. The regex_learning_tool allows both beginner and expert to efficiently practice PRX matching by

  12. Dynamic Regulation of Ero1α and Peroxiredoxin 4 Localization in the Secretory Pathway*

    Science.gov (United States)

    Kakihana, Taichi; Araki, Kazutaka; Vavassori, Stefano; Iemura, Shun-ichiro; Cortini, Margherita; Fagioli, Claudio; Natsume, Tohru; Sitia, Roberto; Nagata, Kazuhiro

    2013-01-01

    In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H2O2 as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H2O2 to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1α, whereas ERp44 equally retains Ero1α and Prx4. The different binding properties of Ero1α and Prx4 increase the robustness of ER redox homeostasis. PMID:23979138

  13. Comparison of Intracranial Pressure and Pressure Reactivity Index Obtained Through Pressure Measurements in the Ventricle and in the Parenchyma During and Outside Cerebrospinal Fluid Drainage Episodes in a Manipulation-Free Patient Setting.

    Science.gov (United States)

    Klein, Samuel Patrick; Bruyninckx, Dominike; Callebaut, Ina; Depreitere, Bart

    2018-01-01

    We investigated the effect of cerebrospinal fluid (CSF) drainage on the intracranial pressure (ICP) signal measured in the parenchyma and the ventricle as well as the effect on the pressure reactivity index (PRx) calculated from both signals.  Ten patients were included in this prospective study. All patients received a parenchymal ICP sensor and an external ventricular drain (EVD) for CSF drainage. ICP signals (ICP-p and ICP-evd) were captured. Part of the study was a period of 90 min during which the patient was free from any manipulation, consisting of 30 min of drainage (O1), 30 min EVD closed (C) and 30 min of drainage (O2).  Mean ICP-evd and mean AMP-evd increased (3.03 and 0.46 mmHg) from O1 to C and decreased (2.12 and 0.43 mmHg) from C to O2. ICP-p and AMP-p changes were less pronounced (closing EVD: +0.81 mmHg/+0.22 mmHg; opening EVD: -0.22 mmHg/-0.05 mmHg). Mean difference between PRx-evd and PRx-p was 0.12 for O1, 0.02 for C and -0.02 for O2. The intraclass correlation coefficient for absolute agreement of single measures was 0.66 for O1, 0.77 for C and 0.69 for O2. Mean PRx differences demonstrated a significant difference between O1 versus C and O1 versus O2 but not between C versus O2.  Drainage of CSF reduces ICP magnitude and amplitude through the EVD. This effect was only marginal in parenchymal ICP measurements. In manipulation-free circumstances, agreement of PRx obtained through parenchymal and ventricular measurements was moderate to good, depending on the statistical method, and was not necessarily influenced by drainage.

  14. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  15. A study of the relative importance of the peroxiredoxin-, catalase-, and glutathione-dependent systems in neural peroxide metabolism.

    Science.gov (United States)

    Mitozo, Péricles Arruda; de Souza, Luiz Felipe; Loch-Neckel, Gecioni; Flesch, Samira; Maris, Angelica Francesca; Figueiredo, Cláudia Pinto; Dos Santos, Adair Roberto Soares; Farina, Marcelo; Dafre, Alcir Luiz

    2011-07-01

    Cells are endowed with several overlapping peroxide-degrading systems whose relative importance is a matter of debate. In this study, three different sources of neural cells (rat hippocampal slices, rat C6 glioma cells, and mouse N2a neuroblastoma cells) were used as models to understand the relative contributions of individual peroxide-degrading systems. After a pretreatment (30 min) with specific inhibitors, each system was challenged with either H₂O₂ or cumene hydroperoxide (CuOOH), both at 100 μM. Hippocampal slices, C6 cells, and N2a cells showed a decrease in the H₂O₂ decomposition rate (23-28%) by a pretreatment with the catalase inhibitor aminotriazole. The inhibition of glutathione reductase (GR) by BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) significantly decreased H₂O₂ and CuOOH decomposition rates (31-77%). Inhibition of catalase was not as effective as BCNU at decreasing cell viability (MTT assay) and cell permeability or at increasing DNA damage (comet test). Impairing the thioredoxin (Trx)-dependent peroxiredoxin (Prx) recycling by thioredoxin reductase (TrxR) inhibition with auranofin neither potentiated peroxide toxicity nor decreased the peroxide-decomposition rate. The results indicate that neural peroxidatic systems depending on Trx/TrxR for recycling are not as important as those depending on GSH/GR. Dimer formation, which leads to Prx2 inactivation, was observed in hippocampal slices and N2a cells treated with H₂O₂, but not in C6 cells. However, Prx-SO₃ formation, another form of Prx inactivation, was observed in all neural cell types tested, indicating that redox-mediated signaling pathways can be modulated in neural cells. These differences in Prx2 dimerization suggest specific redox regulation mechanisms in glia-derived (C6) compared to neuron-derived (N2a) cells and hippocampal slices. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Nrf2-peroxiredoxin I axis in polymorphous adenocarcinoma is associated with low matrix metalloproteinase 2 level.

    Science.gov (United States)

    Brod, J M; Demasi, Ana Paula Dias; Montalli, V A; Teixeira, L N; Furuse, C; Aguiar, M C; Soares, A B; Sperandio, M; Araujo, V C

    2017-12-01

    Polymorphous adenocarcinoma (PAC) is a malignant epithelial neoplasm that affects almost exclusively the minor salivary glands, generally described as having a relatively good prognosis. Aberrant nuclear factor erythroid 2 (NF-E2)-related factor (Nrf2) activation in tumor cells has been associated with induction of antioxidant enzymes, such as peroxiredoxin I (Prx I) and increased matrix metalloproteinase (MMP) expression. In this context, the aim of the present study was to evaluate the expression of Nrf2 and correlate it with Prx I and MMP-2 secretion in PAC. Thirty-one cases of PAC from oral biopsies were selected and immunohistochemically analyzed for Nrf2 and Prx I. MMP-2 quantification was performed on primary cell cultures derived from PAC. Oral squamous cell carcinoma (OSCC) cell cultures were used as control. A high immunoexpression of Nrf2 was observed in both the cytoplasm and the nucleus of neoplastic cells from PAC. Nuclear staining for Nrf2 suggested its activation in the majority of the PAC cells, which was confirmed by the high expression of its target gene, Prx I. Quantification of MMP-2 secretion showed lower levels in PAC cell cultures when compared to OSCC cell cultures (p high-grade malignancies, such relationship is not infallible and, in fact, the opposite may occur in low-grade tumors, such as PAC of minor salivary glands.

  17. Oxidative Stress Promotes Peroxiredoxin Hyperoxidation and Attenuates Pro-survival Signaling in Aging Chondrocytes*

    Science.gov (United States)

    Collins, John A.; Wood, Scott T.; Nelson, Kimberly J.; Rowe, Meredith A.; Carlson, Cathy S.; Chubinskaya, Susan; Poole, Leslie B.; Furdui, Cristina M.; Loeser, Richard F.

    2016-01-01

    Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1–3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observed in situ in human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism. PMID:26797130

  18. An optimal frequency range for assessing the pressure reactivity index in patients with traumatic brain injury.

    Science.gov (United States)

    Howells, Tim; Johnson, Ulf; McKelvey, Tomas; Enblad, Per

    2015-02-01

    The objective of this study was to identify the optimal frequency range for computing the pressure reactivity index (PRx). PRx is a clinical method for assessing cerebral pressure autoregulation based on the correlation of spontaneous variations of arterial blood pressure (ABP) and intracranial pressure (ICP). Our hypothesis was that optimizing the methodology for computing PRx in this way could produce a more stable, reliable and clinically useful index of autoregulation status. The patients studied were a series of 131 traumatic brain injury patients. Pressure reactivity indices were computed in various frequency bands during the first 4 days following injury using bandpass filtering of the input ABP and ICP signals. Patient outcome was assessed using the extended Glasgow Outcome Scale (GOSe). The optimization criterion was the strength of the correlation with GOSe of the mean index value over the first 4 days following injury. Stability of the indices was measured as the mean absolute deviation of the minute by minute index value from 30-min moving averages. The optimal index frequency range for prediction of outcome was identified as 0.018-0.067 Hz (oscillations with periods from 55 to 15 s). The index based on this frequency range correlated with GOSe with ρ=-0.46 compared to -0.41 for standard PRx, and reduced the 30-min variation by 23%.

  19. A theoretical and spectroscopic study of conformational structures of piroxicam

    Science.gov (United States)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério

    2010-02-01

    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  20. Identification of differentially expressed proteins during human urinary bladder cancer progression.

    Science.gov (United States)

    Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J

    2005-01-01

    Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.

  1. Effects of Benzalkonium Chloride, Proxel LV, P3 Hypochloran, Triton X-100 and DOWFAX 63N10 on anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores, German Antonio Enriquez; Fotidis, Ioannis; Karakashev, Dimitar Borisov

    2015-01-01

    In this study, the individual and synergistic toxicity of the following xenobiotics: Benzalkonium Chloride (BKC), Proxel LV (PRX), P3 Hypochloran (HPC), Triton X-100 (TRX), and DOWFAX 63N10 (DWF), on anaerobic digestion (AD) process, was assessed. The experiments were performed in batch and conti......In this study, the individual and synergistic toxicity of the following xenobiotics: Benzalkonium Chloride (BKC), Proxel LV (PRX), P3 Hypochloran (HPC), Triton X-100 (TRX), and DOWFAX 63N10 (DWF), on anaerobic digestion (AD) process, was assessed. The experiments were performed in batch...... and continuous (up-flow anaerobic sludge blanket, UASB) reactors with biochemical-industrial wastewater, as substrate. In batch experiments, half-maximal inhibitory concentrations (IC50) for the tested xenobiotics were found to be 13.1, 1003, 311.5 and 24.3 mg L1 for BKC, PRX, DWF and TRX, respectively while HPC...... observed from the batch reactors. Oppositely, TRX showed no inhibition in continuous mode, while inhibition was detected at batch mode....

  2. The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts

    International Nuclear Information System (INIS)

    Moon, Jeong Chan; Jang, Ho Hee; Chae, Ho Byoung; Lee, Jung Ro; Lee, Sun Yong; Jung, Young Jun; Shin, Mi Rim; Lim, Hye Song; Chung, Woo Sik; Yun, Dae-Jin; Lee, Kyun Oh; Lee, Sang Yeol

    2006-01-01

    2-Cys peroxiredoxins (Prxs) play important roles in the antioxidative defense systems of plant chloroplasts. In order to determine the interaction partner for these proteins in Arabidopsis, we used a yeast two-hybrid screening procedure with a C175S-mutant of Arabidopsis 2-Cys Prx-A as bait. A cDNA encoding an NADPH-dependent thioredoxin reductase (NTR) isotype C was identified and designated ANTR-C. We demonstrated that this protein effected efficient transfer of electrons from NADPH to the 2-Cys Prxs of chloroplasts. Interaction between 2-Cys Prx-A and ANTR-C was confirmed by a pull-down experiment. ANTR-C contained N-terminal TR and C-terminal Trx domains. It exhibited both TR and Trx activities and co-localized with 2-Cys Prx-A in chloroplasts. These results suggest that ANTR-C functions as an electron donor for plastidial 2-Cys Prxs and represents the NADPH-dependent TR/Trx system in chloroplasts

  3. Anti-tumor Effect of Rhaponticum uniflorum Ethyl Acetate Extract by Regulation of Peroxiredoxin1 and Epithelial-to-Mesenchymal Transition in Oral Cancer

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2017-11-01

    Full Text Available Objective: To explore whether Rhaponticum uniflorum (R. uniflorum had anti-tumor effects in oral cancer and investigate the molecular mechanisms involved in these anti-tumor effects.Methods: Chemical compositions of R. uniflorum ethyl acetate (RUEA extracts were detected by ultra-performance liquid chromatography-Q/time-of-flight mass spectrometry (UPLC-Q/TOF-MS, followed by pharmacology-based network prediction analysis. The effects of RUEA extracts on proliferation, apoptosis, migration, and invasion ability of human oral squamous cell carcinoma (OSCC cell line SCC15 were evaluated by CCK8 assay, Annexin V- fluorescein isothiocyanate/propidium iodide staining, wound healing assay, and Matrigel invasion assay, respectively. The mRNA and protein expression of peroxiredoxin1 (Prx1, the epithelial-to-mesenchymal transition (EMT marker E-cadherin, vimentin, and Snail were determined by quantitative real-time reverse transcription polymerase chain reaction and western blotting. A mouse xenograft model of SCC15 cells was established to further evaluate the effect of RUEA extracts in vivo. Immunohistochemical assessment of Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling staining of apoptotic cells were performed on the tumor tissues to assess the effects of RUEA extracts on proliferation and apoptosis.Results: Fourteen compounds were identified from RUEA extracts by UPLC-Q/TOF-MS. The pharmacology-based network prediction analysis showed that Prx1 could be a potential binder of RUEA extracts. In SCC15 cells, RUEA extracts inhibited cell viability, induced apoptosis, and suppressed cell invasion and migration in a concentration-dependent manner. After treatment with RUEA extracts, the mRNA and protein expression of E-cadherin increased, whereas those of Prx1, vimentin, and Snail decreased. RUEA extracts also affected the EMT program and suppressed cell invasion and migration in Prx1 knockdown SCC15 cells. In an OSCC mouse

  4. Cysteine Specific Targeting of the Functionally Distinct Peroxiredoxin and Glutaredoxin Proteins by the Investigational Disulfide BNP7787

    Directory of Open Access Journals (Sweden)

    Aulma R. Parker

    2015-03-01

    Full Text Available Glutaredoxin (Grx, peroxiredoxin (Prx, and thioredoxin (Trx are redoxin family proteins that catalyze different types of chemical reactions that impact cell growth and survival through functionally distinct intracellular pathways. Much research is focused on understanding the roles of these redoxin proteins in the development and/or progression of human diseases. Grx and Prx are overexpressed in human cancers, including human lung cancers. BNP7787 is a novel investigational agent that has been evaluated in previous clinical studies, including non-small cell lung cancer (NSCLC studies. Herein, data from activity assays, mass spectrometry analyses, and X-ray crystallographic studies indicate that BNP7787 forms mixed disulfides with select cysteine residues on Grx and Prx and modulates their function. Studies of interactions between BNP7787 and Trx have been conducted and reported separately. Despite the fact that Trx, Grx, and Prx are functionally distinct proteins that impact oxidative stress, cell proliferation and disease processes through different intracellular pathways, BNP7787 can modify each protein and appears to modulate function through mechanisms that are unique to each target protein. Tumor cells are often genomically heterogeneous containing subpopulations of cancer cells that often express different tumor-promoting proteins or that have multiple dysregulated signaling pathways modulating cell proliferation and drug resistance. A multi-targeted agent that simultaneously modulates activity of proteins important in mediating cell proliferation by functionally distinct intracellular pathways could have many potentially useful therapeutic applications.

  5. Glutathione oxidation in response to intracellular H2O2: Key but overlapping roles for dehydroascorbate reductases.

    Science.gov (United States)

    Rahantaniaina, Marie-Sylviane; Li, Shengchun; Chatel-Innocenti, Gilles; Tuzet, Andrée; Mhamdi, Amna; Vanacker, Hélène; Noctor, Graham

    2017-08-03

    Glutathione is a pivotal molecule in oxidative stress, during which it is potentially oxidized by several pathways linked to H 2 O 2 detoxification. We have investigated the response and functional importance of 3 potential routes for glutathione oxidation pathways mediated by glutathione S-transferases (GST), glutaredoxin-dependent peroxiredoxins (PRXII), and dehydroascorbate reductases (DHAR) in Arabidopsis during oxidative stress. Loss-of-function gstU8, gstU24, gstF8, prxIIE and prxIIF mutants as well as double gstU8 gstU24, gstU8 gstF8, gstU24 gstF8, prxIIE prxIIF mutants were obtained. No mutant lines showed marked changes in their phenotype and glutathione profiles in comparison to the wild-type plants in either optimal conditions or oxidative stress triggered by catalase inhibition. By contrast, multiple loss of DHAR functions markedly decreased glutathione oxidation triggered by catalase deficiency. To assess whether this effect was mediated directly by loss of DHAR enzyme activity, or more indirectly by upregulation of other enzymes involved in glutathione and ascorbate recycling, we measured expression of glutathione reductase (GR) and expression and activity of monodehydroascorbate reductases (MDHAR). No evidence was obtained that either GRs or MDHARs were upregulated in plants lacking DHAR function. Hence, interplay between different DHARs appears to be necessary to couple ascorbate and glutathione pools and to allow glutathione-related signaling during enhanced H 2 O 2 metabolism.

  6. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm

    Directory of Open Access Journals (Sweden)

    Lobstein Julie

    2012-05-01

    Full Text Available Abstract Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using

  7. Ectopic expression of a horseradish peroxidase enhances growth rate and increases oxidative stress resistance in hybrid aspen.

    Science.gov (United States)

    Kawaoka, Akiyoshi; Matsunaga, Etsuko; Endo, Saori; Kondo, Shinkichi; Yoshida, Kazuya; Shinmyo, Atsuhiko; Ebinuma, Hiroyasu

    2003-07-01

    We previously demonstrated that overexpression of the horseradish (Armoracia rusticana) peroxidase prxC1a gene stimulated the growth rate of tobacco (Nicotiana tabacum) plants. Here, the cauliflower mosaic virus 35S::prxC1a construct was introduced into hybrid aspen (Populus sieboldii x Populus grandidentata). The growth rate of these transformed hybrid aspen plants was substantially increased under greenhouse conditions. The average stem length of transformed plants was 25% greater than that of control plants. There was no other obvious phenotypic difference between the transformed and control plants. Fast-growing transformed hybrid aspen showed high levels of expression of prxC1a and had elevated peroxidase activities toward guaiacol and ascorbate. However, there was no increase of the endogenous class I ascorbate peroxidase activities in the transformed plants by separate assay and activity staining of native polyacrylamide gel electrophoresis. Furthermore, calli derived from the transformed hybrid aspen grew faster than those from control plants and were resistant to the oxidative stress imposed by hydrogen peroxide. Therefore, enhanced peroxidase activity affects plant growth rate and oxidative stress resistance.

  8. Crystallization and diffraction analysis of thioredoxin reductase from Streptomyces coelicolor

    International Nuclear Information System (INIS)

    Koháryová, Michaela; Brynda, Jiří; Řezáčová, Pavlína; Kollárová, Marta

    2011-01-01

    Thioredoxin reductase from S. coelicolor was crystallized and diffraction data were collected to 2.4 Å resolution. Thioredoxin reductases are homodimeric flavoenzymes that catalyze the transfer of electrons from NADPH to oxidized thioredoxin substrate. Bacterial thioredoxin reductases represent a promising target for the development of new antibiotics. Recombinant thioredoxin reductase TrxB from Streptomyces coelicolor was crystallized using the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from cryocooled crystals to 2.4 Å resolution using a synchrotron-radiation source. The crystals belonged to the primitive monoclinic space group P2 1 , with unit-cell parameters a = 82.9, b = 60.6, c = 135.4 Å, α = γ = 90.0, β = 96.5°

  9. The effects of chromium(VI) on the thioredoxin system: Implications for redox regulation

    Science.gov (United States)

    Myers, Charles R.

    2014-01-01

    Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2. PMID:22542445

  10. Mapping the active site helix-to-strand conversion of CxxxxC peroxiredoxin Q enzymes.

    Science.gov (United States)

    Perkins, Arden; Gretes, Michael C; Nelson, Kimberly J; Poole, Leslie B; Karplus, P Andrew

    2012-09-25

    Peroxiredoxins (Prx) make up a family of enzymes that reduce peroxides using a peroxidatic cysteine residue; among these, members of the PrxQ subfamily are proposed to be the most ancestral-like yet are among the least characterized. In many PrxQ enzymes, a second "resolving" cysteine is located five residues downstream from the peroxidatic Cys, and these residues form a disulfide during the catalytic cycle. Here, we describe three hyperthermophilic PrxQ crystal structures originally determined by the RIKEN structural genomics group. We reprocessed the diffraction data and conducted further refinement to yield models with R(free) values lowered by 2.3-7.2% and resolution extended by 0.2-0.3 Å, making one, at 1.4 Å, one of the best resolved peroxiredoxins to date. Comparisons of two matched thiol and disulfide forms reveal that the active site conformational change required for disulfide formation involves a transition of ~20 residues from a pair of α-helices to a β-hairpin and 3(10)-helix. Each conformation has ~10 residues with a high level of disorder providing slack that allows the dramatic shift, and the two conformations are anchored to the protein core by distinct nonpolar side chains that fill three hydrophobic pockets. Sequence conservation patterns confirm the importance of these and a few additional residues for function. From a broader perspective, this study raises the provocative question of how to make use of the valuable information in the Protein Data Bank generated by structural genomics projects but not described in the literature, perhaps remaining unrecognized and certainly underutilized.

  11. Mapping the Active Site Helix-to-Strand Conversion of CxxxxC Peroxiredoxin Q Enzymes †

    Science.gov (United States)

    Perkins, Arden; Gretes, Michael C.; Nelson, Kimberly J.; Poole, Leslie B.; Karplus, P. Andrew

    2012-01-01

    Peroxiredoxins (Prx) are a family of enzymes which reduce peroxides using a peroxidatic cysteine residue; among these, the PrxQ subfamily members are proposed to be the most ancestral-like yet are among the least characterized. In many PrxQ enzymes, a second “resolving” cysteine is located six residues downstream from the peroxidatic Cys, and these residues form a disulfide during the catalytic cycle. Here, we describe three hyperthermophilic PrxQ crystal structures originally solved by the RIKEN structural genomics group. We reprocessed the diffraction data and carried out further refinement to yield models with Rfree lowered by 2.3–7.2% and resolution extended by 0.2–0.3 Å, making one, at 1.4 Å, the best resolved peroxiredoxin to date. Comparisons of two matched thiol and disulfide forms reveal that the active site conformational change required for disulfide formation involves a transition of about 20 residues from a pair of α-helices to a β-hairpin and 310-helix. Each conformation has about 10 residues with high disorder providing slack that enables the dramatic shift, and the two conformations are anchored to the protein core by distinct non-polar side chains that fill three hydrophobic pockets. Sequence conservation patterns confirm the importance of these and a few additional residues for function. From a broader perspective, this study raises the provocative question of how to make use of the valuable information in the protein data bank generated by structural genomics projects but not described in the literature, perhaps remaining unrecognized and certainly underutilized. PMID:22928725

  12. Expression of recombinant multi-coloured fluorescent antibodies in gor -/trxB- E. coli cytoplasm

    Directory of Open Access Journals (Sweden)

    Markiv Anatoliy

    2011-11-01

    Full Text Available Abstract Background Antibody-fluorophore conjugates are invaluable reagents used in contemporary molecular cell biology for imaging, cell sorting and tracking intracellular events. However they suffer in some cases from batch to batch variation, partial loss of binding and susceptibility to photo-bleaching. In theory, these issues can all be addressed by using recombinant antibody fused directly to genetically encoded fluorescent reporters. However, single-chain fragment variable domains linked by long flexible linkers are themselves prone to disassociation and aggregation, and in some cases with isoelectric points incompatible with use in physiologically relevant milieu. Here we describe a general approach that permits fully functional intracellular production of a range of coloured fluorescent recombinant antibodies with optimally orientated VH/VL interfaces and isoelectric points compatible for use in physiological solutions at pH 7.4 with a binding site to fluorophore stoichiometry of 1:1. Results Here we report the design, assembly, intracellular bacterial production and purification of a panel of novel antibody fluorescent protein fusion constructs. The insertion of monomeric fluorescent protein derived from either Discosoma or Aequorea in-between the variable regions of anti-p185HER2-ECD antibody 4D5-8 resulted in optimal VH/VL interface interactions to create soluble coloured antibodies each with a single binding site, with isoelectric points of 6.5- 6. The fluorescent antibodies used in cell staining studies with SK-BR-3 cells retained the fluorophore properties and antibody specificity functions, whereas the conventional 4D5-8 single chain antibody with a (Gly4Ser3 linker precipitated at physiological pH 7.4. Conclusions This modular monomeric recombinant fluorescent antibody platform may be used to create a range of recombinant coloured antibody molecules for quantitative in situ, in vivo and ex vivo imaging, cell sorting and cell trafficking studies. Assembling the single chain antibody with monomeric fluorescent protein linker facilitates optimal variable domain pairing and alters the isoelectric point of the recombinant 4D5-8 protein conferring solubility at physiological pH 7.4. The efficient intracellular expression of these functional molecules opens up the possibility of developing an alternative approach for tagging intracellular targets with fluorescent proteins for a range of molecular cell biology imaging studies.

  13. Analysis of the expression and antioxidant activity of 2-Cys peroxiredoxin protein in Fasciola gigantica.

    Science.gov (United States)

    Sangpairoj, Kant; Changklungmoa, Narin; Vanichviriyakit, Rapeepun; Sobhon, Prasert; Chaithirayanon, Kulathida

    2014-05-01

    2-Cys peroxiredoxin (Prx) is the main antioxidant enzyme in Fasciola species for detoxifying hydrogen peroxide which is generated from the hosts' immune effector cells and the parasites' own metabolism. In this study, the recombinant Prx protein from Fasciola gigantica (rFgPrx-2) was expressed and purified in a prokaryotic expression system. This recombinant protein with molecular weight of 26 kDa was enzymatically active in reduction of hydrogen peroxide both in presence of thioredoxin and glutathione systems, and also protected the supercoiled plasmid DNA from oxidative damage in metal-catalyzed oxidation (MCO) system in a concentration-dependent manner. By immunoblotting, using antibody against rFgPrx-2 as probe, a native FgPrxs, whose MW at 25 kDa, was detected in all developmental stages of the parasite. Concentrations of native FgPrxs were increasing in all stages reaching highest level in adult stage. The antibody also showed cross reactivities with corresponding proteins in some cattle helminthes. Natural antibody to FgPrxs could be detected in the sera of mice at 3 and 4 weeks after infection with F. gigantica metacercariae. By immunofluorescence, FgPrxs was highly expressed in tegument and tegumental cells, parenchyma, moderately expressed in cecal epithelial cells in early, juvenile and adult worms. Furthermore, FgPrxs was also detected in the female reproductive organs, including eggs, ovary, vitelline cells, and testis, suggesting that FgPrxs might play an essential role in protecting parasite's tissues from free radical attack during their life cycle. Thus, FgPrxs is one potential candidate for drug therapy and vaccine development. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Kinetic and Thermodynamic Features Reveal That E. coli BCP Is an Unusually Versatile Peroxiredoxin†

    Science.gov (United States)

    Reeves, Stacy A.; Parsonage, Derek; Nelson, Kimberly J.; Poole, Leslie B.

    2011-01-01

    In Escherichia coli, bacterioferritin-comigratory protein (BCP) is a peroxiredoxin (Prx) which catalyzes the reduction of H2O2 and organic hydroperoxides. This protein, along with plant PrxQ, is a founding member of one of the least studied subfamilies of Prxs. Recent structural data have suggested that proteins in the BCP/PrxQ group can exist as monomers or dimers; we report here that, by analytical ultracentrifugation, both oxidized and reduced E. coli BCP behave as monomers in solution at concentrations as high as 200 µM. Unexpectedly, thioredoxin (Trx1)-dependent peroxidase assays conducted by stopped flow spectroscopy demonstrated that Vmax,app increases with increasing Trx1 concentrations, indicating a nonsaturable interaction (Km > 100 µM). At a physiologically reasonable Trx1 concentration of 10 µM, the apparent Km value for H2O2 is ~80 µM, and overall Vmax/Km for H2O2, which remains constant over the various Trx1 concentrations (consistent with a ping-pong mechanism), is about 1.3 × 104 M−1 s−1. Our kinetic analyses demonstrated that BCP can utilize a variety of reducing substrates, including Trx1, Trx2, Grx1 and Grx3. BCP exhibited a high redox potential of −145.9 ± 3.2 mV, the highest to date observed for a Prx. Moreover, BCP exhibited a broad peroxide specificity, with comparable rates for H2O2 and cumene hydroperoxide. We determined a pKa of ~5.8 for the peroxidatic cysteine (Cys45) using both spectroscopic and activity titration data. These findings support an important role for BCP in interacting with multiple substrates and remaining active under highly oxidizing cellular conditions, potentially serving as a defense enzyme of last resort. PMID:21910476

  15. The Role of Peroxiredoxins in the Transduction of H2O2 Signals.

    Science.gov (United States)

    Rhee, Sue Goo; Woo, Hyun Ae; Kang, Dongmin

    2018-03-01

    Hydrogen peroxide (H 2 O 2 ) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H 2 O 2 -eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H 2 O 2 . Peroxiredoxins possess a high-affinity binding site for H 2 O 2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H 2 O 2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H 2 O 2 effectors are therefore at a competitive disadvantage for reaction with H 2 O 2 . Recent Advances: Here we review intracellular sources of H 2 O 2 as well as H 2 O 2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H 2 O 2 -mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H 2 O 2 effector proteins localized in specific subcellular compartments participates in H 2 O 2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H 2 O 2 signaling. Antioxid. Redox Signal. 28, 537-557.

  16. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  17. Sucrose delays senescence and preserves functional compounds in Asparagus officinalis L.

    Science.gov (United States)

    Park, Me-Hea

    2016-11-11

    The high metabolic rate of harvested asparagus spears (Asparagus officinalis L.) causes rapid deterioration. To extend shelf life, we investigated the effect of sucrose treatment on asparagus during storage. Asparagus spears were treated with 3%, 5%, and 10% sucrose and stored at 2 °C for 20 h. Cellular respiration decreased, but other processes were unaltered by exogenous sucrose. The overall appearance of asparagus treated with 3% sucrose and stored at 2 °C for 18 days was rated as good and excellent, unlike that of untreated spears. Asparagus treated with sucrose maintained firmness for 15 days, while untreated spears lost firmness and showed increased water-soluble pectin content during storage. Carbohydrate levels were also higher in sucrose-treated than in control samples. Transcript levels of cell-wall-related genes, including xyloglucan endotransglycosylase (XET)1, XET2, and peroxidase (prx)1, prx2, and prx3 were upregulated by sucrose. Cyanidin 3-O-rutinoside and rutin levels immediately increased upon addition of sucrose and remained high relative to the control during storage. Thus, sucrose modulates asparagus cell wall components and maintains the functionality of important compounds during storage, thus effectively prolonging shelf life. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  19. Novel metabolic biomarkers related to sulfur-dependent detoxification pathways in autistic patients of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Al- Ayadhi Laila Y

    2011-11-01

    Full Text Available Abstract Background Xenobiotics are neurotoxins that dramatically alter the health of the child. In addition, an inefficient detoxification system leads to oxidative stress, gut dysbiosis, and immune dysfunction. The consensus among physicians who treat autism with a biomedical approach is that those on the spectrum are burdened with oxidative stress and immune problems. In a trial to understand the role of detoxification in the etiology of autism, selected parameters related to sulfur-dependent detoxification mechanisms in plasma of autistic children from Saudi Arabia will be investigated compared to control subjects. Methods 20 males autistic children aged 3-15 years and 20 age and gender matching healthy children as control group were included in this study. Levels of reduced glutathione (GSH, total (GSH+GSSG, glutathione status (GSH/GSSG, glutathione reductase (GR, glutathione- s-transferase (GST, thioredoxin (Trx, thioredoxin reductase (TrxR and peroxidoxins (Prxs I and III were determined. Results Reduced glutathione, total glutathione, GSH/GSSG and activity levels of GST were significantly lower, GR shows non-significant differences, while, Trx, TrxR and both Prx I and III recorded a remarkably higher values in autistics compared to control subjects. Conclusion The impaired glutathione status together with the elevated Trx and TrxR and the remarkable over expression of both Prx I and Prx III, could be used as diagnostic biomarkers of autism.

  20. Genetic diversity analysis in rice mutants using isozyme and Morphological markers

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, Jorge L; Alvarez, Alba [Centro de Estudios Aplicados al Desarrollo Nuclear, La Habana (Cuba); Deus, Juan E [Instituto de Investigaciones del Arroz. Bauta, La Habana (Cuba); Duque, Miriam C [Centro Internacional de Agricultura Tropical, Cali (Colombia); Cornide, Maria T [Centro Nacional de Investigaciones Cientificas, La Habana (Cuba)

    1999-07-01

    In this work, isozyme and agromorphologic variability of radiation-induced rice mutants with different cytoplasm base was surveyed. Agromorphologic data (plant type, lodging resistance, life cycle and yielding) were transformed into binary data. This markers, along with isozyme (Peroxidases, Esterases, Catalases, Alcohol Dehydrogenases and Polyphenoloxidase) data, were considered for genetic diversity analyses in order to estimate the extent of diversity generated by ionizing radiation. Genetic Similarity between individuals was obtained based on Dice's Coefficient. The UPGMA phenogram defined three main clusters that clearly corresponded to the different cytoplasm sources. However, further discrimination between control varieties and their mutants could be obtained. Bootstrapping analysis was performed to estimate the robustness of the group in the phenogram. According to their bootstrap P value (99.6%), Basmati-370 mutant lines could be considered statistically different from their control. This analysis is suggested as an useful supporting tool for an accurate varietal validation. A Multiple Correspondence Analysis (MCA) showed individuals dispersion around the three principal axis of variation. In general the UPGMA phenogram pattern was corroborated at MCA. Variables such as life cycle, presence of bands Est-a and Prx-m and the absence of Est-i, Prx-h and Prx-i accounted for the higher contribution to variation. The adequacy of morphological and isozyme descriptors for new mutant lines validation is also discussed.

  1. Genetic diversity analysis in rice mutants using isozyme and Morphological markers

    International Nuclear Information System (INIS)

    Fuentes, Jorge L.; Alvarez, Alba; Deus, Juan E.; Duque, Miriam C.; Cornide, Maria T.

    1999-01-01

    In this work, isozyme and agromorphologic variability of radiation-induced rice mutants with different cytoplasm base was surveyed. Agromorphologic data (plant type, lodging resistance, life cycle and yielding) were transformed into binary data. This markers, along with isozyme (Peroxidases, Esterases, Catalases, Alcohol Dehydrogenases and Polyphenoloxidase) data, were considered for genetic diversity analyses in order to estimate the extent of diversity generated by ionizing radiation. Genetic Similarity between individuals was obtained based on Dice's Coefficient. The UPGMA phenogram defined three main clusters that clearly corresponded to the different cytoplasm sources. However, further discrimination between control varieties and their mutants could be obtained. Bootstrapping analysis was performed to estimate the robustness of the group in the phenogram. According to their bootstrap P value (99.6%), Basmati-370 mutant lines could be considered statistically different from their control. This analysis is suggested as an useful supporting tool for an accurate varietal validation. A Multiple Correspondence Analysis (MCA) showed individuals dispersion around the three principal axis of variation. In general the UPGMA phenogram pattern was corroborated at MCA. Variables such as life cycle, presence of bands Est-a and Prx-m and the absence of Est-i, Prx-h and Prx-i accounted for the higher contribution to variation. The adequacy of morphological and isozyme descriptors for new mutant lines validation is also discussed

  2. The Role of Redox-Regulating Enzymes in Inoperable Breast Cancers Treated with Neoadjuvant Chemotherapy

    Directory of Open Access Journals (Sweden)

    Nelli Roininen

    2017-01-01

    Full Text Available Although validated predictive factors for breast cancer chemoresistance are scarce, there is emerging evidence that the induction of certain redox-regulating enzymes may contribute to a poor chemotherapy effect. We investigated the possible association between chemoresistance and cellular redox state regulation in patients undergoing neoadjuvant chemotherapy (NACT for breast cancer. In total, 53 women with primarily inoperable or inflammatory breast cancer who were treated with NACT were included in the study. Pre-NACT core needle biopsies and postoperative tumor samples were immunohistochemically stained for nuclear factor erythroid 2-related factor 2 (Nrf2, Kelch-like ECH-associated protein 1 (Keap1, thioredoxin (Trx, and peroxiredoxin I (Prx I. The expression of all studied markers increased during NACT. Higher pre-NACT nuclear Prx I expression predicted smaller size of a resected tumor (p=0.00052; r=−0.550, and higher pre-NACT cytoplasmic Prx I expression predicted a lower amount of evacuated nodal metastasis (p=0.0024; r=−0.472. Pre-NACT nuclear Trx expression and pre-NACT nuclear Keap1 expression had only a minor prognostic significance as separate factors, but when they were combined, low expression for both antibodies before NACT predicted dismal disease-free survival (log-rank p=0.0030. Our results suggest that redox-regulating enzymes may serve as potential prognostic factors in primarily inoperable breast cancer patients.

  3. Peroxiredoxin I protein, a potential biomarker of hydronephrosis in fetal mice exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Liu, Mingxue; Liu, Jing; Liu, Xing; Wei, Guanghui

    2014-06-01

    In previous studies, we established an animal model of human congenital hydronephrosis with exposure of developing mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but the etiopathogenesis is not entirely clear. The present study was to identify the changes that may be involved in the etiology at the protein level. C57BL/6J mice fetuses were treated with TCDD. Comparative proteomic analysis was adopted to identify the proteins associated with hydronephrosis induced by TCDD. Two-dimensional electrophoresis display revealed that 19 protein spots were differentially expressed in the upper urinary tract tissues in fetal mice after exposure to TCDD. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) identified 12 up-regulated proteins: peroxiredoxin I (Prx I), cadherin 6, gamma-actin, radixin, desmin, type II transforming growth factor-beta receptor, chromogranin B, serum albumin precursor, transferrin, hypothetical protein LOC70984, lipk protein, and zinc finger protein 336. Histochemical staining indicated that Prx I protein was positively expressed in the ureteric epithelium in the treated group, and not in the control group, which is consistent with MALDI-TOF-MS. Prx I protein may be a potential biomarker or responsive protein of hydronephrosis in fetal mice induced by TCDD. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  4. Neuroprotective Effect of Xueshuantong for Injection (Lyophilized in Transient and Permanent Rat Cerebral Ischemia Model

    Directory of Open Access Journals (Sweden)

    Xumei Wang

    2015-01-01

    Full Text Available Xueshuantong for Injection (Lyophilized (XST, a Chinese Materia Medica standardized product extracted from Panax notoginseng (Burk., is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction clinically in China. In the present study, we evaluated the acute and extended protective effects of XST in different rat cerebral ischemic model and explored its effect on peroxiredoxin (Prx 6-toll-like receptor (TLR 4 signaling pathway. We found that XST treatment for 3 days could significantly inhibit transient middle cerebral artery occlusion (MCAO induced infarct volume and swelling percent and regulate the mRNA expression of interleukin-1β (IL-1β, IL-17, IL-23p19, tumor necrosis factor-α (TNFα, and inducible nitric oxide synthase (iNOS in brain. Further study demonstrated that treatment with XST suppressed the protein expression of peroxiredoxin (Prx 6-toll-like receptor (TLR 4 and phosphorylation level of p38 and upregulated the phosphorylation level of STAT3. In permanent MCAO rats, XST could reduce the infarct volume and swelling percent. Moreover, our results revealed that XST treatment could increase the rats’ weight and improve a batch of functional outcomes. In conclusion, the present data suggested that XST could protect against ischemia injury in transient and permanent MCAO rats, which might be related to Prx6-TLR4 pathway.

  5. Amorphous solid dispersions of piroxicam and Soluplus(®): Qualitative and quantitative analysis of piroxicam recrystallization during storage.

    Science.gov (United States)

    Lust, Andres; Strachan, Clare J; Veski, Peep; Aaltonen, Jaakko; Heinämäki, Jyrki; Yliruusi, Jouko; Kogermann, Karin

    2015-01-01

    The conversion of active pharmaceutical ingredient (API) from amorphous to crystalline form is the primary stability issue in formulating amorphous solid dispersions (SDs). The aim of the present study was to carry out qualitative and quantitative analysis of the physical solid-state stability of the SDs of poorly water-soluble piroxicam (PRX) and polyvinyl caprolactam-polyvinyl acetate-polyethylene-glycol graft copolymer (Soluplus(®)). The SDs were prepared by a solvent evaporation method and stored for six months at 0% RH/6 °C, 0% RH/25 °C, 40% RH/25 °C and 75% RH/25 °C. Fourier transform infrared spectroscopy equipped with attenuated total reflection accessory (ATR-FTIR) and Raman spectroscopy were used for characterizing the physical solid-state changes and drug-polymer interactions. The principal component analysis (PCA) and multivariate curve resolution alternating least squares (MCR-ALS) were used for the qualitative and quantitative analysis of Raman spectra collected during storage. When stored at 0% RH/6 °C and at 0% RH/25 °C, PRX in SDs remained in an amorphous form since no recrystallization was observed by ATR-FTIR and Raman spectroscopy. Raman spectroscopy coupled with PCA and MCR-ALS and ATR-FTIR spectroscopy enabled to detect the recrystallization of amorphous PRX in the samples stored at higher humidity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. ANALISIS KUALITAS JARINGAN GPON PADA LAYANAN IPTV PT. TELKOM DI DAERAH DENPASAR, BALI

    Directory of Open Access Journals (Sweden)

    Ngakan Oka Pramundia

    2015-10-01

    Full Text Available GPON adalah sebuah teknologi berbasis fiber optik. PT.TELKOM menerapkan teknologi GPON sebagai jaringan access network untuk layanan IPTV Usee TV. Penelitian ini membahas kualitas jaringan GPON pada layanan IPTV di daerah Denpasar, Bali mengacu pada topologi dan standarisasi kualitas jaringan. Kualitas jaringan dikategorikan baik untuk 3 parameter yaitu Rx Power(Prx, Attenuatiion, dan Attainable Rate. Untuk Rx Power (Prx nilai berkisar antara -18 dBm sampai dengan -24 dBm. Pada Attenuation klasifikasi kualitas jaringannya termasuk pada kategori Excellent. Sedangkan untuk Attainable Rate-nya nilai downstream berkisar antara 2 Gbps sampai dengan 2.4 Gbps. Dengan nilai downstream tersebut dapat memenuhi kebutuhan layanan Usee TV. Hal ini menyatakan bahwa GPON PT.TELKOM sudah mampu melayani layanan IPTV UseeTV di daerah Denpasar, Bali dengan baik

  7. Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin

    International Nuclear Information System (INIS)

    Rouhier, Nicolas; Gama, Filipe; Wingsle, Gunnar; Gelhaye, Eric; Gans, Pierre; Jacquot, Jean-Pierre

    2006-01-01

    The existence of natural peroxiredoxin-glutaredoxin hybrid enzymes in several bacteria is in line with previous findings indicating that poplar peroxiredoxin II can use glutaredoxin as an electron donor. This peroxiredoxin remains however unique since it also uses thioredoxin with a quite good efficiency. Based on the existing fusions, we have created artificial enzymes containing a poplar peroxiredoxin module linked to glutaredoxin or thioredoxin modules. The recombinant fusion enzymes folded properly into non-covalently bound homodimers or homotetramers. Two of the three protein constructs exhibit peroxidase activity, a reaction where the two modules need to function together, but they also display enzymatic activities specific of each module. In addition, mass spectrometry analyses indicate that the Prx module can be both glutathiolated or overoxidized in vitro. This is discussed in the light of the Prx reactivity

  8. Regulation of MntH by a dual Mn(II- and Fe(II-dependent transcriptional repressor (DR2539 in Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Hongxing Sun

    Full Text Available The high intracellular Mn/Fe ratio observed within the bacteria Deinococcus radiodurans may contribute to its remarkable resistance to environmental stresses. We isolated DR2539, a novel regulator of intracellular Mn/Fe homeostasis in D. radiodurans. Electrophoretic gel mobility shift assays (EMSAs revealed that DR2539 binds specifically to the promoter of the manganese acquisition transporter (MntH gene, and that DR0865, the only Fur homologue in D. radiodurans, cannot bind to the promoter of mntH, but it can bind to the promoter of another manganese acquisition transporter, MntABC. β-galactosidase expression analysis indicated that DR2539 acts as a manganese- and iron-dependent transcriptional repressor. Further sequence alignment analysis revealed that DR2539 has evolved some special characteristics. Site-directed mutagenesis suggested that His98 plays an important role in the activities of DR2539, and further protein-DNA binding activity assays showed that the activity of H98Y mutants decreased dramatically relative to wild type DR2539. Our study suggests that D. radiodurans has evolved a very efficient manganese regulation mechanism that involves its high intracellular Mn/Fe ratio and permits resistance to extreme conditions.

  9. Trending autoregulatory indices during treatment for traumatic brain injury.

    Science.gov (United States)

    Kim, Nam; Krasner, Alex; Kosinski, Colin; Wininger, Michael; Qadri, Maria; Kappus, Zachary; Danish, Shabbar; Craelius, William

    2016-12-01

    Our goal is to use automatic data monitoring for reliable prediction of episodes of intracranial hypertension in patients with traumatic brain injury. Here we test the validity of our method on retrospective patient data. We developed the Continuous Hemodynamic Autoregulatory Monitor (CHARM), that siphons and stores signals from existing monitors in the surgical intensive care unit (SICU), efficiently compresses them, and standardizes the search for statistical relationships between any proposed index and adverse events. CHARM uses an automated event detector to reliably locate episodes of elevated intracranial pressure (ICP), while eliminating artifacts within retrospective patient data. A graphical user interface allowed data scanning, selection of criteria for events, and calculating indices. The pressure reactivity index (PRx), defined as the least square linear regression slope of intracranial pressure versus arterial BP, was calculated for a single case that spanned 259 h. CHARM collected continuous records of ABP, ICP, ECG, SpO2, and ventilation from 29 patients with TBI over an 18-month period. Analysis of a single patient showed that PRx data distribution in the single hours immediately prior to all 16 intracranial hypertensive events, significantly differed from that in the 243 h that did not precede such events (p < 0.0001). The PRx index, however, lacked sufficient resolution as a real-time predictor of IH in this patient. CHARM streamlines the search for reliable predictors of intracranial hypertension. We report statistical evidence supporting the predictive potential of the pressure reactivity index.

  10. Treatment of erythrocytes with the 2-cys peroxiredoxin inhibitor, Conoidin A, prevents the growth of Plasmodium falciparum and enhances parasite sensitivity to chloroquine.

    Directory of Open Access Journals (Sweden)

    Mariana Brizuela

    Full Text Available The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2, which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl-1,4-dioxide-quinoxaline; BBMQ, has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ, an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria.

  11. Occurrence of CPPopt Values in Uncorrelated ICP and ABP Time Series.

    Science.gov (United States)

    Cabeleira, M; Czosnyka, M; Liu, X; Donnelly, J; Smielewski, P

    2018-01-01

    Optimal cerebral perfusion pressure (CPPopt) is a concept that uses the pressure reactivity (PRx)-CPP relationship over a given period to find a value of CPP at which PRx shows best autoregulation. It has been proposed that this relationship be modelled by a U-shaped curve, where the minimum is interpreted as being the CPP value that corresponds to the strongest autoregulation. Owing to the nature of the calculation and the signals involved in it, the occurrence of CPPopt curves generated by non-physiological variations of intracranial pressure (ICP) and arterial blood pressure (ABP), termed here "false positives", is possible. Such random occurrences would artificially increase the yield of CPPopt values and decrease the reliability of the methodology.In this work, we studied the probability of the random occurrence of false-positives and we compared the effect of the parameters used for CPPopt calculation on this probability. To simulate the occurrence of false-positives, uncorrelated ICP and ABP time series were generated by destroying the relationship between the waves in real recordings. The CPPopt algorithm was then applied to these new series and the number of false-positives was counted for different values of the algorithm's parameters. The percentage of CPPopt curves generated from uncorrelated data was demonstrated to be 11.5%. This value can be minimised by tuning some of the calculation parameters, such as increasing the calculation window and increasing the minimum PRx span accepted on the curve.

  12. Identification of a novel and unique transcription factor in the intraerythrocytic stage of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Kanako Komaki-Yasuda

    Full Text Available The mechanisms of stage-specific gene regulation in the malaria parasite Plasmodium falciparum are largely unclear, with only a small number of specific regulatory transcription factors (AP2 family having been identified. In particular, the transcription factors that function in the intraerythrocytic stage remain to be elucidated. Previously, as a model case for stage-specific transcription in the P. falciparum intraerythrocytic stage, we analyzed the transcriptional regulation of pf1-cys-prx, a trophozoite/schizont-specific gene, and suggested that some nuclear factors bind specifically to the cis-element of pf1-cys-prx and enhance transcription. In the present study, we purified nuclear factors from parasite nuclear extract by 5 steps of chromatography, and identified a factor termed PREBP. PREBP is not included in the AP2 family, and is a novel protein with four K-homology (KH domains. The KH domain is known to be found in RNA-binding or single-stranded DNA-binding proteins. PREBP is well conserved in Plasmodium species and partially conserved in phylum Apicomplexa. To evaluate the effects of PREBP overexpression, we used a transient overexpression and luciferase assay combined approach. Overexpression of PREBP markedly enhanced luciferase expression under the control of the pf1-cys-prx cis-element. These results provide the first evidence of a novel transcription factor that activates the gene expression in the malaria parasite intraerythrocytic stage. These findings enhance our understanding of the evolution of specific transcription machinery in Plasmodium and other eukaryotes.

  13. Expression of a defence-related intercellular barley peroxidase in transgenic tobacco

    DEFF Research Database (Denmark)

    Kristensen, B.K.; Brandt, J.; Bojsen, K.

    1997-01-01

    genetically, phenotypically and biochemically. The T-DNA was steadily inherited through three generations. The barley peroxidase is expressed and sorted to the intercellular space in the transgenic tobacco plants. The peroxidase can be extracted from the intercellular space in two molecular forms from both...... barley and transgenic tobacco. The tobacco expressed forms are indistinguishable from the barley expressed forms as determined by analytical isoelectric focusing (pI 8.5) and Western-blotting. Staining for N-glycosylation showed that one form only was glycosylated. The N-terminus of purified Prx8 from...... transgenic tobacco was blocked by pyroglutamate, after the removal of which, N-terminal sequencing verified the transit signal-peptide cleavage site deduced from the cDNA sequence. Phenotype comparisons show that the constitutive expression of Prx8 lead to growth retardation. However, an infection assay...

  14. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle.

    Science.gov (United States)

    Cobley, J N; Sakellariou, G K; Owens, D J; Murray, S; Waldron, S; Gregson, W; Fraser, W D; Burniston, J G; Iwanejko, L A; McArdle, A; Morton, J P; Jackson, M J; Close, G L

    2014-05-01

    Several redox-regulated responses to an acute exercise bout fail in aged animal skeletal muscle, including the ability to upregulate the expression of antioxidant defense enzymes and heat shock proteins (HSPs). These findings are generally derived from studies on sedentary rodent models and thus may be related to reduced physical activity and/or intraspecies differences as opposed to aging per se. This study, therefore, aimed to determine the influence of age and training status on the expression of HSPs, antioxidant enzymes, and NO synthase isoenzymes in quiescent and exercised human skeletal muscle. Muscle biopsy samples were obtained from the vastus lateralis before and 3 days after an acute high-intensity-interval exercise bout in young trained, young untrained, old trained, and old untrained subjects. Levels of HSP72, PRX5, and eNOS were significantly higher in quiescent muscle of older compared with younger subjects, irrespective of training status. 3-NT levels were elevated in muscles of the old untrained but not the old trained state, suggesting that lifelong training may reduce age-related macromolecule damage. SOD1, CAT, and HSP27 levels were not significantly different between groups. HSP27 content was upregulated in all groups studied postexercise. HSP72 content was upregulated to a greater extent in muscle of trained compared with untrained subjects postexercise, irrespective of age. In contrast to every other group, old untrained subjects failed to upregulate CAT postexercise. Aging was associated with a failure to upregulate SOD2 and a downregulation of PRX5 in muscle postexercise, irrespective of training status. In conclusion, lifelong training is unable to fully prevent the progression toward a more stressed muscular state as evidenced by increased HSP72, PRX5, and eNOS protein levels in quiescent muscle. Moreover, lifelong training preserves some (e.g., CAT) but not all (e.g., SOD2, HSP72, PRX5) of the adaptive redox-regulated responses after an

  15. Structure of the horseradish peroxidase isozyme C genes.

    Science.gov (United States)

    Fujiyama, K; Takemura, H; Shibayama, S; Kobayashi, K; Choi, J K; Shinmyo, A; Takano, M; Yamada, Y; Okada, H

    1988-05-02

    We have isolated, cloned and characterized three cDNAs and two genomic DNAs corresponding to the mRNAs and genes for the horseradish (Armoracia rusticana) peroxidase isoenzyme C (HPR C). The amino acid sequence of HRP C1, deduced from the nucleotide sequence of one of the cDNA clone, pSK1, contained the same primary sequence as that of the purified enzyme established by Welinder [FEBS Lett. 72, 19-23 (1976)] with additional sequences at the N and C terminal. All three inserts in the cDNA clones, pSK1, pSK2 and pSK3, coded the same size of peptide (308 amino acid residues) if these are processed in the same way, and the amino acid sequence were homologous to each other by 91-94%. Functional amino acids, including His40, His170, Tyr185 and Arg183 and S-S-bond-forming Cys, were conserved in the three isozymes, but a few N-glycosylation sites were not the same. Two HRP C isoenzyme genomic genes, prxC1 and prxC2, were tandem on the chromosomal DNA and each gene consisted of four exons and three introns. The positions in the exons interrupted by introns were the same in two genes. We observed a putative promoter sequence 5' upstream and a poly(A) signal 3' downstream in both genes. The gene product of prxC1 might be processed with a signal sequence of 30 amino acid residues at the N terminus and a peptide consisting of 15 amino acid residues at the C terminus.

  16. Serum Peroxiredoxin 4 : A Marker of Oxidative Stress Associated with Mortality in Type 2 Diabetes (ZODIAC-28)

    NARCIS (Netherlands)

    Gerrits, Esther G.; Alkhalaf, Alaa; Landman, Gijs W. D.; van Hateren, Kornelis J. J.; Groenier, Klaas H.; Struck, Joachim; Schulte, Janin; Gans, Reinold O. B.; Bakker, Stephan J. L.; Kleefstra, Nanne; Bilo, Henk J. G.

    2014-01-01

    Background: Oxidative stress plays an underlying pathophysiologic role in the development of diabetes complications. The aim of this study was to investigate peroxiredoxin 4 (Prx4), a proposed novel biomarker of oxidative stress, and its association with and capability as a biomarker in predicting

  17. Peroxireduxin-4 is Over-Expressed in Colon Cancer and its Down-Regulation Leads to Apoptosis

    Directory of Open Access Journals (Sweden)

    Sandra M. Leydold

    2011-01-01

    Full Text Available The objective of this study was to gain insight into the biological basis of colon cancer progression by characterizing gene expression differences between normal colon epithelium, corresponding colorectal primary tumors and metastases. We found a close similarity in gene expression patterns between primary tumors and metastases, indicating a correlation between gene expression and morphological characteristics. PRDX4 was identified as highly expressed both in primary colon tumors and metastases, and selected for further characterization. Our study revealed that “Prdx4” (PrxIV, AOE372 shows functional similarities to other Prx family members by negatively affecting apoptosis induction in tumor cells. In addition, our study links Prdx4 with Hif-1α, a key regulatory factor of angiogenesis. Targeting Prdx4 may be an attractive approach in cancer therapy, as its inhibition is expected to lead to induction of apoptosis and blockage of Hif-1α-mediated tumor angiogenesis.

  18. Ternary rare-earth halides of the A2MX5 type (A = K, In, NH4, Rb, Cs; X = Cl, Br, I)

    International Nuclear Information System (INIS)

    Meyer, G.; Soose, J.; Moritz, A.; Vitt, V.; Holljes, T.

    1985-01-01

    Ternary rare-earth (=M) chlorides, bromides, and iodides In 2 MCl 5 , (NH 4 ) 2 MCl 5 , Rb 2 MCl 5 , Cs 2 MCl 5 , CsRbMCl 5 , K 2 MBr 5 , Rb 2 MBr 5 , K 2 MI 5 , and Rb 2 MI 5 have been synthesized. Single crystals of In 2 PrCl 5 , Rb 2 PrCl 5 , K 2 PrBr 5 , and K 2 PrI 5 were grown and the structures refined. The other halides were characterized by X-ray powder patterns. They are isotypic either with K 2 PrCl 5 (orthorhombic, Pnma, Z = 4, hexagonal arrangement of chains of edge-connected polyhedra [PrX 7 ]) or with Cs 2 DyCl 5 (orthorhombic, Pbnm, Z = 4, hexagonal arrangement of cis-corner-connected octahedra [DyCl 6 ]) which may be discriminated in structure field diagrams. The thermal expansion was investigated for Cs 2 LuCl 5 and Rb 2 PrX 5 (X = Cl, Br, I). (author)

  19. Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2015-08-01

    Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.

  20. Continuous Autoregulatory Indices Derived from Multi-Modal Monitoring: Each One Is Not Like the Other.

    Science.gov (United States)

    Zeiler, Frederick A; Donnelly, Joseph; Menon, David K; Smielewski, Peter; Zweifel, Christian; Brady, Ken; Czosnyka, Marek

    2017-11-15

    We assess the relationships between various continuous measures of autoregulatory capacity in a cohort of adults with traumatic brain injury (TBI). We assessed relationships between autoregulatory indices derived from intracranial pressure (ICP: PRx, PAx, RAC), transcranial Doppler (TCD: Mx, Sx, Dx), brain tissue-oxygenation (ORx), and spatially resolved near infrared spectroscopy (NIRS resolved: TOx, THx). Relationships between indices were assessed using Pearson correlation coefficient, Friedman test, principal component analysis (PCA), agglomerative hierarchal clustering (AHC) and k-means cluster analysis (KMCA). All analytic techniques were repeated for a range of temporal resolutions of data, including minute-by-minute averages, moving means of 30 samples, and grand mean for each patient. Thirty-seven patients were studied. The PRx displayed strong association with PAx/RAC across all the analytical techniques: Pearson correlation (r = 0.682/r = 0.677, p indices (Mx, Dx) were correlated and co-clustered on PCA, AHC, and KMCA. The Sx was found to be more closely associated with ICP-derived indices on Pearson correlation, PCA, AHC, and KMCA. The NIRS indices displayed variable correlation with each other and with indices derived from ICP and TCD signals. Of interest, TOx and THx co-cluster with ICP-based indices on PCA and AHC. The ORx failed to display any meaningful correlations with other indices in neither of the analytical method used. Thirty-minute moving average and minute-by-minute data set displayed similar results across all the methods. The RAC, Mx, and Sx were the strongest predictors of outcome at six months. Continuously updating autoregulatory indices are not all correlated with one another. Caution must be advised when utilizing less commonly described autoregulation indices (i.e., ORx) for the clinical assessment of autoregulatory capacity, because they appear to not be related to commonly measured/establish indices, such as PRx

  1. NADPH-thioredoxin reductase C mediates the response to oxidative stress and thermotolerance in the cyanobacterium Anabaena sp. PCC7120.

    Directory of Open Access Journals (Sweden)

    ANA MARÍA SÁNCHEZ-RIEGO

    2016-08-01

    Full Text Available NTRC (NADPH-thioredoxin reductase C is a bimodular enzyme composed of an NADPH-thioredoxin reductase and a thioredoxin domain extension in the same protein. In plants, NTRC has been described to be involved in the protection of the chloroplast against oxidative stress damage through reduction of the 2-Cys peroxiredoxin (2-Cys Prx as well as through other functions related to redox enzyme regulation. In cyanobacteria, the Anabaena NTRC has been characterized in vitro, however nothing was known about its in vivo function. In order to study that, we have generated the first knockout mutant strain (∆ntrC, apart from the previously described in Arabidopsis. Detailed characterization of this strain reveals a differential sensitivity to oxidative stress treatments with respect to the wild-type Anabaena strain, including a higher level of ROS (reactive oxygen species in normal growth conditions. In the mutant strain, different oxidative stress treatments such as hydrogen peroxide, methyl-viologen or high light irradiance provoke an increase in the expression of genes related to ROS detoxification, including AnNTRC and peroxiredoxin genes, with a concomitant increase in the amount of AnNTRC and 2-Cys Prx. Moreover, the role of AnNTRC in the antioxidant response is confirmed by the observation of a pronounced overoxidation of the 2-Cys Prx and a time-delay recovery of the reduced form of this protein upon oxidative stress treatments. Our results suggest the participation of this enzyme in the peroxide detoxification in Anabaena. In addition, we describe the role of Anabaena NTRC in thermotolerance, by the appearance of high molecular mass AnNTRC complexes, showing that the mutant strain is more sensitive to high temperature treatments.

  2. Prolonged fasting increases glutathione biosynthesis in postweaned northern elephant seals

    Science.gov (United States)

    Vázquez-Medina, José Pablo; Zenteno-Savín, Tania; Forman, Henry Jay; Crocker, Daniel E.; Ortiz, Rudy M.

    2011-01-01

    SUMMARY Northern elephant seals experience prolonged periods of absolute food and water deprivation (fasting) while breeding, molting or weaning. The postweaning fast in elephant seals is characterized by increases in the renin–angiotensin system, expression of the oxidant-producing protein Nox4, and NADPH oxidase activity; however, these increases are not correlated with increased oxidative damage or inflammation. Glutathione (GSH) is a potent reductant and a cofactor for glutathione peroxidases (GPx), glutathione-S transferases (GST) and 1-cys peroxiredoxin (PrxVI) and thus contributes to the removal of hydroperoxides, preventing oxidative damage. The effects of prolonged food deprivation on the GSH system are not well described in mammals. To test our hypothesis that GSH biosynthesis increases with fasting in postweaned elephant seals, we measured circulating and muscle GSH content at the early and late phases of the postweaning fast in elephant seals along with the activity/protein content of glutamate-cysteine ligase [GCL; catalytic (GCLc) and modulatory (GCLm) subunits], γ-glutamyl transpeptidase (GGT), glutathione disulphide reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), GST and PrxVI, as well as plasma changes in γ-glutamyl amino acids, glutamate and glutamine. GSH increased two- to four-fold with fasting along with a 40–50% increase in the content of GCLm and GCLc, a 75% increase in GGT activity, a two- to 2.5-fold increase in GR, G6PDH and GST activities and a 30% increase in PrxVI content. Plasma γ-glutamyl glutamine, γ-glutamyl isoleucine and γ-glutamyl methionine also increased with fasting whereas glutamate and glutamine decreased. Results indicate that GSH biosynthesis increases with fasting and that GSH contributes to counteracting hydroperoxide production, preventing oxidative damage in fasting seals. PMID:21430206

  3. Klotho expression in long bones regulates FGF23 production during renal failure.

    Science.gov (United States)

    Kaludjerovic, Jovana; Komaba, Hirotaka; Sato, Tadatoshi; Erben, Reinhold G; Baron, Roland; Olauson, Hannes; Larsson, Tobias E; Lanske, Beate

    2017-05-01

    Circulating levels of bone-derived fibroblast growth factor 23 (FGF23) increase early during acute and chronic kidney disease and are associated with adverse outcomes. Membrane-bound Klotho acts as a permissive coreceptor for FGF23, and its expression was recently found in osteoblasts/osteocytes. We hypothesized that Klotho in bone cells is part of an autocrine feedback loop that regulates FGF23 expression during renal failure. Thus, we induced renal failure in mice with targeted deletion of Klotho in long bones. Uremic wild-type ( KL fl/fl ) and knockout ( Prx1-Cre;KL fl/fl ) mice both responded with reduced body weight, kidney atrophy, hyperphosphatemia, and increased bone turnover. Importantly, long bones of Prx1-Cre;KL fl/fl mice but not their axial skeleton failed to increase FGF23 expression as observed in uremic KL fl/fl mice. Consequently, Prx1-Cre;KL fl/fl mice had significantly lower serum FGF23 and parathyroid hormone levels, and higher renal 1-α-hydroxylase expression, serum 1,25-dihydroxyvitamin D, and calcium levels than KL fl/fl mice. These results were confirmed in two independent models of renal failure, adenine diet induced and 5/6 nephrectomy. Moreover, FGF23-treated bone cells required Klotho to increase FGF23 mRNA and ERK phosphorylation. In summary, our novel findings show that Klotho in bone is crucial for inducing FGF23 production upon renal failure. We propose the presence of an autocrine feedback loop in which Klotho senses the need for FGF23.-Kaludjerovic, J., Komaba, H., Sato, T., Erben, R. G., Baron, R., Olauson, H., Larsson, T. E., Lanske, B. Klotho expression in long bones regulates FGF23 production during renal failure. © FASEB.

  4. Crystal structures from the Plasmodium peroxiredoxins: new insights into oligomerization and product binding.

    Science.gov (United States)

    Qiu, Wei; Dong, Aiping; Pizarro, Juan C; Botchkarsev, Alexei; Min, Jinrong; Wernimont, Amy K; Hills, Tanya; Hui, Raymond; Artz, Jennifer D

    2012-03-19

    Plasmodium falciparum is the protozoan parasite primarily responsible for more than one million malarial deaths, annually, and is developing resistance to current therapies. Throughout its lifespan, the parasite is subjected to oxidative attack, so Plasmodium antioxidant defences are essential for its survival and are targets for disease control. To further understand the molecular aspects of the Plasmodium redox system, we solved 4 structures of Plasmodium peroxiredoxins (Prx). Our study has confirmed PvTrx-Px1 to be a hydrogen peroxide (H2O2)-sensitive peroxiredoxin. We have identified and characterized the novel toroid octameric oligomer of PyTrx-Px1, which may be attributed to the interplay of several factors including: (1) the orientation of the conserved surface/buried arginine of the NNLA(I/L)GRS-loop; and (2) the C-terminal tail positioning (also associated with the aforementioned conserved loop) which facilitates the intermolecular hydrogen bond between dimers (in an A-C fashion). In addition, a notable feature of the disulfide bonds in some of the Prx crystal structures is discussed. Finally, insight into the latter stages of the peroxiredoxin reaction coordinate is gained. Our structure of PyPrx6 is not only in the sulfinic acid (RSO2H) form, but it is also with glycerol bound in a way (not previously observed) indicative of product binding. The structural characterization of Plasmodium peroxiredoxins provided herein provides insight into their oligomerization and product binding which may facilitate the targeting of these antioxidant defences. Although the structural basis for the octameric oligomerization is further understood, the results yield more questions about the biological implications of the peroxiredoxin oligomerization, as multiple toroid configurations are now known. The crystal structure depicting the product bound active site gives insight into the overoxidation of the active site and allows further characterization of the leaving group

  5. Stable Agrobacterium -mediated transformation of the halophytic ...

    African Journals Online (AJOL)

    RT-RCR analysis was conducted using salt stressed transgenic plants, and the results suggested that 2-Cys Prx had low transcription levels under non-stressed conditions, and increased transcription after 6 h of 200 mM NaCl stress. This gene continued to demonstrate high levels of transcription until 6 h after withdrawal of ...

  6. Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins

    Czech Academy of Sciences Publication Activity Database

    Jeon, J. H.; Javanainen, M.; Martinez-Seara, Hector; Metzler, R.; Vattulainen, I.

    2016-01-01

    Roč. 6, č. 2 (2016), č. článku 021006. ISSN 2160-3308 Institutional support: RVO:61388963 Keywords : protein crowding * membranes * simulations * diffusion * non-Gaussian anomalous diffusion Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 12.789, year: 2016 http://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.021006

  7. PR IN HIGH-TEMPERATURE SUPERCONDUCTORS - INSULATING PLANES, METALLIC CHAINS

    NARCIS (Netherlands)

    KHOMSKII, D

    Critical discussion is given of the properties of Pr-containing high-T(c) superconductors, especially Y1-xPrxBa2Cu3O7. It is argued that the models proposed to explain suppression of T(c) and other properties of this system (pairbreaking; hole filling; strong p-f hybridization) are inadequate and

  8. Y1-XPRXBA2CU3O7 - CHARGE REDISTRIBUTION BETWEEN PLANES AND CHAINS

    NARCIS (Netherlands)

    KHOMSKII, D

    A qualitative discussion is given of the electronic structure and properties of the system Y1-xPrxBa2Cu3O7 in which there is a transition from a high-T(c) superconductor to a magnetic insulator. To reconcile the apparently contradicting experimental data, it is suggested that the progressive hole

  9. Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2016-01-01

    This study investigates 55 intracranial pressure (ICP) plateau waves recorded in 20 patients after severe traumatic brain injury (TBI) with a focus on a moving correlation coefficient between mean arterial pressure (ABP) and ICP, called PRx, which serves as a marker of cerebrovascular reactivity, and a moving correlation coefficient between ABP and cerebral partial pressure of oxygen (pbtO2), called ORx, which serves as a marker for cerebral oxygen reactivity. ICP and ICPamplitude increased significantly during the plateau waves, whereas CPP and pbtO2 decreased significantly. ABP, ABP amplitude, and heart rate remained unchanged. In 73 % of plateau waves PRx increased during the wave. ORx showed an increase during and a decrease after the plateau waves, which was not statistically significant. Our data show profound cerebral vasoparalysis on top of the wave and, to a lesser extent, impairment of cerebral oxygen reactivity. The different behavior of the indices may be due to the different latencies of the cerebral blood flow and oxygen level control mechanisms. While cerebrovascular reactivity is a rapidly reacting mechanism, cerebral oxygen reactivity is slower.

  10. A peroxidase gene expressed during early developmental stages of the parasitic plant Orobanche ramosa.

    Science.gov (United States)

    González-Verdejo, Clara Isabel; Barandiaran, Xabier; Moreno, Maria Teresa; Cubero, José Ignacio; Di Pietro, Antonio

    2006-01-01

    Broomrapes (Orobanche spp.) are holoparasitic weeds that cause devastating losses in many economically important crops. The molecular mechanisms that control the early stages of host infection in Orobanche are poorly understood. In the present study, the role of peroxidase has been examined during pre-infection growth and development of O. ramosa, using an in vitro model system. Peroxidase activity was histochemically localized at the tips of actively growing radicles and nascent attachment organs. Addition of exogenous catalase resulted in a significant reduction in the apical growth rate of the radicle. The prx1 gene encoding a putative class III peroxidase was cloned from a cDNA library of O. ramosa and was found to be expressed specifically during the early stages of the parasitic life cycle. The exogenous addition of sucrose resulted in significantly reduced prx1 transcript levels and in a dramatic change in radicle development from polarized apical growth to isotropic growth and the formation of tubercle-like structures. The results indicate an important role of peroxidases during the early parasitic stages of Orobanche.

  11. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.

    Science.gov (United States)

    Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate

    2017-03-07

    Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Calcium and magnesium ions modulate the oligomeric state and function of mitochondrial 2-Cys peroxiredoxins in Leishmania parasites.

    Science.gov (United States)

    Morais, Mariana A B; Giuseppe, Priscila O; Souza, Tatiana A C B; Castro, Helena; Honorato, Rodrigo V; Oliveira, Paulo S L; Netto, Luis E S; Tomas, Ana M; Murakami, Mario T

    2017-04-28

    Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Characterization of Helicobacter pylori adhesin thiol peroxidase ...

    Indian Academy of Sciences (India)

    Prakash

    H. pylori induces a strong inflammatory response ... 2003). Prx inactivation has also been observed in plants (Kitajima 2008) and yeast .... 2.1 Expression and purification of wild-type and mutant. HpTpx ... density (OD)600 of 0.6–0.8 and induced by 0.5 mM isopropyl ... Far-UV circular dichroism (CD) spectroscopy was used.

  14. Peroxisome protein transportation affects metabolism of branched-chain fatty acids that critically impact growth and development of C. elegans.

    Directory of Open Access Journals (Sweden)

    Rencheng Wang

    Full Text Available The impact of specific lipid molecules, including fatty acid variants, on cellular and developmental regulation is an important research subject that remains under studied. Monomethyl branched-chain fatty acids (mmBCFAs are commonly present in multiple organisms including mammals, however our understanding of mmBCFA functions is very limited. C. elegans has been the premier model system to study the functions of mmBCFAs and their derived lipids, as mmBCFAs have been shown to play essential roles in post-embryonic development in this organism. To understand more about the metabolism of mmBCFAs in C. elegans, we performed a genetic screen for suppressors of the L1 developmental arrest phenotype caused by mmBCFA depletion. Extensive characterization of one suppressor mutation identified prx-5, which encodes an ortholog of the human receptor for the type-1 peroxisomal targeting signal protein. Our study showed that inactivating prx-5 function compromised the peroxisome protein import, resulting in an increased level of branched-chain fatty acid C17ISO in animals lacking normal mmBCFA synthesis, thereby restoring wild-type growth and development. This work reveals a novel connection between peroxisomal functions and mmBCFA metabolism.

  15. The Nrf1 and Nrf2 Balance in Oxidative Stress Regulation and Androgen Signaling in Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Michelle A. [Department of Pharmacology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States); Abdel-Mageed, Asim B. [Department of Urology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States); Mondal, Debasis, E-mail: dmondal@tulane.edu [Department of Pharmacology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States)

    2010-06-21

    Reactive oxygen species (ROS) signaling has recently sparked a surge of interest as being the molecular underpinning for cancer cell survival, but the precise mechanisms involved have not been completely elucidated. This review covers the possible roles of two ROS-induced transcription factors, Nrf1 and Nrf2, and the antioxidant proteins peroxiredoxin-1 (Prx-1) and Thioredoxin-1 (Txn-1) in modulating AR expression and signaling in aggressive prostate cancer (PCa) cells. In androgen independent (AI) C4-2B cells, in comparison to the parental androgen dependent (AD) LNCaP cells, we present evidence of high Nrf1 and Prx-1 expression and low Nrf2 expression in these aggressive PCa cells. Furthermore, in DHT treated C4-2B cells, increased expression of the p65 (active) isoform of Nrf1 correlated with enhanced AR transactivation. Our findings implicate a crucial balance of Nrf1 and Nrf2 signaling in regulating AR activity in AI-PCa cells. Here we will discuss how understanding the mechanisms by which oxidative stress may affect AR signaling may aid in developing novel therapies for AI-PCa.

  16. Continuous Autoregulatory Indices Derived from Multi-modal Monitoring: Each One is Not Like the Other.

    OpenAIRE

    Zeiler, Frederick; Donnelly, Joseph; Menon, David Krishna; Smieleweski, P; Zweifel, C; Brady, K; Czosnyka, Marek

    2017-01-01

    We assess the relationships between various continuous measures of autoregulatory capacity in an adult TBI cohort. We assessed relationships between autoregulatory indices derived from intracranial pressure (ICP: PRx, PAx, RAC), Transcranial Doppler (TCD: Mx, Sx, Dx), brain tissue-oxygenation (ORx), and spatially resolved near infrared spectroscopy (NIRS resolved: TOx, THx). Relationships between indices were assessed using Pearson correlation coefficient, Friedman (KW) test, Principle compon...

  17. Peroxiredoxins: A Model for a Self-Assembling Nanoscale System

    Science.gov (United States)

    2014-08-24

    Introduction 24 Chapter Three describes the identification of a potential peroxiredoxin enzyme in the genome of the thermophilic bacterium Thermus...Discussion (TaqPrx) 80 3.9 Summary of results Comparison of the sequences of thermophilic peroxiredoxins showed that the enzyme reported by Logan and...well as that of the other two variants. A second enzyme was also examined, a thermophilic peroxiredoxin from the bacterium Thermus aquaticus. This

  18. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage.

    Science.gov (United States)

    Connor, David E; Chaitanya, Ganta V; Chittiboina, Prashant; McCarthy, Paul; Scott, L Keith; Schrott, Lisa; Minagar, Alireza; Nanda, Anil; Alexander, J Steven

    2017-09-01

    Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. Consistent CSF elevation of CA-I and Prx-2 with

  19. Quantitative high-throughput screen identifies inhibitors of the Schistosoma mansoni redox cascade.

    Directory of Open Access Journals (Sweden)

    Anton Simeonov

    2008-01-01

    Full Text Available Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR and peroxiredoxin (Prx and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 microL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC(50s ranging from micromolar to the assay response limit ( approximately 25 nM. This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump

  20. Ihh and PTH1R signaling in limb mesenchyme is required for proper segmentation and subsequent formation and growth of digit bones.

    Science.gov (United States)

    Amano, Katsuhiko; Densmore, Michael; Fan, Yi; Lanske, Beate

    2016-02-01

    Digit formation is a process, which requires the proper segmentation, formation and growth of phalangeal bones and is precisely regulated by several important factors. One such factor is Ihh, a gene linked to BDA1 and distal symphalangism in humans. In existing mouse models, mutations in Ihh have been shown to cause multiple synostosis in the digits but lead to perinatal lethality. To better study the exact biological and pathological events which occur in these fused digits, we used a more viable Prx1-Cre;Ihh(fl/fl) model in which Cre recombinase is expressed during mesenchymal condensation in the earliest limb buds at E9.5 dpc and found that mutant digits continuously fuse postnatally until phalanges are finally replaced by an unsegmented "one-stick bone". Mutant mice displayed osteocalcin-positive mature osteoblasts, but had reduced proliferation and abnormal osteogenesis. Because of the close interaction between Ihh and PTHrP during endochondral ossification, we also examined the digits of Prx1-Cre;PTH1R(fl/fl) mice, where the receptor for PTHrP was conditionally deleted. Surprisingly, we found PTH1R deletion caused symphalangism, demonstrating another novel function of PTH1R signaling in digit formation. We characterized the symphalangism process whereby initial cartilaginous fusion prevented epiphyseal growth plate formation, resulting in resorption and replacement of the remaining cartilage by bony tissue. Chondrocyte differentiation displayed abnormal directionality in both mutants. Lastly, Prx1-Cre;Ihh(fl/fl);Jansen Tg mice, in which a constitutively active PTH1R allele was introduced into Ihh mutants, were established to address the possible involvement of PTH1R signaling in Ihh mutant digits. These rescue mice failed to show significantly improved phenotype, suggesting that PTH1R signaling in chondrocytes is not sufficient to restore digit formation. Our results demonstrate that Ihh and PTH1R signaling in limb mesenchyme are both essential to regulate

  1. Evaluating the Potential of Adipose Tissue-Derived MSCs as Anticancer Gene Delivery Vehicles to Bone-Metastasized Prostate Cancer

    Science.gov (United States)

    2010-04-01

    cells may allow red-ox pathways to be used for mitogenic purposes. These cells also overexpress the antioxidant proteins, Thioredoxin-1 ( Trx -1) and...shown to modify hormone receptor signaling in both breast and prostate cancer. Trx - 1 can differentially modulate estrogen receptor (ER) signaling in...of AR dependent PCa cell growth may be achieved by suppressing the induction of Prx-1 and Trx -1. Induction of these antioxidant proteins are

  2. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity

    Science.gov (United States)

    Intini, Giuseppe; Nyman, Jeffry S.

    2015-01-01

    Bone fractures remain a serious health burden and prevention and enhanced healing of fractures has been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1+/−) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2c/c;Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1+/− mice were crossed with Bmp2c/c;Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy. PMID:25603465

  3. Antioxidative-related genes expression following perfluorooctane sulfonate (PFOS) exposure in the intertidal mud crab, Macrophthalmus japonicus

    Science.gov (United States)

    Park, Kiyun; Nikapitiya, Chamilani; Kwak, Tae-Soo; Kwak, Ihn-Sil

    2015-09-01

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant that is used as a surfactant in various industries and consumer products. The intertidal mud crab, Macrophthalmus japonicus, is one of the most abundant macrobenthic creatures. In this study, we have investigated the effect of PFOS on the molecular transcription of antioxidant and detoxification signaling in M. japonicus crab. The selected stress response genes were superoxide dismutases (CuZnSOD and MnSOD), catalase (CAT), glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR). Significant up-regulation of SODs and CAT was observed after 24 and 96 h exposure to PFOS at different concentrations. The gene expression levels of GPx, PHGPx, and TrXR were significantly up-regulated after exposure to PFOS for 96 h. The transcript levels of CAT and PHGPx were induced in dose- and time-dependent manners after PFOS treatments. However, Prx gene expression was significantly up-regulated in M. japonicus crabs exposed to 10 and 30 μg L-1 PFOS for 96 h. Additionally, PFOS toxicity in M. japonicus induced reduced survival rates at relatively high concentrations of PFOS exposure. Our findings support the contention that exposures to PFOS induced the response of genes related to oxidative stress and detoxification in M. japonicus crabs.

  4. Detection of Impaired Cerebral Autoregulation Using Selected Correlation Analysis: A Validation Study.

    Science.gov (United States)

    Proescholdt, Martin A; Faltermeier, Rupert; Bele, Sylvia; Brawanski, Alexander

    2017-01-01

    Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca), correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp). In this study we compared the results of the sca with the pressure reactivity index (PRx), an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc). The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data.

  5. Detection of Impaired Cerebral Autoregulation Using Selected Correlation Analysis: A Validation Study

    Directory of Open Access Journals (Sweden)

    Martin A. Proescholdt

    2017-01-01

    Full Text Available Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca, correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp. In this study we compared the results of the sca with the pressure reactivity index (PRx, an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc. The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data.

  6. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Lee, Seung Sik; Bai, Hyounwoo; Singh, Sudhir; Lee, Eun Mi; Hong, Sung Hyun; Park, Chul Hong; Srilatha, B.; Kim, Mi Ja; Lee, Ohchul

    2012-01-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Development of a technique for radiation tissue and cell culture for Erigeron breviscapus (Vant.) Hand. Mazz.; Identification and functional analysis of AtTDX (chaperone and peroxidase activities); Functional analysis of radiation(gamma ray, electron beam, and proton beam) induced chaperon protein activities (AtTDX); Determine the action mechanism of yPrx2; Development of transgenic plant with bas I gene from Arabidopsis; Development of transgenic plant with EoP gene from centipedegrass; Identification of radiation induced multi functional compounds from Aloe; Determination of the effects of radiation on removing undesirable color and physiological activities (Schizandra chinensis baillon, centipedegrass); Determine the action mechanism of transgenic plant with 2-Cys Prx for heat stress resistance; Determination of the effects of centipedegrass extracts on anti-cancer activities; Functional analysis of centipedegrass extracts (anti-virus effects)

  7. Inhibition of Breast Cancer-Induced Angiogenesis by a Diverged Homeobox Gene

    Science.gov (United States)

    2005-05-01

    Frizzled homolog 2 (FZD2) Signal transduction 30.4 ɘ.0001 NM 025151 Rab coupling protein ( RCP ) Signal transduction 30.1 0.0026 A1678679 Bone morphogenetic...with smooth muscle a actin, whereas Prx2 of the aorta, declines in the neonate and lymphatic development is the observation expression is highly...Fold change P Up-regulated Genes L37882 Frizzled homologue 2 (FZD2) Signal transduction 30.4 ɘ.0001 NM_025151 Rab coupling protein ( RCP ) Signal

  8. Overoxidation of chloroplast 2-Cys peroxiredoxins: balancing toxic and signaling activities of hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Leonor ePuerto-Galán

    2013-08-01

    Full Text Available Photosynthesis, the primary source of biomass and oxygen into the biosphere, involves the transport of electrons in the presence of oxygen and, therefore, chloroplasts constitute an important source of reactive oxygen species (ROS, including hydrogen peroxide. If accumulated at high level, hydrogen peroxide may exert a toxic effect; however, it is as well an important second messenger. In order to balance the toxic and signaling activities of hydrogen peroxide its level has to be tightly controlled. To this end, chloroplasts are equipped with different antioxidant systems such as 2-Cys peroxiredoxins (2-Cys Prxs, thiol-based peroxidases able to reduce hydrogen- and organic peroxides. At high peroxide concentrations the peroxidase function of 2-Cys Prxs may become inactivated through a process of overoxidation. This inactivation has been proposed to explain the signaling function of hydrogen peroxide in eukaryotes, whereas in prokaryotes, the 2-Cys Prxs of which were considered to be insensitive to overoxidation, the signaling activity of hydrogen peroxide is less relevant. Here we discuss the current knowledge about the mechanisms controlling 2-Cys Prx overoxidation in chloroplasts, organelles with an important signaling function in plants. Given the prokaryotic origin of chloroplasts, we discuss the occurrence of 2-Cys Prx overoxidation in cyanobacteria with the aim of identifying similarities between chloroplasts and their ancestors regarding their response to hydrogen peroxide.

  9. Effect of the Algaecide Palmitoleic Acid on the Immune Function of the Bay Scallop Argopecten irradians

    Directory of Open Access Journals (Sweden)

    Cheng Chi

    2016-05-01

    Full Text Available Palmitoleic acid (PA, an algicidal compound, is used against the toxin producing dinofagelate Alexandrium tamarense, however, its impact on the edible bay scallop (Argopecten irradians is still unclear. Therefore, we investigated the impacts of effective algicidal concentrations (20, 40, and 80 mg/L of PA on immune responses in A. irradians. Various immune parameters including acid phosphatase (ACP activity, superoxide dismutase (SOD, lysozyme, phagocytic activity, total protein, malondialdehyde (MDA level, and reactive oxygen species (ROS production and the expression of immune-related genes (PrxV, CLT-6, MT, and BD were measured at 3, 6, 12, 24, and 48 h post-exposure (hpe to PA. Lysozyme activity was lower in scallops at 12–48 hpe to 80 mg/L. SOD, ACP activity, ROS production, the total protein, and MDA level was higher at 12 to 48 hpe with different concentrations of PA. Phagocytic activity increased at 6–12 hpe to 40–80 mg/L of PA, but decreased at 24–48 hpe. The expressions of genes PrxV, CLT-6, MT and BD down-regulated at 3 hpe were observed, while differential expressions from 6–48 hpe with different concentrations of PA. The present study demonstrated that immersing A. irradians in PA at effective concentrations could result in differential effects on non-specific immune responses and expressions of immune-related genes.

  10. Characterization of the Arabidopsis thaliana 2-Cys peroxiredoxin interactome.

    Science.gov (United States)

    Cerveau, Delphine; Kraut, Alexandra; Stotz, Henrik U; Mueller, Martin J; Couté, Yohann; Rey, Pascal

    2016-11-01

    Peroxiredoxins are ubiquitous thiol-dependent peroxidases for which chaperone and signaling roles have been reported in various types of organisms in recent years. In plants, the peroxidase function of the two typical plastidial 2-Cys peroxiredoxins (2-Cys PRX A and B) has been highlighted while the other functions, particularly in ROS-dependent signaling pathways, are still elusive notably due to the lack of knowledge of interacting partners. Using an ex vivo approach based on co-immunoprecipitation of leaf extracts from Arabidopsis thaliana wild-type and mutant plants lacking 2-Cys PRX expression followed by mass spectrometry-based proteomics, 158 proteins were found associated with 2-Cys PRXs. Already known partners like thioredoxin-related electron donors (Chloroplastic Drought-induced Stress Protein of 32kDa, Atypical Cysteine Histidine-rich Thioredoxin 2) and enzymes involved in chlorophyll synthesis (Protochlorophyllide OxidoReductase B) or carbon metabolism (Fructose-1,6-BisPhosphatase) were identified, validating the relevance of the approach. Bioinformatic and bibliographic analyses allowed the functional classification of the identified proteins and revealed that more than 40% are localized in plastids. The possible roles of plant 2-Cys PRXs in redox signaling pathways are discussed in relation with the functions of the potential partners notably those involved in redox homeostasis, carbon and amino acid metabolisms as well as chlorophyll biosynthesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Role of Klotho in Osteoporosis and Renal Osteodystrophy

    Science.gov (United States)

    2014-10-01

    proximal tubules of the kidney. This is an important finding because prior to these data it was unclear how Fgf23 could downregulate the sodium phosphate...downregulates the sodium phosphate co-transporters (NaPi2a, Napi2c) and inhibits expression of 1α(OH)ase. We are interested in determining if there are any...7-day adaptation phase to the casein diet without addition of adenine. Then 8-week old Prx1cre;Klotho fl/fl and Klotho fl/fl mice were randomized

  12. Evaluation of the Protective Role of XvPrx2 Gene from Xerophyta ...

    African Journals Online (AJOL)

    Miccah

    2016-06-22

    Jun 22, 2016 ... chloride NaCl and 10 g Bacto-Agar) medium supplemented with. 100 mg/L spectinomycin .... 28°C. The overnight grown culture was centrifuged and the medium discarded. .... temperature was maintained at 43±2°C and relative humidity of. 55%. ..... membrane protein and inactivation of enzymes such as.

  13. Luminescence properties of LiPrxCe1-xP4O12

    International Nuclear Information System (INIS)

    Shalapska, T.; Stryganyuka, G.; Trotsc, D.; Demkiv, T.; Gektin, A.; Voloshinovskii, A.; Dorenbos, P.

    2010-01-01

    LiPr 1-x Ce x P 4 O 12 (x=0, 0.002, 0.02; 0.1) powder samples were prepared using the melt solution technique. Luminescent parameters of LiPr 1-x Ce x P 4 O 12 phosphors have been investigated under ultraviolet-vacuum ultraviolet (3-12 eV) synchrotron radiation and X-rays excitation at room and near liquid He temperatures. Excitation luminescence spectra of Ce 3+ emission, luminescent spectra and decay curves from the lower excited state levels of the 4f 1 5d 1 and 5d 1 electronic configuration of the Pr 3+ and Ce 3+ , respectively, clearly indicate energy transfer from Pr 3+ to Ce 3+ . Energy migration proceeds via the Pr-sublattice followed by nonradiation transfer from Pr 3+ to Ce 3+ ions.

  14. Electrical resistivity and thermopower of Y1-xPrxCo2 Compounds

    International Nuclear Information System (INIS)

    Uchima, K; Takaesu, Y; Teruya, A; Akamine, H; Kakihana, M; Tomori, K; Uejo, T; Nakamura, A; Hedo, M; Nakama, T; Yagasaki, K; Burkov, A T

    2015-01-01

    Electrical resistivity ρ and thermopower S of the pseudo-binary compounds of Y 1-x Pr x Co 2 have been measured in the temperature range between 2 and 300 K under magnetic fields up to 10 T, together with the pressure measurements of ρ and S in Y 0.4 Pr 0.6 Co 2 . The Curie temperature decreases with decreasing x, and vanishes at the critical composition x c ≈ 0.4, where the residual resistivity attains a maximum value. The Curie temperature and the residual resistivity of Y 0.4 Pr 0.6 Co 2 show the same pressure dependence as those of the heavy-rare-earth based compounds. These behaviors of ρ and S indicate the inhomogeneous distribution of the Co 3d magnetization. The magnetoresistance of the light-rare earth Y 1-x Pr x Co 2 system is negative in the whole range of x, except for x = 0 and 1, which is a characteristic behavior related with magnetic state and magnitude of the effective field acting on the Co 3d subsystem

  15. Frustrated magnetization in PrxLa1-xBaCuO5Fe

    International Nuclear Information System (INIS)

    Ortiz, W.A.; Araujo-Moreira, F.M.; Prassides, K.

    1999-01-01

    The crystal structure of the system Pr x La 1-x BaCuO 5 Fe has been recently reviewed. The magnetic structure of samples with x = 0 and x = 1 is mainly due to effective local moments of iron and copper. In Pr-rich samples, Fe ions occupy two non-equivalent positions, making it substantially plausible that two or more magnetic subsets might coexist in the system. This contribution presents magnetization studies on five samples of the Pr x La 1-x BaCuO 5 Fe system (x = 0.0, 0.2, 0.5, 0.7 and 1.0). All samples exhibit a strong irreversible behavior between zero-field-cooled and field-cooled procedures below a certain irreversibility temperature T i . Above T i , both branches are coincident and well described by a Curie-Weiss fitting. Decreasing the temperature below T i , the zero-field-cooled response increases less than the field-cooled curve, indicating some degree of frustrated antiferromagnetic couplings. (orig.)

  16. Protective effects of andrographolide analogue AL-1 on ROS-induced RIN-mβ cell death by inducing ROS generation.

    Directory of Open Access Journals (Sweden)

    Guang-Rong Yan

    Full Text Available Oxidative stress is considered to be a major factor contributing to pathogenesis and progression of many diseases. A novel andrographolide-lipoic acid conjugate (AL-1 could protect pancreatic β-cells from reactive oxygen species (ROS-induced oxidative injury. However, its protective mechanism is still unclear. In this work, we used proteomics to identify AL-1-regulated proteins in β-cells and found that 13 of the 71 proteins regulated by AL-1 were closely associated with antioxidation. These differential proteins were mainly involved in the ERK1/2 and AKT1 signaling pathways. Functional investigation demonstrated that AL-1 exerted its protective effects on H2O2-induced cell death of β-cells by generating NADPH oxidase-dependent ROS to activate ERK1/2 and AKT1 signaling pathways. As a consequence, the expressions of antioxidant proteins including Trx1, Prx1 and Prx5, and anti-apoptotic proteins including PDCD6IP, prohibitin, galectin-1 and HSP were upregulated. AL-1 probably worked as a "vaccinum" to activate the cellular antioxidant system by inducing the generation of low concentration ROS which then reciprocally protected β-cells from oxidative damage caused by high-level ROS from H2O2. To the best of our knowledge, this is the first comprehensive proteomic analysis illustrating a novel molecular mechanism for the protective effects of antioxidants on β-cells from H2O2-induced cell death.

  17. Establishment of a Ewing's sarcoma mouse model: JAK/STAT signalling in Ewing's sarcoma

    International Nuclear Information System (INIS)

    Sax, B.

    2011-01-01

    The Ewing's sarcoma family of tumours (ESFT) comprises paediatric cancers of bone and soft tissue which presumably originate from mesenchymal progenitor cells(MPC). One hallmark of ESFT is the presence of a chromosomal translocation. In 90% of the cases chromosome 11 fuses with chromosome 22. This translocation generates the EWS/FLI-1 fusion which acts as an aberrant transcription factor deregulating many genes involved in tumour development. Surgery and/or radiotherapy combined with chemotherapy are the usual forms of treatment for ESFT. But since there is only little progress in the field of chemotherapy the need for an animal model for pre-clinical drug testing is evident. Thus, the main focus of this thesis was to establish a mouse model that develops sarcomas resembling the phenotype of ESFT. We used a conditional EWS/FLI-1 mouse model, which upon Cre activity (controlled by a tissue specific promotor) expressed EWS/FLI-1 in the targeted cells. Since ESFT arises in bone and surrounding soft tissue we decided to direct expression of EWS/FLI-1 to the mesenchymal lineage by using different Cre lines. Only when using the Prx1Cre, double transgenic mice tolerated EWS/FLI-1 expression. We observed developmental abnormalities with severe skeletal deformations. Bone formation was impaired due to the absence of mature chondrocytes and osteoblasts and hence a lack of calcified bone. The lack of mature bone cells in EWS/FLI-1 expressing Prx1Cre mice supports in vitro data showing that EWS/FLI-1 impedes differentiation of murine mesenchymal progenitor cells. Currently, the project is extended to analysis of an inducible Prx1Cre system which circumvents the early lethality of Prx1Cre EF mice. This should provide the basis for tumour formation in these mice and hence the development of an appropriate mouse model for pre-clinical research. In the second project of my PhD thesis, the role of the Janus Kinase/Signal Transducer and Activator of Transcription (JAK

  18. MPK6 controls H2 O2-induced root elongation by mediating Ca2+ influx across the plasma membrane of root cells in Arabidopsis seedlings.

    Science.gov (United States)

    Han, Shuan; Fang, Lin; Ren, Xuejian; Wang, Wenle; Jiang, Jing

    2015-01-01

    Mitogen-activated protein kinases (MPKs) play critical roles in signalling and growth, and Ca(2+) and H2 O2 control plant growth processes associated with abscisic acid (ABA). However, it remains unclear how MPKs are involved in H2 O2 - and Ca(2+) -mediated root elongation. Root elongation in seedlings of the loss-of-function mutant Atmpk6 (Arabidopsis thaliana MPK6) was less sensitive to moderate H2 O2 or ABA than that in wild-type (WT) plants. The enhanced elongation was a result of root cell expansion. This effect disappeared when ABA-induced H2 O2 accumulation or the cytosolic Ca(2+) increase were defective. Molecular and biochemical evidence showed that increased expression of the cell wall peroxidase PRX34 in Atmpk6 root cells enhanced apoplastic H2 O2 generation; this promoted a cytosolic Ca(2+) increase and Ca(2+) influx across the plasma membrane. The plasma membrane damage caused by high levels of H2 O2 was ameliorated in a Ca(2+) -dependent manner. These results suggested that there was intensified PRX34-mediated H2 O2 generation in the apoplast and increased Ca(2+) flux into the cytosol of Atmpk6 root cells; that is, the spatial separation of apoplastic H2 O2 from cytosolic Ca(2+) in root cells prevented H2 O2 -induced inhibition of root elongation in Atmpk6 seedlings. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Magnetic resistance in Tm(Ba2x Prx)Cu3 O7+δ

    International Nuclear Information System (INIS)

    Mokhtari, Z.; Akhavan, M.

    2003-01-01

    The magnetoresistance of single phase polycrystalline Tm(Ba 2x Pr x )Cu 3 O 7+δ samples have been studied within AH model. The derives power law dependence of pinning energy and critical current density to applied magnetic field (H -n ) shows that the power factor increases with the increases of Pr content, with the average value of n≅0.2. It shows that the Pr doping plays the role of weak link. It is noticeable that the behavior of x=0 samples. This maybe due to the intragrain properties of the sample

  20. Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence

    Directory of Open Access Journals (Sweden)

    Majid Ebrahimizadeh Abrishami

    2016-11-01

    Full Text Available An improved understanding of the correlation between the electronic properties of Mn-O bonds, activity and stability of electro-catalysts for the oxygen evolution reaction (OER is of great importance for an improved catalyst design. Here, an in-depth study of the relation between lattice structure, electronic properties and catalyst performance of the perovskite Ca1−xPrxMnO3 and the first-order RP-system Ca2−xPrxMnO4 at doping levels of x = 0, 0.25 and 0.5 is presented. Lattice structure is determined by X-ray powder diffraction and Rietveld refinement. X-ray absorption spectroscopy of Mn-L and O-K edges gives access to Mn valence and covalency of the Mn-O bond. Oxygen evolution activity and stability is measured by rotating ring disc electrode studies. We demonstrate that the highest activity and stability coincidences for systems with a Mn-valence state of +3.7, though also requiring that the covalency of the Mn-O bond has a relative minimum. This observation points to an oxygen evolution mechanism with high redox activity of Mn. Covalency should be large enough for facile electron transfer from adsorbed oxygen species to the MnO6 network; however, it should not be hampered by oxidation of the lattice oxygen, which might cause a crossover to material degradation. Since valence and covalency changes are not entirely independent, the introduction of the energy position of the eg↑ pre-edge peak in the O-K spectra as a new descriptor for oxygen evolution is suggested, leading to a volcano-like representation of the OER activity.

  1. Development of functional markers associated with phenotypic characteristics for identification of soy variety

    International Nuclear Information System (INIS)

    Ibarra, M.; Castro, A; Capdevielle, F.

    2013-01-01

    The organization of agricultural systems requires the verification of the genetic identity and purity of cultivars. The increase in the number of soy varieties to be evaluated, and the narrow genetic base of soybean cultivars, make the identification using phenotypic descriptors very difficult. The International Union for the Protection of New Varieties of Plants (UPOV) has recognized the utility of molecular markers associated with descriptive phenotypic characteristics. With the goal of developing this kind of markers, six genic or genomic S SR were selected in silico (Sat286, Satt229, GmPrx1, GMES1173, Satt571 and Gm Hi), plus two previously reported markers (GmF35H and SoyF3H). All were evaluated in 35 soybean cultivars. The SSRs GmPrx1 and Gm Hi selected for seed coat peroxidase and hilum color respectively were monomorphic. The mean Polymorphism Information Content (PI C) value within the selected group of polymorphic markers was 0.48 with an average of 3.12 allele per locus. GmF35H discriminated the soybean varieties according to the flower color (white and purple). Discrimination tests showed a high percentage of accurate classification of growth habit (95.8%) and pubescence color (80.6%) with Sat286 and Soy F3H, respectively. The classification values for pod color (74.2%) and leaflet size (73.5%) were intermediate using GMES1173 and Satt571, respectively. The marker Satt229 was not discriminating for flowering time (50%) and maturity (42.8%). Molecular markers selected in or close to sequences of interest can be integrated into a genetic identification system as complementary markers to the classic phenotypic descriptors of soybean varieties

  2. Determination of the structure of thiol-specific antioxidant (Tsa 2) of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Breyer, C.A.; Oliveira, M.A.

    2012-01-01

    Full text: The peroxiredoxin (Prx), is a group of antioxidant proteins that have been widely studied for its role in the decomposition of several species of peroxides such as hydrogen peroxide, peroxynitrite and organic hydroperoxides using two highly reactive cysteines, named cysteine peroxidatic (Cys P ) and resolve cysteine (Cys R ), present in the active site. In Saccharomyces cerevisiae were identified five Prx isoforms, three cytosolic (Tsa1, Tsa2 and Ahp1), a mitochondrial (mTPx) and a nu- clear one (nTPx). Tsa1 and Tsa2 are homodimers that in heat shock or oxidative stress form complex structures of high molecular-weight with chaperone function. These proteins are very similar (86% identity and 96% similarity) but despite this structural similarity it has been shown that they present different functions: Tsa1 is mainly involved in the response to oxidative stress while Tsa2 is involved in signal transduction. Tsa1 was already crystallized and a structural model was generated, but Tsa2 structural studies were not performed. The research goal is the determination of the structure of Tsa2. The initial screening experiments of crystallization using the kits CS1 and CS2 (Hampton Research) showed favorable results when the conditions were 0,1M sodium acetate trihydrate pH 4.6 and 8% polyethylene glycol 4000. To improve our results the crystallization condition is been refined using variations of pH and concentration of polyethylene glycol 4000. We believe that the results of this study may contribute significantly to the understanding of the formation of over oxidized forms and cellular functions of Tsa2. (author)

  3. Inhibition of the Functional Interplay between Endoplasmic Reticulum (ER) Oxidoreduclin-1α (Ero1α) and Protein-disulfide Isomerase (PDI) by the Endocrine Disruptor Bisphenol A*

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Hashimoto, Shoko; Yutani, Katsuhide; Kanemura, Shingo; Hikima, Takaaki; Hidaka, Yuji; Ito, Len; Shiba, Kohei; Masui, Shoji; Imai, Daiki; Imaoka, Susumu; Yamaguchi, Hiroshi; Inaba, Kenji

    2014-01-01

    Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b′ domain, preventing PDI from binding to unfolded proteins. The b′ domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b′ domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation. PMID:25122773

  4. Structural and magnetic properties of Gd1-xPrxMn2Si2 silicides

    International Nuclear Information System (INIS)

    Kilic, A.; Kervan, S.; Gencer, A.

    2004-01-01

    X-ray powder diffraction, AC susceptibility and differential scanning calorimetry (DSC) studies were performed on the polycrystalline Gd 1-x Pr x Mn 2 Si 2 (0≤x≤1) compounds. All compounds investigated crystallize in the body-centred tetragonal ThCr 2 Si 2 -type structure with the space group I4/mmm. Substitution of Pr for Gd leads to a linear increase of the lattice constants and the unit cell volume. The lattice constants and the unit cell volume obey Vegard's law. At the Curie temperature T C (Gd), the Gd sublattice orders and reconfigures the ordering in the Mn sublattice. This temperature becomes depressed and disappears with increasing Pr content x. The Neel temperature T N (Mn) determined by DSC technique decreases linearly with increasing Pr content x. The results are summarized in the x-T magnetic phase diagram

  5. Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1

    Science.gov (United States)

    Kühnisch, Jirko; Seto, Jong; Lange, Claudia; Schrof, Susanne; Stumpp, Sabine; Kobus, Karolina; Grohmann, Julia; Kossler, Nadine; Varga, Peter; Osswald, Monika; Emmerich, Denise; Tinschert, Sigrid; Thielemann, Falk; Duda, Georg; Seifert, Wenke; el Khassawna, Thaqif; Stevenson, David A.; Elefteriou, Florent; Kornak, Uwe; Raum, Kay; Fratzl, Peter; Mundlos, Stefan; Kolanczyk, Mateusz

    2014-01-01

    Bone fragility due to osteopenia, osteoporosis or debilitating focal skeletal dysplasias is a frequent observation in the Mendelian disease Neurofibromatosis type 1 (NF1). To determine the mechanisms underlying bone fragility in NF1 we analyzed two conditional mouse models, Nf1Prx1 (limb knock-out) and Nf1Col1 (osteoblast specific knock-out), as well as cortical bone samples from individuals with NF1. We examined mouse bone tissue with micro-computed tomography, qualitative and quantitative histology, mechanical tensile analysis, small-angle X-ray scattering (SAXS), energy dispersive X-ray spectroscopy (EDX), and scanning acoustic microscopy (SAM). In cortical bone of Nf1Prx1 mice we detected ectopic blood vessels that were associated with diaphyseal mineralization defects. Defective mineral binding in the proximity of blood vessels was most likely due to impaired bone collagen formation, as these areas were completely devoid of acidic matrix proteins and contained thin collagen fibers. Additionally, we found significantly reduced mechanical strength of the bone material, which was partially caused by increased osteocyte volume. Consistent with these observations, bone samples from individuals with NF1 and tibial dysplasia showed increased osteocyte lacuna volume. Reduced mechanical properties were associated with diminished matrix stiffness, as determined by SAM. In line with these observations, bone tissue from individuals with NF1 and tibial dysplasia showed heterogeneous mineralization and reduced collagen fiber thickness and packaging. Collectively, the data indicate that bone fragility in NF1 tibial dysplasia is partly due to an increased osteocyte-related micro-porosity, hypomineralization, a generalized defect of organic matrix formation, exacerbated in the regions of tensional and bending force integration, and finally persistence of ectopic blood vessels associated with localized macro-porotic bone lesions. PMID:24465906

  6. Dissecting the integrative antioxidant and redox systems in plant mitochondria. Effect of stress and S-nitrosylation.

    Directory of Open Access Journals (Sweden)

    Juan José Lázaro

    2013-11-01

    Full Text Available Mitochondrial respiration provides the energy needed to drive metabolic and transport processes in cells. Mitochondria are a significant site of reactive oxygen species (ROS production in plant cells, and redox-system components obey fine regulation mechanisms that are essential in protecting the mitochondrial integrity. In addition to ROS, there are compelling indications that nitric oxide (NO. can be generated in this organelle by both reductive and oxidative pathways. ROS and reactive nitrogen species (RNS play a key role in signaling but they can also be deleterious via oxidation of macromolecules. The high production of ROS obligates mitochondria to be provided with a set of ROS scavenging mechanisms. The first line of mitochondrial antioxidants is composed of superoxide dismutase and the enzymes of the ascorbate-glutathione cycle, which are not only able to scavenge ROS but also to repair cell damage and possibly serve as redox sensors. The dithiol-disulfide exchanges form independent signaling nodes and act as antioxidant defense mechanisms as well as sensor proteins modulating redox signaling during development and stress adaptation. The presence of thioredoxin (Trx, peroxiredoxin (Prx and sulfiredoxin (Srx in the mitochondria has been recently reported. Cumulative results obtained from studies in salt stress models have demonstrated that these redox proteins play a significant role in the establishment of salt tolerance. The Trx/Prx/Srx system may be subjected to a fine regulated mechanism involving post-translational modifications, among which S-glutathionylation and S-nitrosylation seem to exhibit a critical role that is just beginning to be understood. This review summarizes our current knowledge in antioxidative systems in plant mitochondria, their interrelationships, mechanisms of compensation and some unresolved questions, with special focus on their response to abiotic stress.

  7. Dietary intervention rescues myopathy associated with neurofibromatosis type 1.

    Science.gov (United States)

    Summers, Matthew A; Rupasinghe, Thusitha; Vasiljevski, Emily R; Evesson, Frances J; Mikulec, Kathy; Peacock, Lauren; Quinlan, Kate GR; Cooper, Sandra T; Roessner, Ute; Stevenson, David A; Little, David G; Schindeler, Aaron

    2018-02-15

    Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder with complex symptomology. In addition to a predisposition to tumors, children with NF1 can present with reduced muscle mass, global muscle weakness, and impaired motor skills, which can have a significant impact on quality of life. Genetic mouse models have shown a lipid storage disease phenotype may underlie muscle weakness in NF1. Herein we confirm that biopsy specimens from six individuals with NF1 similarly manifest features of a lipid storage myopathy, with marked accumulation of intramyocellular lipid, fibrosis, and mononuclear cell infiltrates. Intramyocellular lipid was also correlated with reductions in neurofibromin protein expression by western analysis. An RNASeq profile of Nf1null muscle from a muscle-specific Nf1 knockout mouse (Nf1MyoD-/-) revealed alterations in genes associated with glucose regulation and cell signaling. Comparison by lipid mass spectrometry demonstrated that Nf1null muscle specimens were enriched for long chain fatty acid (LCFA) containing neutral lipids, such as cholesterol esters and triacylglycerides, suggesting fundamentally impaired LCFA metabolism. The subsequent generation of a limb-specific Nf1 knockout mouse (Nf1Prx1-/-) recapitulated all observed features of human NF1 myopathy, including lipid storage, fibrosis, and muscle weakness. Collectively, these insights led to the evaluation of a dietary intervention of reduced LCFAs, and enrichment of medium-chain fatty acids (MCFAs) with L-carnitine. Following 8-weeks of dietary treatment, Nf1Prx1-/- mice showed a 45% increase in maximal grip strength, and a 71% reduction in intramyocellular lipid staining compared with littermates fed standard chow. These data link NF1 deficiency to fundamental shifts in muscle metabolism, and provide strong proof of principal that a dietary intervention can ameliorate symptoms. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For

  8. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: involvement of reactive oxygen species.

    Science.gov (United States)

    Maciag, Anna E; Chakrapani, Harinath; Saavedra, Joseph E; Morris, Nicole L; Holland, Ryan J; Kosak, Ken M; Shami, Paul J; Anderson, Lucy M; Keefer, Larry K

    2011-02-01

    Non-small-cell lung cancer is among the most common and deadly forms of human malignancies. Early detection is unusual, and there are no curative therapies in most cases. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Here, we show that O(2)-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) is a potent cytotoxic agent against a subset of human non-small-cell lung cancer cell lines both in vitro and as xenografts in mice. JS-K treatment led to 75% reduction in the growth of H1703 lung adenocarcinoma cells in vivo. Differences in sensitivity to JS-K in different lung cancer cell lines seem to be related to their endogenous levels of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Other related factors, levels of peroxiredoxin 1 (PRX1) and 8-oxo-deoxyguanosine glycosylase (OGG1), also correlated with drug sensitivity. Treatment of the lung adenocarcinoma cells with JS-K resulted in oxidative/nitrosative stress in cells with high basal levels of ROS/RNS, which, combined with the arylating properties of the compound, was reflected in glutathione depletion and alteration in cellular redox potential, mitochondrial membrane permeabilization, and cytochrome c release. Inactivation of manganese superoxide dismutase by nitration was associated with increased superoxide and significant DNA damage. Apoptosis followed these events. Taken together, the data suggest that diazeniumdiolate-based NO-releasing prodrugs may have application as a personalized therapy for lung cancers characterized by high levels of ROS/RNS. PRX1 and OGG1 proteins, which can be easily measured, could function as biomarkers for identifying tumors sensitive to the therapy.

  9. The Nitric Oxide Prodrug JS-K Is Effective against Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo: Involvement of Reactive Oxygen SpeciesS⃞

    Science.gov (United States)

    Chakrapani, Harinath; Saavedra, Joseph E.; Morris, Nicole L.; Holland, Ryan J.; Kosak, Ken M.; Shami, Paul J.; Anderson, Lucy M.; Keefer, Larry K.

    2011-01-01

    Non–small-cell lung cancer is among the most common and deadly forms of human malignancies. Early detection is unusual, and there are no curative therapies in most cases. Diazeniumdiolate-based nitric oxide (NO)-releasing prodrugs are a growing class of promising NO-based therapeutics. Here, we show that O2-(2,4-dinitrophenyl)-1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) is a potent cytotoxic agent against a subset of human non–small-cell lung cancer cell lines both in vitro and as xenografts in mice. JS-K treatment led to 75% reduction in the growth of H1703 lung adenocarcinoma cells in vivo. Differences in sensitivity to JS-K in different lung cancer cell lines seem to be related to their endogenous levels of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Other related factors, levels of peroxiredoxin 1 (PRX1) and 8-oxo-deoxyguanosine glycosylase (OGG1), also correlated with drug sensitivity. Treatment of the lung adenocarcinoma cells with JS-K resulted in oxidative/nitrosative stress in cells with high basal levels of ROS/RNS, which, combined with the arylating properties of the compound, was reflected in glutathione depletion and alteration in cellular redox potential, mitochondrial membrane permeabilization, and cytochrome c release. Inactivation of manganese superoxide dismutase by nitration was associated with increased superoxide and significant DNA damage. Apoptosis followed these events. Taken together, the data suggest that diazeniumdiolate-based NO-releasing prodrugs may have application as a personalized therapy for lung cancers characterized by high levels of ROS/RNS. PRX1 and OGG1 proteins, which can be easily measured, could function as biomarkers for identifying tumors sensitive to the therapy. PMID:20962031

  10. Enhanced Host-Parasite Resistance Based on Down-Regulation of Phelipanche aegyptiaca Target Genes Is Likely by Mobile Small RNA

    Directory of Open Access Journals (Sweden)

    Neeraj K. Dubey

    2017-09-01

    Full Text Available RNA silencing refers to diverse mechanisms that control gene expression at transcriptional and post-transcriptional levels which can also be used in parasitic pathogens of plants that Broomrapes (Orobanche/Phelipanche spp. are holoparasitic plants that subsist on the roots of a variety of agricultural crops and cause severe negative effects on the yield and yield quality of those crops. Effective methods for controlling parasitic weeds are scarce, with only a few known cases of genetic resistance. In the current study, we suggest an improved strategy for the control of parasitic weeds based on trans-specific gene-silencing of three parasite genes at once. We used two strategies to express dsRNA containing selected sequences of three Phelipanche aegyptiaca genes PaACS, PaM6PR, and PaPrx1 (pma: transient expression using Tobacco rattle virus (TRV:pma as a virus-induced gene-silencing vector and stable expression in transgenic tomato Solanum lycopersicum (Mill. plants harboring a hairpin construct (pBINPLUS35:pma. siRNA-mediated transgene-silencing (20–24 nt was detected in the host plants. Our results demonstrate that the quantities of PaACS and PaM6PR transcripts from P. aegyptiaca tubercles grown on transgenic tomato or on TRV-infected Nicotiana benthamiana plants were significantly reduced. However, only partial reductions in the quantity of PaPrx1 transcripts were observed in the parasite tubercles grown on tomato and on N. benthamiana plants. Concomitant with the suppression of the target genes, there were significant decreases in the number and weight of the parasite tubercles that grew on the host plants, in both the transient and the stable experimental systems. The results of the work carried out using both strategies point to the movement of mobile exogenous siRNA from the host to the parasite, leading to the impaired expression of essential parasite target genes.

  11. Inhibition of the functional interplay between endoplasmic reticulum (ER) oxidoreduclin-1α (Ero1α) and protein-disulfide isomerase (PDI) by the endocrine disruptor bisphenol A.

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Hashimoto, Shoko; Yutani, Katsuhide; Kanemura, Shingo; Hikima, Takaaki; Hidaka, Yuji; Ito, Len; Shiba, Kohei; Masui, Shoji; Imai, Daiki; Imaoka, Susumu; Yamaguchi, Hiroshi; Inaba, Kenji

    2014-09-26

    Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b' domain, preventing PDI from binding to unfolded proteins. The b' domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b' domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Update on quality of care in Hispanics and other racial-ethnic groups in the United States discharged with the diagnosis of Acute Myocardial Infarction in 2013.

    Science.gov (United States)

    Romero, Tomás; Greenwood, Kristina L; Glaser, Dale

    2017-12-01

    Disparities in Acute Myocardial Infarction (AMI) care and outcomes have been frequently reported in racial-ethnic minorities in the U.S. Some studies have attributed disparities in Hispanics and other minorities to lower quality of services at hospitals where they seek care. Current information from hospitals with large Hispanic representations and updated quality resources is needed. Retrospective observational study of 839 AMI patients discharged in 2013 from three Southern California Hospitals (A, B, C) with tertiary cardiac care level. Non-Hispanic Whites (NHW) and Hispanics (H) were the larger racial-ethnic groups (68.3%), and the comparison of these two groups constitutes the focus of the study. Mortality, 30day readmissions, medication/performance measures (PRx); aspirin, statins/anti-lipids, beta-blockers, ACEI/ARB for LV systolic dysfunction, time, and revascularization procedures were compared between hospitals, NHW and H, using Chi-squared tests (χ 2 ), Odds Ratios (OR) with 95% confidence intervals (CI), and Z tests for proportions - independent groups. No significant differences in hospital, 30day mortality, PRx or procedures were observed between NHW, H and other racial-ethnic minority groups, or hospitals. Hospital C had 47.3% H and Hospitals A+B 14.6% (p<0.001, effect size=0.430). AMI performance measures exceeded 2013 national rates across all facilities. NHW had more private/commercial insurance (52.5% vs. 25.4%, OR 3.24, 95% CI 2.19-4.80, p<0.001) than H. Equitable access to quality hospital services in three Southern California hospitals offset previously reported disparities in AMI management in Hispanics. These results may not necessarily reflect the reality of AMI care for Hispanics in other U.S. regions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizumura, Ayano; Watanabe, Takayuki [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Kobayashi, Yayoi [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Hirano, Seishiro [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2010-01-15

    It is generally accepted that trivalent arsenicals are more toxic than the corresponding pentavalent arsenicals, since trivalent arsenicals bind the thiol groups of biomolecules, leading to a deterioration in cellular functions. In the present study, we prepared three different arsenic-bound sepharoses and investigated the binding of hepatic cytosolic proteins to pentavalent, trivalent, and glutathione-conjugated trivalent arsenicals. SDS-PAGE showed no proteins bound to pentavalent arsenic specifically. In contrast, we found a number of proteins that have specific and high affinity for trivalent arsenic. Two of those proteins were identified: protein disulfide isomerase-related protein 5 (PDSIRP5) and peroxiredoxin 1/enhancer protein (PRX1/EP). These proteins have vicinal cysteines, as previously reported. In contrast, one of the prominent proteins that did not bind to trivalent arsenic was identified as calreticulin precursor. Although there are 3 cysteines in calreticulin precursor, two of the cysteines are spaced more than 25 amino acids apart. Five synthetic peptides containing 2 vicinal cysteines were prepared to study whether they would inhibit the binding of PDSIRP5, PRX1/EP, and other arsenic-binding proteins to trivalent arsenicals. Only two of the five peptides effectively inhibited binding, suggesting that other amino acids besides the 2 vicinal cysteines may modulate the affinity of cysteine-rich proteins for trivalent arsenicals. We further investigated hepatic cytosolic proteins that bound specifically to glutathione-conjugated trivalent arsenic, which is the most abundant form of arsenical in bile fluid. Four proteins that bound specifically to glutathione-conjugated trivalent arsenic were identified; interestingly, these proteins were different from the trivalent arsenic-binding proteins. These results suggest that although glutathione-conjugation is an important process in the metabolism, excretion, and detoxification of arsenicals, glutathione

  14. Magnetic properties of polycrystalline PrxY1-xBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Stari, C.; Rivera, V.A.G.; Lanfredi, A.J.C.; Cardoso, C.A.; Leite, E.R.; Mombru, A.W.; Araujo-Moreira, F.M.

    2008-01-01

    In this work, we report a part of a systematic study of the influence of the synthesis routes on the properties of polycrystalline samples of Pr x Y 1-x Ba 2 Cu 3 O 7-δ . We have prepared high-quality samples of this material by following a sol-gel method, associated with heat treatment in both an inert argon and an oxygen atmospheres in order to compare their influence on the formation of the superconducting phase. Magnetic measurement (AC susceptibility) show that the superconducting transition temperature (T C ) increases in samples prepared in argon when compared to those prepared in oxygen, for the same composition and Pr fraction less than 0.5. In addition to this, preliminary results of AC and DC magnetic susceptibility show superconductivity for samples with Pr fraction higher than 0.5 (and up to 0.9) prepared under argon flux, which may indicate the existence of stable superconductivity for all compositions, including pure Pr-123

  15. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

    Directory of Open Access Journals (Sweden)

    Hatahet Feras

    2010-09-01

    Full Text Available Abstract Background The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3 pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Conclusions Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.

  16. Isozyme characterization of Capsicum accessions from the Amazonian Colombian collection

    Directory of Open Access Journals (Sweden)

    Lorena Quintero Barrera

    2005-01-01

    Full Text Available Two hundred and sixty-one accessions of the genus Capsicum were obtained from the Colombian Amazonian germplasm bank at Amazonian Institute of Scientific Research (Sinchi and were evaluated with five polymorphic enzymatic systems, including esterase (EST, peroxidase (PRX, 6-phosphogluconate dehydrogenase (6-PGDH, aspartate amino transferase (GOT, and malic enzyme (ME. Using a cluster analysis (UPGMA the genetic variability of these accessions were characterized. Grouping of the species C. baccatum and C. pubescens were observed, while the species C. annuum, C. chinense and C. frutescens did not group independently, a result that has been previously reported in isoenzyme analyses of this genus. Several accessions were deemed of particular interest for future ecological and evolutive studies. Key words: Colombia, Capsicum, germplasm bank, isoenzymes, peppers.

  17. Polimorfismo isoenzimático en cuatro razas y un híbrido de Bactris gasipaes (Palmae

    Directory of Open Access Journals (Sweden)

    Sonia Rojas-Vargas

    1999-12-01

    Full Text Available Se estandarizó un sistema de electroforesis de isoenzimas con tejido de hojas que permitió la identificación del polimorfismo fenético entre cuatro razas y un híbrido de pejibaye Bactris gasipaes provenientes de Brasil, Perú, Bolivia, Panamá y Costa Rica. Las isoenzimas ensayadas fueron: PRX, EST, ACP, ME, DIA, MDH, G6PDH, PGI, SOD, PGM, ADH, GOT, de estas solamente las dos œltimas no mostraron actividad. El resto de isoenzimas mostraron polimorfismo fenético en diferentes grados, por esto se consideran marcadores polimórficos potenciales para estudios de variabilidad genética en pejibaye. Se encontró un locus único en el zimograma de la enzima PRX en las muestras de Utilis-Guápiles (CR, el cual podría usarse como un marcador discriminatorio para esta raza. Se establecieron relaciones de similitud isoenzimática entre las razas Utilis-Guápiles (CR y Tuira-Darién (Pa; Tembé-Chapare (Bo y Pará-Belem (Bra respectivamente, mientras que el híbrido Yurimaguas (Pe se ubicó aparte y ligeramente más cercano a Utilis y Tuira, por esto se considera que posiblemente desciende de padres aún no identificados.The study of genetic diversity in peach palm (Bactris gasipaes K. is important for the breeding work on this palm and to corroborate the hypotheses on its origins. For that purpose it is necessary to use alternative techniques to complement the morphological studies traditionally made. One of the techniques that responds to that need is isozyme electrophoresis. The isozymes are biochemical markers of importance in the study of genetic variability in plants of economic importance, because they are the primary products of genetic expression. This work is an electrophoretic analysis on gels of polyacrilamide to study phenetic relations using twelve isozymes on four races and an spontaneous hybrid of peach palm. The biological material used came from the germplasm bank from Los Diamantes Experimental Station, Guápiles-Costa Rica. Four

  18. (La, Pr)0.8Sr0.2FeO3-δ-Sm 0.2Ce0.8O2-δ composite cathode for proton-conducting solid oxide fuel cells

    KAUST Repository

    Chen, Yonghong

    2014-08-01

    Mixed rare-earth (La, Pr)0.8Sr0.2FeO 3-δ-Sm0.2Ce0.8O2-δ (LPSF-SDC) composite cathode was investigated for proton-conducting solid oxide fuel cells based on protonic BaZr0.1Ce0.7Y 0.2O3-δ (BZCY) electrolyte. The powders of La 0.8-xPrxSr0.2FeO3-δ (x = 0, 0.2, 0.4, 0.6), Sm0.2Ce0.8O2-δ (SDC) and BaZr0.1Ce0.7Y0.2O3-δ (BZCY) were synthesized by a citric acid-nitrates self-propagating combustion method. The XRD results indicate that La0.8-xPrxSr 0.2FeO3-δ samples calcined at 950 °C exhibit perovskite structure and there are no interactions between LPSF0.2 and SDC at 1100 °C. The average thermal expansion coefficient (TEC) of LPSF0.2-SDC, BZCY and NiO-BZCY is 12.50 × 10-6 K-1, 13.51 × 10-6 K-1 and 13.47 × 10-6 K -1, respectively, which can provide good thermal compatibility between electrodes and electrolyte. An anode-supported single cell of NiO-BZCY|BZCY|LPSF0.2-SDC was successfully fabricated and operated from 700 °C to 550 °C with humidified hydrogen (∼3% H2O) as fuel and the static air as oxidant. A high maximum power density of 488 mW cm -2, an open-circuit potential of 0.95 V, and a low electrode polarization resistance of 0.071 Ω cm2 were achieved at 700 °C. Preliminary results demonstrate that LPSF0.2-SDC composite is a promising cathode material for proton-conducting solid oxide fuel cells. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  19. COMe: the ontology of bioinorganic proteins

    Directory of Open Access Journals (Sweden)

    Contrino Sergio

    2004-02-01

    Full Text Available Abstract Background Many characterised proteins contain metal ions, small organic molecules or modified residues. In contrast, the huge amount of data generated by genome projects consists exclusively of sequences with almost no annotation. One of the goals of the structural genomics initiative is to provide representative three-dimensional (3-D structures for as many protein/domain folds as possible to allow successful homology modelling. However, important functional features such as metal co-ordination or a type of prosthetic group are not always conserved in homologous proteins. So far, the problem of correct annotation of bioinorganic proteins has been largely ignored by the bioinformatics community and information on bioinorganic centres obtained by methods other than crystallography or NMR is only available in literature databases. Results COMe (Co-Ordination of Metals represents the ontology for bioinorganic and other small molecule centres in complex proteins. COMe consists of three types of entities: 'bioinorganic motif' (BIM, 'molecule' (MOL, and 'complex proteins' (PRX, with each entity being assigned a unique identifier. A BIM consists of at least one centre (metal atom, inorganic cluster, organic molecule and two or more endogenous and/or exogenous ligands. BIMs are represented as one-dimensional (1-D strings and 2-D diagrams. A MOL entity represents a 'small molecule' which, when in complex with one or more polypeptides, forms a functional protein. The PRX entities refer to the functional proteins as well as to separate protein domains and subunits. The complex proteins in COMe are subdivided into three categories: (i metalloproteins, (ii organic prosthetic group proteins and (iii modified amino acid proteins. The data are currently stored in both XML format and a relational database and are available at http://www.ebi.ac.uk/come/. Conclusion COMe provides the classification of proteins according to their 'bioinorganic' features

  20. The Role of Polyphenoloxidase, Peroxidase, and β-Glucosidase in Phenolics Accumulation in Olea europaea L. Fruits under Different Water Regimes

    Directory of Open Access Journals (Sweden)

    Marco Cirilli

    2017-05-01

    Full Text Available Olive fruits and oils contain an array of compounds that contribute to their sensory and nutritional properties. Phenolic compounds in virgin oil and olive-derived products have been proven to be highly beneficial for human health, eliciting increasing attention from the food industry and consumers. Although phenolic compounds in olive fruit and oil have been extensively investigated, allowing the identification of the main classes of metabolites and their accumulation patterns, knowledge of the molecular and biochemical mechanisms regulating phenolic metabolism remains scarce. We focused on the role of polyphenoloxidase (PPO, peroxidase (PRX and β-glucosidase (β-GLU gene families and their enzyme activities in the accumulation of phenolic compounds during olive fruit development (35–146 days after full bloom, under either full irrigation (FI or rain-fed (RF conditions. The irrigation regime affected yield, maturation index, mesocarp oil content, fruit size, and pulp-to-pit ratio. Accumulation of fruit phenolics was higher in RF drupes than in FI ones. Members of each gene family were developmentally regulated, affected by water regime, and their transcript levels were correlated with the respective enzyme activities. During the early phase of drupe growth (35–43 days after full bloom, phenolic composition appeared to be linked to β-GLU and PRX activities, probably through their effects on oleuropein catabolism. Interestingly, a higher β-GLU activity was measured in immature RF drupes, as well as a higher content of the oleuropein derivate 3,4-DHPEA-EDA and verbascoside. Activity of PPO enzymes was slightly affected by the water status of trees during ripening (from 120 days after full bloom, but was not correlated with phenolics content. Overall, the main changes in phenolics content appeared soon after the supply of irrigation water and remained thereafter almost unchanged until maturity, despite fruit growth and the progressive

  1. Lysosomal pH-inducible supramolecular dissociation of polyrotaxanes possessing acid-labile N-triphenylmethyl end groups and their therapeutic potential for Niemann-Pick type C disease

    Science.gov (United States)

    Tamura, Atsushi; Nishida, Kei; Yui, Nobuhiko

    2016-01-01

    Niemann-Pick type C (NPC) disease is characterized by the accumulation of cholesterol in lysosomes. We have previously reported that biocleavable polyrotaxanes (PRXs) composed of β-cyclodextrins (β-CDs) threaded onto a linear polymer capped with bulky stopper molecules via intracellularly cleavable linkers show remarkable cholesterol reducing effects in NPC disease patient-derived fibroblasts owing to the stimuli-responsive intracellular dissociation of PRXs and subsequent β-CD release from the PRXs. Herein, we describe a series of novel acid-labile 2-(2-hydroxyethoxy)ethyl group-modified PRXs (HEE-PRXs) bearing terminal N-triphenylmethyl (N-Trt) groups as a cleavable component for the treatment of NPC disease. The N-Trt end groups of the HEE-PRXs underwent acidic pH-induced cleavage and led to the dissociation of their supramolecular structure. A kinetic study revealed that the number of HEE groups on the PRX did not affect the cleavage kinetics of the N-Trt end groups of the HEE-PRXs. The effect of the number of HEE groups of the HEE-PRXs, which was modified to impart water solubility to the PRXs, on cellular internalization efficiency, lysosomal localization efficiency, and cholesterol reduction ability in NPC disease-derived fibroblasts (NPC1 fibroblasts) was also investigated. The cellular uptake and lysosomal localization efficiency were almost equivalent for HEE-PRXs with different numbers of HEE groups. However, the cholesterol reducing ability of the HEE-PRXs in NPC1 fibroblasts was affected by the number of HEE groups, and HEE-PRXs with a high number of HEE groups were unable to reduce lysosomal cholesterol accumulation. This deficiency is most likely due to the cholesterol-solubilizing ability of HEE-modified β-CDs released from the HEE-PRXs. We conclude that the N-Trt group acts as a cleavable component to induce the lysosomal dissociation of HEE-PRXs, and acid-labile HEE-PRXs with an optimal number of HEE groups (4.1 to 5.4 HEE groups per single

  2. Apoplastic peroxidases are required for salicylic acid-mediated defense against Pseudomonas syringae.

    Science.gov (United States)

    Mammarella, Nicole D; Cheng, Zhenyu; Fu, Zheng Qing; Daudi, Arsalan; Bolwell, G Paul; Dong, Xinnian; Ausubel, Frederick M

    2015-04-01

    Reactive oxygen species (ROS) generated by NADPH oxidases or apoplastic peroxidases play an important role in the plant defense response. Diminished expression of at least two Arabidopsis thaliana peroxidase encoding genes, PRX33 (At3g49110) and PRX34 (At3g49120), as a consequence of anti-sense expression of a heterologous French bean peroxidase gene (asFBP1.1), were previously shown to result in reduced levels of ROS following pathogen attack, enhanced susceptibility to a variety of bacterial and fungal pathogens, and reduced levels of callose production and defense-related gene expression in response to the microbe associated molecular pattern (MAMP) molecules flg22 and elf26. These data demonstrated that the peroxidase-dependent oxidative burst plays an important role in the elicitation of pattern-triggered immunity (PTI). Further work reported in this paper, however, shows that asFBP1.1 antisense plants are not impaired in all PTI-associated responses. For example, some but not all flg22-elicited genes are induced to lower levels by flg22 in asFPB1.1, and callose deposition in asFPB1.1 is similar to wild-type following infiltration with a Pseudomonas syringae hrcC mutant or with non-host P. syringae pathovars. Moreover, asFPB1.1 plants did not exhibit any apparent defect in their ability to mount a hypersensitive response (HR). On the other hand, salicylic acid (SA)-mediated activation of PR1 was dramatically impaired in asFPB1.1 plants. In addition, P. syringae-elicited expression of many genes known to be SA-dependent was significantly reduced in asFBP1.1 plants. Consistent with this latter result, in asFBP1.1 plants the key regulator of SA-mediated responses, NPR1, showed both dramatically decreased total protein abundance and a failure to monomerize, which is required for its translocation into the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Caracterização isoenzimática e morfológica de clones e introduções de alho Morphological and electrophoretic characterization of garlic clones

    Directory of Open Access Journals (Sweden)

    Walter José Siqueira

    1985-01-01

    Full Text Available Em virtude do grande número de denominações locais para clones de alho, nem sempre correspondentes a materiais distintos, conduziu-se o presente estudo objetivando a caracterização e classificação de 72 clones e introduções de alho (Allium sativum L., e um clone de alho-rei (A. ampeloprasum L.. Isso foi feito analisando as isoenzimas alcooldesidrogenase (ADH, esterase (EST, peroxidase (PRX e fosfoglucoisomerase (PGI através da técnica de eletroforese horizontal em gel de amido hidrolisado de batata. Verificou-se que os clones nacionais e introduzidos se enquadram nos grupos aqui denominados DIKA ou CJLB, respectivamente para os padrões de ADH, EST, PRX e PGI. Entretanto, os padrões CILB, CJKB e CIKB foram observados em alguns clones estrangeiros, sugerindo sua maior variabilidade em relação aos nacionais. O alho-rei apresentou padrões diferentes dos encontrados na espécie A. sativum L. A associação dos resultados da técnica de eletroforese de isoenzinas com a caracterização morfológica da parte aérea, bulbos, bulbilhos, coloração externa dos bulbos e bulbilhos e ciclo cultural, permitiu a classificação dos clones nacionais de alho em 19 grupos distintos.Since there exist different local names for the same garlic (Allium sativum L. clones, it was made an attempt to distinguish them by the morphology, cycle and isozyme electrophoresis. The isozyme analysis of alcoholdehydrogenase, esterase, peroxydase and phosphoglucoisomerase separated the Brazilian clones in two groups. The foreign clones had different band patterns adding other three more groups. Morphology of bulbs and clones allowed the separation of clones into eight groups; top morphology into ten and cycle length into three. Morphology, cycle and electrophoresis together characterized the seventy two analysed clones into nineteen distinct groups.

  4. Evidence for a vortex-glass transition in superconducting Ba(Fe0.9Co0.1)2As2.

    Science.gov (United States)

    Prando, G; Giraud, R; Aswartham, S; Vakaliuk, O; Abdel-Hafiez, M; Hess, C; Wurmehl, S; Wolter, A U B; Büchner, B

    2013-12-18

    Measurements of magneto-resistivity and magnetic susceptibility were performed on single crystals of superconducting Ba(Fe0.9Co0.1)2As2 close to the conditions of optimal doping. The high quality of the investigated samples allows us to reveal dynamic scaling behaviour associated with a vortex-glass phase transition in the limit of a weak degree of quenched disorder. Accordingly, the dissipative component of the ac susceptibility is reproduced well within the framework of Havriliak-Negami relaxation, assuming a critical power-law divergence for the characteristic correlation time τ of the vortex dynamics. Remarkably, the random disorder introduced by the Fe1-xCox chemical substitution is found to act on the vortices as a much weaker quenched disorder than previously reported for cuprate superconductors such as Y1-xPrxBa2Cu3O7-δ.

  5. Determination of the Resistance of Cone-Shaped Solid Electrodes

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Hendriksen, Peter Vang; Koch, Søren

    2017-01-01

    during processing can be avoided. Newman's formula for current constriction in the electrolyte is then used to deduce the active contact area based on the ohmic resistance of the cell, and from this the surface specific electro-catalytic activity. However, for electrode materials with low electrical......A cone-shaped electrode pressed into an electrolyte can with advantage be utilized to characterize the electro-catalytic properties of the electrode, because it is less dependent on the electrode microstructure than e.g. thin porous composite electrodes, and reactions with the electrolyte occurring...... conductivity (like Ce1-xPrxO2-δ), the resistance of the cell is significantly influenced by the ohmic resistance of the cone electrode, wherefore it must be included. In this work the ohmic resistance of a cone is modelled analytically based on simplified geometries. The two analytical models only differ...

  6. Defect Chemistry and Thermomechanical Properties of Ce0.8PrxTb0.2-xO2-delta

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hendriksen, Peter Vang; Hagen, Anke

    2010-01-01

    of the partial molar enthalpy of reduction in the dopants, could successfully reproduce the experimentally determined oxygen nonstoichiometry. X-ray absorption near-edge spectroscopy measurements were performed at the Ce/Pr/Tb L3 and L2 edges. The valence state of each dopant was affected by the presence...... of the co-dopant. The redox properties strongly depended on the lattice strain energy and the mean metal-oxygen bond strength. The thermal and chemical expansion coefficients were determined by dilatometry. The strongly nonlinear behavior of the thermal expansion coefficient originated from the chemical...

  7. Differential expression of genes encoding anti-oxidant enzymes in Sydney rock oysters, Saccostrea glomerata (Gould) selected for disease resistance.

    Science.gov (United States)

    Green, Timothy J; Dixon, Tom J; Devic, Emilie; Adlard, Robert D; Barnes, Andrew C

    2009-05-01

    Sydney rock oysters (Saccostrea glomerata) selectively bred for disease resistance (R) and wild-caught control oysters (W) were exposed to a field infection of disseminating neoplasia. Cumulative mortality of W oysters (31.7%) was significantly greater than R oysters (0.0%) over the 118 days of the experiment. In an attempt to understand the biochemical and molecular pathways involved in disease resistance, differentially expressed sequence tags (ESTs) between R and W S. glomerata hemocytes were identified using the PCR technique, suppression subtractive hybridisation (SSH). Sequencing of 300 clones from two SSH libraries revealed 183 distinct sequences of which 113 shared high similarity to sequences in the public databases. Putative function could be assigned to 64 of the sequences. Expression of nine ESTs homologous to genes previously shown to be involved in bivalve immunity was further studied using quantitative reverse-transcriptase PCR (qRT-PCR). The base-line expression of an extracellular superoxide dismutase (ecSOD) and a small heat shock protein (sHsP) were significantly increased, whilst peroxiredoxin 6 (Prx6) and interferon inhibiting cytokine factor (IK) were significantly decreased in R oysters. From these results it was hypothesised that R oysters would be able to generate the anti-parasitic compound, hydrogen peroxide (H(2)O(2)) faster and to higher concentrations during respiratory burst due to the differential expression of genes for the two anti-oxidant enzymes of ecSOD and Prx6. To investigate this hypothesis, protein extracts from hemolymph were analysed for oxidative burst enzyme activity. Analysis of the cell free hemolymph proteins separated by native-polyacrylamide gel electrophoresis (PAGE) failed to detect true superoxide dismutase (SOD) activity by assaying dismutation of superoxide anion in zymograms. However, the ecSOD enzyme appears to generate hydrogen peroxide, presumably via another process, which is yet to be elucidated. This

  8. Upper limit for the effect of elastic bending stress on the saturation magnetization of La0.8Sr0.2MnO3

    KAUST Repository

    Wang, Q.

    2018-01-31

    Using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La0.8Sr0.2MnO3 (LSMO) epitaxial film grown on a SrTiO3 substrate. The elastic bending strain of +/- 0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La1-xPrx)(1-y),Ca-y,MnO3 (LPCMO) films for which strain of +/- 0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none) and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.

  9. La0.8Sr0.2MnO3

    KAUST Repository

    Wang, Q.; Chen, A. P.; Guo, E. J.; Roldan, M. A.; Jia, Q. X.; Fitzsimmons, M. R.

    2018-01-01

    Using polarized neutron reflectometry, we measured the influence of elastic bending stress on the magnetization depth profile of a La0.8Sr0.2MnO3 (LSMO) epitaxial film grown on a SrTiO3 substrate. The elastic bending strain of +/- 0.03% has no obvious effect on the magnetization depth profile at saturation. This result is in stark contrast to that of (La1-xPrx)(1-y),Ca-y,MnO3 (LPCMO) films for which strain of +/- 0.01% produced dramatic changes in the magnetization profile and Curie temperature. We attribute the difference between the influence of strain on the saturation magnetization in LSMO (weak or none) and LPCMO (strong) to a difference in the ability of LSMO (weak or none) and LPCMO (strong) to phase separate. Our observation provides an upper limit of tuning LSMO saturation magnetization via elastic strain effect.

  10. X-ray Topographic Investigations of Domain Structure in Czochralski Grown PrxLa1-xAlO3 Crystals

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Malinowska, A.; Turczynski, S.; Pawlak, D.A.; Lukasiewicz, T.; Lefeld-Sosnowska, M.; Graeff, W.

    2010-01-01

    In the present paper X-ray diffraction topographic techniques were applied to a number of samples cut from Czochralski grown Pr x La 1-x AlO 3 crystals with different ratio of praseodymium and lanthanum. Conventional and synchrotron X-ray topographic investigations revealed differently developed domain structures dependent on the composition of mixed praseodymium lanthanum aluminium perovskites. Some large mosaic blocks were observed together with the domains. In the best crystals, X-ray topographs revealed striation fringes and individual dislocations inside large domains. Synchrotron topographs allowed us to indicate that the domains correspond to three different crystallographic planes, and to evaluate the lattice misorientation between domains in the range of 20-50 arc min (authors)

  11. A regulating element essential for PDGFRA transcription is recognized by neural tube defect-associated PRX homeobox transcription factors

    NARCIS (Netherlands)

    Joosten, Paul H. L. J.; Toepoel, Mascha; van Oosterhout, Dirk; Afink, Gijs B.; van Zoelen, Everardus J. J.

    2002-01-01

    We have previously shown that deregulated expression of the platelet-derived growth factor alpha-receptor (PDGFRA) can be associated with neural tube defects (NTDs) in both men and mice. In the present study, we have investigated the transcription factors that control the up-regulation of PDGFRA

  12. Magnetic properties of La2NiO4.16 and La2-xPrxNiO4+δ

    International Nuclear Information System (INIS)

    Poirot, N.J.; Allancon, Ch.; Odier, P.; Simon, P.; Bassat, J.M.; Loup, J.P.

    1998-01-01

    Magnetic properties of La 2 NiO 4.16 and La 2-x Pr x NiO 4+δ are studied by dc susceptibility in a wide temperature range, i.e., 4--1,200 K. The principal aim is to investigate the modifications of magnetic interactions in the NiO 2 plane by inserting a magnetic ion in the LaO layer. Magnetic properties are considerably different with and without praseodymium. When 0 0.5, a single Pr 3+ effect might dominate

  13. Physical Review: a family of journals

    Science.gov (United States)

    Sprouse, Gene

    2013-03-01

    The expansion of research in physics in the last 100 years has been reflected in the expansion of the Physical Review(PR). Reviews of Modern Physics was the first ``new'' journal, starting in 1929. Physical Review Letters commenced in 1958, and was the first ``letters'' type of journal for important new results in all fields. By 1970 the Physical Review itself had grown so large that it was necessary to separate it by field into manageable volumes: PRA, PRB, PRC and PRD, and subsequently PRE, which was split off from PRA. More recently, two Special Topics journals for accelerator physics and physics education were pioneers of the open access business model, and the newest member of the family, Physical Review X, continues this trend. PRX is broad scope and very selective, setting it well above many of the new open access journals with a review standard of ``not incorrect.'' Some possible future directions for the Physical Review journals will be discussed.

  14. Improved ferroelectric and photoluminescence properties in Pr3+ substituted Na0.5Bi0.5TiO3 synthesized using hydrothermal route

    Science.gov (United States)

    Goutham, Cilaveni; Kandula, Kumara Raja; Raavi, Sai Santhosh Kumar; Asthana, Saket

    2018-04-01

    Nanocrystalline Pr3+ substituted NBT was synthesized using hydrothermal technique. Pr3+ modifies the ferroelectric NBT optically active and enhances the electrical properties with small structural changes. Aiming to the development of the bottom up optoelectronic devices this optimized nanoscale Na0.5Bi0.5-xPrxTiO3(x = 0.005) compound is synthesized hydrothermally. X-ray diffraction pattern shows that the system is stabilized in the Rhombohedral (space groupR3c) phase indicating the local strain inhomogeneity. PE loop shows that there is a decrement in the Ec value compared with compounds synthesized using conventional methods. The strong red emission assigned to prominent transition of the Pr3+ ions at 610nm was observed along with weak blue-green emission, indicating the potential use of the system. Energy transfer from host system to Pr3+ ions is responsible for red emission while blue green emission is due to quenching of 3P0 induced by intervalence charge transfer state.

  15. A Sinusoidal Applied Electric Potential can Induce a Long-Range, Steady Electrophoretic Force

    Science.gov (United States)

    Amrei, Seyyed Hashemi; Ristenpart, William D.; Miller, Greg R.

    2017-11-01

    We use the standard electrokinetic model to numerically investigate the electric field in aqueous solutions between parallel electrodes under AC polarization. In contrast to prior work, we invoke no simplifying assumptions regarding the applied voltage, frequency, or mismatch in ionic mobilities. We find that the nonlinear electromigration terms significantly contribute to the overall shape of the electric potential vs. time, which at sufficiently high applied potentials develops multi-modal peaks. More surprisingly, we find that electrolytes with non-equal mobilities yield an electric field with non-zero time average at large distances from the electrodes. Our calculations indicate this long-range electric field suffices to levitate colloidal particles many microns away from the electrode against the gravitational field, in accord with experimental observations of such behavior (Woehl et al., PRX, 2015). Moreover, the results indicate that particles will aggregate laterally near electrodes in some electrolytes but separate in others, helping explain a longstanding but not well understood phenomenon.

  16. Incorporation of Pr into LuAG ceramics

    Science.gov (United States)

    Marchewka, M. R.; Chapman, M. G.; Qian, H.; Jacobsohn, L. G.

    2017-06-01

    An investigation of the effects of Pr in (Lu1-xPrx)3Al5O12 (LuAG:Pr) ceramics was carried out by means of x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDX), and attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) measurements coupled with luminescence measurements. It was found that the Pr concentration that maximizes luminescence emission depends on the thermal processing conditions. While the calcined LuAG:Pr powder showed maximum luminescence emission for Pr concentrations between 0.18 and 0.33 at.%, maximum emission of ceramic bodies sintered at 1500 °C for 20 h was obtained with Pr concentrations between 0.018 and 0.18 at.%. Further, for short sintering times up to about 3 h, luminescence emission intensity is maximum for Pr concentrations around 0.33 at.%. Longer sintering times lead to the formation of PrAlO3 as a secondary phase, concomitant with a reduction of the intensity of luminescence emission.

  17. The Juberg-Marsidi syndrome maps to the proximal long arm of the X chromosome (Xq12-q21)

    Energy Technology Data Exchange (ETDEWEB)

    Saugier-Veber, P.; Abadie, V.; Turleau, C.; Munnich, A.; Lyonnet, S. (Hopital des Enfants Malades, Paris (France)); Moncla, A. (Centre de Genetique Medicale, Marseille (France)); Mathieu, M.; Piussan, C.; Mattei, J.F. (Centre Hospitalier et Universitaire, Amiens (France))

    1993-06-01

    Juberg-Marsidi syndrome (McKusick 309590) is a rare X-linked recessive condition characterized by severe mental retardation, growth failure, sensorineural deafness, and microgenitalism. Here the authors report on the genetic mapping of the Juberg-Marsidi gene to the proximal long arm of the X chromosome (Xq12-q21) by linkage to probe pRX214H1 at the DXS441 locus (Z = 3.24 at [theta] = .00). Multipoint linkage analysis placed the Juberg-Marsidi gene within the interval defined by the DXS159 and the DXYS1X loci in the Xq12-q21 region. These data provide evidence for the genetic distinction between Juberg-Marsidi syndrome and several other X-linked mental retardation syndromes that have hypogonadism and hypogenitalism and that have been localized previously. Finally, the mapping of the Juberg-Marsidi gene is of potential interest for reliable genetic counseling of at-risk women. 25 refs., 2 figs., 3 tabs.

  18. Effects of various feeding patterns of Bacillus coagulans on growth performance, antioxidant response and Nrf2-Keap1 signaling pathway in juvenile gibel carp (Carassius auratus gibelio).

    Science.gov (United States)

    Yu, Yebing; Wang, Changhai; Wang, Aimin; Yang, Wenping; Lv, Fu; Liu, Fei; Liu, Bo; Sun, Cunxin

    2018-02-01

    The present study was conducted to evaluate the effects of various Bacillus coagulans feeding patterns on growth, antioxidant parameter and Nrf2 pathway in juvenile gibel carp. The similar size of gibel carp (initial weight: 14.33 ± 0.15 g) were subjected to three levels of B. coagulans supplementation (0, 500, and 1000 mg/kg) and two feeding modes (supplementing B. coagulans continuously or for two days of B. coagulans after 5 days of a basal diet) according to a 3 × 2 factorial design. The fish that were continuously fed 500 mg/kg B. coagulans (P2) and those fed the first basal diet for 5 days followed by 500 mg/kg or 1000 mg/kg B.coagulans for 2 days (P4 or P5) showed higher weight gain rate and specific growth rate than the other groups. Blood respiratory burst (RB), myeloperoxidase (MPO), and anti-superoxide anion free radical (AFASER) activities in the P4 group were higher than those of the control. White blood cell count (WBC), RB activity, MPO activity, and glutathione (GSH) content in the P5 group were also higher than those of the control. A similar higher trend was observed in the gene expressions of NADPH oxidase 2 (NOX2), NFE2-related factor (Nrf2), Kelch-like-ECH-associated protein(Keap1) in the P4 and NOX2, NRF2, CNC homolog 1 (Bach1), peroxiredoxin 2 (Prx2) in the P5 group compared with the control. Additionally, we observed a significantly lower level of plasma aspartate aminotransferase (AST), lower activity of alanine aminotransferase (ALT), a higher level of MPO, higher GPX activity, and increased NRF2 and Prx2 expression were all observed in the P2 treatment group compared with the control. Furthermore, the malondialdehyde (MDA) content in the P2, P3, and P4 groups was lower than that of the control. These results indicate that a diet supplemented with appropriate levels of B.coagulans could improve the growth, immune response, and antioxidant capability of gibel carp. We concluded that the pattern of two days of 500 or 1000 mg/kg B

  19. Ruthenocuprats: Playground for superconductivity and magnetism

    Directory of Open Access Journals (Sweden)

    A. Khajehnezhad

    2008-03-01

    Full Text Available  We have compared the structural, electrical, and magnetic properties of Ru(Gd1.5-xPrxCe0.5Sr2Cu2O10-δ (Pr/Gd samples with x = 0.0, 0.01, 0.03, 0.033, 0.035, 0.04, 0.05, 0.06, 0.1 and RuGd1.5(Ce0.5-xPrxSr2Cu2O10-δ (Pr/Ce samples with x = 0.0, 0.01, 0.03, 0.05, 0.08, 0.1, 0.15, 0.2 prepared by the standard solid-state reaction technique with RuGd1.5(GdxCe0.5-x Sr2Cu2O10-δ (Gd/Ce samples with x= 0.0, 0.1, 0.2, 0.3. We obtained the XRD patterns for different samples with various x. The lattice parameters versus x for different substitutions have been obtained from the Rietveld analysis. To determine how the magnetic and superconducting properties of these layered cuprate systems can be affected by Pr substitution, the resistivity and magnetoresistivity, with Hext varying from 0.0 to 15 kOe, have been measured at various temperatures. Superconducting transition temperature Tc and magnetic transition Tirr have been obtained through resistivity and ac susceptibility measurements. The Tc suppression due to Gd/Ce, Pr/Gd and Pr/Ce substitutions show competition between pair breaking by magnetic impurity, hole doping due to different ionic valences, difference in ionic radii, and oxygen stoichiometry. Pr/Gd substitution suppresses superconductivity more rapidly than for Pr/Ce or Gd/Ce, showing that the effect of hole doping and pair breaking by magnetic impurity is stronger than the difference in ionic radii. In Pr/Gd substitution, the small difference between the ionic radii of Pr and Gd, and absorption of more oxygen due to higher valence of Pr with respect to Gd, decrease the mean Ru-Ru distance, and as a result, the magnetic exchange interaction becomes stronger with the increase of x. But, Pr/Ce and Gd/Ce substitutions have a reverse effect. The magnetic properties such as Hc, obtained through magnetization measurements versus applied magnetic field isoterm at 77K and room temperatures, become stronger with x in Pr/Gd and weaker with x in Pr

  20. Functional and morphological changes in endocrine pancreas following cola drink consumption in rats.

    Directory of Open Access Journals (Sweden)

    Matilde Otero-Losada

    Full Text Available We report the effects of long-term cola beverage drinking on glucose homeostasis, endocrine pancreas function and morphology in rats.Wistar rats drank: water (group W, regular cola beverage (group C, sucrose sweetened or "light" cola beverage (group L, artificially sweetened. After 6 months, 50% of the animals in each group were euthanized and the remaining animals consumed water for the next 6 months when euthanasia was performed. Biochemical assays, insulinemia determination, estimation of insulin resistance (HOMA-IR, morphometry and immunohistochemistry evaluations were performed in pancreas.Hyperglycemia (16%, p<0.05, CoQ10 (coenzyme-Q10 decrease (-52%,p<0.01, strong hypertriglyceridemia (2.8-fold, p<0.01, hyperinsulinemia (2.4 fold, p<0.005 and HOMA-IR increase (2.7 fold, p<0.01 were observed in C. Group C showed a decrease in number of α cells (-42%, p<0.01 and β cells (-58%, p<0.001 and a moderate increase in α cells' size after wash-out (+14%, p<0.001. Group L showed reduction in β cells' size (-9%, p<0.001 and only after wash-out (L12 a 19% increase in size (p<0.0001 with 35% decrease in number of α cells (p<0.01. Groups C and L showed increase in α/β-cell ratio which was irreversible only in C (α/β = +38% in C6,+30% in C12, p<0.001vs.W6. Regular cola induced a striking increase in the cytoplasmic expression of Trx1 (Thioredoxin-1 (2.25-fold in C6 vs. W6; 2.7-fold in C12 vs. W12, p<0.0001 and Prx2 (Peroxiredoxin-2 (3-fold in C6 vs. W6; 2-fold in C12 vs. W12, p<0.0001. Light cola induced increase in Trx1 (3-fold and Prx2 (2-fold after wash-out (p<0.0001, L12 vs. W12.Glucotoxicity may contribute to the loss of β cell function with depletion of insulin content. Oxidative stress, suggested by increased expression of thioredoxins and low circulating levels of CoQ10, may follow sustained hyperglycemia. A likely similar panorama may result from the effects of artificially sweetened cola though via other downstream routes.

  1. Atomic Resolution Imaging of Nanoscale Chemical Expansion in PrxCe1-xO2-δ during In Situ Heating.

    Science.gov (United States)

    Swallow, Jessica G; Lee, Ja Kyung; Defferriere, Thomas; Hughes, Gareth M; Raja, Shilpa N; Tuller, Harry L; Warner, Jamie H; Van Vliet, Krystyn J

    2018-02-27

    Thin film nonstoichiometric oxides enable many high-temperature applications including solid oxide fuel cells, actuators, and catalysis. Large concentrations of point defects (particularly, oxygen vacancies) enable fast ionic conductivity or gas exchange kinetics in these materials but also manifest as coupling between lattice volume and chemical composition. This chemical expansion may be either detrimental or useful, especially in thin film devices that may exhibit enhanced performance through strain engineering or decreased operating temperatures. However, thin film nonstoichiometric oxides can differ from bulk counterparts in terms of operando defect concentrations, transport properties, and mechanical properties. Here, we present an in situ investigation of atomic-scale chemical expansion in Pr x Ce 1-x O 2-δ (PCO), a mixed ionic-electronic conducting oxide relevant to electrochemical energy conversion and high-temperature actuation. Through a combination of electron energy loss spectroscopy and transmission electron microscopy with in situ heating, we characterized chemical strains and changes in oxidation state in cross sections of PCO films grown on yttria-stabilized zirconia (YSZ) at temperatures reaching 650 °C. We quantified, both statically and dynamically, the nanoscale chemical expansion induced by changes in PCO redox state as a function of position and direction relative to the film-substrate interface. Additionally, we observed dislocations at the film-substrate interface, as well as reduced cation localization to threading defects within PCO films. These results illustrate several key aspects of atomic-scale structure and mechanical deformation in nonstoichiometric oxide films that clarify distinctions between films and bulk counterparts and that hold several implications for operando chemical expansion or "breathing" of such oxide films.

  2. Optical investigation of the valency of Pr in Y1-xPrxBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Kircher, J.; Cardona, M.; Gopalan, S.; Habermeier, H.; Fuchs, D.

    1991-01-01

    We have investigated the dependence of the visible-ultraviolet dielectric function of Y 1-x Pr x Ba 2 Cu 3 O 7 on the Pr content x using rotating analyzer ellipsometry. Based on recently published band-structure calculations, we believe that the valency of Pr can be deduced from the optical properties in this spectral region. Interband transitions should shift to higher energies for Pr 4+ and to lower energies for Pr 3+ when compared to the optical spectra of YBa 2 Cu 3 O 7 . In the case of tetravalent Pr ions, transitions into unoccupied Pr 5d levels should be observable. Since the experimental energies for interband transitions shift down with increasing x and no additional structure can be seen, we conclude that Pr is trivalent in Y 1-x Pr x Ba 2 Cu 3 O 7

  3. Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs

    Directory of Open Access Journals (Sweden)

    Juan Carlos Begara-Morales

    2016-02-01

    Full Text Available Nitric oxide (NO is a biological messenger that orchestrates a plethora of plant functions, mainly through post-translational modifications (PTMs such as S-nitrosylation or tyrosine nitration. In plants, hundreds of proteins have been identified as potential targets of these NO-PTMs under physiological and stress conditions indicating the relevance of NO in plant-signaling mechanisms. Among these NO protein targets, there are different antioxidant enzymes involved in the control of reactive oxygen species (ROS, such as H2O2, which is also a signal molecule. This highlights the close relationship between ROS/NO signaling pathways. The major plant antioxidant enzymes, including catalase, superoxide dismutases (SODs peroxiredoxins (Prx and all the enzymatic components of the ascorbate-glutathione (Asa-GSH cycle, have been shown to be modulated to different degrees by NO-PTMs. This mini-review will update the recent knowledge concerning the interaction of NO with these antioxidant enzymes, with a special focus on the components of the Asa-GSH cycle and their physiological relevance.

  4. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins

    International Nuclear Information System (INIS)

    Nakaso, Kazuhiro; Nakamura, Chiharu; Sato, Hiromi; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2006-01-01

    Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson's disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, γGCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K-Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K-Nrf2 system may be a useful therapeutic strategy for PD

  5. Kaempferol protects against gamma radiation-induced mortality and damage via inhibiting oxidative stress and modulating apoptotic molecules in vivo and vitro.

    Science.gov (United States)

    Wang, Jing; Li, Tiejun; Feng, Jingjing; Li, Li; Wang, Rong; Cheng, Hao; Yuan, Yongfang

    2018-04-20

    To investigate the potential protective effect of kaempferol, a representative flavonoid, against radiation induced mortality and injury in vivo and vitro.C57BL/6 male mice and human umbilical venous endothelial cells (HUVECs) were pretreated with kaempferol before radiation. We found that kaempferol can effectively increase 30-day survival rate after 8.5 Gy lethal total body irradiation (TBI). Mice were sacrificed at 7th day after 7 Gy TBI, we found kaempferol against radiation-induced tissues damage, by inhibiting the oxidative stress, and attenuating morphological changes and cell apoptosis. In vitro, kaempferol increased HUVECs cell viability and decrease apoptosis. It also mitigated oxidative stress and restored the abnormal expression of prx-5, Cyt-c, Caspase9 and Caspase3 in mRNA and protein level in HUVECs after radiation. Taken together, it suggests kaempferol can protect against gamma-radiation induced tissue damage and mortality. The present study is the first report of the radioprotective role of kaempferol in vivo and vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    Science.gov (United States)

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  7. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  8. Structural instability of Y1-xPrxBa2Cu3O7-δ superconductors studied by positron annihilation lifetime

    International Nuclear Information System (INIS)

    Gou Zhenhui; Chen Feng; Zheng Shengnan; Zhao Zhongxian; Zhu Shengyun

    1995-01-01

    The temperature dependence of the positron annihilation lifetime in high-quality, single-phase Y 1-x Pr x Ba 2 Cu 3 O 7-δ has been measured from 78 to 300K for a better understanding of the origin of the normal state anomaly observed in high T c superconductivity studies. The normal state anomaly has been detected around 30 to 40K above T c for the samples with x=0.0 and 0.1, but, it was not found for the sample with x=0.2 where T c is lower than 80K. The experimental results show that the phase transition-like behavior caused by the structural instability results in the normal state anomaly which acts as a the precursor of high T c superconductivity. (orig.)

  9. Copper NMR and hole depletion in the normal state of Y1-xPrxBa2Cu3O7

    International Nuclear Information System (INIS)

    MacLaughlin, D.E.; Reyes, A.P.; Takigawa, M.; Hammel, P.C.; Heffner, R.H.; Thompson, J.D.; Crow, J.E.

    1990-01-01

    Normal-state copper NMR spectra and spin-lattice relaxation rates 1/T 1 have been measured in the planar cuprate system YBa 2 Cu 3 O 7 . With Pr doping the Knight shift K decreases and develops a temperature dependence at both plane and chain sites. Analysis of the bulk susceptibility and NMR data indicate that pair breaking and hole depletion both take part in the suppression of the superconducting transition temperature T c . The Knight shift behavior resembles that in oxygen-deficient YBa 2 Cu 3 O 7-y , as does the temperature dependence of 1/T 1 for plane Cu sites and magnetic field perpendicular to the c axis. This agreement leads to a consistent picture of the role of antiferromagnetic fluctuations in these materials. An analysis of the data in the framework of the phenomenological theory of Millis, Monien, and Pines is given. In the end compound PrBa 2 Cu 3 O 7 the NMR signal from plane Cu sites indicates antiferromagnetic (AF) ordering at a Neel temperature ∼280 K, and in the AF state yields an internal field similar to those found in AF YBa 2 Cu 3 O 6 and La 2 CuO 4 . 32 refs., 7 figs

  10. Transport properties of PrxOs4Sb12 single crystals with high Pr-site filling fraction grown under high pressure

    International Nuclear Information System (INIS)

    Tanaka, Kenya; Namiki, Takahiro; Saito, Takashi; Tatsuoka, Sho; Imamura, Atsushi; Kuwahara, Keitaro; Aoki, Yuji; Sato, Hideyuki

    2009-01-01

    We have succeeded in growing Pr x Os 4 Sb 12 single crystals under ∼4GPa with high Pr-site filling fraction x. The electrical resistance measurements clearly show that the superconducting (SC) transition is sharper and the onset temperatures is lower in the single crystal samples grown under high pressure compared to that of the sample grown under ambient pressure. These results suggest that the double SC transition ascribed to sample inhomogeneity is suppressed in the sample grown under high pressure. The change of 4f-electron crystalline electric field energy splitting between the Γ 1 ground state and the Γ 4 (2) first excited state in the sample made under high pressure is proposed as one of the possible origins of the suppression of the double SC transition.

  11. In silico molecular modeling and docking studies on the leishmanial tryparedoxin peroxidase

    Directory of Open Access Journals (Sweden)

    Ozal Mutlu

    2014-04-01

    Full Text Available Leishmaniasis is one of the most common form of neglected parasitic disease that affects about 350 million people worldwide. Leishmanias have a trypanothione mediated hydroperoxide metabolism to eliminate endogenous or exogenous oxidative agents. Both of 2-Cys peroxiredoxin (Prx and glutathione peroxidase type tryparedoxin peroxidase (Px are the terminal enzymes in the trypanothione dependent detoxification system. Therefore absence of trypanothione redox system in mammals and the sensitivity of trypanosomatids against oxidative stress, enzymes of this pathway are drug targets candidates. In this study, 3D structure of tryparedoxin peroxidase (2-Cys peroxiredoxin type from Leishmania donovani (LdTXNPx was described by homology modeling method based on the template of tryparedoxin peroxidase from Crithidia fasciculata and selected compounds were docked to the active site pocket. The quality of the 3D structure of the model was confirmed by various web based validation programs. When compared secondary and tertiary structure of the model, it showed a typical thioredoxin fold containing a central beta-sheet and three alpha-helices. Docking study showed that the selected compound 2 (CID 16073813 interacted with the active site amino acids and binding energy was -118.675 kcal/mol.

  12. Time-Gated Raman Spectroscopy for Quantitative Determination of Solid-State Forms of Fluorescent Pharmaceuticals.

    Science.gov (United States)

    Lipiäinen, Tiina; Pessi, Jenni; Movahedi, Parisa; Koivistoinen, Juha; Kurki, Lauri; Tenhunen, Mari; Yliruusi, Jouko; Juppo, Anne M; Heikkonen, Jukka; Pahikkala, Tapio; Strachan, Clare J

    2018-04-03

    Raman spectroscopy is widely used for quantitative pharmaceutical analysis, but a common obstacle to its use is sample fluorescence masking the Raman signal. Time-gating provides an instrument-based method for rejecting fluorescence through temporal resolution of the spectral signal and allows Raman spectra of fluorescent materials to be obtained. An additional practical advantage is that analysis is possible in ambient lighting. This study assesses the efficacy of time-gated Raman spectroscopy for the quantitative measurement of fluorescent pharmaceuticals. Time-gated Raman spectroscopy with a 128 × (2) × 4 CMOS SPAD detector was applied for quantitative analysis of ternary mixtures of solid-state forms of the model drug, piroxicam (PRX). Partial least-squares (PLS) regression allowed quantification, with Raman-active time domain selection (based on visual inspection) improving performance. Model performance was further improved by using kernel-based regularized least-squares (RLS) regression with greedy feature selection in which the data use in both the Raman shift and time dimensions was statistically optimized. Overall, time-gated Raman spectroscopy, especially with optimized data analysis in both the spectral and time dimensions, shows potential for sensitive and relatively routine quantitative analysis of photoluminescent pharmaceuticals during drug development and manufacturing.

  13. AMRI-59 has a role of radiosensitizer via enhancement of γ-ionizing radiation-induced apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Wan Gi; Cho, Jeong Hyun; Kim, Ju Yeon; Hwang, Sang Gu; Um, Hong Duck; Park, Jong Kuk [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Recent in vitro studies have suggested that may increase the invasiveness of some cancer cells (e.g., glioma, hepatocellular carcinoma, and pancreatic cancer cells) by stimulating several intracellular signaling pathways and in vivo studies have found that radiotherapy of primary tumor sites may promote metastasis. Thus, in addition to having therapeutic effects, IR might promote the malignant traits of surviving cancer cells. The existing efforts to develop radiosensitizing agents have focused on overcoming radioresistance and reducing damage to normal tissues. Recently, concepts of personalized- or precision medicine are developed due to advancement of mega data technique, which provide new targets to develop new anti-cancer drugs. In this study, we sought to identify the radiosensitizer effect of AMRI-59 in vitro and in vivo., which is recently developed specific inhibitor of peroxiredoxin (Prx) I. AMRI-59 enhanced radiation-induced cell death and its mean calculated dose enhancement ratio was 1.26. We also found combination of AMRI-59 and IR In a xenograft assay, the combined PHCM and radiation group showed 14.3 days of growth delay versus the control in terms of tumor growth. The enhancement factor of this combined treatment was determined to be 2.03.

  14. Isozyme and RAPD studies in Prosopis glandulosa and P. Velutina (Leguminosae, Mimosoideae

    Directory of Open Access Journals (Sweden)

    Bessega Cecilia

    2000-01-01

    Full Text Available Allozyme and random amplified polymorphic DNA (RAPD techniques have been compared for their usefulness for genetic and taxonomic studies in Prosopis glandulosa and P. velutina populations. Isozymes and RAPDs yielded similarly high estimates of genetic variability. Genetic structure and differentiation were analyzed through non-hierarchical Wright's F DT. For all populations considered, both markers produced low gene flow (Nm 1, in agreement with that expected for conspecific populations. However, in RAPD data the expected reduction in F DT and the increase in Nm were not observed. Correlation between F DT and geographical distance matrices (Mantel test for all populations was significant (P = 0.02 when based on isozymes, but not so (P = 0.33 when based on RAPDs. No significant associations among genetic and geographical or climatic variables were observed. Two isoenzyme systems (GOT and PRX enabled us to distinguish between P. glandulosa and P. velutina, but no diagnostic band for recognition of populations or species studied here were detected by RAPD. However, RAPD markers showed higher values for genetic differentiation among conspecific populations of P. glandulosa and a lower coefficient of variation than those obtained from isozymes.

  15. Distinct Responses of Mycobacterium smegmatis to Exposure to Low and High Levels of Hydrogen Peroxide.

    Directory of Open Access Journals (Sweden)

    Xiaojing Li

    Full Text Available Hydrogen peroxide (H2O2 is a natural oxidant produced by aerobic organisms and gives rise to oxidative damage, including DNA mutations, protein inactivation and lipid damage. The genus Mycobacterium utilizes redox sensors and H2O2 scavenging enzymes for the detoxification of H2O2. To date, the precise response to oxidative stress has not been fully elucidated. Here, we compared the effects of different levels of H2O2 on transcription in M. smegmatis using RNA-sequencing. A 0.2 mM H2O2 treatment had little effect on the growth and viability of M. smegmatis whereas 7 mM H2O2 was lethal. Analysis of global transcription showed that 0.2 mM H2O2 induced relatively few changes in gene expression, whereas a large proportion of the mycobacterial genome was found to be differentially expressed after treatment with 7 mM H2O2. Genes differentially expressed following treatment with 0.2 mM H2O2 included those coding for proteins involved in glycolysis-gluconeogenesis and fatty acid metabolism pathways, and expression of most genes encoding ribosomal proteins was lower following treatment with 7 mM H2O2. Our analysis shows that M. smegmatis utilizes the sigma factor MSMEG_5214 in response to 0.2 mM H2O2, and the RpoE1 sigma factors MSMEG_0573 and MSMEG_0574 in response to 7 mM H2O2. In addition, different transcriptional regulators responded to different levels of H2O2: MSMEG_1919 was induced by 0.2 mM H2O2, while high-level induction of DevR occurred in response to 7 mM H2O2. We detected the induction of different detoxifying enzymes, including genes encoding KatG, AhpD, TrxB and Trx, at different levels of H2O2 and the detoxifying enzymes were expressed at different levels of H2O2. In conclusion, our study reveals the changes in transcription that are induced in response to different levels of H2O2 in M. smegmatis.

  16. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.

    Science.gov (United States)

    Liu, Zi-Yong; Yao, Xiu-Qing; Zhang, Quan; Liu, Zhen; Wang, Ze-Jie; Zhang, Yong-Yu; Li, Fu-Li

    2017-04-01

    Producing biobutanol from lignocellulosic biomass has shown promise to ultimately reduce greenhouse gases and alleviate the global energy crisis. However, because of the recalcitrance of a lignocellulosic biomass, a pretreatment of the substrate is needed which in many cases releases soluble lignin compounds (SLCs), which inhibit growth of butanol-producing clostridia. In this study, we found that SLCs changed the acetone/butanol ratio (A/B ratio) during butanol fermentation. The typical A/B molar ratio during Clostridium beijerinckii NCIMB 8052 batch fermentation with glucose as the carbon source is about 0.5. In the present study, the A/B molar ratio during batch fermentation with a lignocellulosic hydrolysate as the carbon source was 0.95 at the end of fermentation. Structural and redox potential changes of the SLCs were characterized before and after fermentation by using gas chromatography/mass spectrometry and electrochemical analyses, which indicated that some exogenous SLCs were involved in distributing electron flow to C. beijerinckii , leading to modulation of the redox balance. This was further demonstrated by the NADH/NAD + ratio and trxB gene expression profile assays at the onset of solventogenic growth. As a result, the A/B ratio of end products changed significantly during C. beijerinckii fermentation using corn stover-derived hydrolysate as the carbon source compared to glucose as the carbon source. These results revealed that SLCs not only inhibited cell growth but also modulated the A/B ratio during C. beijerinckii butanol fermentation. IMPORTANCE Bioconversion of lignocellulosic feedstocks to butanol involves pretreatment, during which hundreds of soluble lignin compounds (SLCs) form. Most of these SLCs inhibit growth of solvent-producing clostridia. However, the mechanism by which these compounds modulate electron flow in clostridia remains elusive. In this study, the results revealed that SLCs changed redox balance by producing oxidative

  17. Microstructural and electrical properties of (La0.5-xPrxBa0.5)(Mn0.5Ti0.5)O3 perovskite

    International Nuclear Information System (INIS)

    Nor Hayati Alias; Abdul Halim Shaari; Wan Mohd Daud Wan Yusoff; Che Seman Mahmood

    2009-01-01

    Full text: A single phase new perovskite based titanio-manganite (La 0.5-x Pr x Ba 0.5 )(Mn 0.5 Ti 0.5 )O 3 has been successfully prepared by ceramic C. The concentration of solid-state technique at sintering temperature of 1300 Pr (Praseodymium), x, in molar proportion in A site has been varied as x = 0.0, 0.2 and 0.02. Analysis has been carried out to determine the electrical properties of the synthesized material at frequency of 1 MHz and at temperature range between 25 to 200 degree Celsius. It is found that Pr addition promoted liquid sintering diffusion, porosity and agglomeration formation at 1300 degree Celsius. Dual relaxation is observed in unsubstituted Pr sample x = 0 and high Pr substituted sample x=0.2. This phenomenon was a combinational contribution from a quasi dc (QDC) low frequency dispersion and two cole-cole relaxational response. While low concentrated Pr substituted sampled x=0.02 shows a combinational contribution from a quasi dc (QDC) low frequency dispersion and single cole-cole relaxational response at room temperature. Pr substitution at x=0 and x=0.2 showed high dielectric values compared to low substituted sample x = 0.02. Variation of dielectric loss tangent (tan ) are observed for all samples at temperature ranged studied. (author)

  18. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-15

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H{sub 2}O{sub 2} removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities.

  19. BIM Guidelines Inform Facilities Management Databases: A Case Study over Time

    Directory of Open Access Journals (Sweden)

    Karen Kensek

    2015-08-01

    Full Text Available A building information model (BIM contains data that can be accessed and exported for other uses during the lifetime of the building especially for facilities management (FM and operations. Working under the guidance of well-designed BIM guidelines to insure completeness and compatibility with FM software, architects and contractors can deliver an information rich data model that is valuable to the client. Large owners such as universities often provide these detailed guidelines and deliverable requirements to their building teams. Investigation of the University of Southern California (USC Facilities Management Service’s (FMS website showed a detailed plan including standards, file names, parameter lists, and other requirements of BIM data, which were specifically designated for facilities management use, as deliverables on new construction projects. Three critical details were also unearthed in the reading of these documents: Revit was the default BIM software; COBie was adapted to help meet facilities management goals; and EcoDomus provided a display of the collected data viewed through Navisworks. Published accounts about the Cinema Arts Complex developed with and under these guidelines reported positive results. Further examination with new projects underway reveal the rapidly changing relational database landscape evident in the new USC “Project Record Revit Requirement Execution Plan (PRxP”.

  20. Crystallization and preliminary X-ray analysis of a truncated mutant of yeast nuclear thiol peroxidase, a novel atypical 2-Cys peroxiredoxin

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkeun; Choi, Soonwoong [Department of Chemistry, Seoul National University, Seoul 151-742 (Korea, Republic of); Choi, Jungwon [Department of Chemistry, The University of Suwon, Suwon 445-743 (Korea, Republic of); Cha, Mee-Kyung; Kim, Il-Han [Department of Biochemistry, Paichai University, Taejon 302-735 (Korea, Republic of); Shin, Whanchul, E-mail: nswcshin@plaza.snu.ac.kr [Department of Chemistry, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2005-07-01

    A double mutant of yeast nuclear thiol peroxidase has been crystallized in a truncated form. The crystal belongs to space group P3{sub 2}, with unit-cell parameters a = b = 37.54, c = 83.26 Å. A diffraction data set has been collected to 1.8 Å resolution. Saccharomyces cerevisiae nTPx is a thioredoxin-dependent thiol peroxidase that is localized in the nucleus. nTPx belongs to the C-type atypical 2-Cys peroxiredoxin family members, which are frequently called BCPs or PrxQs. A double mutant (C107S/C112S) of nTPx overexpressed in Escherichia coli was spontaneously degraded upon freezing and thawing and its truncated form (residues 57–215; MW = 17837 Da) was crystallized with PEG 3350 and mercury(II) acetate as precipitants using the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.8 Å resolution using X-ray synchrotron radiation. The crystals belong to the trigonal space group P3{sub 2}, with unit-cell parameters a = b = 37.54, c = 83.26 Å. The asymmetric unit contains one molecule of truncated mutant nTPx, with a corresponding V{sub M} of 1.91 Å{sup 3} Da{sup −1} and a solvent content of 35.5%.

  1. Crystallization and preliminary X-ray analysis of a truncated mutant of yeast nuclear thiol peroxidase, a novel atypical 2-Cys peroxiredoxin

    International Nuclear Information System (INIS)

    Choi, Jongkeun; Choi, Soonwoong; Choi, Jungwon; Cha, Mee-Kyung; Kim, Il-Han; Shin, Whanchul

    2005-01-01

    A double mutant of yeast nuclear thiol peroxidase has been crystallized in a truncated form. The crystal belongs to space group P3 2 , with unit-cell parameters a = b = 37.54, c = 83.26 Å. A diffraction data set has been collected to 1.8 Å resolution. Saccharomyces cerevisiae nTPx is a thioredoxin-dependent thiol peroxidase that is localized in the nucleus. nTPx belongs to the C-type atypical 2-Cys peroxiredoxin family members, which are frequently called BCPs or PrxQs. A double mutant (C107S/C112S) of nTPx overexpressed in Escherichia coli was spontaneously degraded upon freezing and thawing and its truncated form (residues 57–215; MW = 17837 Da) was crystallized with PEG 3350 and mercury(II) acetate as precipitants using the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.8 Å resolution using X-ray synchrotron radiation. The crystals belong to the trigonal space group P3 2 , with unit-cell parameters a = b = 37.54, c = 83.26 Å. The asymmetric unit contains one molecule of truncated mutant nTPx, with a corresponding V M of 1.91 Å 3 Da −1 and a solvent content of 35.5%

  2. Mechanical and Thermal Properties of Praseodymium Monopnictides: AN Ultrasonic Study

    Science.gov (United States)

    Bhalla, Vyoma; Kumar, Raj; Tripathy, Chinmayee; Singh, Devraj

    2013-09-01

    We have computed ultrasonic attenuation, acoustic coupling constants and ultrasonic velocities of praseodymium monopnictides PrX(X: N, P, As, Sb and Bi) along the , , in the temperature range 100-500 K using higher order elastic constants. The higher order elastic constants are evaluated using Coulomb and Born-Mayer potential with two basic parameters viz. nearest-neighbor distance and hardness parameter in the temperature range of 0-500 K. Several other mechanical and thermal parameters like bulk modulus, shear modulus, Young's modulus, Poisson ratio, anisotropic ratio, tetragonal moduli, Breazeale's nonlinearity parameter and Debye temperature are also calculated. In the present study, the fracture/toughness (B/G) ratio is less than 1.75 which implies that PrX compounds are brittle in nature at room temperature. The chosen material fulfilled Born criterion of mechanical stability. We also found the deviation of Cauchy's relation at higher temperatures. PrN is most stable material as it has highest valued higher order elastic constants as well as the ultrasonic velocity. Further, the lattice thermal conductivity using modified approach of Slack and Berman is determined at room temperature. The ultrasonic attenuation due to phonon-phonon interaction and thermoelastic relaxation mechanisms have been computed using modified Mason's approach. The results with other well-known physical properties are useful for industrial applications.

  3. Inhalation exposure to chloramine T induces DNA damage and inflammation in lung of Sprague-Dawley rats.

    Science.gov (United States)

    Shim, Ilseob; Seo, Gyun-Baek; Oh, Eunha; Lee, Mimi; Kwon, Jung-Taek; Sul, Donggeun; Lee, Byung-Woo; Yoon, Byung-Il; Kim, Pilje; Choi, Kyunghee; Kim, Hyun-Mi

    2013-01-01

    Chloramine T has been widely used as a disinfectant in many areas such as kitchens, laboratories and hospitals. It has been also used as a biocide in air fresheners and deodorants which are consumer products; however, little is known about its toxic effects by inhalation route. This study was performed to identify the subacute inhalation toxicity of chloramine T under whole-body inhalation exposure conditions. Male and female groups of rats were exposed to chloramine T at concentrations of 0.2, 0.9 and 4.0 mg/m³ for 6 hr/day, 5 days/week during 4 weeks. After 28-day repeated inhalation of chloramine T, there were dose-dependently significant DNA damage in the rat tissues evaluated and inflammation was histopathologically noted around the terminal airways of the lung in both genders. As a result of the expression of three types of antioxidant enzymes (SOD-2, GPx-1, PRX-1) in rat's lung after exposure, there was no significant change of all antioxidant enzymes in the male and female rats. The results showed that no observed adverse effect level (NOAEL) was 0.2 mg/m³ in male rats and 0.9 mg/m³ in female rats under the present experimental condition.

  4. [How can we determine the best cerebral perfusion pressure in pediatric traumatic brain injury?].

    Science.gov (United States)

    Vuillaume, C; Mrozek, S; Fourcade, O; Geeraerts, T

    2013-12-01

    The management of cerebral perfusion pressure (CPP) is the one of the main preoccupation for the care of paediatric traumatic brain injury (TBI). The physiology of cerebral autoregulation, CO2 vasoreactivity, cerebral metabolism changes with age as well as the brain compliance. Low CPP leads to high morbidity and mortality in pediatric TBI. The recent guidelines for the management of CPP for the paediatric TBI indicate a CPP threshold 40-50 mmHg (infants for the lower and adolescent for the upper). But we must consider the importance of age-related differences in the arterial pressure and CPP. The best CPP is the one that allows to avoid cerebral ischaemia and oedema. In this way, the adaptation of optimal CPP must be individual. To assess this objective, interesting tools are available. Transcranial Doppler can be used to determine the best level of CPP. Other indicators can predict the impairment of autoregulation like pressure reactivity index (PRx) taking into consideration the respective changes in ICP and CPP. Measurement of brain tissue oxygen partial pressure is an other tool that can be used to determine the optimal CPP. Copyright © 2013 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  5. Studi Perancangan Jaringan Worldwide Interoperability For Microwave Access (Wimax Di Area Banyumas

    Directory of Open Access Journals (Sweden)

    Alfin Hikmaturokhman

    2012-05-01

    Full Text Available At present the need for higher internet connection along with the age which is growing so fast. Then there is the latest breakthrough in telecomunications that is WiMAX technology is a wireless broadband technology reffered the IEEE 802.16 standard. WiMAX technology comes with a network of excellence in aspects of data access speed, wide area coverage and the presence of QoS is can allocate frequencies in accordance with user needs using OFDM technology. WiMAX technology can reach area far as 50 kilometers, also allows user equipment (customer premise equipment or CPE to get a broadband connection without having a direct path (non line of sight, NLOS to the base station (BS and provides a total data rate of up to 75 Mbps. Results of this Final project assumed that the area where will be design is Banyumas district. Then final project results of the PRX -100.31 dB; the Total Margin of 23.56 dB; Path los of 134.5 dB; gamma (? of 4.375; Frequency correction factor (?PLf of 0,36; antenna correction factor (?PLh is -3,25; Radius Cells (d is approximately 1995 meters; area of cell is at 10,34010495 km2 and the number of cells 133

  6. CARACTERIZAÇÃO DA VARIABILIDADE GENÉTICA EM COUVE-MANTEIGA UTILIZANDO ISOENZIMAS E RAPD

    Directory of Open Access Journals (Sweden)

    SAWAZAKI HAIKO ENOK

    1997-01-01

    Full Text Available Estudou-se a variabilidade genética em couve (Brassica oleracea L. var. acephala D.C. tipo manteiga por intermédio do polimorfismo enzimático em gel de poliacrilamida e do polimorfismo de DNA, denominado RAPD (Random Amplified Polymorphic DNA, com base na amplificação de segmentos de DNA ao acaso. Avaliaram-se quinze clones de couve-manteiga do Banco Ativo de Germoplasma do Instituto Agronômico (IAC, utilizando-se extratos de folhas para análise de isoenzimas e marcador RAPD com os "primers" dos kits A e B da Operon Technologies. Entre as isoenzimas estudadas, as mais polimórficas foram as fosfoglucomutase (PGM, peroxidase (PRX e esterase (EST, tendo o sistema PGM realizado a melhor caracterização. Verificou-se a ocorrência de variabilidade genética por meio de isoenzimas e RAPD, porém não foi observada a similaridade entre os dendrogramas obtidos por ambos os tipos de marcadores, sugerindo que as isoenzimas forneceram menos informação sobre o genoma. A maior eficácia do RAPD foi devida à possibilidade de processar maior número de análises, evidenciando mais detalhes sobre o genoma.

  7. Arabidopsis peroxidase-catalyzed copolymerization of coniferyl and sinapyl alcohols: kinetics of an endwise process.

    Science.gov (United States)

    Demont-Caulet, Nathalie; Lapierre, Catherine; Jouanin, Lise; Baumberger, Stéphanie; Méchin, Valérie

    2010-10-01

    In order to determine the mechanism of the earlier copolymerization steps of two main lignin precursors, sinapyl (S) alcohol and coniferyl (G) alcohol, microscale in vitro oxidations were carried out with a PRX34 Arabidopsis thaliana peroxidase in the presence of H(2)O(2). This plant peroxidase was found to have an in vitro polymerization activity similar to the commonly used horseradish peroxidase. The selected polymerization conditions lead to a bulk polymerization mechanism when G alcohol was the only phenolic substrate available. In the same conditions, the presence of S alcohol at a 50/50 S/G molar ratio turned this bulk mechanism into an endwise one. A kinetics monitoring (size-exclusion chromatography and liquid chromatography-mass spectrometry) of the different species formed during the first 24h oxidation of the S/G mixture allowed sequencing the bondings responsible for oligomerization. Whereas G homodimers and GS heterodimers exhibit low reactivity, the SS pinoresinol structure act as a nucleating site of the polymerization through an endwise process. This study is particularly relevant to understand the impact of S units on lignin structure in plants and to identify the key step at which this structure is programmed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Study on production of useful metabolites by development of advanced cell culture techniques using radiation

    International Nuclear Information System (INIS)

    Chung, Byung Yeoup; Kim, Jinhong; Lee, Seung Sik; Bai, Hyounwoo; An, Byung Chull; Lee, Eun Mi; Lee, Jae Taek; Kim, Mi Ja

    2010-12-01

    The purpose of this project is improvement of investigation, materialization and evaluation techniques on effectiveness for functional natural compounds throughout development of tissue/cell culture techniques for mass production of useful metabolites using radiation. Research scope includes Development of a technique for radiation tissue and cell culture, Database construction for radiation response in plants and radiation effects, Construction of general-purpose national based techniques of cell culture technique using radiation. Main results are as follow: Isolation and identification of radiation induced basI gene; Determination of stresses sensitivities by transformating basI gene into arabidopsis; Isolation and identification of radiation induced chaperon proteins (PaAhpC and yPrxII) from Pseudomonas and yeast, and structural and functional analysis of the proteins; Determination of oxidative and heat resistance by transformating PaAhpC; Isolation and identification of maysin and its derivatives from centipedgrass; Investigation of enhancement technique for improving maysin and its derivatives production using radiation; Investigation of removing undesirable color in maysin and its derivatives using radiation; Determination of the effect of radiation on physiological functions of centipedgrass extracts; Identification of H 2 O 2 removing enzyme in radiation irradiated plant (Spinach); Determination of the effects of centipedgrass extracts on anti-obesity and anti-cancer activities

  9. Manifestation of vortex depinning transition in nonlinear current-voltage characteristics of polycrystalline superconductor Y1-xPrxBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Rivera, V.A.G.; Stari, C.; Sergeenkov, S.; Marega, E.; Araujo-Moreira, F.M.

    2008-01-01

    We present our recent results on the temperature dependence of current-voltage characteristics for polycrystalline Y 1-x Pr x Ba 2 Cu 3 O 7-δ superconductors with x=0.0, 0.1 and 0.3. The experimental results are found to be reasonably well fitted for all samples by a power like law of the form V=R(I-I c ) a(T) . Here, we assume that a(T)=1+Φ 0 I C (T)/2πk B T and I C (T)=I C (0)(1-T/T C ) 3/2 for the temperature dependences of the power exponent and critical current, respectively. According to the theoretical interpretation of the obtained results, nonlinear deviation of our current-voltage characteristics curves from Ohmic behavior (with a(T C )=1) below T C is attributed to the manifestation of dissipation processes. They have a characteristic temperature T p defined via the power exponent as a(T p )=2 and are related to the current induced depinning of Abrikosov vortices. Both T C (x) and T p (x) are found to decrease with an increase of Pr concentration x reflecting deterioration of the superconducting properties of the doped samples

  10. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process.

    Science.gov (United States)

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-08-07

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  11. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    Directory of Open Access Journals (Sweden)

    Yuying Jia

    2015-08-01

    Full Text Available The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman, which showed a relatively weak susceptibility. Gibberellin (GA levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA. Higher zeatin riboside (ZR content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA content, polyphenol oxidase (PPO and peroxidase (POD activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  12. Rac1 Dosage Is Crucial for Normal Endochondral Bone Growth.

    Science.gov (United States)

    Suzuki, Dai; Bush, Jason R; Bryce, Dawn-Marie; Kamijo, Ryutaro; Beier, Frank

    2017-10-01

    Rac1, a member of the small Rho GTPase family, plays multiple cellular roles. Studies of mice conditionally lacking Rac1 have revealed essential roles for Rac1 in various tissues, including cartilage and limb mesenchyme, where Rac1 loss produces dwarfism and long bone shortening. To gain further insight into the role of Rac1 in skeletal development, we have used transgenic mouse lines to express a constitutively active (ca) Rac1 mutant protein in a Cre recombinase-dependent manner. Overexpression of caRac1 in limb bud mesenchyme or chondrocytes leads to reduced body weight and shorter bones compared with control mice. Histological analysis of growth plates showed that caRac1;Col2-Cre mice displayed ectopic hypertrophic chondrocytes in the proliferative zone and enlarged hypertrophic zones. These mice also displayed a reduced proportion of proliferating cell nuclear antigen-positive cells in the proliferative zone and nuclear β-catenin localization in the ectopic hypertrophic chondrocytes. Importantly, overexpression of caRac1 partially rescued the phenotypes of Rac1fl/fl;Col2-Cre and Rac1fl/fl;Prx1-Cre conditional knockout mice, including body weight, bone length, and growth plate disorganization. These results suggest that tight regulation of Rac1 activity is necessary for normal cartilage development. Copyright © 2017 Endocrine Society.

  13. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay.

    Science.gov (United States)

    Patankar, Himanshu V; Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W

    2018-06-01

    Although date palm is a relatively salt-tolerant plant, the molecular basis of this tolerance is complex and poorly understood. Therefore, this study aimed to identify the genes involved in salinity tolerance using a basic yeast functional bioassay. To achieve this, a date palm cDNA library was overexpressed in Saccharomyces cerevisiae cells. The expression levels of selected genes that make yeast cells tolerant to salt were subsequently validated in the leaf and root tissues of date palm seedlings using a quantitative PCR method. About 6000 yeast transformant cells were replica printed and screened on a synthetic minimal medium containing 1.0 M of NaCl. The screening results showed the presence of 62 salt-tolerant transformant colonies. Sequence analysis of the recombinant yeast plasmids revealed the presence of a group of genes with potential salt-tolerance functions, such as aquaporins (PIP), serine/threonine protein kinases (STKs), ethylene-responsive transcription factor 1 (ERF1), and peroxidases (PRX). The expression pattern of the selected genes endorsed the hypothesis that these genes may be involved in salinity tolerance, as they showed a significant (p < 0.05) overexpression trend in both the leaf and root tissues in response to salinity. The genes identified in this project are suitable candidates for the further functional characterization of date palms.

  14. Interplay between charge and antiferromagnetic ordering in Bi0.6-xPrxCa0.4MnO3 (0≤x≤0.6) perovskite manganite

    International Nuclear Information System (INIS)

    Yadav, Kamlesh; Singh, H.K.; Varma, G.D.

    2012-01-01

    Structure, magnetic and transport properties of polycrystalline Bi 0.6-x Pr x Ca 0.4 MnO 3 (x=0.0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) have been studied. Systematic substitution of Pr at Bi site induces an interesting interplay between the charge ordering and antiferromagnetism. The charge ordering temperature (T CO ) decreases with increasing x. The antiferromagnetic (AFM) ordering temperature (T N ) increases sharply at both the extremes but remains nearly constant from x=0.2 to 0.4. At temperatures lower than T N a transition to the glassy state is observed. The nature of this glass like state appears to be controlled by the Pr content, and at lower values of x this is akin to a spin glass, while at higher x it has a characteristic of cluster glass. The Pr doping also leads to enhancement in the magnetic moment. In the present work it has been proposed that the local lattice distortion induced due to size mismatch between the A-site cations and 6s 2 character of Bi 3+ lone pair electron is responsible for the observed magnetic and electrical properties.

  15. Transverse- and zero-field μSR [muon-spin-rotation] investigation of magnetism and superconductivity in (Y1-xPrx)Ba2Cu3O7

    International Nuclear Information System (INIS)

    Cooke, D.W.; Jahan, M.S.; Kwok, R.S.; Lichti, R.L.; Adams, T.R.; Boekema, C.; Dawson, W.K.; Kebede, A.; Schwegler, J.; Crow, J.E.; Mihalsin, T.

    1990-01-01

    Zero-field muon-spin-rotation (μSR) measurements on (Y 1-x Pr x )Ba 2 Cu 3 O 7 [x = 1.0, 0.8, 0.6, and 0.54] show evidence for antiferromagnetic ordering of the Cu moments within the Cu--O planes, with Neel temperatures 285,220, 35, 30, and 20 K respectively. For x = 1.0 the local muon magnetic field is ∼16 mT, but decreases to ∼12 mT at 17 K, due to additional magnetic ordering. The zero-field data, in conjunction with transport data, allow construction of a complete diagram for this system. Transverse-field (1 kOe) μSR data for x = 0.2 (T c = 75 K) show that the muon depolarization is determined primarily by the Cu nuclear moments for T>T c . Fitting the superconducting-state data to a BCS model yields an extrapolated zero-temperature magnetic penetration depth of 2170 angstrom. 9 refs., 3 figs

  16. Evolution of structural, magnetic and transport behavior by Pr doping in SrRuO3

    Science.gov (United States)

    Gupta, Renu; Pramanik, A. K.

    2018-05-01

    Here we report the evolution of structural, magnetic and transport behavior in perovskite based ruthenates Sr1-xPrxRuO3 (x=0.0 and 0.1). The substitution of Pr on Sr site retains orthorhombic structure while we find the slight change in structural parameters. The SrRuO3 has itinerant ferromagnet (FM) type nature of ordering temperature ˜160 K and below the transition temperature showing large bifurcation between ZFC and FC magnetization. By Pr doping, the magnetic moment decreases with decreasing bifurcation of ZFC and FC. The ZFC data show three distinct peaks (three transition temperature; TM1,TM2 and TM3). The magnetization study of both the samples, at high temperature fitted with modified CWL showing the decreasing value of ordering temperature by Pr doping matches close to TM2. The low-temperature isothermal magnetization M (H) data show that the high field saturation moment has decreased by Pr doping. The Arrott plot gives spontaneous magnetization (Ms) which is also decreased by Pr substitution. Evolution of Rhodes-Wohlfarth ratio value increases, which suggests that FM in this system evolves toward the more itinerant type by Pr doping. The electrical resistivity ρ(T) of both the samples show metallic behavior, in the all temperature range and ρ(T) increases by Pr doping while around below 45 K, the resistivity decreases by Pr doping and this crossing temperature also matches with ZFC data.

  17. Effect of selective hepatic inflow occlusion during liver cancer resection on liver ischemia-reperfusion injury

    Directory of Open Access Journals (Sweden)

    Yin-Tian Deng

    2016-11-01

    Full Text Available Objective: To study the effect of selective hepatic inflow occlusion during liver cancer resection on liver ischemia-reperfusion injury. Methods: A total of 68 patients with primary liver cancer who underwent left liver resection in our hospital between May 2012 and August 2015 were selected for study and divided into group A (selective hepatic inflow occlusion of left liver and group B (Prignle hepatic inflow occlusion according to different intraoperative blood occlusion methods, serum was collected before and after operation to determine liver enzyme content, the removed liver tissue was collected to determine energy metabolism indexes, inflammation indexes and oxidative stress indexes. Results: 1 d, 3 d and 5 d after operation, GPT, GOT, GGT, LDH and ALP content in serum of both groups were significantly higher than those before operation, and GPT, GOT, GGT, LDH and ALP content in serum of group A 1 d, 3 d and 5 d after operation were significantly lower than those of group B; ATP, ADP, AMP, PI3K, AKT, GSK3β, T-AOC, PrxI and Trx content in liver tissue of group A were significantly higher than those of group B while PTEN, IL-12p40, MDA and MPO content were significantly lower than those of group B. Conclusions: Selective hepatic inflow occlusion during liver cancer resection can reduce the liver ischemia-reperfusion injury, improve the energy metabolism of liver cells and inhibit inflammation and oxidative stress in liver tissue.

  18. DEWAX Transcription Factor Is Involved in Resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa

    Directory of Open Access Journals (Sweden)

    Seulgi Ju

    2017-07-01

    Full Text Available The cuticle of land plants is the first physical barrier to protect their aerial parts from biotic and abiotic stresses. DEWAX, an AP2/ERF-type transcription factor, negatively regulates cuticular wax biosynthesis. In this study, we investigated the resistance to Botrytis cinerea in Arabidopsis thaliana and Camelina sativa overexpressing DEWAX and in Arabidopsis dewax mutant. Compared to wild type (WT leaves, Arabidopsis DEWAX OX and dewax leaves were more and less permeable to toluidine blue dye, respectively. The ROS levels increased in DEWAX OX leaves, but decreased in dewax relative to WT leaves. Compared to WT, DEWAX OX was more resistant, while dewax was more sensitive to B. cinerea; however, defense responses to Pseudomonas syringae pv. tomato DC3000:GFP were inversely modulated. Microarray and RT-PCR analyses indicated that the expression of defense-related genes was upregulated in DEWAX OX, but downregulated in dewax relative to WT. Transactivation assay showed that DEWAX upregulated the expression of PDF1.2a, IGMT1, and PRX37. Chromatin immunoprecipitation assay revealed that DEWAX directly interacts with the GCC-box motifs of PDF1.2a promoter. In addition, ectopic expression of DEWAX increased the tolerance to B. cinerea in C. sativa. Taken together, we suggest that increased ROS accumulation and DEWAX-mediated upregulation of defense-related genes are closely associated with enhanced resistance to B. cinerea in Arabidopsis and C. sativa.

  19. Hydrogen storage and microstructure investigations of La0.7-xMg0.3PrxAl0.3Mn0.4Co0.5Ni3.8 alloys

    International Nuclear Information System (INIS)

    Galdino, G.S.; Casini, J.C.S.; Ferreira, E.A.; Faria, R.N.; Takiishi, H.

    2010-01-01

    The effects of substitution of Pr for La in the hydrogen storage capacity and microstructures of La 0.7-x Pr x Mg 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x=0, 0.1, 0.3, 0.5, 0.7) alloys electrodes have been studied. X-ray diffraction (XRD), scanning electron microscopy, energy dispersive spectrometry (EDS) and electrical tests were carried out in a the alloys and electrodes. Cycles of charge and discharge have also been carried out in the Ni/MH (Metal hydride) batteries based on the alloys negative electrodes. (author)

  20. Electronic property and structure of double-doping Y1-2xPrxCaxBa2Cu3O7-δ with 0 ≤ x ≤ 0.14

    International Nuclear Information System (INIS)

    Wang Yang; Shi Lei; Chu Songnan

    2010-01-01

    Equal amount Pr and Ca double-doping Y 1-2x Pr x Ca x Ba 2 Cu 3 O 7-δ with 0 ≤ x ≤ 0.14 have been investigated by X-ray diffraction, resistivity, and X-ray photoemission spectroscopy (XPS). The deviation of the linearly decreasing of T c vs. x curve was observed when x 1-2x Pr x Ca x Ba 2 Cu 3 O 7-δ with low Pr content (x 0.10), which suggests a change of Pr valence with the Pr content. XPS measurement shows that the relative amount of Pr 3+ and Pr 4+ is closely related to the total Pr content x. The valence of Pr is close to +3 when x 0.10, which implies a different mechanism for depression of superconductivity of Pr content x 0.10 in Pr doping Y-123.

  1. A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Shi, Rui; Sun, Ying-Hsuan; Wang, Jack P.; Liu, Jie; Loziuk, Philip; Edmunds, Charles W.; Miller, Zachary D.; Peszlen, Ilona; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2016-03-11

    Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 shows xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.

  2. Modulation of Enzymatic Activities of Dual Functional Peroxiredoxin by Gamma Irradiation

    International Nuclear Information System (INIS)

    Hong, Sung Hyun; Lee, Seung Sik; Park, Chul Hong; Chung, Byung Yeoup

    2012-01-01

    Recently, enzymes have frequently been used as catalysts in various bio-industrial, commercial, and pharmaceutical applications, because they are more stable, more efficient, and less toxic than the synthetic catalysts. However, one of their major disadvantages is their low thermostability, which leads the researchers to develop new forms of industrially important enzymes with increased resistance to inactivation and aggregation. This study describes a strategy for modifying the molecular chaperone activity of peroxiredoxin (Prx) by using gamma irradiation. Prxs are a ubiquitous family of antioxidant enzymes. Upon oxidation of their peroxidatic Cys, the molecules undergo a structural conversion from a low-molecular-weight (LMW) species acting as a peroxidase to a high-molecular-weight (HMW) complex functioning as a chaperone. In the present study, we examined the effect of gamma irradiation on PP1084 with respect to its protein structure and enzymatic function. The use of gamma irradiation as a physical treatment can increase the cohesive strength of the protein by forming cross-links. The aims of the present work were (1) to improve the chaperone activity of PP1084 by gamma irradiation, (2) to identify the 'optimal' intensity of gamma irradiation, and (3) to investigate the influence of gamma irradiation on protein hydrophobicity as related to chaperone function. Following PP1084 treatment with 30 kGy gamma irradiation, the PP1084 chaperone activity enhanced by about 3-4-fold compared with nonirradiated PP1084, while the peroxidase activity decreased. Ongoing research efforts are addressing the physical modifications of PP1084 protein by gamma irradiation

  3. Effect of light rare earth doping in 123 high temperature supercoductors

    Directory of Open Access Journals (Sweden)

    M. Mirzadeh

    2006-09-01

    Full Text Available   We have studied the structural and electrical properties of Gd(Ba2-xLaxCu3O7+δ [Gd(BaLa123], Gd(Ba2-xNdxCu3O7+δ [Gd(BaNd123], and Nd(Ba2-xPrxCu3O7+δ [Nd(BaPr123] compounds with 0.0≤x≤0.8 prepared by the standard solid-state reaction. The XRD patterns show that all of the samples with x≤0.5 are isosructure 123 phase, but in Gd(BaNd123 and Nd(BaPr123 there are several impurity peaks in the XRD patterns for x≥0.6. We estimated the xcsolubility=1.1, 0.6 and 0.55 in Gd(BaLa123, Nd(BaPr123, and Gd(BaNd123, respectively. The resistivity increases with the increase of doping. The decrease of Tc with the increase of Pr doping is faster than Nd and La doping. The normal-state resistivity is fitted for two and three dimensional variable range hopping (2D&amp3D-VRH and Coulomb gap (CG regimes, separately. Our results indicate that the dominant mechanism for x≥xcSIT is 3D-VRH. The broadening of magnetoresistance have been investigated by TAFC and AH models. The pinning energy and Josephson coupling energy, decrease with the increase of applied magnetic field as U~H-β, these values also decrease with doping concentration Pr is more effective than Nd and La.

  4. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The Pr and Ca Substitution in GdBa2Cu3O7- & delta

    Directory of Open Access Journals (Sweden)

    H. S. H.

    2001-12-01

    Full Text Available   The granular Gd1-x-zPrxCazBa2Cu3O7-δ high-temperature cuprate samples with 0.0 ≤ x ≤ 0.3 and 0.0≤ x ≤ 0.35 are prepared by standard solid state reaction and characterized by XRD and SEM techniques. The BaCuO2 and impurity phases are less than 1% in the samples having high levels of pr and Ca concentrations. The electrical resistivity measurements show a nonlinear reduction in Tc(x,z=etc versus x. Moreover, the Tc(z curve with x=0 is nonlinear and aplateau appears at z≈ 0.05-0.015. For Pr-Ca-doped samples with a constant concentration of Pr, Tc increases with the increase of Ca up to an optimum value of Ca doping and then in decreases. Based on these observations, we suggest that hole filling and hole localization the main effects of Pr ion substiution. The magnetic measurements indicate that the value of Hc1 is in the order of 10 mT. The mangetoresistance measurements have been measured and analyzed. The superconducting transition region is broadened by the application of magnetic field. The experimental data near the onsen of superconductivity are fitted with the Ambegakor and Halperin (AH phase-slip model. We observe that the AH parameter,γ (H, depends not only on the temperature and the magnetic field, but also on the Pr and Ca ions concentrations. It is observed that the critical current density increases with Ca substitution and decreases with Pr substitution in Gd-123 system. We suggest that the Pr ion substitution probably enhances the weak link, but the Ca ion acts as flux pinning center in the GdPrCa-123 system.

  6. Genome-Wide Scan and Test of Candidate Genes in the Snail Biomphalaria glabrata Reveal New Locus Influencing Resistance to Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Jacob A Tennessen

    Full Text Available New strategies to combat the global scourge of schistosomiasis may be revealed by increased understanding of the mechanisms by which the obligate snail host can resist the schistosome parasite. However, few molecular markers linked to resistance have been identified and characterized in snails.Here we test six independent genetic loci for their influence on resistance to Schistosoma mansoni strain PR1 in the 13-16-R1 strain of the snail Biomphalaria glabrata. We first identify a genomic region, RADres, showing the highest differentiation between susceptible and resistant inbred lines among 1611 informative restriction-site associated DNA (RAD markers, and show that it significantly influences resistance in an independent set of 439 outbred snails. The additive effect of each RADres resistance allele is 2-fold, similar to that of the previously identified resistance gene sod1. The data fit a model in which both loci contribute independently and additively to resistance, such that the odds of infection in homozygotes for the resistance alleles at both loci (13% infected is 16-fold lower than the odds of infection in snails without any resistance alleles (70% infected. Genome-wide linkage disequilibrium is high, with both sod1 and RADres residing on haplotype blocks >2 Mb, and with other markers in each block also showing significant effects on resistance; thus the causal genes within these blocks remain to be demonstrated. Other candidate loci had no effect on resistance, including the Guadeloupe Resistance Complex and three genes (aif, infPhox, and prx1 with immunological roles and expression patterns tied to resistance, which must therefore be trans-regulated.The loci RADres and sod1 both have strong effects on resistance to S. mansoni. Future approaches to control schistosomiasis may benefit from further efforts to characterize and harness this natural genetic variation.

  7. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Meenakumari eMuthuramalingam

    2013-03-01

    Full Text Available Hydrogen peroxide (H2O2 evolves during cellular metabolism and accumulates under various stresses causing serious redox imbalances. Many proteomics studies aiming to identify proteins sensitive to H2O2 used concentrations that were above the physiological range. Here the chloroplast proteins were subjected to partial oxidation by exogenous addition of H2O2 equivalent to 10% of available protein thiols which allowed for the identification of the primary targets of oxidation. The chosen redox proteomic approach employed differential labeling of non-oxidized and oxidized thiols using sequential alkylation with NEM and biotin maleimide. The in vitro identified proteins are involved in carbohydrate metabolism, photosynthesis, redox homeostasis and nitrogen assimilation. By using methyl viologen that induces oxidative stress in vivo, mostly the same primary targets of oxidation were identified and several oxidation sites were annotated. RubisCO was a primary oxidation target. Due to its high abundance, RubisCO is suggested to act as a chloroplast redox buffer to maintain a suitable redox state, even in the presence of increased ROS release. 2-Cys Prxs undergo redox-dependent modifications and play important roles in antioxidant defense and signaling. The identification of 2-Cys Prx was expected based on its high affinity to H2O2 and is considered as a proof of concept for the approach. Targets of Trx, such as phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH, transketolase and sedoheptulose-1,7-bisphosphatase have at least one regulatory disulfide bridge which supports the conclusion that the identified proteins undergo reversible thiol oxidation. In conclusion, the presented approach enabled the identification of early targets of H2O2 oxidation within the cellular proteome under physiological experimental conditions.

  8. Frequent genes in rare diseases: panel-based next generation sequencing to disclose causal mutations in hereditary neuropathies.

    Science.gov (United States)

    Dohrn, Maike F; Glöckle, Nicola; Mulahasanovic, Lejla; Heller, Corina; Mohr, Julia; Bauer, Christine; Riesch, Erik; Becker, Andrea; Battke, Florian; Hörtnagel, Konstanze; Hornemann, Thorsten; Suriyanarayanan, Saranya; Blankenburg, Markus; Schulz, Jörg B; Claeys, Kristl G; Gess, Burkhard; Katona, Istvan; Ferbert, Andreas; Vittore, Debora; Grimm, Alexander; Wolking, Stefan; Schöls, Ludger; Lerche, Holger; Korenke, G Christoph; Fischer, Dirk; Schrank, Bertold; Kotzaeridou, Urania; Kurlemann, Gerhard; Dräger, Bianca; Schirmacher, Anja; Young, Peter; Schlotter-Weigel, Beate; Biskup, Saskia

    2017-12-01

    Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot-Marie-Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X-linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty-four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time- and cost-effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations. © 2017 International Society for Neurochemistry.

  9. Extensive proteomic remodeling is induced by eukaryotic translation elongation factor 1Bγ deletion in Aspergillus fumigatus.

    Science.gov (United States)

    O'Keeffe, Grainne; Jöchl, Christoph; Kavanagh, Kevin; Doyle, Sean

    2013-11-01

    The opportunistic pathogen Aspergillus fumigatus is ubiquitous in the environment and predominantly infects immunocompromised patients. The functions of many genes remain unknown despite sequencing of the fungal genome. A putative translation elongation factor 1Bγ (eEF1Bγ, termed elfA; 750 bp) is expressed, and exhibits glutathione S-transferase activity, in A. fumigatus. Here, we demonstrate the role of ElfA in the oxidative stress response, as well as a possible involvement in translation and actin cytoskeleton organization, respectively. Comparative proteomics, in addition to phenotypic analysis, under basal and oxidative stress conditions, demonstrated a role for A. fumigatus elfA in the oxidative stress response. An elfA-deficient strain (A. fumigatus ΔelfA) was significantly more sensitive to the oxidants H2O2, diamide, and 4,4'-dipyridyl disulfide (DPS) than the wild-type. This was further supported with the identification of differentially expressed proteins of the oxidative stress response, including; mitochondrial peroxiredoxin Prx1, molecular chaperone Hsp70 and mitochondrial glycerol-3-phosphate dehydrogenase. Phenotypic analysis also revealed that A. fumigatus ΔelfA was significantly more tolerant to voriconazole than the wild-type. The differential expression of two aminoacyl-tRNA synthetases suggests a role for A. fumigatus elfA in translation, while the identification of actin-bundling protein Sac6 and vacuolar dynamin-like GTPase VpsA link A. fumigatus elfA to the actin cytoskeleton. Overall, this work highlights the diverse roles of A. fumigatus elfA, with respect to translation, oxidative stress and actin cytoskeleton organization. In addition to this, the strategy of combining targeted gene deletion with comparative proteomics for elucidating the role of proteins of unknown function is further revealed. © 2013 The Protein Society.

  10. Microstructural, Magnetic, and Optical Properties of Pr-Doped Perovskite Manganite La0.67Ca0.33MnO3 Nanoparticles Synthesized via Sol-Gel Process

    Science.gov (United States)

    Xia, Weiren; Wu, Heng; Xue, Piaojie; Zhu, Xinhua

    2018-05-01

    We report on microstructural, magnetic, and optical properties of Pr-doped perovskite manganite (La1 - xPrx)0.67Ca0.33MnO3 (LPCMO, x = 0.0-0.5) nanoparticles synthesized via sol-gel process. Structural characterizations (X-ray and electron diffraction patterns, (high resolution) TEM images) provide information regarding the phase formation and the single-crystalline nature of the LPCMO systems. X-ray and electron diffraction patterns reveal that all the LPCMO samples crystallize in perovskite crystallography with an orthorhombic structure ( Pnma space group), where the MnO6 octahedron is elongated along the b axis due to the Jahn-Teller effect. That is confirmed by Raman spectra. Crystallite sizes and grain sizes were calculated from XRD and TEM respectively, and the lattice fringes resolved in the high-resolution TEM images of individual LPCMO nanoparticle confirmed its single-crystalline nature. FTIR spectra identify the characteristic Mn-O bond stretching vibration mode near 600 cm- 1, which shifts towards high wavenumbers with increasing post-annealing temperature or Pr-doping concentration, resulting in further distortion of the MnO6 octahedron. XPS revealed dual oxidation states of Mn3+ and Mn4+ in the LPCMO nanoparticles. UV-vis absorption spectra confirm the semiconducting nature of the LPCMO nanoparticles with optical bandgaps of 2.55-2.71 eV. Magnetic measurements as a function of temperature and magnetic field at field cooling and zero-field cooling modes, provided a Curie temperature around 230 K, saturation magnetization of about 81 emu/g, and coercive field of 390 Oe at 10 K. Such magnetic properties and the semiconducting nature of the LPCMO nanoparticles will make them as suitable candidate for magnetic semiconductor spintronics.

  11. The genetics and conservation of Araucaria angustifolia: I. Genetic structure and diversity of natural populations by means of non-adaptive variation in the state of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Neiva Maria Frizon Auler

    2002-01-01

    Full Text Available The objective of this study was to generate information relative to the allele distribution and dynamics within and among populations of Araucaria angustifolia, a naturally-occurring conifer in the south of Brazil, being known popularly as "pinheiro-do-Paraná", "araucaria" or pine tree. In order to elucidate the levels and the distribution of the genetic variability, the population's genetic structure and the genetic distance among natural populations of this species with different levels of disturbance in different geographical areas were studied in detail. For this, samples of leaf tissue were collected from 328 adult individuals in nine natural populations in Santa Catarina State. To analyze the samples, the allozyme technique was applied in starch gel electrophoresis (penetrose 13%, with citrate/morfholine buffer. Nine enzymatic systems (PGM, PGI MDH, PRX, SKDH, 6PGDH, ACP, IDH and G6PDH revealed 15 loci. The analysis provided values for He and Ho of 0.084 and 0.072, respectively. The general average of polymorphic loci was 73% in the species and 26.6% in the studied populations and the allele number per locus was 1.6. Wright's F-statistical estimates indicated the existence of inbreeding in populations (F IS= 0.148 and a low divergence among populations (F ST = 0.044. However, the inbreeding values were variable in different populations. Taken together, the results indicated that the greater part of the genetic variability is contained within populations. The working hypothesis that originally there was greater genetic diversity can be supported by these results which indicate that in the degraded populations the diversity indexes are lower in the degraded populations than those found in better-conserved populations. Thus the fragmentation of the forest followed by "araucaria" exploitation could have contributed to the genetic differentiation expressed through the allele frequency of the studied population.

  12. Oxidative Stress in Horseradish (Armoracia lapathifolia Gilib. Tissues Grown in vitro

    Directory of Open Access Journals (Sweden)

    Petra Peharec

    2011-01-01

    Full Text Available In a previous study it was reported that transformed tissue of horseradish (Armoracia lapathifolia Gilib., obtained by infection of leaf explants with A. tumefaciens, developed two tumour lines with different morphology. One line grew as a completely unorganized tissue (TN – tumour tissue, while the other line grew as a partially organized teratogenous tumour with malformed hyperhydric shoots (TM – teratoma tissue, but did not regenerate the whole plant of normal morphology. The factor responsible for this problem could be the increased production of reactive oxygen species (ROS. Therefore, in this study a possible involvement of activated oxygen metabolism in dedifferentiation and hyperhydricity in TM and TN tissues is investigated. Elevated values of malondialdehyde and protein carbonyl contents found in TM and TN, in comparison with plantlet leaf, confirm the presence of oxidative stress. However, lower H2O2 content was measured in TM and TN. Lipoxygenase (LOX activity was more pronounced in TM and especially in TN compared to leaf, which suggests that the LOX-dependent peroxidation of fatty acids might be one of the causes of oxidative damage. Moreover, significantly higher peroxidase (PRX and ascorbate peroxidase (APX activity as well as the increased number of their isoforms was found in transformed TM and TN in comparison with leaf. On the other hand, significantly lower superoxide dismutase (SOD activity was found in TM and TN, which correlates with lower H2O2 content. High catalase (CAT activity measured in leaf and partially organized TM is consistent with the role of CAT in growth and differentiation. In conclusion, in horseradish transformed tissues that underwent dedifferentiation and hyperhydricity, prominent oxidative damage was found. This result suggests that oxidative stress could be associated with the inability of partially organized teratogenous TM to regenerate plantlets with normal morphology.

  13. Constitutive stimulatory G protein activity in limb mesenchyme impairs bone growth.

    Science.gov (United States)

    Karaca, Anara; Malladi, Vijayram Reddy; Zhu, Yan; Tafaj, Olta; Paltrinieri, Elena; Wu, Joy Y; He, Qing; Bastepe, Murat

    2018-05-01

    GNAS mutations leading to constitutively active stimulatory G protein alpha-subunit (Gsα) cause different tumors, fibrous dysplasia of bone, and McCune-Albright syndrome, which are typically not associated with short stature. Enhanced signaling of the parathyroid hormone/parathyroid hormone-related peptide receptor, which couples to multiple G proteins including Gsα, leads to short bones with delayed endochondral ossification. It has remained unknown whether constitutive Gsα activity also impairs bone growth. Here we generated mice expressing a constitutively active Gsα mutant (Gsα-R201H) conditionally upon Cre recombinase (cGsα R201H mice). Gsα-R201H was expressed in cultured bone marrow stromal cells from cGsα R201H mice upon adenoviral-Cre transduction. When crossed with mice in which Cre is expressed in a tamoxifen-regulatable fashion (CAGGCre-ER™), tamoxifen injection resulted in mosaic expression of the transgene in double mutant offspring. We then crossed the cGsα R201H mice with Prx1-Cre mice, in which Cre is expressed in early limb-bud mesenchyme. The double mutant offspring displayed short limbs at birth, with narrow hypertrophic chondrocyte zones in growth plates and delayed formation of secondary ossification center. Consistent with enhanced Gsα signaling, bone marrow stromal cells from these mice demonstrated increased levels of c-fos mRNA. Our findings indicate that constitutive Gsα activity during limb development disrupts endochondral ossification and bone growth. Given that Gsα haploinsufficiency also leads to short bones, as in patients with Albright's hereditary osteodystrophy, these results suggest that a tight control of Gsα activity is essential for normal growth plate physiology. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Molecular Cloning of a cDNA Encoding for Taenia solium TATA-Box Binding Protein 1 (TsTBP1) and Study of Its Interactions with the TATA-Box of Actin 5 and Typical 2-Cys Peroxiredoxin Genes.

    Science.gov (United States)

    Rodríguez-Lima, Oscar; García-Gutierrez, Ponciano; Jiménez, Lucía; Zarain-Herzberg, Ángel; Lazzarini, Roberto; Landa, Abraham

    2015-01-01

    TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.

  15. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline-alkaline stress by digital gene expression.

    Science.gov (United States)

    Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi

    2014-10-01

    The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Comparative molecular modeling study of Arabidopsis NADPH-dependent thioredoxin reductase and its hybrid protein.

    Directory of Open Access Journals (Sweden)

    Yuno Lee

    Full Text Available 2-Cys peroxiredoxins (Prxs play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C of thioredoxin reductase (TrxR in Arabidopsis. AtNTRA contains only TrxR domain, but AtNTRC consists of N-terminal TrxR and C-terminal thioredoxin (Trx domains. AtNTRC has various oligomer structures, and Trx domain is important for chaperone activity. Our previous experimental study has reported that the hybrid protein (AtNTRA-(Trx-D, which was a fusion of AtNTRA and Trx domain from AtNTRC, has formed variety of structures and shown strong chaperone activity. But, electron transfer mechanism was not detected at all. To find out the reason of this problem with structural basis, we performed two different molecular dynamics (MD simulations on AtNTRC and AtNTRA-(Trx-D proteins with same cofactors such as NADPH and flavin adenine dinucleotide (FAD for 50 ns. Structural difference has found from superimposition of two structures that were taken relatively close to average structure. The main reason that AtNTRA-(Trx-D cannot transfer the electron from TrxR domain to Trx domain is due to the difference of key catalytic residues in active site. The long distance between TrxR C153 and disulfide bond of Trx C387-C390 has been observed in AtNTRA-(Trx-D because of following reasons: i unstable and unfavorable interaction of the linker region, ii shifted Trx domain, and iii different or weak interface interaction of Trx domains. This study is one of the good examples for understanding the relationship between structure formation and reaction activity in hybrid protein. In addition, this study would be helpful for further study on the mechanism of electron transfer reaction in NADPH-dependent thioredoxin reductase proteins.

  17. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    2014-01-01

    Full Text Available Mutations in the DJ-1 gene have been shown to cause a rare autosomal-recessive genetic form of Parkinson’s disease (PD. The function of DJ-1 and its role in PD development has been linked to multiple pathways, however its exact role in the development of PD has remained elusive. It is thought that DJ-1 may play a role in regulating reactive oxygen species (ROS formation and overall oxidative stress in cells through directly scavenging ROS itself, or through the regulation of ROS scavenging systems such as glutathione (GSH or thioredoxin (Trx or ROS producing complexes such as complex I of the electron transport chain. Previous work in this laboratory has demonstrated that isolated brain mitochondria consume H2O2 predominantly by the Trx/Thioredoxin Reductase (TrxR/Peroxiredoxin (Prx system in a respiration dependent manner (Drechsel et al., Journal of Biological Chemistry, 2010. Therefore we wanted to determine if mitochondrial H2O2 consumption was altered in brains from DJ-1 deficient mice (DJ-1−/−. Surprisingly, DJ-1−/− mice showed an increase in mitochondrial respiration-dependent H2O2 consumption compared to controls. To determine the basis of the increased H2O2 consumption in DJ1−/− mice, the activities of Trx, Thioredoxin Reductase (TrxR, GSH, glutathione disulfide (GSSG and glutathione reductase (GR were measured. Compared to control mice, brains from DJ-1−/− mice showed an increase in (1 mitochondrial Trx activity, (2 GSH and GSSG levels and (3 mitochondrial glutaredoxin (GRX activity. Brains from DJ-1−/− mice showed a decrease in mitochondrial GR activity compared to controls. The increase in the enzymatic activities of mitochondrial Trx and total GSH levels may account for the increased H2O2 consumption observed in the brain mitochondria in DJ-1−/− mice perhaps as an adaptive response to chronic DJ-1 deficiency.

  18. PR Toxin – Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges

    Directory of Open Access Journals (Sweden)

    Manish K. Dubey

    2018-03-01

    Full Text Available Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI, accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH to aldehyde group (-CHO. The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis

  19. Induction of Protective Immune Responses against Schistosomiasis Haematobium in Hamsters and Mice Using Cysteine Peptidase-Based Vaccine

    Directory of Open Access Journals (Sweden)

    Hatem A M Tallima

    2015-03-01

    Full Text Available One of the major lessons we learned from the radiation-attenuated cercariae (RA vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th1/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune responses-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 microg active papain 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium led to highly significant (P 50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 microg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH and 20 ug 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP together with papain (20 microg/hamster as adjuvant led to considerable (64% protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1 and Fasciola hepatica cathepsin L1 (FhCL1 led to highly significant (P < 0.005 reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/ rSG3PDH mixture and challenged with S. haematobium cercariae three weeks after the second immunization displayed highly significant (P < 0.005 reduction of 72% in challenge worm burden and no eggs in liver of 8-10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1 and type 2-related cytokines and antibody responses.

  20. Isozyme, ISSR and RAPD profiling of genotypes in marvel grass (Dichanthium annulatum).

    Science.gov (United States)

    Saxena, Raghvendra; Chandra, Amaresh

    2010-11-01

    Genetic analysis of 30 accessions of marvel grass (Dichanthium annulatum Forsk.), a tropical range grass collected from grasslands and open fields of drier regions, was carried out with the objectives of identifying unique materials that could be used in developing the core germplasm for such regions as well as to explore gene (s) for drought tolerance. Five inter-simple sequence repeat (ISSR) primers [(CA)4, (AGAC), (GACA) 4; 27 random amplified polymorphic DNA (RAPD) and four enzyme systems were employed in the present study. In total, ISSR yielded 61 (52 polymorphic), RAPD 269 (253 polymorphic) and enzyme 55 isozymes (44 polymorphic) bands. The average polymorphic information content (PIC) and marker index (MI) across all polymorphic bands of 3 markers systems ranged from 0.419 to 0.480 and 4.34 to 5.25 respectively Dendrogram analysis revealed three main clusters with all three markers. Four enzymes namely esterase (EST), polyphenoloxidase (PPO), peroxidase (PRX) and superoxide dismutase (SOD) revealed 55 alleles from a total of 16 enzyme-coding loci. Of these, 14 loci and 44 alleles were polymorphic. The mean number of alleles per locus was 3.43. Mean heterozygosity observed among the polymorphic loci ranged from 0.406 (SOD) to 0.836 (EST) and accession wise from 0.679 (1G3108) to 0.743 (IGKMD-10). Though there was intermixing of few accessions of one agro-climatic region to another largely groupings of accessions were with their regions of collections. Bootstrap analysis at 1000 iterations also showed large numbers of nodes (11 to 17) having strong clustering (> 50 bootstrap values) in all three marker systems. The accessions of the arid and drier regions forming one cluster are assigned as distinct core collection of Dichanthium and can be targeted for isolation of gene (s) for drought tolerance. Variations in isozyme allele numbers and high PIC (0.48) and MI (4.98) as observed with ISSR markers indicated their usefulness for germplasm characterization.

  1. PR Toxin - Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges.

    Science.gov (United States)

    Dubey, Manish K; Aamir, Mohd; Kaushik, Manish S; Khare, Saumya; Meena, Mukesh; Singh, Surendra; Upadhyay, Ram S

    2018-01-01

    Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics

  2. PR Toxin – Biosynthesis, Genetic Regulation, Toxicological Potential, Prevention and Control Measures: Overview and Challenges

    Science.gov (United States)

    Dubey, Manish K.; Aamir, Mohd; Kaushik, Manish S.; Khare, Saumya; Meena, Mukesh; Singh, Surendra; Upadhyay, Ram S.

    2018-01-01

    Out of the various mycotoxigenic food and feed contaminant, the fungal species belonging to Penicillium genera, particularly Penicillium roqueforti is of great economic importance, and well known for its crucial role in the manufacturing of Roquefort and Gorgonzola cheese. The mycotoxicosis effect of this mold is due to secretion of several metabolites, of which PR toxin is of considerable importance, with regard to food quality and safety challenges issues. The food products and silages enriched with PR toxin could lead into damage to vital internal organs, gastrointestinal perturbations, carcinogenicity, immunotoxicity, necrosis, and enzyme inhibition. Moreover, it also has the significant mutagenic potential to disrupt/alter the crucial processes like DNA replication, transcription, and translation at the molecular level. The high genetic diversities in between the various strains of P. roqueforti persuaded their nominations with Protected Geographical Indication (PGI), accordingly to the cheese type, they have been employed. Recently, the biosynthetic mechanism and toxicogenetic studies unraveled the role of ari1 and prx gene clusters that cross-talk with the synthesis of other metabolites or involve other cross-regulatory pathways to negatively regulate/inhibit the other biosynthetic route targeted for production of a strain-specific metabolites. Interestingly, the chemical conversion that imparts toxic properties to PR toxin is the substitution/oxidation of functional hydroxyl group (-OH) to aldehyde group (-CHO). The rapid conversion of PR toxin to the other derivatives such as PR imine, PR amide, and PR acid, based on conditions available reflects their unstability and degradative aspects. Since the PR toxin-induced toxicity could not be eliminated safely, the assessment of dose-response and other pharmacological aspects for its safe consumption is indispensable. The present review describes the natural occurrences, diversity, biosynthesis, genetics

  3. Pr4N2S3 and Pr4N2Se3: two non-isostructural praseodymium(iii) nitride chalcogenides

    International Nuclear Information System (INIS)

    Lissner, Falk; Schleid, Thomas

    2005-01-01

    The non-isostructural nitride chalcogenides of praseodymium, Pr 4 N 2 S 3 and Pr 4 N 2 Se 3 , are formed by the reaction of the praseodymium metal with sodium azide (NaN 3 ), praseodymium trihalide (PrX 3 ; X = Cl, Br, I) and the respective chalcogen (sulfur or selenium) at 900 C in evacuated silica ampoules after seven days. Both crystallize monoclinically in space group C2/c (Pr 4 N 2 S 3 : a = 1788.57(9), b = 986.04(5), c = 1266.49(6) pm, β = 134.546(7) , Z = 8; Pr 4 N 2 Se 3 : a = 1311.76(7), b = 1017.03(5), c = 650.42(3) pm, β = 90.114(6) , Z = 4). The crystal structures of both compounds show a layered construction, dominated by N 3- -centred (Pr 3+ ) 4 tetrahedra which share a common edge first. Continuing linkage of the so resulting bitetrahedral [N 2 Pr 6 ] 12+ units via the non-connected vertices to layers according to [stack ∞ 2 ]{[N(Pr) 2/2 e (Pr') 2/2 v ] 3+ } forms different kinds of tetrahedral nets which can be described as layers consisting of ''four- and eight-rings'' for Pr 4 N 2 S 3 and as layers of ''six-rings'' for Pr 4 N 2 Se 3 . Whereas the crystal structure of Pr 4 N 2 S 3 exhibits four different Pr 3+ cations with coordination numbers of six (2 x) and seven (2 x) against N 3- and S 2- , the number of cations in the nitride selenide (Pr 4 N 2 Se 3 ) is reduced to half (Pr1 and Pr2) also having six- and sevenfold anionic coordination spheres. Further motifs for the connection of [NM 4 ] 9+ tetrahedra in crystal structures of nitride chalcogenides and halides of the rare-earth elements with ratios of N: M = 1: 2 are presented and discussed. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [de

  4. Emerging memories: resistive switching mechanisms and current status

    Science.gov (United States)

    Jeong, Doo Seok; Thomas, Reji; Katiyar, R. S.; Scott, J. F.; Kohlstedt, H.; Petraru, A.; Hwang, Cheol Seong

    2012-07-01

    The resistance switching behaviour of several materials has recently attracted considerable attention for its application in non-volatile memory (NVM) devices, popularly described as resistive random access memories (RRAMs). RRAM is a type of NVM that uses a material(s) that changes the resistance when a voltage is applied. Resistive switching phenomena have been observed in many oxides: (i) binary transition metal oxides (TMOs), e.g. TiO2, Cr2O3, FeOx and NiO; (ii) perovskite-type complex TMOs that are variously functional, paraelectric, ferroelectric, multiferroic and magnetic, e.g. (Ba,Sr)TiO3, Pb(Zrx Ti1-x)O3, BiFeO3 and PrxCa1-xMnO3 (iii) large band gap high-k dielectrics, e.g. Al2O3 and Gd2O3; (iv) graphene oxides. In the non-oxide category, higher chalcogenides are front runners, e.g. In2Se3 and In2Te3. Hence, the number of materials showing this technologically interesting behaviour for information storage is enormous. Resistive switching in these materials can form the basis for the next generation of NVM, i.e. RRAM, when current semiconductor memory technology reaches its limit in terms of density. RRAMs may be the high-density and low-cost NVMs of the future. A review on this topic is of importance to focus concentration on the most promising materials to accelerate application into the semiconductor industry. This review is a small effort to realize the ambitious goal of RRAMs. Its basic focus is on resistive switching in various materials with particular emphasis on binary TMOs. It also addresses the current understanding of resistive switching behaviour. Moreover, a brief comparison between RRAMs and memristors is included. The review ends with the current status of RRAMs in terms of stability, scalability and switching speed, which are three important aspects of integration onto semiconductors.

  5. Genetic diversity in a Colombian bean (Phaseolus vulgaris L. collection as assessed by phaseolin patterns and isoenzymatic markers

    Directory of Open Access Journals (Sweden)

    Gustavo Ligarreto

    2012-08-01

    Full Text Available The knowledge of genetic diversity patterns increase the efficiency of the conservation and the enrichment of the genetic resourses. This study allowed the discrimination of the existing genetic variability in a Colombian collection of shrub bean by phaseolin patterns and isoenzymatic markers. Bean seed proteins revelated that the phaseolin patterns types T and C are predominant in the Andean pool, type S in the Meso-American pool and type B in Colombian and Central American accessions, with a predominance of 81% of phaseolin T in the Andean pool, and 78% of phaseolin B in the Meso-American pool. The accessions of cultivated and wild beans showed variation in 10 of the studied enzymatic systems: αβ-EST , GOT, αβ-ACP, DIA , PRX, AS D, 6-PGDH, MDH, IDH and ME; and monomorphism in the PGI and PGM systems. The isozyme systems presented 19 bands of activity, of which 74% were polymorphic loci. Both in the Andean and Meso-American genetic pools, the loci Mdh-1, Mdh-2, β-Est-1, Skdh and Me exhibited polymorphisms. Single alleles in the Meso-American pool were found in 6-Pgdh-2(103, Mdh-1(100, Idh100, α-Est-1(100, α-Est-2(100, and Dia-195; and in the Andean pool, in 6-Pgdh-1(100, and Acp-2(100. For degree of domestication, the wild and cultivated accessions presented polymorphisms in 58 and 47% of the lOCi, respectively. The enzymatic relationship cluster analysis of the studied bean collection revealed three distinct groups of accessions; namely the Meso-American pool, including its cultivated and wild accessions; the Andean pool, which is mainly comprised of cultivated accessions, plus the wild DGD-626; and finally, featured by a high degree of enzymatic polymorphism and by the presence of the type I phaseolin, a third group that contains only a wild accession from the northern, Peruvian Andes

  6. Feasibility of Telemetric Intracranial Pressure Monitoring in the Neuro Intensive Care Unit.

    Science.gov (United States)

    Lilja-Cyron, Alexander; Kelsen, Jesper; Andresen, Morten; Fugleholm, Kåre; Juhler, Marianne

    2018-05-03

    index (PRx).

  7. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Science.gov (United States)

    Galindo-González, Leonardo; Deyholos, Michael K

    2016-01-01

    -related enzymes chalcone synthase, dihydroflavonol reductase and multiple anthocyanidin synthases; and a peroxidase implicated in lignin formation ( PRX52 ). Additionally, regulation of some genes indicated potential pathogen manipulation to facilitate infection; these included four disease resistance proteins that were repressed, indole acetic acid amido/amino hydrolases which were upregulated, activated expansins and glucanases, amino acid transporters and aquaporins, and finally, repression of major latex proteins.

  8. A nanomagnetic study of phase transition in manganite thin films and ballistic magnetoresistance in magnetic nanocontacts

    Science.gov (United States)

    Chung, Seok-Hwan

    This work focuses on two largely unexplored phenomena in micromagnetics: the temperature-driven paramagnetic insulator to ferromagnetic (FM) metallic phase transition in perovskite manganite and ballistic magnetoresistance in spin-polarized nanocontacts. To investigate the phase transition, an off-the-shelf commercial scanning force microscope was redesigned for operation at temperatures from 350 K to 100 K. This adaptation is elaborated in this thesis. Using this system, both ferromagnetic and charge-ordered domain structures of (La 1-xPrx)0.67Ca0.33MnO3 thin film were observed by magnetic force microscopy (MFM) and electric force microscopy (EFM) operated in the vicinity of the peak resistance temperature (Tp). Predominantly in-plane oriented FM domains of sub-micrometer size emerge below Tp and their local magnetic moment increased as the temperature is reduced. Charge-ordered insulating regions show a strong electrostatic interaction with an EFM tip at a few degrees above Tp and the interaction correlates well with the temperature dependence of resistivity of the film. Cross-correlation analysis between topography and magnetic structure on several substrates indicates FM domains form on the flat regions of the surface, while charge ordering occurs at surface protrusions. In the investigation of ballistic magnetoresistance, new results on half-metallic ferromagnets formed by atomic or nanometer contacts of CrO2-CrO 2 and CrO2-Ni are presented showing magnetoconductance as high as 400%. Analysis of the magnetoconductance versus conductance data for all materials known to exhibit so-called ballistic magnetoresistance strongly suggests that magnetoconductance of nanocontacts follows a universal mechanism. If the maximum magnetoconductance is normalized to unity and the conductance is scaled with the resistivity of the material, then all data points fall onto a universal curve independent of the contact material and the transport mechanism. The analysis has been

  9. Cytoplasmic- and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline

    Directory of Open Access Journals (Sweden)

    Cobos Rebeca

    2010-09-01

    process. In fact, several of the identified proteins have been reported as pathogenicity factors in other phytopathogenic fungi. Moreover, this proteomic analysis supposes a useful basis for deepening into D. seriata knowledge and will contribute to the development of the molecular biology of this fungal strain as it has been demonstrated by cloning the gene Prx1 encoding mitochondrial peroxiredoxin-1 of D. seriata (the first gene to be cloned in this microorganism; data not shown.

  10. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  11. Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress

    Science.gov (United States)

    Cassia, Raúl; Nocioni, Macarena; Correa-Aragunde, Natalia; Lamattina, Lorenzo

    2018-01-01

    Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth’s surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxides (NxO) and ozone (O3). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO2 and NO help to maintain the redox equilibrium. Higher CO2 concentrations increase the photosynthesis through the CO2-unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S

  12. Climate Change and the Impact of Greenhouse Gasses: CO2 and NO, Friends and Foes of Plant Oxidative Stress.

    Science.gov (United States)

    Cassia, Raúl; Nocioni, Macarena; Correa-Aragunde, Natalia; Lamattina, Lorenzo

    2018-01-01

    Here, we review information on how plants face redox imbalance caused by climate change, and focus on the role of nitric oxide (NO) in this response. Life on Earth is possible thanks to greenhouse effect. Without it, temperature on Earth's surface would be around -19°C, instead of the current average of 14°C. Greenhouse effect is produced by greenhouse gasses (GHG) like water vapor, carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxides (N x O) and ozone (O 3 ). GHG have natural and anthropogenic origin. However, increasing GHG provokes extreme climate changes such as floods, droughts and heat, which induce reactive oxygen species (ROS) and oxidative stress in plants. The main sources of ROS in stress conditions are: augmented photorespiration, NADPH oxidase (NOX) activity, β-oxidation of fatty acids and disorders in the electron transport chains of mitochondria and chloroplasts. Plants have developed an antioxidant machinery that includes the activity of ROS detoxifying enzymes [e.g., superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), and peroxiredoxin (PRX)], as well as antioxidant molecules such as ascorbic acid (ASC) and glutathione (GSH) that are present in almost all subcellular compartments. CO 2 and NO help to maintain the redox equilibrium. Higher CO 2 concentrations increase the photosynthesis through the CO 2 -unsaturated Rubisco activity. But Rubisco photorespiration and NOX activities could also augment ROS production. NO regulate the ROS concentration preserving balance among ROS, GSH, GSNO, and ASC. When ROS are in huge concentration, NO induces transcription and activity of SOD, APX, and CAT. However, when ROS are necessary (e.g., for pathogen resistance), NO may inhibit APX, CAT, and NOX activity by the S-nitrosylation of cysteine residues, favoring cell death. NO also regulates GSH concentration in several ways. NO may react with GSH to form GSNO, the NO cell reservoir and main source of S

  13. RNA-seq Transcriptome Response of Flax (Linum usitatissimum L. to the Pathogenic Fungus Fusarium oxysporum f. sp. lini.

    Directory of Open Access Journals (Sweden)

    Leonardo Miguel Galindo-González

    2016-11-01

    -related enzymes chalcone synthase, dihydroflavonol reductase and multiple anthocyanidin synthases; and a peroxidase implicated in lignin formation (PRX52. Additionally, regulation of some genes indicated potential pathogen manipulation to facilitate infection; these included four disease resistance proteins that were repressed, indole acetic acid amido/amino hydrolases which were upregulated, activated expansins and glucanases, amino acid transporters and aquaporins, and finally, repression of major latex proteins.

  14. Evaluación de la diversidad genética del género Capsicum sp. presente en los Departamentos de Vaupés, Guainía y Putumayo por medio de Isoenzimas

    Directory of Open Access Journals (Sweden)

    Lorena Quintero Barrera

    2000-01-01

    Full Text Available El género Capsicumcomprende 25 especies de las cuales cinco han sido domesticadas y dadoorigen a numerosos cultivares. Sin embargo, la alta selección a la que está siendo sometido elgénero podría llevarla a su erosión genética, por ello se requiere la introducción de nuevogermoplasma que suministre una fuente de diversidad genética, para el mejoramiento de loscultivares comerciales. Dicha fuente se debe encontrar en aquellas zonas donde las especiessilvestres, cercanas y/o relacionadas se distribuyen, ya que estas áreas funcionan como reser-vorio de genes y es allí donde se encuentran variedades con acervos genéticos amplios; fuentesgenéticas para resistencia a enfermedades, alta productividad y calidad nutricional. Teniendoen cuenta lo anterior la región amazónica colombiana tiene un valor potencial en la exploraciónde germoplasma importante para el género Capsicum, por ser considerada como el lugar deorigen del complejo silvestre annuum-chinense-frutescens. Así mismo se requiere de unaevaluación urgente de la diversidad genética de la región amazónica, antes de que se agotela disponibilidad de material vivo debido al proceso de deforestación. Con el propósito devalorar la diversidad genética presente del género Capsicum, en la Amazonía colombiana seutilizó la técnica de electroforésis de isoenzimas para los materiales de Ají colectados enhuertos y chagras indígenas de los departamentos de Vaupés, Guainía y Putumayo. Para laevaluación se utilizaron cinco isoenzimas polimórficas: alfabetaEST (alfabeta esterasa, GOT(glutamato oxaloacetato transaminasa, PRX (peroxidasa, 6PGDH (6-fosfoglucona-todehidrogenasa y ME (enzima málica. Con los resultados de presencia-ausencia de bandasse construyeron fenogramas con el índice de similaridad de Dice o Nei (1945 por mediodel programa estadístico NTSYS (Numerical Taxonomy and Multivariate Analisys System. Deacuerdo a los resultados se pudo establecer la alta variabilidad

  15. Simultaneous speciation and preservation of aqueous As, Sb and Se redox couples

    Science.gov (United States)

    Wu, D.; Pichler, T.

    2014-12-01

    We developed a new method for the simultaneous speciation analysis of inorganic arsenic (III, V), antimony (III, V) and selenium (IV, VI) in water samples via double-focusing sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS) coupled to high performance liquid chromatography (HPLC). A Hamilton PRX-X100 anion exchange column with EDTA (pH of 4.7) and 3% methanol as mobile phase was used for species separation. The flow rate was set to 1.5 mL min-1 and a solvent gradient (linear ramp from 5 mM to 30 mM) was applied. The overall analysis time for all six desired species was 11 minutes. The detection limits for As(III), As(V), Sb(III), Sb(V), Se(VI) and Se(IV) were 0.02 μg L-1, 0.06 μg L-1, 0.2 μg L-1, 0.02 μg L-1, 0.2 μg L-1 and 0.4 μg L-1 respectively. The retention times for As(III), As(V), Sb(III), Sb(V), Se(IV) and Se(VI) were 1.70, 2.94, 7.14, 2.28, 3.38 and 9.36 min, respectively. Subsequently, the stability of inorganic As(III, V), Sb(III, V) and Se(IV, VI) species in different water samples (groundwater, lake water and river water) was studied over a time scale of 11 weeks. High concentrations of Fe (25.0 mg/L) and Mn (25.0 mg/L) were added to different matrices to simulate Fe and Mn rich environments. All samples were spiked with 5.0 μg/L As(III, V) and Sb(III, V) and 15.0 μg/L Se(IV, VI).. We investigated several strategies for species preservation, i.e., EDTA only, EDTA combined with acidification (HCl, HNO3, formic acid and acetic acid). The preserved samples were stored at 4 °C in the dark. For comparison, another subsample without any preservation was stored at room temperature in the presence of light. The results showed that a combination EDTA acidified to pH of 3 can be used to preserve all species for at least 11 weeks. While EDTA only (pH = 6) failed to preserve As and Sb species, although Se species were preserved.

  16. Sufficient Condition for Monotonicity in Constructing the Distribution Function With Bernoulli Scheme

    Directory of Open Access Journals (Sweden)

    Vedenyapin Aleksandr Dmitrievich

    2015-11-01

    by the function r(x, kmin: Pnk=Сnk[P(r(x, kmin]k[1-P(r(x, kmin]n-k. We defined the probability that the total index change will be in the section [x, nS] as the sum of the probabilities of incompatible events, for which the number of successes satisfies to entered inequality. Then obviously we defined the probability that the total index changing will be in the interval [nI, x. Then the function F(x was introduced, defined on the whole line, which is identical to the amount (probability that the total index changing will be in the interval in the interval (nI, nS], and is identical to zero and one in the additions. Some properties of the distribution function F(x are satisfied automatically. A sufficient condition for the monotonicity is presented in the form of Theorem 2.