WorldWideScience

Sample records for prsa space shuttle

  1. Power Reactant Storage Assembly (PRSA) (Space Shuttle). PRSA hydrogen and oxygen DVT tank refurbishment

    Science.gov (United States)

    1993-01-01

    The Power Reactant Storage Assembly (PRSA) liquid hydrogen Development Verification Test (H2 DVT) tank assembly (Beech Aircraft Corporation P/N 15548-0116-1, S/N 07399000SHT0001) and liquid oxygen (O2) DVT tank assembly (Beech Aircraft Corporation P/N 15548-0115-1, S/N 07399000SXT0001) were refurbished by Ball Electro-Optics and Cryogenics Division to provide NASA JSC, Propulsion and Power Division, the capability of performing engineering tests. The refurbishments incorporated the latest flight configuration hardware and avionics changes necessary to make the tanks function like flight articles. This final report summarizes these refurbishment activities. Also included are up-to-date records of the pressure time and cycle histories.

  2. Space Shuttle Abort Evolution

    Science.gov (United States)

    Henderson, Edward M.; Nguyen, Tri X.

    2011-01-01

    This paper documents some of the evolutionary steps in developing a rigorous Space Shuttle launch abort capability. The paper addresses the abort strategy during the design and development and how it evolved during Shuttle flight operations. The Space Shuttle Program made numerous adjustments in both the flight hardware and software as the knowledge of the actual flight environment grew. When failures occurred, corrections and improvements were made to avoid a reoccurrence and to provide added capability for crew survival. Finally some lessons learned are summarized for future human launch vehicle designers to consider.

  3. Space Shuttle-Illustration

    Science.gov (United States)

    2001-01-01

    The Space Shuttle represented an entirely new generation of space vehicles, the world's first reusable spacecraft. Unlike earlier expendable rockets, the Shuttle was designed to be launched over and over again and would serve as a system for ferrying payloads and persornel to and from Earth orbit. The Shuttle's major components are the orbiter spacecraft; the three main engines, with a combined thrust of more than 1.2 million pounds; the huge external tank (ET) that feeds the liquid hydrogen fuel and liquid oxygen oxidizer to the three main engines; and the two solid rocket boosters (SRB's), with their combined thrust of some 5.8 million pounds, that provide most of the power for the first two minutes of flight. Crucially involved with the Space Shuttle program virtually from its inception, the Marshall Space Flight Center (MSFC) played a leading role in the design, development, testing, and fabrication of many major Shuttle propulsion components. The MSFC was assigned responsibility for developing the Shuttle orbiter's high-performance main engines, the most complex rocket engines ever built. The MSFC was also responsible for developing the Shuttle's massive ET and the solid rocket motors and boosters.

  4. Space Shuttle: The Renewed Promise.

    Science.gov (United States)

    McAleer, Neil

    This booklet describes the history of the space shuttle, especially after the Challenger accident. Topics include: (1) "Introduction"; (2) "Return to Flight: The Recovery"; (3) "Space Shuttle Chronology"; (4) "Examples of Other Modifications on Shuttle's Major Systems"; (5) "Space Shuttle Recovery…

  5. Food packages for Space Shuttle

    Science.gov (United States)

    Fohey, M. F.; Sauer, R. L.; Westover, J. B.; Rockafeller, E. F.

    1978-01-01

    The paper reviews food packaging techniques used in space flight missions and describes the system developed for the Space Shuttle. Attention is directed to bite-size food cubes used in Gemini, Gemini rehydratable food packages, Apollo spoon-bowl rehydratable packages, thermostabilized flex pouch for Apollo, tear-top commercial food cans used in Skylab, polyethylene beverage containers, Skylab rehydratable food package, Space Shuttle food package configuration, duck-bill septum rehydration device, and a drinking/dispensing nozzle for Space Shuttle liquids. Constraints and testing of packaging is considered, a comparison of food package materials is presented, and typical Shuttle foods and beverages are listed.

  6. Space Shuttle Glider. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    Space Shuttle Glider is a scale model of the U.S. Space Shuttle orbiter. The airplane-like orbiter usually remains in Earth orbit for up to two weeks at a time. It normally carries a six- to seven-person crew which includes the mission commander, pilot, and several mission and/or payload specialists who have specialized training associated with…

  7. Quantum Shuttle in Phase Space

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Jauho, Antti-Pekka

    2003-01-01

    Abstract: We present a quantum theory of the shuttle instability in electronic transport through a nanostructure with a mechanical degree of freedom. A phase space formulation in terms of the Wigner function allows us to identify a crossover from the tunneling to the shuttling regime, thus...... extending the previously found classical results to the quantum domain. Further, a new dynamical regime is discovered, where the shuttling is driven exclusively by the quantum noise....

  8. Space Shuttle Corrosion Protection Performance

    Science.gov (United States)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The launch pad environment can be corrosive to metallic substrates and the Space Shuttles are exposed to this environment when preparing for launch. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the thermal protection system and aging protective coatings are performing to insure structural integrity. The assessment of this cost resources and time. The information is invaluable when minimizing risk to the safety of Astronauts and Vehicle. This paper will outline a strategic sampling plan and some operational improvements made by the Orbiter Structures team and Corrosion Control Review Board.

  9. Space Shuttle Star Tracker Challenges

    Science.gov (United States)

    Herrera, Linda M.

    2010-01-01

    The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.

  10. Space Shuttle and Hypersonic Entry

    Science.gov (United States)

    Campbell, Charles H.; Gerstenmaier, William H.

    2014-01-01

    Fifty years of human spaceflight have been characterized by the aerospace operations of the Soyuz, of the Space Shuttle and, more recently, of the Shenzhou. The lessons learned of this past half decade are important and very significant. Particularly interesting is the scenario that is downstream from the retiring of the Space Shuttle. A number of initiatives are, in fact, emerging from in the aftermath of the decision to terminate the Shuttle program. What is more and more evident is that a new era is approaching: the era of the commercial usage and of the commercial exploitation of space. It is probably fair to say, that this is the likely one of the new frontiers of expansion of the world economy. To make a comparison, in the last 30 years our economies have been characterized by the digital technologies, with examples ranging from computers, to cellular phones, to the satellites themselves. Similarly, the next 30 years are likely to be characterized by an exponential increase of usage of extra atmospheric resources, as a result of more economic and efficient way to access space, with aerospace transportation becoming accessible to commercial investments. We are witnessing the first steps of the transportation of future generation that will drastically decrease travel time on our Planet, and significantly enlarge travel envelope including at least the low Earth orbits. The Steve Jobs or the Bill Gates of the past few decades are being replaced by the aggressive and enthusiastic energy of new entrepreneurs. It is also interesting to note that we are now focusing on the aerospace band, that lies on top of the aeronautical shell, and below the low Earth orbits. It would be a mistake to consider this as a known envelope based on the evidences of the flights of Soyuz, Shuttle and Shenzhou. Actually, our comprehension of the possible hypersonic flight regimes is bounded within really limited envelopes. The achievement of a full understanding of the hypersonic flight

  11. Space Shuttle Orbiter-Illustration

    Science.gov (United States)

    2001-01-01

    This illustration is an orbiter cutaway view with callouts. The orbiter is both the brains and heart of the Space Transportation System (STS). About the same size and weight as a DC-9 aircraft, the orbiter contains the pressurized crew compartment (which can normally carry up to seven crew members), the huge cargo bay, and the three main engines mounted on its aft end. There are three levels to the crew cabin. Uppermost is the flight deck where the commander and the pilot control the mission. The middeck is where the gallery, toilet, sleep stations, and storage and experiment lockers are found for the basic needs of weightless daily living. Also located in the middeck is the airlock hatch into the cargo bay and space beyond. It is through this hatch and airlock that astronauts go to don their spacesuits and marned maneuvering units in preparation for extravehicular activities, more popularly known as spacewalks. The Space Shuttle's cargo bay is adaptable to hundreds of tasks. Large enough to accommodate a tour bus (60 x 15 feet or 18.3 x 4.6 meters), the cargo bay carries satellites, spacecraft, and spacelab scientific laboratories to and from Earth orbit. It is also a work station for astronauts to repair satellites, a foundation from which to erect space structures, and a hold for retrieved satellites to be returned to Earth. Thermal tile insulation and blankets (also known as the thermal protection system or TPS) cover the underbelly, bottom of the wings, and other heat-bearing surfaces of the orbiter to protect it during its fiery reentry into the Earth's atmosphere. The Shuttle's 24,000 individual tiles are made primarily of pure-sand silicate fibers, mixed with a ceramic binder. The solid rocket boosters (SRB's) are designed as an in-house Marshall Space Flight Center project, with United Space Boosters as the assembly and refurbishment contractor. The solid rocket motor (SRM) is provided by the Morton Thiokol Corporation.

  12. Space Shuttle RTOS Bayesian Network

    Science.gov (United States)

    Morris, A. Terry; Beling, Peter A.

    2001-01-01

    With shrinking budgets and the requirements to increase reliability and operational life of the existing orbiter fleet, NASA has proposed various upgrades for the Space Shuttle that are consistent with national space policy. The cockpit avionics upgrade (CAU), a high priority item, has been selected as the next major upgrade. The primary functions of cockpit avionics include flight control, guidance and navigation, communication, and orbiter landing support. Secondary functions include the provision of operational services for non-avionics systems such as data handling for the payloads and caution and warning alerts to the crew. Recently, a process to selection the optimal commercial-off-the-shelf (COTS) real-time operating system (RTOS) for the CAU was conducted by United Space Alliance (USA) Corporation, which is a joint venture between Boeing and Lockheed Martin, the prime contractor for space shuttle operations. In order to independently assess the RTOS selection, NASA has used the Bayesian network-based scoring methodology described in this paper. Our two-stage methodology addresses the issue of RTOS acceptability by incorporating functional, performance and non-functional software measures related to reliability, interoperability, certifiability, efficiency, correctness, business, legal, product history, cost and life cycle. The first stage of the methodology involves obtaining scores for the various measures using a Bayesian network. The Bayesian network incorporates the causal relationships between the various and often competing measures of interest while also assisting the inherently complex decision analysis process with its ability to reason under uncertainty. The structure and selection of prior probabilities for the network is extracted from experts in the field of real-time operating systems. Scores for the various measures are computed using Bayesian probability. In the second stage, multi-criteria trade-off analyses are performed between the scores

  13. The space shuttle program: a policy failure?

    Science.gov (United States)

    Logsdon, J M

    1986-05-30

    The 5 January 1972 announcement by President Richard Nixon that the United States would develop during the 1970's a new space transportation system-the space shuttle-has had fundamental impacts on the character of U.S. space activities. In retrospect, it can be argued that the shuttle design chosen was destined to fail to meet many of the policy objectives established for the system; the shuttle's problems in serving as the primary launch vehicle for the United States and in providing routine and cost-effective space transportation are in large part a result of the ways in which compromises were made in the 1971-72 period in order to gain White House and congressional approval to proceed with the program. The decision to develop a space shuttle is an example of a poor quality national commitment to a major technological undertaking.

  14. Space Shuttle Atlantis after RSS rollback

    Science.gov (United States)

    2001-01-01

    On Launch Pad 39A, the Rotating Service Structure has rolled back to reveal Space Shuttle Atlantis poised for launch. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle's robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA's Space Shuttle program.

  15. Electromagnetic Compatibility for the Space Shuttle

    Science.gov (United States)

    Scully, Robert C.

    2004-01-01

    This slide presentation reviews the Space Shuttle electromagnetic compatibility (EMC). It includes an overview of the design of the shuttle with the areas that are of concern for the electromagnetic compatibility. It includes discussion of classical electromagnetic interference (EMI) and the work performed to control the electromagnetic interference. Another area of interest is electrostatic charging and the threat of electrostatic discharge and the attempts to reduce damage to the Shuttle from these possible hazards. The issue of electrical bonding is als reviewed. Lastly the presentation reviews the work performed to protect the shuttle from lightning, both in flight and on the ground.

  16. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  17. Cosmonaut Krikalev Views Approaching Space Shuttle Atlantis

    Science.gov (United States)

    2001-01-01

    Cosmonaut Sergei K. Krikalev, flight engineer for Expedition One, is positioned by a porthole aboard the Zvezda Service Module of the International Space Station (ISS) as the Space Shuttle Atlantis approaches for docking to begin several days of joint activities between the two crews. Visible through the window are the crew cabin and forward section of the Shuttle amidst scattered clouds above the Western Pacific. The aft part of the cargo bay stowing the Destiny Laboratory is not visible in this scene.

  18. A New Era of Space Shuttle

    Directory of Open Access Journals (Sweden)

    Sun Kyu Kim

    1985-06-01

    Full Text Available The U.S. Space Shuttle represents the beginning of a new era in transportation and is the critical element in the industrialization of the near-Earth-space. Most of its flights are dedicated to reducing costs of launching commercial satellites. However, it provides a microgravity environment for processing unique and improved materials which is generating great interest in both civilian and military sectors. The space shuttle is also the necessary step in establishing a permanent space station which could host materials analysis laboratories and commercial processing facilities. This paper reviews the different elements of the space shuttle transportation system, a typical mission scenario, and discusses current activities in materials processing in space.

  19. Space Shuttle Underside Astronaut Communications Performance Evaluation

    Science.gov (United States)

    Hwu, Shian U.; Dobbins, Justin A.; Loh, Yin-Chung; Kroll, Quin D.; Sham, Catherine C.

    2005-01-01

    The Space Shuttle Ultra High Frequency (UHF) communications system is planned to provide Radio Frequency (RF) coverage for astronauts working underside of the Space Shuttle Orbiter (SSO) for thermal tile inspection and repairing. This study is to assess the Space Shuttle UHF communication performance for astronauts in the shadow region without line-of-sight (LOS) to the Space Shuttle and Space Station UHF antennas. To insure the RF coverage performance at anticipated astronaut worksites, the link margin between the UHF antennas and Extravehicular Activity (EVA) Astronauts with significant vehicle structure blockage was analyzed. A series of near-field measurements were performed using the NASA/JSC Anechoic Chamber Antenna test facilities. Computational investigations were also performed using the electromagnetic modeling techniques. The computer simulation tool based on the Geometrical Theory of Diffraction (GTD) was used to compute the signal strengths. The signal strength was obtained by computing the reflected and diffracted fields along the propagation paths between the transmitting and receiving antennas. Based on the results obtained in this study, RF coverage for UHF communication links was determined for the anticipated astronaut worksite in the shadow region underneath the Space Shuttle.

  20. AMS gets lift on space shuttle Discovery

    CERN Multimedia

    2009-01-01

    AMS-02, the CERN-recognized experiment that will seek dark matter, missing matter and antimatter in Space aboard the International Space Station (ISS), has recently got the green light to be part of the STS-134 NASA mission in 2010. Installation of AMS detectors in the Prévessin experiment hall.In a recent press release, NASA announced that the last or last-but-one mission of the Space Shuttle programme would be the one that will deliver AMS, the Alpha Magnetic Spectrometer, to the International Space Station. The Space Shuttle Discovery is due to lift off in July 2010 from Kennedy Space Center and its mission will include the installation of AMS to the exterior of the space station, using both the shuttle and station arms. "It wasn’t easy to get a lift on the Space Shuttle from the Bush administration," says professor Samuel Ting, spokesperson of the experiment, "since during his administration all the funds for space research w...

  1. STS-62 Space Shuttle mission report

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1994-05-01

    The STS-62 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSHE) systems performance during the sixty-first flight of the Space Shuttle Program and sixteenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-62; three SSME's which were designated as serial numbers 2031, 2109, and 2029 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-064. The RSRM's that were installed in each SRB were designated as 360L036A (lightweight) for the left SRB, and 36OWO36B (welterweight) for the right SRB. This STS-62 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objectives of the STS-62 mission were to perform the operations of the United States Microgravity Payload-2 (USMP-2) and the Office of Aeronautics and Space Technology-2 (OAST-2) payload. The secondary objectives of this flight were to perform the operations of the Dexterous End Effector (DEE), the Shuttle Solar Backscatter Ultraviolet/A (SSBUV/A), the Limited Duration Space Environment Candidate Material Exposure (LDCE), the Advanced Protein Crystal Growth (APCG), the Physiological Systems Experiments (PSE), the Commercial Protein Crystal Growth (CPCG), the Commercial Generic Bioprocessing Apparatus (CGBA), the Middeck Zero-Gravity Dynamics Experiment (MODE), the Bioreactor Demonstration System (BDS), the Air Force Maui Optical Site Calibration Test (AMOS), and the Auroral Photography Experiment (APE-B).

  2. Space Shuttle Solid Rocket Booster Debris Assessment

    Science.gov (United States)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  3. Orbital impacts and the space shuttle windshield

    Science.gov (United States)

    Edelstein, Karen S.

    1995-06-01

    The Space Transportation System (STS) fleet has flown more than sixty missions over the fourteen years since its first flight. As a result of encounters with on-orbit particulates (space debris and micrometeoroids), 177 impact features (chips) have been found on the STS outer windows (through STS-65). Forty-five of the damages were large enough to warrant replacement of the window. NASA's orbital operations and vehicle inspection procedures have chnaged over the history of the shuttle program, in response to concerns about the orbital environment and the cost of maintaining the space shuttle. These programmatic issues will be discussed, including safety concerns, maintenance issues, inspection procedures, and flight rule changes. Examples of orbital debris impacts to the shuttle windows will be provided. There will also be a brief discussion of the impact properties of glass and what design changes have been considered to improve the impact properties of the windows.

  4. A VLF transmitter on the Space Shuttle

    Science.gov (United States)

    Inan, U. S.; Bell, T. F.; Helliwell, R. A.; Katsufrakis, K. P.

    The use of space-borne transmitters for the study of interactions of energetic radiation belt particles and coherent plasma waves in the earth's magnetosphere has been considered. The proposed Space Shuttle/Space Lab system would provide a useful VLF transmitter platform since it can lift the required large payloads into orbit, erect long antennas, supply the electrical power required, and provide real-time control. A study is conducted of the power budget of such a VLF transmitter in an attempt to assess the feasibility of the experiment. It is found that a 1-10 kW transmitter placed on the Space Shuttle/Space Lab system can inject from one watt to up to a few kilowatts of wave power into the whistler mode. Recent results of ground-based VLF wave-injection experiments show that such power levels would be more than enough for initiating nonlinear wave growth and amplification and emission triggering in the magnetosphere.

  5. Economic analysis of the space shuttle system, volume 1

    Science.gov (United States)

    1972-01-01

    An economic analysis of the space shuttle system is presented. The analysis is based on economic benefits, recurring costs, non-recurring costs, and ecomomic tradeoff functions. The most economic space shuttle configuration is determined on the basis of: (1) objectives of reusable space transportation system, (2) various space transportation systems considered and (3) alternative space shuttle systems.

  6. Laser contouring of Space Shuttle tiles

    Science.gov (United States)

    Bishop, P. J.; Minardi, A.; He, Mingli; Shelton, Bret

    Straight through and partial cuts were made in fibrous silicon-based ceramic insulation materials (used on the Space Shuttle) to determine the feasibility of laser machining. Experimental results were accumulated from over 800 exposures to determine the belt conditions for cutting. Laser intensity, feedrate, and other parameters were varied to determine conditions for cutting and are discussed in the paper.

  7. Space Shuttle Pinhole Formation Mechanism Studies

    Science.gov (United States)

    Jacobson, Nathan S.

    1998-01-01

    Pinholes have been observed to form on the wing leading edge of the space shuttle after about 10-15 flights. In this report we expand upon previous observations by Christensen (1) that these pinholes often form along cracks and are associated with a locally zinc-rich area. The zinc appears to come from weathering and peeling paint on the launch structure. Three types of experimental examinations are performed to understand this issue further: (A) Detailed microstructural examination of actual shuttle pinholes (B) Mass spectrometric studies of coupons containing, actual shuttle pinholes and (C) Laboratory furnace studies of ZnO/SiC reactions and ZnO/SiC protected carbon/carbon reaction. On basis of these observations we present a detailed mechanism of pinhole formation due to formation of a corrosive ZnO-Na-2-O-SiO2 ternary glass, which flows into existing cracks and enlarges them.

  8. Space Shuttle security policies and programs

    Science.gov (United States)

    Keith, E. L.

    1985-01-01

    The Space Shuttle vehicle consists of the orbiter, external tank, and two solid rocket boosters. In dealing with security two major protective categories are considered, taking into account resource protection and information protection. A review is provided of four basic programs which have to be satisfied. Aspects of science and technology transfer are discussed. The restrictions for the transfer of science and technology information are covered under various NASA Management Instructions (NMI's). There were two major events which influenced the protection of sensitive and private information on the Space Shuttle program. The first event was a manned space flight accident, while the second was the enactment of a congressional bill to establish the rights of privacy. Attention is also given to national resource protection and national defense classified operations.

  9. Microbiological Lessons Learned from the Space Shuttle

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark; Bruce, Rebekah; Castro, Victoria A.; Mehta, Satish K.

    2011-01-01

    After 30 years of being the centerpiece of NASA s human spacecraft, the Space Shuttle will retire. This highly successful program provided many valuable lessons for the International Space Station (ISS) and future spacecraft. Major microbiological risks to crewmembers include food, water, air, surfaces, payloads, animals, other crewmembers, and ground support personnel. Adverse effects of microorganisms are varied and can jeopardize crew health and safety, spacecraft systems, and mission objectives. Engineering practices and operational procedures can minimize the negative effects of microorganisms. To minimize problems associated with microorganisms, appropriate steps must begin in the design phase of new spacecraft or space habitats. Spacecraft design must include requirements to control accumulation of water including humidity, leaks, and condensate on surfaces. Materials used in habitable volumes must not contribute to microbial growth. Use of appropriate materials and the implementation of robust housekeeping that utilizes periodic cleaning and disinfection will prevent high levels of microbial growth on surfaces. Air filtration can ensure low levels of bioaerosols and particulates in the breathing air. The use of physical and chemical steps to disinfect drinking water coupled with filtration can provide safe drinking water. Thorough preflight examination of flight crews, consumables, and the environment can greatly reduce pathogens in spacecraft. The advances in knowledge of living and working onboard the Space Shuttle formed the foundation for environmental microbiology requirements and operations for the International Space Station (ISS) and future spacecraft. Research conducted during the Space Shuttle Program resulted in an improved understanding of the effects of spaceflight on human physiology, microbial properties, and specifically the host-microbe interactions. Host-microbe interactions are substantially affected by spaceflight. Astronaut immune

  10. Thermal protection optimization for the space shuttle.

    Science.gov (United States)

    Garcia, F., Jr.; Fowler, W. T.

    1972-01-01

    This paper discusses optimal entry trajectories for the space shuttle that minimize the weight of an entry thermal protection system. The analysis was made using mathematical models of two types of thermal protection systems that were under consideration for the space shuttle: a metallic thermal protection system, and a reusable surface insulation thermal protection system. Optimal entries were generated using maximum orbiter nose temperature as a parameter. Thermal protection system weights were computed for both fixed and variable angles of attack using three-dimensional entry trajectories. Results indicated that variable angle-of-attack entries require less thermal protection system weight than entries at a constant angle of attack (35 deg) for both systems considered. Results also showed that 95 to 99 per cent of the thermal protection system weight requirement resulted from flight regimes in which the flow was still laminar.

  11. Semiconductor surface physics research in the Space Shuttle orbit

    Energy Technology Data Exchange (ETDEWEB)

    Lindau, I.; Spicer, W.E.

    1977-11-01

    The prospects for surface physics research on semiconductors with the Space Shuttle are summarized. The effect of residual gases and solar radiation outside the Shuttle on the semiconductor-surface electronic properties are assessed.

  12. Space shuttle crew training at CERN

    CERN Multimedia

    Paola Catapano

    From 13 to 16 October, the crew of NASA Space Shuttle mission STS-134 came to CERN for a special physics training programme. Invited here by Samuel Ting, they will deliver the Alpha Magnetic Spectrometer (AMS) detector to the International Space Station (ISS).   The STS134 crew in the Lodge at the Aiguille du Midi wearing CERN fleeces. From left to right: Captain Mark Kelly, US Navy; Pilot Gregory Johnson, USAF ret.; Mission Specialist Andrew Feustel; Mission Specialist Mike Fincke, USAF, Mission Specialist Gregory Chamitoff and Mission Specialist Roberto Vittori, ESA and Italian Air Force. Headed by Commander Mark Kelly, a US Navy captain, the crew included pilot Gregory Johnson, a US Air Force (USAF) colonel, and mission specialists Mike Fincke (also a USAF Colonel), Andrew Feustel, and Gregory Chamitoff of NASA, as well as Colonel Roberto Vittori of the European Space Agency (ESA). Two flight directors, Gary Horlache and Derek Hassmann of NASA, and the engineer responsible for the Ext...

  13. Echocardiographic evaluation of Space Shuttle crewmembers

    Science.gov (United States)

    Bungo, M. W.; Goldwater, D. J.; Popp, R. L.; Sandler, H.

    1987-01-01

    Echocardiographic measurements of left ventricular volume were obtained from 17 members of four Space Shuttle crews before and after 5- to 8-day space flights. Measurements obtained 1 h after landing indicated increases in the heart rate (HR), mean arterial pressure, and systemic vascular resistance values. On the other hand, the end-diastolic volume index (EDVI) fell 17 ml/sq m, and the stroke volume index (SVI) fell 15 ml/sq m. Measurements taken 1-2 weeks later demonstrated that the HR values returned to normal, but the EDVI and SVI values remained significantly below preflight levels, despite the ability of the subjects to ambulate and exercise. The results indicate that a space flight induces significant changes in heart volume affecting the left-ventricle function. It is suggested that the prolonged recovery period is related to the high level of aerobic conditioning in these subjects.

  14. Advanced automation in space shuttle mission control

    Science.gov (United States)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  15. Space Shuttle Orbiter Structures and Mechanisms

    Science.gov (United States)

    Gilmore, Adam L.; Estes, Lynda R.; Eilers, James A.; Logan, Jeffrey S.; Evernden, Brent A.; Decker, William S.; Hagen, Jeffrey D.; Davis, Robert E.; Broughton, James K.; Campbell, Carlisle C.; hide

    2011-01-01

    The Space Shuttle Orbiter has performed exceptionally well over its 30 years of flight experience. Among the many factors behind this success were robust, yet carefully monitored, structural and mechanical systems. From highlighting key aspects of the design to illustrating lessons learned from the operation of this complex system, this paper will attempt to educate the reader on why some subsystems operated flawlessly and why specific vulnerabilities were exposed in others. Specific areas to be covered will be the following: high level configuration overview, primary and secondary structure, mechanical systems ranging from landing gear to the docking system, and windows.

  16. Space shuttle SRM field joint: Review paper

    OpenAIRE

    S. Mohammad Gharouni; Hamid M. Panahiha; Jafar Eskandari Jam

    2014-01-01

    Due to Challenger space shuttle accident in 1986, significant research has been done concerning structural behavior of field joints in solid rocket boosters (SRB). The structural deformations between the clevis inner leg and the tang (male-to-female parts of joint), the sealing of the O-ring to prevent the hot gas in joints, has been neglected causing the failure of the vehicle. Redesigning the field joint in SRB engine by accurate analysis of dynamic and thermal loads and by design of insula...

  17. Space Shuttle Orbiter windshield bird impact analysis

    Science.gov (United States)

    Edelstein, Karen S.; McCarty, Robert E.

    The NASA Space Shuttle Orbiter's windshield employs three glass panes separated by air gaps. The brittleness of the glass offers much less birdstrike energy-absorption capability than the laminated polycarbonate windshields of more conventional aircraft; attention must accordingly be given to the risk of catastrophic bird impact, and to methods of strike prevention that address bird populations around landing sites rather than the modification of the window's design. Bird populations' direct reduction, as well as careful scheduling of Orbiter landing times, are suggested as viable alternatives. The question of birdstrike-resistant glass windshield design for hypersonic aerospacecraft is discussed.

  18. Stennis Holds Last Planned Space Shuttle Engine Test

    Science.gov (United States)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  19. Heat pipe applications for the space shuttle.

    Science.gov (United States)

    Tawil, M.; Alario, J.; Prager, R.; Bullock, R.

    1972-01-01

    Discussion of six specific applications for heat pipe (HP) devices on the space shuttle. These applications were chosen from 27 concepts formulated as part of a study to evaluate the potential benefits associated with HP use. The formulation process is briefly described along with the applications which evolved. The bulk of the discussion deals with the 'top' six - namely, HP radiators for waste heat rejection, an HP augmented cold rail, an HP circuit for electronic equipment cooling, modular heat sink for control of remote packages, an HP temperature control for compartments, and air-cooled equipment racks. The philosophy, physical design details, and performance data are presented for each concept along with a comparison with the baseline design where applicable.

  20. Space Shuttle food galley design concept

    Science.gov (United States)

    Heidelbaugh, N. D.; Smith, M. C.; Fischer, R.; Cooper, B.

    1974-01-01

    A food galley has been designed for the crew compartment of the NASA Space Shuttle Orbiter. The rationale for the definition of this design was based upon assignment of priorities to each functional element of the total food system. Principle priority categories were assigned in the following order: food quality, nutrition, food packaging, menu acceptance, meal preparation efficiency, total system weight, total system volume, and total power requirements. Hence, the galley was designed using an 'inside-out' approach which first considered the food and related biological functions and subsequently proceeded 'outward' from the food to encompass supporting hardware. The resulting galley is an optimal design incorporating appropriate priorities for trade-offs between biological and engineering constraints. This design approach is offered as a model for the design of life support systems.

  1. Fundamental plant biology enabled by the space shuttle.

    Science.gov (United States)

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  2. H2O2 space shuttle APU

    Science.gov (United States)

    1975-01-01

    A cryogenic H2-O2 auxiliary power unit (APU) was developed and successfully demonstrated. It has potential application as a minimum weight alternate to the space shuttle baseline APU because of its (1) low specific propellant consumption and (2) heat sink capabilities that reduce the amount of expendable evaporants. A reference system was designed with the necessary heat exchangers, combustor, turbine-gearbox, valves, and electronic controls to provide 400 shp to two aircraft hydraulic pumps. Development testing was carried out first on the combustor and control valves. This was followed by development of the control subsystem including the controller, the hydrogen and oxygen control valves, the combustor, and a turbine simulator. The complete APU system was hot tested for 10 hr with ambient and cryogenic propellants. Demonstrated at 95 percent of design power was 2.25 lb/hp-hr. At 10 percent design power, specific propellant consumption was 4 lb/hp-hr with space simulated exhaust and 5.2 lb/hp-hr with ambient exhaust. A 10 percent specific propellant consumption improvement is possible with some seal modifications. It was demonstrated that APU power levels could be changed by several hundred horsepower in less than 100 msec without exceeding allowable turbine inlet temperatures or turbine speed.

  3. Study of space shuttle environmental control and life support problems

    Science.gov (United States)

    Dibble, K. P.; Riley, F. E.

    1971-01-01

    Four problem areas were treated: (1) cargo module environmental control and life support systems; (2) space shuttle/space station interfaces; (3) thermal control considerations for payloads; and (4) feasibility of improving system reusability.

  4. Space Shuttle Main Propulsion System Anomaly Detection: A Case Study

    Data.gov (United States)

    National Aeronautics and Space Administration — The space shuttle main engine (SSME) is part of the Main Propnlsion System (MPS) which is an extremely complex system containing several sub-systems and components,...

  5. Success Legacy of the Space Shuttle Program: Changes in Shuttle Post Challenger and Columbia

    Science.gov (United States)

    Jarrell, George

    2010-01-01

    This slide presentation reviews the legacy of successes in the space shuttle program particularly with regards to the changes in the culture of NASA's organization after the Challenger and Columbia accidents and some of the changes to the shuttles that were made manifest as a result of the accidents..

  6. Liquid Hydrogen Consumption During Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    This slide presentation reviews the issue of liquid hydrogen consumption and the points of its loss in prior to the shuttle launch. It traces the movement of the fuel from the purchase to the on-board quantity and the loss that results in 54.6 of the purchased quantity being on board the Shuttle.

  7. Space shuttle heat pipe thermal control systems

    Science.gov (United States)

    Alario, J.

    1973-01-01

    Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.

  8. Space shuttle SRM field joint: Review paper

    Directory of Open Access Journals (Sweden)

    S. Mohammad Gharouni

    2014-09-01

    Full Text Available Due to Challenger space shuttle accident in 1986, significant research has been done concerning structural behavior of field joints in solid rocket boosters (SRB. The structural deformations between the clevis inner leg and the tang (male-to-female parts of joint, the sealing of the O-ring to prevent the hot gas in joints, has been neglected causing the failure of the vehicle. Redesigning the field joint in SRB engine by accurate analysis of dynamic and thermal loads and by design of insulator and good O-ring, the leakiness of combustion hot gases was eliminated. Some parts of field joint such as capture feature (CF and its third O-ring, J-leg insulator and shim were added to redesigned field joint. Also, some adjustments in sealing system and pins were done to promote the efficiency of the field joint. Due to different experimental analysis on assembled field joints with default imperfections, redesigned joints operated well. These redesigned field joints are commonly used in aerospace and mechanical structures. This paper investigates the original and the redesigned field joints with additional explanations of different parts of the redesigned joints.

  9. Latent Virus Reactivation in Space Shuttle Astronauts

    Science.gov (United States)

    Mehta, S. K.; Crucian, B. E.; Stowe, R. P.; Sams, C.; Castro, V. A.; Pierson, D. L.

    2011-01-01

    Latent virus reactivation was measured in 17 astronauts (16 male and 1 female) before, during, and after short-duration Space Shuttle missions. Blood, urine, and saliva samples were collected 2-4 months before launch, 10 days before launch (L-10), 2-3 hours after landing (R+0), 3 days after landing (R+14), and 120 days after landing (R+120). Epstein-Barr virus (EBV) DNA was measured in these samples by quantitative polymerase chain reaction. Varicella-zoster virus (VZV) DNA was measured in the 381 saliva samples and cytomegalovirus (CMV) DNA in the 66 urine samples collected from these subjects. Fourteen astronauts shed EBV DNA in 21% of their saliva samples before, during, and after flight, and 7 astronauts shed VZV in 7.4% of their samples during and after flight. It was interesting that shedding of both EBV and VZV increased during the flight phase relative to before or after flight. In the case of CMV, 32% of urine samples from 8 subjects contained DNA of this virus. In normal healthy control subjects, EBV shedding was found in 3% and VZV and CMV were found in less than 1% of the samples. The circadian rhythm of salivary cortisol measured before, during, and after space flight did not show any significant difference between flight phases. These data show that increased reactivation of latent herpes viruses may be associated with decreased immune system function, which has been reported in earlier studies as well as in these same subjects (data not reported here).

  10. Legacy of Biomedical Research During the Space Shuttle Program

    Science.gov (United States)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  11. Hubble Space Telescope-Space Shuttle interface dynamic verification test

    Science.gov (United States)

    Blair, Mark A.; Vadlamudi, Nagarjuna

    1989-01-01

    A test program has been developed for the interface between the Space Shuttle Orbiter and the Hubble Space Telescope which couples a standard modal test for a simple suspended structure with a novel, 'interface verification' test. While the free-free modal test is used to verify the high loads generating structural modes due to the interaction of internal components of the structure with the rest of the structure, the interface verification test verifies the character of the high-loading generating modes in which the structure reacts against the booster interface. The novel method excites the structure at a single payload-booster interface DOF, while all other interfaces are left free to move.

  12. Mission Possible: BioMedical Experiments on the Space Shuttle

    Science.gov (United States)

    Bopp, E.; Kreutzberg, K.

    2011-01-01

    Biomedical research, both applied and basic, was conducted on every Shuttle mission from 1981 to 2011. The Space Shuttle Program enabled NASA investigators and researchers from around the world to address fundamental issues concerning living and working effectively in space. Operationally focused occupational health investigations and tests were given priority by the Shuttle crew and Shuttle Program management for the resolution of acute health issues caused by the rigors of spaceflight. The challenges of research on the Shuttle included: limited up and return mass, limited power, limited crew time, and requirements for containment of hazards. The sheer capacity of the Shuttle for crew and equipment was unsurpassed by any other launch and entry vehicle and the Shuttle Program provided more opportunity for human research than any program before or since. To take advantage of this opportunity, life sciences research programs learned how to: streamline the complicated process of integrating experiments aboard the Shuttle, design experiments and hardware within operational constraints, and integrate requirements between different experiments and with operational countermeasures. We learned how to take advantage of commercial-off-the-shelf hardware and developed a hardware certification process with the flexibility to allow for design changes between flights. We learned the importance of end-to-end testing for experiment hardware with humans-in-the-loop. Most importantly, we learned that the Shuttle Program provided an excellent platform for conducting human research and for developing the systems that are now used to optimize research on the International Space Station. This presentation will include a review of the types of experiments and medical tests flown on the Shuttle and the processes that were used to manifest and conduct the experiments. Learning Objective: This paper provides a description of the challenges related to launching and implementing biomedical

  13. Space Shuttle Mission 41-C Official crew photo

    Science.gov (United States)

    1983-01-01

    Space Shuttle Mission 41-C Official crew photo. From left to right: Robert Crippen, crew commander; Terry Hart, mission specialist; James van Hoften, mission specialist; George Nelson, mission specialist; and Francis (Dick) Scobee, pilot.

  14. On the wings of a dream: The Space Shuttle

    Science.gov (United States)

    1988-01-01

    Described are the organization and some of the interests and missions of NASA, the Space Transportation System, the Space Shuttle orbiter Enterprise, astronaut training and clothing, being launched into space, living and working in weightlessness, extravehicular activity, and the return from space to Earth. The various aspects of living in space are treated in considerable detail. This includes how the astronauts prepare food, how they eat and drink, how they sleep, exercise, change clothes and handle personal hygiene when in space.

  15. Space operations center: Shuttle interaction study extension, executive summary

    Science.gov (United States)

    1982-01-01

    The Space Operations Center (SOC) is conceived as a permanent facility in low Earth orbit incorporating capabilities for space systems construction; space vehicle assembly, launching, recovery and servicing; and the servicing of co-orbiting satellites. The Shuttle Transportation System is an integral element of the SOC concept. It will transport the various elements of the SOC into space and support the assembly operation. Subsequently, it will regularly service the SOC with crew rotations, crew supplies, construction materials, construction equipment and components, space vehicle elements, and propellants and spare parts. The implications to the SOC as a consequence of the Shuttle supporting operations are analyzed. Programmatic influences associated with propellant deliveries, spacecraft servicing, and total shuttle flight operations are addressed.

  16. NASDA aquatic animal experiment facilities for space shuttle and ISS

    Science.gov (United States)

    Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki

    National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS).

  17. STS-98 Space Shuttle Atlantis after RSS rollback

    Science.gov (United States)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- This closeup reveals Space Shuttle Atlantis after rollback of the Rotating Service Structure. Extended to the side of Atlantis is the orbiter access arm, with the White Room at its end. The White Room provides entry for the crew into Atlantis'''s cockpit. Below Atlantis, on either side of the tail, are the tail service masts. They support the fluid, gas and electrical requirements of the orbiter'''s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis is carrying the U.S. Laboratory Destiny, a key module in the growth of the International Space Station. Destiny will be attached to the Unity node on the Space Station using the Shuttle'''s robotic arm. Three spacewalks are required to complete the planned construction work during the 11-day mission. Launch is targeted for 6:11 p.m. EST and the planned landing at KSC Feb. 18 about 1:39 p.m. This mission marks the seventh Shuttle flight to the Space Station, the 23rd flight of Atlantis and the 102nd flight overall in NASA'''s Space Shuttle program.

  18. New space shuttles; Les enfants de la navette

    Energy Technology Data Exchange (ETDEWEB)

    Ollive, L.

    1999-03-01

    The American space shuttle is the only reusable satellite launcher of today. Several new projects of spatial planes or helicopter rockets are being studied. The Venture Star, planned to replace the shuttle by 2012, is a spatial plane whose prototype named X-33 will have its first flight in summer 2000. The Venture Star will allow a sharp decrease in launching costs: 12000 francs/Kg instead of 10 times as much for the shuttle, the carrying capacity will be 18 tons and the global investment will reach 10 milliard francs. Other projects such as Roton or Astroliner are also briefly presented. (A.C.)

  19. The Launch Processing System for Space Shuttle.

    Science.gov (United States)

    Springer, D. A.

    1973-01-01

    In order to reduce costs and accelerate vehicle turnaround, a single automated system will be developed to support shuttle launch site operations, replacing a multiplicity of systems used in previous programs. The Launch Processing System will provide real-time control, data analysis, and information display for the checkout, servicing, launch, landing, and refurbishment of the launch vehicles, payloads, and all ground support systems. It will also provide real-time and historical data retrieval for management and sustaining engineering (test records and procedures, logistics, configuration control, scheduling, etc.).

  20. Modal Testing of Seven Shuttle Cargo Elements for Space Station

    Science.gov (United States)

    Kappus, Kathy O.; Driskill, Timothy C.; Parks, Russel A.; Patterson, Alan (Technical Monitor)

    2001-01-01

    From December 1996 to May 2001, the Modal and Control Dynamics Team at NASA's Marshall Space Flight Center (MSFC) conducted modal tests on seven large elements of the International Space Station. Each of these elements has been or will be launched as a Space Shuttle payload for transport to the International Space Station (ISS). Like other Shuttle payloads, modal testing of these elements was required for verification of the finite element models used in coupled loads analyses for launch and landing. The seven modal tests included three modules - Node, Laboratory, and Airlock, and four truss segments - P6, P3/P4, S1/P1, and P5. Each element was installed and tested in the Shuttle Payload Modal Test Bed at MSFC. This unique facility can accommodate any Shuttle cargo element for modal test qualification. Flexure assemblies were utilized at each Shuttle-to-payload interface to simulate a constrained boundary in the load carrying degrees of freedom. For each element, multiple-input, multiple-output burst random modal testing was the primary approach with controlled input sine sweeps for linearity assessments. The accelerometer channel counts ranged from 252 channels to 1251 channels. An overview of these tests, as well as some lessons learned, will be provided in this paper.

  1. Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle

    Science.gov (United States)

    Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.

    1999-01-01

    Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.

  2. Vibroacoustic testing of Space Shuttle thermal protection system panels

    Science.gov (United States)

    Rucker, C. E.; Mixson, J. S.

    1976-01-01

    The modes and acoustic responses of two panels representing Space Shuttle thermal protection panels were investigated. The panels consisted of flat aluminum sheet stiffened longitudinally with hat-section stringers and corrugated supporting panels representing Shuttle ring frame bulkheads. In addition, one panel had 24 tiles of LI900 silica thermal insulation material and a strain isolator pad bonded to the face sheet. Both panels were found to have approximately eight modal frequencies in the 60 to 500 Hz range, where Shuttle acoustic loads are expected to be high. The strain response to a progressive acoustic wave representing a Shuttle spectrum was characterized by the occurrence of larger strains in the direction normal to the stringers than in the direction parallel to the stringers; three modes in the 100 to 400 Hz range contributed significantly to the strain response.

  3. Space shuttle launch vehicle aerodynamic uncertainties: Lessons learned

    Science.gov (United States)

    Hamilton, J. T.

    1983-01-01

    The chronological development and evolution of an uncertainties model which defines the complex interdependency and interaction of the individual Space Shuttle element and component uncertainties for the launch vehicle are presented. Emphasis is placed on user requirements which dictated certain concessions, simplifications, and assumptions in the analytical model. The use of the uncertainty model in the vehicle design process and flight planning support is discussed. The terminology and justification associated with tolerances as opposed to variations are also presented. Comparisons of and conclusions drawn from flight minus predicted data and uncertainties are given. Lessons learned from the Space Shuttle program concerning aerodynamic uncertainties are examined.

  4. HAL/S programmer's guide. [for space shuttle program

    Science.gov (United States)

    Newbold, P. M.; Hotz, R. L.

    1974-01-01

    This programming language was developed for the flight software of the NASA space shuttle program. HAL/S is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, HAL/s incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. As the name indicates, HAL/S is a dialect of the original HAL language previously developed. Changes have been incorporated to simplify syntax, curb excessive generality, or facilitate flight code emission.

  5. Space shuttle safety - A hybrid vehicle breeds new problems.

    Science.gov (United States)

    Pinkel, I. I.

    1971-01-01

    Discussion of a few novel problems raised by the design and flight plan of the space shuttle and by the dangerous cargos it might carry. Among the problems cited are those connected with the inspection of the bearings of the propellant turbopumps, particularly those of the hydrogen pump, for evidence of spalling, as well as problems arising in the inspection of the high-temperature parts of the combustor and turbine section of the airbreathing turbofan for shuttle booster and orbiter, and problems resulting from the possibility of fire hazard due to spontaneous ignition of fuel vapor in the fuel tank vapor space.

  6. Space Shuttle Orbiter logistics - Managing in a dynamic environment

    Science.gov (United States)

    Renfroe, Michael B.; Bradshaw, Kimberly

    1990-01-01

    The importance and methods of monitoring logistics vital signs, logistics data sources and acquisition, and converting data into useful management information are presented. With the launch and landing site for the Shuttle Orbiter project at the Kennedy Space Center now totally responsible for its own supportability posture, it is imperative that logistics resource requirements and management be continually monitored and reassessed. Detailed graphs and data concerning various aspects of logistics activities including objectives, inventory operating levels, customer environment, and data sources are provided. Finally, some lessons learned from the Shuttle Orbiter project and logistics options which should be considered by other space programs are discussed.

  7. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  8. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    Science.gov (United States)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility

  9. Legacy of Environmental Research During the Space Shuttle Program

    Science.gov (United States)

    Lane, Helen W.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over the last 30 years and represents the longest and largest U.S. human spaceflight program. Risks to crewmembers were included in the research areas of nutrition, microbiology, toxicology, radiation, and sleep quality. To better understand the Shuttle environment, Crew Health Care System was developed. As part of this system, the Environmental Health Subsystem was developed to monitor the atmosphere for gaseous contaminants and microbial contamination levels and to monitor water quality and radiation. This program expended a great deal of effort in studying and mitigating risks related to contaminations due to food, water, air, surfaces, crewmembers, and payloads including those with animals. As the Shuttle had limited stowage space and food selection, the development of nutritional requirements for crewmembers was imperative. As the Shuttle was a reusable vehicle, microbial contamination was of great concern. The development of monitoring instruments that could withstand the space environment took several years and many variations to come up with a suitable instrument. Research with space radiation provided an improved understanding of the various sources of ionizing radiation and the development of monitoring instrumentation for space weather and the human exposure within the orbiter's cabin. Space toxicology matured to include the management of offgassing products that could pollute the crewmembers air quality. The Shuttle Program implemented a 5-level toxicity rating system and developed new monitoring instrumentation to detect toxic compounds. The environment of space caused circadian desynchrony, sleep deficiency, and fatigue leading to much research and major emphasis on countermeasures. Outcomes of the research in these areas were countermeasures, operational protocols, and hardware. Learning Objectives: This symposium will provide an overview of the

  10. Report of the Space Shuttle Management Independent Review Team

    Science.gov (United States)

    1995-01-01

    At the request of the NASA Administrator a team was formed to review the Space Shuttle Program and propose a new management system that could significantly reduce operating costs. Composed of a group of people with broad and extensive experience in spaceflight and related areas, the team received briefings from the NASA organizations and most of the supporting contractors involved in the Shuttle Program. In addition, a number of chief executives from the supporting contractors provided advice and suggestions. The team found that the present management system has functioned reasonably well despite its diffuse structure. The team also determined that the shuttle has become a mature and reliable system, and--in terms of a manned rocket-propelled space launch system--is about as safe as today's technology will provide. In addition, NASA has reduced shuttle operating costs by about 25 percent over the past 3 years. The program, however, remains in a quasi-development mode and yearly costs remain higher than required. Given the current NASA-contractor structure and incentives, it is difficult to establish cost reduction as a primary goal and implement changes to achieve efficiencies. As a result, the team sought to create a management structure and associated environment that enables and motivates the Program to further reduce operational costs. Accordingly, the review team concluded that the NASA Space Shuttle Program should (1) establish a clear set of program goals, placing a greater emphasis on cost-efficient operations and user-friendly payload integration; (2) redefine the management structure, separating development and operations and disengaging NASA from the daily operation of the space shuttle; and (3) provide the necessary environment and conditions within the program to pursue these goals.

  11. Applying reliability models to the maintenance of Space Shuttle software

    Science.gov (United States)

    Schneidewind, Norman F.

    1992-01-01

    Software reliability models provide the software manager with a powerful tool for predicting, controlling, and assessing the reliability of software during maintenance. We show how a reliability model can be effectively employed for reliability prediction and the development of maintenance strategies using the Space Shuttle Primary Avionics Software Subsystem as an example.

  12. The Flight of the Space Shuttle "Discovery" (STS-119)

    Science.gov (United States)

    Stinner, Arthur; Metz, Don

    2010-01-01

    This article is intended to model the ascent of the space shuttle for high school teachers and students. It provides a background for a sufficiently comprehensive description of the physics (kinematics and dynamics) of the March 16, 2009, "Discovery" launch. Our data are based on a comprehensive spreadsheet kindly sent to us by Bill Harwood, the…

  13. Design and Development of the Space Shuttle Tail Service Masts

    Science.gov (United States)

    Dandage, S. R.; Herman, N. A.; Godfrey, S. E.; Uda, R. T.

    1977-01-01

    The successful launch of a space shuttle vehicle depends on the proper operation of two tail service masts (TSMs). Reliable TSM operation is assured through a comprehensive design, development, and testing program. The results of the concept verification test (CVT) and the resulting impact on prototype TSM design are presented. The design criteria are outlined, and the proposed prototype TSM tests are described.

  14. Development of a waste collection system for the space shuttle.

    Science.gov (United States)

    Behrend, A. F., Jr.; Swider, J. E., Jr.

    1972-01-01

    The development of a waste collection system to accommodate both male and female crew members for the space shuttle is discussed. The waste collection system, with emphasis on the collection and transfer of urine, is described. Human-interface requirements, zero-gravity influences and effects, and operational considerations required for total system design are discussed.

  15. A Shuttle based laser system for space communication

    Science.gov (United States)

    Fitzmaurice, Michael W.; Bruno, Ronald C.

    1988-01-01

    A key element of NASA-Goddard's plan for future laser space communications is the Space Shuttle-based Laser Technology Experiments Facility (LTEF), which will be designed to communicate with a cooperative laser system under development for the Advanced Communication Technology Satellite (ACTS) and will conduct a comprehensive set of acquisition, tracking, and communication experiments. Attention is presently given to the challenges faced by designers in achieving LTEF acquisition of the ACTS downlink beacon laser.

  16. Orbit transfer operations for the Space Shuttle era

    Science.gov (United States)

    Davis, H. P.

    1979-01-01

    Orbit transfer operations are reviewed relative to the objectives, operational factors, and crew model concepts of future mission requirements. The review is based on studies presently underway and on projected needs and goals of the Space Shuttle era. Numerous tradeoff studies and further analyses are needed before the best form of the manned geostationary vehicle becomes fixed. However, the Shuttle can provide the necessary low-orbit logistics service for dispatching manned geostationary missions on as frequent a schedule as will be needed to serve the advanced geostationary satellites of the near future.

  17. Space Shuttle crew compartment debris-contamination

    Science.gov (United States)

    Goodman, Jerry R.; Villarreal, Leopoldo J.

    1992-01-01

    Remedial actions undertaken to reduce debris during manned flights and ground turnaround operations at Kennedy Space Center and Palmdale are addressed. They include redesign of selected ground support equipment and Orbiter hardware to reduce particularization/debris generation; development of new detachable filters for air-cooled avionics boxes; application of tape-on screens to filter debris; and implementation of new Orbiter maintenance and turnaround procedures to clean filters and the crew compartment. Most of these steps were implemented before the return-to-flight of STS-26 in September 1988 which resulted in improved crew compartment habitability and less potential for equipment malfunction.

  18. A Comparison Between Orion Automated and Space Shuttle Rendezvous Techniques

    Science.gov (United States)

    Ruiz, Jose O,; Hart, Jeremy

    2010-01-01

    The Orion spacecraft will replace the space shuttle and will be the first human spacecraft since the Apollo program to leave low earth orbit. This vehicle will serve as the cornerstone of a complete space transportation system with a myriad of mission requirements necessitating rendezvous to multiple vehicles in earth orbit, around the moon and eventually beyond . These goals will require a complex and robust vehicle that is, significantly different from both the space shuttle and the command module of the Apollo program. Historically, orbit operations have been accomplished with heavy reliance on ground support and manual crew reconfiguration and monitoring. One major difference with Orion is that automation will be incorporated as a key element of the man-vehicle system. The automated system will consist of software devoted to transitioning between events based on a master timeline. This effectively adds a layer of high level sequencing that moves control of the vehicle from one phase to the next. This type of automated control is not entirely new to spacecraft since the shuttle uses a version of this during ascent and entry operations. During shuttle orbit operations however many of the software modes and hardware switches must be manually configured through the use of printed procedures and instructions voiced from the ground. The goal of the automation scheme on Orion is to extend high level automation to all flight phases. The move towards automation represents a large shift from current space shuttle operations, and so these new systems will be adopted gradually via various safeguards. These include features such as authority-to-proceed, manual down modes, and functional inhibits. This paper describes the contrast between the manual and ground approach of the space shuttle and the proposed automation of the Orion vehicle. I will introduce typical orbit operations that are common to all rendezvous missions and go on to describe the current Orion automation

  19. STS-70 Space Shuttle Mission Report - September 1995

    Science.gov (United States)

    Fricke, Robert W., Jr.

    1995-01-01

    The STS-70 Space Shuttle Program Mission Report summarizes the Payload activities as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Reusable Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the seventieth flight of the Space Shuttle Program, the forty-fifth flight since the return-to-flight, and the twenty-first flight of the Orbiter Discovery (OV-103). In addition to the Orbiter, the flight vehicle consisted of an ET that was designated ET-71; three SSMEs that were designated as serial numbers 2036, 2019, and 2017 in positions 1, 2, and 3, respectively; and two SRBs that were designated 81-073. The RSRMs, designated RSRM-44, were installed in each SRB and were designated as 36OL044A for the left SRB, and 36OL044B for the right SRB. The primary objective of this flight was to deploy the Tracking and Data Relay Satellite-G/Inertial Upper Stage (TDRS-G/IUS). The secondary objectives were to fulfill the requirements of the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R); Bioreactor Demonstration System (BDS); Commercial Protein Crystal Growth (CPCG) experiment; Space Tissue Loss/National Institutes of Health - Cells (STL/NIH-C) experiment; Biological Research in Canisters (BRIC) experiment; Shuttle Amateur Radio Experiment-2 (SAREX-2); Visual Function Tester-4 (VFT-4); Hand-Held, Earth-Oriented, Real-Time, Cooperative, User-Friendly Location-Targeting and Environmental System (HERCULES); Microencapsulation in Space-B (MIS-B) experiment; Window Experiment (WINDEX); Radiation Monitoring Equipment-3 (RME-3); and the Military Applications of Ship Tracks (MAST) payload.

  20. Coordinating "Execute" Data for ISS and Space Shuttle

    Science.gov (United States)

    Whitney, Greg; Melendrez, David; Hadlock, Jason

    2010-01-01

    The Joint Execute Package Development and Integration tool is a Web utility program that provides an integrated capability to generate and manage messages and execute package data for members of a space shuttle and the International Space Station (ISS). (An execute package consists of flight plans, short-term plans, procedure updates, data needed to operate the space-shuttle and ISS systems, in-flight maintenance procedures, inventory-stowage data, software upgrades, flight notes, scripts for publicized events, and other instructions.) This program is a third-generation "execute"-package Web tool, built on experience gained from two programs used previously to support realtime operations. This program provides integration and synchronization between the space-shuttle and ISS teams during joint operations. Hundreds of messages per week must be uplinked as "joint" messages; that is, messages for crewmembers of both spacecraft. The program includes configuration-management components that ensure that the same message goes to both crews and spacecraft, effectively eliminating the potential for error in manual direction of messages. The program also controls the format and layout of the crews Web pages, ensuring consistency between uplinks. If the crews Web pages were edited manually, hyperlink and formatting errors would be common.

  1. Oxidation resistant carbon-carbon composite for Space Shuttle application.

    Science.gov (United States)

    Rogers, D. C.; Seeger, J. W.; Shuford, D. M.

    1973-01-01

    An oxidation resistant carbon-carbon composite has been developed for use on the NASA Space Shuttle Orbiter Vehicle which can function on the high temperature surfaces to satisfy the 100 mission reuse capability requirement. This paper describes the design requirements, materials and processes developed, and the successful testing of simulated full-scale prototype hardware. Materials considerations are illustrated, including strength and oxidation testing, along with physical property determinations, characterizing the material over the predicted temperature range of use.

  2. Space shuttle contamination due to backflow from control motor exhaust

    Science.gov (United States)

    Robertson, S. J.; Chan, S. T. K.; Lee, A. L.

    1976-01-01

    Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given.

  3. Space Shuttle Meteoroid and Orbital Debris Threat Assessment Procedure

    Science.gov (United States)

    Hyde, J.; Christiansen, E.

    Prior to each shuttle mission, Meteoroid and orbital Debris (M/OD) threat assessments are performed to determine the critical penetration risk for the orbiter vehicle, the radiator tube leak risk &the window replacement risk. Mission parameters, such as vehicle attitude, exposure time and altitude are used as inputs for the assessment. The assessments are performed using the BUMPER computer code at the NASA/JSC Hypervelocity Impact Technology Facility (HITF). An M/OD risk analysis is typically performed in support of orbiter Cargo Integration Reviews (CIR) and Flight Readiness Reviews (FRR). Three types of M/OD risk are assessed. The most important involves the calculation of "critical" penetration risk, defined as penetrations that may result in the catastrophic loss of vehicle and crew. Critical failure criteria have been established though detailed engineering evaluations by NASA and Boeing. The radiator assessment is concerned with premature end-of- mission due to loss of a coolant loop. The window assessment is a postflight maintenance and logistics issue. The result s are provided to the Space Shuttle Vehicle Engineering Office (MV) the Space and Life Science Directorate (SA) at JSC. This paper will document the inputs used in the critical penetration analysis for CIR, FRR, and post-flight assessments, it will also serve as a reference for the Space Shuttle Orbiter finite element model (FEM) surface property definitions that are used in M/OD threat assessments.

  4. Case Study of the Space Shuttle Cockpit Avionics Upgrade Software

    Science.gov (United States)

    Ferguson, Roscoe C.; Thompson, Hiram C.

    2005-01-01

    The purpose of the Space Shuttle Cockpit Avionics Upgrade project was to reduce crew workload and improve situational awareness. The upgrade was to augment the Shuttle avionics system with new hardware and software. An early version of this system was used to gather human factor statistics in the Space Shuttle Motion Simulator of the Johnson Space Center for one month by multiple teams of astronauts. The results were compiled by NASA Ames Research Center and it was was determined that the system provided a better than expected increase in situational awareness and reduction in crew workload. Even with all of the benefits nf the system, NASA cancelled the project towards the end of the development cycle. A major success of this project was the validation of the hardware architecture and software design. This was significant because the project incorporated new technology and approaches for the development of human rated space software. This paper serves as a case study to document knowledge gained and techniques that can be applied for future space avionics development efforts. The major technological advances were the use of reflective memory concepts for data acquisition and the incorporation of Commercial off the Shelf (COTS) products in a human rated space avionics system. The infused COTS products included a real time operating system, a resident linker and loader, a display generation tool set, and a network data manager. Some of the successful design concepts were the engineering of identical outputs in multiple avionics boxes using an event driven approach and inter-computer communication, a reconfigurable data acquisition engine, the use of a dynamic bus bandwidth allocation algorithm. Other significant experiences captured were the use of prototyping to reduce risk, and the correct balance between Object Oriented and Functional based programming.

  5. Apu/hydraulic/actuator Subsystem Computer Simulation. Space Shuttle Engineering and Operation Support, Engineering Systems Analysis. [for the space shuttle

    Science.gov (United States)

    1975-01-01

    Major developments are examined which have taken place to date in the analysis of the power and energy demands on the APU/Hydraulic/Actuator Subsystem for space shuttle during the entry-to-touchdown (not including rollout) flight regime. These developments are given in the form of two subroutines which were written for use with the Space Shuttle Functional Simulator. The first subroutine calculates the power and energy demand on each of the three hydraulic systems due to control surface (inboard/outboard elevons, rudder, speedbrake, and body flap) activity. The second subroutine incorporates the R. I. priority rate limiting logic which limits control surface deflection rates as a function of the number of failed hydraulic. Typical results of this analysis are included, and listings of the subroutines are presented in appendicies.

  6. Definition of air quality measurements for monitoring space shuttle launches

    Science.gov (United States)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  7. Sensitivity of Space Shuttle Weight and Cost to Structure Subsystem Weights

    Science.gov (United States)

    Wedge, T. E.; Williamson, R. P.

    1973-01-01

    Quantitative relationships between changes in space shuttle weights and costs with changes in weight of various portions of space shuttle structural subsystems are investigated. These sensitivity relationships, as they apply at each of three points in the development program (preliminary design phase, detail design phase, and test/operational phase) have been established for five typical space shuttle designs, each of which was responsive to the missions in the NASA Shuttle RFP, and one design was that selected by NASA.

  8. Status of Thermal NDT of Space Shuttle Materials at NASA

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.; Hodges, Kenneth; Koshti, Ajay; Ryan, Daniel; Reinhardt, Walter W.

    2007-01-01

    Since the Space Shuttle Columbia accident, NASA has focused on improving advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge and nose cap. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Details of the analysis technique that has been developed to allow insitu inspection of a majority of shuttle RCC components is discussed. Additionally, validation testing, performed to quantify the performance of the system, will be discussed. Finally, the results of applying this technology to the Space Shuttle Discovery after its return from the STS-114 mission in July 2005 are discussed.

  9. Animation graphic interface for the space shuttle onboard computer

    Science.gov (United States)

    Wike, Jeffrey; Griffith, Paul

    1989-01-01

    Graphics interfaces designed to operate on space qualified hardware challenge software designers to display complex information under processing power and physical size constraints. Under contract to Johnson Space Center, MICROEXPERT Systems is currently constructing an intelligent interface for the LASER DOCKING SENSOR (LDS) flight experiment. Part of this interface is a graphic animation display for Rendezvous and Proximity Operations. The displays have been designed in consultation with Shuttle astronauts. The displays show multiple views of a satellite relative to the shuttle, coupled with numeric attitude information. The graphics are generated using position data received by the Shuttle Payload and General Support Computer (PGSC) from the Laser Docking Sensor. Some of the design considerations include crew member preferences in graphic data representation, single versus multiple window displays, mission tailoring of graphic displays, realistic 3D images versus generic icon representations of real objects, the physical relationship of the observers to the graphic display, how numeric or textual information should interface with graphic data, in what frame of reference objects should be portrayed, recognizing conditions of display information-overload, and screen format and placement consistency.

  10. OSS-1 - A pathfinder mission for space science on Shuttle

    Science.gov (United States)

    Neupert, W. M.

    1983-01-01

    On the third Shuttle flight (STS-3), the Orbiter carried a payload of nine scientific instruments. The payload was designated OSS-1 because the program was originaly managed by the Office of Space Science. The OSS-1 objectives are discussed, taking into account the Plasma Diagnostics Package, a study concerned with vehicle charging and potential, the Thermal Canister Experiment, the Solar Flare X-ray Polarimeter, the Solar Ultraviolet Spectral Irradiance Monitor, the study of the influence of weightlessness on lignification in developing plant seedlings, the Microabrasion Foil Experiment, the Contamination Monitor Package, and a study of the characteristics of the Shuttle/Spacelab induced atmosphere. The OSS-1 payload was launched on STS-3 on March 22, 1982.

  11. Animals in Space From Research Rockets to the Space Shuttle

    CERN Document Server

    Burgess, Colin

    2007-01-01

    Many readers will doubtless be astonished to learn that animals were being fired aloft in U.S. and Soviet research rockets in the late 1940s. In fact most people not only believe that the Russian space dog Laika was the first canine to be launched into space, but also that the high-profile, precursory Mercury flights of chimps Ham and Enos were the only primate flights conducted by the United States. In fact, both countries had sent literally dozens of animals aloft for many years prior to these events and continued to do so for many years after. Other latter-day space nations, such as France and China, would also begin to use animals in their own space research. Animals in Space will explain why dogs, primates, mice and other rodents were chosen and tested, at a time when dedicated scientists from both space nations were determined to establish the survivability of human subjects on both ballistic and orbital space flights. It will also recount the way this happened; the secrecy involved and the methods empl...

  12. Space Shuttle Day-of-Launch Trajectory Design and Verification

    Science.gov (United States)

    Harrington, Brian E.

    2010-01-01

    A top priority of any launch vehicle is to insert as much mass into the desired orbit as possible. This requirement must be traded against vehicle capability in terms of dynamic control, thermal constraints, and structural margins. The vehicle is certified to a specific structural envelope which will yield certain performance characteristics of mass to orbit. Some envelopes cannot be certified generically and must be checked with each mission design. The most sensitive envelopes require an assessment on the day-of-launch. To further minimize vehicle loads while maximizing vehicle performance, a day-of-launch trajectory can be designed. This design is optimized according to that day s wind and atmospheric conditions, which will increase the probability of launch. The day-of-launch trajectory verification is critical to the vehicle's safety. The Day-Of-Launch I-Load Uplink (DOLILU) is the process by which the Space Shuttle Program redesigns the vehicle steering commands to fit that day's environmental conditions and then rigorously verifies the integrated vehicle trajectory's loads, controls, and performance. The Shuttle methodology is very similar to other United States unmanned launch vehicles. By extension, this method would be similar to the methods employed for any future NASA launch vehicles. This presentation will provide an overview of the Shuttle's day-of-launch trajectory optimization and verification as an example of a more generic application of dayof- launch design and validation.

  13. The space shuttle launch vehicle aerodynamic verification challenges

    Science.gov (United States)

    Wallace, R. O.; Austin, L. D.; Hondros, J. G.; Surber, T. E.; Gaines, L. M.; Hamilton, J. T.

    1985-01-01

    The Space Shuttle aerodynamics and performance communities were challenged to verify the Space Shuttle vehicle (SSV) aerodynamics and system performance by flight measurements. Historically, launch vehicle flight test programs which faced these same challenges were unmanned instrumented flights of simple aerodynamically shaped vehicles. However, the manned SSV flight test program made these challenges more complex because of the unique aerodynamic configuration powered by the first man-rated solid rocket boosters (SRB). The analyses of flight data did not verify the aerodynamics or performance preflight predictions of the first flight of the Space Transportation System (STS-1). However, these analyses have defined the SSV aerodynamics and verified system performance. The aerodynamics community also was challenged to understand the discrepancy between the wind tunnel and flight defined aerodynamics. The preflight analysis challenges, the aerodynamic extraction challenges, and the postflight analyses challenges which led to the SSV system performance verification and which will lead to the verification of the operational ascent aerodynamics data base are presented.

  14. Human interactions in space: ISS vs. Shuttle/Mir

    Science.gov (United States)

    Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.

    2006-07-01

    This paper compares findings from two NASA-funded studies of international long-duration missions to the Mir space station (Shuttle/Mir) and to the International Space Station (ISS). American and Russian crewmembers and mission control personnel participated. Issues examined included changes in mood and group social climate over time, displacement of group tension to outside monitoring personnel, cultural differences, and leadership roles. Findings were based on the completion of a weekly questionnaire that included items from the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale. An examination of issues investigated in both studies revealed much similarity in findings. There was little support for the presence of changes in levels of mood and group climate over time, and no evidence for a "3rd quarter phenomenon". Both studies also provided evidence for the displacement of negative emotions to outside personnel in both crewmembers and mission control personnel. There were similar patterns of differences between Americans and Russians and between crewmembers and mission control personnel. Finally, in both studies, the support role of the leader was related to group cohesion among crewmembers, and both the task and support roles of the leader were related to cohesion among mission control personnel. Thus, in these four areas, the ISS study substantially replicated the findings from the earlier Shuttle/Mir study, suggesting that common psychosocial issues affect people engaged in on-orbit space missions.

  15. Artificial intelligence techniques for scheduling Space Shuttle missions

    Science.gov (United States)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  16. Formal Verification for a Next-Generation Space Shuttle

    Science.gov (United States)

    Nelson, Stacy D.; Pecheur, Charles; Koga, Dennis (Technical Monitor)

    2002-01-01

    This paper discusses the verification and validation (V&2) of advanced software used for integrated vehicle health monitoring (IVHM), in the context of NASA's next-generation space shuttle. We survey the current VBCV practice and standards used in selected NASA projects, review applicable formal verification techniques, and discuss their integration info existing development practice and standards. We also describe two verification tools, JMPL2SMV and Livingstone PathFinder, that can be used to thoroughly verify diagnosis applications that use model-based reasoning, such as the Livingstone system.

  17. Space Shuttle exhausted aluminum oxide - A measured particle size distribution

    Science.gov (United States)

    Cofer, W. R., III; Purgold, G. C.; Edahl, R. A.; Winstead, E. L.

    1991-01-01

    Aluminum oxide (A2O3) particles were collected from the Space Shuttle exhaust plume immediately following the launch of STS-34 on October 18, 1989. A2O3 samples were obtained at 2.4, 3.0, 3.2, and 7.4 km in altitude. The samples were analyzed using SEM to develope particle size distributions. There were no indications that the particle size distribution changed as a function of altitude. The particle number concentrations per cubic meter of air sampled for the four collections was found to fit an exponential expression.

  18. Procedures for analysis of debris relative to Space Shuttle systems

    Science.gov (United States)

    Kim, Hae Soo; Cummings, Virginia J.

    1993-01-01

    Debris samples collected from various Space Shuttle systems have been submitted to the Microchemical Analysis Branch. This investigation was initiated to develop optimal techniques for the analysis of debris. Optical microscopy provides information about the morphology and size of crystallites, particle sizes, amorphous phases, glass phases, and poorly crystallized materials. Scanning electron microscopy with energy dispersive spectrometry is utilized for information on surface morphology and qualitative elemental content of debris. Analytical electron microscopy with wavelength dispersive spectrometry provides information on the quantitative elemental content of debris.

  19. Space Shuttle Orbiter Digital Outer Mold Line Scanning

    Science.gov (United States)

    Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen

    2012-01-01

    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to produce post-flight configuration outer mold line surfaces. Very detailed scans of the windward side of these vehicles provide resolution of the detailed tile step and gap geometry, as well as the reinforced carbon carbon nose cap and leading edges. Lower resolution scans of the upper surface provide definition of the crew cabin windows, wing upper surfaces, payload bay doors, orbital maneuvering system pods and the vertical tail. The process for acquisition of these digital scans as well as post-processing of the very large data set will be described.

  20. Random Vibration of Space Shuttle Weather Protection Systems

    Directory of Open Access Journals (Sweden)

    Isaac Elishakoff

    1995-01-01

    Full Text Available The article deals with random vibrations of the space shuttle weather protection systems. The excitation model represents a fit to the measured experimental data. The cross-spectral density is given as a convex combination of three exponential functions. It is shown that for the type of loading considered, the Bernoulli-Euler theory cannot be used as a simplified approach, and the structure will be more properly modeled as a Timoshenko beam. Use of the simple Bernoulli-Euler theory may result in an error of about 50% in determining the mean-square value of the bending moment in the weather protection system.

  1. Redundancy management of the Space Shuttle inertial measurement units

    Science.gov (United States)

    Thibodeau, J. R.; Bauer, S. R.

    1982-01-01

    A description is given of the inertial measurement unit (IMU) redundancy management (RM) techniques for automatic in-flight monitoring of inertial instrument performance by the Space Shuttles primary onboard guidance, navigation, and control computers. The techniques and rationale for detecting and identifying faulty instruments are discussed. Special attention is given to the design philosophy, thresholds, and error propagation characteristics of the IMU RM system. The derivation of thresholds is described from the viewpoint of reliability and the safety of the vehicle and crew.

  2. Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle

    Science.gov (United States)

    Hale, N. Wayne (Editor); Lulla, Kamlesh (Editor); Lane, Helen W. (Editor); Chapline, Gail (Editor)

    2010-01-01

    This Space Shuttle book project reviews Wings In Orbit-scientific and engineering legacies of the Space Shuttle. The contents include: 1) Magnificent Flying Machine-A Cathedral to Technology; 2) The Historical Legacy; 3) The Shuttle and its Operations; 4) Engineering Innovations; 5) Major Scientific Discoveries; 6) Social, Cultural, and Educational Legacies; 7) Commercial Aerospace Industries and Spin-offs; and 8) The Shuttle continuum, Role of Human Spaceflight.

  3. The space shuttle payload planning working groups. Volume 10: Space technology

    Science.gov (United States)

    1973-01-01

    The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.

  4. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    Science.gov (United States)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  5. Expert systems applications for space shuttle payload integration automation

    Science.gov (United States)

    Morris, Keith

    1988-01-01

    Expert systems technologies have been and are continuing to be applied to NASA's Space Shuttle orbiter payload integration problems to provide a level of automation previously unrealizable. NASA's Space Shuttle orbiter was designed to be extremely flexible in its ability to accommodate many different types and combinations of satellites and experiments (payloads) within its payload bay. This flexibility results in differnet and unique engineering resource requirements for each of its payloads, creating recurring payload and cargo integration problems. Expert systems provide a successful solution for these recurring problems. The Orbiter Payload Bay Cabling Expert (EXCABL) was the first expert system, developed to solve the electrical services provisioning problem. A second expert system, EXMATCH, was developed to generate a list of the reusable installation drawings available for each EXCABL solution. These successes have proved the applicability of expert systems technologies to payload integration problems and consequently a third expert system is currently in work. These three expert systems, the manner in which they resolve payload problems and how they will be integrated are described.

  6. ISS and Space Shuttle Radiation Measurements at Solar Minimum

    Science.gov (United States)

    Gaza, Ramona; Welton, Andrew; Dunegan, Audrey; Lee, Kerry

    2011-01-01

    A summary of 2008-2011 ISS and Space Shuttle radiation dosimetry results for inside vehicle radiation monitoring in low-Earth orbit will be presented. Results include new data from ISS Expedition 22-25/20A radiation area monitors (RAM) and Shuttle Missions STS127-STS133 passive radiation dosimeters (PRD). ISS 20A radiation measurement locations included three Node 2 crew quarters locations at NOD2S5_CQ, NOD2P5_CQ and CQ-3 (Deck), as well as ESA Columbus, and JAXA Kibo locations. ISS 20A and STS127-STS133 missions were flown at 51.6 inclination with an altitude range of 330-350 km. The passive radiation results will be presented in terms of measured daily dose obtained using luminescence detectors (i.e., Al2O3:C, LiF:Mg,Ti and CaF2:Tm). In addition, preliminary results from the DOSIS 2 Project, in collaboration with the German Space Agency (DLR) will be presented. SRAG s participation to the DOSIS 2 exposure on ISS (11/16/2009-05/26/2010) involved passive radiation measurements at 10 different shielding locations inside the ESA Columbus Module.

  7. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  8. Space Shuttle vernier thruster long-life chamber development

    Science.gov (United States)

    Krohn, Douglas D.

    1990-01-01

    The Space Shuttle Reaction Control Subsystem (RCS) vernier thruster is a pressure fed engine that utilizes storable propellants to provide precise attitude control for the Orbiter. The current vernier thruster is life limited due to its chamber material. By developing an iridium-lined rhenium chamber for the vernier, substantial gains could be achieved in the operational life of the chamber. The present RCS vernier, its requirements, operating characteristics, and life limitations are described. The current technology status of iridium-lined rhenium is presented along with a description of the operational life capabilities to be gained from implementing this material into the design of a long life vernier chamber. Discussion of the proposed demonstration program to be performed by the NASA Lyndon B. Johnson Space Center to attain additional insight into the application of this technology to the RCS vernier, includes the technical objectives, approach, and program schedule. The plans for further development and integration with the Orbiter and the Shuttle system are also presented.

  9. Fault diagnosis for the Space Shuttle main engine

    Science.gov (United States)

    Duyar, Ahmet; Merrill, Walter

    1992-01-01

    A conceptual design of a model-based fault detection and diagnosis system is developed for the Space Shuttle main engine. The design approach consists of process modeling, residual generation, and fault detection and diagnosis. The engine is modeled using a discrete time, quasilinear state-space representation. Model parameters are determined by identification. Residuals generated from the model are used by a neural network to detect and diagnose engine component faults. Fault diagnosis is accomplished by training the neural network to recognize the pattern of the respective fault signatures. Preliminary results for a failed valve, generated using a full, nonlinear simulation of the engine, are presented. These results indicate that the developed approach can be used for fault detection and diagnosis. The results also show that the developed model is an accurate and reliable predictor of the highly nonlinear and very complex engine.

  10. Space shuttle orbiter heat pipe applications. Volume 1: Synopsis

    Science.gov (United States)

    Alario, J. P.; Prager, R. C.

    1972-01-01

    An investigation was made to formulate and evaluate heat pipe applications for the space shuttle orbiter. Of the twenty-seven specific applications which were identified, a joint evaluation resulted in the selection of five of the most promising ones for prototype development. The formulation process is described, along with the applications which evolved. The bulk of the discussion deals with the top five applications: (1) heat pipe augmented cold rail; (2) avionics heat pipe circuit; (3) heat pipe/phase change material modular sink; (4) air-to-heat-pipe heat exchanger; and (5) heat pipe radiator for compartment temperature control. The philosophy, physical design details, and performance data are presented for each concept along with a comparison to the baseline design where applicable. A sixth application, heat pipe space radiator for waste heat rejection, was also recommended for prototype development.

  11. Alternative Suspension System for Space Shuttle Avionics Shelf

    Science.gov (United States)

    Biele, Frank H., III

    2010-01-01

    Engineers working in the Aerospace field under deadlines and strict budgets often miss the opportunity to design something that is considered new or innovative, favoring instead to use the tried-and-true design over those that may, in fact, be more efficient. This thesis examines an electronic equipment stowage shelf suspended from a frame in the cargo bay (mid fuselage) of the United States Space Transportation System (STS), the Space Shuttle, and 3 alternative designs. Four different designs are examined and evaluated. The first design is a conventional truss, representing the tried and true approach. The second is a cable dome type structure consisting of struts and pre-stressed wiring. The third and fourth are double layer tensegrity systems consisting of contiguous struts of the order k=1 and k=2 respectively.

  12. Forced Forward Smoldering Experiments Aboard The Space Shuttle

    Science.gov (United States)

    Fernandez-Pello, A. C.; Bar-Ilan, A.; Rein, G.; Urban, D. L.; Torero, J. L.

    2003-01-01

    Smoldering is a basic combustion problem that presents a fire risk because it is initiated at low temperatures and because the reaction can propagate slowly in the material interior and go undetected for long periods of time. It yields a higher conversion of fuel to toxic compounds than does flaming, and may undergo a transition to flaming. To date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. With the establishment of the International Space Station, and the planning of a potential manned mission to Mars, there has been an increased interest in the study of smoldering in microgravity. The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a spacecraft environment. The aim of the experiment is to provide a better fundamental understanding of the controlling mechanisms of smoldering combustion under normal- and microgravity conditions. This in turn will aid in the prevention and control of smolder originated fires, both on earth and in spacecrafts. The microgravity smoldering experiments have to be conducted in a space-based facility because smoldering is a very slow process and consequently its study in a microgravity environment requires extended periods of time. The microgravity experiments reported here were conducted aboard the Space Shuttle. The most recent tests were conducted during the STS-105 and STS-108 missions. The results of the forward smolder experiments from these flights are reported here. In forward smolder, the reaction front propagates in the same direction as the oxidizer flow. The heat released by the heterogeneous oxidation reaction is transferred ahead of the reaction heating the unreacted fuel. The resulting increase of the virgin fuel temperature leads to the onset of the smolder reaction, and propagates through the fuel. The MSC data are compared with normal gravity

  13. To orbit and back again how the space shuttle flew in space

    CERN Document Server

    Sivolella, Davide

    2014-01-01

    The question may be simple, but the answer is not as easy to give. This book describes the structures and systems used each time the Shuttle was launched, and then follows an imaginary mission, explaining how those structures and systems were used in orbital operations and the return to Earth. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. Highly illustrated with many diagrams, photographs and technical drawings, To Orbit and Back Again • focuses on the engineering aspects of the Shuttle • describes the systems and subsystems in clear, non-technical terms • brings to the fore the design work behind the Space Shuttle and the mission itself.    .

  14. Characterization of the Space Shuttle Ascent Debris using CFD Methods

    Science.gov (United States)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.

  15. Space shuttle orbiter windshield system design and test

    Science.gov (United States)

    Hayashida, K.; Suppanz, M. J.

    1972-01-01

    The development and testing of primary structural elements that are necessary to design a windshield system for the space shuttle orbiter are summarized. The elements include the outer (heat shield) panes, the inner pressure panes, the seals for both panes, and components of both window frames. One test article representing a pressure pane, including frames and seals, was tested under two sets of conditions. One set represented 100 mission cycles with temperature and pressure typical of those exerted on the innermost pane of the three-pane window system, and the second set represented 100 mission cycles with temperature and pressure typical of those exerted on a middle pane. A second test article representing an outer (heat sheild) pane was tested to conditions of 120 entry cycles, which equates to 100 entry cycles plus sufficient fatigue on the pane to account for 100 boost cycles. All elements of the design survived the test conditions in good condition. Window system for the shuttle orbiter vehicle.

  16. Relative efficacy of the proposed Space Shuttle antimotion sickness medications

    Science.gov (United States)

    Hordinsky, J. R.; Schwartz, E.; Beier, J.; Martin, J.; Aust, G.

    1982-07-01

    Space motion sickness has been estimated as affecting between 1/3 and 1/2 of all space flight participants. NASA has at the moment proposed a combination of promethazine and ephedrine ( P/E) and one of scopolamine and dextroamphetamine ( S/D), both given orally, as well as a transdermally applied scopolamine (TAS), as preventive and ameliorative measures. The reported double-blind study tests the early phase actions and efficacy of the transdermal scopolamine (Transderm ™-V of ALZA Corporation) and compares these in detail to the oral medications. Motion sickness resistance was tested by standardized head movements while accelerating at 0.2°/sec 2 to a maximum rotation of 240°/sec, with an intermediate plateau of 10 min at 180°/sec. To permit weighting motion sickness protection against other system influences, cardiovascular, psychological (subjective and objective), and visual parameter changes were documented for the three therapeutic modes. The relative impact of the various modalities on operational and experimental components of space missions is discussed. A comparison to intramuscularly administered promethazine (a backup therapeutic mode suggested for Space Shuttle use) is also included.

  17. Space Shuttle Discovery is launched on mission STS-96

    Science.gov (United States)

    1999-01-01

    On its perfect launch today, Space Shuttle Discovery's brilliant flames illuminate the tower at left, with the lightning mast on top, and the billows of smoke and steam at right. Liftoff into a gossamer dawn sky for mission STS-96 occurred at 6:49:42 a.m. EDT. The crew of seven begin a 10-day logistics and resupply mission for the International Space Station, carrying about 4,000 pounds of supplies, to be stored aboard the station for use by future crews, including laptop computers, cameras, tools, spare parts, and clothing. The mission also includes such payloads as a Russian crane, the Strela; a U.S.-built crane; the Spacehab Oceaneering Space System Box (SHOSS), a logistics items carrier; and STARSHINE, a student-involved experiment. It will include a space walk to attach the cranes to the outside of the ISS for use in future construction. Landing is expected at the SLF on June 6 about 1:58 a.m. EDT.

  18. Experimental Investigations of Space Shuttle BX-265 Foam

    Science.gov (United States)

    Lerch, Bradley A.; Sullivan, Roy M.

    2009-01-01

    This report presents a variety of experimental studies on the polyurethane foam, BX-265. This foam is used as a close-out foam insulation on the space shuttle external tank. The purpose of this work is to provide a better understanding of the foam s behavior and to support advanced modeling efforts. The following experiments were performed: Thermal expansion was measured for various heating rates. The in situ expansion of foam cells was documented by heating the foam in a scanning electron microscope. Expansion mechanisms are described. Thermogravimetric analysis was performed at various heating rates and for various environments. The glass transition temperature was also measured. The effects of moisture on the foam were studied. Time-dependent effects were measured to give preliminary data on viscoelastoplastic properties.

  19. Dossier space travel. Nuclear fuel shuttle; Dossier ruimtevaart. Splijtstofshuttle

    Energy Technology Data Exchange (ETDEWEB)

    Klomp, H.

    2011-03-11

    The space shuttle will be making its last flight this year, but a successor has not yet been arranged. All alternatives that were reviewed by the American government in the last decades have in common that they use chemical combustion as means of propulsion. A serious next step in human spaceflight requires a more sturdy propulsion system: atomic explosions. [Dutch] De spaceshuttle maakt dit jaar zijn laatste vlucht, maar een opvolger is er nog niet. Alle alternatieven die de Amerikaanse overheid de afgelopen decennia de revue heeft laten passeren, hebben gemeen dat ze als stuwmiddel gebruikmaken van chemische verbranding. Voor een serieuze stap voorwaarts in de bemande ruimtevaart is een steviger voortstuwingssysteem nodig: atoomexplosies.

  20. Space Shuttle Ascent Flight Design Process: Evolution and Lessons Learned

    Science.gov (United States)

    Picka, Bret A.; Glenn, Christopher B.

    2011-01-01

    The Space Shuttle Ascent Flight Design team is responsible for defining a launch to orbit trajectory profile that satisfies all programmatic mission objectives and defines the ground and onboard reconfiguration requirements for this high-speed and demanding flight phase. This design, verification and reconfiguration process ensures that all applicable mission scenarios are enveloped within integrated vehicle and spacecraft certification constraints and criteria, and includes the design of the nominal ascent profile and trajectory profiles for both uphill and ground-to-ground aborts. The team also develops a wide array of associated training, avionics flight software verification, onboard crew and operations facility products. These key ground and onboard products provide the ultimate users and operators the necessary insight and situational awareness for trajectory dynamics, performance and event sequences, abort mode boundaries and moding, flight performance and impact predictions for launch vehicle stages for use in range safety, and flight software performance. These products also provide the necessary insight to or reconfiguration of communications and tracking systems, launch collision avoidance requirements, and day of launch crew targeting and onboard guidance, navigation and flight control updates that incorporate the final vehicle configuration and environment conditions for the mission. Over the course of the Space Shuttle Program, ascent trajectory design and mission planning has evolved in order to improve program flexibility and reduce cost, while maintaining outstanding data quality. Along the way, the team has implemented innovative solutions and technologies in order to overcome significant challenges. A number of these solutions may have applicability to future human spaceflight programs.

  1. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Quality and Reliability Date

    Science.gov (United States)

    Orr, James K.; Peltier, Daryl

    2010-01-01

    Thsi slide presentation reviews the avionics software system on board the space shuttle, with particular emphasis on the quality and reliability. The Primary Avionics Software System (PASS) provides automatic and fly-by-wire control of critical shuttle systems which executes in redundant computers. Charts given show the number of space shuttle flights vs time, PASS's development history, and other charts that point to the reliability of the system's development. The reliability of the system is also compared to predicted reliability.

  2. Space Shuttle - The new baseline. [design changes and refinements for cost reduction

    Science.gov (United States)

    Malkin, M. S.

    1974-01-01

    Recent design alterations and refinements in the Space Shuttle program are considered with particular attention to the present baseline Shuttle configurations, performance characteristics, mission profiles, and flight and ground operations. Hardware and software development and testing, propulsion systems, entry trajectory events, and payload capability are covered. The refined Space Shuttle system design is characterized as one reflecting firm technical and economic considerations. Systems development is well under way, with all major contractors progressing on schedule.

  3. Image Analysis Based on Soft Computing and Applied on Space Shuttle During the Liftoff Process

    Science.gov (United States)

    Dominquez, Jesus A.; Klinko, Steve J.

    2007-01-01

    Imaging techniques based on Soft Computing (SC) and developed at Kennedy Space Center (KSC) have been implemented on a variety of prototype applications related to the safety operation of the Space Shuttle during the liftoff process. These SC-based prototype applications include detection and tracking of moving Foreign Objects Debris (FOD) during the Space Shuttle liftoff, visual anomaly detection on slidewires used in the emergency egress system for the Space Shuttle at the laJlIlch pad, and visual detection of distant birds approaching the Space Shuttle launch pad. This SC-based image analysis capability developed at KSC was also used to analyze images acquired during the accident of the Space Shuttle Columbia and estimate the trajectory and velocity of the foam that caused the accident.

  4. Psychosocial issues in space: results from Shuttle/Mir.

    Science.gov (United States)

    Kanas, N; Salnitskiy, V; Grund, E M; Weiss, D S; Gushin, V; Bostrom, A; Kozerenko, O; Sled, A; Marmar, C R

    2001-06-01

    Important psychosocial issues involving tension, cohesion, leader support, and displacement of negative emotions were evaluated in a 4 1/2-year study involving five U.S. and four Russian Shuttle/Mir space missions. Weekly mood and group climate questionnaires were completed by five U.S. astronauts, eight Russian cosmonauts, and 42 U.S. and 16 Russian mission control subjects. There were few findings that supported our hypothesized changes in tension, cohesion, and leader support in crew and ground subjects using various time models, although crewmembers reported decreasing leader support in the 2nd half of the missions, and astronauts showed some evidence of a novelty effect in the first few weeks. There was no evidence suggesting a 3rd quarter effect among crewmembers on any of the 21 subscales evaluated. In contrast, there was strong evidence to support the hypothesized displacement of tension and negative emotions from crewmembers to mission control personnel and from mission control personnel to management. There were several significant differences in response between Americans vs. Russians, crewmembers vs. mission control personnel, and subjects in this study vs. people in comparable groups on Earth. Subject responses before, during, and after the missions were similar, and we did not find evidence for asthenia in space. Critical incidents that were reported generally dealt with events on-board the Mir and interpersonal conflicts, although most of the responses were from a relatively small number of subjects. Our findings have implications for future training and lead to a number of countermeasures.

  5. Computerized Machine for Cutting Space Shuttle Thermal Tiles

    Science.gov (United States)

    Ramirez, Luis E.; Reuter, Lisa A.

    2009-01-01

    A report presents the concept of a machine aboard the space shuttle that would cut oversized thermal-tile blanks to precise sizes and shapes needed to replace tiles that were damaged or lost during ascent to orbit. The machine would include a computer-controlled jigsaw enclosed in a clear acrylic shell that would prevent escape of cutting debris. A vacuum motor would collect the debris into a reservoir and would hold a tile blank securely in place. A database stored in the computer would contain the unique shape and dimensions of every tile. Once a broken or missing tile was identified, its identification number would be entered into the computer, wherein the cutting pattern associated with that number would be retrieved from the database. A tile blank would be locked into a crib in the machine, the shell would be closed (proximity sensors would prevent activation of the machine while the shell was open), and a "cut" command would be sent from the computer. A blade would be moved around the crib like a plotter, cutting the tile to the required size and shape. Once the tile was cut, an astronaut would take a space walk for installation.

  6. Implementing the space shuttle data processing system with the space generic open avionics architecture

    Science.gov (United States)

    Wray, Richard B.; Stovall, John R.

    1993-01-01

    This paper presents an overview of the application of the Space Generic Open Avionics Architecture (SGOAA) to the Space Shuttle Data Processing System (DPS) architecture design. This application has been performed to validate the SGOAA, and its potential use in flight critical systems. The paper summarizes key elements of the Space Shuttle avionics architecture, data processing system requirements and software architecture as currently implemented. It then summarizes the SGOAA architecture and describes a tailoring of the SGOAA to the Space Shuttle. The SGOAA consists of a generic system architecture for the entities in spacecraft avionics, a generic processing external and internal hardware architecture, a six class model of interfaces and functional subsystem architectures for data services and operations control capabilities. It has been proposed as an avionics architecture standard with the National Aeronautics and Space Administration (NASA), through its Strategic Avionics Technology Working Group, and is being considered by the Society of Aeronautic Engineers (SAE) as an SAE Avionics Standard. This architecture was developed for the Flight Data Systems Division of JSC by the Lockheed Engineering and Sciences Company, Houston, Texas.

  7. The use of 16 mm movie cameras for evaluation of the Space Shuttle remote manipulator system

    Science.gov (United States)

    van Wijk, M. C.; Kratky, V.

    Six 16 mm movie cameras, installed in the payload bay of the Space Shuttle 'Columbia', are used to monitor the performance of the remote manipulator system during several flight missions. Calibration procedures carried out in the laboratory and on board of the Space Shuttle are described. The accuracy of the photogrammetrically compiled information and initial results are discussed.

  8. Space Acquired Photo = Gemini, Skylab, Shuttle Large Format Camera: 1965 - 1984

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The Space Acquired Photography includes imagery from the Shuttle Large Format Camera, Skylab, and Gemini missions. The Space Acquired archive contains...

  9. Sleep, Circadian Rhythms, and Performance During Space Shuttle Missions

    Science.gov (United States)

    Neri, David F.; Czeisler, Charles A.; Dijk, Derk-Jan; Wyatt, James K.; Ronda, Joseph M.; Hughes, Rod J.

    2003-01-01

    Sleep and circadian rhythms may be disturbed during spaceflight, and these disturbances can affect crewmembers' performance during waking hours. The mechanisms underlying sleep and circadian rhythm disturbances in space are not well understood, and effective countermeasures are not yet available. We investigated sleep, circadian rhythms, cognitive performance, and light-dark cycles in five astronauts prior to, during, and after the 16-day STS-90 mission and the IO-day STS-95 mission. The efficacy of low-dose, alternative-night, oral melatonin administration as a countermeasure for sleep disturbances was evaluated. During these missions, scheduled rest activity cycles were 20-35 minutes shorter than 24 hours. Light levels on the middeck and in the Spacelab were very low; whereas on the flight deck (which has several windows), they were highly variable. Circadian rhythm abnormalities were observed. During the second half of the missions, the rhythm of urinary cortisol appeared to be delayed relative to the sleep-wake schedule. Performance during wakefulness was impaired. Astronauts slept only about 6.5 hours per day, and subjective sleep quality was lower in space. No beneficial effects of melatonin (0.3 mg administered prior to sleep episodes on alternate nights) were observed. A surprising finding was a marked increase in rapid eye movement (REM) sleep upon return to Earth. We conclude that these Space Shuttle missions were associated with circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and alterations in REM sleep homeostasis. Shorter than 24-hour rest-activity schedules and exposure to light-dark cycles inadequate for optimal circadian synchronization may have contributed to these disturbances.

  10. Role of Process Control in Improving Space Vehicle Safety A Space Shuttle External Tank Example

    Science.gov (United States)

    Safie, Fayssal M.; Nguyen, Son C.; Burleson, Keith W.

    2006-01-01

    Developing a safe and reliable space vehicle requires good design and good manufacturing, or in other words "design it right and build it right". A great design can be hard to build or manufacture mainly due to difficulties related to quality. Specifically, process control can be a challenge. As a result, the system suffers from low quality which leads to low reliability and high system risk. The Space Shuttle has experienced some of those cases, but has overcome these difficulties through extensive redesign efforts and process enhancements. One example is the design of the hot gas temperature sensor on the Space Shuttle Main Engine (SSME), which resulted in failure of the sensor in flight and led to a redesign of the sensor. The most recent example is the Space Shuttle External Tank (ET) Thermal Protection System (TPS) reliability issues that contributed to the Columbia accident. As a result, extensive redesign and process enhancement activities have been performed over the last two years to minimize the sensitivities and difficulties of the manual TPS application process.

  11. Techniques and Tools of NASA's Space Shuttle Columbia Accident Investigation

    Science.gov (United States)

    McDanels, Steve J.

    2005-01-01

    The Space Shuttle Columbia accident investigation was a fusion of many disciplines into a single effort. From the recovery and reconstruction of the debris, Figure 1, to the analysis, both destructive and nondestructive, of chemical and metallurgical samples, Figure 2, a multitude of analytical techniques and tools were employed. Destructive and non-destructive testing were utilized in tandem to determine if a breach in the left wing of the Orbiter had occurred, and if so, the path of the resultant high temperature plasma flow. Nondestructive analysis included topometric scanning, laser mapping, and real-time radiography. These techniques were useful in constructing a three dimensional virtual representation of the reconstruction project, specifically the left wing leading edge reinforced carbon/carbon heat protectant panels. Similarly, they were beneficial in determining where sampling should be performed on the debris. Analytic testing included such techniques as Energy Dispersive Electron Microprobe Analysis (EMPA), Electron Spectroscopy Chemical Analysis (ESCA), and X-Ray dot mapping; these techniques related the characteristics of intermetallics deposited on the leading edge of the left wing adjacent to the location of a suspected plasma breach during reentry. The methods and results of the various analyses, along with their implications into the accident, are discussed, along with the findings and recommendations of the Columbia Accident Investigation Board. Likewise, NASA's Return To Flight efforts are highlighted.

  12. Space Shuttle Systems Engineering Processes for Liftoff Debris Risk Mitigation

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    This slide presentation reviews the systems engineering process designed to reduce the risk from debris during Space Shuttle Launching. This process begins the day of launch from the tanking to the vehicle tower clearance. Other debris risks (i.e., Ascent, and micrometeoroid orbital debit) are mentioned) but are not the subject of this presentation. The Liftoff debris systems engineering process and an example of how it works are reviewed (i.e.,STS-119 revealed a bolt liberation trend on the Fixed Service Structure (FSS) 275 level elevator room). The process includes preparation of a Certification of Flight Readiness (CoFR) that includes (1) Lift-off debris from previous mission dispositioned, (2) Flight acceptance rationale has been provided for Lift-off debris sources/causes (3) Lift-off debris mission support documentation, processes and tools are in place for the up-coming mission. The process includes a liftoff debris data collection that occurs after each launch. This includes a post launch walkdown, that records each liftoff debris, and the entry of the debris into a database, it also includes a review of the imagery from the launch, and a review of the instrumentation data. There is also a review of the debris transport analysis process, that includes temporal and spatial framework and a computational fluid dynamics (CFD) analysis. which incorporates a debris transport analyses (DTA), debris materials and impact tests, and impact analyses.

  13. Duct flow nonuniformities for Space Shuttle Main Engine (SSME)

    Science.gov (United States)

    1987-12-01

    A three-duct Space Shuttle Main Engine (SSME) Hot Gas Manifold geometry code was developed for use. The methodology of the program is described, recommendations on its implementation made, and an input guide, input deck listing, and a source code listing provided. The code listing is strewn with an abundance of comments to assist the user in following its development and logic. A working source deck will be provided. A thorough analysis was made of the proper boundary conditions and chemistry kinetics necessary for an accurate computational analysis of the flow environment in the SSME fuel side preburner chamber during the initial startup transient. Pertinent results were presented to facilitate incorporation of these findings into an appropriate CFD code. The computation must be a turbulent computation, since the flow field turbulent mixing will have a profound effect on the chemistry. Because of the additional equations demanded by the chemistry model it is recommended that for expediency a simple algebraic mixing length model be adopted. Performing this computation for all or selected time intervals of the startup time will require an abundance of computer CPU time regardless of the specific CFD code selected.

  14. GPS, Earthquakes, the Ionosphere, and the Space Shuttle

    Science.gov (United States)

    Calais, Eric; Minster, J. Bernard

    1998-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements are known to produce infrasonic pressure waves in the atmosphere. Because of the coupling between neutral particles and electrons at ionospheric altitudes, these acoustic waves induce variations of the ionospheric electron density. The Global Positioning System provides a way of directly measuring the Total Electron Content in the ionosphere and, therefore. of detecting such perturbations in the upper atmosphere. In this work, we demonstrate the capabilities of the GPS technique to detect ionospheric perturbations caused by the January 17. 1994, M (sub w) =6.7, Northridge earthquake and the STS-58 Space Shuttle ascent. In both cases, we observe a perturbation of the ionospheric electron density lasting for about 30 m, with periods less than 10 m. The perturbation is complex and shows two sub-events separated by about 15 m. The phase velocities and waveform characteristics of the two sub-events lead us to interpret the first arrival as the direct propagation of 2 free wave, followed by oscillatory guided waves propagating along horizontal atmospheric interfaces at 120 km altitude and below.

  15. Automatic detection of anomalies in Space Shuttle Main Engine turbopumps

    Science.gov (United States)

    Lo, Ching F.; Whitehead, B. A.; Wu, Kewei

    1992-01-01

    A prototype expert system (developed on both PC and Symbolics 3670 lisp machine) for detecting anomalies in turbopump vibration data has been tested with data from ground tests 902-473, 902-501, 902-519, and 904-097 of the Space Shuttle Main Engine (SSME). The expert system has been utilized to analyze vibration data from each of the following SSME components: high-pressure oxidizer turbopump, high-pressure fuel turbopump, low-pressure fuel turbopump, and preburner boost pump. The expert system locates and classifies peaks in the power spectral density of each 0.4-sec window of steady-state data. Peaks representing the fundamental and harmonic frequencies of both shaft rotation and bearing cage rotation are identified by the expert system. Anomalies are then detected on the basis of sequential criteria and two threshold criteria set individually for the amplitude of each of these peaks: a prior threshold used during the first few windows of data in a test, and a posterior threshold used thereafter. In most cases the anomalies detected by the expert system agree with those reported by NASA. The two cases where there is significant disagreement will be further studied and the system design refined accordingly.

  16. Space Shuttle Main Engine real time stability analysis

    Science.gov (United States)

    Kuo, F. Y.

    1993-01-01

    The Space Shuttle Main Engine (SSME) is a reusable, high performance, liquid rocket engine with variable thrust. The engine control system continuously monitors the engine parameters and issues propellant valve control signals in accordance with the thrust and mixture ratio commands. A real time engine simulation lab was installed at MSFC to verify flight software and to perform engine dynamic analysis. A real time engine model was developed on the AD100 computer system. This model provides sufficient fidelity on the dynamics of major engine components and yet simplified enough to be executed in real time. The hardware-in-the-loop type simulation and analysis becomes necessary as NASA is continuously improving the SSME technology, some with significant changes in the dynamics of the engine. The many issues of interfaces between new components and the engine can be better understood and be resolved prior to the firing of the engine. In this paper, the SSME real time simulation Lab at the MSFC, the SSME real time model, SSME engine and control system stability analysis, both in real time and non-real time is presented.

  17. A Compilation of Space Shuttle Sonic Boom Measurements

    Science.gov (United States)

    Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.

    2011-01-01

    Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.

  18. Digital flight control software design requirements. [for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    The objective of the integrated digital flight control system is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effects by using an executive routine/function subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN and C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described. The specific estimation and control algorithms used in the various mission phases are shown. Attitude maneuver routines that interface with the DFCS are also described.

  19. Identification of Conserved and Species-Specific Functions of the Listeria monocytogenes PrsA2 Secretion Chaperone

    Science.gov (United States)

    Cahoon, Laty A.

    2015-01-01

    The Gram-positive bacterium Listeria monocytogenes is a facultative intracellular pathogen that relies on the regulated secretion and activity of a variety of proteins that sustain life within diverse environments. PrsA2 has recently been identified as a secreted peptidyl-prolyl cis/trans isomerase and chaperone that is dispensable for bacterial growth in broth culture but essential for L. monocytogenes virulence. Following host infection, PrsA2 contributes to the proper folding and activity of secreted proteins that are required for bacterial replication within the host cytosol and for bacterial spread to adjacent cells. PrsA2 is one member of a family of Gram-positive secretion chaperones that appear to play important roles in bacterial physiology; however, it is not known how these proteins recognize their substrate proteins or the degree to which their function is conserved across diverse Gram-positive species. We therefore examined PrsA proteins encoded by a variety of Gram-positive bacteria for functional complementation of L. monocytogenes mutants lacking prsA2. PrsA homologues encoded by Bacillus subtilis, Streptococcus pyogenes, Streptococcus pneumoniae, Streptococcus mutans, Staphylococcus aureus, and Lactococcus lactis were examined for functional complementation of a variety of L. monocytogenes PrsA2-associated phenotypes central to L. monocytogenes pathogenesis and bacterial cell physiology. Our results indicate that while selected aspects of PrsA2 function are broadly conserved among diverse Gram-positive bacteria, PrsA2 exhibits unique specificity for L. monocytogenes target proteins required for pathogenesis. The L. monocytogenes PrsA2 chaperone thus appears evolutionarily optimized for virulence factor secretion within the host cell cytosol while still maintaining aspects of activity relevant to more general features of Gram-positive protein translocation. PMID:26216425

  20. Ecological Impacts of the Space Shuttle Program at John F. Kennedy Space Center, Florida

    Science.gov (United States)

    Hall, Carlton R.; Schmalzer, Paul A.; Breininger, David R.; Duncan, Brean W.; Drese, John H.; Scheidt, Doug A.; Lowers, Russ H.; Reyier, Eric A.; Holloway-Adkins, Karen G.; Oddy, Donna M.; hide

    2014-01-01

    The Space Shuttle Program was one of NASAs first major undertakings to fall under the environmental impact analysis and documentation requirements of the National Environmental Policy Act of 1969 (NEPA). Space Shuttle Program activities at John F. Kennedy Space Center (KSC) and the associated Merritt Island National Wildlife Refuge (MINWR) contributed directly and indirectly to both negative and positive ecological trends in the region through the long-term, stable expenditure of resources over the 40 year program life cycle. These expenditures provided support to regional growth and development in conjunction with other sources that altered land use patterns, eliminated and modified habitats, and contributed to cultural eutrophication of the Indian River Lagoon. At KSC, most Space Shuttle Program related actions were conducted in previously developed facilities and industrial areas with the exception of the construction of the shuttle landing facility (SLF) and the space station processing facility (SSPF). Launch and operations impacts were minimal as a result of the low annual launch rate. The majority of concerns identified during the NEPA process such as potential weather modification, acid rain off site, and local climate change did not occur. Launch impacts from deposition of HCl and particulates were assimilated as a result of the high buffering capacity of the system and low launch and loading rates. Metals deposition from exhaust deposition did not display acute impacts. Sub-lethal effects are being investigated as part of the Resource Conservation and Recovery Act (RCRA) regulatory process. Major positive Space Shuttle Program effects were derived from the adequate resources available at the Center to implement the numerous environmental laws and regulations designed to enhance the quality of the environment and minimize impacts from human activities. This included reduced discharges of domestic and industrial wastewater, creation of stormwater management

  1. Space Shuttle utilization of TDRSS services. [Tracking and Data Relay Satellite System

    Science.gov (United States)

    Batson, B. H.; Novosad, S. W.; Sheehan, T. W.

    1977-01-01

    This paper provides a general description of how the tracking and data relay satellite system (TDRSS) will be utilized by the Space Shuttle. The design approaches which were necessitated for both the Shuttle S-band and Ku-band subsystems are functionally described, and current performance estimates are summarized for each communications link. The operational advantages and disadvantages of TDRSS to Shuttle are briefly considered, and both the technical and operational problem areas which have been identified to date are described.

  2. Application of flight data to Space Shuttle CCD star tracker catalog design

    Science.gov (United States)

    Barry, Karen; Hindman, Mark; Yates, Russell

    1993-01-01

    The new Shuttle Solid-State Tracker (SSST) is an improved but transparent replacement for the analog version which has flown on every Shuttle mission. This paper will examine the data collected from four Shuttle flights to establish parameters for selection of acceptable navigation stars, and apply those parameters to establish a star catalog which will be sufficient to ensure the ability of the SSST to perform attitude updates while docked to the Space Station.

  3. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    Science.gov (United States)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  4. Shuttle Shortfalls and Lessons Learned for the Sustainment of Human Space Exploration

    Science.gov (United States)

    Zapata, Edgar; Levack, Daniel J. H.; Rhodes, Russell E.; Robinson, John W.

    2009-01-01

    Much debate and national soul searching has taken place over the value of the Space Shuttle which first flew in 1981 and which is currently scheduled to be retired in 2010. Originally developed post-Saturn Apollo to emphasize affordability and safety, the reusable Space Shuttle instead came to be perceived as economically unsustainable and lacking the technology maturity to assure safe, routine access to low earth orbit (LEO). After the loss of two crews, aboard Challenger and Columbia, followed by the decision to retire the system in 2010, it is critical that this three decades worth of human space flight experience be well understood. Understanding of the past is imperative to further those goals for which the Space Shuttle was a stepping-stone in the advancement of knowledge. There was significant reduction in life cycle costs between the Saturn Apollo and the Space Shuttle. However, the advancement in life cycle cost reduction from Saturn Apollo to the Space Shuttle fell far short of its goal. This paper will explore the reasons for this shortfall. Shortfalls and lessons learned can be categorized as related to design factors, at the architecture, element and sub-system levels, as well as to programmatic factors, in terms of goals, requirements, management and organization. Additionally, no review of the Space Shuttle program and attempt to take away key lessons would be complete without a strategic review. That is, how do national space goals drive future space transportation development strategies? The lessons of the Space Shuttle are invaluable in all respects - technical, as in design, program-wise, as in organizational approach and goal setting, and strategically, within the context of the generational march toward an expanded human presence in space. Beyond lessons though (and the innumerable papers, anecdotes and opinions published on this topic) this paper traces tangible, achievable steps, derived from the Space Shuttle program experience, that must be

  5. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    Science.gov (United States)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  6. Space Medicine: Shuttle - Space Station Crew Health and Safety Challenges for Exploration

    Science.gov (United States)

    Dervay, Joseph

    2010-01-01

    This slide presentation combines some views of the shuttle take off, and the shuttle and space station on orbit, and some views of the underwater astronaut training , with a general discussion of Space Medicine. It begins with a discussion of the some of the physiological issues of space flight. These include: Space Motion Sickness (SMS), Cardiovascular, Neurovestibular, Musculoskeletal, and Behavioral/Psycho-social. There is also discussion of the space environment and the issues that are posed including: Radiation, Toxic products and propellants, Habitability, Atmosphere, and Medical events. Included also is a discussion of the systems and crew training. There are also artists views of the Constellation vehicles, the planned lunar base, and extended lunar settlement. There are also slides showing the size of earth in perspective to the other planets, and the sun and the sun in perspective to other stars. There is also a discussion of the in-flight changes that occur in neural feedback that produces postural imbalance and loss of coordination after return.

  7. Human interactions during Shuttle/Mir space missions

    Science.gov (United States)

    Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Weiss, Daniel S.; Gushin, Vadim; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.

    2001-03-01

    To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2 nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.

  8. Assembling and supplying the ISS the space shuttle fulfills its mission

    CERN Document Server

    Shayler, David J

    2017-01-01

    The creation and utilization of the International Space Station (ISS) is a milestone in space exploration. But without the Space Shuttle, it would have remained an impossible dream. Assembling and Supplying the ISS is the story of how, between 1998 and 2011, the Shuttle became the platform which enabled the construction and continued operation of the primary scientific research facility in Earth orbit. Fulfilling an objective it had been designed to complete decades before, 37 Shuttle missions carried the majority of the hardware needed to build the ISS and then acted as a ferry and supply train for early resident crews to the station. Building upon the decades of development and experience described in the companion volume Linking the Space Shuttle and Space Stations: Early Docking Technologies from Concept to Implementation, this book explores • a purpose-built hardware processing facility • challenging spacewalking objectives • extensive robotic operations • undocking a unmanned orbiter The experie...

  9. Space Shuttle Operations and Infrastructure: A Systems Analysis of Design Root Causes and Effects

    Science.gov (United States)

    McCleskey, Carey M.

    2005-01-01

    This NASA Technical Publication explores and documents the nature of Space Shuttle operations and its supporting infrastructure and addresses fundamental questions often asked of the Space Shuttle program why does it take so long to turnaround the Space Shuttle for flight and why does it cost so much? Further, the report provides an overview of the cause-and effect relationships between generic flight and ground system design characteristics and resulting operations by using actual cumulative maintenance task times as a relative measure of direct work content. In addition, this NASA TP provides an overview of how the Space Shuttle program's operational infrastructure extends and accumulates from these design characteristics. Finally, and most important, the report derives a set of generic needs from which designers can revolutionize space travel from the inside out by developing and maturing more operable and supportable systems.

  10. Life sciences payloads analyses and technical program planning studies. [project planning of space missions of space shuttles in aerospace medicine and space biology

    Science.gov (United States)

    1976-01-01

    Contractural requirements, project planning, equipment specifications, and technical data for space shuttle biological experiment payloads are presented. Topics discussed are: (1) urine collection and processing on the space shuttle, (2) space processing of biochemical and biomedical materials, (3) mission simulations, and (4) biomedical equipment.

  11. Environmentally-driven Materials Obsolescence: Material Replacements and Lessons Learned from NASA's Space Shuttle Program

    Science.gov (United States)

    Meinhold, Anne

    2013-01-01

    The Space Shuttle Program was terminated in 2011 with the last flight of the Shuttle Endeavour. During the 30 years of its operating history, the number of domestic and international environmental regulations increased rapidly and resulted in materials obsolescence risks to the program. Initial replacement efforts focused on ozone depleting substances. As pressure from environmental regulations increased, Shuttle worked on the replacement of heavy metals. volatile organic compounds and hazardous air pollutants. Near the end of the program. Shuttle identified potential material obsolescence driven by international regulations and the potential for suppliers to reformulate materials. During the Shuttle Program a team focused on environmentally-driven materials obsolescence worked to identify and mitigate these risks. Lessons learned from the Shuttle experience can be applied to new NASA Programs as well as other high reliability applications.

  12. Shuttle measured contaminant environment and modeling for payloads. Preliminary assessment of the space telescope environment in the shuttle bay

    Science.gov (United States)

    Scialdone, J. J.

    1983-01-01

    A baseline gaseous and particulate environment of the Shuttle bay was developed based on the various measurements which were made during the first four flights of the Shuttle. The environment is described by the time dependent pressure, density, scattered molecular fluxes, the column densities and including the transient effects of water dumps, engine firings and opening and closing of the bay doors. The particulate conditions in the ambient and on surfaces were predicted as a function of the mission time based on the available data. This basic Shuttle environment when combined with the outgassing and the particulate contributions of the payloads, can provide a description of the environment of a payload in the Shuttle bay. As an example of this application, the environment of the Space Telescope in the bay, which may be representative of the environment of several payloads, was derived. Among the many findings obtained in the process of modeling the environment, one is that the payloads environment in the bay is not substantially different or more objectionable than the self-generated environment of a large payload or spacecraft. It is, however, more severe during ground facilities operations, the first 15 to 20 hours of the flight, during and for a short period after ater was dumped overboard, and the reaction control engines are being fired.

  13. Space Shuttle Launch Probability Analysis: Understanding History so We Can Predict the Future

    Science.gov (United States)

    Cates, Grant R.

    2014-01-01

    The Space Shuttle was launched 135 times and nearly half of those launches required 2 or more launch attempts. The Space Shuttle launch countdown historical data of 250 launch attempts provides a wealth of data that is important to analyze for strictly historical purposes as well as for use in predicting future launch vehicle launch countdown performance. This paper provides a statistical analysis of all Space Shuttle launch attempts including the empirical probability of launch on any given attempt and the cumulative probability of launch relative to the planned launch date at the start of the initial launch countdown. This information can be used to facilitate launch probability predictions of future launch vehicles such as NASA's Space Shuttle derived SLS. Understanding the cumulative probability of launch is particularly important for missions to Mars since the launch opportunities are relatively short in duration and one must wait for 2 years before a subsequent attempt can begin.

  14. Space Shuttle Main Engine control system. [hydraulic actuator with digital control

    Science.gov (United States)

    Seitz, P. F.; Searle, R. F.

    1973-01-01

    The Space Shuttle Main Engine is a reusable, high-performance rocket engine being developed by the Rocketdyne Div. of Rockwell International to satisfy the operational requirements of the Space Shuttle Orbiter Vehicle. The design incorporates a hydraulically actuated, closed-loop servosystem controlled and monitored by a programmable electronic digital controller. The controller accepts vehicle commands for the various engine operational phases, positions the appropriate valves, monitors the engine for the required performance precisions and conditions, and provides redundancy management.

  15. Modal survey testing of the Lidar In-space Technology Experiment (LITE) - A Space Shuttle payload

    Science.gov (United States)

    Anderson, J. B.; Coleman, A. D.; Driskill, T. C.; Lindell, M. C.

    1992-01-01

    This paper presents the results of the modal survey test of the Lidar In-space Technology Experiment (LITE), a Space Shuttle payload mounted in a Spacelab flight single pallet. The test was performed by the Dynamics Test Branch at Marshall Space Flight Center, AL and run in two phases. In the first phase, an unloaded orthogrid connected to the pallet with 52 tension struts was tested. This test included 73 measurement points in three directions. In the second phase, the pallet was integrated with mass simulators mounted on the flight support structure to represent the dynamics (weight and center of gravity) of the various components comprising the LITE experiment and instrumented at 213 points in 3 directions. The test article was suspended by an air bag system to simulate a free-free boundary condition. This paper presents the results obtained from the testing and analytical model correlation efforts. The effect of the suspension system on the test article is also discussed.

  16. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    Science.gov (United States)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  17. Load control system. [for space shuttle external tank ground tests

    Science.gov (United States)

    Grosse, J. C.

    1977-01-01

    The load control system developed for the shuttle external structural tests is described. The system consists of a load programming/display module, and a load control module along with the following hydraulic system components: servo valves, dump valves, hydraulic system components, and servo valve manifold blocks. One load programming/display subsystem can support multiple load control subsystem modules.

  18. The Space Shuttle Columbias vertical stabilizer appears to point to the four stars of the Southern

    Science.gov (United States)

    1996-01-01

    STS-75 ONBOARD VIEW --- The Space Shuttle Columbias vertical stabilizer appears to point to the four stars of the Southern Cross. The scene was captured with a 35mm camera just prior to a sunrise. The seven member crew was launched aboard the Space Shuttle Columbia on February 22, 1996, and landed on March 9, 1996. Crew members were Andrew M. Allen, mission commander; Scott J. Horowitz, pilot; Franklin R. Chang-Diaz, payload commander; and Maurizio Cheli, European Space Agency (ESA); Jeffrey A. Hoffman and Claude Nicollier, ESA, all mission specialists; along with payload specialist Umberto Guidioni of the Italian Space Agency (ASI).

  19. RF environment survey of Space Shuttle related EEE frequency bands

    Science.gov (United States)

    Simpson, J.; Prigel, B.; Postelle, J.

    1977-01-01

    Radio frequency assignments within the continental United States in frequency bands between 121 MHz abd 65 GHz were surveyed and analyzed in order to determine current utilization of anticipated frequency bands for the shuttle borne electromagnetic environment experiment. Data from both government and nongovernment files were used. Results are presented in both narrative form and in histograms which show the total number of unclassified assignments versus frequency and total assigned power versus frequency.

  20. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    Science.gov (United States)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  1. Space Shuttle Rudder Speed Brake Actuator-A Case Study Probabilistic Fatigue Life and Reliability Analysis

    Science.gov (United States)

    Oswald, Fred B.; Savage, Michael; Zaretsky, Erwin V.

    2015-01-01

    The U.S. Space Shuttle fleet was originally intended to have a life of 100 flights for each vehicle, lasting over a 10-year period, with minimal scheduled maintenance or inspection. The first space shuttle flight was that of the Space Shuttle Columbia (OV-102), launched April 12, 1981. The disaster that destroyed Columbia occurred on its 28th flight, February 1, 2003, nearly 22 years after its first launch. In order to minimize risk of losing another Space Shuttle, a probabilistic life and reliability analysis was conducted for the Space Shuttle rudder/speed brake actuators to determine the number of flights the actuators could sustain. A life and reliability assessment of the actuator gears was performed in two stages: a contact stress fatigue model and a gear tooth bending fatigue model. For the contact stress analysis, the Lundberg-Palmgren bearing life theory was expanded to include gear-surface pitting for the actuator as a system. The mission spectrum of the Space Shuttle rudder/speed brake actuator was combined into equivalent effective hinge moment loads including an actuator input preload for the contact stress fatigue and tooth bending fatigue models. Gear system reliabilities are reported for both models and their combination. Reliability of the actuator bearings was analyzed separately, based on data provided by the actuator manufacturer. As a result of the analysis, the reliability of one half of a single actuator was calculated to be 98.6 percent for 12 flights. Accordingly, each actuator was subsequently limited to 12 flights before removal from service in the Space Shuttle.

  2. Conceptual Inquiry of the Space Shuttle and International Space Station GNC Flight Controllers

    Science.gov (United States)

    Kranzusch, Kara

    2007-01-01

    The concept of Mission Control was envisioned by Christopher Columbus Kraft in the 1960's. Instructed to figure out how to operate human space flight safely, Kraft envisioned a room of sub-system experts troubleshooting problems and supporting nominal flight activities under the guidance of one Flight Director who is responsible for the success of the mission. To facilitate clear communication, MCC communicates with the crew through a Capsule Communicator (CAPCOM) who is an astronaut themselves. Gemini 4 was the first mission to be supported by such a MCC and successfully completed the first American EVA. The MCC seen on television is called the Flight Control Room (FCR, pronounced ficker) or otherwise known as the front room. While this room is the most visible aspect, it is a very small component of the entire control center. The Shuttle FCR is known as the White FCR (WFCR) and Station's as FCR-1. (FCR-1 was actually the first FCR built at JSC which was used through the Gemini, Apollo and Shuttle programs until the WFCR was completed in 1992. Afterwards FCR-1 was refurbished first for the Life Sciences Center and then for the ISS in 2006.) Along with supporting the Flight Director, each FCR operator is also the supervisor for usually two or three support personnel in a back room called the Multi-Purpose Support Room (MPSR, pronounced mipser). MPSR operators are more deeply focused on their specific subsystems and have the responsible to analyze patterns, and diagnose and assess consequences of faults. The White MPSR (WMPSR) operators are always present for Shuttle operations; however, ISS FCR controllers only have support from their Blue MPSR (BMPSR) while the Shuttle is docked and during critical operations. Since ISS operates 24-7, the FCR team reduces to a much smaller Gemini team of 4-5 operators for night and weekend shifts when the crew is off-duty. The FCR is also supported by the Mission Evaluation Room (MER) which is a collection of contractor engineers

  3. Growth and development of plants flown on the STS-3 space shuttle mission

    Science.gov (United States)

    Cowles, J. R.; Scheld, H. W.; Peterson, C.; LeMay, R.

    Pre-germinated pine seedlings and germinating oat and mung bean seeds were flown on the STS-3 Space Shuttle mission. Overall, the seedlings grew and developed well in space. Some oat and mung bean roots, however, grew upward. Lignin content was slightly lower in flight tissues and protein content was higher.

  4. Information management system: A summary discussion. [for use in the space shuttle sortie, modular space station and TDR satellite

    Science.gov (United States)

    Sayers, R. S.

    1972-01-01

    An information management system is proposed for use in the space shuttle sortie, the modular space station, the tracking data relay satellite and associated ground support systems. Several different information management functions, including data acquisition, transfer, storage, processing, control and display are integrated in the system.

  5. History of Space Shuttle Main Engine Turbopump Bearing Testing at the Marshall Space Flight Center

    Science.gov (United States)

    Gibson, Howard; Thom, Robert; Moore, Chip; Haluck, Dave

    2010-01-01

    The Space Shuttle is propelled into orbit by two solid rocket motors and three liquid fed main engines. After the solid motors fall away, the shuttle engines continue to run for a total time of 8 minutes. These engines are fed propellants by low and high pressure turbopumps. A critical part of the turbopump is the main shaft that supports the drive turbine and the pump inducer and impeller. Rolling element bearings hold the shaft in place during rotation. If the bearings were to fail, the shaft would move, allowing components to rub in a liquid oxygen or hydrogen environment, which could have catastrophic results. These bearings are required to spin at very high speeds, support radial and axial loads, and have high wear resistance without the benefit of a conventional means of lubrication. The Rocketdyne built Shuttle turbopumps demonstrated their capability to perform during launches; however, the seven hour life requirement was not being met. One of the limiting factors was the bearings. In the late 1970's, an engineering team was formed at the Marshall Space Flight Center (MSFC), to develop a test rig and plan for testing the Shuttle s main engine high pressure oxygen turbopump (HPOTP) bearings. The goals of the program were to better understand the operation of bearings in a cryogenic environment and to further develop and refine existing computer models used to predict the operational limits of these bearings. In 1982, testing began in a rig named the Bearing and Seal Material Tester or BSMT as it was commonly called. The first testing investigated the thermal margin and thermal runaway limits of the HPOTP bearings. The test rig was later used to explore potential bearing improvements in the area of increased race curvatures, new cage materials for better lubrication, new wear resistant rolling element materials, and other ideas to improve wear life. The most notable improvements during this tester s time was the incorporation of silicon nitride balls and

  6. Space Shuttle/Orbiter EVA and EVA provisions

    Science.gov (United States)

    Goodman, J. R.

    1980-01-01

    EVA objectives, procedures, and equipment for the Shuttle are reviewed. The EVA will occur as a planned excursion, to complete a mission objective, or on a contingency basis as support for the mission or to effect repairs to the Orbiter or its payload. Configurations for the placement of the airlock for EVA with and without Spacelab payloads are discussed, along with the various EVA tasks which could be expected as necessary for mission completion. Handholds have been placed in strategic positions on the RMS and along the payload doors, and a safety tether has been incorporated with line extension out to 25 ft. Off-the-shelf tools such as needlenose pliers, forceps, diagonal cutters, etc. are carried as standard equipment for the repair of malfunctioning equipment and doorlatches. Finally, attention is given to EVA lighting, communication, life-support, and work station restraint systems.

  7. Review of delta wing space shuttle vehicle dynamics

    Science.gov (United States)

    Reding, J. P.; Ericsson, L. E.

    1972-01-01

    The unsteady aerodynamics of the delta planform, high cross range, shuttle orbiter were investigated. It has been found that these vehicles are subject to five unsteady flow phenomena that could compromise the flight dynamics. They are: (1) leeside shock induced separation, (2) sudden leading edge stall, (3) vortex burst, (4) bow shock-flap shock interaction, (5) forebody vorticity. Trajectory shaping is seen as the most powerful means of avoiding the detrimental effects of the stall phenomena. However, stall must be fixed or controlled when traversing the stall region. The other phenomena may be controlled by carefully programmed control deflections and some configuration modification. Ways to alter the occurrence of the various flow conditions are explored.

  8. Science and technology results from the OSS-1 payload on the Space Shuttle

    Science.gov (United States)

    Chipman, Eric G.

    The OSS-1 Payload of nine experiments was carried on the STS-3 Space Shuttle flight in March of 1982. The OSS-1 Payload contained four instruments that evaluated specific aspects of the Orbiter's environment, including the levels of particulate, gaseous and electromagnetic emissions given off by the Orbiter, and the interactions between the Orbiter and the surrounding plasma. In addition to these environmental observations, these instruments performed scientific investigations in astronomy and in space plasma physics, including active experiments in electron beam propagation. Other experiments were in the areas of solar physics, plant growth, micrometeorite studies and the technology of actively controlled heat pipes. We present the initial results from these experiments, with some implications of these results for future operation of space experiments from the Shuttle payload bay. One major result was the unexpected discovery of a faint surface-induced optical glow created near the Shuttle surfaces by impacts of ambient atmospheric atoms and molecules.

  9. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  10. Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven

    Science.gov (United States)

    West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter

    2007-01-01

    This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.

  11. The Space Shuttle's first super lightweight external tank arrives in Port Canaveral, Fla.

    Science.gov (United States)

    1998-01-01

    Bren Wade, chief mate of the Liberty Star, looks up at the Space Shuttle's first super lightweight external tank as it is moved on a barge to Port Canaveral, Fla. The tank is scheduled to undergo processing at Kennedy Space Center for flight on STS-91, targeted for launch in late May. The improved tank is 7,500 pounds lighter than its predecessors and was developed to increase the Shuttle payload capacity on International Space Station assembly flights. From the outside, the new orange-colored tank appears identical to tanks currently used on Shuttle flights. Major changes, however, include the use of new materials and a revised internal design. The new liquid oxygen and liquid hydrogen tanks are constructed of aluminum lithium -- a lighter, stronger material than the metal alloy currently used. The redesigned walls of the liquid hydrogen tank were machined to provide additional strength and stability as well. This photograph was taken with a wide- angle lens.

  12. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    Science.gov (United States)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  13. Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis.

    Science.gov (United States)

    Hyyryläinen, Hanne-Leena; Marciniak, Bogumila C; Dahncke, Kathleen; Pietiäinen, Milla; Courtin, Pascal; Vitikainen, Marika; Seppala, Raili; Otto, Andreas; Becher, Dörte; Chapot-Chartier, Marie-Pierre; Kuipers, Oscar P; Kontinen, Vesa P

    2010-07-01

    Summary The PrsA protein is a membrane-anchored peptidyl-prolyl cis-trans isomerase in Bacillus subtilis and most other Gram-positive bacteria. It catalyses the post-translocational folding of exported proteins and is essential for normal growth of B. subtilis. We studied the mechanism behind this indispensability. We could construct a viable prsA null mutant in the presence of a high concentration of magnesium. Various changes in cell morphology in the absence of PrsA suggested that PrsA is involved in the biosynthesis of the cylindrical lateral wall. Consistently, four penicillin-binding proteins (PBP2a, PBP2b, PBP3 and PBP4) were unstable in the absence of PrsA, while muropeptide analysis revealed a 2% decrease in the peptidoglycan cross-linkage index. Misfolded PBP2a was detected in PrsA-depleted cells, indicating that PrsA is required for the folding of this PBP either directly or indirectly. Furthermore, strongly increased uniform staining of cell wall with a fluorescent vancomycin was observed in the absence of PrsA. We also demonstrated that PrsA is a dimeric or oligomeric protein which is localized at distinct spots organized in a helical pattern along the cell membrane. These results suggest that PrsA is essential for normal growth most probably as PBP folding is dependent on this PPIase.

  14. Study of structural active cooling and heat sink systems for space shuttle

    Science.gov (United States)

    1972-01-01

    This technology investigation was conducted to evaluate the feasibility of a number of thermal protection systems (TPS) concepts which are alternate candidates to the space shuttle baseline TPS. Four independent tasks were performed. Task 1 consisted of an in-depth evaluation of active structural cooling of the space shuttle orbiter. In Task 2, heat sink concepts for the booster were studied to identify and postulate solutions for design problems unique to heat sink TPS. Task 3 consisted of a feasibility demonstration test of a phase change material (PCM) incorporated into a reusable surface insulation (RSI) thermal protection system for the shuttle orbiter. In Task 4 the feasibility of heat pipes for stagnation region cooling was studied for the booster and the orbiter. Designs were developed for the orbiter leading edge and used in trade studies of leading edge concepts. At the time this program was initiated, a 2-stage fully reusable shuttle system was envisioned; therefore, the majority of the tasks were focused on the fully reusable system environments. Subsequently, a number of alternate shuttle system approaches, with potential for reduced shuttle system development funding requirements, were proposed. Where practicable, appropriate shifts in emphasis and task scoping were made to reflect these changes.

  15. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2011-01-01

    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  16. Lee surface flow phenomena over Space Shuttle at large angles of attack at M infinity = 6

    Science.gov (United States)

    Zakkay, V.; Miyazawa, M.; Wang, C. R.

    1975-01-01

    An investigation was conducted regarding the surface heat transfer on the leeward side of the Space Shuttle, taking into account different free stream Reynolds numbers and angles of attack. Another investigation was concerned with the peak heating due to boundary layer transition and flow separation in the case of different Space Shuttle configurations. Criteria for vortex generation on the leeward flow were also examined along with the effect of transition on vortex generation. Attention was given to the leeward flowfield in the vortex flow region and the method of constructing an equivalent model for leeward flowfield analysis.

  17. Technology forecast and applications for autonomous, intelligent systems. [for space station, shuttle, and interplanetary missions

    Science.gov (United States)

    Lum, Henry, Jr.; Heer, Ewald

    1988-01-01

    Significant research products which have emerged from the core program of NASA's Office of Aeronautics and Space Technology (OAST) are discussed. The Space Station Thermal Control System, the Space Shuttle Integrated Communications Officer Station, the Launch Processing System, the Expert Scheduling System for Pioneer Venus Spacecraft, a Bayesian classification system, and a spaceborne multiprocessor system are included. The technology trends which led to these results are discussed and future developments in technology are forecasted.

  18. Interpersonal issues in space: Shuttle/Mir and beyond.

    Science.gov (United States)

    Kanas, Nick

    2005-06-01

    Anecdotal reports from space and results from space analogue experiments on Earth have suggested a number of interpersonal issues that may negatively affect crewmember performance and well-being. We examined some of these issues in a questionnaire survey of 54 astronauts and cosmonauts who had flown in space and in a 135-d Mir Space Station simulation study in Moscow. We also conducted a NASA-funded study involving missions to the Mir Space Station, where 5 U.S. astronauts, 8 Russian cosmonauts, and 42 U.S. and 16 Russian mission control subjects completed weekly mood and group climate questionnaires. There were few findings that supported hypothesized changes in tension and group behavior in terms of time on-orbit. Crewmembers reported decreasing leader support in the second half of their mission, and U.S. astronauts gave evidence for a novelty effect in the first few weeks. There was strong support for our hypothesized displacement of tension and negative emotions from crewmembers to mission control personnel and from mission control personnel to management. There were several significant differences in response between Americans vs. Russians and crewmembers vs. mission control personnel. These findings have training countermeasure implications for future on-orbit space missions. During expeditionary type space missions, such as a trip to Mars, additional interpersonal stressors will need to be dealt with. These include increased crew autonomy, more dependence on onboard technical resources, communication delays with the Earth, increased isolation and monotony, and the Earth-out-of-view phenomenon.

  19. Shearographic non-destructive evaluation of the Space Shuttle

    Science.gov (United States)

    Davis, Christopher K.; Tenbusch, Kenneth E.; Hooker, Jeffery A.; Simmons, Stephen M.

    1995-01-01

    Preliminary results of shearographic inspections of the shuttle external tank (ET) spray-on foam insulation (SOFI) and solid rocket booster (SRB) Marshall sprayable ablative (MSA-2) epoxy-cork thermal protection systems (TPS) and remote manipulator system (RMS) honeycomb are presented. Debonding SOFI or MSA-2 damage the orbiter belly tile and exposes the ET/SRB to thermal loading. Previous work with the ET/SRB showed promising results with shearography. The first area investigated was the jack pad close-out, one of many areas on the ET where foam is applied at KSC. Voids 0.375 inch were detected in 1.75 inch thick foam using a pressure reduction of less dm 0.4 psi. Of primary interest are areas of the ET that directly face the orbiter tile TPS. It is estimated that 90% of tile TPS damage on the orbiter 'belly' results from debonding SOFI during ascent. Test panels modeling these areas were manufactured with programmed debonds to determine the sensitivity of shearography as a function of debond size, SOFI thickness, and vacuum. Results show a Probability of Detection (POD) of .95 or better for of debonds with a diameter equal to the SOFI thickness at less than 0.4 psi pressure reduction. Preliminary results are also presented on inspections of MSA-2 and the remote manipulator system (RMS) honeycomb material.

  20. Characterization of Space Shuttle Thermal Protection System (TPS) Materials for Return-to-Flight following the Shuttle Columbia Accident Investigation

    Science.gov (United States)

    Wingard, Doug

    2006-01-01

    During the Space Shuttle Columbia Accident Investigation, it was determined that a large chunk of polyurethane insulating foam (= 1.67 lbs) on the External Tank (ET) came loose during Columbia's ascent on 2-1-03. The foam piece struck some of the protective Reinforced Carbon-Carbon (RCC) panels on the leading edge of Columbia's left wing in the mid-wing area. This impact damaged Columbia to the extent that upon re-entry to Earth, superheGed air approaching 3,000 F caused the vehicle to break up, killing all seven astronauts on board. A paper after the Columbia Accident Investigation highlighted thermal analysis testing performed on External Tank TPS materials (1). These materials included BX-250 (now BX-265) rigid polyurethane foam and SLA-561 Super Lightweight Ablator (highly-filled silicone rubber). The large chunk of foam from Columbia originated fiom the left bipod ramp of the ET. The foam in this ramp area was hand-sprayed over the SLA material and various fittings, allowed to dry, and manually shaved into a ramp shape. In Return-to-Flight (RTF) efforts following Columbia, the decision was made to remove the foam in the bipod ramp areas. During RTF efforts, further thermal analysis testing was performed on BX-265 foam by DSC and DMA. Flat panels of foam about 2-in. thick were sprayed on ET tank material (aluminum alloys). The DSC testing showed that foam material very close to the metal substrate cured more slowly than bulk foam material. All of the foam used on the ET is considered fully cured about 21 days after it is sprayed. The RTF culminated in the successful launch of Space Shuttle Discovery on 7-26-05. Although the flight was a success, there was another serious incident of foam loss fiom the ET during Shuttle ascent. This time, a rather large chunk of BX-265 foam (= 0.9 lbs) came loose from the liquid hydrogen (LH2) PAL ramp, although the foam did not strike the Shuttle Orbiter containing the crew. DMA testing was performed on foam samples taken fiom

  1. Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle's final launch

    Science.gov (United States)

    Stevens, Michael H.; Lossow, Stefan; Fiedler, Jens; Baumgarten, Gerd; Lübken, Franz-Josef; Hallgren, Kristofer; Hartogh, Paul; Randall, Cora E.; Lumpe, Jerry; Bailey, Scott M.; Niciejewski, R.; Meier, R. R.; Plane, John M. C.; Kochenash, Andrew J.; Murtagh, Donal P.; Englert, Christoph R.

    2012-10-01

    The space shuttle launched for the last time on 8 July 2011. As with most shuttle launches, the three main engines injected about 350 t of water vapor between 100 and 115 km off the east coast of the United States during its ascent to orbit. We follow the motion of this exhaust with a variety of satellite and ground-based data sets and find that (1) the shuttle water vapor plume spread out horizontally in all directions over a distance of 3000 to 4000 km in 18 h, (2) a portion of the plume reached northern Europe in 21 h to form polar mesospheric clouds (PMCs) that are brighter than over 99% of all PMCs observed in that region, and (3) the observed altitude dependence of the particle size is reversed with larger particles above smaller particles. We use a one-dimensional cloud formation model initialized with predictions of a plume diffusion model to simulate the unusually bright PMCs. We find that eddy mixing can move the plume water vapor down to the mesopause near 90 km where ice particles can form. If the eddy diffusion coefficient is 400 to 1000 m2/s, the predicted integrated cloud brightness is in agreement with both satellite and ground-based observations of the shuttle PMCs. The propellant mass of the shuttle is about 20% of that from all vehicles launched during the northern 2011 PMC season. We suggest that the brightest PMC population near 70°N is formed by space traffic exhaust.

  2. Functional requirements for onboard management of space shuttle consumables, volume 1

    Science.gov (United States)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support.

  3. Functional Requirements for Onboard Management of Space Shuttle Consumables. Volume 2

    Science.gov (United States)

    Graf, P. J.; Herwig, H. A.; Neel, L. W.

    1973-01-01

    This report documents the results of the study "Functional Requirements for Onboard Management of Space Shuttle Consumables." The study was conducted for the Mission Planning and Analysis Division of the NASA Lyndon B. Johnson Space Center, Houston, Texas, between 3 July 1972 and 16 November 1973. The overall study program objective was two-fold. The first objective was to define a generalized consumable management concept which is applicable to advanced spacecraft. The second objective was to develop a specific consumables management concept for the Space Shuttle vehicle and to generate the functional requirements for the onboard portion of that concept. Consumables management is the process of controlling or influencing the usage of expendable materials involved in vehicle subsystem operation. The report consists of two volumes. Volume I presents a description of the study activities related to general approaches for developing consumable management, concepts for advanced spacecraft applications, and functional requirements for a Shuttle consumables management concept. Volume II presents a detailed description of the onboard consumables management concept proposed for use on the Space Shuttle.

  4. STS-103 perfect night-time landing for Space Shuttle Discovery

    Science.gov (United States)

    1999-01-01

    The orbiter Discovery looks like a blue ghost as it drops from the darkness onto lighted runway 33 at KSC's Shuttle Landing Facility. After traveling more than 3,267,000 miles on a successful eight-day mission to service the Hubble Space Telescope, the orbiter touches down at 7:00:47 p.m. EST. Aboard are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, and Mission Specialists Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, who spent the Christmas holiday in space in order to accomplish their mission before the end of 1999. During the mission, Discovery's four space-walking astronauts, Smith, Foale, Grunsfeld and Nicollier, spent 24 hours and 33 minutes upgrading and refurbishing Hubble, making it more capable than ever to renew its observations of the universe. Mission objectives included replacing gyroscopes and an old computer, installing another solid state recorder, and replacing damaged insulation in the telescope. Hubble was released from the end of Discovery's robot arm on Christmas Day. This was the 96th flight in the Space Shuttle program and the 27th for the orbiter Discovery. The landing was the 20th consecutive Shuttle landing in Florida and the 13th night landing in Shuttle program history.

  5. Predicting Boundary-Layer Transition on Space-Shuttle Re-Entry

    Science.gov (United States)

    Berry, Scott; Horvath, Tom; Merski, Ron; Liechty, Derek; Greene, Frank; Bibb, Karen; Buck, Greg; Hamilton, Harris; Weilmuenster, Jim; Campbell, Chuck; hide

    2008-01-01

    The BLT Prediction Tool ("BLT" signifies "Boundary Layer Transition") is provided as part of the Damage Assessment Team analysis package, which is utilized for analyzing local aerothermodynamics environments of damaged or repaired space-shuttle thermal protection tiles. Such analyses are helpful in deciding whether to repair launch-induced damage before re-entering the terrestrial atmosphere.

  6. The Use of Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    Science.gov (United States)

    Novak, Howard L.

    2003-01-01

    This viewgraph representation provides an overview of the use of ion vapor deposited aluminum (IVD) for use in the Space Shuttle Solid Rocket Booster (SRB). Topics considered include: schematics of ion vapor deposition system, production of ion vapor deposition system, IVD vs. cadmium coated drogue ratchets, corrosion exposure facilities and tests, seawater immersion facilities and tests and continued research and development issues.

  7. Dynamical Studies of Chemical Reactions Relevant to the Local Atmosphere of the Orbiting Space Shuttle

    National Research Council Canada - National Science Library

    Casavecchia, Piergiorgio

    1998-01-01

    ...: The contractor will measure differential cross sections for reactions of O(3P), 0(1D) and OH(2P) with various radial and molecules present in the local atmosphere of the space shuttle in low earth orbit as described in the original proposal for this work.

  8. Space shuttle/food system study. Volume 2, Appendix F: Flight food and primary packaging

    Science.gov (United States)

    1974-01-01

    The analysis and selection of food items and primary packaging, the development of menus, the nutritional analysis of diet, and the analyses of alternate food mixes and contingency foods is reported in terms of the overall food system design for space shuttle flight. Stowage weights and cubic volumes associated with each alternate mix were also evaluated.

  9. Total Quality Management in Space Shuttle Main Engine manufacturing

    Science.gov (United States)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  10. Evolution of Space Shuttle Range Safety (RS) Ascent Flight Envelope Design

    Science.gov (United States)

    Brewer, Joan D.

    2011-01-01

    Ascent flight envelopes are trajectories that define the normal operating region of a space vehicle s position from liftoff until the end of powered flight. They fulfill part of the RS data requirements imposed by the Air Force s 45th Space Wing (45SW) on space vehicles launching from the Eastern Range (ER) in Florida. The 45SW is chartered to protect the public by minimizing risks associated with the inherent hazards of launching a vehicle into space. NASA s Space Shuttle program has launched 130+ manned missions over a 30 year period from the ER. Ascent envelopes were delivered for each of those missions. The 45SW envelope requirements have remained largely unchanged during this time. However, the methodology and design processes used to generate the envelopes have evolved over the years to support mission changes, maintain high data quality, and reduce costs. The evolution of the Shuttle envelope design has yielded lessons learned that can be applied to future endevours. There have been numerous Shuttle ascent design enhancements over the years that have caused the envelope methodology to evolve. One of these Shuttle improvements was the introduction of onboard flight software changes implemented to improve launch probability. This change impacted the preflight nominal ascent trajectory, which is a key element in the RS envelope design. While the early Shuttle nominal trajectories were designed preflight using a representative monthly mean wind, the new software changes involved designing a nominal ascent trajectory on launch day using real-time winds. Because the actual nominal trajectory position was not known until launch day, the envelope analysis had to be customized to account for this nominal trajectory variation in addition to the other envelope components.

  11. Folic acid content in thermostabilized and freeze-dried space shuttle foods

    Science.gov (United States)

    Lane, H. W.; Nillen, J. L.; Kloeris, V. L.

    1995-01-01

    This study was designed to determine whether freeze-dried and thermostabilized foods on a space shuttle contain adequate folate and to investigate any effects of freeze-drying on folacin. Frozen vegetables were analyzed after three states of processing: thawed; cooked; and rehydrated. Thermostabilized items were analyzed as supplied with no further processing. Measurable folate decreased in some freeze-dried vegetables and increased in others. Folacin content of thermostabilized food items was comparable with published values. We concluded that although the folacin content of some freeze-dried foods was low, adequate folate is available from the shuttle menu to meet RDA guidelines.

  12. Multispectral radiation detection of small changes in target emissivity. [ice measurements on space shuttle external tank

    Science.gov (United States)

    Gagliano, J. A.; Newton, J. M.; Schuchardt, J. M.

    1982-01-01

    An investigation into the multispectral radiation detection of small changes in target emissivity has been performed by Georgia Tech. A series of ice detection measurements on the shuttle external tank (ET) were performed using an advanced instrumentation radiometer operating at 35/95 GHz. Actual shuttle ET ice detection measurements were run at NASA's National Space Technology Laboratory (NSTL) during cryogenic fueling operations prior to orbiter engine firing tests. Investigations revealed that ET icing caused an increase in surface brightness temperature and the test results further demonstrated the usefulness of millimeter wave radiometry for the detection of ice on the ET.

  13. Unique variable polarity plasma arc welding for space shuttle

    Science.gov (United States)

    Schwinghamer, R. J.

    1985-01-01

    Since the introduction of the Plasma Arc Torch in 1955 and subsequent to the work at Boeing in the 1960's, significant improvements crucial to success have been made in the Variable Polarity Plasma Arc (VPPA) Process at the Marshall Space Flight Center. Several very important advantages to this process are given, and the genesis of PA welding, the genesis of VPPA welding, special equiment requirements, weld property development, results with other aluminum alloys, and the eventual successful VPPA transition to production operations are discussed.

  14. Replacement Capability Options for the United States Space Shuttle

    Science.gov (United States)

    2013-09-01

    seven crewmembers. This will allow Boeing the flexibility to support a verity of missions and costumers . A key feature of CST-100 is their Pusher...Week article on China’s future plans for their Long March Launch vehicles, “China is developing three basic rocket modules, with diameters of 2.25...Aviation Week & Space Technology: http://www.aviationweek.com/Article.aspx?id=/ article - xml/AW_04_16_2012_p49-444899.xml# NASA. (2004, April 03

  15. TDLAS Test-stand Diagnostics Development for Velocity, Temperature, Efficiency, and Erosion for Space Shuttle Main Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose here to develop tunable diode laser spectroscopy as a diagnostic for the Space Shuttle main engines during test stand operations. These engines represent...

  16. Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro-sequences

    DEFF Research Database (Denmark)

    Jacobs, M; Kontinen, V; Sarvas, M

    1993-01-01

    In prsA (protein secretion) mutants of Bacillus subtilis, decreased levels of exoproteins, including alpha-amylase and subtilisins, are found extracellularly. The effect of prsA on subtilisin secretion is elaborated here. Extracytoplasmic folding and secretion of active subtilisin is assisted...

  17. Systems definition study for shuttle demonstration flights of large space structures, Volume 2: Technical Report

    Science.gov (United States)

    1979-01-01

    The development of large space structure (LSS) technology is discussed, with emphasis on space fabricated structures which are automatically manufactured in space from sheet-strip materials and assembled on-orbit. It is concluded that an LSS flight demonstration using an Automated Beam Builder and the orbiter as a construction base, could be performed in the 1983-1984 time period. The estimated cost is $24 million exclusive of shuttle launch costs. During the mission, a simple space platform could be constructed in-orbit to accommodate user requirements associated with earth viewing and materials exposure experiments needs.

  18. Space shuttle: An investigation of the load distribution over the SRB and external tank of a 0.004 scale model of the 049 space shuttle launch configuration

    Science.gov (United States)

    Lott, R. A.; Ramsey, P. E.

    1973-01-01

    A study was conducted in a trisonic wind tunnel to determine the load distribution over the external tank and solid rocket boosters of the space shuttle launch configuration. The external tank was sting-supported and the solid rocket boosters and orbiter were mounted directly on the external tank. The external tank was, instrumented with 152 pressure orifices and the solid rocket boosters contained 78 orifices. The pressure data were obtained for various combinations of the three geometric components as the gap size between the external tank and the solid rocket boosters, angle of attack, and angle of sideslip were varied. Mach numbers ranged from 0.8 to 1.96.

  19. Ignition transient modelling for the Space Shuttle Advanced Solid Rocket Motor

    Science.gov (United States)

    Eagar, M. A.; Luke, G. D.; Stockham, L. W.

    1993-06-01

    Prediction of the ignition transient for the Advanced Solid Rocket Motor (ASRM) for the Space Shuttle presents an unusual set of modelling challenges because of its high length-to-diameter ratio and complex internal flow environment. A review of ignition modelling experience on the Shuttle Redesigned Solid Rocket Motor (RSRM), which is similar in size and configuration to the ASRM, reveals that classical igniter design theory and modelling methods under-predict, by a factor of two, the measured pressure and thrust rise rates experienced on the RSRM. This paper (1) reviews the Titan and Shuttle SRM test experience, (2) presents the results of 0-Dimensional (0-D) and 1-Dimensional (1-D) analysis of the RSRM and ASRM motors, and (3) addresses the need for advanced analysis techniques, as they relate to ASRM ignition transient modelling requirements and igniter design drivers.

  20. Space Shuttle: Incomplete data and funding approach increase cost risk for upgrade program. Report to Congressional Requesters

    Science.gov (United States)

    Warren, David R.; Edwards, Lee; Beard, James; Wyatt, Terry

    1994-05-01

    The space shuttle is the only U.S. launch system capable of carrying people to and from space. It has operated for over 10 years and is likely to be used well into the next century. As the shuttle ages, NASA will be faced with increased need to update and replace various components due to obsolescence or to enhance safety. A review is presented of the shuttle program to determine (1) the assumptions NASA has made regarding the length of time the current shuttle fleet will be in operation and (2) NASA's processes and criteria for selecting needed safety and obsolescence upgrades.

  1. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    Science.gov (United States)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  2. Space Shuttle 750 psi Helium Regulator Application on Mars Science Laboratory Propulsion

    Science.gov (United States)

    Mizukami, Masashi; Yankura, George; Rust, Thomas; Anderson, John R.; Dien, Anthony; Garda, Hoshang; Bezer, Mary Ann; Johnson, David; Arndt, Scott

    2009-01-01

    The Mars Science Laboratory (MSL) is NASA's next major mission to Mars, to be launched in September 2009. It is a nuclear powered rover designed for a long duration mission, with an extensive suite of science instruments. The descent and landing uses a unique 'skycrane' concept, where a rocket-powered descent stage decelerates the vehicle, hovers over the ground, lowers the rover to the ground on a bridle, then flies a safe distance away for disposal. This descent stage uses a regulated hydrazine propulsion system. Performance requirements for the pressure regulator were very demanding, with a wide range of flow rates and tight regulated pressure band. These indicated that a piloted regulator would be needed, which are notoriously complex, and time available for development was short. Coincidentally, it was found that the helium regulator used in the Space Shuttle Orbiter main propulsion system came very close to meeting MSL requirements. However, the type was out of production, and fabricating new units would incur long lead times and technical risk. Therefore, the Space Shuttle program graciously furnished three units for use by MSL. Minor modifications were made, and the units were carefully tuned to MSL requirements. Some of the personnel involved had built and tested the original shuttle units. Delta qualification for MSL application was successfully conducted on one of the units. A pyrovalve slam start and shock test was conducted. Dynamic performance analyses for the new application were conducted, using sophisticated tools developed for Shuttle. Because the MSL regulator is a refurbished Shuttle flight regulator, it will be the only part of MSL which has physically already been in space.

  3. Orbital Fitness: An Overview of Space Shuttle Cardiopulmonary Exercise Physiology Findings

    Science.gov (United States)

    Moore, Alan D.

    2011-01-01

    Limited observations regarding the cardiopulmonary responses to aerobic exercise had been conducted during short-duration spaceflight before the Space Shuttle program. This presentation focuses on the findings regarding changes observed in the cardiopulmonary exercise responses during and following Shuttle flights. During flight, maximum oxygen uptake (VO2max) remained unchanged as did the maximum work rate achievable during cycle exercise testing conducted during the last full flight day. Immediately following flight, the ubiquitous finding, confirmed by investigations conducted during the Spacelab Life Sciences missions 1 and 2 and by NASA Detailed Supplemental Objective studies, indicated that VO2max was reduced; however, the reduction in VO2max was transient and returned to preflight levels within 7 days following return. Studies regarding the influence of aerobic exercise countermeasures performed during flight on postflight performance were mostly limited to the examination of the heart rate (HR) response to submaximal exercise testing on landing day. These studies revealed that exercise HR was elevated in individuals who performed little to no exercise during their missions as compared to individuals who performed regular exercise. In addition, astronauts who performed little to no aerobic exercise during flight demonstrated an increased HR and lowered pulse pressure response to the standard stand test on landing day, indicating a decrease in orthostatic function in these individuals. With regard to exercise modality, four devices were examined during the Shuttle era: two treadmills, a cycle ergometer, and a rowing device. Although there were limited investigations regarding the use of these devices for exercise training aboard the Shuttle, there was no clear consensus reached regarding which proved to be a "superior" device. Each device had a unique operational or physiologic limitation associated with its use. In conclusion, exercise research conducted

  4. Midodrine as a Countermeasure to Orthostatic Hypotension Immediately After Space Shuttle Landing

    Science.gov (United States)

    Platts, Steven H.; Stenger, Michael B.; Ribeiro, L. Christine; Lee, Stuart M. C.

    2010-01-01

    Midodrine prevents post-space flight orthostatic intolerance when testing is conducted in a controlled laboratory setting within 2-4 hours after Space Shuttle landing. It is unknown if midodrine is as effective during re-entry and immediately following landing. METHODS: Cardiovascular responses to 10 minutes of 80 head-up tilt in five male astronauts were compared before and immediately after Space Shuttle missions. Preflight tests were conducted in the Johnson Space Center Cardiovascular Laboratory without midodrine. Post-flight testing was performed in the Crew Transport Vehicle on the Space Shuttle runway within 60 minutes of landing; midodrine was self-administered before re-entry. Survival analysis was performed (Gehan-Breslow test) to compare presyncope rates pre- to post-flight. Cardiovascular responses (last minute standing minus supine) to tilt before and after space flight were compared using paired t-tests. RESULTS: Midodrine did not prevent post-flight orthostatic hypotension in two of the five astronauts, but the rate of presyncope across the group did not increase (p=0.17) from pre- to post-flight. Also, although the change in heart rate from supine to the last minute of standing was not affected by space flight, systolic blood pressure decreased more (p=0.05) and diastolic blood pressure tended to decrease (p=0.08) after space flight. CONCLUSIONS: Accurate interpretation of the current results requires that similar data be collected in control subjects (without midodrine) on the CTV. However, drug interaction concerns with commonly used anti-emetics and potentiation of prolonged QTc intervals observed in long duration astronauts make the routine use of midodrine for immediate post-flight orthostatic hypotension unlikely. 2

  5. HAL/SM language specification. [programming languages and computer programming for space shuttles

    Science.gov (United States)

    Williams, G. P. W., Jr.; Ross, C.

    1975-01-01

    A programming language is presented for the flight software of the NASA Space Shuttle program. It is intended to satisfy virtually all of the flight software requirements of the space shuttle. To achieve this, it incorporates a wide range of features, including applications-oriented data types and organizations, real time control mechanisms, and constructs for systems programming tasks. It is a higher order language designed to allow programmers, analysts, and engineers to communicate with the computer in a form approximating natural mathematical expression. Parts of the English language are combined with standard notation to provide a tool that readily encourages programming without demanding computer hardware expertise. Block diagrams and flow charts are included. The semantics of the language is discussed.

  6. Failure mode and effects analysis (FMEA) for the Space Shuttle solid rocket motor

    Science.gov (United States)

    Russell, D. L.; Blacklock, K.; Langhenry, M. T.

    1988-01-01

    The recertification of the Space Shuttle Solid Rocket Booster (SRB) and Solid Rocket Motor (SRM) has included an extensive rewriting of the Failure Mode and Effects Analysis (FMEA) and Critical Items List (CIL). The evolution of the groundrules and methodology used in the analysis is discussed and compared to standard FMEA techniques. Especially highlighted are aspects of the FMEA/CIL which are unique to the analysis of an SRM. The criticality category definitions are presented and the rationale for assigning criticality is presented. The various data required by the CIL and contribution of this data to the retention rationale is also presented. As an example, the FMEA and CIL for the SRM nozzle assembly is discussed in detail. This highlights some of the difficulties associated with the analysis of a system with the unique mission requirements of the Space Shuttle.

  7. A mass additive technique for modal testing as applied to the Space Shuttle ASTRO-1 payload

    Science.gov (United States)

    Coleman, A. D.; Driskill, T. C.; Anderson, J. B.; Brown, D. L.

    1988-01-01

    Traditionally, a fixed base modal test has been performed as a means of verifying the coupled loads math model for Space Shuttle flight payloads. An alternate method, a free-free configured payload using mass loaded boundary conditions, is presented as a means of verifying the coupled loads model of the ASTRO-1 flight payload. This method allows evaluation of the influence of local load paths into the frequency range of the free-free test. The method is cost effective and does not contaminate the modal test results with fixture coupled modes or boundary condition uncertainties. This paper describes the mass additive modal test technique as applied to the Space Shuttle ASTRO-1 flight payload.

  8. Flow visualization study of a two-dimensional representation of the Space Shuttle launch pad configuration

    Science.gov (United States)

    McLachland, B. G.; Zilliac, G. G.; Davis, S. S.

    1987-06-01

    The loss of the Space Shuttle Challenger was caused by the failure of the aft joint O-ring seals in its right solid rocket booster. It has been suggested by several sources that wind conditions through a reduction in temperature of the right solid rocket booster caused by the wind blowing across the cold external tank, played a role in the O-ring failure. To check the plausibility of the wind theory, an experiment was carried out in a water towing tank to visualize the flow past a two-dimensional model representing a cross section of the Space Shuttle launch configuration. The periodic formation of vortices was found to characterize the wake generated by the model. It is suggested that this organized motion in the flow is the dominant mechanism that accomplishes heat transfer from the external tank to the right solid rocket booster. Flow visualization results consisting of photographs that show instantaneous streamline patterns of the flow are presented.

  9. Minimally invasive space shuttle laminotomy for degenerative lumbar spinal canal stenosis

    Directory of Open Access Journals (Sweden)

    Shunji Asamoto

    2016-01-01

    Full Text Available Study Design: Technical note. Objectives: To show microsurgical technique, considering the meticulous anatomy of the ligamentum flavum (LF. Background: Different methods are available for treating lumbar spinal canal stenosis (LSCS. A minimally invasive surgery, namely, space shuttle laminotomy, has recently been proposed. Here, we describe the surgical method for this novel technique. To conduct this surgery accurately, surgeons must have perfect knowledge of anatomy, especially regarding the LF. Materials and Methods and Results: We use this interlaminectomy technique for all cases of LSCS. All patients with LSCS recovered from their neurological deficits in shorter hoslital stays than regular laminectomy. Conclusion: Minimally invasive space shuttle laminotomy (MISSL, which involves a microsurgical technique, is a safe, complication-free procedure.

  10. Advanced Software Techniques for Data Management Systems. Volume 2: Space Shuttle Flight Executive System: Functional Design

    Science.gov (United States)

    Pepe, J. T.

    1972-01-01

    A functional design of software executive system for the space shuttle avionics computer is presented. Three primary functions of the executive are emphasized in the design: task management, I/O management, and configuration management. The executive system organization is based on the applications software and configuration requirements established during the Phase B definition of the Space Shuttle program. Although the primary features of the executive system architecture were derived from Phase B requirements, it was specified for implementation with the IBM 4 Pi EP aerospace computer and is expected to be incorporated into a breadboard data management computer system at NASA Manned Spacecraft Center's Information system division. The executive system was structured for internal operation on the IBM 4 Pi EP system with its external configuration and applications software assumed to the characteristic of the centralized quad-redundant avionics systems defined in Phase B.

  11. An optimal Space Shuttle ascent trajectory for the first orbital flight test

    Science.gov (United States)

    Johnson, I. L., Jr.

    1977-01-01

    An optimal solution of the ascent trajectory of the Space Shuttle for the first orbital flight test is presented; the optimization is a minimum propellant, four-control problem in yaw angle, roll angle, pitch angle and vacuum thrust of each Space Shuttle main engine. Piecewise linear segments with juncture points treated as parameters are employed to model the controls. Equations of motion for a three-dimensional flight with pitch plane moment balance about an oblate are integrated numerically with a fourth-order Runge-Kutta method; two- and one-dimensional cubic spline function curve fits of aerodynamic coefficients are used during the first and second stages, respectively. The constraint minimization problem is solved with the Davidon-Fletcher-Powell function method.

  12. Analysis of seasonal characteristics of Sambhar Salt Lake, India, from digitized Space Shuttle photography

    Science.gov (United States)

    Lulla, Kamlesh P.; Helfert, Michael R.

    1989-01-01

    Sambhar Salt Lake is the largest salt lake (230 sq km) in India, situated in the northwest near Jaipur. Analysis of Space Shuttle photographs of this ephemeral lake reveals that water levels and lake basin land-use information can be extracted by both the digital and manual analysis techniques. Seasonal characteristics captured by the two Shuttle photos used in this study show that additional land use/cover categories can be mapped from the dry season photos. This additional information is essential for precise cartographic updates, and provides seasonal hydrologic profiles and inputs for potential mesoscale climate modeling. This paper extends the digitization and mensuration techniques originally developed for space photography and applied to other regions (e.g., Lake Chad, Africa, and Great Salt Lake, USA).

  13. Space shuttle orbital maneuvering system failure detection and identification software requirements (uncontrolled)

    Science.gov (United States)

    Damario, L. A.; Vullo, J. P.

    1976-01-01

    Candidate designs and their software implementation are presented for the Orbital Maneuvering System (OMS) Failure Detection and Identification (FDI) algorithms in the Redundance Management (RM) module of the Space Shuttle Guidance, Navigation, and Control (GN&C) software. The OMS engine FDI algorithm monitors OMS engine thrust performance, and the OMS actuator FDI algorithm monitors OMS gimbal actuator performance. The software functional requirements of the algorithms are described along with the objective of each algorithm. A list of the assumptions which have governed its design, input/output requirements, a functional description of the algorithm (including a functional block diagram), and input interface requirements are given. The HAL (the language of the space shuttle flight computer) software formulation of the algorithms is considered including structured flowcharts of the procedures, estimates of flight computer core storage and CPU time, and processing requirements. A glossary of the symbols used to define the software requirements and formulations is included.

  14. Application of Digital Radiography to Weld Inspection for the Space Shuttle External Fuel Tank

    Science.gov (United States)

    Ussery, Warren

    2009-01-01

    This slide presentation reviews NASA's use of digital radiography to inspect the welds of the external tanks used to hold the cryogenic fuels for the Space Shuttle Main Engines. NASA has had a goal of replacing a significant portion of film used to inspect the welds, with digital radiography. The presentation reviews the objectives for converting to a digital system from film, the characteristics of the digital system, the Probability of detection study, the qualification and implementation of the system.

  15. Multiple IMU system test plan, volume 4. [subroutines for space shuttle requirements

    Science.gov (United States)

    Landey, M.; Vincent, K. T., Jr.; Whittredge, R. S.

    1974-01-01

    Operating procedures for this redundant system are described. A test plan is developed with two objectives. First, performance of the hardware and software delivered is demonstrated. Second, applicability of multiple IMU systems to the space shuttle mission is shown through detailed experiments with FDI algorithms and other multiple IMU software: gyrocompassing, calibration, and navigation. Gimbal flip is examined in light of its possible detrimental effects on FDI and navigation. For Vol. 3, see N74-10296.

  16. Phased array ultrasonic examination of space shuttle main engine nozzle weld

    Science.gov (United States)

    James, S.; Engel, J.; Kimbrough, D.; Suits, M.

    2002-05-01

    This paper describes a Phased Array Ultrasonic Examination that was developed for the examination of a limited access circumferential Inconel 718 fusion weld of a Space Shuttle Main Engine Nozzle-Cone. The paper discusses the selection and formation criteria used for the phased array focal laws, the reference standard that simulated hardware conditions, the examination concept, and results. Several unique constraints present during this examination included limited probe movement to a single axis and one-sided access to the weld.

  17. Development of numerical methods for overset grids with applications for the integrated Space Shuttle vehicle

    Science.gov (United States)

    Chan, William M.

    1995-01-01

    Algorithms and computer code developments were performed for the overset grid approach to solving computational fluid dynamics problems. The techniques developed are applicable to compressible Navier-Stokes flow for any general complex configurations. The computer codes developed were tested on different complex configurations with the Space Shuttle launch vehicle configuration as the primary test bed. General, efficient and user-friendly codes were produced for grid generation, flow solution and force and moment computation.

  18. Influence of vibration modes on control system stabilization for space shuttle type vehicles

    Science.gov (United States)

    Greiner, H. G.

    1972-01-01

    An investigation was made to determine the feasibility of using conventional autopilot techniques to stabilize the vibration modes at the liftoff flight condition for two space shuttle configurations. One configuration is called the dual flyback vehicle in which both the orbiter and booster vehicles have wings and complete flyback capability. The other configuration is called the solid motor vehicle win which the orbiter only has flyback. The results of the linear stability analyses for each of the vehicles are summarized.

  19. Modification and development of the external tank hydrogen vent umbilical system for the space shuttle vehicle

    Science.gov (United States)

    Tatem, Bemis C., Jr.

    1988-01-01

    The design and development of a new T-O lock and secondary release mechanism which is being introduced to the ET Hydrogen Vent Umbilical System for the next launch of the Space Shuttle Vehicle is described. Critical analysis of the system in early 1986 indicated the need for an improvement in the secondary release system. The new T-O lock increases the clearance with the vehicle during secondary disconnect and is described.

  20. Effect of processing treatments on strength of silica thread for quilted ceramic insulation on Space Shuttle

    Science.gov (United States)

    Sawko, P. M.

    1985-01-01

    The effects of chemical, mechanical, and thermal processing treatments on the preflight strength properties of a silica sewing thread used to fabricate an external flexible Thermal Protection System (TPS) for the Space Shuttle vehicle are discussed. Below 540 C, loss of strength was observed for all treatments studied, but above conditioning temperatures of 540 C little change in strength properties was measured, indicating no appreciable mechanical damage to the yarn as a consequence of these processing treatments.

  1. X-SAR: The X-band synthetic aperture radar on board the Space Shuttle

    Science.gov (United States)

    Werner, Marian U.

    1993-01-01

    The X-band synthetic aperture radar (X-SAR) is the German/Italian contribution to the NASA/JPL Shuttle Radar Lab missions as part of the preparation for the Earth Observation System (EOS) program. The Shuttle Radar Lab is a combination of several radars: an L-band (1.2 GHz) and a C-band (5.3 GHz) multipolarization SAR known as SIR-C (Shuttle Imaging Radar); and an X-band (9.6 GHz) vertically polarized SAR which will be operated synchronously over the same target areas to deliver calibrated multifrequency and multipolarization SAR data at multiple incidence angles from space. A joint German/Italian project office at DARA (German Space Agency) is responsible for the management of the X-SAR project. The space hardware has been developed and manufactured under industrial contract by Dornier and Alenia Spazio. Besides supporting all the technical and scientific tasks, DLR, in cooperation with ASI (Agencia Spaziale Italiano) is responsible for mission operation, calibration, and high precision SAR processing. In addition, DLR developed an airborne X-band SAR to support the experimenters with campaigns to prepare for the missions. The main advantage of adding a shorter wavelength (3 cm) radar to the SIR-C radars is the X-band radar's weaker penetration into vegetation and soil and its high sensitivity to surface roughness and associated phenomena. The performance of each of the three radars is comparable with respect to radiometric and geometric resolution.

  2. The HYTHIRM Project: Flight Thermography of the Space Shuttle During the Hypersonic Re-entry

    Science.gov (United States)

    Horvath, Thomas J.; Tomek, Deborah M.; Berger, Karen T.; Zalameda, Joseph N.; Splinter, Scott C.; Krasa, Paul W.; Schwartz, Richard J.; Gibson, David M.; Tietjen, Alan B.; Tack, Steve

    2010-01-01

    This report describes a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. A background and an overview of several multidisciplinary efforts that culminated in the acquisition of high resolution calibrated infrared imagery of the Space Shuttle during hypervelocity atmospheric entry is presented. The successful collection of thermal data has demonstrated the feasibility of obtaining remote high-resolution infrared imagery during hypersonic flight for the accurate measurement of surface temperature. To maximize science and engineering return, the acquisition of quantitative thermal imagery and capability demonstration was targeted towards three recent Shuttle flights - two of which involved flight experiments flown on Discovery. In coordination with these two Shuttle flight experiments, a US Navy NP-3D aircraft was flown between 26-41 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 (STS-119) and Mach 14.7 (STS-128) using a long-range infrared optical package referred to as Cast Glance. This same Navy aircraft successfully monitored the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission (STS-125). The purpose of this paper is to describe the systematic approach used by the Hypersonic Thermodynamic Infrared Measurements team to develop and implement a set of mission planning tools designed to establish confidence in the ability of an imaging platform to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. The mission planning tools included a pre-flight capability to predict the infrared signature of the Shuttle. Such tools permitted optimization of the hardware configuration to increase signal-to-noise and to maximize the available

  3. Cardiovascular Aspects of Space Shuttle Flights: At the Heart of Three Decades of American Spaceflight Experience

    Science.gov (United States)

    Charles, John B.; Platts, S. H.

    2011-01-01

    The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.

  4. Which Way is Up? Lessons Learned from Space Shuttle Sensorimotor Research

    Science.gov (United States)

    Wood, S. J.; Reschke, M. F.; Harm, D. L.; Paloski, W. H.; Bloomberg, J. J.

    2011-01-01

    The Space Shuttle Program provided the opportunity to examine sensorimotor adaptation to space flight in unprecedented numbers of astronauts, including many over multiple missions. Space motion sickness (SMS) severity was highly variable across crewmembers. SMS generally lasted 2-3 days in-flight with approximately 1/3 of crewmembers experiencing moderate to severe symptoms, and decreased incidence in repeat flyers. While SMS has proven difficult to predict from susceptibility to terrestrial analogs, symptoms were alleviated by medications, restriction of early activities, maintaining familiar orientation with respect to the visual environment and maintaining contact cues. Adaptive changes were also reflected by the oculomotor and perceptual disturbances experienced early inflight and by the perceptual and motor coordination problems experienced during re-entry and landing. According to crew self-reports, systematic head movements performed during reentry, as long as paced within one's threshold for motion tolerance, facilitated the early readaptation process. The Shuttle provided early postflight crew access to document the initial performance decrements and time course of recovery. These early postflight measurements were critical to inform the program of risks associated with extending the duration of Shuttle missions. Neurological postflight deficits were documented using a standardized subjective rating by flight surgeons. Computerized dynamic posturography was also implemented as a quantitative means of assessing sensorimotor function to support crew return-to-duty assessments. Towards the end of the Shuttle Program, more emphasis has been placed on mapping physiological changes to functional performance. Future commercial flights will benefit from pre-mission training including exposures to launch and entry G transitions and sensorimotor adaptability assessments. While SMS medication usage will continue to be refined, non-pharmacological countermeasures (e

  5. Utilization of Space Shuttle External Tank materials by melting and powder metallurgy

    Science.gov (United States)

    Chern, T. S.

    1985-01-01

    The Crucible Melt Extraction Process was demonstrated to convert scraps of aluminum alloy 2219, used in the Space Shuttle External Tank, into fibers. The cast fibers were then consolidated by cold welding. The X-ray diffraction test of the cast fibers was done to examine the crystallinity and oxide content of the fibers. The compressive stress-strain behavior of the consolidated materials was also examined. Two conceptual schemes which would adapt the as-developed Crucible Melt Extraction Process to the microgravity condition in space were finally proposed.

  6. Quantification of reaction time and time perception during Space Shuttle operations

    Science.gov (United States)

    Ratino, D. A.; Repperger, D. W.; Goodyear, C.; Potor, G.; Rodriguez, L. E.

    1988-01-01

    A microprocessor-based test battery containing simple reaction time, choice reaction time, and time perception tasks was flown aboard a 1985 Space Shuttle flight. Data were obtained from four crew members. Individual subject means indicate a correlation between change in reaction time during the flight and the presence of space motion sickness symptoms. The time perception task results indicate that the shortest duration task time (2 s) is progressively overestimated as the mission proceeds and is statistically significant when comparing preflight and postflight baselines. The tasks that required longer periods of time to estimate (8, 12, and 16 s) are less affected.

  7. Control of an experiment to measure acoustic noise in the space shuttle

    Science.gov (United States)

    Cameron, Charles B.

    1989-06-01

    The potential use of a general-purpose controller to measure acoustic vibration autonomously in the Space Shuttle Cargo Bay during launch is described. The experimental package will be housed in a Shuttle Get Away Special (GAS) canister. The control functions were implemented with software written largely in the C programming language. An IBM MS DOS computer and C cross-compiler were used to generate Z-80 assembly language code, assemble and link this code, and then transfer it to EPROM for use in the experiment's controller. The software is written in a modular fashion to permit adapting it easily to other applications. The software combines the experimental control functions with a menu-driven, diagnostic subsystem to ensure that the software will operate in practice as it does in theory and under test. The experiment uses many peripheral devices controlled by the software described here. These devices include: (1) a solid-state data recorder; (2) a bubble memory storage module; (3) a real-time clock; (4) an RS-232C serial interface; (5) a power control subsystem; (6) a matched filter subsystem to detect activation of the Space Shuttle's auxillary power units five minutes prior to launch; (7) a launch detection subsystem based on vibrational and barometric sensors; (8) analog-to-digital converters; and (9) a heater subsystem. The matched filter design is discussed in detail and the results of a computer simulation of the performance of its most critical sub-circuit are presented.

  8. The Formation of Hydrochloric Acid Aerosol from the Interaction of the Space Shuttle Rocket Exhaust with the Atmosphere

    Science.gov (United States)

    Rhein, R. A.

    1973-01-01

    A description is given of conditions of atmospheric temperature and relative humidity under which hydrochloric acid aerosol is expected upon interaction of the proposed space shuttle rocket exhaust products with the atmosphere.

  9. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  10. A mobile robot system for ground servicing operations on the space shuttle

    Science.gov (United States)

    Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.

    1992-01-01

    A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.

  11. Manned space flight - The effects of Shuttle perturbations on orbital trajectory

    Science.gov (United States)

    Barrett, Charles P.; Propst, Carolyn A.

    1991-01-01

    Orbit determination and trajectory prediction for the National Space Transportation System program is complicated by trajectory perturbations that are unique to the Shuttle. Orbital energy changes are seen during extended hold periods as well as during unmodeled attitude maneuvers. While a portion of these changes are due to dynamical mismodeling, the majority of the changes are due to dynamics that are unique to the Shuttle. The ability to take these previously unmodeled effects into account will allow a more accurate preflight and real-time prediction of the orbital trajectory to support payload requirements. This paper deals with the determination of the databases used to determine preflight and real-time energy growth and the results of using the databases to accurately predict energy growth for future flights.

  12. A new method for hardware/software integration of strategic systems - Case study of the Space Shuttle

    Science.gov (United States)

    Haque, S. I.; Ionescu, T. V.; Henley, G. D.

    1981-01-01

    An advanced system integrated self-test has been developed to provide dynamic checkout of all critical subsystems and hardware/software interfaces of the Space Shuttle during pre-launch ground testing. The system modifies hardware sensor data to represent a real flight scenario. This modified data then drives the flight software. The system was sucessfully utilized for three phases of Space Shuttle testing, and will be expanded for use as a maintenance tool.

  13. Use It or Lose It: Skeletal Muscle Function and Performance Results from Space Shuttle

    Science.gov (United States)

    Ryder, Jeffrey

    2011-01-01

    The Space Shuttle Program provided a wealth of valuable information regarding the adaptations of skeletal muscle to weightlessness. Studies conducted during the Extended Duration Orbiter Medical Project (EDOMP) represented ground breaking work on the effects of spaceflight on muscle form and function from applied human research to cellular adaptations. Results from detailed supplementary objective (DSO) 477 demonstrated that muscle strength losses could occur rapidly in response to short-duration spaceflight. The effects of spaceflight-induced unloading were primarily restricted to postural muscles such as those of the back as well as the knee extensors. DSO 606 provided evidence from MRI that the observed strength losses were partially accounted for by a reduction in the size of the individual muscles. Muscle biopsy studies conducted during DSO 475 were able to show muscle atrophy in individual muscle fibers from the quadriceps muscles. Reduced quadriceps muscle size and strength was also observed during the 17-d Life and Microgravity Spacelab mission aboard STS-78. Multiple maximal strength tests were conducted in flight on the calf muscles and it has been hypothesized that these high force contractions may have acted as a countermeasure. Muscle fiber mechanics were studied on calf muscle samples pre- and postflight. While some responses were crewmember specific, the general trend was that muscle fiber force production dropped and shortening velocity increased. The increased shortening velocity helped to maintain muscle fiber power. Numerous rodent studies performed during Shuttle missions suggest that many of the effects reported in Shuttle crewmembers could be due to lesions in the cellular signaling pathways that stimulate protein synthesis as well as an increase in the mechanisms that up-regulate protein breakdown. The results have important implications regarding the overall health and performance capabilities of future crewmembers that will venture beyond

  14. The 2006 Kennedy Space Center Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the Performance of the National Aeronautics and Space Administration's Space Shuttle Vehicle

    Science.gov (United States)

    Burns, Lee; Decker, Ryan; Harrington, Brian; Merry, Carl

    2008-01-01

    The Kennedy Space Center (KSC) Range Reference Atmosphere (RRA) is a statistical model that summarizes wind and thermodynamic atmospheric variability from surface to 70 km. The National Aeronautics and Space Administration's (NASA) Space Shuttle program, which launches from KSC, utilizes the KSC RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the KSC RRA was recently completed. As part of the update, the Natural Environments Branch at NASA's Marshall Space Flight Center (MSFC) conducted a validation study and a comparison analysis to the existing KSC RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed by JSC/Ascent Flight Design Division to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  15. Design, Development, and Integration of A Space Shuttle Orbiter Bay 13 Payload Carrier

    Science.gov (United States)

    Spencer, Susan H.; Phillips, Michael W.; Upton, Lanny (Technical Monitor)

    2002-01-01

    Bay 13 of the Space Shuttle Orbiter has been limited to small sidewall mounted payloads and ballast. In order to efficiently utilize this space, a concept was developed for a cross-bay cargo carrier to mount Orbital Replacement Units (ORU's) for delivery to the International Space Station and provide additional opportunities for science payloads, while meeting the Orbiter ballast requirements. The Lightweight Multi-Purpose Experiment Support Structure (MPESS) Carrie (LMC) was developed and tested by NASA's Marshall Space Flight Center and the Boeing Company. The Multi-Purpose Experiment Support Structure (MPESS), which was developed for the Spacelab program was modified, removing the keel structure and relocating the sill trunnions to fit in Bay 13. Without the keel fitting, the LMC required a new and innovative concept for transferring Y loads into the Orbiter structure. Since there is no keel fitting available in the Bay 13 location, the design had to utilize the longeron bridge T-rail to distribute the Y loads. This concept has not previously been used in designing Shuttle payloads. A concept was developed to protect for Launch-On-Need ORU's, while providing opportunities for science payloads. Categories of potential ORU's were defined, and Get-Away Special (GAS) payloads of similar mass properties were provided by NASA's Goddard Space Flight Center. Four GAS payloads were manifest as the baseline configuration, preserving the capability to swap up to two ORU's for the corresponding science payloads, after installation into the Orbiter cargo bay at the pad, prior to closeout. Multiple configurations were considered for the analytical integration, to protect for all defined combinations of ORU's and GAS payloads. The first physical integration of the LMC war performed by Goddard Space Flight Center and Kennedy Space Center at an off-line facility at Kennedy Space Center. This paper will discuss the design challenges, structural testing, analytical and physical

  16. Photogrammetry Measurements During a Tanking Test on the Space Shuttle External Tank, ET-137

    Science.gov (United States)

    Littell, Justin D.; Schmidt, Tim; Tyson, John; Oliver, Stanley T.; Melis, Matthew E.; Ruggeri, Charles

    2012-01-01

    On November 5, 2010, a significant foam liberation threat was observed as the Space Shuttle STS-133 launch effort was scrubbed because of a hydrogen leak at the ground umbilical carrier plate. Further investigation revealed the presence of multiple cracks at the tops of stringers in the intertank region of the Space Shuttle External Tank. As part of an instrumented tanking test conducted on December 17, 2010, a three dimensional digital image correlation photogrammetry system was used to measure radial deflections and overall deformations of a section of the intertank region. This paper will describe the experimental challenges that were overcome in order to implement the photogrammetry measurements for the tanking test in support of STS-133. The technique consisted of configuring and installing two pairs of custom stereo camera bars containing calibrated cameras on the 215-ft level of the fixed service structure of Launch Pad 39-A. The cameras were remotely operated from the Launch Control Center 3.5 miles away during the 8 hour duration test, which began before sunrise and lasted through sunset. The complete deformation time history was successfully computed from the acquired images and would prove to play a crucial role in the computer modeling validation efforts supporting the successful completion of the root cause analysis of the cracked stringer problem by the Space Shuttle Program. The resulting data generated included full field fringe plots, data extraction time history analysis, section line spatial analyses and differential stringer peak ]valley motion. Some of the sample results are included with discussion. The resulting data showed that new stringer crack formation did not occur for the panel examined, and that large amounts of displacement in the external tank occurred because of the loads derived from its filling. The measurements acquired were also used to validate computer modeling efforts completed by NASA Marshall Space Flight Center (MSFC).

  17. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  18. Development of Lead Free Energy Absorber for Space Shuttle Blast Container

    Science.gov (United States)

    Balles, Donald; Ingram, Thomas; Novak, Howard; Schricker, Albert

    1999-01-01

    The Space Shuttle is connected to the mobile launch platform (MLP) by four aft skirt hold down studs on each solid rocket booster (SRB). Prior to lift-off, the frangible nuts inside the aft skirt blast containers are severed into two nut halves by two pyrotechnic booster cartridges. This action releases the Space Shuttle and allows the hold down studs to eject through the aft skirt bore and then down into the MLP. USBI has been tasked to upgrade the blast container for two specific reasons: (1) To eliminate lead for environmental concerns, and (2) To reduce the chance of nut recontact with the holddown stud. Nut recontact with the stud has been identified as a likely contributor to stud hang-ups. This upgrade will replace the lead liner with a unique open cell aluminum foam material, that has commercial and military uses. The aluminum foam used as an energy absorber is a proven design in many other aerospace/defense applications. Additional benefits of using the open cell, energy absorbent aluminum foam in place of the solid lead liner are: (1) Lead handling / exposure and possible contamination, along with hazardous waste disposal, will be eliminated; (2) Approximately 200 lbs. weight savings will be contributed to each Space Shuttle flight by using aluminum foam instead of lead; (3) The new aluminum liner is designed to catch all shrapnel from frangible nuts, thus virtually eliminating chance of debris exiting the HDP and causing potential damage to the vehicle; (4) Using the lighter aluminum liner instead of lead, allows for easier assembly and disassembly of blast container elements, which also improves safety, operator handling, and the efficiency of operations.

  19. Impact to Space Shuttle Vehicle Trajectory on Day of Launch from change in Low Frequency Winds

    Science.gov (United States)

    Decker, Ryan K.; Puperi, Daniel; Leach, Richard

    2007-01-01

    The National Aeronautics and Space Administration's (NASA) Space Shuttle utilizes atmospheric winds on day of launch to develop throttle and steering commands to best optimize vehicle performance while keeping structural loading on the vehicle within limits. The steering commands and resultant trajectory are influenced by both the high and low frequency component of the wind. However, the low frequency component has a greater effect on the ascent design. Change in the low frequency wind content from the time of trajectory design until launch can induce excessive loading on the vehicle. Wind change limits have been derived to protect from launching in an environment where these temporal changes occur. Process of developing wind change limits are discussed followed by an observational study of temporal wind change in low frequency wind profiles at the NASA's Kennedy Space Center area are presented.

  20. Spares Management : Optimizing Hardware Usage for the Space Shuttle Main Engine

    Science.gov (United States)

    Gulbrandsen, K. A.

    1999-01-01

    The complexity of the Space Shuttle Main Engine (SSME), combined with mounting requirements to reduce operations costs have increased demands for accurate tracking, maintenance, and projections of SSME assets. The SSME Logistics Team is developing an integrated asset management process. This PC-based tool provides a user-friendly asset database for daily decision making, plus a variable-input hardware usage simulation with complex logic yielding output that addresses essential asset management issues. Cycle times on critical tasks are significantly reduced. Associated costs have decreased as asset data quality and decision-making capability has increased.

  1. Ku-band signal design study. [space shuttle orbiter data processing network

    Science.gov (United States)

    Rubin, I.

    1978-01-01

    Analytical tools, methods and techniques for assessing the design and performance of the space shuttle orbiter data processing system (DPS) are provided. The computer data processing network is evaluated in the key areas of queueing behavior synchronization and network reliability. The structure of the data processing network is described as well as the system operation principles and the network configuration. The characteristics of the computer systems are indicated. System reliability measures are defined and studied. System and network invulnerability measures are computed. Communication path and network failure analysis techniques are included.

  2. Universal computer test stand (recommended computer test requirements). [for space shuttle computer evaluation

    Science.gov (United States)

    1973-01-01

    Techniques are considered which would be used to characterize areospace computers with the space shuttle application as end usage. The system level digital problems which have been encountered and documented are surveyed. From the large cross section of tests, an optimum set is recommended that has a high probability of discovering documented system level digital problems within laboratory environments. Defined is a baseline hardware, software system which is required as a laboratory tool to test aerospace computers. Hardware and software baselines and additions necessary to interface the UTE to aerospace computers for test purposes are outlined.

  3. Nozzle exit exhaust products from space shuttle boost vehicle (November 1973 design)

    Science.gov (United States)

    1975-01-01

    Principal exhaust species emitted at various altitudes for two trajectories of the space shuttle vehicle are presented. The exhaust composition is given for the nozzle exit plane on the basis of equilibrium chemistry. Afterburning of excess H, H2, and CO in the plume is accounted for. Species considered include HCl and Al2O3, which have been recognized as environmentally significant, as well as others such as H2O (produced by both the solid rocket motor and the orbiter main engine) which, although innocuous, may participate in subsequent chemical reactions in the atmosphere.

  4. Wind tunnel investigation of Space Shuttle Solid Rocket Booster drogue parachutes and deployment concepts

    Science.gov (United States)

    Bacchus, D. L.; Vickers, J. R.; Foughner, J. T., Jr.

    1975-01-01

    A wind tunnel test has been conducted on one-eighth scale models of the Space Shuttle Solid Rocket Booster drogue parachute system. The test included an investigation of four candidate drogue deployment concepts and a parametric steady state drag study of 20-degree conical ribbon parachutes. The results show that at least two of the four deployment concepts tested are viable candidates for the full scale deployment system. The interference free steady state drag results obtained show excellent agreement with available drop test results on large 20-degree conical ribbon parachutes.

  5. Drogue parachute deployment dynamics of the space shuttle solid rocket booster

    Science.gov (United States)

    Banerjee, A. K.; Utreja, L. R.

    1975-01-01

    Theoretical analysis and experimental investigations are presented for two deployment concepts of the drogue parachute deployment for the space shuttle solid rocket booster. The analysis represents the motion of three coupled rigid bodies, with one of the bodies having variable mass and moment of inertia. The unfurling process of the parachute from the bag is idealized as the flow of a continuum out of a control surface. The pilot parachute or tethered nose cap is modeled as a flexible pendulum with a nonlinear spring and a moving support. Measured wind tunnel test data compare reasonably well with the theory.

  6. Understanding the cost bases of Space Shuttle pricing policies for commercial and foreign customers

    Science.gov (United States)

    Stone, Barbara A.

    1984-01-01

    The principles and underlying cost bases of the 1977 and 1982 Space Shuttle Reimbursement Policies are compared and contrasted. Out-of-pocket cost recovery has been chosen as the base of the price for the 1986-1988 time period. With this cost base, it is NASA's intent to recover the total cost of consumables and the launch and flight operations costs added by commercial and foreign customers over the 1986-1988 time period. Beyond 1988, NASA intends to return to its policy of full cost recovery.

  7. Investigations for the improvement of space shuttle main engine electron beam welding equipment

    Science.gov (United States)

    Smock, R. A.; Taylor, R. A.; Wall, W. A., Jr.

    1977-01-01

    Progress made in the testing, evaluation, and correction of MSFC's 7.5 kW electron beam welder in support of space shuttle main engine component welding is summarized. The objective of this project was to locate and correct the deficiencies in the welder. Some 17 areas were deficient in the 7.5 kW ERI welding system and the associated corrective action was taken to improve its operational performance. An overall improvement of 20 times the original reliability was obtained at full rated capacity after the modifications were made.

  8. Development of the Imaging Spectrometer for Shuttle and space platform applications

    Science.gov (United States)

    Herring, Mark; Page, Norman A.

    1986-01-01

    The concept of the Imaging Spectrometer is becoming established as a major new thrust in remote sensing of the earth. A future step will be the Shuttle Imaging Spectrometer (SISEX) currently planned for a 1990 flight. This paper describes the current state of development of SISEX, including the development of a modular concept which will allow major elements of SISEX to be used on NASA's Space platform, the Earth Observing System. This modular approach is expected to result in a substantial overall cost saving.

  9. Dynamics of multirate sampled data control systems. [for space shuttle boost vehicle

    Science.gov (United States)

    Naylor, J. R.; Hynes, R. J.; Molnar, D. O.

    1974-01-01

    The effect was investigated of the synthesis approach (single or multirate) on the machine requirements for a digital control system for the space shuttle boost vehicle. The study encompassed four major work areas: synthesis approach trades, machine requirements trades, design analysis requirements and multirate adaptive control techniques. The primary results are two multirate autopilot designs for the low Q and maximum Q flight conditions that exhibits equal or better performance than the analog and single rate system designs. Also, a preferred technique for analyzing and synthesizing multirate digital control systems is included.

  10. Optimal platform skewing for Space Shuttle inertial measurement unit redundancy management

    Science.gov (United States)

    Rasmussen, M. C.

    1980-01-01

    Constraints are applied to a general quaternion which describes the skewing between platforms of the Space Shuttle IMU. Once a skewing is derived, the use of the failure magnitude to threshold ratio makes possible predictions of the identification sensitivities for various failure modes. This in turn simplifies analyses and identifies portions of the flight envelope where second failure coverage is lacking. The square root of 6 and square root of 2 skewings have been baselined for use during nominal entry; the realignment software will be used on orbit to reskew the IMUs to the optimal configuration.

  11. OVERFLOW Simulations of Space Shuttle Orbiter Reentry Based on As-Built Geometry

    Science.gov (United States)

    Ma, Edward C.; Vicker, Darby J.; Campbell, Charles H.; Wilson, Brad; Pavek, Mike; Berger, Karen

    2012-01-01

    The Space Shuttle Orbiters Discovery and Endeavor have been digitally scanned to obtain outer mold line surfaces. Using these scans, the existing overset computational fluid dynamics (CFD) grid system will be modified by projecting the grid points to the scanned geometry. Simulations will be performed using the OVERFLOW solver and the results compared to previous OVERFLOW results on the theoretical geometry and the aerodynamic databook. The "bent airframe" term will be compared between the aerodynamic databook and the computations over a range of reentry conditions.

  12. Thermal finite-element analysis of space shuttle main engine turbine blade

    Science.gov (United States)

    Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert

    1987-01-01

    Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.

  13. The Right Stuff: A Look Back at Three Decades of Flight Controller Training for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittemore, Gary D.

    2011-01-01

    Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The reader will learn what it is like to perform a simulation as a shuttle flight controller. Finally, the paper will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors. These endeavors could range from going to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle and inspire the next generation of space explorers.

  14. The Ascent Study - Understanding the Market Environment for the Follow-on to the Space Shuttle

    Science.gov (United States)

    Webber, Derek

    2002-01-01

    The ASCENT Study - Understanding the Market Environment for the Follow-on to NASA's Marshall Space Flight Center in Huntsville, Alabama, awarded a contract (base plus option amounting to twenty months of analysis) to Futron Corporation in June 2001 to investigate the market environment, and explore the price elasticity attributes, relevant for the introduction of the Second Generation Reusable Launch Vehicle (the follow-on to the Space Shuttle) in the second decade of this century. This work is known as the ASCENT Study (Analysis of Space Concepts Enabled by New Transportation) and data collection covering a total of 42 different sectors took place during 2001. Modeling and forecasting activities for 26 of these markets (all of them international in nature) have been taking place throughout 2002, and the final results of the ASCENT Study, which include 20 year forecasts, are due by the end of January, 2003. This paper describes the markets being analyzed for the ASCENT Study, and includes some preliminary findings in terms of launch vehicle demand during the next 20 years, broken down by mass class and mission type. Amongst these markets are the potential public space travel opportunities. When completed, the final report of the ASCENT Study is expected to represent a significant reference document for all business development, financing and planning activities in the space industry for some time to come. One immediate use will be as a key factor in determining the cargo capability and launch rates to be used for designing the follow-on to the Space Shuttle. The Study will also provide NASA with a quantified indication of the extent to which the lower cost to orbit, made possible by a new class of launch vehicle, will bring into being new markets.

  15. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    Science.gov (United States)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  16. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    Science.gov (United States)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  17. Analysis of lightning flash videos from the Space Shuttle using blob and morphological techniques

    Science.gov (United States)

    Pitts, David E.; Vaughan, Otha H., Jr.; Sapp, Clyde A.; Helms, David; Chambers, Mark; Jaklitch, Pat; Duncan, Mike

    1992-01-01

    Flash rates measured from the Space Shuttle range from 27.8 flashes per minute to 77 flashes per minute. The cloud is an optically thick medium which effectively scatters the energy from a lightning discharge and thereby broadens the risetime and duration of each lightning pulse. Because of the small size, spacecraft sensors with resolutions of 1 km or more are unlikely to detect the individual lightning channels. Instead, the energy from the lightning channel is scattered within the cloud, thereby broadening the apparent area. All of these measurements of lightning flash area and flash rate have involved manual manipulation and analysis of the video or film data. Only a small percentage of the Space Shuttle lightning video has been analyzed. An attempt is made to combine the use of real-time digital disk system and an automated analysis routine in order to overcome this limitation and make processing of a sequence of video frames a much less labor-intensive task.

  18. Development of NASA's Accident Precursor Analysis Process Through Application on the Space Shuttle Orbiter

    Science.gov (United States)

    Maggio, Gaspare; Groen, Frank; Hamlin, Teri; Youngblood, Robert

    2010-01-01

    Accident Precursor Analysis (APA) serves as the bridge between existing risk modeling activities, which are often based on historical or generic failure statistics, and system anomalies, which provide crucial information about the failure mechanisms that are actually operative in the system. APA docs more than simply track experience: it systematically evaluates experience, looking for under-appreciated risks that may warrant changes to design or operational practice. This paper presents the pilot application of the NASA APA process to Space Shuttle Orbiter systems. In this effort, the working sessions conducted at Johnson Space Center (JSC) piloted the APA process developed by Information Systems Laboratories (ISL) over the last two years under the auspices of NASA's Office of Safety & Mission Assurance, with the assistance of the Safety & Mission Assurance (S&MA) Shuttle & Exploration Analysis Branch. This process is built around facilitated working sessions involving diverse system experts. One important aspect of this particular APA process is its focus on understanding the physical mechanism responsible for an operational anomaly, followed by evaluation of the risk significance of the observed anomaly as well as consideration of generalizations of the underlying mechanism to other contexts. Model completeness will probably always be an issue, but this process tries to leverage operating experience to the extent possible in order to address completeness issues before a catastrophe occurs.

  19. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    Science.gov (United States)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  20. Acoustic Modeling and Analysis for the Space Shuttle Main Propulsion System Liner Crack Investigation

    Science.gov (United States)

    Casiano, Matthew J.; Zoladz, Tom F.

    2004-01-01

    Cracks were found on bellows flow liners in the liquid hydrogen feedlines of several space shuttle orbiters in 2002. An effort to characterize the fluid environment upstream of the space shuttle main engine low-pressure fuel pump was undertaken to help identify the cause of the cracks and also provide quantitative environments and loads of the region. Part of this effort was to determine the duct acoustics several inches upstream of the low-pressure fuel pump in the region of a bellows joint. A finite element model of the complicated geometry was made using three-dimensional fluid elements. The model was used to describe acoustics in the complex geometry and played an important role in the investigation. Acoustic mode shapes and natural frequencies of the liquid hydrogen in the duct and in the cavity behind the flow liner were determined. Forced response results were generated also by applying an edgetone-like forcing to the liner slots. Studies were conducted for state conditions and also conditions assuming two-phase entrapment in the backing cavity. Highly instrumented single-engine hot fire data confirms the presence of some of the predicted acoustic modes.

  1. Investigation of a catalytic gas generator for the Space Shuttle APU. [hydrazine Auxiliary Propulsion Unit

    Science.gov (United States)

    Emmons, D. L.; Huxtable, D. D.; Blevins, D. R.

    1974-01-01

    An investigation was conducted to establish the capability of a monopropellant hydrazine catalytic gas generator to meet the requirements specified for the Space Shuttle APU. Detailed analytical and experimental studies were conducted on potential problem areas including long-term nitriding effects on materials, design variables affecting catalyst life, vehicle vibration effects, and catalyst oxidation/contamination. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The objective of the first test series was to demonstrate the capability of the gas generator to successfully complete 20 simulated Space Shuttle missions in steady-state operation. The gas generator was then refurbished and subjected to a second series of tests to demonstrate the pulse-mode capability of the gas generator during 20 simulated missions. The third series of tests was conducted with a refurbished reactor to further demonstrate pulse-mode capability with a modified catalyst bed.

  2. Modifications to CTVS TV cameras for space shuttle compatibility and evaluation

    Science.gov (United States)

    Hoagland, K.

    1981-08-01

    Five all solid state cockpit television system (CTVS) cameras, built to USAF requirements for high performance type F-16 aircraft, were modified and tested for possible use in the closed circuit television system on the space shuttle orbiter. The 400 HZ power supply in the electronics unit assembly was replaced with two DC/DC converters to enable operation from 28VDC spacecraft-type power sources. Nonessential circuit functions were deleted to minimize input power requirements. The normal 31 mm focal length lense assemblies were replaced with wider field-of-view 19 mm focal length lenses. Base plates for and housings were redesigned to facilitate mounting and heat-sinking of the camera in the space environment and short length (14") adapter cables were designed, fabricated, and tested to meet requirements for cameras configured to mount on the astronauts helmet/visor assembly. Technical requirements, design implementation, environmental tests, Modifications prodedures, and reliability/quality efforts are discussed. Schematics are included.

  3. Space Shuttle Solid Rocket Motor Plume Pressure and Heat Rate Measurements

    Science.gov (United States)

    vonEckroth, Wulf; Struchen, Leah; Trovillion, Tom; Perez, Ravael; Nereolich, Shaun; Parlier, Chris

    2012-01-01

    The Solid Rocket Booster (SRB) Main Flame Deflector (MFD) at Launch Complex 39A was instrumented with sensors to measure heat rates, pressures, and temperatures on the last three Space Shuttle launches. Because the SRB plume is hot and erosive, a robust Tungsten Piston Calorimeter was developed to compliment the measurements made by off-the-shelf sensors. Witness materials were installed and their melting and erosion response to the Mach 2 / 4500 F / 4-second duration plume was observed. The data show that the specification document used for the design of the MFD thermal protection system over-predicted heat rates by a factor of 3 and under-predicted pressures by a factor of 2. These findings will be used to baseline NASA Computational Fluid Dynamics models and develop innovative MFD designs for the Space Launch System (SLS) before this vehicle becomes operational in 2017.

  4. Space Shuttle Program (SSP) Shock Test and Specification Experience for Reusable Flight Hardware Equipment

    Science.gov (United States)

    Larsen, Curtis E.

    2012-01-01

    As commercial companies are nearing a preliminary design review level of design maturity, several companies are identifying the process for qualifying their multi-use electrical and mechanical components for various shock environments, including pyrotechnic, mortar firing, and water impact. The experience in quantifying the environments consists primarily of recommendations from Military Standard-1540, Product Verification Requirement for Launch, Upper Stage, and Space Vehicles. Therefore, the NASA Engineering and Safety Center (NESC) formed a team of NASA shock experts to share the NASA experience with qualifying hardware for the Space Shuttle Program (SSP) and other applicable programs and projects. Several team teleconferences were held to discuss past experience and to share ideas of possible methods for qualifying components for multiple missions. This document contains the information compiled from the discussions

  5. Recent space shuttle observations of the South Atlantic anomaly and the radiation belt models

    Science.gov (United States)

    Konradi, A.; Badhwar, G. D.; Braby, L. A.

    1994-01-01

    Active ingredients consisting of Tissue Equivalent Proportional Counter (TEPC) and a Proton and Heavy Ion Detector (PHIDE) have been carried on a number of Space Shuttle flights. These instruments have allowed us to map out parts of the South Atlantic Particle Anomaly (SAA) and to compare some of it's features with predictions of the AP-8 energetic proton flux models. We have observed that consistent with the generally observed westward drift of the surface features of the terrestial magnetic field of the SAA has moved west by about 6.9 degrees longitude between the epoch year 1970 of the AP-8 solar maximum model and the Space Shuttle observations made twenty years later. However, calculations indicate that except for relatively brief periods following very large magnetic storms the SAA seems to occupy the same position in L-space as in 1970. After the great storm of 24 March 1991 reconfiguration of the inner radiation belt and/or proton injection into the inner belt, a second energetic proton belt was observed to form at approximately equal to 2. As confirmed by a subsequent flight observations, this belt was shown to persist at least for six months. Our measurements also indicate an upward shift in the L location of the primary belt from L = 1.4 to L = 1.5. In addition we confirm through direct real time observations the existence and the approximate magnitude of the East-West effect. If the need exists for improved and updated radiation belt models in the Space Station era, these observations point out the specific features that should be considered and incorporated when this task is undertaken.

  6. Shuttle-era experiments in the area of plasma flow interactions with bodies in space

    Science.gov (United States)

    Samir, U.; Stone, N. H.

    1980-01-01

    A new experimental approach is discussed that can be adopted for studies in the area of plasma flow interactions with bodies in space. The potential use of the Space Shuttle/Orbiter as a near-earth plasma laboratory for studies in space plasma physics and particularly in solar system plasmas is discussed. This new experimental approach holds great promise for studies in the supersonic and sub-Alfvenic flow regime which has applications to the motion of natural satellites around their mother planets in the solar-system (e.g., the satellite Io around the planet Jupiter). A well conceived experimental and theoretical program can lead to a better physical understanding regarding the validity and range of applicability of using gasdynamic, kinetic, and fluid approaches in describing collisionless plasma flow interactions with bodies in a variety of flow regimes. In addition to the above scientific aspects of the program, significant technological advances can be achieved regarding the interaction of space probes in planetary atmospheres/ionospheres and the reliability of using various plasma diagnostic devices on board spacecraft and large space platforms.

  7. Comparison of predicted and experimental real-gas pressure distributions on space shuttle orbiter nose for shuttle entry air data system

    Science.gov (United States)

    Shinn, J. L.

    1980-01-01

    An experimental investigation of inviscid real-gas effects on the pressure distribution along the Space Shuttle Orbiter nose center line up to an angle of attack of 32 deg was performed in support of the Shuttle Entry Air Data System (SEADS). Free-stream velocities from 4.8 to 6.6 kn/s were generated at hypersonic conditions with helium, air, and CO2, resulting in normal-shock density ratios from 3.7 to 18.4. The experimental results for pressure distribution agreed closely with numerical results. Modified Newtonian theory deviates from both experiment and the numerical results as angle of attack increases or shock density ratio decreases. An evaluation of the use of modified Newtonian theory for predicting SEADS pressure distributions in actual flight conditions was made through comparison with numerical predictions.

  8. Microwave and Millimeter Wave Nondestructive Evaluation of the Space Shuttle External Tank Insulating Foam

    Science.gov (United States)

    Shrestha, S.; Kharkovsky, S.; Zoughi, R.; Hepburn, F

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure has been attributed to a piece of external fuel tank insulating SOFI (Spray On Foam Insulation) foam striking the leading edge of the left wing of the orbiter causing significant damage to some of the protecting heat tiles. The accident emphasizes the growing need to develop effective, robust and life-cycle oriented methods of nondestructive testing and evaluation (NDT&E) of complex conductor-backed insulating foam and protective acreage heat tiles used in the space shuttle fleet and in future multi-launch space vehicles. The insulating SOFI foam is constructed from closed-cell foam. In the microwave regime this foam is in the family of low permittivity and low loss dielectric materials. Near-field microwave and millimeter wave NDT methods were one of the techniques chosen for this purpose. To this end several flat and thick SOFI foam panels, two structurally complex panels similar to the external fuel tank and a "blind" panel were used in this investigation. Several anomalies such as voids and disbonds were embedded in these panels at various locations. The location and properties of the embedded anomalies in the "blind" panel were not disclosed to the investigating team prior to the investigation. Three frequency bands were used in this investigation covering a frequency range of 8-75 GHz. Moreover, the influence of signal polarization was also investigated. Overall the results of this investigation were very promising for detecting the presence of anomalies in different panels covered with relatively thick insulating SOFI foam. Different types of anomalies were detected in foam up to 9 in thick. Many of the anomalies in the more complex panels were also detected. When investigating the blind panel no false positives were detected. Anomalies in between and underneath bolt heads were not easily detected. This paper presents the results of this investigation along with a discussion of the capabilities of the method

  9. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control System Plumes

    Science.gov (United States)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  10. A View of Lightning from the Space Shuttle Red Sprites and Blue Jets

    Science.gov (United States)

    Vaughan, Otha H., Jr.

    1999-01-01

    An examination and analysis of video images of lightning captured by the Low Light Level Monochrome TV cameras of the space shuttle, have provided a variety of examples of new forms of lightning-like discharges that appear to move out of the top of very active thunderstorms. These images were obtained during a number of shuttle missions while conducting the Mesoscale Lightning Observational Experiment (MLE). The video images illustrate a variety of filamentary and broad-like discharges to the stratosphere and maybe related to the intense electrical fields that are generated by the thunderstorm, which may somehow play a part in the Earth's global electrical circuit. A typical event is seen as a single or multiple-like filament that can appear to occur at altitudes between 60 to 95 km above the storm top. In addition, another phenomenon not explained at the present time, appears to move out the top of the storm and then proceeds toward the stratosphere at speeds of about lOOkm/sec. These events, much like a jet, reach an altitude of at least 33 km before they begin to spread out into a cone like shape. More observations obtained from ground and aircraft using low light level color TV cameras have confirmed that the sprites are red while the jets are blue in color, hence the name Red Sprites and Blue Jets. Still images and video data will be presented, illustrating these new atmospheric phenomena.

  11. Lessons Learned from the Space Shuttle Engine Cutoff System (ECO) Anomalies

    Science.gov (United States)

    Martinez, Hugo E.; Welzyn, Ken

    2011-01-01

    The Space Shuttle Orbiter's main engine cutoff (ECO) system first failed ground checkout in April, 2005 during a first tanking test prior to Return-to-Flight. Despite significant troubleshooting and investigative efforts that followed, the root cause could not be found and intermittent anomalies continued to plague the Program. By implementing hardware upgrades, enhancing monitoring capability, and relaxing the launch rules, the Shuttle fleet was allowed to continue flying in spite of these unexplained failures. Root cause was finally determined following the launch attempts of STS-122 in December, 2007 when the anomalies repeated, which allowed drag-on instrumentation to pinpoint the fault (the ET feedthrough connector). The suspect hardware was removed and provided additional evidence towards root cause determination. Corrective action was implemented and the system has performed successfully since then. This white paper presents the lessons learned from the entire experience, beginning with the anomalies since Return-to-Flight through discovery and correction of the problem. To put these lessons in better perspective for the reader, an overview of the ECO system is presented first. Next, a chronological account of the failures and associated investigation activities is discussed. Root cause and corrective action are summarized, followed by the lessons learned.

  12. Tri-state delta modulation system for Space Shuttle digital TV downlink

    Science.gov (United States)

    Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.

    1981-01-01

    Future requirements for Shuttle Orbiter downlink communication may include transmission of digital video which, in addition to black and white, may also be either field-sequential or NTSC color format. The use of digitized video could provide for picture privacy at the expense of additional onboard hardware, together with an increased bandwidth due to the digitization process. A general objective for the Space Shuttle application is to develop a digitization technique that is compatible with data rates in the 20-30 Mbps range but still provides good quality pictures. This paper describes a tri-state delta modulation/demodulation (TSDM) technique which is a good compromise between implementation complexity and performance. The unique feature of TSDM is that it provides for efficient run-length encoding of constant-intensity segments of a TV picture. Axiomatix has developed a hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV and field-sequential color. The hardware complexity of this TSDM implementation is summarized in the paper.

  13. Tri-state delta modulation system for Space Shuttle digital TV downlink

    Science.gov (United States)

    Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.

    Future requirements for Shuttle Orbiter downlink communication may include transmission of digital video which, in addition to black and white, may also be either field-sequential or NTSC color format. The use of digitized video could provide for picture privacy at the expense of additional onboard hardware, together with an increased bandwidth due to the digitization process. A general objective for the Space Shuttle application is to develop a digitization technique that is compatible with data rates in the 20-30 Mbps range but still provides good quality pictures. This paper describes a tri-state delta modulation/demodulation (TSDM) technique which is a good compromise between implementation complexity and performance. The unique feature of TSDM is that it provides for efficient run-length encoding of constant-intensity segments of a TV picture. Axiomatix has developed a hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV and field-sequential color. The hardware complexity of this TSDM implementation is summarized in the paper.

  14. The Final Count Down: A Review of Three Decades of Flight Controller Training Methods for Space Shuttle Mission Operations

    Science.gov (United States)

    Dittermore, Gary; Bertels, Christie

    2011-01-01

    Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.

  15. An approach to developing the market for space shuttle payloads: Business/public policy issues and international marketing considerations

    Science.gov (United States)

    Krebs, W. A. W.

    1974-01-01

    The business and public policies were assessed that were determined to be important for NASA to consider in the design of a program for stimulating use of the space transportation system (STS) among potential users in the U.S. private sector and in foreign countries, in preparation for operations of the space shuttle in the early 1980's. Salient factors related to international cooperation in space are identified for special consideration in the development of user potential of the STS.

  16. Research study on neutral thermodynamic atmospheric model. [for space shuttle mission and abort trajectory

    Science.gov (United States)

    Hargraves, W. R.; Delulio, E. B.; Justus, C. G.

    1977-01-01

    The Global Reference Atmospheric Model is used along with the revised perturbation statistics to evaluate and computer graph various atmospheric statistics along a space shuttle reference mission and abort trajectory. The trajectory plots are height vs. ground range, with height from ground level to 155 km and ground range along the reentry trajectory. Cross sectional plots, height vs. latitude or longitude, are also generated for 80 deg longitude, with heights from 30 km to 90 km and latitude from -90 deg to +90 deg, and for 45 deg latitude, with heights from 30 km to 90 km and longitudes from 180 deg E to 180 deg W. The variables plotted are monthly average pressure, density, temperature, wind components, and wind speed and standard deviations and 99th inter-percentile range for each of these variables.

  17. Preliminary results from the prototype synchrotron radiation detector on space shuttle mission STS-108

    Energy Technology Data Exchange (ETDEWEB)

    Anderhub, H.; Bates, J.R.; Baetzner, D.; Baumgartner, S.; Biland, A. E-mail: biland@particle.phys.ethz.ch; Camps, C.; Capell, M.; Commichau, V.; Djambazov, L.; Fanchiang, Y.-J.; Fluegge, G.; Fritschi, M.; Grimm, O.; Hangarter, K.; Hofer, H.; Horisberger, U.; Kan, R.; Kaestli, W.; Kenney, G.P.; Kim, G.N.; Kim, K.S.; Koutsenko, V.; Kraeber, M.; Kuipers, J.; Lebedev, A.; Lee, M.W.; Lee, S.-C.; Lewis, R.; Lustermann, W.; Pauss, F.; Rauber, T.; Ren, D.; Ren, Z.L.; Roeser, U.; Son, D.; Ting, Samuel C.C.; Tiwari, A.N.; Viertel, G.M.; Gunten, H. von; Wicki, S. Waldmeier; Wang, T.-S.; Yang, J.; Zimmermann, B

    2002-12-01

    A Synchrotron Radiation Detector measures synchrotron radiation emitted by high energetic particles in the earth magnetic field. This allows to identify cosmic ray electrons and positrons with energies in the TeV region. One possibility for such a detector outside the atmosphere uses YAP crystals to measure synchrotron photons with energies in the keV range. As such a detector can not distinguish between photons and electrons, the main problems are the diffuse cosmic ray gamma background and low energetic electrons in the vicinity of the earth. While the intensity of the diffuse gamma rays is known quite well, there exists limited knowledge about keV-electrons in low earth orbits. To measure these electrons a Prototype Synchrotron Radiation Detector (PSRD) was flown with Space Shuttle mission STS-108 (Dec.2001) and preliminary analysis of the data show very favorable results.

  18. Lateral-directional stability investigation of the space shuttle orbiter at Mach 6

    Science.gov (United States)

    Calloway, R. L.

    1983-01-01

    Lateral-directional aerodynamic data and oil-flow visualization results are pesented from four tests (conducted in two facilities using three models) which were designed to verify the hypersonic aerodynamics of the Space Shuttle orbiter at M=6. Comparisons of measured lateral-directional stability data and oil-flow results between the tests show excellent agreement, especially considering the nonuniform, unpredictable flow which occurs in the vicinity of the vertical tail. Results ere shown to be sensitive to Reynolds number with the higher Reynolds number cases producing more stable values and also showing good agreement with flight values. The results also show that the effects of Reynolds number, angle of attack, and angle of sideslip on the lateral-directional stability of future entry configuration should be carefully assessed for non-linearities.

  19. Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter

    Science.gov (United States)

    Hyde, James L.; Christiansen, Eric L.; Lear, Dana M.; Kerr, Justin H.

    2009-01-01

    An overview of significant Micrometeoroid and Orbital Debris (MMOD) impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. The concept of "Late Inspection" of the Nose Cap and Wing leading Edge (WLE) Reinforced Carbon Carbon (RCC) regions will be introduced. An alternative mated attitude with the International Space Station (ISS) on shuttle MMOD risk will also be presented. The significant threat mitigation effect of these two techniques will be demonstrated. The wing leading edge impact detection system, on-orbit repair techniques and disabled vehicle contingency plans will also be discussed.

  20. Potential seal candidates for high-energy propellants. [for Space Shuttle orbital maneuvering system

    Science.gov (United States)

    Merz, P. L.

    1975-01-01

    Five potential seal candidates (linear Tefzel, linear Halar, crosslinked Halar, Viton ECD-006, and phosphazine fluoroelastomer) were evaluated for the orbital maneuvering system of the space shuttle. Since this system employs nitrogen tetroxide (N2O4) and monomethyl hydrazine (MMH) as hypergolic propellants, the seal candidates were selected on the basis of projected chemical resistance as well as rheological behavior. Chemical resistance to these high-energy fuels was determined via conventional isothermal and thermal cycling immersion tests. Rheological measurements, however, were performed on O-rings molded from the subject seal candidates. Properties determined, such as cyclic work and hysteresis, stress relaxation, and indicated modulus, therefore, relate to the O-ring seals themselves.

  1. Fatigue behavior of two alloys for Space Shuttle applications. [Inconel 903 and 718 for main engine

    Science.gov (United States)

    Adsit, N. R.; Block, S. J.

    1978-01-01

    Two superalloys used extensively in the Space Shuttle main engine are Incoloy 903 and Inconel 718. The fatigue behavior of the two alloys under varying conditions is considered. Three heats of Incoloy 903 and two of Inconel 718 were used in the study. Material was tested in several conditions, including mill polish, longitudinal mill polish, transverse mill polish, chemically milled, chemically milled plus shotpeened on one side and on both sides, gas tungsten arc welded, and electron beam welded. Both round and flat tensile specimens were tested in universal test machines. It was found that surface condition influences test results. Transverse scratches resulting from polishing and rougher surfaces lower the stress at runout in relation to that obtained on longitudinally polished and/or smooth-surfaced specimens.

  2. An automated data management/analysis system for space shuttle orbiter tiles. [stress analysis

    Science.gov (United States)

    Giles, G. L.; Ballas, M.

    1982-01-01

    An engineering data management system was combined with a nonlinear stress analysis program to provide a capability for analyzing a large number of tiles on the space shuttle orbiter. Tile geometry data and all data necessary of define the tile loads environment accessed automatically as needed for the analysis of a particular tile or a set of tiles. User documentation provided includes: (1) description of computer programs and data files contained in the system; (2) definitions of all engineering data stored in the data base; (3) characteristics of the tile anaytical model; (4) instructions for preparation of user input; and (5) a sample problem to illustrate use of the system. Description of data, computer programs, and analytical models of the tile are sufficiently detailed to guide extension of the system to include additional zones of tiles and/or additional types of analyses

  3. Digital TV tri-state delta modulation system for Space Shuttle ku-band downlink

    Science.gov (United States)

    Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.

    1982-01-01

    A tri-state delta modulation/demodulation (TSDM) technique which provides for efficient run-length coding of constant-intensity segments of a TV picture is described. Aspects of the hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV or field-sequential color or NTSC format color are reviewed. Run-length encoding of the TSDM output can consistently reduce the required channel data rate well below one bit per sample. As compared with a bistate delta modulation system, the present technique eliminates granularity in the reconstructed video without degrading rise or fall times. About 40 chips are used by TSDM when used to handle the luminance information in a color link. A possible overall space and ground functional configuration to accommodate Shuttle digital TV with scrambling for privacy is presented.

  4. Microstructural characterization of the HRSI thermal protection system for space shuttle

    Science.gov (United States)

    Ransone, P. O.; Rummler, D. R.

    1980-01-01

    Components of the space shuttle high temperature reusable surface insulation (HRSI) system were microscopically characterized, both separately and as a system, to obtain information needed for stress analysis models of the thermal protection system. A tension specimen of the HRSI system was loaded in steps and was microscopically observed at each load condition to demonstrate the tension failure mode associated with strain isolation pad (SIP) behavior. A local failure occurred which should be associated with transfer of load through transverse fibers in the SIP. Stress concentrations attributed to the SIP behavior necessitated strengthening of the HRSI by densification of the RSI at the bondline. An HRSI tile was microscopically characterized after the densification process. The densified surface layer blended into the RSI which caused a gradual change in density. The gradation in density does not appear to represent a sharp discontinuity in elastic modulus between the densified layer and the parent material.

  5. Brine shrimp development in space: ground-based data to shuttle flight results

    Science.gov (United States)

    Spooner, B. S.; DeBell, L.; Hawkins, L.; Metcalf, J.; Guikema, J. A.; Rosowski, J.

    1992-01-01

    The brine shrimp, Artemia salina, has been used as a model system to assess microgravity effects on developing organisms. Following fertilization and early development, the egg can arrest in early gastrula as a dehydrated cyst stage that is stable to harsh environments over long time periods. When salt water is added, the cysts can reactivate, with embryonic development and egg hatching occurring in about 24 h. A series of larval molts or instars, over about a 2 week period, results in the adult crustacean. We have assessed these developmental events in a closed syringe system, a bioprocessing module, in ground-based studies, and have conducted preliminary in-orbit experiments aboard the Space Shuttle Atlantis during the flights of STS-37 and STS-43. Although the in-flight data are limited, spectacular degrees of development have been achieved.

  6. Risk of natural environment changes after Space Shuttle deorbit decision. [storm hazards

    Science.gov (United States)

    Brown, S. C.

    1977-01-01

    The purpose of the present paper is to point out the risk of change of certain natural environment events that may be of concern in Space Shuttle landing analyses and deorbit decisions. These events are: precipitation, except light rain showers; thunderstorms with ceilings below 4000 ft; runway crosswinds above 20 knots peak at 33 ft; and thunderstorms in the descending glide path. Risk calculations showed that for deorbit decisions made one hour before landing, the maximum risk of change from favorable to unfavorable natural environment conditions is approximately 12 percent, the risk existing for only a few hours in midafternoon. Thunderstorms in the glide path account for more than three fourths of the total risk.

  7. A method of atmospheric density measurements during space shuttle entry using ultraviolet-laser Rayleigh scattering

    Science.gov (United States)

    Mckenzie, Robert L.

    1988-01-01

    An analytical study and its experimental verification are described which show the performance capabilities and the hardware requirements of a method for measuring atmospheric density along the Space Shuttle flightpath during entry. Using onboard instrumentation, the technique relies on Rayleigh scattering of light from a pulsed ArF excimer laser operating at a wavelength of 193 nm. The method is shown to be capable of providing density measurements with an uncertainty of less than 1 percent and with a spatial resolution along the flightpath of 1 km, over an altitude range from 50 to 90 km. Experimental verification of the signal linearity and the expected signal-to-noise ratios is demonstrated in a simulation facility at conditions that duplicate the signal levels of the flight environment.

  8. Digital TV tri-state delta modulation system for Space Shuttle ku-band downlink

    Science.gov (United States)

    Udalov, S.; Huth, G. K.; Roberts, D.; Batson, B. H.

    A tri-state delta modulation/demodulation (TSDM) technique which provides for efficient run-length coding of constant-intensity segments of a TV picture is described. Aspects of the hardware implementation of a high-speed TSDM transmitter and receiver for black-and-white TV or field-sequential color or NTSC format color are reviewed. Run-length encoding of the TSDM output can consistently reduce the required channel data rate well below one bit per sample. As compared with a bistate delta modulation system, the present technique eliminates granularity in the reconstructed video without degrading rise or fall times. About 40 chips are used by TSDM when used to handle the luminance information in a color link. A possible overall space and ground functional configuration to accommodate Shuttle digital TV with scrambling for privacy is presented.

  9. A fracture mechanics study of the turbine wheel in the Space Shuttle auxiliary power unit

    Science.gov (United States)

    Forman, R. G.

    1985-01-01

    The experimental and analytical efforts performed for fracture control of the Space Shuttle auxiliary power unit (APU) wheel are described and a summary of fracture mechanics concepts relevant to safe-life analysis of fatigue loaded parts is given. An environmental crack growth test program is conducted by NASA on candidate wheel materials exposed to decomposed hydrazine which is found to be no more severe in causing crack growth than an environment of high-temperature air. Details of the crack growth testing and the safe-life analysis are presented. The results show that special nondestructive examination is needed for the APU wheel to meet the required mission life for either the maximum design or expected speed-range operations.

  10. Integrated digital flight-control system for the space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    The integrated digital flight control system is presented which provides rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN&C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described along with the input and output. The specific estimation and control algorithms used in the various mission phases are given.

  11. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    Science.gov (United States)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  12. NDE of thermal protection system for space shuttle solid rocket booster

    Science.gov (United States)

    Myers, R. S.

    1990-01-01

    Potential nondestructive test (NDE) methods were evaluated for detecting debonds and weak bonds in the thermal protection system (TPS) for the space shuttle solid rocket boosters. The primary thermal protection material is a sprayable, thick epoxy coating that is filled with lightweight and thermal insulating materials. Test panels were fabricated with a wide variety of hidden realistic defects, including contact debonds and weak bonds. Nondestructive test results were obtained. Candidate NDE methods evaluated for booster production applications include laser interferometry (e.g., electronic shearography), infrared thermography, radiography (e.g., computed tomography), acousto-ultrasonics, mechanical/acoustic impedance, ultrasonics, acoustic emission, and the tap test. Capabilities, advantages, disadvantages, and relative performances in defect detection of each test method for TPS bonding applications are reported. Electronic shearography NDE was technically the superior method for detecting debonds.

  13. The Evolution of Nondestructive Evaluation Methods for the Space Shuttle External Tank Thermal Protection System

    Science.gov (United States)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.

  14. A Strategy for Autogeneration of Space Shuttle Ground Processing Simulation Models for Project Makespan Estimations

    Science.gov (United States)

    Madden, Michael G.; Wyrick, Roberta; O'Neill, Dale E.

    2005-01-01

    Space Shuttle Processing is a complicated and highly variable project. The planning and scheduling problem, categorized as a Resource Constrained - Stochastic Project Scheduling Problem (RC-SPSP), has a great deal of variability in the Orbiter Processing Facility (OPF) process flow from one flight to the next. Simulation Modeling is a useful tool in estimation of the makespan of the overall process. However, simulation requires a model to be developed, which itself is a labor and time consuming effort. With such a dynamic process, often the model would potentially be out of synchronization with the actual process, limiting the applicability of the simulation answers in solving the actual estimation problem. Integration of TEAMS model enabling software with our existing schedule program software is the basis of our solution. This paper explains the approach used to develop an auto-generated simulation model from planning and schedule efforts and available data.

  15. Space Shuttle Crawler Transporter Vibration Analysis in Support of Rollout Fatigue Load Spectra Verification Program

    Science.gov (United States)

    Margasahayam, Ravi N.; Meyer, Karl A.; Nerolich, Shaun M.; Burton, Roy C.; Gosselin, Armand M.

    2004-01-01

    The Crawler Transporter (CT), designed and built for the Apollo Program in the 1960's and surpassing its initial operational life, has become an integral part of the Space Shuttle Program (SSP). The CT transports the Space Shuttle Vehicle (SSV) stack, atop the Mobile Launch Platform (MLP), from the Vehicle Assembly Building (VAB) to the launch pad. This support structure provides hydraulic jacking, leveling and load equalization for the 12 million pound stack on its 3.5-5.0 mile rollout to the launch pad. Major elements of the SSV, consisting of the orbiter, solid rocket boosters (SRB) and external tank (ET) have required fatigue analyses as part of the mission life certification. Compared to rollout vibration, the SSV sees relatively high vibration loads during launch, ascent, descent and landing phases of the mission. Although preliminary measured SRB vibration levels during rollout were of low amplitude and frequency, the duration of the rollout phase is typically high, from 5-6 hours. As part of an expanded mission life assessment, additional certification effort was initiated to define fatigue load spectra for rollout. This study addresses the CT vibration analyses in support of the rollout fatigue study. Structural models developed for modal and vibration analyses were used to identify unique CT, CT/MLP and CT/MLP/SRB vibration characteristics for comparison to instrumented rollout tests. Whereas the main structural and vibration characteristics of the SSV are well defined, minimum analytical and vibration test data on the Crawler Transporter were available. Unique vibration characteristics of the CT are attributable to the drive mechanism, hydraulic jacking system, structural framing and the CT-to-MLP support pad restraints. Initial tests performed on the CT/MLP/SRB configuration showed reasonable correlation with predicted mode shapes and frequencies.

  16. Application of a Near Infrared Imaging System for Thermographic Imaging of the Space Shuttle during Hypersonic Re-Entry

    Science.gov (United States)

    Zalameda, Joseph N.; Tietjen, Alan B.; Horvath, Thomas J.; Tomek, Deborah M.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Bush, Brett C.; Mercer, C. David; Shea, Edward J.

    2010-01-01

    High resolution calibrated near infrared (NIR) imagery was obtained of the Space Shuttle s reentry during STS-119, STS-125, and STS-128 missions. The infrared imagery was collected using a US Navy NP-3D Orion aircraft using a long-range infrared optical package referred to as Cast Glance. The slant ranges between the Space Shuttle and Cast Glance were approximately 26-41 nautical miles at point of closest approach. The Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was a NASA Langley led endeavor sponsored by the NASA Engineering Safety Center, the Space Shuttle Program Office and the NASA Aeronautics Research Mission Directorate to demonstrate a quantitative thermal imaging capability. HYTHIRM required several mission tools to acquire the imagery. These tools include pre-mission acquisition simulations of the Shuttle trajectory in relationship to the Cast Glance aircraft flight path, radiance modeling to predict the infrared response of the Shuttle, and post mission analysis tools to process the infrared imagery to quantitative temperature maps. The spatially resolved global thermal measurements made during the Shuttle s hypersonic reentry provides valuable flight data for reducing the uncertainty associated with present day ground-to-flight extrapolation techniques and current state-of-the-art empirical boundary-layer transition or turbulent heating prediction methods. Laminar and turbulent flight data is considered critical for the development of turbulence models supporting NASA s next-generation spacecraft. This paper will provide the motivation and details behind the use of an upgraded NIR imaging system used onboard a Navy Cast Glance aircraft and describe the characterizations and procedures performed to obtain quantitative temperature maps. A brief description and assessment will be provided of the previously used analog NIR camera along with image examples from Shuttle missions STS-121, STS-115, and solar tower test. These thermal

  17. Space Shuttle, private enterprise and intellectual properties in the context of space manufacturing

    Science.gov (United States)

    Hosenball, S. N.; Kempf, R. F.

    1983-01-01

    It is a national policy to make the capabilities of the Space Transportat ion System available to a wide range of potential users. This includes its availability as a space manufacturing facility for commercial activities, which may be carried out on a reimbursable basis or as a joint endeavor with NASA, but with substantial private investment. In any high risk, long lead-time research and development activity directed towards commercialization, the protection afforded the results of the research and development under the laws relating to intellectual property rights may provide an important incentive for private investment. The paper reviews NASA's policies and practices for the protection of privately-established intellectual property rights involved in STS use, with particular emphasis on reimbursable launch agreements and joint endeavor agreements.

  18. Fuzzy logic application for modeling man-in-the-loop space shuttle proximity operations. M.S. Thesis - MIT

    Science.gov (United States)

    Brown, Robert B.

    1994-01-01

    A software pilot model for Space Shuttle proximity operations is developed, utilizing fuzzy logic. The model is designed to emulate a human pilot during the terminal phase of a Space Shuttle approach to the Space Station. The model uses the same sensory information available to a human pilot and is based upon existing piloting rules and techniques determined from analysis of human pilot performance. Such a model is needed to generate numerous rendezvous simulations to various Space Station assembly stages for analysis of current NASA procedures and plume impingement loads on the Space Station. The advantages of a fuzzy logic pilot model are demonstrated by comparing its performance with NASA's man-in-the-loop simulations and with a similar model based upon traditional Boolean logic. The fuzzy model is shown to respond well from a number of initial conditions, with results typical of an average human. In addition, the ability to model different individual piloting techniques and new piloting rules is demonstrated.

  19. Evaluation of reusable surface insulation for space shuttle over a range of heat-transfer rate and surface temperature

    Science.gov (United States)

    Chapman, A. J.

    1973-01-01

    Reusable surface insulation materials, which were developed as heat shields for the space shuttle, were tested over a range of conditions including heat-transfer rates between 160 and 620 kW/sq m. The lowest of these heating rates was in a range predicted for the space shuttle during reentry, and the highest was more than twice the predicted entry heating on shuttle areas where reusable surface insulation would be used. Individual specimens were tested repeatedly at increasingly severe conditions to determine the maximum heating rate and temperature capability. A silica-base material experienced only minimal degradation during repeated tests which included conditions twice as severe as predicted shuttle entry and withstood cumulative exposures three times longer than the best mullite material. Mullite-base materials cracked and experienced incipient melting at conditions within the range predicted for shuttle entry. Neither silica nor mullite materials consistently survived the test series with unbroken waterproof surfaces. Surface temperatures for a silica and a mullite material followed a trend expected for noncatalytic surfaces, whereas surface temperatures for a second mullite material appeared to follow a trend expected for a catalytic surface.

  20. Development of an external ceramic insulation for the space shuttle orbiter. Part 3: Development of stabilized aluminum phosphate fibers

    Science.gov (United States)

    Ormiston, T.; Tanzilli, R. A.

    1973-01-01

    The development of reusable surface insulation materials that are thermal shock resistant and highly refractory is discussed. A stabilized, high-cristobalite, aluminum orthophosphate fiber was developed and found to possess the desired qualities. The application of such a material to heat shielding for space shuttles is examined.

  1. A Q-Gert Analysis of the Space Shuttle Ground Turnaround System at Vandenberg Air Force Base.

    Science.gov (United States)

    1982-09-01

    per- cent of the total nonfederal demand for launch services is from the communications sector , and the compound annual growth rate of communications... comercial , tactical, and strategic launches from VAFB hinges on the availability of Space Shuttle components and on the effectiveness of ground

  2. Rocket motor exhaust products generated by the space shuttle vehicle during its launch phase (1976 design data)

    Science.gov (United States)

    Bowyer, J. M.

    1977-01-01

    The principal chemical species emitted and/or entrained by the rocket motors of the space shuttle vehicle during the launch phase of its trajectory are considered. Results are presented for two extreme trajectories, both of which were calculated in 1976.

  3. Space shuttle/food system study. Package feasibility study, modifications 3S, 4C and 5S

    Science.gov (United States)

    1974-01-01

    An optimum feeding system for the space shuttle was presented. This system consisted of all rehydratable type foods which were enclosed in a 4 in. x 4 in. x 1 in. flexible package. A feasibility follow-on study was conducted, and two acceptable, feasible prototypes for this package are described.

  4. Performance and Analysis of Perfluoropolyalkyl Ether Grease Used on Space Shuttle Actuators--A Case Study

    Science.gov (United States)

    Morales, Wilfredo; Street, Kenneth W., Jr.; Zaretsky, Erwin V.

    2013-01-01

    Actuators used on the United States space shuttle fleet are lubricated with unspecified amounts of Braycote 601 (Castrol Braycote) grease consisting of a perfluoropolyalkyl ether (PFPAE) base oil thickened with a polytetrafluoroethylene (PTFE) filler. Each shuttle has four body flap actuators (BFAs) (two on each wing) on a common segmented shaft and four rudder speed brake (RSB) actuators. The actuators were designed to operate for 10 years and 100 flights without periodic relubrication. Visible inspection of two partially disassembled RSB actuators in continuous use for 19 years raised concerns over possible grease degradation due to discoloration of the grease on several places on the surfaces of the gears. Inspection revealed fretting, micropitting, wear and corrosion of the bearings and gears. A small amount of oil dripped from the disassembled actuators. Whereas new grease is beige in appearance, the discolored grease consisted of both grey and reddish colors. Grease samples taken from the actuators together with representative off-the-shelf new and unused grease samples were analyzed by gravimetry for oil content; by inductively coupled plasma spectroscopy (ICP) for metals content; Fourier transform infrared (FTIR) spectroscopy for base oil decomposition; and by size exclusion chromatography (SEC) for determination of the molecular weight distributions of the grease oil. The Braycote 601 grease was stable after 19 years of continuous use in the sealed RSB actuators and was fit for its intended purpose. There were no significant chemical differences between the used grease samples and new and unused samples. Base oil separation was not significant within the sealed actuators. No corrosive effect in the form of iron fluoride was detected. The grey color of grease samples was due to metallic iron. The red color was due to oxidation of the metallic wear particles from the gears and the bearings comprising the actuators.

  5. International Space Station (ISS) Gas Logistics Planning in the Post Shuttle Era

    Science.gov (United States)

    Leonard, Daniel J.; Cook, Anthony J.; Lehman, Daniel A.

    2011-01-01

    Over its life the International Space Station (ISS) has received gas (nitrogen, oxygen, and air) from various sources. Nitrogen and oxygen are used in the cabin to maintain total pressure and oxygen partial pressures within the cabin. Plumbed nitrogen is also required to support on-board experiments and medical equipment. Additionally, plumbed oxygen is required to support medical equipment as well as emergency masks and most importantly EVA support. Gas are supplied to ISS with various methods and vehicles. Vehicles like the Progress and ATV deliver nitrogen (both as a pure gas and as air) and oxygen via direct releases into the cabin. An additional source of nitrogen and oxygen is via tanks on the ISS Airlock. The Airlock nitrogen and oxygen tanks can deliver to various users via pressurized systems that run throughout the ISS except for the Russian segment. Metabolic oxygen is mainly supplied via cabin release from the Elektron and Oxygen Generator Assembly (OGA), which are water electrolyzers. As a backup system, oxygen candles (Solid Fuel Oxygen Generators-SFOGs) supply oxygen to the cabin as well. In the past, a major source of nitrogen and oxygen has come from the Shuttle via both direct delivery to the cabin as well as to recharge the ISS Airlock tanks. To replace the Shuttle capability to recharge the ISS Airlock tanks, a new system was developed called Nitrogen/Oxygen Recharge System (NORS). NIORS consists of high pressure (7000 psi) tanks which recharge the ISS Airlock tanks via a blowdown fill for both nitrogen and oxygen. NORS tanks can be brought up on most logistics vehicles such as the HTV, COTS, and ATV. A proper balance must be maintained to insure sufficient gas resources are available on-orbit so that all users have the required gases via the proper delivery method (cabin and/or plumbed).

  6. Material Behavior of Window 7 Carrier Panel Tiles and Thermal Pane Fragments Recovered from the Space Shuttle Columbia

    Science.gov (United States)

    Arellano, Brenda R.

    Since the end of the space shuttle program, a new generation spacecraft has been developed to transport humans back into space. NASA's Orion will carry a crew beyond low-earth orbit and the exploration of Mars may be possible in the future. Space safety becomes significant with human spaceflight and the risks are high. However, aerospace materials may provide opportunities to prevent future disasters. When the space shuttle Columbia disintegrated during re-entry in 2001, thousands of debris were collected for analysis. In contrast, when the Challenger space shuttle broke apart in 1986, all shuttle debris were buried. These tragic disasters are reminders of the importance of proper material selection and the concern of their performance in service. This research focused on investigating the effects of the debris recovered from the Columbia space shuttle after re-entry and break-up. Many of the components encountered unforeseen extreme temperatures, vibrations, and high stresses. The Columbia debris contained unique characteristics that have yet to be examined and the components for this study are the thermal protection system (TPS) carrier panel tiles and the thermal pane glass from the starboard orbiter Window 7. The alterations endured by the debris was studied through forensic materials characterization to investigate material interactions, material degradation, and thermal consequences. These materials played an essential role in the operation of the orbiter as they protected the underlying structural materials of the shuttle and underwent extreme temperatures. The methods and procedures for analyzing the debris included non-destructive and destructive evaluations. Non-destructive evaluations involved visual inspection, photographic documentation, 3D modeling, and surface elemental composition. The destructive analysis consisted of sectioning, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy

  7. Mentoring Undergraduate Students through the Space Shuttle Hitchhiker GoldHELOX Project

    Science.gov (United States)

    Moody, J. Ward; Barnes, Jonathan; Roming, Peter; Durfee, Dallin; Campbell, Branton; Turley, Steve; Eastman, Paul

    2015-01-01

    In the late 1980s a team of four BYU undergraduate students designed a space-based telescope to image the sun in soft x-rays from 171-181 Angstroms to gain information on microflares and their relation to the corona-chromosphere transition region. The telescope used a near-normal incidence multi-layered mirror imaging onto film through a micro-channel plate. The system was capable of 1.0 sec time resolution and 2.5 arcsec spatial resolution. Aided by a NASA grant in 1991, a system was built and successfully tested in 1998 at Marshall Space Flight Center. Originally designed to be deployed from a Get-Away-Special (GAS) canister in the bay of a space shuttle, the good results of this test elevated GoldHelox to greater-priority Hitchhiker status. Even so technical and procedural difficulties delayed a launch until after 2003. Unfortunately after the Columbia re-entry break-up in February 2003, the Hitchhiker program was cancelled and the GoldHelox project ended.Well over 200 undergraduate students worked on GoldHelox. Many of these have since earned advanced degrees in a variety of technical fields. Several have gone on to work in the space industry, becoming NASA scientists and engineers with one becoming a PI on the Swift satellite. The broad range of talent on the team has included students majoring in physics, astronomy, mechanical engineering, electrical engineering, manufacturing engineering, design engineering, business and even English majors who have written technical and public relations documents. We report on lessons learned and the pitfalls and successes of this unique mentoring experience.

  8. NASDA next-generation aquatic habitat for space shuttle and ISS

    Science.gov (United States)

    Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Uchida, S.; Kono, Y.; Takamatsu, T.; Sakimura, T.

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. These include the Vestibular Function Experiment Unit (VFEU), Aquatic Animal Experiment Unit (AAEU) and another VFEU for marine fish. Each facility had functions such as life support for up to 15 days, water quality control system, gas exchange by artificial lung, video observation through a window by a crewmember, day/night cycle control, feeding system for medaka (AAEU only), and more. We are now studying the next -generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and Space Station use. AQH will have many new capabilities missing in earlier facilities. The following functions are of particular importance: long-term life support for up to 90 days, multigeneration breeding (for medaka and zebrafish), automatic feeding system adaptable for young of fish and amphibians, water quality control for long-term experiments, air-water interface, a computer-driven specimen-monitoring system housed in the facilities, and a specimen sampling system including eggs. A prototype breeding system and the specimen-monitoring system were designed and tested. The prototype breeding system consists of a closed water loop, two 700ml fish chambers with LED lighting, a small artificial lung, and a nitrification bacteria filter. Medaka adult fish were able to mate and spawn in this small breeding system, and the young could grow to adult fish. The water quality control system also worked successfully. For amphibians, the breeding test using tadpoles of xenopus is also starting. We have many difficult technological problems to resolve, but development of AQH is going well. In this paper, we will introduce the results of the component-level test and the concept of AQH. In the future, many space biological experiments will be conducted, especially in the areas of developmental biology, neurophisiology, and

  9. Loss of Signal: Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap

    Science.gov (United States)

    Stepaniak, Philip C. (Editor); Lane, Helen W. (Editor); Davis, Jeffrey R.

    2014-01-01

    The editors of Loss of Signal wanted to document the aeromedical lessons learned from the Space Shuttle Columbia mishap. The book is intended to be an accurate and easily understood account of the entire process of recovering and analyzing the human remains, investigating and analyzing what happened to the crew, and using the resulting information to recommend ways to prevent mishaps and provide better protection to crewmembers. Our goal is to capture the passions of those who devoted their energies in responding to the Columbia mishap. We have reunited authors who were directly involved in each of these aspects. These authors tell the story of their efforts related to the Columbia mishap from their point of view. They give the reader an honest description of their responsibilities and share their challenges, their experiences, and their lessons learned on how to enhance crew safety and survival, and how to be prepared to support space mishap investigations. As a result of this approach, a few of the chapters have some redundancy of information and authors' opinions may differ. In no way did we or they intend to assign blame or criticize anyone's professional efforts. All those involved did their best to obtain the truth in the situations to which they were assigned.

  10. Variable polarity plasma arc welding on the Space Shuttle external tank

    Science.gov (United States)

    Nunes, A. C., Jr.; Bayless, E. O., Jr.; Jones, C. S., III; Munafo, P. M.; Biddle, A. P.; Wilson, W. A.

    1984-01-01

    Variable polarity plasma arc (VPPA) techniques used at NASA's Marshall Space Flight Center for the fabrication of the Space Shuttle External Tank are presentedd. The high plasma arc jet velocities of 300-2000 m/s are produced by heating the plasma gas as it passes through a constraining orifice, with the plasma arc torch becoming a miniature jet engine. As compared to the GTA jet, the VPPA has the following advantages: (1) less sensitive to contamination, (2) a more symmetrical fusion zone, and (3) greater joint penetration. The VPPA welding system is computerized, operating with a microprocessor, to set welding variables in accordance with set points inputs, including the manipulator and wire feeder, as well as torch control and power supply. Some other VPPA welding technique advantages are: reduction in weld repair costs by elimination of porosity; reduction of joint preparation costs through elimination of the need to scrape or file faying surfaces; reduction in depeaking costs; eventual reduction of the 100 percent-X-ray inspection requirements. The paper includes a series of schematic and block diagrams.

  11. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Science.gov (United States)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  12. X-38 research aircraft mounted in Shuttle docked at Space Station - computer animation

    Science.gov (United States)

    1997-01-01

    problems with the parafoil. Intermediate parafoil tests at the Army Yuma Proving Grounds in Arizona enabled the project to resolve these problems and resume flight research. In the drop tests, the X-38 vehicles have been autonomous after airlaunch from the B-52. After they deploy the parafoil, they have remained autonomous, but there is also a manual mode that allows control from the ground. The X-38 vehicles (designated V131 and V132) are each 24.5 feet long. The actual CRV to be flown in space is expected to be 30 feet long. This 21-second computer animation clip shows the space shuttle approaching the Pressurized Mating Adapter No. 2 located on node 2 of the International Space Station. If you look closely you can just see the X-38 crew return vehicle in the shuttle cargo bay.

  13. Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program

    Science.gov (United States)

    Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

    1999-01-01

    Loss of bone mineral during space flight was documented in the 1970's Skylab missions. The USSR space program made similar observations in the 1980's. The Institute of Biomedical Problems in Moscow and NASA JSC in 1989 began to collect pre- and post-flight bone mineral density (BMD) using Hologic QDR 1000 DEXA scanners transferred from JSC to Moscow and Star City. DEXA whole body, hip, and lumbar spine scans were performed prior to and during the first week after return from 4- to 6-month missions (plus one 8-month mission and one 14- month mission) on the Mir space station. These data documented the extent and regional nature of bone loss during long duration space flight. Of the 18 cosmonauts participating in this study between 1990 and 1995, seven flew two missions. BMD scans prior to the second flight compared to the first mission preflight scans indicated that recovery was possibly delayed or incomplete. Because of these findings, NASA and IBMP initiated the study "Bone Mineral Loss and Recovery After Shuttle/Mir Flights" in 1995 to evaluate bone recovery during a 3-year post-flight period. All of the 14 participants thus far evaluated lost bone in at least one region of the spine and lower extremities during flight. Of the 14, only one to date has exhibited full return to baseline BNM values in all regions. The current study will continue until the last participant has reached full bone recovery in all regions, has reached a plateau, or until three years after the flight (2001 for the last mission of the program). Bone mineral density losses in space and difficulty in returning to baseline indicate a need for countermeasure development. In late 1996 NASA JSC and Baylor College of Medicine were approved to conduct two countermeasure studies during 17 weeks of bed rest. In 1997 the studies were begun in the bed rest facility established by NASA, Baylor College of Medicine, and The Methodist Hospital in Houston. To date, three bed rest controls, five resistive

  14. Complex permittivity measurements during high temperature recycling of space shuttle antenna window and dielectric heat shield materials

    Science.gov (United States)

    Bassett, H. L.; Bomar, S. H., Jr.

    1973-01-01

    The research performed and the data obtained on candidate space shuttle antenna window and heat shield materials are presented. The measurement technique employs a free-space focused beam microwave bridge for obtaining RF transmission data, and a device which rotates a sample holder which is heated on one side by natural gas-air flames. The surface temperature of each sample is monitored by IR pyrometry; embedded and rear surface thermocouples are also used in obtaining temperature data. The surface of the sample undergoing test is subjected to approximately the same temperature/time profile that occurs at a proposed antenna position on the space shuttle as it re-enters. The samples are cycled through ten of these temperature profiles to determine the recycling effects. Very little change was noted in the materials due to the recycling.

  15. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  16. Study of airborne science experiment management concepts for application to space shuttle. Volume 1: Executive summary

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    The management concepts and operating procedures are documented as they apply to the planning of shuttle spacelab operations. Areas discussed include: airborne missions; formulation of missions; management procedures; experimenter involvement; experiment development and performance; data handling; safety procedures; and applications to shuttle spacelab planning. Characteristics of the airborne science experience are listed, and references and figures are included.

  17. The Space Shuttle Columbia Accident Investigation and Reconstruction: Two Years Later

    Science.gov (United States)

    McDanels, Steven J.

    2005-01-01

    The Space Shuttle Columbia was lost during re-entry over two years ago. Since the release of the official materials-related findings in August of 2003, additional testing and analysis of select pieces of debris has continued. Microanalytical techniques, including EMPA, ESCA, and x-ray elemental dot mapping, were employed during the initial investigation; the results related the microstructural characteristics of deposit layers to the breach location in the leading edge of the left wing. Such characteristics included deposition order, composition, and distribution. Subsequent to the original efforts, new analytical data and information, not available at the time of the primary investigation, has been generated. This data was obtained via a low-vacuum SEM, fitted not only with a light-element EDS detector, but an XRF tube as well. Essentially, for elements up to sodium, classic EDS was utilized; above sodium, XRF was used. Predominantly, the elements of interest were aluminum, titanium, chromium, iron, nickel, and copper. The findings of both old and new data are compared, and their application to the overall accident investigation detailed.

  18. A Compilation of Space Shuttle Sonic Boom Measurements - Supplemental STS Sonic Boom Files

    Science.gov (United States)

    Maglieri, Domenic J.; Henderson, Herbert R.; Massey, Steven J.; Stansbery, Eugene G.

    2011-01-01

    Supplemental STS Sonic Boom Files for NASA/CR-2011-217080. Data files included on CDROM formatted to ISO 9660 standards. Sonic boom measurements have been obtained on 26 flights of the Space Shuttle system beginning with the launch of STS-1 on April 12, 1981, to the reentry-descent of STS-41 into EAFB on Oct. 10, 1990. A total of 23 boom measurements were acquired within the focus region off the Florida coast during 3 STS launch-ascents and 113 boom measurements were acquired during 23 STS reentry-descent to landing into Florida and California. Sonic boom measurements were made under, and lateral to, the vehicle ground track and cover the Mach-altitude range of about 1.3 to 23 and 54,000 feet to 243,000 feet, respectively. Vehicle operational data, flight profiles and weather data were also gathered during the flights. This STS boom database is contained in 26 documents, some are formal and referenceable but most internal documents. Another 38 documents, also non-referenceable, contain predicted sonic boom footprints for reentry-descent flights on which no measurements were made. The purpose of this report is to provide an overview of the STS sonic boom database and summarize the main findings.

  19. Thermal stress analysis of space shuttle orbiter wing skin panel and thermal protection system

    Science.gov (United States)

    Ko, William L.; Jenkins, Jerald M.

    1987-01-01

    Preflight thermal stress analysis of the space shuttle orbiter wing skin panel and the thermal protection system (TPS) was performed. The heated skin panel analyzed was rectangular in shape and contained a small square cool region at its center. The wing skin immediately outside the cool region was found to be close to the state of elastic instability in the chordwise direction based on the conservative temperature distribution. The wing skin was found to be quite stable in the spanwise direction. The potential wing skin thermal instability was not severe enough to tear apart the strain isolation pad (SIP) layer. Also, the preflight thermal stress analysis was performed on the TPS tile under the most severe temperature gradient during the simulated reentry heating. The tensile thermal stress induced in the TPS tile was found to be much lower than the tensile strength of the TPS material. The thermal bending of the TPS tile was not severe enough to cause tearing of the SIP layer.

  20. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    Science.gov (United States)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  1. Algorithms for real-time fault detection of the Space Shuttle Main Engine

    Science.gov (United States)

    Ruiz, C. A.; Hawman, M. W.; Galinaitis, W. S.

    1992-01-01

    This paper reports on the results of a program to develop and demonstrate concepts related to a realtime health management system (HMS) for the Space Shuttle Main Engine (SSME). An HMS framework was developed on the basis of a top-down analysis of the current rocket engine failure modes and the engine monitoring requirements. One result of Phase I of this program was the identification of algorithmic approaches for detecting failures of the SSME. Three different analytical techniques were developed which demonstrated the capability to detect failures significantly earlier than the existing redlines. Based on promising initial results, Phase II of the program was initiated to further validate and refine the fault detection strategy on a large data base of 140 SSME test firings, and implement the resultant algorithms in real time. The paper begins with an overview of the refined algorithms used to detect failures during SSME start-up and main-stage operation. Results of testing these algorithms on a data base of nominal and off-nominal SSME test firings is discussed. The paper concludes with a discussion of the performance of the algorithms operating on a real-time computer system.

  2. Structural behavior of the space shuttle SRM tang-clevis joint

    Science.gov (United States)

    Greene, William H.; Knight, Norman F., Jr.; Stockwell, Alan E.

    1988-01-01

    The space shuttle Challenger accident investigation focused on the failure of a tang-clevis joint on the right solid rocket motor. The existence of relative motion between the inner arm of the clevis and the O-ring sealing surface on the tang has been identified as a potential contributor to this failure. This motion can cause the O-rings to become unseated and therefore lose their sealing capability. Finite element structural analyses have been performed to predict both deflections and stresses in the joint under the primary, pressure loading condition. These analyses have demonstrated the difficulty of accurately predicting the structural behavior of the tang-clevis joint. Stresses in the vicinity of the connecting pins, obtained from elastic analyses, considerably exceed the material yield allowables indicating that inelastic analyses are probably necessary. Two modifications have been proposed to control the relative motion between the inner clevis arm and the tang at the O-ring sealing surface. One modification, referred to as the capture feature, uses additional material on the inside of the tang to restrict motion of the inner clevis arm. The other modification uses external stiffening rings above and below the joint to control the local bending in the shell near the joint. Both of these modifications are shown to be effective in controlling the relative motion in the joint.

  3. Catalysis study for space shuttle vehicle thermal protection systems. [for vehicle surface

    Science.gov (United States)

    Breen, J.; Rosner, D. E.; Delgass, W. N.; Nordine, P. C.; Cibrian, R.; Krishnan, N. G.

    1973-01-01

    Experimental results on the problem of reducing aerodynamic heating on space shuttle orbiter surfaces are presented. Data include: (1) development of a laboratory flow reactor technique for measuring gamma sub O and gamma sub N on candidate materials at surfaces, T sub w, in the nominal range 1000 to 2000, (2) measurements of gamma sub O and gamma sub N above 1000 K for both the glass coating of a reusable surface insulation material and the siliconized surface of a reinforced pyrolyzed plastic material, (3) measurement of the ablation behavior of the coated RPP material at T sub w is greater than or equal to 2150 K, (4) X-ray photoelectron spectral studies of the chemical constituents on these surfaces before and after dissociated gas exposure, (5) scanning electron micrograph examination of as-received and reacted specimens, and (6) development and exploitation of a method of predicting the aerodynamic heating consquences of these gamma sub O(T sub w) and gamma sub N(T sub w) measurements for critical locations on a radiation cooled orbiter vehicle.

  4. Study of optimum propellant production facilities for launch of space shuttle vehicles

    Science.gov (United States)

    Laclair, L. M.

    1970-01-01

    An integrated propellant manufacturing plant and distribution system located at Kennedy Space Center is studied. The initial planned propellant and pressurant production amounted to 160 tons/day (TPD) LH2, 10 TPD GH2, 800 TPD LO2, 400 TPD LN2, and 120 TPD GN2. This was based on a shuttle launch frequency of 104 per year. During the study, developments occurred which may lower cryogen requirements. A variety of plant and processing equipment sizes and costs are considered for redundancy and supply level considerations. Steam reforming is compared to partial oxidation as a means of generating hydrogen. Electric motors, steam turbines, and gas turbines are evaluated for driving compression equipment. Various sites on and off Government property are considered to determine tradeoffs between costs and problems directly associated with the site, product delivery and storage costs, raw material costs, and energy costs. Coproduction of other products such as deuterium, methanol, and ammonia are considered. Legal questions are discussed concerning a private company's liabilities and its rights to market commercial products under Government tax and cost shelters.

  5. A System Trade Study of Remote Infrared Imaging for Space Shuttle Reentry

    Science.gov (United States)

    Schwartz, Richard J.; Ross, Martin N.; Baize, Rosemary; Horvath, Thomas J.; Berry, Scott A.; Krasa, Paul W.

    2008-01-01

    A trade study reviewing the primary operational parameters concerning the deployment of imaging assets in support of the Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) project was undertaken. The objective was to determine key variables and constraints for obtaining thermal images of the Space Shuttle orbiter during reentry. The trade study investigated the performance characteristics and operating environment of optical instrumentation that may be deployed during a HYTHIRM data collection mission, and specified contributions to the Point Spread Function. It also investigated the constraints that have to be considered in order to optimize deployment through the use of mission planning tools. These tools simulate the radiance modeling of the vehicle as well as the expected spatial resolution based on the Orbiter trajectory and placement of land based or airborne optical sensors for given Mach numbers. Lastly, this report focused on the tools and methodology that have to be in place for real-time mission planning in order to handle the myriad of variables such as trajectory ground track, weather, and instrumentation availability that may only be known in the hours prior to landing.

  6. The Development of Titanium Alloys for Application in the Space Shuttle Main Engine

    Science.gov (United States)

    Halchak, John A.; Jerman, Gregory A.; Zimmerman, Frank R.

    2010-01-01

    The high-strength-to-weight ratio of titanium alloys, particularly at cryogenic temperatures, make them attractive for application in rocket engines - offering the potential of superior performance while minimizing component weight. This was particularly attractive for rotating components, such as pump impellers, where titanium alloys presented the potential to achieve a major advance in rotational tip speed, with a reduction in stages and resultant saving in pump weight and complexity. The investigation into titanium alloys for application in cryogenic turbopumps began in the early 1960's. However, it was found that the reactivity of titanium limited applications and produced unique processing challenges. Specialized chemical compositions and processing techniques had to be developed. A substantial amount of material properties testing and trials in experimental turbopumps occurred, ultimately leading to application in the Space Shuttle Main Engine. One particular alloy stood out for use at liquid hydrogen temperatures, Ti-5Al-2.5Sn ELI. This alloy was employed for several critical components. This presentation deals with the development effort, the challenges that were encountered and operational experiences with Ti-5Al-2.5Sn ELI in the SSME.

  7. The determination of exhaust cloud dimensions from films of space shuttle launches

    Science.gov (United States)

    Zak, R. A.

    1987-01-01

    Principles of photogrammetry are used to calculate the dimension of ground clouds produced from the Space Shuttle launch system. For each of three launches (Missions 41C, 41D, and 51A), a 16 mm camera recorded the ground cloud from three different locations. Measurements were made from outlines of the cloud and other features of interest which were traced onto paper at one-minute intervals using a 16 mm stop-action projector. Cloud characteristics such as top, max width at top, average width, and base are presented as a function of time. A temperature inversion was present each launch day and the cloud responded by first rising into the inversion and then descending to about the inversion height. Max tops were achieved in about three to five minutes and ranged from 2200 m for Mission 41C to 3500 m for Mission 41D. Cloud bases rose steadily to between 700 and 1000 m after 10 minutes. Average widths ranged from 500 to 1700 m depending on mission and camera. Photographs of digitizations of selected film frames are included in the report to show the irregular cloud shapes. Error sources for this analysis are also discussed.

  8. O-ring sealing verification for the space shuttle redesign solid rocket motor

    Science.gov (United States)

    Lach, Cynthia L.

    1989-01-01

    As a part of the redesign of the Space Shuttle Solid Rocket Motor, the field and nozzle-to-case joints were redesigned to minimize the dynamic flexure caused by internal motor pressurization during ignition. The O-ring seals and glands for the joints were designed to accommodate both structural deflections and to promote pressure assistance. A test program was conducted to determine if a fluorocarbon elastomeric O-ring could meet this criteria in the redesigned gland. Resiliency tests were used to investigate the O-ring response to gap motion while static seal tests were used to verify design criteria of pressure assistance for sealing. All tests were conducted in face seal fixtures mounted in servo-hydraulic test machines. The resiliency of the O-ring was found to be extremely sensitive to the effects of temperature. The External Tank/Solid Rocket Booster attach strut loads had a negligible affect on the ability of the O-ring to track the simulated SRB field joint deflection. In the static pressure-assisted seal tests, as long as physical contact was maintained between the O-ring and the gland sealing surface, pressure assistance induced instantaneous sealing.

  9. Aqueous Cleaning and Validation for Space Shuttle Propulsion Hardware at the White Sands Test Facility

    Science.gov (United States)

    Hornung, Steven D.; Biesinger, Paul; Kirsch, Mike; Beeson, Harold; Leuders, Kathy

    1999-01-01

    The NASA White Sands Test Facility (WSTF) has developed an entirely aqueous final cleaning and verification process to replace the current chlorofluorocarbon (CFC) 113 based process. This process has been accepted for final cleaning and cleanliness verification of WSTF ground support equipment. The aqueous process relies on ultrapure water at 50 C (323 K) and ultrasonic agitation for removal of organic compounds and particulate. The cleanliness is verified bv determining the total organic carbon (TOC) content and filtration with particulate counting. The effectiveness of the aqueous methods for detecting hydrocarbon contamination and particulate was compared to the accepted CFC 113 sampling procedures. Testing with known contaminants, such as hydraulic fluid and cutting and lubricating oils, to establish a correlation between aqueous TOC and CFC 113 nonvolatile residue (NVR) was performed. Particulate sampling on cleaned batches of hardware that were randomly separated and sampled by the two methods was performed. This paper presents the approach and results, and discusses the issues in establishing the equivalence of aqueous sampling to CFC 113 sampling, while describing the approach for implementing aqueous techniques on Space Shuttle Propulsion hardware.

  10. Assessment of CFD Hypersonic Turbulent Heating Rates for Space Shuttle Orbiter

    Science.gov (United States)

    Wood, William A.; Oliver, A. Brandon

    2011-01-01

    Turbulent CFD codes are assessed for the prediction of convective heat transfer rates at turbulent, hypersonic conditions. Algebraic turbulence models are used within the DPLR and LAURA CFD codes. The benchmark heat transfer rates are derived from thermocouple measurements of the Space Shuttle orbiter Discovery windward tiles during the STS-119 and STS-128 entries. The thermocouples were located underneath the reaction-cured glass coating on the thermal protection tiles. Boundary layer transition flight experiments conducted during both of those entries promoted turbulent flow at unusually high Mach numbers, with the present analysis considering Mach 10{15. Similar prior comparisons of CFD predictions directly to the flight temperature measurements were unsatisfactory, showing diverging trends between prediction and measurement for Mach numbers greater than 11. In the prior work, surface temperatures and convective heat transfer rates had been assumed to be in radiative equilibrium. The present work employs a one-dimensional time-accurate conduction analysis to relate measured temperatures to surface heat transfer rates, removing heat soak lag from the flight data, in order to better assess the predictive accuracy of the numerical models. The turbulent CFD shows good agreement for turbulent fuselage flow up to Mach 13. But on the wing in the wake of the boundary layer trip, the inclusion of tile conduction effects does not explain the prior observed discrepancy in trends between simulation and experiment; the flight heat transfer measurements are roughly constant over Mach 11-15, versus an increasing trend with Mach number from the CFD.

  11. A robust ballistic design approach for the Space Shuttle Advanced Solid Rocket Motor

    Science.gov (United States)

    Eagar, M. A.; Jordan, F. W.; Stockham, L. W.

    1993-06-01

    A robust design approach has been developed for the Space Shuttle Advanced Solid Rocket Motor (ASRM) that enhances the potential for program success. This is accomplished by application of state of the art ballistic modelling techniques coupled with an aggressive contingency planning methodology. Application of this approach addresses the design challenges associated with development of the ASRM because of it's large size, high length to diameter ratio, and demanding thrust-time trace shape requirements. Advanced ballistic modelling techniques applied include deformed grain modelling, spatial burn rate mapping, erosive burning response characterization, and ballistic/structural/CFD flow-grain interactions. Model fidelity is further improved by utilizing the extensive RSRM experience base for validation proposes. In addition to this modelling approach, development of contingency plans covers the remaining prediction uncertainties, and readily allows fine tuning of the propellant grain configuration to meet design objectives after the first motor firing. This approach promises to produce an optimum flight motor design that meets all performance objectives while accommodating program development uncertainties.

  12. Using Commercial Off-the-Shelf Software Tools for Space Shuttle Scientific Software

    Science.gov (United States)

    Groleau, Nicolas; Friedland, Peter (Technical Monitor)

    1994-01-01

    In October 1993, the Astronaut Science Advisor (ASA) was on board the STS-58 flight of the space shuttle. ASA is an interactive system providing data acquisition and analysis, experiment step re-scheduling, and various other forms of reasoning. As fielded, the system runs on a single Macintosh PowerBook 170, which hosts the six ASA modules. There is one other piece of hardware, an external (GW Instruments, Sommerville, Massachusetts) analog-to-digital converter connected to the PowerBook's SCSI port. Three main software tools were used: LabVIEW, CLIPS, and HyperCard: First, a module written in LabVIEW (National Instruments, Austin, Texas) controls the A/D conversion and stores the resulting data in appropriate arrays. This module also analyzes the numerical data to produce a small set of characteristic numbers or symbols describing the results of an experiment trial. Second, a forward-chaining inference system written in CLIPS (NASA) uses the symbolic information provided by the first stage with a static rule base to infer decisions about the experiment. This expert system shell is used by the system for diagnosis. The third component of the system is the user interface, written in HyperCard (Claris Inc. and Apple Inc., both in Cupertino, California).

  13. Thermochemical Degradation Mechanisms for the Reinforced Carbon/Carbon Panels on the Space Shuttle

    Science.gov (United States)

    Jacobson, Nathan S.; Rapp, Robert A.

    1995-01-01

    The wing leading edge and nose cone of the Space Shuttle are fabricated from a reinforced carbon/carbon material (RCC). The material attains its oxidation resistance from a diffusion coating of SiC and a glass sealant. During re-entry, the RCC material is subjected to an oxidizing high temperature environment, which leads to degradation via several mechanisms. These mechanisms include oxidation to form a silica scale, reaction of the SiO2 with the SiC to evolve gaseous products, viscous flow of the glass, and vaporization of the glass. Each of these is discussed in detail. Following extended service and many missions, the leading-edge wing surfaces have exhibited small pinholes. A chloridation/oxidation mechanism is proposed to arise from the NaCl deposited on the wings from the sea-salt laden air in Florida. This involves a local chloridation reaction of the SiC and subsequent re-oxidation at the external surface. Thermodynamic calculations indicate the feasibility of these reactions at active pits. Kinetic calculations predict pore depths close to those observed.

  14. LEO degradation of graphite and carbon-based composites aboard Space Shuttle Flight STS-46

    Science.gov (United States)

    Spady, Blaine R.; Synowicki, R. A.; Hale, Jeffrey S.; Devries, M. J.; Woollam, John A.; Moore, Arthur W.; Lake, Max

    1995-01-01

    Six different types of carbon and carbon-boron nitride composites were exposed to low Earth orbit aboard Space Shuttle flight STS-46. The samples received a nominal atomic oxygen fluence of 2.2 x 10(exp 20) atoms/sq cm in 42 hours of exposure. Pyrolytic graphite and highly oriented pyrolytic graphite showed significant degradation, and the measured erosion yield was within a factor of two of published values. The erosion yield of pyrolytic boron nitride was found to be 2.6 x 10(exp 26) cu cm/atom in plasma asher exposure, over 42 times lower than that of pyrolytic graphite. This low erosion yield makes graphite plus boron nitride mixtures quite resistant to low Earth orbit exposure. Evidence suggests that the graphitic component was preferentially etched, leaving the surface boron nitride rich. Degradation resistance increases with boron nitride composition. Carbon fiber/carbon composites degraded in low Earth orbit, and the carbon pitch binder was found to etch more easily than the graphite fibers which have much higher degradation resistance.

  15. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    Science.gov (United States)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.

    2004-01-01

    Type 304L stainless steel (304L SS) tubing is currently used in various supply lines that service the Orbiter at NASA's John F. Kennedy Space Center Launch Pads in Florida (USA). The atmosphere at the Space Shuffle launch site is very corrosive due to a combination of factors, such as the proximity of the Atlantic Ocean and the concentrated hydrochloric acid produced by the fuel combustion reaction in the solid rocket boosters. The acidic chloride environment is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as 304L SS. Stainless steel tubing is susceptible to pitting corrosion that can cause cracking and rupture of both high-pressure gas and fluid systems. Outages in the systems where failures occur can impact the normal operation of the shuttle and launch schedules. The use of a more corrosion resistant tubing alloy for launch pad applications would greatly reduce the probability of failure, improve safety, lessen maintenance costs, and reduce downtime. A study which included ten alloys was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. The study included atmospheric exposure at NASA's John F. Kennedy Space Center outdoor corrosion test site near the launch pads and electrochemical measurements in the laboratory which included DC techniques and electrochemical impedance spectroscopy (EIS). This paper presents the results from EIS measurements on three of the alloys: AL6XN (UN N08367), 254SMO (UNS S32l54), and 304L SS (UNS S30403). Type 304L SS was included in the study as a control. The alloys were tested in three electrolyte solutions which consisted of neutral 3.55% NaC1, 3.55% NaCl in O.1N HC1, and 3.55% NaCl in 1.ON HC1. The solutions were chosen to simulate environments that were expected to be less, similar, and more aggressive, respectively, than those present at the Space Shuttle launch pads. The results from the EIS measurements were analyzed to

  16. Texture Modification of the Shuttle Landing Facility Runway at Kennedy Space Center

    Science.gov (United States)

    Daugherty, Robert H.; Yager, Thomas J.

    1997-01-01

    This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.

  17. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    Science.gov (United States)

    Burns, Lee; Merry, Carl; Decker, Ryan; Harrington, Brian

    2008-01-01

    The 2006 Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) is a statistical model summarizing the wind and thermodynamic atmospheric variability from surface to 70 kin. Launches of the National Aeronautics and Space Administration's (NASA) Space Shuttle from Kennedy Space Center utilize CCAFS RRA data to evaluate environmental constraints on various aspects of the vehicle during ascent. An update to the CCAFS RRA was recently completed. As part of the update, a validation study on the 2006 version was conducted as well as a comparison analysis of the 2006 version to the existing CCAFS RRA database version 1983. Assessments to the Space Shuttle vehicle ascent profile characteristics were performed to determine impacts of the updated model to the vehicle performance. Details on the model updates and the vehicle sensitivity analyses with the update model are presented.

  18. Calibrating the Helium Pressurization System for the Space Shuttle Liquid-Hydrogen Tank

    Science.gov (United States)

    2008-01-01

    Analysis of the results from the STS-114 tanking tests and subsequent launch called into question existing thermal and mass models of helium pressurization of the liquid hydrogen tank. This hydrogen tank, which makes up the bottom two-thirds of the External Tank, is pressurized prior to launch to avoid cavitation in the Shuttle Main Engine pumps. At about 2 minutes prior to launch, the main vent valve is closed, and pressurized helium flows into the tank ullage space to achieve set point pressure. As the helium gas cools, its pressure drops, calling for additional helium. Subsequent helium flows are provided in short, timed pulses. The number of pulses is taken as a rough leak indicator. An analysis of thermal models by Marshall Space Flight Center showed considerable uncertainty in the pressure-versus-time behavior of the helium ullage space and the ability to predict the number of pulses normally expected. Kennedy Space Center proposed to calibrate the dime-sized orifice, which together with valves, controls the helium flow quantity (Figure 1). Pressure and temperature sensors were installed to provide upstream and downstream measurements necessary to compute flow rate based on the orifice discharge coefficient. An assessment of flow testing with helium indicated an extremely costly use of this critical resource. In order to reduce costs, we proposed removing the orifices from each Mobile Launcher Platform (MLP) and asking Colorado Engineering Experiment Station Inc. (CEESI) to calibrate the flow. CEESI has a high-pressure air flow system with traceable flow meters capable of handling the large flow rates. However, literature research indicated that square-edged orifices of small diameters often exhibit significant hysteresis and nonrepeatability in the vicinity of choked or sonic flow. Fortunately, the MLP orifices behaved relatively well in testing (Figure 2). Using curve fitting of the air-flow data, in conjunction with ASME orifice modeling equations, a

  19. Ergonomic Evaluation of Space Shuttle Light-Weight Seat Lever Position and Operation

    Science.gov (United States)

    Maida, J.; Rajulu, Sudhakar L.; Bond, Robert L. (Technical Monitor)

    2000-01-01

    During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with

  20. Numerical methods for the simulation of complex multi-body flows with applications for the integrated Space Shuttle vehicle

    Science.gov (United States)

    Chan, William M.

    1992-01-01

    This project forms part of the long term computational effort to simulate the time dependent flow over the integrated Space Shuttle vehicle (orbiter, solid rocket boosters (SRB's), external tank (ET), and attach hardware) during its ascent mode for various nominal and abort flight conditions. Due to the limitations of experimental data such as wind tunnel wall effects and the difficulty of safely obtaining valid flight data, numerical simulations are undertaken to supplement the existing data base. This data can then be used to predict the aerodynamic behavior over a wide range of flight conditions. Existing computational results show relatively good overall comparison with experiments but further refinement is required to reduce numerical errors and to obtain finer agreements over a larger parameter space. One of the important goals of this project is to obtain better comparisons between numerical simulations and experiments. In the simulations performed so far, the geometry has been simplified in various ways to reduce the complexity so that useful results can be obtained in a reasonable time frame due to limitations in computer resources. In this project, the finer details of the major components of the Space Shuttle are modeled better by including more complexity in the geometry definition. Smaller components not included in early Space Shuttle simulations will now be modeled and gridded.

  1. Development of an Electromechanical Ground Support System for NASA's Payload Transfer Operations: A Case Study of Multidisciplinary Work in the Space Shuttle Program

    Directory of Open Access Journals (Sweden)

    Felix A. Soto Toro

    2013-04-01

    Full Text Available Space shuttle Atlantis was launched from Kennedy Space Center on July 8, 2011 and landed on July 21, 2011, the final flight of the 30-year Shuttle Program. The development and support of the Space Transportation System (STS had required intensive coordination by scientists and engineers from multiple program disciplines. This paper presents a case study of a typical multidisciplinary effort that was proposed in the late 1990

  2. Space shuttle/food system study. Volume 2, Appendix G: Ground support system analysis. Appendix H: Galley functional details analysis

    Science.gov (United States)

    1974-01-01

    The capabilities for preflight feeding of flight personnel and the supply and control of the space shuttle flight food system were investigated to determine ground support requirements; and the functional details of an onboard food system galley are shown in photographic mockups. The elements which were identified as necessary to the efficient accomplishment of ground support functions include the following: (1) administration; (2) dietetics; (3) analytical laboratories; (4) flight food warehouse; (5) stowage module assembly area; (6) launch site module storage area; (7) alert crew restaurant and disperse crew galleys; (8) ground food warehouse; (9) manufacturing facilities; (10) transport; and (11) computer support. Each element is discussed according to the design criteria of minimum cost, maximum flexibility, reliability, and efficiency consistent with space shuttle requirements. The galley mockup overview illustrates the initial operation configuration, food stowage locations, meal assembly and serving trays, meal preparation configuration, serving, trash management, and the logistics of handling and cleanup equipment.

  3. Space shuttle navigation filter development. [data processor for radar tracking data

    Science.gov (United States)

    Lear, W. M.

    1976-01-01

    Problems encountered in developing a high speed trajectory data processor for the shuttle ascent and entry phases are described. The development of a 19 state acceleration filter for the processor is reported.

  4. Dynamics stability derivatives of space shuttle orbiter obtained from wind-tunnel and approach and landing flight tests

    Science.gov (United States)

    Freeman, D. C., Jr.

    1980-01-01

    A comparison was made between ground facility measurements, the aerodynamic design data book values, and the dynamic damping derivatives extracted from the space shuttle orbiter approach and landing flight tests. The comparison covers an angle of attack range from 2 deg to 10 deg at subsonic Mach numbers. The parameters of pitch, yaw, and roll damping, as well as the yawing moment due to rolling velocity and rolling moment due to yawing velocity are compared.

  5. A bivariate gamma probability distribution with application to gust modeling. [for the ascent flight of the space shuttle

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.; Tubbs, J. D.

    1982-01-01

    A five-parameter gamma distribution (BGD) having two shape parameters, two location parameters, and a correlation parameter is investigated. This general BGD is expressed as a double series and as a single series of the modified Bessel function. It reduces to the known special case for equal shape parameters. Practical functions for computer evaluations for the general BGD and for special cases are presented. Applications to wind gust modeling for the ascent flight of the space shuttle are illustrated.

  6. Formation of Leading-Edge Pinholes in the Space Shuttle Wings Investigated

    Science.gov (United States)

    Jacobson, Nathan S.

    2000-01-01

    The space shuttle wing leading edge and nose cap are composed of a carbon/carbon composite that is protected by silicon carbide. The coefficient of thermal expansion mismatch leads to cracks in the silicon carbide. The outer coating of the silicon carbide is a sodium-silicate-based glass that becomes fluid at the shuttles high reentry temperatures and fills these cracks. Small pinholes roughly 0.1 mm in diameter have been observed on these materials after 12 or more flights. These pinholes have been investigated by researchers at the NASA Johnson Space Center, Rockwell International, the Boeing Company, Lockheed Martin Corporation, and the NASA Glenn Research Center at Lewis Field to determine the possible sources and the extent of damage. A typical pinhole is illustrated in the photomicrographs. These pinholes are found primarily on the wing leading edges and not on the nose cap, which is covered when the orbiter is on the launch pad. The pinholes are generally associated with a bead of zincrich glass. Examination of the orbiter and launch structure indicates that weathering paint on the launch structure leads to deposits of zinc-containing paint flakes on the wing leading edge. These may become embedded in the crevices of the wing leading edge and form the observed zinc-rich glass. Laboratory experiments indicate that zinc oxide reacts vigorously with the glass coating on the silicon carbide. Thus, it is likely that this is the reaction that leads to pinhole formation (Christensen, S.V.: Reinforced Carbon/Carbon Pin Hole Formation Through Zinc Oxide Attack. Rockwell International Internal Letter, RDW 96 057, May 1996). Cross-sectional examination of pinholes suggests that they are enlarged thermal expansion mismatch cracks. This is illustrated in the photomicrographs. A careful microstructural analysis indicates that the pinhole walls consist of layers of zinc-containing glass. Thus, pinholes are likely formed by zinc oxide particles lodging in crevices and

  7. Penicillin-binding protein folding is dependent on the PrsA peptidyl-prolyl cis-trans isomerase in Bacillus subtilis

    NARCIS (Netherlands)

    Hyyrylainen, Hanne-Leena; Marciniak, Bogumila C.; Dahncke, Kathleen; Pietiainen, Milla; Courtin, Pascal; Vitikainen, Marika; Seppala, Raili; Otto, Andreas; Becher, Doerte; Chapot-Chartier, Marie-Pierre; Kuipers, Oscar P.; Kontinen, Vesa P.; Hyyryläinen, Hanne-Leena; Pietiäinen, Milla

    P>The PrsA protein is a membrane-anchored peptidyl-prolyl cis-trans isomerase in Bacillus subtilis and most other Gram-positive bacteria. It catalyses the post-translocational folding of exported proteins and is essential for normal growth of B. subtilis. We studied the mechanism behind this

  8. The 2006 Cape Canaveral Air Force Station Range Reference Atmosphere Model Validation Study and Sensitivity Analysis to the National Aeronautics and Space Administration's Space Shuttle

    Science.gov (United States)

    Decker, Ryan; Burns, Lee; Merry, Carl; Harrington, Brian

    2008-01-01

    NASA's Space Shuttle utilizes atmospheric thermodynamic properties to evaluate structural dynamics and vehicle flight performance impacts by the atmosphere during ascent. Statistical characteristics of atmospheric thermodynamic properties at Kennedy Space Center (KSC) used in Space. Shuttle Vehicle assessments are contained in the Cape Canaveral Air Force Station (CCAFS) Range Reference Atmosphere (RRA) Database. Database contains tabulations for monthly and annual means (mu), standard deviations (sigma) and skewness of wind and thermodynamic variables. Wind, Thermodynamic, Humidity and Hydrostatic parameters 1 km resolution interval from 0-30 km 2 km resolution interval 30-70 km Multiple revisions of the CCAFS RRA database have been developed since initial RRA published in 1963. 1971, 1983, 2006 Space Shuttle program utilized 1983 version for use in deriving "hot" and "cold" atmospheres, atmospheric density dispersions for use in vehicle certification analyses and selection of atmospheric thermodynamic profiles for use in vehicle ascent design and certification analyses. During STS-114 launch preparations in July 2005 atmospheric density observations between 50-80 kft exceeded density limits used for aerodynamic ascent heating constraints in vehicle certification analyses. Mission specific analyses were conducted and concluded that the density bias resulted in small changes to heating rates and integrated heat loading on the vehicle. In 2001, the Air Force Combat Climatology Center began developing an updated RRA for CCAFS.

  9. EDIN design study alternate space shuttle booster replacement concepts. Volume 1: Engineering analysis

    Science.gov (United States)

    Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.

    1976-01-01

    The use of a recoverable liquid rocket booster (LRB) system to replace the existing solid rocket booster (SRB) system for the shuttle was studied. Historical weight estimating relationships were developed for the LRB using Saturn technology and modified as required. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the study designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut off points of the shuttle reference mission 1. Performance analysis is based on a point design trajectory model which optimizes initial tilt rate and exoatmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle of attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary. Four basic configurations were investigated: a parallel burn vehicle with an F-1 engine powered LRB; a parallel burn vehicle with a high pressure engine powered LRB; a series burn vehicle with a high pressure engine powered LRB. The relative sizes of the LRB and the ET are optimized to minimize GLOW in most cases.

  10. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 2: User's Guide to the Archived Data Base

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  11. Exploring the molecular mechanisms of electron shuttling across the microbe/metal space

    Directory of Open Access Journals (Sweden)

    Catarina M Paquete

    2014-06-01

    Full Text Available Dissimilatory metal reducing organisms play key roles in the biogeochemical cycle of metals as well as in the durability of submerged and buried metallic structures. The molecular mechanisms that support electron transfer across the microbe-metal interface in these organisms remain poorly explored. It is known that outer membrane proteins, in particular multiheme cytochromes, are essential for this type of metabolism, being responsible for direct and indirect, via electron shuttles, interaction with the insoluble electron acceptors. Soluble electron shuttles such as flavins, phenazines and humic acids are known to enhance extracellular electron transfer. In this work, this phenomenon was explored. All known outer membrane decaheme cytochromes from Shewanella oneidensis MR-1 with known metal terminal reductase activity and a undecaheme cytochrome from Shewanella sp. HRCR-6 were expressed and purified. Their interactions with soluble electron shuttles were studied using stopped-flow kinetics, NMR spectroscopy and molecular simulations. The results show that despite the structural similarities, expected from the available structural data and sequence homology, the detailed characteristics of their interactions with soluble electron shuttles are different. MtrC and OmcA appear to interact with a variety of different electron shuttles in the close vicinity of some of their hemes, and with affinities that are biologically relevant for the concentrations typical found in the medium for this type of compounds. All data support a view of a distant interaction between the hemes of MtrF and the electron shuttles. For UndA a clear structural characterization was achieved for the interaction with AQDS a humic acid analogue. These results provide guidance for future work of the manipulation of these proteins toward modulation of their role in metal attachment and reduction.

  12. Exploring the molecular mechanisms of electron shuttling across the microbe/metal space.

    Science.gov (United States)

    Paquete, Catarina M; Fonseca, Bruno M; Cruz, Davide R; Pereira, Tiago M; Pacheco, Isabel; Soares, Cláudio M; Louro, Ricardo O

    2014-01-01

    Dissimilatory metal reducing organisms play key roles in the biogeochemical cycle of metals as well as in the durability of submerged and buried metallic structures. The molecular mechanisms that support electron transfer across the microbe-metal interface in these organisms remain poorly explored. It is known that outer membrane proteins, in particular multiheme cytochromes, are essential for this type of metabolism, being responsible for direct and indirect, via electron shuttles, interaction with the insoluble electron acceptors. Soluble electron shuttles such as flavins, phenazines, and humic acids are known to enhance extracellular electron transfer. In this work, this phenomenon was explored. All known outer membrane decaheme cytochromes from Shewanella oneidensis MR-1 with known metal terminal reductase activity and a undecaheme cytochrome from Shewanella sp. HRCR-6 were expressed and purified. Their interactions with soluble electron shuttles were studied using stopped-flow kinetics, NMR spectroscopy, and molecular simulations. The results show that despite the structural similarities, expected from the available structural data and sequence homology, the detailed characteristics of their interactions with soluble electron shuttles are different. MtrC and OmcA appear to interact with a variety of different electron shuttles in the close vicinity of some of their hemes, and with affinities that are biologically relevant for the concentrations typical found in the medium for this type of compounds. All data support a view of a distant interaction between the hemes of MtrF and the electron shuttles. For UndA a clear structural characterization was achieved for the interaction with AQDS a humic acid analog. These results provide guidance for future work of the manipulation of these proteins toward modulation of their role in metal attachment and reduction.

  13. Evaluation of coated columbian alloy heat shields for space shuttle thermal protection system application. Volume 1: Phase 1 - Environmental criteria and material characterization, October 1970 - March 1972

    Science.gov (United States)

    Black, W. E.

    1972-01-01

    The studies presented are directed toward establishing criteria for a niobium alloy thermal protection system for the space shuttle. Evaluation of three niobium alloys and two silicon coatings for heat shield configurations culminated in the selection of two coating/substrate combinations for environmental criteria and material characterization tests. Specimens were exposed to boost and reentry temperatures, pressure, and loads simulating a space shuttle orbiter flight profile.

  14. Standards and Specifications for Ground Processing of Space Vehicles: From an Aviation-Based Shuttle Project to Global Application

    Science.gov (United States)

    Ingalls, John; Cipolletti, John

    2011-01-01

    Proprietary or unique designs and operations are expected early in any industry's development, and often provide a competitive early market advantage. However, there comes a time when a product or industry requires standardization for the whole industry to advance...or survive. For the space industry, that time has come. Here, we will focus on standardization of ground processing for space vehicles and their ground systems. With the retirement of the Space Shuttle, and emergence of a new global space race, affordability and sustainability are more important now than ever. The growing commercialization of the space industry and current global economic environment are driving greater need for efficiencies to save time and money. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability not achievable with traditional ELV's (Expendable Launch Vehicles). More crew/passenger vehicles are also being developed. All of this calls for more attention needed for ground processing-repeatedly before launch and after landing/recovery. RLV's should provide more efficiencies than ELV's, as long as MRO (Maintenance, Repair, and Overhaul) is well-planned-even for the unplanned problems. NASA's Space Shuttle is a primary example of an RLV which was supposed to thrive on reusability savings with efficient ground operations, but lessons learned show that costs were (and still are) much greater than expected. International standards and specifications can provide the commonality needed to simplify design and manufacturing as well as to improve safety, quality, maintenance, and operability. There are standards organizations engaged in the space industry, but ground processing is one of the areas least addressed. Challenges are encountered due to various factors often not considered during development. Multiple vehicle elements, sites, customers, and contractors pose various functional and integration difficulties. Resulting technical publication structures

  15. Study of space shuttle orbiter system management computer function. Volume 2: Automated performance verification concepts

    Science.gov (United States)

    1975-01-01

    The findings are presented of investigations on concepts and techniques in automated performance verification. The investigations were conducted to provide additional insight into the design methodology and to develop a consolidated technology base from which to analyze performance verification design approaches. Other topics discussed include data smoothing, function selection, flow diagrams, data storage, and shuttle hydraulic systems.

  16. Artificial Neural Network Test Support Development for the Space Shuttle PRCS Thrusters

    Science.gov (United States)

    Lehr, Mark E.

    2005-01-01

    A significant anomaly, Fuel Valve Pilot Seal Extrusion, is affecting the Shuttle Primary Reaction Control System (PRCS) Thrusters, and has caused 79 to fail. To help address this problem, a Shuttle PRCS Thruster Process Evaluation Team (TPET) was formed. The White Sands Test Facility (WSTF) and Boeing members of the TPET have identified many discrete valve current trace characteristics that are predictive of the problem. However, these are difficult and time consuming to identify and trend by manual analysis. Based on this exhaustive analysis over months, 22 thrusters previously delivered by the Depot were identified as high risk for flight failures. Although these had only recently been installed, they had to be removed from Shuttles OV103 and OV104 for reprocessing, by directive of the Shuttle Project Office. The resulting impact of the thruster removal, replacement, and valve replacement was significant (months of work and hundreds of thousands of dollars). Much of this could have been saved had the proposed Neural Network (NN) tool described in this paper been in place. In addition to the significant benefits to the Shuttle indicated above, the development and implementation of this type of testing will be the genesis for potential Quality improvements across many areas of WSTF test data analysis and will be shared with other NASA centers. Future tests can be designed to incorporate engineering experience via Artificial Neural Nets (ANN) into depot level acceptance of hardware. Additionally, results were shared with a NASA Engineering and Safety Center (NESC) Super Problem Response Team (SPRT). There was extensive interest voiced among many different personnel from several centers. There are potential spin-offs of this effort that can be directly applied to other data acquisition systems as well as vehicle health management for current and future flight vehicles.

  17. Results of a FRSI material test under Space Shuttle ascent conditions in the Ames Research Center 9x7 foot supersonic wind tunnel (OS13). Space Shuttle aerothermodynamic data report

    Science.gov (United States)

    Lemoine, P. L.; Collette, J. G. R.

    1992-01-01

    A test was conducted in the NASA/ARC 9 x 7 foot supersonic wind tunnel to verify the integrity of Felt Reusable Surface Insulation (FRSI) material in a panel flutter environment. A FRSI sample panel was subjected to the shocks, pressure gradients, and turbulence characteristics encountered at dynamic pressure 1.5 times the 3(sigma) dispersed trajectory flight conditions of the Space Shuttle. Static and fluctuating pressure data were obtained for Mach numbers ranging from 1.55 to 2.5 with dynamic pressures of 625 to 1250 psf. The FRSI panel suffered no appreciable damage as a result of the test.

  18. Educational planning for utilization of space shuttle (ED-PLUSS). Executive summary: Identification and evaluation of educational uses and users for the STS

    Science.gov (United States)

    Engle, H. A.; Christensen, D. L.

    1975-01-01

    The development and application of educational programs to improve public awareness of the space shuttle/space lab capabilities are reported. Special efforts were made to: identify the potential user, identify and analyze space education programs, plan methods for user involvement, develop techniques and programs to encourage new users, and compile follow-on ideas.

  19. Quantification of hydrochloric acid and particulate deposition resulting from Space Shuttle launches at John F. Kennedy Space Center, Florida, U.S.A.

    Science.gov (United States)

    Dreschel, Thomas W.; Hall, Carlton R.

    1990-01-01

    Results are presented from studies designed to identify deposition patterns and quantify the ecosystem loading rates of exhaust constituents (which are primarily Al2O3 and HCl) from the Space Shuttle solid rocket motors in the area of the Kennedy Space Center launch pad. Results of measurements indicate that, under certain meteorological conditions, as much as 7.1 x 10 exp 3 kg of particulates and 3.4 x 10 exp 3 kg HCL can be deposited to the near-field environment beyond the launch pad perimeter fence during one STS launch.

  20. Development of Eddy Current Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters

    Science.gov (United States)

    Wincheski, Buzz; Simpson, John; Koshti, Ajay

    2006-01-01

    A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities.

  1. Space shuttle solid rocket booster recovery system definition. Volume 2: SRB water impact Monte Carlo computer program, user's manual

    Science.gov (United States)

    1973-01-01

    The HD 220 program was created as part of the space shuttle solid rocket booster recovery system definition. The model was generated to investigate the damage to SRB components under water impact loads. The random nature of environmental parameters, such as ocean waves and wind conditions, necessitates estimation of the relative frequency of occurrence for these parameters. The nondeterministic nature of component strengths also lends itself to probabilistic simulation. The Monte Carlo technique allows the simultaneous perturbation of multiple independent parameters and provides outputs describing the probability distribution functions of the dependent parameters. This allows the user to determine the required statistics for each output parameter.

  2. Space Shuttle Program Primary Avionics Software System (PASS) Success Legacy - Major Accomplishments and Lessons Learned Detail Historical Timeline Analysis

    Science.gov (United States)

    Orr, James K.

    2010-01-01

    This presentation focuses on the Space Shuttle Primary Avionics Software System (PASS) and the people who developed and maintained this system. One theme is to provide quantitative data on software quality and reliability over a 30 year period. Consistent data relates to code break discrepancies. Requirements were supplied from external sources. Requirement inspections and measurements not implemented until later, beginning in 1985. Second theme is to focus on the people and organization of PASS. Many individuals have supported the PASS project over the entire period while transitioning from company to company and contract to contract. Major events and transitions have impacted morale (both positively and negatively) across the life of the project.

  3. Space shuttle: Heat transfer rate measurements of North American Rockwell orbiter (161B) at nominal Mach number of 8

    Science.gov (United States)

    Warmbrod, J. D.; Martindale, W. R.; Matthews, R. K.

    1971-01-01

    Plots and tables which determine detailed heat transfer distributions on phase B space shuttle configurations are presented. A thin-skinned thermocouple was used to measure the reentry events of the delta wing orbiter. Data was obtained at a nominal Mach number of 8 and free stream Reynolds numbers ranging from 0.83 x 10 to the 6th power to 3.76 x 10 to the 6th power per foot. Angle of attack was varied from -5 to 50 degrees.

  4. Dynamics of short eccentric plain seals with high axial Reynolds number. [for Space Shuttle engine hydrogen fuel turbopump

    Science.gov (United States)

    Allaire, P. E.; Lee, C. C.; Gunter, E. J.

    1978-01-01

    Plain seals with high axial flow rates produce large stiffness and damping coefficients that can help stabilize high-speed rotating machinery. When the shaft is eccentric in the seal, a Bernoulli effect low-pressure region occurs on the large-clearance side of the shaft. A fluid-restoring force tends to center the shaft and reduce vibrations. This work extends the previous theory for short plain centered seals to large eccentricities using a perturbation analysis. Surface roughness effects are also included. An analysis of seals used in the Space Shuttle main engine hydrogen fuel turbopump indicates the desirability of plain seals over the labyrinth type. Experimental results confirm this.

  5. Preflight transient dynamic analyses of B-52 aircraft carrying Space Shuttle solid rocket booster drop-test vehicle

    Science.gov (United States)

    Ko, W. L.; Schuster, L. S.

    1984-01-01

    This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid rocket booster drop test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.

  6. Assessment of Corona/Arcing Hazard for Electron Beam Welding in Space Shuttle Bay at LEO for ISWE: Test Results

    Science.gov (United States)

    Nunes, A. C., Jr.; Russell, C.; Vaughn, J.; Stocks, C.; ODell, D.; Bhat, B.

    1996-01-01

    Test welds were made in argon over a range of pressures from 10-5 to 10-3 torr (the latter pressure an order of magnitude above pressures anticipated in the space shuttle bay during welding) with and without plasma on 304 stainless steel, 6Al-4V titanium, and 5456 aluminum in search of any possible unwanted electrical discharges. Only a faint steady glow of beam-excited atoms around the electron beam and sometimes extending out into the vacuum chamber was observed. No signs of current spiking or of any potentially dangerous electrical discharge were found.

  7. Vibration Analysis of the Space Shuttle External Tank Cable Tray Flight Data With and Without PAL Ramp

    Science.gov (United States)

    Walker, Bruce E.; Panda, Jayanta; Sutliff, Daniel L.

    2008-01-01

    External Tank Cable Tray vibration data for three successive Space Shuttle flights were analyzed to assess response to buffet and the effect of removal of the Protuberance Air Loads (PAL) ramp. Waveform integration, spectral analysis, cross-correlation analysis and wavelet analysis were employed to estimate vibration modes and temporal development of vibration motion from a sparse array of accelerometers and an on-board system that acquired 16 channels of data for approximately the first 2 min of each flight. The flight data indicated that PAL ramp removal had minimal effect on the fluctuating loads on the cable tray. The measured vibration frequencies and modes agreed well with predicted structural response.

  8. Pre-flight transient dynamic analysis of B-52 carrying Space Shuttle solid rocket booster drop-test vehicle

    Science.gov (United States)

    Ko, W. L.; Schuster, L. S.

    1983-01-01

    This paper concerns the transient dynamic analysis of the B-52 aircraft carrying the Space Shuttle solid-rocket booster drop-test vehicle (SRB/DTV). The NASA structural analysis (NASTRAN) finite-element computer program was used in the analysis. The B-52 operating conditions considered for analysis were (1) landing and (2) braking on aborted takeoff runs. The transient loads for the B-52 pylon front and rear hooks were calculated. The results can be used to establish the safe maneuver envelopes for the B-52 carrying the SRB/DTV in landings and brakings.

  9. A new method for hardware/software integration of strategic systems Case study for the Space Shuttle

    Science.gov (United States)

    Ionescu, T. V.; Haque, S. I.; Sripad, A. B.

    1981-01-01

    A new method for ground testing a complex avionics system in an integrated manner has been developed. A case study for the Space Shuttle, on which the concept has been successfully implemented, is described here. This approach utilizes the actual hardware and software of the vehicle to perform a realistic simulation of its mission, verifying in the process all the critical interfaces and interactions of the software with the hardware. The advantages over current testing techniques are discussed, as well as the extension of the concept to other strategic systems.

  10. Thermal and Structural Analysis Conducted on Hollow-Core Turbine Blade of the Space Shuttle Main Engine

    Science.gov (United States)

    1996-01-01

    Hot-section components of spacecraft engines are exposed to severe thermal-structural loading conditions, especially during the startup and shutdown portions of the engine cycle. For instance, the thermal transient during startup within the space shuttle main engine (SSME) can lead to a gas temperatures in excess of 3000 C, affecting the operating life of key components, such as the turbine blades. To improve the durability of these components and in particular the turbine blade, single crystal superalloys have been considered. PWA-1480, a nickel-base superalloy, has been used as the turbine blade material for the Alternate Turbopump Development (ATD) program for the SSME.

  11. Ozone depletion in the upper stratosphere estimated from satellite and Space Shuttle data

    Science.gov (United States)

    Hilsenrath, Ernest; Cebula, Richard P.; Jackman, Charles H.

    1992-01-01

    Shuttle Solar Backscatter Ultraviolet (SSBUV) spectrometer observations of ozone concentrations in the upper stratosphere made in October 1989 are combined here with measurements made in October 1980 by the similar SBUV instruments on NASA's Nimbus-7 satellite. It is shown that the ozone concentration near 45 km has decreased during this period by about 7 +/- 2 percent. The trend is consistent with predictions of a 2D photochemical model.

  12. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    Science.gov (United States)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  13. Wind estimation using air data probe measurements to evaluate meteorological measurements made during Space Shuttle entries

    Science.gov (United States)

    Kelly, G. M.; Findlay, J. T.; Compton, H. R.

    1982-01-01

    Deterministic and weighted least squares methods for obtaining estimates of the horizontal winds encountered during the Shuttle entry phase are described. The estimates are based on in situ Air Data System (ADS) measurements of angle-of-attack, side-slip angle and true airspeed, in conjunction with inertial trajectory parameters obtained from the post flight trajectory reconstruction. Accuracies in the wind estimates obtained from each method are assessed using both theoretical arguments and flight results. Comparisons of derived winds with meteorological measurements taken during the first three Shuttle entries have demonstrated: (1) the usefulness of the wind estimators for evaluating meteorological measurements below 50 kft, and (2) the potential for adequate wind determinations in the absence of independent wind measurements. Comparisons of STS-3 flight-derived L/D versus predicted values from the LaRC aerodynamic data base are presented from 50 kft to touchdown. These results exemplify the importance of such determinations to enhance the ongoing Shuttle aerodynamic and aerothermodynamic research.

  14. SOCRATES simulation of the emission at wavelength 6300 A generated by the interaction between the atmosphere and the Space Shuttle exhaust

    Science.gov (United States)

    Setayesh, A.; Tautz, M. F.

    1993-08-01

    The SOCRATES contamination-interaction code has been used to simulate the reactions between the space shuttle exhaust and the atmosphere at an altitude of 320 km. The investigation carries out the simulations for regions extending to 15 km from spacecraft. These simulations calculate the radiation from O(D1) - O(P3) photons as function of time for orientations of engine firing into the ram, perpendicular, and into the wake of the shuttle motion. The IRMA plotting program has been used to depict in color the time development of the shuttle plume.

  15. Microscopic and Metallurgical Aspects of the Space Shuttle Columbia Accident Investigation and Reconstruction

    Science.gov (United States)

    McDaniels, Steven J.

    2004-01-01

    The Space Shuttle Columbia was descending for a landing at the Kennedy Space Center (KSC) on February 1, 2003. Approximately 20 minutes prior to touchdown, the Columbia began disintegrating over the western United States; the majority of debris eventually impacted in eastern Texas and western Louisiana. A monumental effort eventually recovered approximately 84,000 pieces of debris, approximately 38% of the Orbiter's original dry weight. The debris was transported to KSC, where the items were catalogued and evaluated. Critical areas of interest, such as the left and right leading edge surfaces and the underside of the ship, were placed upon a grid to aid in the reconstruction. Items of interest included metallic structures, reinforced carbon-carbon composites, and ceramic heat insulation tiles. Many of the leading edge elements had re-solidified metallic deposits spattered on them. These deposits became known as slag and were one of the main focuses of the investigation. In order to help determine the sequence of events inside the left wing during the accident, the slag's composition, layering order, and directionality of deposition were studied. A myriad of analytical tests were performed in an attempt to ascertain the compositional and depositional characteristics of selected slag deposits, including the ordering of deposited layers within each individual slag deposit harvested. Initially, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM/EDX) were performed to quickly characterize the overall composition of individual slag deposits: SEM utilizes a narrowlyfocused high-energy electron beam impinging upon a specimen. The incident beam excites and liberates lower energy secondary electrons, which are detected and analyzed, providing a visual representation of the sample's surface topography. EDX also relies on an incident electron beam, except an EDX unit measures X-ray energies generated by the impinging beam. Each element generates a

  16. Pulse-echo ultrasonic inspection system for in-situ nondestructive inspection of Space Shuttle RCC heat shields.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Walkington, Phillip D.; Rackow, Kirk A.

    2005-06-01

    The reinforced carbon-carbon (RCC) heat shield components on the Space Shuttle's wings must withstand harsh atmospheric reentry environments where the wing leading edge can reach temperatures of 3,000 F. Potential damage includes impact damage, micro cracks, oxidation in the silicon carbide-to-carbon-carbon layers, and interlaminar disbonds. Since accumulated damage in the thick, carbon-carbon and silicon-carbide layers of the heat shields can lead to catastrophic failure of the Shuttle's heat protection system, it was essential for NASA to institute an accurate health monitoring program. NASA's goal was to obtain turnkey inspection systems that could certify the integrity of the Shuttle heat shields prior to each mission. Because of the possibility of damaging the heat shields during removal, the NDI devices must be deployed without removing the leading edge panels from the wing. Recently, NASA selected a multi-method approach for inspecting the wing leading edge which includes eddy current, thermography, and ultrasonics. The complementary superposition of these three inspection techniques produces a rigorous Orbiter certification process that can reliably detect the array of flaws expected in the Shuttle's heat shields. Sandia Labs produced an in-situ ultrasonic inspection method while NASA Langley developed the eddy current and thermographic techniques. An extensive validation process, including blind inspections monitored by NASA officials, demonstrated the ability of these inspection systems to meet the accuracy, sensitivity, and reliability requirements. This report presents the ultrasonic NDI development process and the final hardware configuration. The work included the use of flight hardware and scrap heat shield panels to discover and overcome the obstacles associated with damage detection in the RCC material. Optimum combinations of custom ultrasonic probes and data analyses were merged with the inspection procedures needed to

  17. Solving Component Structural Dynamic Failures Due to Extremely High Frequency Structural Response on the Space Shuttle Program

    Science.gov (United States)

    Frady, Greg; Nesman, Thomas; Zoladz, Thomas; Szabo, Roland

    2010-01-01

    For many years, the capabilities to determine the root-cause failure of component failures have been limited to the analytical tools and the state of the art data acquisition systems. With this limited capability, many anomalies have been resolved by adding material to the design to increase robustness without the ability to determine if the design solution was satisfactory until after a series of expensive test programs were complete. The risk of failure and multiple design, test, and redesign cycles were high. During the Space Shuttle Program, many crack investigations in high energy density turbomachines, like the SSME turbopumps and high energy flows in the main propulsion system, have led to the discovery of numerous root-cause failures and anomalies due to the coexistences of acoustic forcing functions, structural natural modes, and a high energy excitation, such as an edge tone or shedding flow, leading the technical community to understand many of the primary contributors to extremely high frequency high cycle fatique fluid-structure interaction anomalies. These contributors have been identified using advanced analysis tools and verified using component and system tests during component ground tests, systems tests, and flight. The structural dynamics and fluid dynamics communities have developed a special sensitivity to the fluid-structure interaction problems and have been able to adjust and solve these problems in a time effective manner to meet budget and schedule deadlines of operational vehicle programs, such as the Space Shuttle Program over the years.

  18. Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.; Carilli, Robert A.; Long, Jason M.; Shawn, Kathy L.

    2010-07-01

    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.

  19. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    1992-01-01

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  20. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  1. Studies and analyses of the space shuttle main engine. Failure information propagation model data base and software

    Science.gov (United States)

    Tischer, A. E.

    1987-01-01

    The failure information propagation model (FIPM) data base was developed to store and manipulate the large amount of information anticipated for the various Space Shuttle Main Engine (SSME) FIPMs. The organization and structure of the FIPM data base is described, including a summary of the data fields and key attributes associated with each FIPM data file. The menu-driven software developed to facilitate and control the entry, modification, and listing of data base records is also discussed. The transfer of the FIPM data base and software to the NASA Marshall Space Flight Center is described. Complete listings of all of the data base definition commands and software procedures are included in the appendixes.

  2. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    by chemical determination of the amino acid sequence of a tryptic peptide derived from the purified mutant enzyme. The mutation lies at the N-terminal end of a 16 residue sequence that is highly conserved in E. coli, Bacillus subtilis, and rat PRPP synthetases and has the following consensus sequence......The prsA1 allele, specifying a mutant Escherichia coli phosphoribosylpyrophosphate (PRPP) synthetase, has been cloned. The mutation was shown by nucleotide sequence analysis to result from substitution of Asp-128 (GAT) in the wild type by Ala (GCT) in prsA1. This alteration was confirmed......: DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6...

  3. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    Science.gov (United States)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  4. Space Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    Science.gov (United States)

    DeLoach, Richard; Rayos, Elonsio M.; Campbell, Charles H.; Rickman, Steven L.; Larsen, Curtis E.

    2007-01-01

    Complex computer codes are used to estimate thermal and structural reentry loads on the Shuttle Orbiter induced by ice and foam debris impact during ascent. Such debris can create cavities in the Shuttle Thermal Protection System. The sizes and shapes of these cavities are approximated to accommodate a code limitation that requires simple "shoebox" geometries to describe the cavities -- rectangular areas and planar walls that are at constant angles with respect to vertical. These approximations induce uncertainty in the code results. The Modern Design of Experiments (MDOE) has recently been applied to develop a series of resource-minimal computational experiments designed to generate low-order polynomial graduating functions to approximate the more complex underlying codes. These polynomial functions were then used to propagate cavity geometry errors to estimate the uncertainty they induce in the reentry load calculations performed by the underlying code. This paper describes a methodological study focused on evaluating the application of MDOE to future operational codes in a rapid and low-cost way to assess the effects of cavity geometry uncertainty.

  5. Observations and predictions of secondary neutrons on space shuttle and aircraft

    Science.gov (United States)

    Truscott, P. R.; Dyer, C. S.; Evans, H. E.; Sims, A. J.; Peerless, C. L.; Knight, P. R.; Cosby, M.; Flatman, J. C.; Comber, C.; Hammond, N. D. A.

    The Cosmic Radiation Effects and Activation Monitor has flown on six Shuttle flights between September 1991 and February 1995 covering the full range of inclinations as well as altitudes between 220 and 570 km, while a version has flown at supersonic altitudes on Concorde between 1988 and 1992 and at subsonic altitudes on a SAS Boeing 767 between May and August 1993. The Shuttle flights have included passive packages in addition to the active cosmic ray monitor which comprises an array of pin diodes. These are positioned at a number of locations to investigate the influence of shielding and local materials. Use of both metal activation foils and scintillator crystals enables neutron fluences to be inferred from the induced radioactivity which is observed on return to Earth. Supporting radiation transport calculations are performed to predict secondary neutron spectra and the energy deposition due o nuclear reactions in silicon pin diodes and the induced radioactivity in the various scintillator crystals. The wide variety of orbital and atmospheric locations enables investigation of the influence of shielding on cosmic ray, trapped proton and solar flare proton spectra.

  6. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 2: Summary of information developed in the Panel's fact-finding activities

    Science.gov (United States)

    1975-01-01

    The management areas and the individual elements of the shuttle system were investigated. The basic management or design approach including the most obvious limits or hazards that are significant to crew safety was reviewed. Shuttle program elements that were studied included the orbiter, the space shuttle main engine, the external tank project, solid rocket boosters, and the launch and landing elements.

  7. Space Shuttle/high energy upper stage capabilities for the 1990's

    Science.gov (United States)

    Teixeira, C.

    1982-01-01

    Possible performance gains and cost reductions available through the evolution of succeedingly larger unmanned, and then manned, orbital transfer vehicles (OTV) as Shuttle upper stages are projected. Future missions could include delivery of 10,000 lb to GEO, planetary missions in the 2000-12,000 lb class, 30-42 ft payloads in the 5000-10,000 lb class, and manned and unmanned satellite servicing by the turn of the century. The vehicles could evolve from the Centaur F vehicle through stages of all-propulsive configurations to aerobraked, fully reusable vehicles. Reusability introduces cost savings and the ability to make plane changes. Furthermore, aerobraking will double the payload capability for round trip journeys to GEO, bringing costs down to $7000/lb.

  8. Study of space shuttle orbiter system management computer function. Volume 1: Analysis, baseline design

    Science.gov (United States)

    1975-01-01

    A system analysis of the shuttle orbiter baseline system management (SM) computer function is performed. This analysis results in an alternative SM design which is also described. The alternative design exhibits several improvements over the baseline, some of which are increased crew usability, improved flexibility, and improved growth potential. The analysis consists of two parts: an application assessment and an implementation assessment. The former is concerned with the SM user needs and design functional aspects. The latter is concerned with design flexibility, reliability, growth potential, and technical risk. The system analysis is supported by several topical investigations. These include: treatment of false alarms, treatment of off-line items, significant interface parameters, and a design evaluation checklist. An in-depth formulation of techniques, concepts, and guidelines for design of automated performance verification is discussed.

  9. Bubble motion in a rotating liquid body. [ground based tests for space shuttle experiments

    Science.gov (United States)

    Annamalai, P.; Subramanian, R. S.; Cole, R.

    1982-01-01

    The behavior of a single gas bubble inside a rotating liquid-filled sphere has been investigated analytically and experimentally as part of ground-based investigations aimed at aiding in the design and interpretation of Shuttle experiments. In the analysis, a quasi-static description of the motion of a bubble was developed in the limit of small values of the Taylor number. A series of rotation experiments using air bubbles and silicone oils were designed to match the conditions specified in the analysis, i.e., the bubble size, sphere rotation rate, and liquid kinematic viscosity were chosen such that the Taylor number was much less than unity. The analytical description predicts the bubble velocity and its asymptotic location. It is shown that the asymptotic position is removed from the axis of rotation.

  10. Redundancy management of multiple KT-70 inertial measurement units applicable to the space shuttle

    Science.gov (United States)

    Cook, L. J.

    1975-01-01

    Results of an investigation of velocity failure detection and isolation for 3 inertial measuring units (IMU) and 2 inertial measuring units (IMU) configurations are presented. The failure detection and isolation algorithm performance was highly successful and most types of velocity errors were detected and isolated. The failure detection and isolation algorithm also included attitude FDI but was not evaluated because of the lack of time and low resolution in the gimbal angle synchro outputs. The shuttle KT-70 IMUs will have dual-speed resolvers and high resolution gimbal angle readouts. It was demonstrated by these tests that a single computer utilizing a serial data bus can successfully control a redundant 3-IMU system and perform FDI.

  11. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    Science.gov (United States)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  12. Signal-to-Noise Ratio Prediction and Validation for Space Shuttle GPS Flight Experiment

    Science.gov (United States)

    Hwu, Shian U.; Adkins, Antha A.; Loh, Yin-Chung; Brown, Lisa C.; Sham, Catherine C.; Kroll, Quin D.

    2002-01-01

    A deterministic method for Space Station Global Positioning System (GPS) Signal-To- Noise Ratio (SNR) predictions is proposed. The complex electromagnetic interactions between GPS antennas and surrounding Space Station structures are taken into account by computational electromagnetic technique. This computer simulator is capable of taking into account multipath effects from dynamically changed solar panels and thermal radiators. A comparison with recent collected Space Station GPS system flight experiment data is presented. The simulation results are in close agreement with flight data.

  13. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    Science.gov (United States)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  14. A coupled fluid-structure dynamic analysis for water impact loads. [for Space Shuttle recoverable booster design

    Science.gov (United States)

    Herting, D. N.

    1975-01-01

    In this paper a nonlinear transient, hydroelastic method is developed for response analysis of the Space Shuttle recoverable booster on water impact. At each time step, coupled equations of fluid flow and structure dynamics are solved with an iterative, self-correcting process. Rigid body motions are represented by large angle equations. Local deformations are represented by a NASTRAN-generated model of the three-dimensional structure. The fluid is represented by series solutions of the potential flow equation which include the effects of the local structure motions. The resulting water loads and structural stresses obtained will aid in qualification of the final structural design. Comparisons are made to experimental impact data to validate the method.

  15. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing

    Science.gov (United States)

    Sulyma, P. R.; Penny, M. M.

    1978-01-01

    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  16. Structural analysis of three extensional detachment faults with data from the 2000 Space-Shuttle Radar Topography Mission

    Science.gov (United States)

    Spencer, J.E.

    2010-01-01

    The Space-Shuttle Radar Topography Mission provided geologists with a detailed digital elevation model of most of Earth's land surface. This new database is used here for structural analysis of grooved surfaces interpreted to be the exhumed footwalls of three active or recently active extensional detachment faults. Exhumed fault footwalls, each with an areal extent of one hundred to several hundred square kilometers, make up much of Dayman dome in eastern Papua New Guinea, the western Gurla Mandhata massif in the central Himalaya, and the northern Tokorondo Mountains in central Sulawesi, Indonesia. Footwall curvature in profile varies from planar to slightly convex upward at Gurla Mandhata to strongly convex upward at northwestern Dayman dome. Fault curvature decreases away from the trace of the bounding detachment fault in western Dayman dome and in the Tokorondo massif, suggesting footwall flattening (reduction in curvature) following exhumation. Grooves of highly variable wavelength and amplitude reveal extension direction, although structural processes of groove genesis may be diverse.

  17. A frequency domain stability analysis of a phase plane control system. [for Space Shuttle on-orbit flight

    Science.gov (United States)

    Hattis, P. D.; Kubiak, E. T.; Penchuk, A. N.

    1984-01-01

    A describing function is used to model a phase plane controller which is part of the Space Shuttle on-orbit Reaction Control System autopilot. A frequency domain stability analysis of the closed-loop control system is applied to a study of potential flight control system interaction with the Orbiter and a class of payloads deployed from a tilt table. Phase-gain plot techniques are used to show that expansion of phase plane angular rate limits and stiffening of the tilt table pivot do not always enhance system stability. Instability region approximations are mapped as a function of rate limit, payload geometry, jet used, and natural frequency of the pivot. Comparison of the describing function analysis with simulation results shows excellent correlation.

  18. The integration of automated knowledge acquisition with computer-aided software engineering for space shuttle expert systems

    Science.gov (United States)

    Modesitt, Kenneth L.

    1990-01-01

    A prediction was made that the terms expert systems and knowledge acquisition would begin to disappear over the next several years. This is not because they are falling into disuse; it is rather that practitioners are realizing that they are valuable adjuncts to software engineering, in terms of problem domains addressed, user acceptance, and in development methodologies. A specific problem was discussed, that of constructing an automated test analysis system for the Space Shuttle Main Engine. In this domain, knowledge acquisition was part of requirements systems analysis, and was performed with the aid of a powerful inductive ESBT in conjunction with a computer aided software engineering (CASE) tool. The original prediction is not a very risky one -- it has already been accomplished.

  19. Lee surface flow phenomena over space shuttle at large angles of attack at M sub infinity equal 6

    Science.gov (United States)

    Zakkay, V.; Miyazawa, M.; Wang, C. R.

    1974-01-01

    Surface pressure and heat transfer, flow separation, flow field, and oil flow patterns on the leeward side of a space shuttle orbiter model are investigated at a free stream Mach number of 6. The free stream Reynolds numbers are between 1.64 times 10 to the 7th power and 1.31 times 10 to the 8th power per meter, and the angle of attack is varied between 0 deg and 40 deg for the present experiments. The stagnation temperatures for the tests are approximately 500 K and the wall temperature is maintained at 290 K. Existing numerical methods of three-dimensional inviscid supersonic flow theory and compressible boundary layer theory are used to predict the present experimental measurements. Results of the present tests indicate two distinct types of flow separation and surface peak heating depending on the angle of attack.

  20. Experimental surface flow patterns and flow-field phenomena of a delta-wing space-shuttle orbiter

    Science.gov (United States)

    Cleary, J. W.

    1972-01-01

    Composite photographs of the surface flow and shadowgraphs of the shock wave pattern are presented that depict the hypersonic flow field of a typical delta wing space shuttle orbiter. Results from a wind tunnel test in air are given in side, oblique, and projected plan views for angles of attack from 0 to 60 deg. The tests were conducted at a Mach number of 7.4 and for Reynolds numbers based on body length of 6,000,000 and 9,000,000. The interrelationship is shown for the intersecting bow and wing leading edge waves with the surface flow for angles of attack for which: (1) the leading edge wave is attached, and (2) the leading edge wave is detached.

  1. Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    Science.gov (United States)

    Banas, R. P.; Elgin, D. R.; Cordia, E. R.; Nickel, K. N.; Gzowski, E. R.; Aguiler, L.

    1983-01-01

    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed.

  2. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    Science.gov (United States)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  3. Fine pointing of the Solar Optical Telescope in the Space Shuttle environment

    Science.gov (United States)

    Gowrinathan, S.

    1985-01-01

    Instruments requiring fine (i.e., sub-arcsecond) pointing, such as the Solar Optical Telescope (SOT), must be equipped with two-stage pointing devices, coarse and fine. Coarse pointing will be performed by a gimbal system, such as the Instrument Pointing System, while the image motion compensation (IMC) will provide fine pointing. This paper describes work performed on the SOT concept design that illustrates IMC as applied to SOT. The SOT control system was modeled in the frequency domain to evaluate performance, stability, and bandwidth requirements. The two requirements of the pointing control, i.e., the 2 arcsecond reproducibility and 0.03 arcsecond rms pointing jitter, can be satisfied by use of IMC at about 20 Hz bandwidth. The need for this high bandwidth is related to Shuttle-induced disturbances that arise primarily from man push-offs and vernier thruster firings. A block diagram of SOT model/stability analysis, schematic illustrations of the SOT pointing system, and a structural model summary are included.

  4. Shearographic Non-destructive Evaluation of Space Shuttle Thermal Protection Systems

    Science.gov (United States)

    Davis, Christopher K.; Hooker, Jeffery A.; Simmons, Stephen A.; Tenbusch, Kenneth E.

    1995-01-01

    Preliminary results of shearographic inspections of the shuttle external tank (ET) spray-on foam insulation (SOFI) and solid rocket booster (SRB) Marshall sprayable ablative (MSA-2) epoxy-cork thermal protection systems (TPS) are presented. Debonding SOFI or MSA-2 damage the orbiter 'belly' tile and exposes the ET/SRB to thermal loading. Previous work with the ET/SRB showed promising results with shearography. The first area investigated was the jack pad close-out, one of many areas on the ET where foam is applied at KSC. Voids 0.375 inch were detected in 1.75 inch thick foam using a pressure reduction of less than 0.4 psi. Of primary interest are areas of the ET that directly face the orbiter tile TPS. It is estimated that 90% of tile TPS damage on the orbiter 'belly' results from debonding SOFI during ascent. Test panels modeling these areas were manufactured with programmed debonds to determine the sensitivity of shearography as a function of debond size, SOFI thickness and vacuum. Results show repeatable detection of debonds with a diameter approximately half the SOFI thickness at less than 0.4 psi pressure reduction. Preliminary results are also presented on inspections of MSA-2 and the remote manipulator system (RMS) honeycomb material.

  5. Public school teachers in the U.S. evaluate the educational impact of student space experiments launched by expendable vehicles, aboard Skylab, and aboard Space Shuttle

    Science.gov (United States)

    Burkhalter, Bettye B.; McLean, James E.; Curtis, James P.; James, George S.

    Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.

  6. Loss of Signal, Aeromedical Lessons Learned for the STS-I07 Columbia Space Shuttle Mishap

    Science.gov (United States)

    Patlach, Robert; Stepaniak, Philip C.; Lane, Helen W.

    2014-01-01

    Loss of Signal, a NASA publication to be available in May 2014, presents the aeromedical lessons learned from the Columbia accident that will enhance crew safety and survival on human space flight missions. These lessons were presented to limited audiences at three separate Aerospace Medical Association (AsMA) conferences: in 2004 in Anchorage, Alaska, on the causes of the accident; in 2005 in Kansas City, Missouri, on the response, recovery, and identification aspects of the investigation; and in 2011, again in Anchorage, Alaska, on future implications for human space flight. As we embark on the development of new spacefaring vehicles through both government and commercial efforts, the NASA Johnson Space Center Human Health and Performance Directorate is continuing to make this information available to a wider audience engaged in the design and development of future space vehicles. Loss of Signal summarizes and consolidates the aeromedical impacts of the Columbia mishap process-the response, recovery, identification, investigative studies, medical and legal forensic analysis, and future preparation that are needed to respond to spacecraft mishaps. The goals of this book are to provide an account of the aeromedical aspects of the Columbia accident and the investigation that followed, and to encourage aerospace medical specialists to continue to capture information, learn from it, and improve procedures and spacecraft designs for the safety of future crews.

  7. Loss of Signal, Aeromedical Lessons Learned from the STS-107 Columbia Space Shuttle Mishap

    Science.gov (United States)

    Stepaniak, Phillip C.; Patlach, Robert

    2014-01-01

    Loss of Signal, a NASA publication to be available in May 2014 presents the aeromedical lessons learned from the Columbia accident that will enhance crew safety and survival on human space flight missions. These lessons were presented to limited audiences at three separate Aerospace Medical Association (AsMA) conferences: in 2004 in Anchorage, Alaska, on the causes of the accident; in 2005 in Kansas City, Missouri, on the response, recovery, and identification aspects of the investigation; and in 2011, again in Anchorage, Alaska, on future implications for human space flight. As we embark on the development of new spacefaring vehicles through both government and commercial efforts, the NASA Johnson Space Center Human Health and Performance Directorate is continuing to make this information available to a wider audience engaged in the design and development of future space vehicles. Loss of Signal summarizes and consolidates the aeromedical impacts of the Columbia mishap process-the response, recovery, identification, investigative studies, medical and legal forensic analysis, and future preparation that are needed to respond to spacecraft mishaps. The goal of this book is to provide an account of the aeromedical aspects of the Columbia accident and the investigation that followed, and to encourage aerospace medical specialists to continue to capture information, learn from it, and improve procedures and spacecraft designs for the safety of future crews. This poster presents an outline of Loss of Signal contents and highlights from each of five sections - the mission and mishap, the response, the investigation, the analysis and the future.

  8. A Compendium of Wind Statistics and Models for the NASA Space Shuttle and Other Aerospace Vehicle Programs

    Science.gov (United States)

    Smith, O. E.; Adelfang, S. I.

    1998-01-01

    The wind profile with all of its variations with respect to altitude has been, is now, and will continue to be important for aerospace vehicle design and operations. Wind profile databases and models are used for the vehicle ascent flight design for structural wind loading, flight control systems, performance analysis, and launch operations. This report presents the evolution of wind statistics and wind models from the empirical scalar wind profile model established for the Saturn Program through the development of the vector wind profile model used for the Space Shuttle design to the variations of this wind modeling concept for the X-33 program. Because wind is a vector quantity, the vector wind models use the rigorous mathematical probability properties of the multivariate normal probability distribution. When the vehicle ascent steering commands (ascent guidance) are wind biased to the wind profile measured on the day-of-launch, ascent structural wind loads are reduced and launch probability is increased. This wind load alleviation technique is recommended in the initial phase of vehicle development. The vehicle must fly through the largest load allowable versus altitude to achieve its mission. The Gumbel extreme value probability distribution is used to obtain the probability of exceeding (or not exceeding) the load allowable. The time conditional probability function is derived from the Gumbel bivariate extreme value distribution. This time conditional function is used for calculation of wind loads persistence increments using 3.5-hour Jimsphere wind pairs. These increments are used to protect the commit-to-launch decision. Other topics presented include the Shuttle Shuttle load-response to smoothed wind profiles, a new gust model, and advancements in wind profile measuring systems. From the lessons learned and knowledge gained from past vehicle programs, the development of future launch vehicles can be accelerated. However, new vehicle programs by their very

  9. Effect of 25 cycles of launch pad exposure and simulated mission heating on space shuttle reusable surface insulation coated with reaction cured glass

    Science.gov (United States)

    Ransone, P. O.; Morrison, J. D.; Minster, J. E.

    1979-01-01

    Tiles of space shuttle reusable surface insulation coated with reaction cured glass were subjected to 25 cycles of launch pad exposure and simulated mission heating. The coating could not withstand the environment without cracking. Water absorption after cracking reached as high as 150 weight percent. Exposure of insulation fibers beneath the coating to contaminants dissolved in absorbed water initiated fiber degradation.

  10. Enhancing Learning in Statistics Classes Through The Use of Concrete Historical Examples: The Space Shuttle Challenger, Pearl Harbor, and the RMS Titanic.

    Science.gov (United States)

    Schumm, Walter R.; Webb, Farrell J.; Castelo, Carlos S.; Akagi, Cynthia G.; Jensen, Erick J.; Ditto, Rose M.; Spencer Carver, Elaine; Brown, Beverlyn F.

    2002-01-01

    Discusses the use of historical events as examples for teaching college level statistics courses. Focuses on examples of the space shuttle Challenger, Pearl Harbor (Hawaii), and the RMS Titanic. Finds real life examples can bridge a link to short term experiential learning and provide a means for long term understanding of statistics. (KDR)

  11. Shuttle Wastewater Solution Characterization

    Science.gov (United States)

    Adam, Niklas; Pham, Chau

    2011-01-01

    During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

  12. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    Science.gov (United States)

    Fragomeni, James M.

    1996-01-01

    In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several

  13. Space shuttle/payload interface analysis. Volume 4: Business Risk and Value of Operations in Space (BRAVO). Part 1: Summary

    Science.gov (United States)

    1974-01-01

    Background information is provided which emphasizes the philosophy behind analytical techniques used in the business risk and value of operations in space (BRAVO) study. The focus of the summary is on the general approach, operation of the procedures, and the status of the study. For Vol. 1, see N74-12493; for Vol. 2, see N74-14530.

  14. Automation of vibroacoustic data bank for random vibration criteria development. [for the space shuttle and launch vehicles

    Science.gov (United States)

    Ferebee, R. C.

    1982-01-01

    A computerized data bank system was developed for utilization of large amounts of vibration and acoustic data to formulate component random vibration design and test criteria. This system consists of a computer, graphics tablet, and a dry-silver hard copier which are all desk-top type hardware and occupy minimal space. The data bank contains data from the Saturn V and Titan III flight and static test programs. The vibration and acoustic data are stored in the form of power spectral density and one-third octave band plots over the frequency range from 20 to 2000 Hz. The data was stored by digitizing each spectral plot by tracing with the graphics tablet. The digitized data was statistically analyzed and the resulting 97.5% probability levels were stored on tape along with the appropriate structural parameters. Standard extrapolation procedures were programmed for prediction of component random vibration test criteria for new launch vehicle and payload configurations. This automated vibroacoustic data bank system greatly enhances the speed and accuracy of formulating vibration test criteria. In the future, the data bank will be expanded to include all data acquired from the space shuttle flight test program.

  15. Vibration and stress analysis of soft-bonded shuttle insulation tiles. Modal analysis with compact widely space stringers

    Science.gov (United States)

    Ojalvo, I. U.; Austin, F.; Levy, A.

    1974-01-01

    An efficient iterative procedure is described for the vibration and modal stress analysis of reusable surface insulation (RSI) of multi-tiled space shuttle panels. The method, which is quite general, is rapidly convergent and highly useful for this application. A user-oriented computer program based upon this procedure and titled RESIST (REusable Surface Insulation Stresses) has been prepared for the analysis of compact, widely spaced, stringer-stiffened panels. RESIST, which uses finite element methods, obtains three dimensional tile stresses in the isolator, arrestor (if any) and RSI materials. Two dimensional stresses are obtained in the tile coating and the stringer-stiffened primary structure plate. A special feature of the program is that all the usual detailed finite element grid data is generated internally from a minimum of input data. The program can accommodate tile idealizations with up to 850 nodes (2550 degrees-of-freedom) and primary structure idealizations with a maximum of 10,000 degrees-of-freedom. The primary structure vibration capability is achieved through the development of a new rapid eigenvalue program named ALARM (Automatic LArge Reduction of Matrices to tridiagonal form).

  16. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights

    Science.gov (United States)

    Dijk, D. J.; Neri, D. F.; Wyatt, J. K.; Ronda, J. M.; Riel, E.; Ritz-De Cecco, A.; Hughes, R. J.; Elliott, A. R.; Prisk, G. K.; West, J. B.; hide

    2001-01-01

    Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.

  17. A vehicle scheduling algorithm using non-serial discrete dynamic programming with space shuttle applications

    Science.gov (United States)

    Dupnick, E.

    1973-01-01

    Description of the development and operation of a vehicle-scheduling algorithm which has applications to the NASA problem of assigning payloads to space delivery vehicles. The algorithm is based on a discrete, integer-valued, nonserial, dynamic-programming solution to the classical problem of developing resource utilization plans with limited resources. The algorithm places special emphasis on incorporating interpayload (precedence) relationships; maintaining optimal alternate schedule definitions (a unique feature of dynamic programming) in the event of contingencies (namely, resource inventory changes) without problem resolution; and, by using a special information storage technique, reducing the computational complexity of solving realistic problems.

  18. Shuttle Inventory Management

    Science.gov (United States)

    1983-01-01

    Inventory Management System (SIMS) consists of series of integrated support programs providing supply support for both Shuttle program and Kennedy Space Center base opeations SIMS controls all supply activities and requirements from single point. Programs written in COBOL.

  19. Draft Environmental Impact Statement. Space Shuttle Advanced Solid Rocket Motor Program

    Science.gov (United States)

    1988-12-01

    a 0L E o u C00 m -c CC 3-28 . jw z Cl) CLC w w w (*) C c.cn 0..L 00s CC i w r I 0cc ~ D 3-2 Table 3-7. Per Capita Income - Stennis Space Center Study...with R.\\Kamm, Transportation Planner, Brevard County Office of Transportation Management, Merritt Island, Florida. November 9, 1988. Keely , Stan. 1988... jw C.. 0 4J Cx CA 44-’ -04 C-; *--- 0mu 0. U-0- 010 41 .0 +j 4 4’W (A CL ’U 4 04 a. 0 L C- a) I C.15S 4’ 00 0 C- UJ 4-m W. .~ (a, 41’ =O4 [CV . .- 4

  20. The Use af Ion Vapor Deposited Aluminum (IVD) for the Space Shuttle Solid Rocket Booster (SRB)

    Science.gov (United States)

    Novak, Howard L.

    2002-01-01

    The USA LLC Materials & Processes (M&P) Engineering Department had recommended the application and evaluation of Ion Vapor Deposition (IVD) aluminum to SRB Hardware for corrosion protection and elimination of hazardous materials and processes such as cadmium plating. IVD is an environmentally friendly process that has no volatile organic compounds (VOCs), or hazardous waste residues. It lends itself to use with hardware exposed to corrosive seacoast environments as found at Kennedy Space Center (KSC), and Cape Canaveral Air Force Station (CCAFS), Florida. Lifting apparatus initially coated with cadmium plating for corrosion protection; was stripped and successfully re-coated with IVD aluminum after the cadmium plating no longer protected the GSE from corrosion, Since then, and after completion of a significant test program, the first flight application of the IVD Aluminum process on the Drogue Parachute Ratchet Assembly is scheduled for 2002.

  1. LSRA with Shuttle main gear

    Science.gov (United States)

    1993-01-01

    A space shuttle landing gear system is visible between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance.

  2. Shuttle Entry Air Data System concepts applied to Space Shuttle Orbiter flight pressure data to determine air data - STS 1-4

    Science.gov (United States)

    Siemers, P. M., III; Wolf, H.; Flanagan, P. F.

    1983-01-01

    The Shuttle Entry Air Data System (SEADS) is the implementation of a new concept in air data systems, with application to entry vehicles. This concept incorporates an array of flush orifices in the nose and forward fuselage of the vehicle and a new flowfield modeling concept for the analysis of flight data and the determination of the required air data parameters. Although the SEADS has not been fully demonstrated, a developmental analysis capability has been assembled and demonstrated. This analytical capability has been used to analyze selected Development Flight Instrumentation (DFI) pressure data from STS-1 through STS-4 and determine angle of attack and freestream dynamic pressure. The results of this study verify the potential of the SEADS as a highly fault tolerant operational air data system. In addition, the transition of SEADS from its present status as an experimental system to an operational system is shown to be readily achievable.

  3. Real-Time Measurements of Aft Dome Insulation Erosion on Space Shuttle Reusable Solid Rocket Motor

    Science.gov (United States)

    McWhorter, Bruce; Ewing, Mark; Albrechtsen, Kevin; Noble, Todd; Longaker, Matt

    2004-01-01

    Real-time erosion of aft dome internal insulation was measured with internal instrumentation on a static test of a lengthened version of the Space Shuffle Reusable Solid Rocket Motor (RSRM). This effort marks the first time that real-time aft dome insulation erosion (Le., erosion due to the combined effects of thermochemical ablation and mechanical abrasion) was measured in this kind of large motor static test [designated as Engineering Test Motor number 3 (ETM3)I. This paper presents data plots of the erosion depth versus time. The data indicates general erosion versus time behavior that is in contrast to what would be expected from earlier analyses. Engineers have long known that the thermal environment in the aft dome is severe and that the resulting aft dome insulation erosion is significant. Models of aft dome erosion involve a two-step process of computational fluid dynamics (CFD) modeling and material ablation modeling. This modeling effort is complex. The time- dependent effects are difficult to verify with only prefire and postfire insulation measurements. Nozzle vectoring, slag accumulation, and changing boundary conditions will affect the time dependence of aft dome erosion. Further study of this data and continued measurements on future motors will increase our understanding of the aft dome flow and erosion environment.

  4. Computational techniques for design optimization of thermal protection systems for the space shuttle vehicle. Volume 1: Final report

    Science.gov (United States)

    1971-01-01

    Computational techniques were developed and assimilated for the design optimization. The resulting computer program was then used to perform initial optimization and sensitivity studies on a typical thermal protection system (TPS) to demonstrate its application to the space shuttle TPS design. The program was developed in Fortran IV for the CDC 6400 but was subsequently converted to the Fortran V language to be used on the Univac 1108. The program allows for improvement and update of the performance prediction techniques. The program logic involves subroutines which handle the following basic functions: (1) a driver which calls for input, output, and communication between program and user and between the subroutines themselves; (2) thermodynamic analysis; (3) thermal stress analysis; (4) acoustic fatigue analysis; and (5) weights/cost analysis. In addition, a system total cost is predicted based on system weight and historical cost data of similar systems. Two basic types of input are provided, both of which are based on trajectory data. These are vehicle attitude (altitude, velocity, and angles of attack and sideslip), for external heat and pressure loads calculation, and heating rates and pressure loads as a function of time.

  5. Analytical and experimental investigation of rubbing interaction in labyrinth seals for a liquid hydrogen fuel pump. [space shuttle main engine

    Science.gov (United States)

    Dolan, F. X.; Kennedy, F. E.; Schulson, E. M.

    1984-01-01

    Cracking of the titanium knife edges on the labyrinth seals of the liquid hydrogen fuel pump in the Space Shuttle main engine is considered. Finite element analysis of the thermal response of the knife edge in sliding contact with the wear ring surface shows that interfacial temperatures can be quite high and they are significantly influenced by the thermal conductivity of the surfaces in rubbing contact. Thermal shock experiments on a test specimen similar to the knife edge geometry demonstrate that cracking of the titanium alloy is possible in a situation involving repeated thermal cycles over a wide temperature range, as might be realized during a rub in the liquid hydrogen fuel pump. High-speed rub interaction tests were conducted using a representative knife edge and seal geometry over a broad range of interaction rates and alternate materials were experimentally evaluated. Plasma-sprayed aluminum-graphite was found to be significantly better than presently used aluminum alloy seals from the standpoint of rub performance. Ion nitriding the titanium alloy knife-edges also improved rub performance compared to the untreated baseline.

  6. Microgravity in the STS-29 space shuttle discovery affected the vestibular system of chick embryos

    Science.gov (United States)

    Fermin, C. D.; Martin, D.; Jones, T.; Vellinger, J.; Deuser, M.; Hester, P.; Hullinger, R.

    1996-01-01

    Out of 32 embryos flown (16 @ E2 + 16 @ E9) for 5 days, 16 survived. All sixteen E2 were dead at landing. Eight were opened and eight were incubated at 1.0G. Autopsy showed that 4 E2 survived over 24 hours in space. Eight E14 hatched without anatomical malformations, and 8 E14 were fixed. The height of the macular epithelia was 31 mu m (mean) in control and 26 mu m in flight chicks. The cross-sectional area of macular nuclei of control was 17 mu m(2) for hair cells and 14 mu m(2) in supporting cells. In flight, cross-sectional area was 17 mu m(2) in hair cells and 15 mu m(2) in supporting cells (n=250). The shape factor of cartilage cells (1.0 = perfect circle) between control (mean = 0.70) and flight (mean = 0.72), and the area of cartilaginous cells between controls (mean = 9 mu m(2)) and flight (mean = 9 mu m(2)) did not differ (n=300). The nuclei of support cells were closer to the basement membrane in flight than in control chicks. The immunoreactivity of otoconia with anti keratan, fibronectin or chrondroitin sulfate was not different between flight and control ears. There were more afferent fibers inside the macular epithelia of flight (p<0.05) than control. Three of 8 flight animals had elevated vestibular thresholds (VT), with normal mean response amplitudes and latencies. Modified afferent innervation patterns requiring weeks to compensate are sufficient to elevate VT, and should be investigated further. Other reversible (sublethal) microgravity effects on sensory epithelia (vacuoles, swelling, etc) require quantification.

  7. Effects of Alternate Leading Edge Cutback on the Space Shuttle Main Engine Low Pressure Fuel Pump

    Science.gov (United States)

    Mulder, Andrew; Skelley, Stephen

    2016-01-01

    A higher order cavitation oscillation observed in the SSME low pressure fuel pump has been eliminated in water flow testing of a modified subscale replica of the inducer. The low pressure pump was modified by removing the outboard sections of two opposing blades of the four-bladed inducer, blending the "cutback" regions into the blades at the leading edge and tip, and removing material on the suction sides to decrease the exposed leading edge thickness. The leading edge tips of the cutback blades were moved approximately 25 degrees from their previous locations, thereby increasing one blade to blade spacing, decreasing the second, while simultaneously moving the cutback tips downstream. The test was conducted in MSFC's inducer test loop at scaled operating conditions in degassed and filtered water. In addition to eliminating HOC across the entire scaled operating regime, rotating cavitation was suppressed while the range of both alternate blade and asymmetric cavitation were increased. These latter phenomena, and more significantly, the shifts between these cavitation modes also resulted in significant changes to the head coefficient at low cavitation numbers. Reverse flow was detected at a slightly larger flow coefficient with the cutback inducer and suction capability was reduced by approximately 1 velocity head at and above approximately 90% of the reference flow coefficient. These performance changes along with more intense reverse flow are consistent with poor flow area management and increased incidence in the cutback region. Although the test demonstrated that the inducer modification was successful at eliminating the higher order cavitation across the entire scaled operating regime, different, previously unobserved, cavitation oscillations were introduced and significant performance penalties were imposed.

  8. A shuttle and space station manipulator system for assembly, docking, maintenance cargo handling and spacecraft retrieval (preliminary design). Volume 1: Management summary

    Science.gov (United States)

    1972-01-01

    A preliminary design is established for a general purpose manipulator system which can be used interchangeably on the shuttle and station and can be transferred back and forth between them. Control of the manipulator is accomplished by hard wiring from internal control stations in the shuttle or station. A variety of shuttle and station manipulator operations are considered including servicing the Large Space Telescope; however, emphasis is placed on unloading modules from the shuttle and assembling the space station. Simulation studies on foveal stereoscopic viewing and manipulator supervisory computer control have been accomplished to investigate the feasibility of their use in the manipulator system. The basic manipulator system consists of a single 18.3 m long, 7 degree of freedom (DOF), electrically acutated main boom with an auxiliary 3 DOF electrically actuated, extendible 18.3 m maximum length, lighting, and viewing boom. A 3 DOF orientor assembly is located at the tip of the viewing boom to provide camera pan, tilt, and roll.

  9. Description of the manufacturing challenges in producing the high-temperature reusable surface insulation for the thermal protection system of the Space Shuttle

    Science.gov (United States)

    Forsberg, K.

    1979-01-01

    The paper describes the high-temperature reusable surface insulation for the thermal protection system of the Space Shuttle. This system protects the Space Shuttle Orbiter on reentry and it is an externally attached, rigidized, fibrous silica, machined into 15 x 20 cm tiles. The tiles constitute the High-Temperature Reusable Surface Insulation (HRSI) system, and are used on over 70 percent of the exterior surface where peak temperatures range from 400 to 1260 C. Carbon-carbon leading edges are used in areas where peak temperatures exceed 1650 C, and a Nomex felt flexible insulation system is used in regions below 400 C. Approximately 32,000 tiles are used in the HRSI system, and due to vehicle configuration and aerodynamic requirements no two tiles are alike.

  10. Space shuttle/food system. Volume 2, Appendix C: Food cooling techniques analysis. Appendix D: Package and stowage: Alternate concepts analysis

    Science.gov (United States)

    1974-01-01

    The relative penalties associated with various techniques for providing an onboard cold environment for storage of perishable food items, and for the development of packaging and vehicle stowage parameters were investigated in terms of the overall food system design analysis of space shuttle. The degrees of capability for maintaining both a 40 F to 45 F refrigerated temperature and a 0 F and 20 F frozen environment were assessed for the following cooling techniques: (1) phase change (heat sink) concept; (2) thermoelectric concept; (3) vapor cycle concept; and (4) expendable ammonia concept. The parameters considered in the analysis were weight, volume, and spacecraft power restrictions. Data were also produced for packaging and vehicle stowage parameters which are compatible with vehicle weight and volume specifications. Certain assumptions were made for food packaging sizes based on previously generated space shuttle menus. The results of the study are shown, along with the range of meal choices considered.

  11. The use of random decrement technique for identification of structural modes of vibration. [tested on a generalized payload and the space shuttle model

    Science.gov (United States)

    Ibrahim, S. R.

    1977-01-01

    An algorithm is developed to obtain the free responses of a structure from its random responses due to some unknown or known random input or inputs, using the random-decrement technique without changing time correlation between signals. The algorithm is tested using random responses from a 'generalized payload' model and from the 'Space Shuttle' model. The resulting free responses are then used to identify the modal characteristics of the two systems.

  12. Annual report to the NASA Administrator by the Aerospace Safety Advisory Panel. Part 2: Space shuttle program. Section 1: Observations and conclusions

    Science.gov (United States)

    1975-01-01

    The NASA and contractor management systems, including policies, practices, and procedures for the development of critical systems, subsystems and integration of the program elements, were investigated. The technical development status of critical systems, subsystems, and interfaces is presented. Space shuttle elements were qualified as to potential risks and hazards. The elements included the orbiter, external tanks, main engine, solid rocket boosters, and the ground support facilities.

  13. Report to the NASA Administrator by the Aerospace Safety Advisory Panel on the Space Shuttle Program. Part 1: Observations and Conclusions

    Science.gov (United States)

    1976-01-01

    Each system was chosen on the basis of its importance with respect to crew safety and mission success. An overview of the systems management is presented. The space shuttle main engine, orbiter thermal protection system, avionics, external tanks and solid rocket boosters were examined. The ground test and ground support equipment programs were studied. Program management was found to have an adequate understanding of the significant ground and flight risks involved.

  14. Estimation of the Unsteady Aerodynamic Load on Space Shuttle External Tank Protuberances from a Component Wind Tunnel Test

    Science.gov (United States)

    Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.

    2008-01-01

    At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.

  15. Stretching the Shuttle

    Science.gov (United States)

    Furniss, Tim

    1992-05-01

    A review is presented of the modifications incorporated in the Shuttle Columbia to extend its duration and capabilities in preparation for this extended-duration orbiter (EDO) to fly missions of up to 16 days. Attention is given to the evolution of the program that has changed the Shuttle from a space truck on nominal seven-day sorties to a versatile vehicle that can perform as a space laboratory. Consideration is given to the provision of more electrical power and life support supplies and equipment, the CRYO wafer pallet, advanced general-purpose computers, and an improved radar-altimeter.

  16. Assessment of analytical and experimental techniques utilized in conducting plume technology tests 575 and 593. [exhaust flow simulation (wind tunnel tests) of scale model Space Shuttle Orbiter

    Science.gov (United States)

    Baker, L. R.; Sulyma, P. R.; Tevepaugh, J. A.; Penny, M. M.

    1976-01-01

    Since exhaust plumes affect vehicle base environment (pressure and heat loads) and the orbiter vehicle aerodynamic control surface effectiveness, an intensive program involving detailed analytical and experimental investigations of the exhaust plume/vehicle interaction was undertaken as a pertinent part of the overall space shuttle development program. The program, called the Plume Technology program, has as its objective the determination of the criteria for simulating rocket engine (in particular, space shuttle propulsion system) plume-induced aerodynamic effects in a wind tunnel environment. The comprehensive experimental program was conducted using test facilities at NASA's Marshall Space Flight Center and Ames Research Center. A post-test examination of some of the experimental results obtained from NASA-MSFC's 14 x 14-inch trisonic wind tunnel is presented. A description is given of the test facility, simulant gas supply system, nozzle hardware, test procedure and test matrix. Analysis of exhaust plume flow fields and comparison of analytical and experimental exhaust plume data are presented.

  17. Performance estimates for space shuttle vehicles using a hydrogen or a methane fueled turboramjet powered first stage

    Science.gov (United States)

    Knip, G., Jr.; Eisenberg, J. D.

    1972-01-01

    Two- and three-stage (second stage expendable) shuttle vehicles, both having a hydrogen-fueled, turboramjet-powered first stage, are compared with a two-stage, VTOHL, all-rocket shuttle in terms of payload fraction, inert weight, development cost, operating cost, and total cost. All of the vehicles place 22,680 kilograms of payload into a 500-kilometer orbit. The upper stage(s) uses hydrogen-oxygen rockets. The effect on payload fraction and vehicle inert weight of methane and methane-FLOX as a fuel-propellant combination for the three-stage vehicle is indicated. Compared with a rocket first stage for a two-stage shuttle, an airbreathing first stage results in a higher payload fraction and a lower operating cost, but a higher total cost. The effect on cost of program size and first-stage flyback is indicated. The addition of an expendable rocket second stage (three-stage vehicle) improves the payload fraction but is unattractive economically.

  18. Mobile Christian - shuttle flight

    Science.gov (United States)

    2009-01-01

    Erin Whittle, 14, (seated) and Brianna Johnson, 14, look on as Louis Stork, 13, attempts a simulated landing of a space shuttle at StenniSphere. The young people were part of a group from Mobile Christian School in Mobile, Ala., that visited StenniSphere on April 21.

  19. Space shuttle/food system study. Volume 2, Appendix A: Active heating system-screening analysis. Appendix B: Reconstituted food heating techniques analysis

    Science.gov (United States)

    1974-01-01

    Technical data are presented which were used to evaluate active heating methods to be incorporated into the space shuttle food system design, and also to evaluate the relative merits and penalties associated with various approaches to the heating of rehydrated food during space flight. Equipment heating candidates were subject to a preliminary screening performed by a selection rationale process which considered the following parameters; (1) gravitational effect; (2) safety; (3) operability; (4) system compatibility; (5) serviceability; (6) crew acceptability; (7) crew time; (8) development risk; and (9) operating cost. A hot air oven, electrically heated food tray, and microwave oven were selected for further consideration and analysis. Passive, semi-active, and active food preparation approaches were also studied in an effort to determine the optimum method for heating rehydrated food. Potential complexity, cost, vehicle impact penalties, and palatability were considered in the analysis. A summary of the study results is provided along with cost estimates for each of the potential sytems

  20. Nitrile/Buna N Material Failure Assessment for an O-Ring used on the Gaseous Hydrogen Flow Control Valve (FCV) of the Space Shuttle Main Engine

    Science.gov (United States)

    Wingard, Doug

    2006-01-01

    After the rollout of Space Shuttle Discovery in April 2005 in preparation for return-to-flight, there was a failure of the Orbiter (OV-103) helium signature leak test in the gaseous hydrogen (GH2) system. Leakage was attributed to the Flow Control Valve (FCV) in Main Engine 3. The FCV determined to be the source of the leak for OV-103 is designated as LV-58. The nitrile/Buna N rubber O-ring seal was removed from LV-58, and failure analysis indicated radial cracks providing leak paths in one quadrant. Cracks were eventually found in 6 of 9 FCV O-rings among the three Shuttle Orbiters, though none were as severe as those for LV-58, OV-103. Testing by EM10 at MSFC on all 9 FCV O- rings included: laser dimensional, Shore A hardness and properties from a dynamic mechanical analyzer (DMA) and an Instron tensile machine. The following test data was obtained on the cracked quadrant of the LV-58, OV-103 O-ring: (1) the estimated compression set was only 9.5%, compared to none for the rest of the O-ring; (2) Shore A hardness for the O.D. was higher by almost 4 durometer points than for the rest of the O-ring; and (3) DMA data showed that the storage/elastic modulus E was almost 25% lower than for the rest of the O-ring. Of the 8 FCV O-rings tested on an Instron, 4 yielded tensile strengths that were below the MIL spec requirement of 1350 psi-a likely influence of rubber cracking. Comparisons were made between values of modulus determined by DNA (elastic) and Instron (Young s). Each nitrile/Buna N O-ring used in the FCV conforms to the MIL-P-25732C specification. A number of such O-rings taken from shelf storage at MSFC and Kennedy Space Center (KSC) were used to generate a reference curve of DMA glass transition temperature (Tg) vs. shelf storage time ranging from 8 to 26 years. A similar reference curve of TGA onset temperature (of rubber weight loss) vs. shelf storage time was also generated. The DMA and TGA data for the used FCV O-rings were compared to the reference

  1. Shuttle requests

    CERN Multimedia

    2007-01-01

    Please note that starting from 1 March 2007, the shuttle requests: for official visits or bidders' conferences on the CERN site; towards/from the airport or central Geneva; for long distances, shall be made via Fm.Support@cern.ch or by calling 77777. The radio taxi will still be reachable at 76969. TS/FM Group

  2. Thermal math model analysis of FRSI test article subjected to cold soak and entry environments. [Flexible Reuseable Surface Insulation in Space Shuttle Orbiter

    Science.gov (United States)

    Gallegos, J. J.

    1978-01-01

    A multi-objective test program was conducted at the NASA/JSC Radiant Heat Test Facility in which an aluminum skin/stringer test panel insulated with FRSI (Flexible Reusable Surface Insulation) was subjected to 24 simulated Space Shuttle Orbiter ascent/entry heating cycles with a cold soak in between in the 10th and 20th cycles. A two-dimensional thermal math model was developed and utilized to predict the thermal performance of the FRSI. Results are presented which indicate that the modeling techniques and property values have been proven adequate in predicting peak structure temperatures and entry thermal responses from both an ambient and cold soak condition of an FRSI covered aluminum structure.

  3. Replacement of corrosion protection chromate primers and paints used in cryogenic applications on the Space Shuttle with wire arc sprayed aluminum coatings

    Science.gov (United States)

    Daniel, R. L.; Sanders, H. L.; Zimmerman, F. R.

    1995-01-01

    With the advent of new environmental laws restricting volatile organic compounds and hexavalent chrome emissions, 'environmentally safe' thermal spray coatings are being developed to replace the traditional corrosion protection chromate primers. A wire arc sprayed aluminum coating is being developed for corrosion protection of low pressure liquid hydrogen carrying ducts on the Space Shuttle Main Engine. Currently, this hardware utilizes a chromate primer to provide protection against corrosion pitting and stress corrosion cracking induced by the cryogenic operating environment. The wire are sprayed aluminum coating has been found to have good potential to provide corrosion protection for flight hardware in cryogenic applications. The coating development, adhesion test, corrosion test and cryogenic flexibility test results will be presented.

  4. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) using Synthetic Aperture Focusing Techniques (SAFT}

    Science.gov (United States)

    Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.

    2005-01-01

    The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  5. Microwave and Millimeter Wave Imaging of the Space Shuttle External Fuel Tank Spray on Foam Insulation (SOFI) Using Synthetic Aperture Focusing Techniques (SAFT)

    Science.gov (United States)

    Case, J. T.; Robbins, J.; Kharkovsky, S.; Hepburn, F.; Zoughi, R.

    2006-03-01

    The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.

  6. Shuttle SBUV (SSBUV) Solar Spectral Irradiance V008

    Data.gov (United States)

    National Aeronautics and Space Administration — The Shuttle Solar Backscatter Ultraviolet (SSBUV) level-2 irradiance data are available for eight space shuttle missions flown between 1989 and 1996. SSBUV, a...

  7. Space Shuttle orbit determination using empirical force modeling of attitude maneuvers for the German MOMS-02/D2 mission

    Science.gov (United States)

    Vonbraun, C.; Reigber, Christoph

    1994-01-01

    In the spring of 1993, the MOMS-02 (modular Optoelectronic Multispectral Scanner) camera, as part of the second German Spacelab mission aboard STS-55, successfully took digital threefold stereo images of the surface of the Earth. While the mission is experimental in nature, its primary goals are to produce high quality maps and three-dimensional digital terrain models of the Earth's surface. Considerable improvement in the quality of the terrain model can be attained if information about the position and attitude of the camera is included during the adjustment of the image data. One of the primary sources of error in the Shuttle's position is due to the significant attitude maneuvers conducted during the course of the mission. Various arcs, using actual Tracking and Data Relay Satellite (TDRSS) Doppler data of STS-55, were processed to determine how effectively empirical force modeling could be used to solve for the radial, transverse, and normal components of the orbit perturbations caused by these routine maneuvers. Results are presented in terms of overlap-orbit differences in the three components. Comparisons of these differences, before and after the maneuvers are estimated, show that the quality of an orbit can be greatly enhanced with this technique, even if several maneuvers are present. Finally, a discussion is made of some of the difficulties encountered with this approach, and some ideas for future studies are presented.

  8. The Space Shuttle Program Pre-Flight Meteoroid and Orbital Debris Risk/Damage Predictions and Post-Flight Damage Assessments

    Science.gov (United States)

    Levin, George M.; Christiansen, Eric L.

    1997-01-01

    The pre-flight predictions and postflight assessments carried out in relation to a series of Space Shuttle missions are reviewed, and data are presented for the meteoroid and orbital debris damage observed on the Hubble Space Telescope during the 1994 Hubble repair mission. Pre-flight collision risk analyses are carried out prior to each mission, and in the case of an unacceptable risk, the mission profile is altered until the risk is considered to be acceptable. The NASA's BUMPER code is used to compute the probability of damage from debris and meteoroid particle impacts based on the Poisson statistical model for random events. The penetration probability calculation requires information concerning the geometry of the critical systems, the penetration resistance and mission profile parameters. Following each flight, the orbiter is inspected for meteoroid and space debris damage. The emphasis is on areas such as the radiator panels, the windows and the reinforced carbon-carbon structures on the leading wing edges and on the nose cap. The contents of damage craters are analyzed using a scanning electron microscope to determine the nature and origin of the impactor. Hypervelocity impact tests are often performed to simulate the observed damage and to estimate the nature of the damaging particles. The number and type of damage observed provides information concerning the orbital debris environment.

  9. Pressure distributions obtained on a 0.04-scale and 0.02-scale model of the Space Shuttle Orbiter's forward fuselage in the Langley 20-inch Mach 6 air tunnel

    Science.gov (United States)

    Bradley, P. F.; Siemers, P. M., III; Flanagan, P. F.; Henry, M. W.

    1983-01-01

    Results from pressure distribution tests on 0.04-scale and 0.02-scale models of the forward fuselage of the Space Shuttle Orbier are presented without analysis. The tests were completed in the Langley 20-Inch Mach 6 Tunnel. The 0.04-scale model was tested at angles of attack from 0 to 35 and angles of sideslip from 0 to -4. The 0.02-scale model was tested at angles of attack from -10 to 45 and angles of sideslip from 0 to -4. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel to models were also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation had provided a means for comparisons between reentry flight pressure data and wind-tunnel data.

  10. CERN Shuttle

    CERN Document Server

    General Infrastructure Services Department

    2011-01-01

    As of Monday 21 February, a new schedule will come into effect for the Airport Shuttle (circuit No. 4) at the end of the afternoon: Last departure at 7:00 pm from Main Buildig, (Bldg. 500) to Airport (instead of 5:10 p.m.); Last departure from Airport to CERN, Main Buildig, (Bldg. 500), at 7:30 p.m. (instead of 5:40 p.m.). Group GS-IS

  11. Structural Verification of the Space Shuttle's External Tank Super LightWeight Design: A Lesson in Innovation

    Science.gov (United States)

    Otte, Neil

    1997-01-01

    The Super LightWeight Tank (SLWT) team was tasked with a daunting challenge from the outset: boost the payload capability of the Shuttle System by safely removing 7500 lbs. from the existing 65,400 lb. External Tank (ET). Tools they had to work with included a promising new Aluminum Lithium alloy, the concept of a more efficient structural configuration for the Liquid Hydrogen (LH2) tank, and a highly successful, mature Light Weight Tank (LWT) program. The 44 month schedule which the SLWT team was given for the task was ambitious by any measure. During this time the team had to not only design, build, and verify the new tank, but they also had to move a material from the early stages of development to maturity. The aluminum lithium alloy showed great promise, with an approximately 29% increase in yield strength, 15% increase in ultimate strength, 5 deg/O increase in modulus and 5 deg/O decrease in density when compared to the current 2219 alloy. But processes had to be developed and brought under control, manufacturing techniques perfected, properties characterized, and design allowable generated. Because of the schedule constraint, this material development activity had to occur in parallel with design and manufacturing. Initial design was performed using design allowable believed to be achievable with the Aluminum Lithium alloy system, but based on limited test data. Preliminary structural development tests were performed with material still in the process of iteration. This parallel path approach posed obvious challenges and risks, but also allowed a unique opportunity for interaction between the structures and materials disciplines in the formulation of the material.

  12. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 5: Analysis of GSFC Earth Observation Satellite (EOS) system mission model using BRAVO techniques

    Science.gov (United States)

    1975-01-01

    Cost comparisons were made between three modes of operation (expend, ground refurbish, and space resupply) for the Earth Observation System (EOS-B) to furnish data to NASA on alternative ways to use the shuttle/EOS. Results of the analysis are presented in tabular form.

  13. Use of DSC and DMA to Study Rubber Crystallization as a Possible Cause for a Tear in a Neoprene Glove Used in a Space Shuttle Pressurized Astronaut Suit

    Science.gov (United States)

    Wingard, Doug

    2009-01-01

    The Advanced Crew Escape Suit (ACES) is a pressurized suit normally worn by astronauts during launch and landing phases of Space Shuttle operations. In 2008, a large tear (0.5 -1 in. long, between the pinky and ring finger) in the ACES left-hand glove made of neoprene latex rubber was found during training for Shuttle flight STS-124. An investigation to help determine the cause(s) of the glove tear was headed by the NASA Johnson Space Center (JSC) in Houston, Texas. Efforts at JSC to reproduce the actual glove tear pattern by cutting/tearing or rupturing were unsuccessful. Chemical and material property data from JSC such as GC-MS, FTIR, DSC and TGA mostly showed little differences between samples from the torn and control gloves. One possible cause for the glove tear could be a wedding ring/band worn by a male astronaut. Even with a smooth edge, such a ring could scratch the material and initiate the tear observed in the left-hand glove. A decision was later made by JSC to not allow the wearing of such a ring during training or actual flight. Another possible cause for the ACES glove tear is crystallinity induced by strain in the neoprene rubber over a long period of time and use. Neoprene is one several elastomeric materials known to be susceptible to crystallization, and such a process is accelerated with exposure of the material to cold temperatures plus strain. When the temperature is lowered below room temperature, researchers have shown that neoprene crystallization may be maintained at temperatures as high as 45-50 F, with a maximum crystallization rate near 20-25 F (1). A convenient conditioning temperature for inducing neoprene crystallization is a typical freezer that is held near 0 F. For work at the NASA Marshall Space Flight Center (MSFC), samples were cut from several areas/locations (pinky/ring finger crotch, index finger and palm) on each of two pairs of unstrained ACES gloves for DSC and DMA thermal analysis testing. The samples were conditioned

  14. Shuttle Lesson Learned - Toxicology

    Science.gov (United States)

    James, John T.

    2010-01-01

    This is a script for a video about toxicology and the space shuttle. The first segment is deals with dust in the space vehicle. The next segment will be about archival samples. Then we'll look at real time on-board analyzers that give us a lot of capability in terms of monitoring for combustion products and the ability to monitor volatile organics on the station. Finally we will look at other issues that are about setting limits and dealing with ground based lessons that pertain to toxicology.

  15. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, L.E. [Chronic Disease Prevention and Control Research Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, ST-924 Houston, TX (United States); Cucinotta, F.A. [Space and Life Sciences Directorate, Lyndon B. Johnson Space Center, National Aeronautics and Space Administration, Houston, TX (United States)

    1999-12-06

    Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/{mu}m), 1 MeV {alpha}-particles (LET=100 keV/{mu}m), and 600 MeV iron particles (LET=180 keV/{mu}m) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 {mu}m{sup 2}. Lifetime risk per proton was 2.68x10{sup -2}% (90% confidence limit, 0.79x10{sup -3}%-0.514x10{sup -2}%). For {alpha}-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence

  16. Monte Carlo mixture model of lifetime cancer incidence risk from radiation exposure on shuttle and international space station

    Science.gov (United States)

    Peterson, L. E.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)

    1999-01-01

    Estimating uncertainty in lifetime cancer risk for human exposure to space radiation is a unique challenge. Conventional risk assessment with low-linear-energy-transfer (LET)-based risk from Japanese atomic bomb survivor studies may be inappropriate for relativistic protons and nuclei in space due to track structure effects. This paper develops a Monte Carlo mixture model (MCMM) for transferring additive, National Institutes of Health multiplicative, and multiplicative excess cancer incidence risks based on Japanese atomic bomb survivor data to determine excess incidence risk for various US astronaut exposure profiles. The MCMM serves as an anchor point for future risk projection methods involving biophysical models of DNA damage from space radiation. Lifetime incidence risks of radiation-induced cancer for the MCMM based on low-LET Japanese data for nonleukemia (all cancers except leukemia) were 2.77 (90% confidence limit, 0.75-11.34) for males exposed to 1 Sv at age 45 and 2.20 (90% confidence limit, 0.59-10.12) for males exposed at age 55. For females, mixture model risks for nonleukemia exposed separately to 1 Sv at ages of 45 and 55 were 2.98 (90% confidence limit, 0.90-11.70) and 2.44 (90% confidence limit, 0.70-10.30), respectively. Risks for high-LET 200 MeV protons (LET=0.45 keV/micrometer), 1 MeV alpha-particles (LET=100 keV/micrometer), and 600 MeV iron particles (LET=180 keV/micrometer) were scored on a per particle basis by determining the particle fluence required for an average of one particle per cell nucleus of area 100 micrometer(2). Lifetime risk per proton was 2.68x10(-2)% (90% confidence limit, 0.79x10(-3)%-0. 514x10(-2)%). For alpha-particles, lifetime risk was 14.2% (90% confidence limit, 2.5%-31.2%). Conversely, lifetime risk per iron particle was 23.7% (90% confidence limit, 4.5%-53.0%). Uncertainty in the DDREF for high-LET particles may be less than that for low-LET radiation because typically there is very little dose-rate dependence

  17. Catalog of Space Shuttle Earth Observations Handheld Photography. Space Transportation System 39 (STS-39) Mission Dates: April 28 Through May 6, 1991

    Science.gov (United States)

    1991-10-01

    vii 1. INTRODUCTION ................................................. 1-1 1.1 EARTH OBSERVATIONS PHOTOGRAPHY .................. 1-1 1.2...Space Administration nmi nautical mile OV orbital vehicle p.m. post meridiem STS Space Transportation System vii 1. INTRODUCTION 1.1 EARTH...00000-- M w qvC ) D( - - - - -- - , .2 -- 2 ---(-C-mC3C 0 LolC,0 0d Lad O1dlO d 0 cmliCh uj C C~~D C C mCDm ( ( 4OC dlddlmdlCDl C>O CD r4 r4 " 0 4

  18. Shuttle requests

    CERN Multimedia

    2007-01-01

    Please note that, to improve the service we provide, a new telephone number - 72500 - has been set up for all shuttle requests concerning: journeys within the CERN site, i.e. official visits or bidders' conferences; journeys to or from the airport or city centre; long-distance journeys. However, it will still be possible to submit requests in writing to Fm.Support@cern. The radio taxi can also still be reached on 76969. The TS/FM group would also like to inform you that details of all light logistics services (transport of persons, distribution and collection of parcels up to 1 tonne, distribution and collection of mail) can be found on the group's website: http://ts-dep.web.cern.ch/ts-dep/groups/fm/fm.htm TS/FM Group 160239

  19. Computational Fluid Dynamics (CFD) Analyses in Support of Space Shuttle Main Engine (SSME) Heat Exchanger (HX) Vane Cracking Investigation

    Science.gov (United States)

    Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.

    1993-01-01

    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.

  20. Analysis of SRM model nozzle calibration test data in support of IA12B, IA12C and IA36 space shuttle launch vehicle aerodynamics tests

    Science.gov (United States)

    Baker, L. R., Jr.; Tevepaugh, J. A.; Penny, M. M.

    1973-01-01

    Variations of nozzle performance characteristics of the model nozzles used in the Space Shuttle IA12B, IA12C, IA36 power-on launch vehicle test series are shown by comparison between experimental and analytical data. The experimental data are nozzle wall pressure distributions and schlieren photographs of the exhaust plume shapes. The exhaust plume shapes were simulated experimentally with cold flow while the analytical data were generated using a method-of-characteristics solution. Exhaust plume boundaries, boundary shockwave locations and nozzle wall pressure measurements calculated analytically agree favorably with the experimental data from the IA12C and IA36 test series. For the IA12B test series condensation was suspected in the exhaust plumes at the higher pressure ratios required to simulate the prototype plume shapes. Nozzle calibration tests for the series were conducted at pressure ratios where condensation either did not occur or if present did not produce a noticeable effect on the plume shapes. However, at the pressure ratios required in the power-on launch vehicle tests condensation probably occurs and could significantly affect the exhaust plume shapes.

  1. The simulation of the alternate turbopump development high pressure oxygen and fuel turbopumps for the space shuttle main engine using the Shaberth computer program

    Science.gov (United States)

    Mcdonald, Gary H.

    1988-01-01

    The Space Shuttle Main Engine (SSME) is basically comprised of a combustion chamber and nozzle, high and low pressure oxygen turbopumps and high and low pressure fuel turbopumps. In the current configuration, the high pressure fuel (HPTFP) and high pressure oxygen turbopumps (HPOTP) have experienced a history of ball bearing wear. The wear problem can be attributed to numerous factors including the hydrodynamic axial and radial loads caused by the flow of liquid oxygen and liquid hydrogen through the turbopump impellers and turbine. Also, friction effects between the rolling elements, races, and cage can create thermally induced bearing geometry changes. To alleviate some of the current configuration problems, an alternate turbopump development (ATD) was proposed. However, the ATD HPOTP and HPTFP are constrained to operate interchangeably with the current turbopumps, thus, the operation conditions must be similar. The ATD configuration features a major change in bearings used to support the integrated shaft, impeller, and turbine system. A single ball and single roller will replace the pump-end and turbine and duplex ball bearings. The Shaft-Bearing-Thermal (SHABERTH) computer code was used to model the ATD HPOTP and ATD HPFTP configurations. A two bearing model was used to simulate the HPOTP and HPFTP bearings and shaft geometry. From SHABERTH, a comparison of bearing reaction loads, frictional heat generation rates, and Hertz contact stresses will be attempted with analysis at the 109 percent and 65 percent power levels.

  2. Use of Several Thermal Analysis Techniques on a Hypalon Paint Coating for the Solid Rocket Booster (SRB) of the Space Shuttle

    Science.gov (United States)

    Wingard, Charles D.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    White Hypalon paint is brush-applied as a moisture barrier coating over cork surfaces on each of the two Space Shuttle SRBs. Fine cracks have been observed in the Hypalon coating three times historically on laboratory witness panels, but never on flight hardware. Samples of the cracked and standard ("good") Hypalon were removed from witness panel cork surfaces, and were tested in 1998 by Thermogravimetric Analysis (TGA), TMA and Differential Scanning Calorimetry (DSC) thermal analysis techniques. The TGA data showed that at 700C, where only paint pigment solids remain, the cracked material had about 9 weight percent more material remaining than the standard material, probably indicating incomplete mixing of the paint before it was brush-applied to produce the cracked material. Use of the TMA film/fiber technique showed that the average modulus (stiffness) vs. temperature was about 3 to 6 times higher for the cracked material than for the standard material. The TMA data also showed that an increase in coating thickness for the cracked Hypalon was not a factor in the anomaly.

  3. Capillary flow in porous media under highly reduced gravity investigated through high altitude parabolic aircraft flights and NASA space shuttle flight

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Saskatoon, SK (Canada); Wassmuth, F. [Alberta Research Council, Edmonton, AB (Canada); Stasiuk, E.N. [Calgary Univ., AB (Canada); Hart, D. [Centre for Cold Ocean Resources Engineering, St. John' s, NF (Canada); Legros, J.C. [Brussels Univ., Brussels (Belgium); Smirnov, N.N. [Moscow State Univ., Moscow (Russian Federation)

    2003-07-01

    Several enhanced oil recovery methods are being developed to economically recover waterflooded residual oil. The challenge is comparable to understanding the mechanisms involved when liquid contaminants in soil are filtered and mixed with groundwater and then transported by convective flows. Multiphase flow and trapping of fluids in porous media are greatly affected by wettability and capillary forces. However, fluid flow in porous media is also strongly governed by gravity effects. In this study, a series of high altitude aircraft parabolic flights were conducted in which capillary flow experiments were performed in porous media using different fluids. Three capillary flow experiments were conducted on a shuttle flight where gravity was not a factor. This paper presents a newly developed finite-difference numerical model for two-dimensional homogeneous fluid flow in a porous medium confined by a horizontal bottom, two vertical boundaries and a free surface. The model describes movement of fluid flow in response to applied pressure gradients. It also considers capillary flow caused by surface tension. The simulator can be used to predict the effect of changing properties such as gravitational acceleration, permeability, pore radii, surface tension, liquid viscosity and wettability. The study showed that interfacial phenomena in highly reduced gravity conditions can be applied to problems associated with fluid handling in various types of space vehicles. 12 refs., 12 figs.

  4. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    Science.gov (United States)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  5. Gently dipping normal faults identified with Space Shuttle radar topography data in central Sulawesi, Indonesia, and some implications for fault mechanics

    Science.gov (United States)

    Spencer, J.E.

    2011-01-01

    Space-shuttle radar topography data from central Sulawesi, Indonesia, reveal two corrugated, domal landforms, covering hundreds to thousands of square kilometers, that are bounded to the north by an abrupt transition to typical hilly to mountainous topography. These domal landforms are readily interpreted as metamorphic core complexes, an interpretation consistent with a single previous field study, and the abrupt northward transition in topographic style is interpreted as marking the trace of two extensional detachment faults that are active or were recently active. Fault dip, as determined by the slope of exhumed fault footwalls, ranges from 4?? to 18??. Application of critical-taper theory to fault dip and hanging-wall surface slope, and to similar data from several other active or recently active core complexes, suggests a theoretical limit of three degrees for detachment-fault dip. This result appears to conflict with the dearth of seismological evidence for slip on faults dipping less than ~. 30??. The convex-upward form of the gently dipping fault footwalls, however, allows for greater fault dip at depths of earthquake initiation and dominant energy release. Thus, there may be no conflict between seismological and mapping studies for this class of faults. ?? 2011 Elsevier B.V.

  6. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    Science.gov (United States)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  7. Development of Flow and Heat Transfer Models for the Carbon Fiber Rope in Nozzle Joints of the Space Shuttle Reusable Solid Rocket Motor

    Science.gov (United States)

    Wang, Q.; Ewing, M. E.; Mathias, E. C.; Heman, J.; Smith, C.; McCool, Alex (Technical Monitor)

    2001-01-01

    Methodologies have been developed for modeling both gas dynamics and heat transfer inside the carbon fiber rope (CFR) for applications in the space shuttle reusable solid rocket motor joints. Specifically, the CFR is modeled using an equivalent rectangular duct with a cross-section area, friction factor and heat transfer coefficient such that this duct has the same amount of mass flow rate, pressure drop, and heat transfer rate as the CFR. An equation for the friction factor is derived based on the Darcy-Forschheimer law and the heat transfer coefficient is obtained from pipe flow correlations. The pressure, temperature and velocity of the gas inside the CFR are calculated using the one-dimensional Navier-Stokes equations. Various subscale tests, both cold flow and hot flow, have been carried out to validate and refine this CFR model. In particular, the following three types of testing were used: (1) cold flow in a RSRM nozzle-to-case joint geometry, (2) cold flow in a RSRM nozzle joint No. 2 geometry, and (3) hot flow in a RSRM nozzle joint environment simulator. The predicted pressure and temperature history are compared with experimental measurements. The effects of various input parameters for the model are discussed in detail.

  8. Space shuttle/payload interface analysis. (Study 2.4) Volume 4: Business Risk and Value of Operations in Space (BRAVO). Part 2: User's manual

    Science.gov (United States)

    1974-01-01

    The BRAVO User's Manual is presented which describes the BRAVO methodology in terms of step-by-step procedures, so that it may be used as a tool for a team of analysts performing cost effectiveness analyses on potential future space applications. BRAVO requires a relatively general set of input information and a relatively small expenditure of resources. For Vol. 1, see N74-12493; for Vol. 2, see N74-14530.

  9. Diary of an astronaut: examination of the remains of the late Israeli astronaut Colonel Ilan Ramon's Crew Notebook recovered after the loss of NASA's space shuttle Columbia.

    Science.gov (United States)

    Brown, Sharon; Sin-David, Laser

    2007-05-01

    Two months after the fatal re-entering into the Earth's atmosphere of Columbia flight STS-107, the remains of Israeli astronaut Colonel Ilan Ramon's Crew Notebook were found strewn in a field in San Augustine County, TX. The random pile of papers was found to have survived the calamity of the Shuttle's disintegration remarkably well. Most of the papers recovered were torn and/or washed out to varying degrees but only mildly charred around the edges. The sheets of paper could be categorized into four groups: Group I: eight sides of paper written while in space in black ink and in pencil--Ramon's personal diary; the writing on these eight sides of paper survived well and is only missing where the pages were torn. Small fragments found in the field were physically matched to holes in the pages thus locating their original positions in the text. Group II: six sides of technical preparation notes written by Ramon before the mission. The writing on these pages was washed out entirely, but much of it was visualized using infrared luminescence. Group III: eight sides of personal notes prepared by Ramon before the mission written in blue ink. The writing on these pages was barely visible to the naked eye and not visualized by infrared luminescence, but was made largely legible by digital enhancement imaging. Group IV: a few sides of printed technical information. These pages were mostly intact and were not examined at length as they contained standard printed material. After completion of examinations at the Questioned Document Laboratory of the Israel Police, the diary was transferred to the Paper Conservation Department of the Israel Museum for preservation and strengthening treatments.

  10. Model Verification and Validation Concepts for a Probabilistic Fracture Assessment Model to Predict Cracking of Knife Edge Seals in the Space Shuttle Main Engine High Pressure Oxidizer

    Science.gov (United States)

    Pai, Shantaram S.; Riha, David S.

    2013-01-01

    Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture

  11. Advantages of a round-body shuttle

    Science.gov (United States)

    Arrington, James P.; Wells, William L.; Lepsch, Roger A., Jr.; Huffman, Jarrett K.; Macconochie, Ian O.

    1989-01-01

    A cylindrical fuselage cross-section SSTOV representing the design generation beyond the current NASA Space Shuttle has been projected capable of reducing the cost of payload delivery to orbit while increasing mission scope. Due to its intrinsically greater wetted-area and structural weight efficiencies, this cylindrical vehicle would carry 40 percent greater payload than the Space Shuttle system despite a 20-percent lower gross liftoff weight. A LOX/hydrocarbon fuel combination would be employed during the early portion of flight, thereupon shifting to LOX/hydrogen. The cylindrical SSTOV would have eight times the volume of the Space Shuttle Orbiter.

  12. 14 CFR 1214.802 - Relationship to Shuttle policy.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Relationship to Shuttle policy. 1214.802 Section 1214.802 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT Reimbursement for Spacelab Services § 1214.802 Relationship to Shuttle policy. Except as specifically noted, the...

  13. Shot noise of a quantum shuttle

    DEFF Research Database (Denmark)

    Novotny, Tomas; Donarini, Andrea; Flindt, Christian

    2004-01-01

    We formulate a theory for shot noise in quantum nanoelectromechanical systems. As a specific example, the theory is applied to a quantum shuttle, and the zero-frequency noise, measured by the Fano factor F, is computed. F reaches very low values (Fsimilar or equal to10(-2)) in the shuttling regime...... even in the quantum limit, confirming that shuttling is universally a low noise phenomenon. In approaching the semiclassical limit, the Fano factor shows a giant enhancement (Fsimilar or equal to10(2)) at the shuttling threshold, consistent with predictions based on phase-space representations...

  14. Lee-side flow phenomena on space shuttle configurations at hypersonic speeds. Part 2: Studies of lee-surface heating at hypersonic Mach numbers

    Science.gov (United States)

    Hefner, J. N.; Whitehead, A. H., Jr.

    1972-01-01

    Lee surface heating data, obtained at relatively low unit Reynolds numbers at Mach 6 and 19, are discussed with emphasis on the peak heating behavior. Surface pressures measured along the lee meridian of the delta-wing orbiter are presented and analyzed in conjunction with the heating. The effects of nose bluntness and lee surface geometry on the heating are discussed and general guidelines are presented for modifying the lee surface geometry of the shuttle to reduce vortex-induced heating. The application of the wind tunnel results to realistic shuttle flight conditions is discussed.

  15. Optimization of an RSD x-ray backscatter system for detecting defects in the space shuttle external tank thermal foam insulation

    Science.gov (United States)

    Shedlock, Daniel; Addicott, Benjamin; Dugan, Edward T.; Jacobs, Alan M.

    2005-09-01

    A new Compton x-ray backscatter imaging technique, backscatter radiography by selective detection (RSD), has been used for inspection of the spray-on-foam-insulation (SOFI) on the space shuttle external tank. RSD employs detection of selected backscatter field components, by using specially designed detectors with movable detector collimators, to achieve high image contrast. The optimization study utilized test panels with simulated and natural defects in the spray-on foam insulation. Some of the test panels include structural features, stiffener-stringers and connection flanges, which were bolted to an aluminum base plate representative of the external tank. The SOFI was then layed down over the base plate and structural components with thicknesses varying from a few tens of mm up to a few hundred mm. The simulated defects range in cross-sectional size from 6 × 6 mm to 50 × 50 mm. Natural defects including roll-over voids and knit-line delaminations have a wide range of sizes, geometries, and orientations with a minimum critical cross-sectional size of 6 mm. Imaging registration is currently obtained at 0.05 seconds per 2 mm pixel, or about 19 minutes per 0.093 m2(1 ft2). The current system is being evaluated to enhance the detection of natural defects of a minimal critical size. Monte Carlo (MC) simulations with MCNP5 are being used to determine the history and corresponding spectrum of the detected photons that are responsible for improving defect image contrast. The simulation results are used in combination with experimental data to select optimal detector configurations. Detector configurations are sensitive not only to the type of defect being detected, but also the defect's depth in SOFI, distance from aluminum substrate, and defect orientation. Additional parameters including detector type, detection mode, and x-ray illumination beam size were also evaluated. Both NaI and plastic (BC404) scintillation detectors in pulse and integral mode were used to

  16. Shuttle orbiter with telescoping main propulsion unit and payload

    Science.gov (United States)

    MacConochie, Ian O.

    1993-03-01

    An improved Space Shuttle with variable internal volume is provided. The Space Shuttle Orbiter includes a telescoping main propulsion unit. This main propulsion unit contains the main rocket engines and fuel tanks and telescopes into the Space Shuttle. A variable cavity is located between this unit and the crew compartment. Accordingly, the positioning of the telescoping main propulsion unit determines the volume of the variable cavity. Thus, the volume of the variable length of the entire Space Shuttle may be increased or decreased to achieve desired configurations for optimal storage. In one embodiment of the invention, the payload also telescopes within the variable cavity.

  17. Microbiology of aquatic environments: Characterizations of the microbiotas of municipal water supplies, the International Space Station Internal Active Thermal Control System's heat transport fluid, and US Space Shuttle drinking water

    Science.gov (United States)

    Bernardini, James Nicholas, III

    An understanding of the microbiota within life support systems is essential for the prolonged presence of humans in space. This is because microbes may cause disease or induce biofouling and/or corrosion within spacecraft water systems. It is imperative that we develop effective high-throughput technologies for characterizing microbial populations that can eventually be used in the space environment. This dissertation describes testing and development of such methodologies, targeting both bacteria and viruses in water, and examines the bacterial and viral diversity within two spacecraft life support systems. The bacterial community of the International Space Station Internal Active Thermal Control System (IATCS) was examined using conventional culture-based and advanced molecular techniques including adenosine triphosphate (ATP) and Limulus Amebocyte Lysate (LAL) assays, direct microscopic examination, and analyses of 16S rRNA gene libraries from the community metagenome. The cultivable heterotrophs of the IATCS fluids ranged from below detection limit to 1.1x10 5/100 ml, and viable cells, measured by ATP, ranged from 1.4x10 3/100 ml to 7.7x105/100 ml. DNA extraction, cloning, sequencing, and bioinformatic analysis of the clones from 16S RNA gene libraries showed members of the firmicutes, alpha, beta, and gamma-proteobacteria to be present in the fluids. This persistent microbial bioburden and the presence of probable metal reducers, biofilm formers, and opportunistic pathogens illustrate the need for better characterization of bacterial communities present within spacecraft fluids. A new methodology was developed for detection of viruses in water using microarrays. Samples were concentrated by lyophilization, resuspended and filtered (0.22microm). Viral nucleic acids were then extracted, amplified, fluorescently labeled and hybridized onto a custom microarray with probes for ˜1000 known viruses. Numerous virus signatures were observed. Human Adenovirus C and

  18. Close-up of LSRA Shuttle main gear

    Science.gov (United States)

    1993-01-01

    A space shuttle landing gear system is clearly seen between the two main landing gear components on this NASA CV-990, modified as a Landing Systems Research Aircraft. The space shuttle landing gear test unit, operated by a high-pressure hydraulic system, allowed engineers to assess and document the performance of space shuttle main and nose landing gear systems, tires and wheel assemblies, plus braking and nose wheel steering performance. The series of 155 test missions for the space shuttle program, conducted at NASA's Dryden Flight Research Center, Edwards, California, provided extensive data about the life and endurance of the shuttle tire systems and helped raise the shuttle crosswind landing limits at Kennedy.

  19. Shuttle Entry Imaging Using Infrared Thermography

    Science.gov (United States)

    Horvath, Thomas; Berry, Scott; Alter, Stephen; Blanchard, Robert; Schwartz, Richard; Ross, Martin; Tack, Steve

    2007-01-01

    During the Columbia Accident Investigation, imaging teams supporting debris shedding analysis were hampered by poor entry image quality and the general lack of information on optical signatures associated with a nominal Shuttle entry. After the accident, recommendations were made to NASA management to develop and maintain a state-of-the-art imagery database for Shuttle engineering performance assessments and to improve entry imaging capability to support anomaly and contingency analysis during a mission. As a result, the Space Shuttle Program sponsored an observation campaign to qualitatively characterize a nominal Shuttle entry over the widest possible Mach number range. The initial objectives focused on an assessment of capability to identify/resolve debris liberated from the Shuttle during entry, characterization of potential anomalous events associated with RCS jet firings and unusual phenomenon associated with the plasma trail. The aeroheating technical community viewed the Space Shuttle Program sponsored activity as an opportunity to influence the observation objectives and incrementally demonstrate key elements of a quantitative spatially resolved temperature measurement capability over a series of flights. One long-term desire of the Shuttle engineering community is to calibrate boundary layer transition prediction methodologies that are presently part of the Shuttle damage assessment process using flight data provided by a controlled Shuttle flight experiment. Quantitative global imaging may offer a complementary method of data collection to more traditional methods such as surface thermocouples. This paper reviews the process used by the engineering community to influence data collection methods and analysis of global infrared images of the Shuttle obtained during hypersonic entry. Emphasis is placed upon airborne imaging assets sponsored by the Shuttle program during Return to Flight. Visual and IR entry imagery were obtained with available airborne

  20. Shuttle Radar Topography Mission (SRTM)

    Science.gov (United States)

    ,

    2009-01-01

    Under an agreement with the National Aeronautics and Space Administration (NASA) and the Department of Defense's National Geospatial-Intelligence Agency (NGA), the U.S. Geological Survey (USGS) is distributing elevation data from the Shuttle Radar Topography Mission (SRTM). The SRTM is a joint project of NASA and NGA to map the Earth's land surface in three dimensions at an unprecedented level of detail. As part of space shuttle Endeavour's flight during February 11-22, 2000, the SRTM successfully collected data over 80 percent of the Earth's land surface for most of the area between latitudes 60 degrees north and 56 degrees south. The SRTM hardware included the Spaceborne Imaging Radar-C (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) systems that had flown twice previously on other space shuttle missions. The SRTM data were collected with a technique known as interferometry that allows image data from dual radar antennas to be processed for the extraction of ground heights.

  1. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 1

    Science.gov (United States)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the findings and recommendations from the NESC assessment.

  2. Space Shuttle Program (SSP) Orbiter Main Propulsion System (MPS) Gaseous Hydrogen (GH2) Flow Control Valve (FCV) Poppet Eddy Current (EC) Inspection Probability of Detection (POD) Study. Volume 2; Appendices

    Science.gov (United States)

    Piascik, Robert S.; Prosser, William H.

    2011-01-01

    The Director of the NASA Engineering and Safety Center (NESC), requested an independent assessment of the anomalous gaseous hydrogen (GH2) flow incident on the Space Shuttle Program (SSP) Orbiter Vehicle (OV)-105 during the Space Transportation System (STS)-126 mission. The main propulsion system (MPS) engine #2 GH2 flow control valve (FCV) LV-57 transition from low towards high flow position without being commanded. Post-flight examination revealed that the FCV LV-57 poppet had experienced a fatigue failure that liberated a section of the poppet flange. The NESC assessment provided a peer review of the computational fluid dynamics (CFD), stress analysis, and impact testing. A probability of detection (POD) study was requested by the SSP Orbiter Project for the eddy current (EC) nondestructive evaluation (NDE) techniques that were developed to inspect the flight FCV poppets. This report contains the Appendices to the main report.

  3. Digital coding of Shuttle TV

    Science.gov (United States)

    Habibi, A.; Batson, B.

    1976-01-01

    Space Shuttle will be using a field-sequential color television system for the first few missions, but the present plans are to switch to a NTSC color TV system for future missions. The field-sequential color TV system uses a modified black and white camera, producing a TV signal with a digital bandwidth of about 60 Mbps. This article discusses the characteristics of the Shuttle TV systems and proposes a bandwidth-compression technique for the field-sequential color TV system that could operate at 13 Mbps to produce a high-fidelity signal. The proposed bandwidth-compression technique is based on a two-dimensional DPCM system that utilizes temporal, spectral, and spatial correlation inherent in the field-sequential color TV imagery. The proposed system requires about 60 watts and less than 200 integrated circuits.

  4. Results of an investigation of the space shuttle integrated vehicle aerodynamic heating characteristics obtained using the 0.0175-scale model 60-OTS in AEDC tunnel A during tests IH41 and IH41A

    Science.gov (United States)

    Cummings, J. W.; Dye, W. H.

    1977-01-01

    A thin skin thermocouple test was conducted to obtain heat-transfer data on the space shuttle integrated vehicle during the ascent phase of the flight profile. The test model was the 0.0175-scale thin skin thermocouple model (60-OTS) of the Rockwell International vehicle 5 configuration. The test was conducted at nominal Mach numbers of 2.5, 3.5, 4.5, and 5.5, and a free stream unit Reynolds number of 5 million per ft. Heat transfer data were obtained for angles of attack of 0, + or - 5, and 10 deg and yaw angles of 0, 3, and 6 deg. The integrated vehicle model was tested with the external tank configured with both a smooth ogive nose and an ogive nose with a spherical nose tip (nipple nose). The remainder of the test was conducted with the external tank installed alone in the tunnel.

  5. Triple balance test of the PRR baseline space shuttle configuration on a .004 scale model of the MCR 0074 orbiter configuration in the MSFC 14 x 14 inch Trisonic Wind Tunnel (TWT 570) IA31F(B), volume 1

    Science.gov (United States)

    Ramsey, P. E.; Davis, T. C.

    1974-01-01

    A wind tunnel force and moment test of the space shuttle launch vehicle was conducted. The wind tunnel model utilized a triple balance such that component aerodynamics of the orbiter, external tank, and solid rocket booster was obtained. The test was conducted at an angle of attack range from -10 deg to 10 deg, and angle of sideslip range from -10 deg to 10 deg, and a Mach number range from 0.6 to 4.96. Simulation parameters to be used in future launch vehicle wind tunnel tests were investigated. The following were included: (1) effect of orbiter -ET attach hardware; (2) model attachment (spacer) effects; (3) effects of grit on model leading surfaces; and (4) model misalignment effects. The effects of external tank nose shape was studied by investigating five different nose configurations. Plotted and tabulated data is reported.

  6. Evaluation and Improvement of Liquid Propellant Rocket Chugging Analysis Techniques. Part 1: A One-Dimensional Analysis of Low Frequency Combustion Instability in the Fuel Preburner of the Space Shuttle Main Engine. Final Report M.S. Thesis - Aug. 1986

    Science.gov (United States)

    Lim, Kair Chuan

    1986-01-01

    Low frequency combustion instability, known as chugging, is consistently experienced during shutdown in the fuel and oxidizer preburners of the Space Shuttle Main Engines. Such problems always occur during the helium purge of the residual oxidizer from the preburner manifolds during the shutdown sequence. Possible causes and triggering mechanisms are analyzed and details in modeling the fuel preburner chug are presented. A linearized chugging model, based on the foundation of previous models, capable of predicting the chug occurrence is discussed and the predicted results are presented and compared to experimental work performed by NASA. Sensitivity parameters such as chamber pressure, fuel and oxidizer temperatures, and the effective bulk modulus of the liquid oxidizer are considered in analyzing the fuel preburner chug. The computer program CHUGTEST is utilized to generate the stability boundary for each sensitivity study and the region for stable operation is identified.

  7. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 2

    Science.gov (United States)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.

  8. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 1

    Science.gov (United States)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.

  9. Identification and evaluation of educational uses and users for the STS. Educational planning for utilization of space shuttle ED-PLUSS

    Science.gov (United States)

    Engle, H. A.; Christensen, D. L.

    1974-01-01

    A planning and feasibility study to identify and document a methodology needed to incorporate educational programs into future missions and operations of the space transportation system was conducted. Six tasks were identified and accomplished during the study. The task statements are as follows: (1) potential user identification, (2) a review of space education programs, (3) development of methodology for user involvement, (4) methods to encourage user awareness, (5) compilation of follow-on ideas, and (6) response to NASA questions. Specific recommendations for improving the educational coverage of space activities are provided.

  10. Astronaut Linda Godwin uses Shuttle Amateur Radio Experiment

    Science.gov (United States)

    1994-01-01

    Onboard the Space Shuttle Endeavour, Astronaut Linda M. Godwin uses the Shuttle Amateur Radio Experiment (SAREX). The payload commander, as well as several other STS-59 crew members, spent some off-duty time using the amateur radio experiment to communicate with 'Hams' and students on Earth.

  11. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-10-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  12. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-10-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  13. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot transonic wind tunnel, volume 2

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e., top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  14. Results of wind tunnel tests of an ASRM configured 0.03 scale Space Shuttle integrated vehicle model (47-OTS) in the AEDC 16-foot Transonic wind tunnel (IA613A), volume 1

    Science.gov (United States)

    Marroquin, J.; Lemoine, P.

    1992-01-01

    An experimental Aerodynamic and Aero-Acoustic loads data base was obtained at transonic Mach numbers for the Space Shuttle Launch Vehicle configured with the ASRM Solid Rocket Boosters as an increment to the current flight configuration (RSRB). These data were obtained during transonic wind tunnel tests (IA 613A) conducted in the Arnold Engineering Development Center 16-Foot transonic propulsion wind tunnel from March 27, 1991 through April 12, 1991. This test is the first of a series of two tests covering the Mach range from 0.6 to 3.5. Steady state surface static and fluctuating pressure distributions over the Orbiter, External Tank and Solid Rocket Boosters of the Shuttle Integrated Vehicle were measured. Total Orbiter forces, Wing forces and Elevon hinge moments were directly measured as well from force balances. Two configurations of Solid Rocket Boosters were tested, the Redesigned Solid Rocket Booster (RSRB) and the Advanced Solid Rocket Motor (ASRM). The effects of the position (i.e. top, bottom, top and bottom) of the Integrated Electronics Assembly (IEA) box, mounted on the SRB attach ring, were obtained on the ASRM configured model. These data were obtained with and without Solid Plume Simulators which, when used, matched as close as possible the flight derived pressures on the Orbiter and External Tank base. Data were obtained at Mach numbers ranging from 0.6 to 1.55 at a Unit Reynolds Number of 2.5 million per foot through model angles of attack from -8 to +4 degrees at sideslip angles of 0, +4 and -4 degrees.

  15. Shuttle Operational Test and Scientific Investigations

    Science.gov (United States)

    Stonesifer, J. C.

    1985-01-01

    The Detailed Test Objectives (DTOs) originated as a test or measurement made to verify the function of a vehicle system for certification of a vehicle system. The Detailed Supplementary Objectives (DSOs) are a demonstration or test which has a lower priority than a DTO. The criteria for inclusion on space shuttle mission is discussed.

  16. Shuttle Imaging Radar Survey Mission C

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Spaceborne Imaging Radar-C (SIR-C) was part of an imaging radar system that was flown on board two Space Shuttle flights (9 - 20 April, 1994 and 30 September - 11...

  17. Shuttle user analysis (study 2.2). Volume 3: Business risk and value of operations in space (BRAVO). Part 2: User's manual

    Science.gov (United States)

    1974-01-01

    The purpose of the BRAVO User's Manual is to describe the BRAVO methodology in terms of step-by-step procedures. The BRAVO methodology then becomes a tool which a team of analysts can utilize to perform cost effectiveness analyses on potential future space applications with a relatively general set of input information and a relatively small expenditure of resources. An overview of the BRAVO procedure is given by describing the complete procedure in a general form.

  18. Shuttle Engine Designs Revolutionize Solar Power

    Science.gov (United States)

    2014-01-01

    The Space Shuttle Main Engine was built under contract to Marshall Space Flight Center by Rocketdyne, now part of Pratt & Whitney Rocketdyne (PWR). PWR applied its NASA experience to solar power technology and licensed the technology to Santa Monica, California-based SolarReserve. The company now develops concentrating solar power projects, including a plant in Nevada that has created 4,300 jobs during construction.

  19. JSC amateur radio enthusiasts view video transmission to Shuttle

    Science.gov (United States)

    1985-01-01

    JSC amateur radio enthusiasts and the wives of shuttle astronauts Gordon Fullerton and Anthony England look at monitors showing the faces of the astronauts' wives which were transmitted from earth to space.

  20. Shuttle Transportation System Case-Study Development

    Science.gov (United States)

    Ransom, Khadijah

    2012-01-01

    A case-study collection was developed for NASA's Space Shuttle Program. Using lessons learned and documented by NASA KSC engineers, analysts, and contractors, decades of information related to processing and launching the Space Shuttle was gathered into a single database. The goal was to provide educators with an alternative means to teach real-world engineering processes and to enhance critical thinking, decision making, and problem solving skills. Suggested formats were created to assist both external educators and internal NASA employees to develop and contribute their own case-study reports to share with other educators and students. Via group project, class discussion, or open-ended research format, students will be introduced to the unique decision making process related to Shuttle missions and development. Teaching notes, images, and related documents will be made accessible to the public for presentation of Space Shuttle reports. Lessons investigated included the engine cutoff (ECO) sensor anomaly which occurred during mission STS-114. Students will be presented with general mission infom1ation as well as an explanation of ECO sensors. The project will conclude with the design of a website that allows for distribution of information to the public as well as case-study report submissions from other educators online.