WorldWideScience

Sample records for proviral dna synthesis

  1. Damaging the Integrated HIV Proviral DNA with TALENs.

    Directory of Open Access Journals (Sweden)

    Christy L Strong

    Full Text Available HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs to target a highly conserved sequence in the transactivation response element (TAR of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.

  2. HIV drug resistance mutations in proviral DNA from a community treatment program.

    Directory of Open Access Journals (Sweden)

    Anne Derache

    Full Text Available Drug resistance mutations archived in resting memory CD4+ cells may persist despite suppression of HIV RNA to <50 copies/ml. We sequenced pol gene from proviral DNA among viremic and suppressed patients to identify drug resistance mutations.The Peninsula AIDS Research Cohort study enrolled and followed over 2 years 120 HIV infected patients from San Mateo and San Francisco Counties. HIV-1 pol genotyping by bulk sequencing was performed on 38 DNA and RNA from viremic patients and DNA only among 82 suppressed patients at baseline. Antiretroviral susceptibility was predicted by HIVDB.stanford.edu.Among 120 subjects, 81% were on antiretroviral therapy and had been treated for a median time of 7 years. Thirty-two viremic patients showed concordant RNA and DNA genotypes (84%; the discordant profiles were mainly observed in patients with low-level viremia. Among suppressed patients, 21 had drug resistance mutations in proviral DNA (26% with potential resistance to one, two or three ARV classes in 16, 4 and 1 samples respectively.The high level of genotype concordance between DNA and RNA in viremic patients suggested that DNA genotyping might be used to assess drug resistance in resource-limited settings, and further investigation of extracted DNA from dried blood spots is needed. Drug resistance mutations in proviral DNA in 26% of subjects with less than 50 copies/ml pose a risk for the transmission of drug resistant virus with virologic failure, treatment interruption or decreased adherence.

  3. Distinctive Drug-resistant Mutation Profiles and Interpretations of HIV-1 Proviral DNA Revealed by Deep Sequencing in Reverse Transcriptase.

    Science.gov (United States)

    Yin, Qian Qian; Li, Zhen Peng; Zhao, Hai; Pan, Dong; Wang, Yan; Xu, Wei Si; Xing, Hui; Feng, Yi; Jiang, Shi Bo; Shao, Yi Ming; Ma, Li Ying

    2016-04-01

    To investigate distinctive features in drug-resistant mutations (DRMs) and interpretations for reverse transcriptase inhibitors (RTIs) between proviral DNA and paired viral RNA in HIV-1-infected patients. Forty-three HIV-1-infected individuals receiving first-line antiretroviral therapy were recruited to participate in a multicenter AIDS Cohort Study in Anhui and Henan Provinces in China in 2004. Drug resistance genotyping was performed by bulk sequencing and deep sequencing on the plasma and whole blood of 77 samples, respectively. Drug-resistance interpretation was compared between viral RNA and paired proviral DNA. Compared with bulk sequencing, deep sequencing could detect more DRMs and samples with DRMs in both viral RNA and proviral DNA. The mutations M184I and M230I were more prevalent in proviral DNA than in viral RNA (Fisher's exact test, PDNA, and 5 of these samples with different DRMs between proviral DNA and paired viral RNA showed a higher level of drug resistance to the first-line drugs. Considering 'minority resistant variants', 22 samples (28.57%) were associated with a higher level of drug resistance to the tested RTIs for proviral DNA when compared with paired viral RNA. Compared with viral RNA, the distinctive information of DRMs and drug resistance interpretations for proviral DNA could be obtained by deep sequencing, which could provide more detailed and precise information for drug resistance monitoring and the rational design of optimal antiretroviral therapy regimens. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. Investigating signs of recent evolution in the pool of proviral HIV type 1 DNA during years of successful HAART

    DEFF Research Database (Denmark)

    Mens, Helene; Pedersen, Anders G; Jørgensen, Louise B

    2007-01-01

    In order to shed light on the nature of the persistent reservoir of human immunodeficiency virus type 1 (HIV-1), we investigated signs of recent evolution in the pool of proviral DNA in patients on successful HAART. Pro-viral DNA, corresponding to the C2-V3-C3 region of the HIV-1 env gene......, was collected from PBMCs isolated from 57 patients. Both "consensus" (57 patients) and clonal (7 patients) sequences were obtained from five time points spanning a 24-month period. The main computational strategy was to use maximum likelihood to fit a set of alternative phylogenetic models to the clonal data...

  5. Investigating signs of recent evolution in the pool of proviral HIV type 1 DNA during years of successful HAART

    DEFF Research Database (Denmark)

    Mens, Helene; Pedersen, Anders G; Jørgensen, Louise B

    2007-01-01

    In order to shed light on the nature of the persistent reservoir of human immunodeficiency virus type 1 (HIV-1), we investigated signs of recent evolution in the pool of proviral DNA in patients on successful HAART. Pro-viral DNA, corresponding to the C2-V3-C3 region of the HIV-1 env gene...... HIV genomes in some patients. Interestingly, stop-codons were present at the same two positions in several independent clones and across patients. Simulation studies indicated that this phenomenon could be explained as the result of parallel evolution and that some sites were inherently more likely...

  6. Investigation of the bovine leukemia virus proviral DNA in human leukemias and lung cancers in Korea.

    Science.gov (United States)

    Lee, Jehoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-08-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combination. All 517 cases of human leukemia and 162 lung cancer were negative for a PCR of the BLV proviral DNA. In conclusion, although meat has been imported from BLV endemic areas, the BLV infection does not appear to be the cause of human leukemia or lung cancer in Koreans. These results can be used as a control for further studies on the BLV in Koreans.

  7. Identification of full-length proviral DNA of porcine endogenous retrovirus from Chinese Wuzhishan miniature pigs inbred.

    Science.gov (United States)

    Ma, Yuyuan; Lv, Maomin; Xu, Shu; Wu, Jianmin; Tian, Kegong; Zhang, Jingang

    2010-07-01

    Existence of porcine endogenous retrovirus (PERV) hinders pigs to be used in clinical xenotransplantation to alleviate the shortage of human transplants. Chinese miniature pigs are potential organ donors for xenotransplantation in China. However, so far, an adequate level of information on the molecular characteristics of PERV from Chinese miniature pigs has not been available. We described here the cloning and characterization of full-length proviral DNA of PERV from Chinese Wuzhishan miniature pigs inbred (WZSP). Full-length nucleotide sequences of PERV-WZSP and other PERVs were aligned and phylogenetic tree was constructed from deduced amino-acid sequences of env. The results demonstrated that the full-length proviral DNA of PERV-WZSP belongs to gammaretrovirus and shares high similarity with other PERVs. Sequence analysis also suggested that different patterns of LTR existed in the same porcine germ line and partial PERV-C sequence may recombine with PERV-A sequence in LTR. (c) 2008 Elsevier Ltd. All rights reserved.

  8. Evolution of specific antibodies and proviral DNA in milk of small ruminants infected by small ruminant lentivirus.

    Science.gov (United States)

    Barquero, Nuria; Gomez-Lucia, Esperanza; Arjona, Alvaro; Toural, Cristina; Heras, Alfonso las; Fernández-Garayzabal, José F; Domenech, Ana

    2013-10-22

    The diagnosis of Small Ruminant Lentivirus (SRLV) is based on clinical signs, pathological lesions and laboratory testing. No standard reference test for the diagnosis of maedi visna has been validated up to the present, and it is puzzling that tests which detect antibodies against the virus and tests which detect the proviral genome may render opposite results. The aim of this study was to evaluate the presence in milk throughout a lactation period of specific antibodies by ELISA and of SRLV proviral DNA by a PCR of the highly conserved pol region. A six-month study was conducted with the milk of 28 ewes and 31 goats intensively reared. The percentage of animals with antibodies against SRLV increased throughout the study period. Seroprevalence in sheep was 28% at the beginning of the study and by the end it had increased up to 52.4%. In goats, initial seroprevalence of 5.6% increased to 16%. The percentage of PCR positive ewes was stable throughout the study period. Of the positive sheep, 21.4% were PCR-positive before antibodies could be detected and most of them became PCR-negative shortly after the first detection of antibodies. This might suggest that antibodies have a neutralizing effect. In addition, an equal percentage of sheep were always PCR-negative but either became ELISA-positive or was always ELISA-positive, which might support this hypothesis. On the other hand, the PCR results in goats did not follow any pattern and oscillated between 35.3% and 55.6% depending on the month. Most goats positive by PCR failed to develop antibodies in the 6 months tested. We may conclude that the infection and the antibody response to it follow a different trend in sheep and goats.

  9. Genotypic tropism testing in proviral DNA to guide maraviroc initiation in aviremic subjects: 48-week analysis of the PROTEST study.

    Science.gov (United States)

    Garcia, Federico; Poveda, Eva; Pérez-Elías, Maria Jesús; Quero, José Hernández; Ribas, Maria Angels; Martínez-Madrid, Onofre J; Flores, Juan; Crespo, Manel; Gutiérrez, Félix; García-Deltoro, Miguel; Imaz, Arkaitz; Ocampo, Antonio; Artero, Arturo; Blanco, Francisco; Bernal, Enrique; Pasquau, Juan; Mínguez-Gallego, Carlos; Pérez, Núria; Aiestarán, Aintzane; Paredes, Roger

    2014-01-01

    In a previous interim 24-week virological safety analysis of the PROTEST study (1), initiation of Maraviroc (MVC) plus 2 nucleoside reverse-transcriptase inhibitors (NRTIs) in aviremic subjects based on genotypic tropism testing of proviral HIV-1 DNA was associated with low rates of virological failure. Here we present the final 48-week analysis of the study. PROTEST was a phase 4, prospective, single-arm clinical trial (ID: NCT01378910) carried on in 24 HIV care centres in Spain. Maraviroc-naïve HIV-1-positive adults with HIV-1 RNA (VL) 10% in a singleton), initiated MVC with 2 NRTIs and were followed for 48 weeks. Virological failure was defined as two consecutive VL>50 c/mL. Recent adherence was calculated as: (# pills taken/# pills prescribed during the previous week)*100. Tropism results were available from 141/175 (80.6%) subjects screened: 87/141 (60%) were R5 and 74/87 (85%) were finally included in the study. Their median age was 48 years, 16% were women, 31% were MSM, 36% had CDC category C at study entry, 62% were HCV+ and 10% were HBV+. Median CD4+ counts were 616 cells/mm(3) at screening, and median nadir CD4+ counts were 143 cells/mm(3). Previous ART included PIs in 46 (62%) subjects, NNRTIs in 27 (36%) and integrase inhibitors (INIs) in 1 (2%). The main reasons for treatment change were dyslipidemia (42%), gastrointestinal symptoms (22%), and liver toxicity (15%). MVC was given alongside TDF/FTC in 40 (54%) subjects, ABC/3TC in 30 (40%), AZT/3TC in 2 (3%) and ABC/TDF in 2 (3%). Sixty-two (84%) subjects maintained VL<50 c/mL through week 48, whereas 12 (16%) discontinued treatment: two (3%) withdrew informed consent, one (1%) had a R5→X4 shift in HIV tropism between the screening and baseline visits, one (1%) was lost to follow-up, one (1%) developed an ART-related adverse event (rash), two (3%) died due to non-study-related causes (1 myocardial infarction at week 0 and 1 lung cancer at week 36), and five (7%) developed protocol-defined virological

  10. Genotypic tropism testing in proviral DNA to guide maraviroc initiation in aviremic subjects: 48-week analysis of the PROTEST study

    Directory of Open Access Journals (Sweden)

    Federico Garcia

    2014-11-01

    Full Text Available Introduction: In a previous interim 24-week virological safety analysis of the PROTEST study (1, initiation of Maraviroc (MVC plus 2 nucleoside reverse-transcriptase inhibitors (NRTIs in aviremic subjects based on genotypic tropism testing of proviral HIV-1 DNA was associated with low rates of virological failure. Here we present the final 48-week analysis of the study. Methods: PROTEST was a phase 4, prospective, single-arm clinical trial (ID: NCT01378910 carried on in 24 HIV care centres in Spain. Maraviroc-naïve HIV-1-positive adults with HIV-1 RNA (VL 10% in a singleton, initiated MVC with 2 NRTIs and were followed for 48 weeks. Virological failure was defined as two consecutive VL>50 c/mL. Recent adherence was calculated as: (# pills taken/# pills prescribed during the previous week*100. Results: Tropism results were available from 141/175 (80.6% subjects screened: 87/141 (60% were R5 and 74/87 (85% were finally included in the study. Their median age was 48 years, 16% were women, 31% were MSM, 36% had CDC category C at study entry, 62% were HCV+ and 10% were HBV+. Median CD4+ counts were 616 cells/mm3 at screening, and median nadir CD4+ counts were 143 cells/mm3. Previous ART included PIs in 46 (62% subjects, NNRTIs in 27 (36% and integrase inhibitors (INIs in 1 (2%. The main reasons for treatment change were dyslipidemia (42%, gastrointestinal symptoms (22%, and liver toxicity (15%. MVC was given alongside TDF/FTC in 40 (54% subjects, ABC/3TC in 30 (40%, AZT/3TC in 2 (3% and ABC/TDF in 2 (3%. Sixty-two (84% subjects maintained VL<50 c/mL through week 48, whereas 12 (16% discontinued treatment: two (3% withdrew informed consent, one (1% had a R5→X4 shift in HIV tropism between the screening and baseline visits, one (1% was lost to follow-up, one (1% developed an ART-related adverse event (rash, two (3% died due to non-study-related causes (1 myocardial infarction at week 0 and 1 lung cancer at week 36, and five (7% developed protocol

  11. Dynamics of 103K/N and 184M/V HIV-1 drug resistant populations: relative comparison in plasma virus RNA versus CD45RO+T cell proviral DNA

    DEFF Research Database (Denmark)

    Jakobsen, Martin Roelsgaard; Tolstrup, M; Bertelsen, L

    2007-01-01

    and to investigate the expression of resistance mutations (103N and 184V) and dynamic interactions between proviral DNA and plasma virions. STUDY DESIGN: A clinical cross-sectional study, including 11 patients on lamivudine efavirenz and/or nevirapine therapy. The viral populations were determined by an assay based...... population with linked mutations (103N and 184V) was detected in two patients after more than 2 years of non-NNRTI HAART. CONCLUSION: The ARMS assay is useful for detecting viral quasi-species containing efavirenz and lamivudine resistant mutations in plasma virions and in proviral DNA. Data suggest...

  12. Human T-lymphotropic virus type 1 (HTLV-1 prevalence and quantitative detection of DNA proviral load in individuals with indeterminate/positive serological results

    Directory of Open Access Journals (Sweden)

    Bon Isabella

    2006-03-01

    Full Text Available Abstract Background HTLV-1 infection is currently restricted to endemic areas. To define the prevalence of HTLV-1 infection in patients living in Italy, we first carried out a retrospective serological analysis in a group of people originating from African countries referred to our hospital from January 2003 to February 2005. We subsequently applied a real time PCR on peripheral blood mononuclear cells from subjects with positive or indeterminate serological results. Methods All the sera were first analysed by serological methods (ELISA and/or Western Blotting and then the peripheral blood mononuclear cells from subjects with positive or inconclusive serological results were analyzed for the presence of proviral DNA by a sensitive SYBR Green real time PCR. In addition, twenty HTLV-I ELISA negative samples were assayed by real time PCR approach as negative controls. Results Serological results disclosed serum reactivity by ELISA (absorbance values equal or greater than the cut-off value in 9 out of 3408 individuals attending the Sexually Transmitted Diseases Clinic and/or Oncology Department, and 2 out 534 blood donors enrolled as a control population. Irrespective of positive or inconclusive serological results, all these subjects were analyzed for the presence of proviral DNA in peripheral blood mononuclear cells by SYBR real time PCR. A clear-cut positive result for the presence of HTLV-1 DNA was obtained in two subjects from endemic areas. Conclusion SYBR real time PCR cut short inconclusive serological results. This rapid and inexpensive assay showed an excellent linear dynamic range, specificity and reproducibility readily revealing and quantifying the presence of virus in PBMCs. Our results highlight the need to monitor the presence of HTLV-1 in countries which have seen a large influx of immigrants in recent years. Epidemiological surveillance and correct diagnosis are recommended to verify the prevalence and incidence of a new

  13. High prevalence of HIV-1 transmitted drug-resistance mutations from proviral DNA massively parallel sequencing data of therapy-naïve chronically infected Brazilian blood donors.

    Directory of Open Access Journals (Sweden)

    Rodrigo Pessôa

    Full Text Available An improved understanding of the prevalence of low-abundance transmitted drug-resistance mutations (TDRM in therapy-naïve HIV-1-infected patients may help determine which patients are the best candidates for therapy. In this study, we aimed to obtain a comprehensive picture of the evolving HIV-1 TDRM across the massive parallel sequences (MPS of the viral entire proviral genome in a well-characterized Brazilian blood donor naïve to antiretroviral drugs.The MPS data from 128 samples used in the analysis were sourced from Brazilian blood donors and were previously classified by less-sensitive (LS or "detuned" enzyme immunoassay as non-recent or longstanding HIV-1 infections. The Stanford HIV Resistance Database (HIVDBv 6.2 and IAS-USA mutation lists were used to interpret the pattern of drug resistance. The minority variants with TDRM were identified using a threshold of ≥ 1.0% and ≤ 20% of the reads sequenced. The rate of TDRM in the MPS data of the proviral genome were compared with the corresponding published consensus sequences of their plasma viruses.No TDRM were detected in the integrase or envelope regions. The overall prevalence of TDRM in the protease (PR and reverse transcriptase (RT regions of the HIV-1 pol gene was 44.5% (57/128, including any mutations to the nucleoside analogue reverse transcriptase inhibitors (NRTI and non-nucleoside analogue reverse transcriptase inhibitors (NNRTI. Of the 57 subjects, 43 (75.4% harbored a minority variant containing at least one clinically relevant TDRM. Among the 43 subjects, 33 (76.7% had detectable minority resistant variants to NRTIs, 6 (13.9% to NNRTIs, and 16 (37.2% to PR inhibitors. The comparison of viral sequences in both sources, plasma and cells, would have detected 48 DNA provirus disclosed TDRM by MPS previously missed by plasma bulk analysis.Our findings revealed a high prevalence of TDRM found in this group, as the use of MPS drastically increased the detection of these

  14. Further characterization of the gapped DNA intermediates of human spumavirus: evidence for a dual initiation of plus-strand DNA synthesis.

    Science.gov (United States)

    Tobaly-Tapiero, J; Kupiec, J J; Santillana-Hayat, M; Canivet, M; Peries, J; Emanoil-Ravier, R

    1991-03-01

    We recently reported the presence of linear duplex DNA intermediates with a gap in the middle of the molecules in the replicative cycle of human (HSRV) and simian (SFV1) spumaviruses. The polypurine tract (PPT), at the 5' boundary of the 3' long terminal repeat, was found to be duplicated in the gap region. By molecular analysis of HSRV proviral DNA with region- and strand-specific probes, we have now determined that the gap is located on plus-strand DNA and that it is 120 bases long with the 3' end mapping at the duplicated PPT site. Kinetic analysis of proviral DNA provided evidence that the gap did not result from processing of a complete, full-length DNA molecule. These data strongly suggest that plus-strand DNA synthesis is initiated at both PPT sites.

  15. Genetic composition of replication competent clonal HIV-1 variants isolated from peripheral blood mononuclear cells (PBMC), HIV-1 proviral DNA from PBMC and HIV-1 RNA in serum in the course of HIV-1 infection.

    Science.gov (United States)

    Edo-Matas, Diana; van Gils, Marit J; Bowles, Emma J; Navis, Marjon; Rachinger, Andrea; Boeser-Nunnink, Brigitte; Stewart-Jones, Guillaume B; Kootstra, Neeltje A; van 't Wout, Angélique B; Schuitemaker, Hanneke

    2010-09-30

    The HIV-1 quasispecies in peripheral blood mononuclear cells (PBMC) is considered to be a mix of actively replicating, latent, and archived viruses and may be genetically distinct from HIV-1 variants in plasma that are considered to be recently produced. Here we analyzed the genetic relationship between gp160 env sequences from replication competent clonal HIV-1 variants that were isolated from PBMC and from contemporaneous HIV-1 RNA in serum and HIV-1 proviral DNA in PBMC of four longitudinally studied therapy naïve HIV-1 infected individuals. Replication competent clonal HIV-1 variants, HIV-1 RNA from serum, and HIV-1 proviral DNA from PBMC formed a single virus population at most time points analyzed. However, an under-representation in serum of HIV-1 sequences with predicted CXCR4 usage was sometimes observed implying that the analysis of viral sequences from different sources may provide a more complete assessment of the viral quasispecies in peripheral blood in vivo. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  17. New entity, definition and diagnostic criteria of cutaneous adult T-cell leukemia/lymphoma: human T-lymphotropic virus type 1 proviral DNA load can distinguish between cutaneous and smoldering types.

    Science.gov (United States)

    Amano, Masahiro; Kurokawa, Motoki; Ogata, Katsumi; Itoh, Hiroshi; Kataoka, Hiroaki; Setoyama, Mitsuru

    2008-05-01

    Adult T-cell leukemia/lymphoma (ATLL) has been divided into four subtypes up to now: (i) acute; (ii) lymphoma; (iii) chronic; and (iv) smoldering. Skin lesion(s) may be present and the cases showing less than 5% abnormal T-lymphocytes in peripheral blood without involvement of other organs, have been classified as smoldering ATLL. However, this type of ATLL with skin manifestations had a worse prognosis than that without skin lesions. This study aimed to define and distinguish cutaneous ATLL lacking nodal lymphoma and leukemic change from smoldering ATLL. We propose an entity of cutaneous ATLL, which has less than 5% abnormal T lymphocyte in peripheral blood, a normal lymphocyte count (i.e. smoldering ATLL. HTLV-1 proviral loads, soluble interleukin-2 receptors and other parameters were examined in each case. HTLV-1 proviral DNA loads in smoldering ATLL group are significantly higher than those in asymptomatic carrier and cutaneous ATLL group. Cutaneous ATLL may be a distinct entity that should be separated from smoldering ATLL clinically and virologically.

  18. Initiation of lymphocyte DNA synthesis.

    Science.gov (United States)

    Coffman, F D; Fresa, K L; Cohen, S

    1991-01-01

    The initiation of DNA replication in T lymphocytes appears to be regulated by two distinct activities: one associated with proliferation which mediates initiation, and another associated with quiescence which blocks initiation. Activated lymphocytes and proliferating lymphoid cell lines produce an activity, termed ADR, which can initiate DNA replication in isolated, quiescent nuclei. ADR is heat-labile, has protease activity or interacts closely with a protease, and is distinct from the DNA polymerases. ADR activity is absent in quiescent lymphocytes and appears in mitogen-stimulated lymphocytes after IL-2 binding. The generation of active ADR appears to be mediated by phosphorylation of a precursor which is present in resting cells. Nuclei from mitogen-unresponsive lymphocytes fail to initiate DNA replication in response to ADR, of potential importance in the age-related decline of immunity. Quiescent lymphocytes lack ADR and synthesize an ADR-inhibitory activity. The ADR inhibitor is a heat-stable protein which suppresses the initiation of DNA synthesis, but is ineffective at suppressing elongation once DNA strand replication has begun. Nuclei from several neoplastic cell lines fail to respond to the ADR inhibitor, which may play a role in the continuous proliferation of these cells. At least one of these neoplastic cell lines produces both ADR and an inhibitory factor. These findings suggest that the regulation of proliferation is dependent on the balance between activating and inhibitory pathways.

  19. Quantification of HTLV-I proviral load in experimentally infected rabbits

    Directory of Open Access Journals (Sweden)

    Kindt Thomas J

    2005-05-01

    Full Text Available Abstract Background Levels of proviral load in HTLV-1 infected patients correlate with clinical outcome and are reasonably prognostic. Adaptation of proviral load measurement techniques is examined here for use in an experimental rabbit model of HTLV-1 infection. Initial efforts sought to correlate proviral load with route and dose of inoculation and with clinical outcome in this model. These methods contribute to our continuing goal of using the model to test treatments that alleviate virus infection. Results A real-time PCR assay was used to measure proviral load in blood and tissue samples from a series of rabbits infected using HTLV-1 inocula prepared as either cell-free virus particles, infected cells or blood, or by naked DNA injection. Proviral loads from asymptomatically infected rabbits showed levels corresponding to those reported for human patients with clinically silent HTLV-1 infections. Proviral load was comparably increased in 50% of experimentally infected rabbits that developed either spontaneous benign or malignant tumors while infected. Similarly elevated provirus was found in organs of rabbits with experimentally induced acute leukemia/lymphoma-like disease. Levels of provirus in organs taken at necropsy varied widely suggesting that reservoirs of infections exist in non-lymphoid organs not traditionally thought to be targets for HTLV-1. Conclusion Proviral load measurement is a valuable enhancement to the rabbit model for HTLV-1 infection providing a metric to monitor clinical status of the infected animals as well as a means for the testing of treatment to combat infection. In some cases proviral load in blood did not reflect organ proviral levels, revealing a limitation of this method for monitoring health status of HTLV-1 infected individuals.

  20. Quantification of HTLV-I proviral load in experimentally infected rabbits

    Science.gov (United States)

    Zhao, Tong-Mao; Hague, Bishop; Caudell, David L; Simpson, R Mark; Kindt, Thomas J

    2005-01-01

    Background Levels of proviral load in HTLV-1 infected patients correlate with clinical outcome and are reasonably prognostic. Adaptation of proviral load measurement techniques is examined here for use in an experimental rabbit model of HTLV-1 infection. Initial efforts sought to correlate proviral load with route and dose of inoculation and with clinical outcome in this model. These methods contribute to our continuing goal of using the model to test treatments that alleviate virus infection. Results A real-time PCR assay was used to measure proviral load in blood and tissue samples from a series of rabbits infected using HTLV-1 inocula prepared as either cell-free virus particles, infected cells or blood, or by naked DNA injection. Proviral loads from asymptomatically infected rabbits showed levels corresponding to those reported for human patients with clinically silent HTLV-1 infections. Proviral load was comparably increased in 50% of experimentally infected rabbits that developed either spontaneous benign or malignant tumors while infected. Similarly elevated provirus was found in organs of rabbits with experimentally induced acute leukemia/lymphoma-like disease. Levels of provirus in organs taken at necropsy varied widely suggesting that reservoirs of infections exist in non-lymphoid organs not traditionally thought to be targets for HTLV-1. Conclusion Proviral load measurement is a valuable enhancement to the rabbit model for HTLV-1 infection providing a metric to monitor clinical status of the infected animals as well as a means for the testing of treatment to combat infection. In some cases proviral load in blood did not reflect organ proviral levels, revealing a limitation of this method for monitoring health status of HTLV-1 infected individuals. PMID:15910683

  1. Mechanism for CCC DNA synthesis in hepadnaviruses.

    Directory of Open Access Journals (Sweden)

    Ji A Sohn

    Full Text Available Hepadnavirus replication requires the synthesis of a covalently closed circular (CCC DNA from the relaxed circular (RC viral genome by an unknown mechanism. CCC DNA formation could require enzymatic activities of the viral reverse transcriptase (RT, or cellular DNA repair enzymes, or both. Physical mapping of the 5' and 3' ends of RC DNA and sequence analysis of CCC DNA revealed that CCC DNA synthesis requires the removal of the RT and an RNA oligomer from the 5' ends of minus and plus strand DNA, respectively, removal of sequences from the terminally redundant minus strand, completion of the less than full-length plus strand, and ligation of the ends. Two models have been proposed that could explain CCC DNA formation. The first (model 1 invokes a role for the RT to catalyze a cleavage-ligation reaction leading to the formation of a unit length minus strand in CCC DNA and a DNA repair reaction for the completion and ligation of plus strand DNA; the second (model 2 predicts that CCC DNA formation depends entirely on cellular DNA repair enzymes. To determine which mechanism is utilized, we developed cell lines expressing duck hepatitis B virus genomes carrying mutations permitting us to follow the fate of viral DNA sequences during their conversion from RC to CCC DNA. Our results demonstrated that the oligomer at the 5' end of minus strand DNA is completely or at least partially removed prior to CCC DNA synthesis. The results indicated that both RC DNA strands undergo DNA repair reactions carried out by the cellular DNA repair machinery as predicted by model 2. Thus, our study provided the basis for the identification of the cellular components required for CCC DNA formation.

  2. DNA synthesis in ataxia telangiectasia

    OpenAIRE

    Jaspers, Nicolaas

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by a reduced ability to properly remove UV-induced DNA damage. The evidence for a DNA repair defect in AT cells is not as strong as in the case of XP (see section 2.2.5 of this thesis). Different XP p...

  3. Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014.

    Science.gov (United States)

    Ohno, Ayumu; Takeshima, Shin-nosuke; Matsumoto, Yuki; Aida, Yoko

    2015-12-02

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma. BLV has spread worldwide and causes serious problems. After infection, the BLV genome is integrated into the host DNA and can be amplified during periods of latency. We previously designed degenerate primers using the Coordination of Common Motifs (CoCoMo) algorithm to establish a new quantitative real-time PCR method (BLV-CoCoMo-qPCR-2) of measuring the proviral load of both known and novel BLV variants. Here, we aimed to examine the correlation between proviral load and risk factors for BLV infection, such as breeding systems, parousity, and colostrum feeding. Blood and serum samples were collected from 83 BLV-positive farms in 22 prefectures of Japan, and the BLV proviral load and anti-BLV antibody levels were measured. BLV was detected in 73.3% (1039/1,417) of cattle by BLV-CoCoMo-qPCR-2 and the provirus was detected in 93 of 1039 antibody-negative samples. The results showed that the proviral load increased with progression of lymphocytosis. Next, the risk factors associated with increasing BLV infection rate were examined along with any association with proviral load. The proviral load was higher in cattle with lymphocytosis than in healthy cattle, and higher in multiparous cows than in nulliparous cows. Finally, proviral loads were higher in contact breeding systems than in non-contact breeding systems. Taken together, these findings may help to formulate a plan for eliminating BLV from contaminated farms. This is the first nationwide study to estimate BLV proviral load in Japanese cattle. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Genome organization of the Chelonus inanitus polydnavirus: excision sites, spacers and abundance of proviral and excised segments.

    Science.gov (United States)

    Annaheim, Marc; Lanzrein, Beatrice

    2007-02-01

    Polydnaviruses are only found in symbiotic association with parasitic wasps within the families Ichneumonidae and Braconidae (ichnoviruses and bracoviruses). They have a segmented genome consisting of circular double-stranded DNA. In the proviral linear form they are integrated in the wasp's genome; in two bracoviruses, segments were found to be clustered. Proviral segments have direct terminal repeats. Segment excision has been proposed to occur through juxtaposition of these repeats by formation of a loop and recombination; one copy of the repeat then ends up in the circular segment and one in the rejoined DNA. Here we analysed the excision/circularization site of four segments of the Chelonus inanitus bracovirus (CiV) and found that they are similar to the two already known sites; on the basis of the combined data an extended excision site motif was found. Analyses of segment flanking sequences led to the first identification of one complete and several partial spacers between proviral segments in a polydnavirus. The spacer between the proviral segments CiV14 and CiV22.5 has a length of 2065 bp; the terminal repeats of CiV14 and CiV22.5 were seen to have an opposite orientation and from this a model on the spacial organization of the loops of the proviral cluster is proposed. Through various approaches it was shown that spacers are not excised or injected into the host. Measurement of relative abundances of various segments in proviral and excised form indicates for the first time that abundant segments are present in multiple copies in the proviral form.

  5. DNA Nanoparticles for Improved Protein Synthesis In Vitro.

    Science.gov (United States)

    Galinis, Robertas; Stonyte, Greta; Kiseliovas, Vaidotas; Zilionis, Rapolas; Studer, Sabine; Hilvert, Donald; Janulaitis, Arvydas; Mazutis, Linas

    2016-02-24

    The amplification and digital quantification of single DNA molecules are important in biomedicine and diagnostics. Beyond quantifying DNA molecules in a sample, the ability to express proteins from the amplified DNA would open even broader applications in synthetic biology, directed evolution, and proteomics. Herein, a microfluidic approach is reported for the production of condensed DNA nanoparticles that can serve as efficient templates for in vitro protein synthesis. Using phi29 DNA polymerase and a multiple displacement amplification reaction, single DNA molecules were converted into DNA nanoparticles containing up to about 10(4)  clonal gene copies of the starting template. DNA nanoparticle formation was triggered by accumulation of inorganic pyrophosphate (produced during DNA synthesis) and magnesium ions from the buffer. Transcription-translation reactions performed in vitro showed that individual DNA nanoparticles can serve as efficient templates for protein synthesis in vitro. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Inhibition of cellular DNA synthesis by vesicular stomatitis virus

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.J.; Wagner, R.R.

    1981-04-01

    DNA synthesis in mouse myeloma (MPC-11) cells and L cells was rapidly and progressively inhibited by infection with vesicular stomatitis virus (VSV). No significant difference in cellular DNA synthesis inhibition was noted between synchronized and unsynchronized cells, nor did synchronized cells vary in their susceptibility to VSV infection after release from successive thymidine and hydroxyurea blocks. Cellular RNA synthesis was inhibited to about the same extent as DNA synthesis, but cellular protein synthesis was less affected by VSV at the same multiplicity of infection. The effect of VSV on cellular DNA synthesis could not be attributed to degradation of existing DNA or to decreased uptake of deoxynucleoside triphosphates, nor were DNA polymerase and thymidine kinase activities significantly different in VSV-infected and uninfected cell extracts. Analysis by alkaline sucrose gradients of DNA in pulse-labeled uninfected and VSV-infected cells indicated that VSV infection did not appear to influence DNA chain elongation. Cellular DNA synthesis was not significantly inhibited by infection with the VSV polymerase mutant tsG114(I) at the restrictive temperature or by infection with defective-interfering VSV DI-011 (5' end of the genome), but DI-HR-LT (3' end of genome) exhibited initially rapid but not prolonged inhibition of MPC-11 cell DNA synthesis. DNA synthesis inhibitory activity of wild-type VSV was only slowly and partially inactivated by very large doses of UV irradiation. These data suggest that, as in the effect of VSV on cellular RNA synthesis inhibition of cellular DNA synthesis by VSV requires transcription of a small segment of the viral genome.

  7. Multiple proviral integration events after virological synapse-mediated HIV-1 spread.

    Science.gov (United States)

    Russell, Rebecca A; Martin, Nicola; Mitar, Ivonne; Jones, Emma; Sattentau, Quentin J

    2013-08-15

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. Copyright © 2013. Published by Elsevier Inc.

  8. Differential sensitivity to aphidicolin of replicative DNA synthesis and ultraviolet-induced unscheduled DNA synthesis in vivo in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shuji; Hosogi, Nobuo; Oda, Takuzo (Okayama Univ. (Japan). School of Medicine)

    1984-06-01

    In vivo in mammalian cells, ultraviolet-induced unscheduled DNA synthesis was less sensitive to aphidicolin than was replicative DNA synthesis. Replicative DNA synthesis in HeLa, HEp-2, WI-38 VA-13 and CV-1 cells was inhibited more than 97 % by aphidicolin at 10 ..mu..g/ml, whereas aphidicolin inhibition of DNA synthesis in ultraviolet-irradiated cells varied between 30 % and 90 % depending on cell types and assay conditions. Aphidicolin inhibition of unscheduled DNA synthesis (UDS) in HeLa cells increased gradually with increasing aphidicolin concentration and reached approximately 90 % at 100 ..mu..g/ml aphidicolin. A significant fraction of UDS in ultraviolet-irradiated HEp-2 cells was resistant to aphidicolin even at 300 ..mu..g/ml. Considered along with related information reported previously, the present results suggest that both aphidicolin-sensitive and insensitive DNA polymerases, DNA polymerase ..cap alpha.. and a non-..cap alpha.. DNA polymerase (possibly DNA polymerase ..beta..), are involved in in situ UDS in these ultraviolet-irradiated cells. Comparison of staphylococcal nuclease sensitivity between DNAs repaired in the presence and in the absence of aphidicolin in HEp-2 cells suggested that the involvement of DNA polymerase ..cap alpha.. in UDS favored DNA synthesis in the intranucleosomal region.

  9. DNA ligase I selectively affects DNA synthesis by DNA polymerases delta and epsilon suggesting differential functions in DNA replication and repair.

    OpenAIRE

    Mossi, R; Ferrari, E; Hübscher, U

    1998-01-01

    The joining of single-stranded breaks in double-stranded DNA is an essential step in many important processes such as DNA replication, DNA repair, and genetic recombination. Several data implicate a role for DNA ligase I in DNA replication, probably coordinated by the action of other enzymes and proteins. Since both DNA polymerases delta and epsilon show multiple functions in different DNA transactions, we investigated the effect of DNA ligase I on various DNA synthesis events catalyzed by th...

  10. DNA synthesis in human bone marrow is circadian stage dependent.

    Science.gov (United States)

    Smaaland, R; Laerum, O D; Lote, K; Sletvold, O; Sothern, R B; Bjerknes, R

    1991-06-15

    Fraction of human bone marrow (BM) cells in DNA synthesis has been studied by sampling BM from the sternum or the iliac crests every 4 hours during one 24-hour period in 16 healthy male volunteers. Three of the subjects underwent the sampling procedure twice, resulting in 19 24-hour profiles. The percentage of cells in DNA synthesis measured by flow cytometry demonstrated a large variation along the circadian time scale for each 24-hour profile, with a range of variation from 29% to 339% from lowest to highest value. Seventeen profiles (89.5%) had the highest DNA synthesis during waking hours between 08:00 hours and 20:00 hours, and the lowest percentage of cells in DNA synthesis between 00:00 hours and 04:00 hours. The mean value of the lowest DNA synthesis for each 19 24-hour period was 8.7% +/- 0.6%, while the mean value of the highest DNA synthesis was 17.6% +/- 0.6%, ie, a twofold difference. There was no difference in DNA synthesis between winter and summer. A significantly higher DNA synthesis was demonstrated for samples obtained from sternum as compared with the iliac crests, but the same circadian pattern was demonstrated for both localizations. By taking circadian stage-dependent variations in DNA synthesis into account it may be possible to reduce BM sensitivity to cytotoxic chemotherapy, to increase the effect of hematopoietic growth factors as well as increase the fraction of proliferating cells with careful selection of time of day for harvesting BM cells for auto- or allografting.

  11. Polo-like-kinase 1 is a proviral host-factor for hepatitis B virus replication

    Science.gov (United States)

    Diab, Ahmed M.; Foca, Adrien; Fusil, Floriane; Lahlali, Thomas; Jalaguier, Pascal; Amirache, Fouzia; N’Guyen, Lia; Isorce, Nathalie; Cosset, François-Loïc; Zoulim, Fabien; Andrisani, Ourania M; Durantel, David

    2017-01-01

    Chronic Hepatitis B Virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC) and current treatments for CHB and HCC are perfectible. Herein, we identified cellular Serine/Threonine Polo-like-kinase 1 (PLK1) as a positive effector of HBV replication. The aim of this study was to demonstrate the proviral role of PLK1 in HBV biosynthesis and validate PLK1 inhibition a potential antiviral strategy. To this end, we employed physiologically relevant HBV infection models of Primary Human Hepatocytes (PHH) and differentiated HepaRG cells, in conjunction with pharmacologic PLK1 inhibitors, siRNA-mediated knockdown, and overexpression of constitutively active PLK1 (PLK1CA). In addition, humanized liver FRG mouse model was used to determine antiviral effect of PLK1 inhibitor BI-2536 on HBV infection in vivo. Lastly, in vitro PLK1 kinase assays and site-directed mutagenesis were employed to demonstrate HBV core protein (HBc) is a PLK1 substrate. We demonstrate HBV infection activated cellular PLK1 in PHH and dHepaRG cells. PLK1 inhibition by BI-2536 or siRNA-mediated knockdown suppressed, whereas overexpression of PLK1CA increased HBV DNA biosynthesis, supporting PLK1 effects on viral biosynthesis are specific, and PLK1 is a proviral cellular factor. Significantly, BI-2536 administration to HBV-infected humanized liver FRG mice strongly inhibited HBV infection, validating PLK1 as a novel antiviral target in vivo. The proviral action of PLK1 is associated with the biogenesis of the nucleocapsid, as BI-2536 leads to its decreased intracellular formation/accumulation. In this respect, our studies identified HBc as a PLK1 substrate in vitro, and mapped PLK1 phosphorylation sites on this protein. PLK1 is a proviral host factor that could be envisaged as a target for combined antiviral and antitumoral strategies against HBV infection and HBV mediated carcinogenesis. PMID:28445592

  12. PRE-FORK SYNTHESIS: A MODEL FOR DNA REPLICATION*

    Science.gov (United States)

    Haskell, Edwin H.; Davern, Cedric I.

    1969-01-01

    A model of DNA replication is presented in which DNA synthesis is continuously initiated from parental strand nicks and occurs, with conservation of helix winding number, ahead of the so-called replicating fork. The fork in this model is the locus of unwinding of already replicated, but presumably unstable, DNA. The model, involving Okazaki's notion of multiple initiation, is based upon the properties of Kornberg's DNA polymerase and accounts for the presence of single-stranded nascent DNA fragments in cell lysates. In addition to acting as sites of initiation, the parental strand nicks are implicated as sites of free rotation allowing unwinding of the replicated DNA. PMID:5264136

  13. Replication stress activates DNA repair synthesis in mitosis

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Ying, Songmin; Bjerregaard, Victoria A

    2015-01-01

    mitosis serves as the trigger for completion of DNA replication at CFS loci in human cells. Given that this POLD3-dependent mitotic DNA synthesis is enhanced in aneuploid cancer cells that exhibit intrinsically high levels of chromosomal instability (CIN(+)) and replicative stress, we suggest...

  14. Translesion DNA synthesis in the context of cancer research

    Directory of Open Access Journals (Sweden)

    Knobel Philip A

    2011-11-01

    Full Text Available Abstract During cell division, replication of the genomic DNA is performed by high-fidelity DNA polymerases but these error-free enzymes can not synthesize across damaged DNA. Specialized DNA polymerases, so called DNA translesion synthesis polymerases (TLS polymerases, can replicate damaged DNA thereby avoiding replication fork breakdown and subsequent chromosomal instability. We focus on the involvement of mammalian TLS polymerases in DNA damage tolerance mechanisms. In detail, we review the discovery of TLS polymerases and describe the molecular features of all the mammalian TLS polymerases identified so far. We give a short overview of the mechanisms that regulate the selectivity and activity of TLS polymerases. In addition, we summarize the current knowledge how different types of DNA damage, relevant either for the induction or treatment of cancer, are bypassed by TLS polymerases. Finally, we elucidate the relevance of TLS polymerases in the context of cancer therapy.

  15. DNA display III. Solid-phase organic synthesis on unprotected DNA.

    Directory of Open Access Journals (Sweden)

    David R Halpin

    2004-07-01

    Full Text Available DNA-directed synthesis represents a powerful new tool for molecular discovery. Its ultimate utility, however, hinges upon the diversity of chemical reactions that can be executed in the presence of unprotected DNA. We present a solid-phase reaction format that makes possible the use of standard organic reaction conditions and common reagents to facilitate chemical transformations on unprotected DNA supports. We demonstrate the feasibility of this strategy by comprehensively adapting solid-phase 9-fluorenylmethyoxycarbonyl-based peptide synthesis to be DNA-compatible, and we describe a set of tools for the adaptation of other chemistries. Efficient peptide coupling to DNA was observed for all 33 amino acids tested, and polypeptides as long as 12 amino acids were synthesized on DNA supports. Beyond the direct implications for synthesis of peptide-DNA conjugates, the methods described offer a general strategy for organic synthesis on unprotected DNA. Their employment can facilitate the generation of chemically diverse DNA-encoded molecular populations amenable to in vitro evolution and genetic manipulation.

  16. Genome-wide amplification of proviral sequences reveals new polymorphic HERV-K(HML-2) proviruses in humans and chimpanzees that are absent from genome assemblies.

    Science.gov (United States)

    Macfarlane, Catriona M; Badge, Richard M

    2015-04-28

    To date, the human population census of proviruses of the Betaretrovirus-like human endogenous retroviral (HERV-K) (HML-2) family has been compiled from a limited number of complete genomes, making it certain that rare polymorphic loci are under-represented and are yet to be described. Here we describe a suppression PCR-based method called genome-wide amplification of proviral sequences (GAPS) that selectively amplifies DNA fragments containing the termini of HERV-K(HML-2) proviral sequences and their flanking genomic sequences. We analysed the HERV-K(HML-2) proviral content of 101 unrelated humans, 4 common chimpanzees and three centre d'etude du polymorphisme humain (CEPH) pedigrees (44 individuals). The technique isolated HERV-K(HML-2) proviruses that had integrated in the genomes of the great apes throughout their divergence and included evolutionarily young elements still unfixed for presence/absence. By examining the HERV-K(HML-2) proviral content of 145 humans we detected a new insertionally polymorphic Type I HERV-K(HML-2) provirus. We also observed provirus versus solo long terminal repeat (LTR) polymorphism within humans at a previously unreported, but ancient, locus. Finally, we report two novel chimpanzee specific proviruses, one of which is dimorphic for a provirus versus solo LTR. Thus GAPS enables the isolation of uncharacterised HERV-K(HML-2) proviral sequences and provides a direct means to assess inter-individual genetic variation associated with HERV-K(HML-2) proviruses.

  17. In vitro assays for DNA pairing and recombination-associated DNA synthesis.

    Science.gov (United States)

    Liu, Jie; Sneeden, Jessica; Heyer, Wolf-Dietrich

    2011-01-01

    Homologous recombination (HR) is a high-fidelity DNA repair pathway that maintains genome integrity, by repairing double strand breaks (DSBs) and single-stranded DNA (ssDNA) gaps and by supporting stalled/collapsed replication forks. The RecA/Rad51 family of proteins are the key enzymes in this homology-directed repair pathway, as they perform DNA strand invasion and exchange, in concert with a host of ancillary factors. In vitro, the RecA/Rad51 family of proteins share similar enzymatic activities including catalyzing ssDNA-stimulated ATP hydrolysis, formation of displacement loops (D-loops), and DNA strand exchange. After successful DNA strand invasion, DNA synthesis restores the lost genetic information using an undamaged DNA template. In this chapter, we describe two well-established biochemical assays to investigate the signature DNA strand transfer activity of RecA/Rad51 family of proteins: the D-loop assay and the DNA strand exchange reaction. Moreover, we describe a D-loop extension assay coupling D-loop formation with DNA synthesis, which can be used to define the roles of DNA polymerases in HR. Additionally, we present a protocol to investigate protein-mediated DNA annealing, a critical step in the synthesis-dependent strand annealing (SDSA) and double-Holliday junction (dHJ) pathways as well as the single-strand annealing (SSA) pathway. The quality of supercoiled plasmid DNA is critical in reconstituted HR reactions, and a protocol describing the preparation of this DNA substrate is included.

  18. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe

    2011-01-01

    modifications are tolerated in DNA:RNA hybrids but leave their melting temperatures virtually unaffected. Fluorescence data indicate that the pyrene moiety is residing outside the helix. The available data suggest that the DNA discrimination is due to (i) the positive charge of the piperazino ring having...... a greater impact in the narrow and deep minor groove of a B-type dsDNA duplex than in the wide and shallow minor groove of an A-type DNA:RNA hybrid and (ii) the B-type dsDNA duplex allowing the pyrene to intercalate and bury its apolar surface.......We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization...

  19. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis.

    Science.gov (United States)

    MacConnell, Andrew B; McEnaney, Patrick J; Cavett, Valerie J; Paegel, Brian M

    2015-09-14

    The promise of exploiting combinatorial synthesis for small molecule discovery remains unfulfilled due primarily to the "structure elucidation problem": the back-end mass spectrometric analysis that significantly restricts one-bead-one-compound (OBOC) library complexity. The very molecular features that confer binding potency and specificity, such as stereochemistry, regiochemistry, and scaffold rigidity, are conspicuously absent from most libraries because isomerism introduces mass redundancy and diverse scaffolds yield uninterpretable MS fragmentation. Here we present DNA-encoded solid-phase synthesis (DESPS), comprising parallel compound synthesis in organic solvent and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides. Computational encoding language design yielded 148 thermodynamically optimized sequences with Hamming string distance ≥ 3 and total read length bases for facile sequencing. Ligation is efficient (70% yield), specific, and directional over 6 encoding positions. A series of isomers served as a testbed for DESPS's utility in split-and-pool diversification. Single-bead quantitative PCR detected 9 × 10(4) molecules/bead and sequencing allowed for elucidation of each compound's synthetic history. We applied DESPS to the combinatorial synthesis of a 75,645-member OBOC library containing scaffold, stereochemical and regiochemical diversity using mixed-scale resin (160-μm quality control beads and 10-μm screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19 quality control beads showed excellent agreement (ppt) between DNA sequence-predicted mass and the observed mass. DESPS synergistically unites the advantages of solid-phase synthesis and DNA encoding, enabling single-bead structural elucidation of complex compounds and synthesis using reactions normally considered incompatible with unprotected DNA. The widespread availability of inexpensive oligonucleotide synthesis, enzymes, DNA sequencing, and PCR make

  20. D-ribose inhibits DNA repair synthesis in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zunica, G.; Marini, M.; Brunelli, M.A.; Chiricolo, M.; Franceschi, C.

    1986-07-31

    D-ribose is cytotoxic for quiescent human lymphocytes and severely inhibits their PHA-induced proliferation at concentrations (25-50 mM) at which other simple sugars are ineffective. In order to explain these effects, DNA repair synthesis was evaluated in PHA-stimulated human lymphocytes treated with hydroxyurea and irradiated. D-ribose, in contrast to other reducing sugars, did not induce repair synthesis and therefore did not apparently damage DNA in a direct way, although it markedly inhibited gamma ray-induced repair. Taking into account that lymphocytes must rejoin physiologically-formed DNA strand breaks in order to enter the cell cycle, we suggest that D-ribose exerts its cytotoxic activity by interfering with metabolic pathways critical for the repair of DNA breaks.

  1. Automation of cDNA Synthesis and Labelling Improves Reproducibility

    OpenAIRE

    Daniel Klevebring; Marcus Gry; Johan Lindberg; Anna Eidefors; Joakim Lundeberg

    2009-01-01

    Background. Several technologies, such as in-depth sequencing and microarrays, enable large-scale interrogation of genomes and transcriptomes. In this study, we asses reproducibility and throughput by moving all laboratory procedures to a robotic workstation, capable of handling superparamagnetic beads. Here, we describe a fully automated procedure for cDNA synthesis and labelling for microarrays, where the purification steps prior to and after labelling are based on precipitation of DNA on c...

  2. Translesion Synthesis: Insights into the Selection and Switching of DNA Polymerases

    Directory of Open Access Journals (Sweden)

    Linlin Zhao

    2017-01-01

    Full Text Available DNA replication is constantly challenged by DNA lesions, noncanonical DNA structures and difficult-to-replicate DNA sequences. Two major strategies to rescue a stalled replication fork and to ensure continuous DNA synthesis are: (1 template switching and recombination-dependent DNA synthesis; and (2 translesion synthesis (TLS using specialized DNA polymerases to perform nucleotide incorporation opposite DNA lesions. The former pathway is mainly error-free, and the latter is error-prone and a major source of mutagenesis. An accepted model of translesion synthesis involves DNA polymerase switching steps between a replicative DNA polymerase and one or more TLS DNA polymerases. The mechanisms that govern the selection and exchange of specialized DNA polymerases for a given DNA lesion are not well understood. In this review, recent studies concerning the mechanisms of selection and switching of DNA polymerases in eukaryotic systems are summarized.

  3. Polo-like-kinase 1 is a proviral host factor for hepatitis B virus replication.

    Science.gov (United States)

    Diab, Ahmed; Foca, Adrien; Fusil, Floriane; Lahlali, Thomas; Jalaguier, Pascal; Amirache, Fouzia; N'Guyen, Lia; Isorce, Nathalie; Cosset, François-Loïc; Zoulim, Fabien; Andrisani, Ourania; Durantel, David

    2017-12-01

    Chronic hepatitis B virus (HBV) infection is a major risk factor for hepatocellular carcinoma (HCC) and current treatments for chronic hepatitis B and HCC are suboptimal. Herein, we identified cellular serine/threonine Polo-like-kinase 1 (PLK1) as a positive effector of HBV replication. The aim of this study was to demonstrate the proviral role of PLK1 in HBV biosynthesis and validate PLK1 inhibition a potential antiviral strategy. To this end, we employed physiologically relevant HBV infection models of primary human hepatocytes (PHHs) and differentiated HepaRG cells in conjunction with pharmacologic PLK1 inhibitors, small interfering RNA (siRNA)-mediated knockdown, and overexpression of constitutively active PLK1 (PLK1CA ). In addition, a humanized liver Fah-/- /Rag2-/- /Il2rg-/- (FRG) mouse model was used to determine the antiviral effect of PLK1 inhibitor BI-2536 on HBV infection in vivo. Finally, in vitro PLK1 kinase assays and site-directed mutagenesis were employed to demonstrate that HBV core protein (HBc) is a PLK1 substrate. We demonstrated that HBV infection activated cellular PLK1 in PHHs and differentiated HepaRG cells. PLK1 inhibition by BI-2536 or siRNA-mediated knockdown suppressed HBV DNA biosynthesis, whereas overexpression of PLK1CA increased it, suggesting that the PLK1 effects on viral biosynthesis are specific and that PLK1 is a proviral cellular factor. Significantly, BI-2536 administration to HBV-infected humanized liver FRG mice strongly inhibited HBV infection, validating PLK1 as an antiviral target in vivo. The proviral action of PLK1 is associated with the biogenesis of the nucleocapsid, as BI-2536 leads to its decreased intracellular formation/accumulation. In this respect, our studies identified HBc as a PLK1 substrate in vitro, and mapped PLK1 phosphorylation sites on this protein. PLK1 is a proviral host factor that could be envisaged as a target for combined antiviral and antitumoral strategies against HBV infection and HBV

  4. Unexpected Hydration of a Triple Bond During DNA Synthesis

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Pedersen, Erik B.

    2016-01-01

    acidic conditions, polarizes the triple bond in the intercalator and this makes hydration of the triple bond possible during the DNA synthesis and an oligonucleotide with 1-(indol-3-yl)-2-(pyren-1-yl)ethanone as the intercalator is formed. Insertion of the unhydrated and hydrated linker systems gave...

  5. Intestinal DNA concentration and protein synthesis in response to ...

    African Journals Online (AJOL)

    Performance, protein synthesis and mucosal DNA in small intestine of Leghorn hens may be affected by low quality feedstuff. An experiment was conducted in completely randomized design (CRD) in 2 × 2 factorial arrangement. Main factors included diets containing 20 and 40 % barley and black and blue strains of leghorn ...

  6. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  7. DNA Assisted Synthesis of Chitosan/ α

    Indian Academy of Sciences (India)

    68

    Nidhin, M., Sreeram, K.J., Nair, B.U. Polysaccharide films as templates in the synthesis of hematite nanostructures with special properties, Applied Surface. Science, 2012, 258: 5719-5184. 14. Dhananjaya, N., Nagabhushana, H., C., Chakradhar, R.P.S., Effect of Li (+)-ion on enhancement of photoluminescence in Gd (2) o ...

  8. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    Science.gov (United States)

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  9. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance

    Directory of Open Access Journals (Sweden)

    Asunción Delgado

    2017-05-01

    Full Text Available Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance.

  10. Design and synthesis of DNA four-helix bundles.

    Science.gov (United States)

    Rangnekar, Abhijit; Gothelf, Kurt V; LaBean, Thomas H

    2011-06-10

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  11. Design and synthesis of DNA four-helix bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail: kvg@chem.au.dk, E-mail: thl@cs.duke.edu [Department of Chemistry, Duke University, Durham, NC 27708 (United States)

    2011-06-10

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  12. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0238 TITLE: Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer PRINCIPAL...of Translesion DNA Synthesis as Therapeutic Agents against Lung Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Oxygen-rich environments can create pro- mutagenic DNA lesions such as 8-oxoguanine (8-oxo-G) that can be misreplicated during translesion DNA synthesis

  13. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress

    DEFF Research Database (Denmark)

    Bhowmick, Rahul; Minocherhomji, Sheroy; Hickson, Ian D

    2016-01-01

    Homologous recombination (HR) is necessary to counteract DNA replication stress. Common fragile site (CFS) loci are particularly sensitive to replication stress and undergo pathological rearrangements in tumors. At these loci, replication stress frequently activates DNA repair synthesis in mitosis...... replication stress at CFS loci during S-phase. In contrast, MiDAS is RAD52 dependent, and RAD52 is required for the timely recruitment of MUS81 and POLD3 to CFSs in early mitosis. Our results provide further mechanistic insight into MiDAS and define a specific function for human RAD52. Furthermore, selective...

  14. Curved DNA: design, synthesis, and circulation

    Energy Technology Data Exchange (ETDEWEB)

    Ulanovsky, L.; Bodner, M.; Trifonov, E.N.; Choder, M.

    1986-02-01

    Curved DNA molecules and unusually small circles have been obtained by ligation of synthetic 21-base precursors. The ligation resulted in the formation of double-stranded oligo(precursor)s possessing a strong 10.5-base-pair (bp) periodicity of the runs of adenines. Two-dimensional polyacrylamide gel electrophoresis of the ligation products showed two distinct families of spots: (i) noncircular oligo(precursor)s of 21 to 231 bp (1- to 11-mers) and (ii) four circles from 105 to 168 bp (eluted and analyzed by denaturing gel electrophoresis). The noncircular oligomers exhibited anomalously slow migration, as if they were as much as three times longer than they actually are. The amount of circular products peaked sharply at approx. = 126 bp, near which size the circles have been estimated to be nonconstrained both torsionally and in terms of bending. The nonconstrained circularization provides a technique for the direct measurement of the inherent curvature of DNA in solution. From the size of the circles, an estimate of 8.7 is obtained for the absolute value of the AA x TT wedge angle (roll and tilt combined).

  15. Inaccurate DNA synthesis in cell extracts of yeast producing active human DNA polymerase iota.

    Directory of Open Access Journals (Sweden)

    Alena V Makarova

    Full Text Available Mammalian Pol ι has an unusual combination of properties: it is stimulated by Mn(2+ ions, can bypass some DNA lesions and misincorporates "G" opposite template "T" more frequently than incorporates the correct "A." We recently proposed a method of detection of Pol ι activity in animal cell extracts, based on primer extension opposite the template T with a high concentration of only two nucleotides, dGTP and dATP (incorporation of "G" versus "A" method of Gening, abbreviated as "misGvA". We provide unambiguous proof of the "misGvA" approach concept and extend the applicability of the method for the studies of variants of Pol ι in the yeast model system with different cation cofactors. We produced human Pol ι in baker's yeast, which do not have a POLI ortholog. The "misGvA" activity is absent in cell extracts containing an empty vector, or producing catalytically dead Pol ι, or Pol ι lacking exon 2, but is robust in the strain producing wild-type Pol ι or its catalytic core, or protein with the active center L62I mutant. The signature pattern of primer extension products resulting from inaccurate DNA synthesis by extracts of cells producing either Pol ι or human Pol η is different. The DNA sequence of the template is critical for the detection of the infidelity of DNA synthesis attributed to DNA Pol ι. The primer/template and composition of the exogenous DNA precursor pool can be adapted to monitor replication fidelity in cell extracts expressing various error-prone Pols or mutator variants of accurate Pols. Finally, we demonstrate that the mutation rates in yeast strains producing human DNA Pols ι and η are not elevated over the control strain, despite highly inaccurate DNA synthesis by their extracts.

  16. Application of Biocatalysis to on-DNA Carbohydrate Library Synthesis.

    Science.gov (United States)

    Thomas, Baptiste; Lu, Xiaojie; Birmingham, William R; Huang, Kun; Both, Peter; Reyes Martinez, Juana Elizabeth; Young, Robert J; Davie, Christopher P; Flitsch, Sabine L

    2017-05-04

    DNA-encoded libraries are increasingly used for the discovery of bioactive lead compounds in high-throughput screening programs against specific biological targets. Although a number of libraries are now available, they cover limited chemical space due to bias in ease of synthesis and the lack of chemical reactions that are compatible with DNA tagging. For example, compound libraries rarely contain complex biomolecules such as carbohydrates with high levels of functionality, stereochemistry, and hydrophilicity. By using biocatalysis in combination with chemical methods, we aimed to significantly expand chemical space and generate generic libraries with potentially better biocompatibility. For DNA-encoded libraries, biocatalysis is particularly advantageous, as it is highly selective and can be performed in aqueous environments, which is an essential feature for this split-and-mix library technology. In this work, we demonstrated the application of biocatalysis for the on-DNA synthesis of carbohydrate-based libraries by using enzymatic oxidation and glycosylation in combination with traditional organic chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Comparison of HTLV-I Proviral Load in Adult T Cell Leukemia/Lymphoma (ATL), HTLV-I-Associated Myelopathy (HAM-TSP) and Healthy Carriers.

    Science.gov (United States)

    Akbarin, Mohammad Mehdi; Rahimi, Hossein; Hassannia, Tahereh; Shoja Razavi, Ghazaleh; Sabet, Faezeh; Shirdel, Abbas

    2013-03-01

    Human T Lymphocyte Virus Type one (HTLV-I) is a retrovirus that infects about 10-20 million people worldwide. Khorasan province in Iran is an endemic area. The majority of HTLV-I-infected individuals sustain healthy carriers but small proportion of infected population developed two progressive diseases: HAM/TSP and ATL. The proviral load could be a virological marker for disease monitoring, therefore in the present study HTLV-I proviral load has been evaluated in ATL and compared to HAM/TSP and healthy carriers. In this case series study, 47 HTLV-I infected individuals including 13 ATL, 23 HAM/TSP and 11 asymptomatic subjects were studied. Peripheral blood mononuclear cells (PBMCs) were investigated for presence of HTLV-I DNA provirus by PCR using LTR and Tax fragments. Then in infected subjects, HTLV-I proviral load was measured using real time PCR TaqMan method. The average age of patients in ATL was 52±8, in HAM/TSP 45.52±15.17 and in carrier's 38.65±14.9 years which differences were not statistically significant. The analysis of data showed a significant difference in mean WBC among study groups (ATL vs HAM/TSP and carriers P=0.0001). Moreover, mean HTLV-I proviral load was 11967.2 ± 5078, 409 ± 71.3 and 373.6 ± 143.3 in ATL, HAM/TSP and Healthy Carriers, respectively. The highest HTLV-I proviral load was measured in ATL group that had a significant correlation with WBC count (R=0.495, P=0.001). The proviral load variations between study groups was strongly significant (ATL vs carrier P=0.0001; ATL vs HAM/TSP P= 0.0001 and HAM/TSP vs carriers PTSP and healthy carriers. Therefore, HTLV-I proviral load is a prognostic factor for development of HTLV-I associated diseases and can be used as a monitoring marker for the efficiency of therapeutic regime.

  18. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  19. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase.

    Science.gov (United States)

    Dasari, Anvesh; Deodhar, Tejal; Berdis, Anthony J

    2017-07-21

    Translesion DNA synthesis (TLS) is the ability of DNA polymerases to incorporate nucleotides opposite and beyond damaged DNA. TLS activity is an important risk factor for the initiation and progression of genetic diseases such as cancer. In this study, we evaluate the ability of a high-fidelity DNA polymerase to perform TLS with 8-oxo-guanine (8-oxo-G), a highly pro-mutagenic DNA lesion formed by reactive oxygen species. Results of kinetic studies monitoring the incorporation of modified nucleotide analogs demonstrate that the binding affinity of the incoming dNTP is controlled by the overall hydrophobicity of the nucleobase. However, the rate constant for the polymerization step is regulated by hydrogen-bonding interactions made between the incoming nucleotide with 8-oxo-G. Results generated here for replicating the miscoding 8-oxo-G are compared to those published for the replication of the non-instructional abasic site. During the replication of both lesions, binding of the nucleotide substrate is controlled by energetics associated with nucleobase desolvation, whereas the rate constant for the polymerization step is influenced by the physical nature of the DNA lesion, that is, miscoding versus non-instructional. Collectively, these studies highlight the importance of nucleobase desolvation as a key physical feature that enhances the misreplication of structurally diverse DNA lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Effect of a corrinoid on Methanosarcina barkeri DNA synthesis].

    Science.gov (United States)

    Ryzhkova, E P; Briukhanov, A L

    2009-01-01

    Methanosarcina barkeri is capable of synthesizing large amounts of corrinoids, compounds of the vitamin B12 group, although not cobalamin. In the present work, exogenous cobalamin was demonstrated to upregulate DNA synthesis in M. harkeri cell suspensions incubated under air. The effect is similar to the one in Propionibacterium freudenreichii cells, though less pronounced. The growth of the archaeon under anaerobic conditions was shown to be suppressed by cobalamin and 5,6-dimethylbenzimidazole. The data obtained suggest the presence of a corrinoid-dependent ribonucleotide reductase in the archaeon cells which provides for deoxyribose precursors for DNA biosynthesis independently of the presence of molecular oxygen in the medium. Growth suppression under anoxic conditions by cobalamin and 5,6-dimethylbenzimidazole may be due to a decrease in the concentration of factor III, a polyfunctional corrinoid dominating in M. barkeri cells.

  1. Synthesis, characterization and DNA interaction studies of new triptycene derivatives

    Directory of Open Access Journals (Sweden)

    Sourav Chakraborty

    2014-06-01

    Full Text Available A facile and efficient synthesis of a new series of triptycene-based tripods is being reported. Using 2,6,14- or 2,7,14-triaminotriptycenes as synthons, the corresponding triazidotriptycenes were prepared in high yield. Additionally, we report the transformation of 2,6,14- or 2,7,14-triaminotriptycenes to the corresponding ethynyl-substituted triptycenes via their tribromo derivatives. Subsequently, derivatization of ethynyl-substituted triptycenes was studied to yield the respective propiolic acid and ethynylphosphine derivatives. Characterization of the newly functionalized triptycene derivatives and their regioisomers were carried out using FTIR and multinuclear NMR spectroscopy, mass spectrometry, and elemental analyses techniques. The study of the interaction of these trisubstituted triptycenes with various forms of DNA revealed interesting dependency on the functional groups of the triptycene core to initiate damage or conformational changes in DNA.

  2. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance.

    Science.gov (United States)

    Delgado, Asunción; Arco, Rocio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2017-05-09

    Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Detection and quantification of proviral HIV-1 184 M/V in circulating CD4(+) T cells of patients on HAART with a viremia less than 1000 copies/ml

    DEFF Research Database (Denmark)

    Mohey, Rajesh; Jørgensen, Anne Louise; Møller, Bjarne K

    2005-01-01

    proviral HIV-1 was detected and quantified by a specific and sensitive assay combining a TaqMan real-time PCR analysis with the amplification-refractory mutation system (ARMS) principle. Results Fifty-six percent of patients with low-level viremia had 184V in the CD4+ T cellular DNA compartment as compared...

  4. Peptide Synthesis on a Next-Generation DNA Sequencing Platform.

    Science.gov (United States)

    Svensen, Nina; Peersen, Olve B; Jaffrey, Samie R

    2016-09-02

    Methods for displaying large numbers of peptides on solid surfaces are essential for high-throughput characterization of peptide function and binding properties. Here we describe a method for converting the >10(7) flow cell-bound clusters of identical DNA strands generated by the Illumina DNA sequencing technology into clusters of complementary RNA, and subsequently peptide clusters. We modified the flow-cell-bound primers with ribonucleotides thus enabling them to be used by poliovirus polymerase 3D(pol) . The primers hybridize to the clustered DNA thus leading to RNA clusters. The RNAs fold into functional protein- or small molecule-binding aptamers. We used the mRNA-display approach to synthesize flow-cell-tethered peptides from these RNA clusters. The peptides showed selective binding to cognate antibodies. The methods described here provide an approach for using DNA clusters to template peptide synthesis on an Illumina flow cell, thus providing new opportunities for massively parallel peptide-based assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Existence of proviral porcine endogenous retrovirus in fresh and decellularised porcine tissues

    Directory of Open Access Journals (Sweden)

    Prabha S

    2008-01-01

    Full Text Available Purpose: Swine are expected to be utilized as xenograft donors for both whole organ and cellular transplantation. A major concern in using porcine organs for transplantation is the potential of transmission of porcine endogenous retrovirus (PERV. Tissue-engineered or decellularised heart valves have already been implanted in humans and have been marketed by certain companies after Food and Drug Administration (FDA approval. The aim of this study was to examine the existence of porcine endogenous retrovirus (PERV in fresh and decellularised porcine tissues. Methods: Porcine tissues (both fresh and decellularised were analysed using validated assays specific for PERV: polymerase chain reaction (PCR, reverse transcriptase polymerase chain reaction (RT-PCR. Results: PERV specific GAG sequences were found in the porcine heart tissue samples using PCR for DNA and RT- PCR for RNA. All tissue samples (both fresh and treated tissues like aortic valve, pulmonary valve and heart muscle showed the presence of PERV DNA. RT PCR for PERV was positive in all fresh tissues and was found to be negative in decellularised treated tissues. Conclusions: PCR is a rapid, specific test for the detection of PERV virus in xenografts. These findings have demonstrated that the presence of proviral DNA form of PERV in porcine tissues needs to be carefully considered when the infectious disease potential of xenotransplantation is being assessed.

  6. Serine Hydroxymethyltransferase Anchors de Novo Thymidylate Synthesis Pathway to Nuclear Lamina for DNA Synthesis*

    Science.gov (United States)

    Anderson, Donald D.; Woeller, Collynn F.; Chiang, En-Pei; Shane, Barry; Stover, Patrick J.

    2012-01-01

    The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks. PMID:22235121

  7. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids 20-hydroxyecdysone, makisterone A and a phytoecdysteroid on DNA synthesis in imaginal wing discs of day 4 final instar Helicoverpa armigera larvae was studied. DNA synthesis increased with increase in time of ...

  8. DNA synthesis in the imaginal wing discs of the American bollworm ...

    Indian Academy of Sciences (India)

    Unknown

    The effect of two insect growth regulators of plant origin viz. plumbagin and azadirachtin and the ecdysteroids. 20-hydroxyecdysone, makisterone A and a phytoecdysteroid on DNA synthesis in imaginal wing discs of day 4 final instar Helicoverpa armigera larvae was studied. DNA synthesis increased with increase in time of.

  9. Multi-line split DNA synthesis: a novel combinatorial method to make high quality peptide libraries

    Directory of Open Access Journals (Sweden)

    Ueno Shingo

    2004-09-01

    Full Text Available Abstract Background We developed a method to make a various high quality random peptide libraries for evolutionary protein engineering based on a combinatorial DNA synthesis. Results A split synthesis in codon units was performed with mixtures of bases optimally designed by using a Genetic Algorithm program. It required only standard DNA synthetic reagents and standard DNA synthesizers in three lines. This multi-line split DNA synthesis (MLSDS is simply realized by adding a mix-and-split process to normal DNA synthesis protocol. Superiority of MLSDS method over other methods was shown. We demonstrated the synthesis of oligonucleotide libraries with 1016 diversity, and the construction of a library with random sequence coding 120 amino acids containing few stop codons. Conclusions Owing to the flexibility of the MLSDS method, it will be able to design various "rational" libraries by using bioinformatics databases.

  10. Automation of cDNA Synthesis and Labelling Improves Reproducibility

    Directory of Open Access Journals (Sweden)

    Daniel Klevebring

    2009-01-01

    Full Text Available Background. Several technologies, such as in-depth sequencing and microarrays, enable large-scale interrogation of genomes and transcriptomes. In this study, we asses reproducibility and throughput by moving all laboratory procedures to a robotic workstation, capable of handling superparamagnetic beads. Here, we describe a fully automated procedure for cDNA synthesis and labelling for microarrays, where the purification steps prior to and after labelling are based on precipitation of DNA on carboxylic acid-coated paramagnetic beads. Results. The fully automated procedure allows for samples arrayed on a microtiter plate to be processed in parallel without manual intervention and ensuring high reproducibility. We compare our results to a manual sample preparation procedure and, in addition, use a comprehensive reference dataset to show that the protocol described performs better than similar manual procedures. Conclusions. We demonstrate, in an automated gene expression microarray experiment, a reduced variance between replicates, resulting in an increase in the statistical power to detect differentially expressed genes, thus allowing smaller differences between samples to be identified. This protocol can with minor modifications be used to create cDNA libraries for other applications such as in-depth analysis using next-generation sequencing technologies.

  11. Automation of cDNA synthesis and labelling improves reproducibility.

    Science.gov (United States)

    Klevebring, Daniel; Gry, Marcus; Lindberg, Johan; Eidefors, Anna; Lundeberg, Joakim

    2009-01-01

    Several technologies, such as in-depth sequencing and microarrays, enable large-scale interrogation of genomes and transcriptomes. In this study, we asses reproducibility and throughput by moving all laboratory procedures to a robotic workstation, capable of handling superparamagnetic beads. Here, we describe a fully automated procedure for cDNA synthesis and labelling for microarrays, where the purification steps prior to and after labelling are based on precipitation of DNA on carboxylic acid-coated paramagnetic beads. The fully automated procedure allows for samples arrayed on a microtiter plate to be processed in parallel without manual intervention and ensuring high reproducibility. We compare our results to a manual sample preparation procedure and, in addition, use a comprehensive reference dataset to show that the protocol described performs better than similar manual procedures. We demonstrate, in an automated gene expression microarray experiment, a reduced variance between replicates, resulting in an increase in the statistical power to detect differentially expressed genes, thus allowing smaller differences between samples to be identified. This protocol can with minor modifications be used to create cDNA libraries for other applications such as in-depth analysis using next-generation sequencing technologies.

  12. Programmable autonomous synthesis of single-stranded DNA

    Science.gov (United States)

    Kishi, Jocelyn Y.; Schaus, Thomas E.; Gopalkrishnan, Nikhil; Xuan, Feng; Yin, Peng

    2018-02-01

    DNA performs diverse functional roles in biology, nanotechnology and biotechnology, but current methods for autonomously synthesizing arbitrary single-stranded DNA are limited. Here, we introduce the concept of primer exchange reaction (PER) cascades, which grow nascent single-stranded DNA with user-specified sequences following prescribed reaction pathways. PER synthesis happens in a programmable, autonomous, in situ and environmentally responsive fashion, providing a platform for engineering molecular circuits and devices with a wide range of sensing, monitoring, recording, signal-processing and actuation capabilities. We experimentally demonstrate a nanodevice that transduces the detection of a trigger RNA into the production of a DNAzyme that degrades an independent RNA substrate, a signal amplifier that conditionally synthesizes long fluorescent strands only in the presence of a particular RNA signal, molecular computing circuits that evaluate logic (AND, OR, NOT) combinations of RNA inputs, and a temporal molecular event recorder that records in the PER transcript the order in which distinct RNA inputs are sequentially detected.

  13. DNA synthesis determines the binding mode of the human mitochondrial single-stranded DNA-binding protein.

    Science.gov (United States)

    Morin, José A; Cerrón, Fernando; Jarillo, Javier; Beltran-Heredia, Elena; Ciesielski, Grzegorz L; Arias-Gonzalez, J Ricardo; Kaguni, Laurie S; Cao, Francisco J; Ibarra, Borja

    2017-07-07

    Single-stranded DNA-binding proteins (SSBs) play a key role in genome maintenance, binding and organizing single-stranded DNA (ssDNA) intermediates. Multimeric SSBs, such as the human mitochondrial SSB (HmtSSB), present multiple sites to interact with ssDNA, which has been shown in vitro to enable them to bind a variable number of single-stranded nucleotides depending on the salt and protein concentration. It has long been suggested that different binding modes might be used selectively for different functions. To study this possibility, we used optical tweezers to determine and compare the structure and energetics of long, individual HmtSSB-DNA complexes assembled on preformed ssDNA and on ssDNA generated gradually during 'in situ' DNA synthesis. We show that HmtSSB binds to preformed ssDNA in two major modes, depending on salt and protein concentration. However, when protein binding was coupled to strand-displacement DNA synthesis, only one of the two binding modes was observed under all experimental conditions. Our results reveal a key role for the gradual generation of ssDNA in modulating the binding mode of a multimeric SSB protein and consequently, in generating the appropriate nucleoprotein structure for DNA synthetic reactions required for genome maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Nerve growth factor enhances DNA synthesis in cultured cerebellar neuroblasts.

    Science.gov (United States)

    Confort, C; Charrasse, S; Clos, J

    1991-10-01

    The cerebellar neuroblasts in primary cultures from five-day-old rats bore NGF receptor immunoreactivity, suggesting a potential responsive to NGF. At low plating density, NGF was found to enhance DNA synthesis in these cells in a dose-dependent manner. As these cells synthesize NGF, one possibility to account for the lack of response of neuroblasts plated at high density is that the amount of endogenous trophic agent produced in this culture condition is sufficient to ensure an optimal effect. The results demonstrate that premitotic neuroblasts in the CNS, as well postmitotic neurons, are responsive to NGF. At the early stage of its development, the cerebellum therefore appears to be a very good autocrine model of NGF action.

  15. Time-varying magnetic fields: effect on DNA synthesis.

    Science.gov (United States)

    Liboff, A R; Williams, T; Strong, D M; Wistar, R

    1984-02-24

    Human fibroblasts have exhibited enhanced DNA synthesis when exposed to sinusoidally varying magnetic fields for a wide range of frequencies (15 hertz to 4 kilohertz) and amplitudes (2.3 X 10(-6) to 5.6 X 10(-4) tesla). This effect, which is at maximum during the middle of the S phase of the cell cycle, appears to be independent of the time derivative of the magnetic field, suggesting an underlying mechanism other than Faraday's law. The threshold is estimated to be between 0.5 X 10(-5) and 2.5 X 10(-5) tesla per second. These results bring into question the allegedly specific magnetic wave shapes now used in therapeutic devices for bone nonunion. The range of magnetic field amplitudes tested encompass the geomagnetic field, suggesting the possibility of mutagenic interactions directly arising from short-term changes in the earth's field.

  16. Learning from directed evolution: Thermus aquaticus DNA polymerase mutants with translesion synthesis activity.

    Science.gov (United States)

    Obeid, Samra; Schnur, Andreas; Gloeckner, Christian; Blatter, Nina; Welte, Wolfram; Diederichs, Kay; Marx, Andreas

    2011-07-04

    DNA is being constantly damaged by endo- and exogenous agents such as reactive oxygen species, chemicals, radioactivity, and ultraviolet radiation. Additionally, DNA is inherently labile, and this can result in, for example, the spontaneous hydrolysis of the glycosidic bond that connects the sugar and the nucleobase moieties in DNA; this results in abasic sites. It has long been obscure how cells achieve DNA synthesis past these lesions, and only recently has it been discovered that several specialized DNA polymerases are involved in translesion synthesis. The underlying mechanisms that render one DNA polymerase competent in translesion synthesis while another DNA polymerase fails are still indistinct. Recently two variants of Taq DNA polymerase that exhibited higher lesion bypass ability than the wild-type enzyme were identified by directed-evolution approaches. Strikingly, in both approaches it was independently found that substitution of a single nonpolar amino acid side chain by a cationic side chain increases the capability of translesion synthesis. Here, we combined both mutations in a single enzyme. We found that the KlenTaq DNA polymerase that bore both mutations superseded the wild-type as well as the respective single mutants in translesion-bypass proficiency. Further insights in the molecular basis of the detected gain of translesion-synthesis function were obtained by structural studies of DNA polymerase variants caught in processing canonical and damaged substrates. We found that increased positive charge of the surface potential in the area proximal to the negatively charged substrates promotes translesion synthesis by KlenTaq DNA polymerase, an enzyme that has very limited naturally evolved capability to perform translesion synthesis. Since expanded positively charged surface potential areas are also found in naturally evolved translesion DNA polymerases, our results underscore the impact of charge on the proficiency of naturally evolved translesion

  17. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    activity, anti-cancer and anti-microbial activities.9 12. The design of small complexes that bind and react with DNA is one of the interesting activities of bioinor- ganic chemist. Hence it is important to investigate more efficient drugs that target DNA. In recent years,13 15 there is some interest towards synthesis, DNA interac-.

  18. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication

    Science.gov (United States)

    Seco, Elena M.

    2017-01-01

    Abstract Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA ‘initiation primer’ on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. PMID:28575448

  19. Synthesis and processing of kinetoplast DNA minicircles in Trypanosoma equiperdum.

    Science.gov (United States)

    Ryan, K A; Englund, P T

    1989-01-01

    Kinetoplast DNA, the mitochondrial DNA in trypanosomes, is a giant network containing topologically interlocked minicircles. Replication occurs on free minicircles that have been detached from the network. In this paper, we report studies on the synthesis and processing of the minicircle L and H strands. Analysis of free minicircles from Trypanosoma equiperdum by two-dimensional agarose gel electrophoresis indicated that elongating L strands are present on theta structures. Hybridization studies indicated that L-strand elongation is continuous and unidirectional, starting near nucleotide 805 and proceeding around the entire minicircle. The theta structures segregate into monomeric progeny minicircles, and those with a newly synthesized L strand have a 8-nucleotide gap between nucleotides 805 and 814 (J. M. Ntambi, T. A. Shapiro, K. A. Ryan, and P. T. Englund, J. Biol. Chem. 261:11890-11895, 1986). These molecules are reattached to the network, where repair of the gap takes place. Of the molecules labeled during a 10-min pulse with [3H]thymidine, gap filling occurred on half within about 15 min and on virtually all by 60 min; however, there was no detectable covalent closure of the newly synthesized L strand by 60 min. Images PMID:2552285

  20. Association between HLA Class I Alleles and Proviral Load in HTLV-I Associated Myelopathy/Tropical Spastic Paraperesis (HAM/TSP) Patients in Iranian Population.

    Science.gov (United States)

    Taghaddosi, Mahdi; Rezaee, S A Rahim; Rafatpanah, Houshang; Rajaei, Taraneh; Farid Hosseini, Reza; Narges, Valizadeh

    2013-03-01

    The aim of this study was to investigate the association between HLA class I alleles (HLA-A*02, HLA-A*24, HLA-Cw*08, HLA-B5401) and proviral load in HTLV-I associated myelopathy/tropical spastic paraperesis (HAM/TSP) patients in Iranian population. 20 new cases of HAM/TSP patients and 30 HTLV-I infected healthy carriers were recruited. Peripheral blood samples were collected. Peripheral blood mononuclear cells (PBMCs) were isolated. DNA was extracted from PBMC.HTLV-I proviral load was calculated by Taqman quantitative real time polymerase chain reaction (qRT-PCR). PCR sequence-specific primer (PCR-SSP) reactions were performed to detect HLA-A, HLA-B and, HLA-Cw alleles. There was no significant difference in sex and age between asymptomatic and HAM/TSP group. The Mann-Whitney U test was used to compare proviral load between HAM/TSP patients and healthy carrier. Provirus load of HAM/TSP patients was significantly higher than that of HCs (P=0.003, Mann-Whitney U test).Odd ratio was calculated to determine association between class I alleles including (HLA-A*02, HLA-A*24, HLA-Cw*08) and risk of HAM/TSP development. We couldn't find any association between these class I alleles and risk of HAM/TSP development in our study. In our survey HLA-A*02, HLA-A24, HLA-Cw*08 didn't have protective effect on proviral load (P=0.075, P=0.060 and 0.650 Mann-Whitney U test respectively). In conclusion, certain HLA alleles with protective effect in one population may have not similar effect in other population. This may be because of pathogen polymorphism or host genetic heterogeneity and allele frequency in desired population.

  1. [Effect of cobalamin derivatives on DNA synthesis in cells of Propionibacterium freudenreichii subsp. shermanii].

    Science.gov (United States)

    Iordan, E P; Petukhova, N I; Vorob'eva, L I

    1987-01-01

    The increase of DNA-synthesis rate (according incorporation [8-14C]adenine) in B12-deficient cells Propionibacterium shermanii as a result of different cobalamines adding into the cell suspension including metoxyethyladenile analog of adenozilcobalamin and some components of vitamin B12 molecule has been found. The DNA-synthesis rate in B12-deficient cells is nearly twice lower as compared with one in B12-normal cells. Considerable stimulative effect (80-100%) was provided with coenzyme forms of cobalamin. The data confirm the participation of vitamin B12 in DNA-synthesis in Propionibacterium cells.

  2. Influence of some prostaglandins on DNA synthesis and DNA excision repair in mouse spleen cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Egg, D.; Altmann, H.; Guenther R.; Klein W.; Kocsis, F.

    1978-03-01

    In vitro experiments were performed on mouse spleen cells to establish possible influences of some naturally occurring prostaglandins on DNA synthesis and DNA excision repair. The prostaglandins A1, B1, E1, E2, and F2 alpha were tested in concentrations of lopg, 5 ng and 2.5 microgram per ml cell suspension. DNA synthesis was significantly increased by PgF2 alpha in all the three concentrations tested, while the other tested prostaglandins were essentially ineffective. DNA excision repair was significantly inhibited by PgE1 and PgE2 at 5 ng/ml and at 2.5 microgram/ml but increased by PgF2 alpha in the two lower concentrations. The rejoining of DNA-strand breaks after gamma-irradiation was slightly reduced by PgE1, PgE2 and PgF2 alpha at 2.5 microgram/ml.

  3. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools

    Science.gov (United States)

    Godsell, P. M.; Balls, M.

    1973-01-01

    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  4. Facile synthesis of Graphene Oxide/Double-stranded DNA ...

    Indian Academy of Sciences (India)

    with double-stranded DNA by simple mixing in an aqueous buffer media without unwinding double-stranded. DNA to single-stranded DNA. The GO/dsDNA hydrogels have shown controlled porosity by changing the concentration of the components. The strong binding between dsDNA and graphene is proved by Raman.

  5. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    2017-11-01

    Full Text Available Family B DNA polymerases (PolBs play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB, that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.

  6. Cloning the human betaretrovirus proviral genome from patients with primary biliary cirrhosis.

    Science.gov (United States)

    Xu, Lizhe; Sakalian, Michael; Shen, Zhiwei; Loss, George; Neuberger, James; Mason, Andrew

    2004-01-01

    Patients with primary biliary cirrhosis (PBC) have both serologic and tissue evidence of infection. A recently identified human betaretrovirus was originally cloned from the biliary epithelium cDNA library of a patient with PBC. By conducting a BLASTN search, the initial partial pol gene fragment was found to have 95% to 97% nucleotide homology with mouse mammary tumor virus (MMTV) and with retrovirus sequences derived from human breast cancer samples. Using an anti-p27(CA) MMTV antibody, viral proteins were detected in the perihepatic lymph nodes but not in liver tissue samples from patients with PBC, suggesting a higher viral burden in lymphoid tissue. Therefore, in the current study, we used lymph node DNA to clone the proviral genome of the human betaretrovirus from two patients with PBC using a polymerase chain reaction (PCR) walking methodology with conserved primers complementary to MMTV. The human betaretrovirus genome contains five potential open reading frames (ORF) for Gag, protease (Pro), polymerase (Pol), envelope (Env), and superantigen (Sag) proteins that are collinear with their counterparts in MMTV. Alignment studies performed with characterized MMTV and human breast cancer betaretrovirus amino acid sequences revealed a 93% to 99% identity with the p27 capsid proteins, a 93% to 97% identity with the betaretrovirus envelope proteins, and a 76% to 85% identity with the more variable superantigen proteins. Phylogenetic analysis of known betaretrovirus superantigen proteins showed that the human and murine sequences did not cluster as two distinct species. In conclusion, human betaretrovirus nucleic acid sequences have been cloned from patients with PBC. They share marked homology with MMTV and human breast cancer-derived retrovirus sequences.

  7. Synthesis of DNA containing uracil during bacteriophage infection of Bacillus subtilis. Final report (12th year)

    Energy Technology Data Exchange (ETDEWEB)

    Price, A.R.

    1983-02-01

    The mode of synthesis of enzymes and nucleotides induced by bacteriophages PBS1 and PBS2 has been studied to understand how these phages can make uracil-containing DNA in a cell which normally makes thymine-containing Bacillus subtilis DNA.

  8. Plasma Albumin Induces Cytosolic Calcium Oscilations and DNA Synthesis in Human Cultured Astrocytes

    Directory of Open Access Journals (Sweden)

    Lorena Vega-Zelaya

    2014-01-01

    Full Text Available So far, a little is known about transition from normal to focal epileptic brain, although disruption in blood-brain barrier and albumin had recently involved. The main objective of this work is to characterize the response of cultured human astrocytes to plasma albumin, including induction of DNA synthesis. Cortical tissue was obtained from 9 patients operated from temporal lobe epilepsy. Astrocytes were cultured for 3-4 weeks and cytosolic calcium concentration (Ca2+c was measured. Bovine and human plasma albumin were used. We observed that low albumin concentration decreases Ca2+c, while higher concentration, induces increase in Ca2+c. It was shown that increase in Ca2+c was mediated by inositol 1,4,5-trisphosphate and released from internal stores. Increase in Ca2+c was reduced to 19% by blocking the transforming growth factor-beta (TGF-βR receptor. Albumin induces DNA synthesis in a dose-response manner. Finally, induction of DNA synthesis can be partially blocked by heparin and block of TGF-β; however, the combination of both incompletely inhibits DNA synthesis. Therefore, results suggest that mechanisms other than Ca2+ signals and TGF-β receptor activation might induce DNA synthesis in a lesser degree. These results may be important to further understand the mechanisms involved in the transition from normal to focal epileptic brain.

  9. Express photolithographic DNA microarray synthesis with optimized chemistry and high-efficiency photolabile groups.

    Science.gov (United States)

    Sack, Matej; Hölz, Kathrin; Holik, Ann-Katrin; Kretschy, Nicole; Somoza, Veronika; Stengele, Klaus-Peter; Somoza, Mark M

    2016-03-02

    DNA microarrays are a core element of modern genomics research and medical diagnostics, allowing the simple and simultaneous determination of the relative abundances of hundreds of thousands to millions of genomic DNA or RNA sequences in a sample. Photolithographic in situ synthesis, using light projection from a digitally-controlled array of micromirrors, has been successful at both commercial and laboratory scales. The advantages of this synthesis method are its ability to reliably produce high-quality custom microarrays with a very high spatial density of DNA features using a compact device with few moving parts. The phosphoramidite chemistry used in photolithographic synthesis is similar to that used in conventional solid-phase synthesis of oligonucleotides, but some unique differences require an independent optimization of the synthesis chemistry to achieve fast and low-cost synthesis without compromising microarray quality. High microarray quality could be maintained while reducing coupling time to a few seconds using DCI activator. Five coupling activators were compared, which resulted in microarray hybridization signals following the order ETT > Activator 42 > DCI ≫ BTT ≫ pyridinium chloride, but only the use of DCI led to both high signal and highly uniform feature intensities. The photodeprotection time was also reduced to a few seconds by replacing the NPPOC photolabile group with the new thiophenyl-NPPOC group. Other chemical parameters, such as oxidation and washing steps were also optimized. Highly optimized and microarray-specific phosphoramidite chemistry, along with the use of the very photosensitive thiophenyl-NPPOC protecting group allow for the synthesis of high-complexity DNA arrays using coupling times of 15 s and deprotection times of 9 s. The resulting overall cycle time (coupling to coupling) of about 50 s, results in a three-fold reduction in synthesis time.

  10. Synthesis, DNA binding and cytotoxic evaluation of aminoquinoline ...

    Indian Academy of Sciences (India)

    DNA binding studies of selected isomeric compounds showed interaction withDNA via intercalation mode with higher binding affinity of 4-substituted ... Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; New Drug Discovery Research, Department of Medicinal Chemistry, Alwar Pharmacy College, Alwar, ...

  11. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  12. The transcription factor TFII-I promotes DNA translesion synthesis and genomic stability.

    Directory of Open Access Journals (Sweden)

    Farjana J Fattah

    2014-06-01

    Full Text Available Translesion synthesis (TLS enables DNA replication through damaged bases, increases cellular DNA damage tolerance, and maintains genomic stability. The sliding clamp PCNA and the adaptor polymerase Rev1 coordinate polymerase switching during TLS. The polymerases Pol η, ι, and κ insert nucleotides opposite damaged bases. Pol ζ, consisting of the catalytic subunit Rev3 and the regulatory subunit Rev7, then extends DNA synthesis past the lesion. Here, we show that Rev7 binds to the transcription factor TFII-I in human cells. TFII-I is required for TLS and DNA damage tolerance. The TLS function of TFII-I appears to be independent of its role in transcription, but requires homodimerization and binding to PCNA. We propose that TFII-I bridges PCNA and Pol ζ to promote TLS. Our findings extend the general principle of component sharing among divergent nuclear processes and implicate TLS deficiency as a possible contributing factor in Williams-Beuren syndrome.

  13. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    Science.gov (United States)

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S-adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro, we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Assessment of potential damage to DNA in urine of coke oven workers: an assay of unscheduled DNA synthesis.

    OpenAIRE

    Roos, F; Renier, A; Ettlinger, J; Iwatsubo, Y; Letourneux, M; Haguenoer, J M; Jaurand, M C; Pairon, J C

    1997-01-01

    OBJECTIVES: A study was conducted in coke oven workers to evaluate the biological consequences of the exposure of these workers, particularly production of potential genotoxic factors. METHODS: 60 coke oven workers and 40 controls were recruited in the same iron and steel works. Exposure to polycyclic aromatic hydrocarbons (PAHs) was assessed by job and measurement of 1-hydroxypyrene (1OHP) in urine samples. An unscheduled DNA synthesis assay was performed on rat pleural mesothelial cells use...

  15. Shape-controlled synthesis of gold nanostructures using DNA origami molds.

    Science.gov (United States)

    Helmi, Seham; Ziegler, Christoph; Kauert, Dominik J; Seidel, Ralf

    2014-11-12

    We introduce a new concept that allows the synthesis of inorganic nanoparticles with programmable shape. Three-dimensional DNA origami nanostructures harboring an internal cavity are used as molds. A small gold nanoparticle within the cavity nucleates solution-based gold deposition leading to mold filling. We demonstrate the fabrication of 40 nm long rodlike gold particles with quadratic cross section and the formation of higher order assemblies of the obtained particles, which is mediated by their DNA shell.

  16. Templated synthesis of DNA nanotubes with controlled, predetermined lengths.

    Science.gov (United States)

    Lo, Pik Kwan; Altvater, Florian; Sleiman, Hanadi F

    2010-08-04

    We report a DNA-templated approach to construct nanotubes with controlled lengths and narrow molecular weight distribution, allowing the deliberate variation of this length. This approach relies on the facile and modular assembly of a DNA guide strand of precise length that contains single-stranded gaps repeating at every 50 nm. This is followed by positioning triangular DNA "rungs" on each of these single-stranded gaps and adding identical linking strands to the two other sides of the triangles to close the DNA nanotubes. The length of the guide strand can be deliberately changed. We show the use of this approach to produce nanotubes with lengths of 1 microm or 500 nm and narrow length distributions. This is in contrast to nontemplated approaches, which lead to long and polydisperse nanotubes. We also demonstrate the encapsulation of 20 nm gold nanoparticles within these well-defined nanotubes to form finite lines of gold nanoparticles with longitudinal plasmon coupling, with a number of potential nanophotonic applications. This guiding strand approach is a useful tool in the creation of DNA nanostructures, in this case allowing the use of a simple template generated by a minimal number of DNA strands to program the length and molecular weight distribution of assemblies, as well as to organize any number of DNA-labeled nano-objects into finite structures.

  17. Preparation of fluorescent DNA probe by solid-phase organic synthesis

    Directory of Open Access Journals (Sweden)

    2009-08-01

    Full Text Available Fluorescent DNA probe based on fluorescence resonance energy transfer (FRET was prepared by solid-phase organic synthesis when CdTe quantum dots (QDs were as energy donors and Au nanoparticles (AuNPs were as energy accepters. The poly(divinylbenzene core/poly(4-vinylpyridine shell microspheres, as solid-phase carriers, were prepared by seeds distillation-precipitation polymerization with 2,2′-azobisisobutyronitrile (AIBN as initiator in neat acetonitrile. The CdTe QDs and AuNPs were self-assembled on the surface of core/shell microspheres, and then the linkage of CdTe QDs with oligonucleotides (CdTe-DNA and AuNPs with complementary single-stranded DNA (Au-DNA was on the solid-phase carriers instead of in aqueous solution. The hybridization of complementary double stranded DNA (dsDNA bonded to the QDs and AuNPs (CdTe-dsDNA-Au determined the FRET distance of CdTe QDs and AuNPs. Compared with the fluorescence of CdTe-DNA, the fluorescence of CdTe-dsDNA-Au conjugates (DNA probes decreased extremely, which indicated that the FRET occurred between CdTe QDs and AuNPs. The probe system would have a certain degree recovery of fluorescence when the complementary single stranded DNA was introduced into this system, which showed that the distance between CdTe QDs and AuNPs was increased.

  18. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load.

    Science.gov (United States)

    Takeshima, Shin-Nosuke; Sasaki, Shinji; Meripet, Polat; Sugimoto, Yoshikazu; Aida, Yoko

    2017-04-04

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma that has spread worldwide and causes serious problems for the cattle industry. The BLV proviral load, which represents the BLV genome integrated into host genome, is a useful index for estimating disease progression and transmission risk. Here, we conducted a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with BLV proviral load in Japanese Black cattle. The study examined 93 cattle with a high proviral load and 266 with a low proviral load. Three SNPs showed a significant association with proviral load. One SNP was detected in the CNTN3 gene on chromosome 22, and two (which were not in linkage disequilibrium) were detected in the bovine major histocompatibility complex region on chromosome 23. These results suggest that polymorphisms in the major histocompatibility complex region affect proviral load. This is the first report to detect SNPs associated with BLV proviral load in Japanese Black cattle using whole genome association study, and understanding host factors may provide important clues for controlling the spread of BLV in Japanese Black cattle.

  19. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp.

    NARCIS (Netherlands)

    Buma, A.G.J.; van Hannen, E.J; Veldhuis, M.J W; Gieskes, W.W C

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  20. UV-B induces DNA damage and DNA synthesis delay in the marine diatom Cyclotella sp

    NARCIS (Netherlands)

    Buma, A.G.J.; Van Hannen, E.J.; Veldhuis, M.; Gieskes, W.W.C.

    1996-01-01

    The effect of UV-B on the occurrence of DNA damage and consequences for the cell cycle were studied in the marine diatom Cyclotella sp. DNA damage was quantified by immunofluorescent detection of thymine dimers in nuclear DNA of single cells using flow cytometry. A total UV-B dose (biologically

  1. BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm

    Directory of Open Access Journals (Sweden)

    Matoba Kazuhiro

    2010-11-01

    Full Text Available Abstract Background Bovine leukemia virus (BLV is closely related to human T-cell leukemia virus (HTLV and is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly extended course that often involves persistent lymphocytosis and culminates in B-cell lymphomas. BLV provirus remains integrated in cellular genomes, even in the absence of detectable BLV antibodies. Therefore, to understand the mechanism of BLV-induced leukemogenesis and carry out the selection of BLV-infected animals, a detailed evaluation of changes in proviral load throughout the course of disease in BLV-infected cattle is required. The aim of this study was to develop a new quantitative real-time polymerase chain reaction (PCR method using Coordination of Common Motifs (CoCoMo primers to measure the proviral load of known and novel BLV variants in clinical animals. Results Degenerate primers were designed from 52 individual BLV long terminal repeat (LTR sequences identified from 356 BLV sequences in GenBank using the CoCoMo algorithm, which has been developed specifically for the detection of multiple virus species. Among 72 primer sets from 49 candidate primers, the most specific primer set was selected for detection of BLV LTR by melting curve analysis after real-time PCR amplification. An internal BLV TaqMan probe was used to enhance the specificity and sensitivity of the assay, and a parallel amplification of a single-copy host gene (the bovine leukocyte antigen DRA gene was used to normalize genomic DNA. The assay is highly specific, sensitive, quantitative and reproducible, and was able to detect BLV in a number of samples that were negative using the previously developed nested PCR assay. The assay was also highly effective in detecting BLV in cattle from a range of international locations. Finally, this assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but

  2. Effects of starvation and hormones on DNA synthesis in silk gland cells of the silkworm, Bombyx mori.

    Science.gov (United States)

    Li, Yao-Feng; Chen, Xiang-Yun; Zhang, Chun-Dong; Tang, Xiao-Fang; Wang, La; Liu, Tai-Hang; Pan, Min-Hui; Lu, Cheng

    2016-08-01

    Silk gland cells of silkworm larvae undergo multiple cycles of endomitosis for the synthesis of silk proteins during the spinning phase. In this paper, we analyzed the endomitotic DNA synthesis of silk gland cells during larval development, and found that it was a periodic fluctuation, increasing during the vigorous feeding phase and being gradually inhibited in the next molting phase. That means it might be activated by a self-regulating process after molting. The expression levels of cyclin E, cdt1 and pcna were consistent with these developmental changes. Moreover, we further examined whether these changes in endomitotic DNA synthesis resulted from feeding or hormonal stimulation. The results showed that DNA synthesis could be inhibited by starvation and re-activated by re-feeding, and therefore appears to be dependent on nutrition. DNA synthesis was suppressed by in vivo treatment with 20-hydroxyecdysone (20E). However, there was no effect on DNA synthesis by in vitro 20E treatment or by either in vivo or in vitro juvenile hormone treatment. The levels of Akt and 4E-BP phosphorylation in the silk glands were also reduced by starvation and in vivo treatment with 20E. These results indicate that the activation of endomitotic DNA synthesis during the intermolt stages is related to feeding and DNA synthesis is inhibited indirectly by 20E. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  3. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    DEFF Research Database (Denmark)

    Levring, Trine B; Kongsbak-Wismann, Martin; Rode, Anna Kathrine Obelitz

    2015-01-01

    . The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys...

  4. Unscheduled DNA synthesis in xeroderma pigmentosum cells after microinjection of yeast photoreactivating enzyme.

    NARCIS (Netherlands)

    J.C.M. Zwetsloot; J.H.J. Hoeijmakers (Jan); W. Vermeulen (Wim); A.P.M. Eker (André); D. Bootsma (Dirk)

    1986-01-01

    textabstractPhotoreactivating enzyme (PRE) from yeast causes a light-dependent reduction of UV-induced unscheduled DNA synthesis (UDS) when injected into the cytoplasm of repair-proficieint human fibroblasts (Zwetsloot et al., 1985). This result indicates that the exogenous PRE monomerizers

  5. Labelling of Cells Engaged in DNA Synthesis: Autoradiography and BrdU Staining

    DEFF Research Database (Denmark)

    Madsen, Peder Søndergaard

    2010-01-01

    The cell cycle is divided in four phases: G1 phase, S phase (DNA-synthesis), G2 phase (together termed interphase) and M phase (mitosis). Cells that have ceased proliferation enter a state of quiescence called G0. M phase is itself composed of two tightly coupled processes: mitosis, in which...

  6. Regulation of DNA synthesis and cell division by polyamines in Catharanthus roseus suspension cultures

    Science.gov (United States)

    R. Minocha; S.C. Minocha; A. Komamine; W.C. Shortle

    1991-01-01

    Various inhibitors of polyamine biosynthesis were used to study the role of polyamines in DNA synthesis and cell division in suspension cultures of Catharanthus roseus (L) G. Don. Arginine decarboxylase (ADC; EC 4.1.1.19) was the major enzyme responsible for putrescine production. DL α-difluoromethylarginine inhibited ADC activity, cellular...

  7. A Scalable Gene Synthesis Platform Using High-Fidelity DNA Microchips

    Science.gov (United States)

    Kosuri, Sriram; Eroshenko, Nikolai; LeProust, Emily; Super, Michael; Way, Jeffrey; Li, Jin Billy; Church, George M.

    2010-01-01

    Development of cheap, high-throughput, and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology1. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis2. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude3,4,5, yet efforts to scale their use have been largely unsuccessful due to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols, and enzymatic error correction to develop a highly parallel gene synthesis platform. We tested our platform by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ~35 kilo-basepairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ~2.5 megabases of DNA, which is at least 50 times larger than previously published attempts. PMID:21113165

  8. DNA Polymerases Drive DNA Sequencing-by-Synthesis Technologies: Both Past and Present

    Directory of Open Access Journals (Sweden)

    Cheng-Yao eChen

    2014-06-01

    Full Text Available Next-generation sequencing (NGS technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. E. coli DNA polymerase I proteolytic (Klenow fragment was originally utilized in Sanger's dideoxy chain terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today's standard capillary electrophoresis (CE and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ⱷ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ⱷ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies.

  9. DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present

    Science.gov (United States)

    Chen, Cheng-Yao

    2014-01-01

    Next-generation sequencing (NGS) technologies have revolutionized modern biological and biomedical research. The engines responsible for this innovation are DNA polymerases; they catalyze the biochemical reaction for deriving template sequence information. In fact, DNA polymerase has been a cornerstone of DNA sequencing from the very beginning. Escherichia coli DNA polymerase I proteolytic (Klenow) fragment was originally utilized in Sanger’s dideoxy chain-terminating DNA sequencing chemistry. From these humble beginnings followed an explosion of organism-specific, genome sequence information accessible via public database. Family A/B DNA polymerases from mesophilic/thermophilic bacteria/archaea were modified and tested in today’s standard capillary electrophoresis (CE) and NGS sequencing platforms. These enzymes were selected for their efficient incorporation of bulky dye-terminator and reversible dye-terminator nucleotides respectively. Third generation, real-time single molecule sequencing platform requires slightly different enzyme properties. Enterobacterial phage ϕ29 DNA polymerase copies long stretches of DNA and possesses a unique capability to efficiently incorporate terminal phosphate-labeled nucleoside polyphosphates. Furthermore, ϕ29 enzyme has also been utilized in emerging DNA sequencing technologies including nanopore-, and protein-transistor-based sequencing. DNA polymerase is, and will continue to be, a crucial component of sequencing technologies. PMID:25009536

  10. Site Specific Synthesis and in-situ Immobilization of Fluorescent Silver Nanoclusters on DNA Nanoscaffolds Using Tollens Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Suchetan [Arizona State Univ., Tempe, AZ (United States); Varghese, R. [Arizona State Univ., Tempe, AZ (United States); Deng, Z. [Arizona State Univ., Tempe, AZ (United States); Zhao, Z. [Arizona State Univ., Tempe, AZ (United States); Kumar, A. [Arizona State Univ., Tempe, AZ (United States); Yan, Hao [Arizona State Univ., Tempe, AZ (United States); Liu, Yan [Arizona State Univ., Tempe, AZ (United States)

    2011-04-06

    DNA strands with specific sequences and covalently attached sugar moieties were used for the site-specific incorporation of the sugar units on a DNA origami scaffold. This approach enabled the subsequent site-specific synthesis and in situ immobilization of fluorescent Ag clusters at predefined positions on the DNA nanoscaffold by treatment with the Tollens reagent.

  11. Quantum dots-DNA bioconjugates: synthesis to applications.

    Science.gov (United States)

    Banerjee, Anusuya; Pons, Thomas; Lequeux, Nicolas; Dubertret, Benoit

    2016-12-06

    Semiconductor nanoparticles particularly quantum dots (QDs) are interesting alternatives to organic fluorophores for a range of applications such as biosensing, imaging and therapeutics. Addition of a programmable scaffold such as DNA to QDs further expands the scope and applicability of these hybrid nanomaterials in biology. In this review, the most important stages of preparation of QD-DNA conjugates for specific applications in biology are discussed. Special emphasis is laid on (i) the most successful strategies to disperse QDs in aqueous media, (ii) the range of different conjugation with detailed discussion about specific merits and demerits in each case, and (iii) typical applications of these conjugates in the context of biology.

  12. Quantum dots–DNA bioconjugates: synthesis to applications

    Science.gov (United States)

    2016-01-01

    Semiconductor nanoparticles particularly quantum dots (QDs) are interesting alternatives to organic fluorophores for a range of applications such as biosensing, imaging and therapeutics. Addition of a programmable scaffold such as DNA to QDs further expands the scope and applicability of these hybrid nanomaterials in biology. In this review, the most important stages of preparation of QD–DNA conjugates for specific applications in biology are discussed. Special emphasis is laid on (i) the most successful strategies to disperse QDs in aqueous media, (ii) the range of different conjugation with detailed discussion about specific merits and demerits in each case, and (iii) typical applications of these conjugates in the context of biology. PMID:27920898

  13. Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions

    Science.gov (United States)

    Gardner, Shea N; Mariella, Jr., Raymond P; Christian, Allen T; Young, Jennifer A; Clague, David S

    2013-06-25

    A method of preselecting a multiplicity of DNA sequence segments that will comprise the DNA molecule of user-defined sequence, separating the DNA sequence segments temporally, and combining the multiplicity of DNA sequence segments with at least one polymerase enzyme wherein the multiplicity of DNA sequence segments join to produce the DNA molecule of user-defined sequence. Sequence segments may be of length n, where n is an odd integer. In one embodiment the length of desired hybridizing overlap is specified by the user and the sequences and the protocol for combining them are guided by computational (bioinformatics) predictions. In one embodiment sequence segments are combined from multiple reading frames to span the same region of a sequence, so that multiple desired hybridizations may occur with different overlap lengths.

  14. The effects of arsenic trioxide on DNA synthesis and genotoxicity in human colon cancer cells.

    Science.gov (United States)

    Stevens, Jacqueline J; Graham, Barbara; Walker, Alice M; Tchounwou, Paul B; Rogers, Christian

    2010-05-01

    Colon cancer is the third leading cause of cancer-related deaths worldwide. Recent studies in our laboratory have demonstrated that arsenic trioxide is cytotoxic in human colon cancer (HT-29), lung (A549) and breast (MCF-7) carcinoma cells. The purpose of the present study is to investigate the effects of arsenic trioxide on DNA synthesis and the possible genotoxic effects on human colon cancer cells. HT-29 cells were cultured according to standard protocol, followed by exposure to various doses (0, 2, 4, 6, 8, 10, and 12 microg/mL) of arsenic trioxide for 24 h. The proliferative response (DNA synthesis) to arsenic trioxide was assessed by [(3)H]thymidine incorporation. The genotoxic effects of arsenic-induced DNA damage in a human colon cancer cell line was evaluated by the alkaline single cell gel electrophoresis. Results indicated that arsenic trioxide affected DNA synthesis in HT-29 cells in a biphasic manner; showing a slight but not significant increase in cell proliferation at lower levels of exposure (2, 4 and 6 microg/mL) followed by a significant inhibition of cell proliferation at higher doses (i.e., 8 and 10 microg/mL). The study also confirmed that arsenic trioxide exposure caused genotoxicity as revealed by the significant increase in DNA damage, comet tail-lengths, and tail moment when compared to non-exposed cells. Results of the [(3)H]thymidine incorporation assay and comet assay revealed that exposure to arsenic trioxide affected DNA synthesis and exhibited genotoxic effects in human colon cancer cells.

  15. The Effects of Arsenic Trioxide on DNA Synthesis and Genotoxicity in Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Christian Rogers

    2010-04-01

    Full Text Available Colon cancer is the third leading cause of cancer-related deaths worldwide. Recent studies in our laboratory have demonstrated that arsenic trioxide is cytotoxic in human colon cancer (HT-29, lung (A549 and breast (MCF-7 carcinoma cells. The purpose of the present study is to investigate the effects of arsenic trioxide on DNA synthesis and the possible genotoxic effects on human colon cancer cells. HT-29 cells were cultured according to standard protocol, followed by exposure to various doses (0, 2, 4, 6, 8, 10, and 12 μg/mL of arsenic trioxide for 24 h. The proliferative response (DNA synthesis to arsenic trioxide was assessed by [3H]thymidine incorporation. The genotoxic effects of arsenic-induced DNA damage in a human colon cancer cell line was evaluated by the alkaline single cell gel electrophoresis. Results indicated that arsenic trioxide affected DNA synthesis in HT-29 cells in a biphasic manner; showing a slight but not significant increase in cell proliferation at lower levels of exposure (2, 4 and 6 µg/mL followed by a significant inhibition of cell proliferation at higher doses (i.e., 8 and 10 µg/mL. The study also confirmed that arsenic trioxide exposure caused genotoxicity as revealed by the significant increase in DNA damage, comet tail-lengths, and tail moment when compared to non-exposed cells. Results of the [3H]thymidine incorporation assay and comet assay revealed that exposure to arsenic trioxide affected DNA synthesis and exhibited genotoxic effects in human colon cancer cells.

  16. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    characterization and DNA interactions of copper (II) and nickel (II) complexes with unsymmetrical Schiff base ligands. Indian J Chem 2013; 52A: 845-853. 23. Neves A, Bortoluzzi AJ, Jovito R, Peralta RA, Souza BD,. Szpoganicz B, Joussef AC, Terenzi H, Severino PC,. Fischer FL, Schenk G, Riley MJ, Smith SJ, Gahan LR.

  17. bipyridine host: Synthesis, X-ray structure, DNA cleavage

    Indian Academy of Sciences (India)

    www.rcsb.org/pdb/home.do). Before docking, the DNA structure was stimulated and modified following the previously described methods.24. The structures of the free ligand and ... necrotic as judged by the staining, nuclear morphology and membrane .... This feature of the complex drew our attention since polypyridyl ...

  18. Synthesis, DNA binding and cytotoxic evaluation of aminoquinoline ...

    Indian Academy of Sciences (India)

    as one of the major therapeutic agents in malarial treat- ment, such as chloroquine and amodiaquine,2 which ..... tested compounds causes hypochromism of various per- centage (20-52% with 1-3 nm). Among the tested ... were added to DNA-EB mixture which causes vari- ous percentages of hypochromism and revealed ...

  19. Synthesis of streptavidin-conjugated magnetic nanoparticles for DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong Peijun, E-mail: skygpj@zjnu.cn; Peng Zheyang; Wang Yao; Qiao Ru; Mao Weixing; Qian Haisheng; Zhang Mengya; Li Congcong; Shi Shenyuan [College of Chemistry and Life Sciences, Zhejiang Normal University (China)

    2013-04-15

    In this paper, we report a fabrication of streptavidin-coated magnetic nanoparticles used for DNA detection. Initially, amino-functionalized Fe{sub 3}O{sub 4} nanoparticles with high saturation magnetization are prepared by a photopolymerization method using allylamine as monomer. It is followed by covalent immobilization of streptavidin onto the particle surface via a two-step reaction using glutaraldehyde as coupling agent. Streptavidin-coated magnetic nanoparticles are characterized and further tested for their ability to capture DNA target after binding biotinylated oligonucleotide probes. The results show that the products ({approx}27.2 nm) have a maximum biotin-binding capacity of 0.71 nmol mg{sup -1} when the immobilization reaction is conducted with a mass ratio of streptavidin to magnetic carriers above 0.2 in phosphate buffered saline (pH 7.4) for 24 h. In addition, highly negative {zeta}-potential and good magnetic susceptibility of the nanocomposites make them applicable for DNA collection and detection, which is verified by the results from the preliminary application of streptavidin-coated magnetic nanoparticles in DNA detection. Therefore, the magnetic nanoparticles provide a promising approach for rapid collection and detection of gene.

  20. Synthesis, spectral properties and DNA binding and nuclease ...

    Indian Academy of Sciences (India)

    Ce(BPBH)2(NO3)3] leads to a supramolecular arrangement in its network. The binding properties of these complexes with calf-thymus. DNA have been investigated by viscosity measurements. The complexes show more nuclease activity in the.

  1. incorporating a diazo ligand: Synthesis, characterization and DNA ...

    Indian Academy of Sciences (India)

    Unknown

    EB) bound to DNA and viscosity measurements. 2. Experimental. 2.1 Materials. All reagents and solvents were purchased commer- cially and were used as received. RuCl3.nH2O was obtained from SD Fine Chemicals (India). Calf thymus DNA ...

  2. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    Further information was also collected through Karl Fischer titration, thermogravimetric analysis (TGA) and (magnetic moment. Cleavage of DNA was determined by agarose gel electrophoresis. The gel was then stained, analyzed and photographed under ultraviolet (UV) light. Results: ATR-FTIR confirmed the formation of ...

  3. DNA packaging in mouse spermatids: synthesis of protamine variants and four-transition proteins

    Energy Technology Data Exchange (ETDEWEB)

    Balhorn, R.; Weston, S.; Thomas, C.; Wyrobek, A.J.

    1984-01-01

    A comparison of the protein compositions of mouse late-step spermatids and cauda epididymal sperm has revealed that the relative distribution of the two amino acid sequence variants of mouse protamine differ markedly in spermatids and sperm. Sonication-resistant spermatids contain the two variants in a ratio of 1:1, while the ratio of these two proteins in cauda epididymal sperm is approx. 2:1. Labeling studies in vivo have shown that this difference is due, in part, to an asynchrony in the time of synthesis of the two protamine variants. Both proteins are synthesized in late-step spermatids, but synthesis of the tyrosine variant in sperm chromatin begins approximately one day before synthesis of the more predominant histidine variant. Analyses of the time of synthesis of protamine and the four transition proteins in late-step spermatids allowed us to estimate the spermatid stage in which these proteins are deposited on DNA and relate these events to the onset of sonication resistance in maturing spermatids. These results indicate that: (1) synthesis and deposition of protamine begins coincident with the onset of sonication resistance in early step 12 spermatids; (2) protamine deposition is complete by mid-step 15; and (3) synthesis of the transition proteins occurs coincident with protamine synthesis.

  4. Synthesis of hydrogel via click chemistry for DNA electrophoresis.

    Science.gov (United States)

    Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella

    2017-09-01

    This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching.

    Science.gov (United States)

    Powell, John T; Akhuetie-Oni, Benjamin O; Zhang, Zhao; Lin, Chenxiang

    2016-09-12

    Mechanically interlocked supramolecular assemblies are appealing building blocks for creating functional nanodevices. Herein, we describe the multistep assembly of large DNA origami rotaxanes that are capable of programmable structural switching. We validated the topology and structural integrity of these rotaxanes by analyzing the intermediate and final products of various assembly routes by electrophoresis and electron microscopy. We further analyzed two structure-switching behaviors of our rotaxanes, which are both mediated by DNA hybridization. In the first mechanism, the translational motion of the macrocycle can be triggered or halted at either terminus. In the second mechanism, the macrocycle can be elongated after completion of the rotaxane assembly, giving rise to a unique structure that is otherwise difficult to access. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis, Characterization, and DNA Binding Studies of Nanoplumbagin

    Directory of Open Access Journals (Sweden)

    Sheik Dawood Shahida Parveen

    2014-01-01

    Full Text Available The traditional anticancer medicine plumbagin (PLN was prepared as nanostructured material (nanoplumbagin, NPn1 from its commercial counterparts, simultaneously coencapsulating with cetyltrimethylammonium bromide or cyclodextrin as stabilizers using ultrasonication technique. Surface morphology of NPn analysed from atomic force microscopy (AFM indicates that NPn has tunable size between 75 nm and 100 nm with narrow particle size distribution. Its binding efficiency with herring sperm DNA was studied using spectral and electrochemical techniques and its efficiency was found to be more compared to the commercial microcrystalline plumbagin (PLN. DNA cleavage was also studied by gel electrophoresis. The observed results indicate that NPn1 has better solubility in aqueous medium and hence showed better bioavailability compared to its commercial counterparts.

  7. Instability of (CTGn•(CAGn trinucleotide repeats and DNA synthesis

    Directory of Open Access Journals (Sweden)

    Liu Guoqi

    2012-02-01

    Full Text Available Abstract Expansion of (CTGn•(CAGn trinucleotide repeat (TNR microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTGn and (CAGn repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTGn•(CAGn instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTGn•(CAGn TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTGn•(CAGn instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTGn•(CAGn TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.

  8. Construction of a High Titer Infectious HIV-1 Subtype C Proviral Clone from South Africa

    Directory of Open Access Journals (Sweden)

    Jochen Bodem

    2012-09-01

    Full Text Available The Human Immunodeficiency Virus type 1 (HIV-1 subtype C is currently the predominant subtype worldwide. Cell culture studies of Sub-Saharan African subtype C proviral plasmids are hampered by the low replication capacity of the resulting viruses, although viral loads in subtype C infected patients are as high as those from patients with subtype B. Here, we describe the sequencing and construction of a new HIV-1 subtype C proviral clone (pZAC, replicating more than one order of magnitude better than the previous subtype C plasmids. We identify the env-region for being the determinant for the higher viral titers and the pZAC Env to be M-tropic. This higher replication capacity does not lead to a higher cytotoxicity compared to previously described subtype C viruses. In addition, the pZAC Vpu is also shown to be able to down-regulate CD4, but fails to fully counteract CD317.

  9. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis

    Science.gov (United States)

    Taggart, David J.; Camerlengo, Terry L.; Harrison, Jason K.; Sherrer, Shanen M.; Kshetry, Ajay K.; Taylor, John-Stephen; Huang, Kun; Suo, Zucai

    2013-01-01

    Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis–syn thymidine–thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases. PMID:23470999

  10. Dissociation between insulin secretion and DNA synthesis in cultured pancreatic islets

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1985-01-01

    Glucose has been suggested to be the most important stimulus for beta cell replication in vivo and in vitro. In order to study the relationship between insulin secretion and DNA synthesis, newborn rat islets were cultured in the presence of different concentrations of glucose, theophylline and 3......M glucose in spite of a dose dependent increase in insulin release. 5 mM theophylline potentiated the glucose induced insulin release but lowered both 3H-Tdr synthesis and insulin content in the islets. In contrast, 0.05 mM IBMX induced a significant stimulation of both insulin release and 3H...

  11. The sequence of the RNA primer and the DNA template influence the initiation of plus-strand DNA synthesis in hepatitis B virus.

    Science.gov (United States)

    Haines, Kathleen M; Loeb, Daniel D

    2007-07-13

    For hepadnaviruses, the RNA primer for plus-strand DNA synthesis is generated by the final RNase H cleavage of the pregenomic RNA at an 11 nt sequence called DR1 during the synthesis of minus-strand DNA. This RNA primer initiates synthesis at one of two distinct sites on the minus-strand DNA template, resulting in two different end products; duplex linear DNA or relaxed circular DNA. Duplex linear DNA is made when initiation of synthesis occurs at DR1. Relaxed circular DNA, the major product, is made when the RNA primer translocates to the sequence complementary to DR1, called DR2 before initiation of DNA synthesis. We studied the mechanism that determines the site of the final RNase H cleavage in hepatitis B virus (HBV). We showed that the sites of the final RNase H cleavage are always a fixed number of nucleotides from the 5' end of the pregenomic RNA. This finding is similar to what was found previously for duck hepatitis B virus (DHBV), and suggests that all hepadnaviruses use a similar mechanism. Also, we studied the role of complementarity between the RNA primer and the acceptor site at DR2 in HBV. By increasing the complementarity, we were able to increase the level of priming at DR2 over that seen in the wild-type virus. This finding suggests that the level of initiation of plus-strand DNA synthesis at DR2 is sub-maximal for wild-type HBV. Finally, we studied the role of the sequence at the 5' end of the RNA primer that is outside of the DR sequence. We found that substitutions or insertions in this region affected the level of priming at DR1 and DR2.

  12. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  13. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  14. Synthesis and DNA interaction of ethylenediamine platinum(II) complexes linked to DNA intercalants.

    Science.gov (United States)

    Duskova, Katerina; Sierra, Sara; Fernández, María-José; Gude, Lourdes; Lorente, Antonio

    2012-12-15

    A series of ethylenediamine platinum(II) complexes connected through semi-rigid chains of 1,2-bis(4-pyridyl)ethane to DNA intercalating subunits (naphthalene, anthracene or phenazine) has been synthesized, and their interactions with calf thymus (CT) DNA have been evaluated by viscometric titrations and equilibrium dialysis experiments. The parent ligands that contain anthracene or phenazine chromophores showed a monointercalative mode of DNA interaction (especially the anthracene derivative), with apparent association constants in the order of 10(4) M(-1). The corresponding platinum(II) complexes bind CT DNA through bisintercalation, as established by the significant increase of DNA contour length inferred from viscosity measurements, and the association constants are in the order of 10(5) M(-1). The naphthalene derivatives, however, exhibit a mixed mode of interaction, which suggests a partial contribution of both intercalation and groove binding for the ligand, and monointercalation in the case of the platinum(II) complex. Competition dialysis experiments carried out on the intercalative compounds have revealed a moderate selectivity towards GC DNA sequences for the derivatives containing the anthracene chromophore. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    Science.gov (United States)

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. 2-Nitropropane induces DNA repair synthesis in rat hepatocytes in vitro and in vivo.

    Science.gov (United States)

    Andrae, U; Homfeldt, H; Vogl, L; Lichtmannegger, J; Summer, K H

    1988-05-01

    The genotoxicity of 2-nitropropane (2-NP) and 1-nitropropane (1-NP) was investigated by measuring the induction of DNA repair synthesis in rat liver cells in vitro and in vivo. 2-NP strongly induced DNA repair synthesis in both cases. When applied in vivo, 2-NP was considerably more effective in hepatocytes from males than in those from females. 1-NP was not active in vitro or in vivo. 2-NP and 1-NP did not induce repair in cell lines of extrahepatic origin derived from rat, mouse, hamster and man. The results are consistent with the reported carcinogenicity of 2-NP in rat liver and suggest that the formation of hepatocarcinomas by 2-NP is due to the generation of a genotoxic metabolite from 2-NP by liver-specific metabolism.

  17. IGF-I induces DNA synthesis and apoptosis in rat liver hepatic stellate cells (HSC) but DNA synthesis and proliferation in rat liver myofibroblasts (rMF).

    Science.gov (United States)

    Saile, Bernhard; DiRocco, Paola; Dudas, Joszef; El-Armouche, Hammudeh; Sebb, Holger; Eisenbach, Christoph; Neubauer, Katrin; Ramadori, Giuliano

    2004-08-01

    Several lines of evidence suggest a role of insulin-like growth factor I (IGF-I) in the regulation of apoptosis. Up to now its impact on many specific cells is unknown. We therefore studied the effect of IGF-I on two similar mesenchymal matrix-producing cell types of the liver, the hepatic stellate cells (HSC) and the myofibroblasts (rMF). The present study aimed to reveal the influence of IGF-I on cell cycle and apoptosis of HSC and rMF and to elucidate responsible signaling. While IGF-I significantly increased DNA synthesis in HSC, cell number decreased and apoptosis increased. In rMF IGF-I also increased DNA synthesis, which is, however, followed by proliferation. Blocking extracellular signal regulating kinase (ERK) revealed that in HSC, bcl-2 upregulation and bax downregulation are effected downstream of ERK, whereas downregulation of NFkappaB and consecutive of bcl-xL is mediated upstream. In the rMF upregulation of both, the antiapoptotic bcl-2 and bcl-xL is mediated upstream of ERK. The expression of the proapoptotic bax is not regulated by IGF-I in rMF. The studies demonstrate a completely different effect and signaling of IGF-I in two morphologically and functionally similar matrix-producing cells of the liver.

  18. The Effects of Arsenic Trioxide on DNA Synthesis and Genotoxicity in Human Colon Cancer Cells

    OpenAIRE

    Christian Rogers; Tchounwou, Paul B.; Walker, Alice M.; Barbara Graham; Jacqueline J. Stevens

    2010-01-01

    Colon cancer is the third leading cause of cancer-related deaths worldwide. Recent studies in our laboratory have demonstrated that arsenic trioxide is cytotoxic in human colon cancer (HT-29), lung (A549) and breast (MCF-7) carcinoma cells. The purpose of the present study is to investigate the effects of arsenic trioxide on DNA synthesis and the possible genotoxic effects on human colon cancer cells. HT-29 cells were cultured according to standard protocol, followed by exposure to various do...

  19. HTLV-1 proviral integration sites differ between asymptomatic carriers and patients with HAM/TSP.

    Science.gov (United States)

    Niederer, Heather A; Laydon, Daniel J; Melamed, Anat; Elemans, Marjet; Asquith, Becca; Matsuoka, Masao; Bangham, Charles R M

    2014-09-30

    HTLV-1 causes proliferation of clonal populations of infected T cells in vivo, each clone defined by a unique proviral integration site in the host genome. The proviral load is strongly correlated with odds of the inflammatory disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is evidence that asymptomatic HTLV-1 carriers (ACs) have a more effective CD8 + T cell response, including a higher frequency of HLA class I alleles able to present peptides from a regulatory protein of HTLV-1, HBZ. We have previously shown that specific features of the host genome flanking the proviral integration site favour clone survival and spontaneous expression of the viral transactivator protein Tax in naturally infected PBMCs ex vivo. However, the previous studies were not designed or powered to detect differences in integration site characteristics between ACs and HAM/TSP patients. Here, we tested the hypothesis that the genomic environment of the provirus differs systematically between ACs and HAM/TSP patients, and between individuals with strong or weak HBZ presentation. We used our recently described high-throughput protocol to map and quantify integration sites in 95 HAM/TSP patients and 68 ACs from Kagoshima, Japan, and 75 ACs from Kumamoto, Japan. Individuals with 2 or more HLA class I alleles predicted to bind HBZ peptides were classified 'strong' HBZ binders; the remainder were classified 'weak binders'. The abundance of HTLV-1-infected T cell clones in vivo was correlated with proviral integration in genes and in areas with epigenetic marks associated with active regulatory elements. In clones of equivalent abundance, integration sites in genes and active regions were significantly more frequent in ACs than patients with HAM/TSP, irrespective of HBZ binding and proviral load. Integration sites in genes were also more frequent in strong HBZ binders than weak HBZ binders. Clonal abundance is correlated with integration in a

  20. Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis

    Science.gov (United States)

    Álvarez, Mar; Barrioluengo, Verónica; Afonso-Lehmann, Raquel N.; Menéndez-Arias, Luis

    2013-01-01

    Asp443 and Glu478 are essential active site residues in the RNase H domain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT). We have investigated the effects of substituting Asn for Asp443 or Gln for Glu478 on the fidelity of DNA-dependent DNA synthesis of phylogenetically diverse HIV-1 RTs. In M13mp2 lacZα-based forward mutation assays, HIV-1 group M (BH10) and group O RTs bearing substitutions D443N, E478Q, V75I/D443N or V75I/E478Q showed 2.0- to 6.6-fold increased accuracy in comparison with the corresponding wild-type enzymes. This was a consequence of their lower base substitution error rates. One-nucleotide deletions and insertions represented between 30 and 68% of all errors identified in the mutational spectra of RNase H-deficient HIV-1 group O RTs. In comparison with the wild-type RT, these enzymes showed higher frameshift error rates and higher dissociation rate constants (koff) for DNA/DNA template–primers. The effects on frameshift fidelity were similar to those reported for mutation E89G and suggest that in HIV-1 group O RT, RNase H inactivation could affect template/primer slippage. Our results support a role for the RNase H domain during plus-strand DNA polymerization and suggest that mutations affecting RNase H function could also contribute to retrovirus variability during the later steps of reverse transcription. PMID:23444139

  1. Mining Enzyme Diversity of Transcriptome Libraries through DNA Synthesis for Benzylisoquinoline Alkaloid Pathway Optimization in Yeast.

    Science.gov (United States)

    Narcross, Lauren; Bourgeois, Leanne; Fossati, Elena; Burton, Euan; Martin, Vincent J J

    2016-12-16

    The ever-increasing quantity of data deposited to GenBank is a valuable resource for mining new enzyme activities. Falling costs of DNA synthesis enables metabolic engineers to take advantage of this resource for identifying superior or novel enzymes for pathway optimization. Previously, we reported synthesis of the benzylisoquinoline alkaloid dihydrosanguinarine in yeast from norlaudanosoline at a molar conversion of 1.5%. Molar conversion could be improved by reduction of the side-product N-methylcheilanthifoline, a key bottleneck in dihydrosanguinarine biosynthesis. Two pathway enzymes, an N-methyltransferase and a cytochrome P450 of the CYP719A subfamily, were implicated in the synthesis of the side-product. Here, we conducted an extensive screen to identify enzyme homologues whose coexpression reduces side-product synthesis. Phylogenetic trees were generated from multiple sources of sequence data to identify a library of candidate enzymes that were purchased codon-optimized and precloned into expression vectors designed to facilitate high-throughput analysis of gene expression as well as activity assay. Simple in vivo assays were sufficient to guide the selection of superior enzyme homologues that ablated the synthesis of the side-product, and improved molar conversion of norlaudanosoline to dihydrosanguinarine to 10%.

  2. Induction of DNA repair synthesis in human monocytes/B-lymphocytes compared with T-lymphocytes after exposure to N-acetoxy-N-acetylaminofluorene and dimethylsulfate in vitro

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Ryder, L P; Wassermann, K

    1992-01-01

    We have explored the induction of DNA repair synthesis in monocyte/B- and T-lymphocyte enriched cell fractions from 12 different human mononuclear blood cell populations. Unscheduled DNA synthesis was measured in monocyte/B- and T-cells after exposure to the DNA-damaging agents dimethylsulfate (D...

  3. DNA polymerase kappa protects human cells against MMC-induced genotoxicity through error-free translesion DNA synthesis.

    Science.gov (United States)

    Kanemaru, Yuki; Suzuki, Tetsuya; Sassa, Akira; Matsumoto, Kyomu; Adachi, Noritaka; Honma, Masamitsu; Numazawa, Satoshi; Nohmi, Takehiko

    2017-01-01

    Interactions between genes and environment are critical factors for causing cancer in humans. The genotoxicity of environmental chemicals can be enhanced via the modulation of susceptible genes in host human cells. DNA polymerase kappa (Pol κ) is a specialized DNA polymerase that plays an important role in DNA damage tolerance through translesion DNA synthesis. To better understand the protective roles of Pol κ, we previously engineered two human cell lines either deficient in expression of Pol κ (KO) or expressing catalytically dead Pol κ (CD) in Nalm-6-MSH+ cells and examined cytotoxic sensitivity against various genotoxins. In this study, we set up several genotoxicity assays with cell lines possessing altered Pol κ activities and investigated the protective roles of Pol κ in terms of genotoxicity induced by mitomycin C (MMC), a therapeutic agent that induces bulky DNA adducts and crosslinks in DNA. We introduced a frameshift mutation in one allele of the thymidine kinase (TK) gene of the KO, CD, and wild-type Pol κ cells (WT), thereby establishing cell lines for the TK gene mutation assay, namely TK+/- cells. In addition, we formulated experimental conditions to conduct chromosome aberration (CA) and sister chromatid exchange (SCE) assays with cells. By using the WT TK+/- and KO TK+/- cells, we assayed genotoxicity of MMC. In the TK gene mutation assay, the cytotoxic and mutagenic sensitivities of KO TK+/- cells were higher than those of WT TK+/- cells. MMC induced loss of heterozygosity (LOH), base pair substitutions at CpG sites and tandem mutations at GpG sites in both cell lines. However, the frequencies of LOH and base substitutions at CpG sites were significantly higher in KO TK+/- cells than in WT TK+/- cells. MMC also induced CA and SCE in both cell lines. The KO TK+/- cells displayed higher sensitivity than that displayed by WT TK+/- cells in the SCE assay. These results suggest that Pol κ is a modulating factor for the genotoxicity of MMC and

  4. Effects of opiates and demographic factors on DNA repair synthesis in human leukocytes.

    Science.gov (United States)

    Madden, J J; Falek, A; Shafer, D A; Glick, J H

    1979-11-01

    DNA repair synthesis in leukocytes stressed by far UV irradiation was studied in 90 normal individuals, 38 street-heroin addicts, and 18 methadone maintenance patients. Age, sex, coffee use, and alcohol use had no significant effect on the maximal repair synthesis response of the control subjects, but smoking tobacco significantly decreased the mean response and variance when compared with nonsmoking controls. Heroin addiction had an even more pronounced negative effect, and this may be related to the high rate of chromosome aberrations found in this population. Half of the addicts tested were incapable of repairing UV fluences one-quarter as large as those repaired by the control subjects (5 J/m2 and 20 J/m2, respectively) in the 2-hr assay period. Long-term methadone treatment ameliorated the effects of the street heroin, just as it resulted in a decrease of the chromosome aberration frequency.

  5. Therapeutic touch affects DNA synthesis and mineralization of human osteoblasts in culture.

    Science.gov (United States)

    Jhaveri, Ankur; Walsh, Stephen J; Wang, Yatzen; McCarthy, MaryBeth; Gronowicz, Gloria

    2008-11-01

    Complementary and alternative medicine (CAM) techniques are commonly used in hospitals and private medical facilities; however, the effectiveness of many of these practices has not been thoroughly studied in a scientific manner. Developed by Dr. Dolores Krieger and Dora Kunz, Therapeutic Touch is one of these CAM practices and is a highly disciplined five-step process by which a practitioner can generate energy through their hands to promote healing. There are numerous clinical studies on the effects of TT but few in vitro studies. Our purpose was to determine if Therapeutic Touch had any effect on osteoblast proliferation, differentiation, and mineralization in vitro. TT was performed twice a week for 10 min each on human osteoblasts (HOBs) and on an osteosarcoma-derived cell line, SaOs-2. No significant differences were found in DNA synthesis, assayed by [(3)H]-thymidine incorporation at 1 or 2 weeks for SaOs-2 or 1 week for HOBs. However, after four TT treatments in 2 weeks, TT significantly (p = 0.03) increased HOB DNA synthesis compared to controls. Immunocytochemistry for Proliferating Cell Nuclear Antigen (PCNA) confirmed these data. At 2 weeks in differentiation medium, TT significantly increased mineralization in HOBs (p = 0.016) and decreased mineralization in SaOs-2 (p = 0.0007), compared to controls. Additionally, Northern blot analysis indicated a TT-induced increase in mRNA expression for Type I collagen, bone sialoprotein, and alkaline phosphatase in HOBs and a decrease of these bone markers in SaOs-2 cells. In conclusion, Therapeutic Touch appears to increase human osteoblast DNA synthesis, differentiation and mineralization, and decrease differentiation and mineralization in a human osteosarcoma-derived cell line. (c) 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de; Nicol, Philipp, E-mail: Philipp.Nicol@gmx.de; Eschenhagen, Thomas, E-mail: t.eschenhagen@uke.de

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  7. Synthesis, properties, and NMR studies of a C8-phenylguanine modified oligonucleotide that preferentially adopts the Z DNA conformation.

    Science.gov (United States)

    Gannett, Peter M; Heavner, Sue; Daft, Jonathan R; Shaughnessy, Kevin H; Epperson, Jon D; Greenbaum, Nancy L

    2003-10-01

    Carcinogenic aryl hydrazines produce C8-arylated purine adducts. The effect of these adducts on DNA conformation and their role in hydrazine carcinogenesis are unknown. Here, we describe a new synthetic route to produce these adducts that is also compatible with the synthesis of the corresponding phosphoramidites needed for oligonucleotide synthesis. Two oligonucleotides were prepared, an unmodified oligonucleotide, d((5)(')CGCGCGCGCG(3)(')), and a C8-phenylguanine modified oligonucleotide, d((5)(')CGCGCGCGCG(3)(')) (G = 8-phenylguanine). These oligonucleotides were compared using thermal denaturation, circular dichroism, NMR, and molecular modeling. The phenyl modification destabilizes the B DNA form and stabilizes the Z DNA form such that the B:Z ratio is near one under physiological conditions. In light of recent studies that show a role for Z DNA in gene expression and cell transformation, Z DNA stabilization by C8-arylguanine formation from aryl hydrazines may be relevant to their role in carcinogenesis.

  8. Enhanced GSH synthesis by Bisphenol A exposure promoted DNA methylation process in the testes of adult rare minnow Gobiocypris rarus.

    Science.gov (United States)

    Yuan, Cong; Zhang, Yingying; Liu, Yan; Zhang, Ting; Wang, Zaizhao

    2016-09-01

    DNA methylation is a commonly studied epigenetic modification. The mechanism of BPA on DNA methylation is poorly understood. The present study aims to explore whether GSH synthesis affects DNA methylation in the testes of adult male rare minnow Gobiocypris rarus in response to Bisphenol A (BPA). Male G. rarus was exposed to 1, 15 and 225μgL(-1) BPA for 7 days. The levels of global DNA methylation, hydrogen peroxide (H2O2) and glutathione (GSH) in the testes were analyzed. Meanwhile, the levels of enzymes involved in DNA methylation and de novo GSH synthesis, and the substrate contents for GSH production were measured. Furthermore, gene expression profiles of the corresponding genes of all studied enzymes were analyzed. Results indicated that BPA at 15 and 225μgL(-1) caused hypermethylation of global DNA in the testes. The 15μgL(-1) BPA resulted in significant decrease of ten-eleven translocation proteins (TETs) while 225μgL(-1) BPA caused significant increase of DNA methyltransferase proteins (DNMTs). Moreover, 225μgL(-1) BPA caused significant increase of H2O2 and GSH levels, and the de novo GSH synthesis was enhanced. These results indicated that the significant decrease of the level of TETs may be sufficient to cause the DNA hypermethylation by 15μgL(-1) BPA. However, the significantly increased of DNMTs contributed to the significant increase of DNA methylation levels by 225μgL(-1) BPA. Moreover, the elevated de novo GSH synthesis may promote the DNA methylation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Irofulven, a novel inhibitor of DNA synthesis, in metastatic renal cell cancer.

    Science.gov (United States)

    Amato, Robert J; Perez, Cherie; Pagliaro, Lance

    2002-11-01

    Irofulven (6-Hydroxymethylacylfulvene, MGI-114) is the first of a new class of anticancer compounds the acylfulvenes which are derived from the natural product, illudin S. Irofulven is a potent anticancer agent with activity against a broad range of human tumors in vitro and in vivo. Irofulven covalently binds to DNA, inhibits DNA synthesis and induces apoptosis. Clinical activity has been observed in phase I studies. Because disease stabilizations were observed in kidney cancer patients in the phase I trials, we performed a phase II trial of irofulven in this patient population. Twenty patients were accrued. Irofulven (11 milligrams per meter squared per day) was administered as a 5 minute intravenous infusion for 5 consecutive days, and response was evaluated every 8 weeks. There were no objective responses. The most common toxicities were nausea, emesis, and thrombocytopenia. Irofulven, at the dose and schedule administered in this trial, showed no effect in metastatic renal cell cancer.

  10. Investigation of the Bovine Leukemia Virus Proviral DNA in Human Leukemias and Lung cancers in Korea

    OpenAIRE

    Lee, JeHoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-01-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combinati...

  11. Stability of the human polymerase δ holoenzyme and its implications in lagging strand DNA synthesis.

    Science.gov (United States)

    Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J

    2016-03-29

    In eukaryotes, DNA polymerase δ (pol δ) is responsible for replicating the lagging strand template and anchors to the proliferating cell nuclear antigen (PCNA) sliding clamp to form a holoenzyme. The stability of this complex is integral to every aspect of lagging strand replication. Most of our understanding comes from Saccharomyces cerevisae where the extreme stability of the pol δ holoenzyme ensures that every nucleobase within an Okazaki fragment is faithfully duplicated before dissociation but also necessitates an active displacement mechanism for polymerase recycling and exchange. However, the stability of the human pol δ holoenzyme is unknown. We designed unique kinetic assays to analyze the processivity and stability of the pol δ holoenzyme. Surprisingly, the results indicate that human pol δ maintains a loose association with PCNA while replicating DNA. Such behavior has profound implications on Okazaki fragment synthesis in humans as it limits the processivity of pol δ on undamaged DNA and promotes the rapid dissociation of pol δ from PCNA on stalling at a DNA lesion.

  12. Design, synthesis and DNA-binding study of some novel morpholine linked thiazolidinone derivatives

    Science.gov (United States)

    War, Javeed Ahmad; Srivastava, Santosh Kumar; Srivastava, Savitri Devi

    2017-02-01

    The emergence of multiple drug resistance amongst bacterial strains resulted in many clinical drugs to be ineffective. Being vulnerable to bacterial infections any lack in the development of new antimicrobial drugs could pose a serious threat to public health. Here we report design and synthesis of a novel class of morpholine linked thiazolidinone hybrid molecules. The compounds were characterized by FT-IR, NMR and HRMS techniques. Susceptibility tests showed that most of the synthesized molecules were highly active against multiple bacterial strains. Compound 3f displayed MIC values which were better than the standard drug for most of the tested strains. DNA being a well defined target for many antimicrobial drugs was probed as possible target for these synthetic molecules. DNA-binding study of 3f with sm-DNA was probed through UV-vis absorption, fluorescence quenching, gel electrophoresis and molecular docking techniques. The studies revealed that compound 3f has strong affinity towards DNA and binds at the minor groove. The docking studies revealed that the compound 3f shows preferential binding towards A/T residues.

  13. PCNA ubiquitination is important, but not essential for translesion DNA synthesis in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ayal Hendel

    2011-09-01

    Full Text Available Translesion DNA synthesis (TLS is a DNA damage tolerance mechanism in which specialized low-fidelity DNA polymerases bypass replication-blocking lesions, and it is usually associated with mutagenesis. In Saccharomyces cerevisiae a key event in TLS is the monoubiquitination of PCNA, which enables recruitment of the specialized polymerases to the damaged site through their ubiquitin-binding domain. In mammals, however, there is a debate on the requirement for ubiquitinated PCNA (PCNA-Ub in TLS. We show that UV-induced Rpa foci, indicative of single-stranded DNA (ssDNA regions caused by UV, accumulate faster and disappear more slowly in Pcna(K164R/K164R cells, which are resistant to PCNA ubiquitination, compared to Pcna(+/+ cells, consistent with a TLS defect. Direct analysis of TLS in these cells, using gapped plasmids with site-specific lesions, showed that TLS is strongly reduced across UV lesions and the cisplatin-induced intrastrand GG crosslink. A similar effect was obtained in cells lacking Rad18, the E3 ubiquitin ligase which monoubiquitinates PCNA. Consistently, cells lacking Usp1, the enzyme that de-ubiquitinates PCNA exhibited increased TLS across a UV lesion and the cisplatin adduct. In contrast, cells lacking the Rad5-homologs Shprh and Hltf, which polyubiquitinate PCNA, exhibited normal TLS. Knocking down the expression of the TLS genes Rev3L, PolH, or Rev1 in Pcna(K164R/K164R mouse embryo fibroblasts caused each an increased sensitivity to UV radiation, indicating the existence of TLS pathways that are independent of PCNA-Ub. Taken together these results indicate that PCNA-Ub is required for maximal TLS. However, TLS polymerases can be recruited to damaged DNA also in the absence of PCNA-Ub, and perform TLS, albeit at a significantly lower efficiency and altered mutagenic specificity.

  14. Rapid DNA Synthesis During EarlyDrosophilaEmbryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function.

    Science.gov (United States)

    Lesly, Shera; Bandura, Jennifer L; Calvi, Brian R

    2017-11-01

    Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty ( hd ), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd 272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd 272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd 272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms. Copyright © 2017 by the Genetics Society of America.

  15. Amino acids attached to 2'-amino-LNA: Synthesis of DNA mixmer oligonucleotides with increased duplex stability

    DEFF Research Database (Denmark)

    Johannsen, Marie Willaing; Wengel, Jesper; Wamberg, Michael Chr.

    2010-01-01

    The synthesis of 2'-amino-LNA (locked nucleic acid) opens up exciting possibilities for modification of nucleic acids by conjugation to the 2'-nitrogen. Incorporation of unmodified and N-functionalized 2'-amino-LNA nucleotides improve duplex stability compared to unmodified DNA. 2'-Amino......-LNA nucleosides derivatized with amino acids have been synthesized and incorporated into DNA oligonucleotides. Following oligonucleotide synthesis, peptides have been added using solid phase peptide coupling chem. Modification of oligonucleotides with pos. charged residues greatly improves thermal stability....

  16. The mitochondrial DNA helicase TWINKLE can assemble on a closed circular template and support initiation of DNA synthesis

    NARCIS (Netherlands)

    Jemt, E.; Farge, G.A.; Backstrom, S.; Holmlund, T.; Gustafsson, C. M.; Falkenberg, M.

    2011-01-01

    Mitochondrial DNA replication is performed by a simple machinery, containing the TWINKLE DNA helicase, a single-stranded DNA-binding protein, and the mitochondrial DNA polymerase γ. In addition, mitochondrial RNA polymerase is required for primer formation at the origins of DNA replication. TWINKLE

  17. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis

    DEFF Research Database (Denmark)

    Burkovics, Peter; Dome, Lili; Juhasz, Szilvia

    2016-01-01

    Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS...... is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown...... to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during...

  18. Nonequilibrium synthesis and assembly of hybrid inorganic-protein nanostructures using an engineered DNA binding protein.

    Science.gov (United States)

    Dai, Haixia; Choe, Woo-Seok; Thai, Corrine K; Sarikaya, Mehmet; Traxler, Beth A; Baneyx, François; Schwartz, Daniel T

    2005-11-09

    We show that a protein with no intrinsic inorganic synthesis activity can be endowed with the ability to control the formation of inorganic nanostructures under thermodynamically unfavorable (nonequilibrium) conditions, reproducing a key feature of biological hard-tissue growth and assembly. The nonequilibrium synthesis of Cu(2)O nanoparticles is accomplished using an engineered derivative of the DNA-binding protein TraI in a room-temperature precursor electrolyte. The functional TraI derivative (TraIi1753::CN225) is engineered to possess a cysteine-constrained 12-residue Cu(2)O binding sequence, designated CN225, that is inserted into a permissive site in TraI. When TraIi1753::CN225 is included in the precursor electrolyte, stable Cu(2)O nanoparticles form, even though the concentrations of [Cu(+)] and [OH(-)] are at 5% of the solubility product (K(sp,Cu2O)). Negative control experiments verify that Cu(2)O formation is controlled by inclusion of the CN225 binding sequence. Transmission electron microscopy and electron diffraction reveal a core-shell structure for the nonequilibrium nanoparticles: a 2 nm Cu(2)O core is surrounded by an adsorbed protein shell. Quantitative protein adsorption studies show that the unexpected stability of Cu(2)O is imparted by the nanomolar surface binding affinity of TraIi1753::CN225 for Cu(2)O (K(d) = 1.2 x 10(-)(8) M), which provides favorable interfacial energetics (-45 kJ/mol) for the core-shell configuration. The protein shell retains the DNA-binding traits of TraI, as evidenced by the spontaneous organization of nanoparticles onto circular double-stranded DNA.

  19. The rolling circle for phiX DNA replication. II. Synthesis of single-stranded circles.

    Science.gov (United States)

    Dressler, D

    1970-12-01

    varphiX-infected cells have been allowed to incorporate tritiated thymidine late in the phage life cycle when single-stranded circles are the product of DNA synthesis. Virtually all of the radioactivity is recovered in a continuum of actively replicating viral DNA molecules. These molecules are termed rolling circle intermediates because they are characterized by three structural properties. They possess positive strands that are longer than the length of a mature viral genome, and negative strands that are covalently closed single-stranded circles. The 3' termini of the long positive strands lie upon the template rings, while the 5' ends are free in solution. From these experimental data, the basic mode of synthesis is deduced to involve the continuous elongation of the open positive strand by endless copying around the circular negative strand template. As new bases are added to the template-bound (3') end of the positive strand, the distal (5') end is displaced from the template ring as a single-stranded tail of increasing length. It is the tail which serves as the source of material for progeny chromosomes. These data confirm our characterization of this varphiX intermediate, which initially was based only on the possession of long positive strands, and extend this characterization to include experimental statements about the circular nature of the template DNA strand, and the 5' to 3' direction of polynucleotide chain growth within the intermediate. Moreover, the description can now be applied to all of the molecules which acquire label during a pulse.

  20. Homologous Recombination via Synthesis-Dependent Strand Annealing in Yeast Requires the Irc20 and Srs2 DNA Helicases

    OpenAIRE

    Miura, Tohru; Yamana, Yoshimasa; Usui, Takehiko; Ogawa, Hiroaki I.; Yamamoto, Masa-Toshi; Kusano, Kohji

    2012-01-01

    Synthesis-dependent strand-annealing (SDSA)-mediated homologous recombination replaces the sequence around a DNA double-strand break (DSB) with a copy of a homologous DNA template, while maintaining the original configuration of the flanking regions. In somatic cells at the 4n stage, Holliday-junction-mediated homologous recombination and nonhomologous end joining (NHEJ) cause crossovers (CO) between homologous chromosomes and deletions, respectively, resulting in loss of heterozygosity (LOH)...

  1. Acute inactivation of the replicative helicase in human cells triggers MCM8-9-dependent DNA synthesis

    DEFF Research Database (Denmark)

    Natsume, Toyoaki; Nishimura, Kohei; Minocherhomji, Sheroy

    2017-01-01

    DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events....... This RAD51/MCM8-9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8-9 as an alternative replicative helicase....... stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks...

  2. Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity.

    Science.gov (United States)

    Mentegari, Elisa; Crespan, Emmanuele; Bavagnoli, Laura; Kissova, Miroslava; Bertoletti, Federica; Sabbioneda, Simone; Imhof, Ralph; Sturla, Shana J; Nilforoushan, Arman; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2017-03-17

    Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol δ interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol η as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol η can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Phenyl 1,2,3-triazole-thymidine ligands stabilize G-quadruplex DNA, inhibit DNA synthesis and potentially reduce tumor cell proliferation over 3'-azido deoxythymidine.

    Directory of Open Access Journals (Sweden)

    Jerald Mahesh Kumar

    Full Text Available Triazoles are known for their non-toxicity, higher stability and therapeutic activity. Few nucleoside (L1, L2 and L3 and non-nucleoside 1,2,3-triazoles (L4-L14 were synthesised using click chemistry and they were screened for tumor cell cytotoxicity and proliferation. Among these triazole ligands studied, nucleoside ligands exhibited higher potential than non-nucleoside ligands. The nucleoside triazole analogues, 3'-Phenyl-1,2,3- triazole-thymidine (L2 and 3'-4-Chlorophenyl-1,2,3-triazole-thymidine (L3, demonstrated higher cytotoxicity in tumor cells than in normal cells. The IC₅₀ value for L3 was lowest (50 µM among the ligands studied. L3 terminated cell cycle at S, G2/M phases and enhanced sub-G1 populations, manifesting induction of apoptosis in tumor cells. Confocal studies indicated that nucleoside triazole ligands (L2/L3 cause higher DNA fragmentation than other ligands. Preclinical experiments with tumor-induced mice showed greater reduction in tumor size with L3. In vitro DNA synthesis reaction with L3 exhibited higher DNA synthesis inhibition with quadruplex forming DNA (QF DNA than non quadruplex forming DNA (NQF DNA. T(m of quadruplex DNA increased in the presence of L3, indicating its ability to enhance stability of quadruplex DNA at elevated temperature and the results indicate that it had higher affinity towards quadruplex DNA than the other forms of DNA (like dsDNA and ssDNA. From western blot experiment, it was noticed that telomerase expression levels in the tissues of tumor-induced mice were found to be reduced on L3 treatment. Microcalorimetry results emphasise that two nucleoside triazole ligands (L2/L3 interact with quadruplex DNA with significantly higher affinity (K(d≈10⁻⁷ M. Interestingly the addition of an electronegative moiety to the phenyl group of L2 enhanced its anti-proliferative activity. Though IC₅₀ values are not significantly low with L3, the studies on series of synthetic 1,2,3-triazole ligands

  4. Synthesis of a Hoechst 32258 analogue amino acid building block for direct incorporation of a fluorescent, high-affinity DNA binding motif into peptides

    DEFF Research Database (Denmark)

    Behrens, C; Harrit, N; Nielsen, P E

    2001-01-01

    was conjugated to a DNA condensing peptide (KSPKKAKK) by continuous solid-phase peptide synthesis, and the conjugate exhibited increased DNA affinity (ca. 10-fold), but similar sequence preference compared to Hoechst 33258 as analyzed by DNaseI footprinting. Finally, the fluorescence quantum yield of the new......The synthesis of a new versatile "Hoechst 33258-like" Boc-protected amino acid building block for peptide synthesis is described. It is demonstrated that this new ligand is an effective mimic of Hoechst 33258 in terms of DNA affinity and sequence specificity. Furthermore, this minor groove binder...... chromophore is found to increase 30% upon binding to double stranded DNA....

  5. Telomere Length, Proviral Load and Neurologic Impairment in HTLV-1 and HTLV-2-Infected Subjects

    Directory of Open Access Journals (Sweden)

    Benjamin Usadi

    2016-08-01

    Full Text Available Short or damaged telomeres have been implicated in degenerative conditions. We hypothesized that analysis of telomere length (TL in human T-cell lymphotropic virus (HTLV infection and HTLV-associated neuropathy might provide clues to the etiology of HTLV-associated disease and viral dynamics. A subset of 45 human T-cell lymphotropic virus type 1 (HTLV-1, 45 human T-cell lymphotropic virus type 2 (HTLV-2, and 45 seronegative subjects was selected from the larger HTLV Outcomes Study (HOST cohort, matched on age, sex and race/ethnicity. Telomere-to-single-copy gene (T/S ratio (a measure of TL and HTLV-1 and HTLV-2 proviral loads were measured in peripheral blood mononuclear cells (PBMCs using quantitative PCR (qPCR. Vibration sensation measured by tuning fork during neurologic examinations performed as part of the HOST study allowed for an assessment of peripheral neuropathy. TL was compared between groups using t-tests, linear and logistic regression. Mean T/S ratio was 1.02 ± 0.16 in HTLV-1, 1.03 ± 0.17 in HTLV-2 and 0.99 ± 0.18 in HTLV seronegative subjects (p = 0.322. TL was not associated with HTLV-1 or -2 proviral load. Shorter TL was significantly associated with impaired vibration sense in the HTLV-2 positive group only. Overall, we found no evidence that telomere length was affected by chronic HTLV-1 and HTLV-2 infection. That TL was only associated with peripheral neuropathy in the HTLV-2-positive group is intriguing, but should be interpreted cautiously. Studies with larger sample size and telomere length measurement in lymphocyte subsets may clarify the relationship between TL and HTLV-infection.

  6. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    Science.gov (United States)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  7. Divalent ions attenuate DNA synthesis by human DNA polymerase α by changing the structure of the template/primer or by perturbing the polymerase reaction.

    Science.gov (United States)

    Zhang, Yinbo; Baranovskiy, Andrey G; Tahirov, Emin T; Tahirov, Tahir H; Pavlov, Youri I

    2016-07-01

    DNA polymerases (pols) are sophisticated protein machines operating in the replication, repair and recombination of genetic material in the complex environment of the cell. DNA pol reactions require at least two divalent metal ions for the phosphodiester bond formation. We explore two understudied roles of metals in pol transactions with emphasis on polα, a crucial enzyme in the initiation of DNA synthesis. We present evidence that the combination of many factors, including the structure of the template/primer, the identity of the metal, the metal turnover in the pol active site, and the influence of the concentration of nucleoside triphosphates, affect DNA pol synthesis. On the poly-dT70 template, the increase of Mg(2+) concentration within the range typically used for pol reactions led to the severe loss of the ability of pol to extend DNA primers and led to a decline in DNA product sizes when extending RNA primers, simulating the effect of "counting" of the number of nucleotides in nascent primers by polα. We suggest that a high Mg(2+) concentration promotes the dynamic formation of unconventional DNA structure(s), thus limiting the apparent processivity of the enzyme. Next, we found that Zn(2+) supported robust polα reactions when the concentration of nucleotides was above the concentration of ions; however, there was only one nucleotide incorporation by the Klenow fragment of DNA pol I. Zn(2+) drastically inhibited polα, but had no effect on Klenow, when Mg(2+) was also present. It is possible that Zn(2+) perturbs metal-mediated transactions in pol active site, for example affecting the step of pyrophosphate removal at the end of each pol cycle necessary for continuation of polymerization. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Purification and characterization of porcine liver DNA polymerase gamma: utilization of dUTP and dTTP during in vitro DNA synthesis.

    OpenAIRE

    Mosbaugh, D W

    1988-01-01

    Porcine liver DNA polymerase gamma has been demonstrated to preferentially incorporate dTMP over dUMP during in vitro DNA synthesis. When polymerase activity was measured in standard reactions containing saturating levels of either dTTP or dUTP, the polymerization rate was slightly faster in the reaction containing dTTP. However, under conditions where both dTTP and dUTP competed, at an equal molar concentration, approximately 3-times more thymine residues were incorporated than uracil residu...

  9. Strand-specific viral DNA synthesis in purified viroplasms isolated from turnip leaves infected with cauliflower mosaic virus.

    Science.gov (United States)

    Mazzolini, L; Bonneville, J M; Volovitch, M; Magazin, M; Yot, P

    1985-09-01

    There is some evidence that two steps are involved in the DNA replication of cauliflower mosaic virus (CaMV): the first one may occur in the nucleus and the second one in the cytoplasm of infected cells. The latter would correspond to the reverse transcription step recently proposed in the model of the viral life cycle, and could occur in the viroplasms which are CaMV-induced cytoplasmic inclusion bodies. In order to test whether viroplasms are capable of DNA synthesis and to characterize the associated enzymatic activities, we developed an extensive purification method for these organelles. Such isolated viroplasms are indeed able to incorporate radioactive precursors into exclusively viral-specific sequences without added template primer. Hybridization of sequences labeled in viroplasms to cloned CaMV DNA shows that the DNA synthesis occurs throughout the whole viral genome and has marked strand specificity; neosynthesized molecules are of minus polarity, i.e., complementary to the large viral transcript (35 S RNA). Moreover, during the purification of viroplasms, the poly(rC)-directed DNA synthesis activity, which is specific to infected plants, is preferentially retained.

  10. Membrane depolarization was required to induce DNA synthesis in murine macrophage cell line PU5-1.8.

    Science.gov (United States)

    Kong, S K; Suen, Y K; Choy, Y M; Fung, K P; Lee, C Y

    1991-01-01

    The role of membrane potential (Em) on the initiation of DNA synthesis in murine macrophage cell line PU5-1.8 was investigated with fluorescent probes bis-oxonol and diS-C3-(5). Incubation of PU5-1.8 cells in high K(+)-HEPES buffer or with gramicidin at 37 degrees C for 1h that depolarized the membrane induced [3H]-thymidine incorporation and expression of early response gene such as c-myc and c-fos. When PU5-1.8 cells were treated with a number of agents including fetal calf serum (FCS), lipopolysaccharide (LPS), epidermal growth factor (EGF), N-formyl-methionyl-leucyl-phenylalanine (FMLP) and bradykinin (BK), only FCS caused DNA synthesis and membrane depolarization. Other agents had no effect on these events. The FCS-mediated DNA synthesis in PU5-1.8 cells was inhibited by clamping the membrane potential with valinomycin. Moreover, intracellular alkalinization induced by nigericin at pH 7.9, which is believed to be a permissive signal for mitogenesis, caused membrane depolarization. On the other hand, challenge of cells with phorbol 12-myristate 13 acetate (PMA) suppressed the K(+)-mediated DNA synthesis. However, the treatment of cells with PMA did not change the membrane potential but suppressed the gramicidin-mediated membrane depolarization. These observations suggest that there is a correlation between membrane depolarization and initiation of DNA synthesis in PU5-1.8 cells. PKC may be acting as a modulator in this transducing pathway.

  11. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kochenova, O V; Soshkina, J V; Stepchenkova, E I; Inge-Vechtomov, S G; Shcherbakova, P V

    2011-01-01

    We employed a genetic assay based on illegitimate hybridization of heterothallic Saccharomyces cerevisiae strains (the α-test) to analyze the consequences for genome stability of inactivating translesion synthesis (TLS) DNA polymerases. The α-test is the only assay that measures the frequency of different types of mutational changes (point mutations, recombination, chromosome or chromosome arm loss) and temporary changes in genetic material simultaneously. All these events are manifested as illegitimate hybridization and can be distinguished by genetic analysis of the hybrids and cytoductants. We studied the effect of Polζ, Polη, and Rev1 deficiency on the genome stability in the absence of genotoxic treatment and in UV-irradiated cells. We show that, in spite of the increased percent of accurately repaired primary lesions, chromosome fragility, rearrangements, and loss occur in the absence of Polζ and Polη. Our findings contribute to further refinement of the current models of translesion synthesis and the organization of eukaryotic replication fork.

  12. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high

  13. Relationship between unscheduled DNA synthesis and mutation induction in male mice

    Energy Technology Data Exchange (ETDEWEB)

    Sega, G. A.

    1979-01-01

    Unscheduled DNA synthesis (UDS) induced in the germ cells of male mice by chemical and physical agents can be studied in vivo by making use of the timing of spermatogenesis and spermiogenesis. In meiotic and post-meiotic germ-cell stages UDS occurs from leptotene through mid-spermatid stages but is not detected in later stages. No consistent correlation has been seen between the occurrence of UDS in the germ cells and reduced dominant-lethal frequencies or reduced specific-locus mutation frequencies. It is suggested that the UDS observed in the germ cells may be principally involved in the removal of DNA lesions which, if left, could give rise to subtle genetic damage that current mammalian genetic tests may not be able to detect. Characterization of mouse stocks with reduced UDS capability in their germ cells plus the development of biochemical genetic markers that can measure single amino acid substitutions will likely be necessary before the relationship between UDS in mammalian germ cells and repair of genetic damage can be clearly established.

  14. Induction of DNA synthesis and apoptosis are separable functions of E2F-1

    DEFF Research Database (Denmark)

    Phillips, A C; Bates, S; Ryan, K M

    1997-01-01

    The family of E2F transcription factors have an essential role in mediating cell cycle progression, and recently, one of the E2F protein family, E2F-1, has been shown to participate in the induction of apoptosis. Cooperation between E2F and the p53 tumor suppressor protein in this apoptotic...... response had led to the suggestion that cell cycle progression induced by E2F-1 expression provides an apoptotic signal when placed in conflict with an arrest to cell cycle progression, such as provided by p53. We show here that although apoptosis is clearly enhanced by p53, E2F-1 can induce significant...... apoptosis in the absence of p53. Furthermore, this apoptotic function of E2F-1 is separable from the ability to accelerate entry into DNA synthesis. Analysis of E2F-1 mutants indicates that although DNA-binding is required, transcriptional transactivation is not necessary for the induction of apoptosis by E...

  15. Evaluation of HTLV-1 HBZ and proviral load, together with host IFN λ3, in pathogenesis of HAM/TSP.

    Science.gov (United States)

    Mozhgani, Sayed-Hamidreza; Jaberi, Najmeh; Rezaee, Seyed Abdolrahim; Bustani, Reza; Jazayeri, Seyed Mohammad; Akbarin, Mohammad Mehdi; Milani, Saeideh; Tarokhian, Hanieh; Norouzi, Mehdi

    2017-06-01

    Human T-cell lymphotropic virus 1 (HTLV-1) is associated with two progressive diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATLL). Although HTLV-1 proviral load (PVL) has been introduced as a risk factor for these diseases' progression, it is not sufficient on its own to yield an accurate estimation of the outcome of the infection. In the present study, PVL and HTLV-1 basic leucine zipper factor (HBZ) expression level as viral factors, and IFN λ3 as a host factor, were evaluated in HAM/TSP patients and HTLV-1 asymptomatic carriers (ACs). During 2014-2015, 12 HAM/TSP patients and 18 ACs who had been referred to the HTLV-1 Clinic, Ghaem Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran, were enrolled in this study. Peripheral blood mononuclear cells (PBMCs) were isolated and the DNA and mRNA were extracted for quantification of HBZ, IFN λ3 expression, and PVL using real-time PCR (TaqMan method). Although the PVL was higher in the HAM/TSP group, with a 94% confidence interval, there were no considerable differences in terms of HBZ mRNA and PVL between ACs and HAM patients. IFN λ3 expression in the HAM/TSP group was significantly higher than in the ACs (P = 0.02). To the best of our knowledge, no study has evaluated the expression level of IFN λ3 in HTLV-1 positive patients. The immune response against HTLV-1 viral antigens and virulent factors will therefore further refine our knowledge of interactions between the virus and host in the pathogenesis of HTLV-1-related disorders. The virus PVL and the host IFN λ3 can be used as pathogenic factors of HTLV-1 infected patients at risk of HAM/TSP manifestation. J. Med. Virol. 89:1102-1107, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Involvement of sulfoquinovosyl diacylglycerol in DNA synthesis in Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Aoki Motohide

    2012-02-01

    Full Text Available Abstract Background Sulfoquinovosyl diacylglycerol (SQDG is present in the membranes of cyanobacteria and their postulated progeny, plastids, in plants. A cyanobacterium, Synechocystis sp. PCC 6803, requires SQDG for growth: its mutant (SD1 with the sqdB gene for SQDG synthesis disrupted can grow with external supplementation of SQDG. However, upon removal of SQDG from the medium, its growth is retarded, with a decrease in the cellular content of SQDG throughout cell division, and finally ceases. Concomitantly with the decrease in SQDG, the maximal activity of photosynthesis at high-light intensity is repressed by 40%. Findings We investigated effects of SQDG-defect on physiological aspects in Synechocystis with the use of SD1. SD1 cells defective in SQDG exhibited normal photosynthesis at low-light intensity as on culturing. Meanwhile, SD1 cells defective in SQDG were impaired in light-activated heterotrophic growth as well as in photoautotrophic growth. Flow cytometric analysis of the photoautotrophically growing cells gave similar cell size histograms for the wild type and SD1 supplemented with SQDG. However, the profile of SD1 defective in SQDG changed such that large part of the cell population was increased in size. Of particular interest was the microscopic observation that the mitotic index, i.e., population of dumbbell-like cells with a septum, increased from 14 to 29% in the SD1 culture without SQDG. Flow cytometric analysis also showed that the enlarged cells of SD1 defective in SQDG contained high levels of Chl, however, the DNA content was low. Conclusions Our experiments strongly support the idea that photosynthesis is not the limiting factor for the growth of SD1 defective in SQDG, and that SQDG is responsible for some physiologically fundamental process common to both photoautotrophic and light-activated heterotrophic growth. Our findings suggest that the SQDG-defect allows construction of the photosynthetic machinery at an

  17. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-11-01

    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  18. Agrobacterium rhizogenes pRi8196 T-DNA: mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation.

    Science.gov (United States)

    Hansen, G; Larribe, M; Vaubert, D; Tempé, J; Biermann, B J; Montoya, A L; Chilton, M D; Brevet, J

    1991-01-01

    This paper presents the map and DNA sequence analysis of pRi8196 transferred DNA (T-DNA) genes encoding root-inducing and mannopine synthesis functions. A canonical 24-base-pair border repeat as well as two "pseudoborders" are present at the functional right T-DNA border. To the left of this border are homologs of the mas1' and mas2' genes of TR pRiA4. Next to these are five open reading frames (ORFs) homologous to ORFs 10-14 of TL of pRiA4. ORFs 10-12 (rolA, rolB, and rolC) are less related to their pRiA4 homologs than are the other large ORFs analyzed here. In contrast to T-DNA genes of pRiA4, pRi8196 T-DNA ORFs 11 and 12 (rolB and rolC) are sufficient to induce hairy roots on carrot disks. Images PMID:1909028

  19. Synthesis, crystal structures, DNA binding and photoluminescence properties of [Cu(pzta)2Cl]ClṡH2O for DNA detection

    Science.gov (United States)

    Duan, Ran-ran; Wang, Lu; Huo, Wei-qiang; Chen, Shi; Zhou, Xiao-hua

    2014-07-01

    We report here the synthesis of a new copper(II) complex of 2,4-diamino-6-(2‧-pyrazin)-1,3,5-triazine [Cu(pzta)2Cl]Cl·H2O and its characterization using UV and IR spectroscopy, elemental analysis, and X-ray diffraction. Fluorescence spectroscopy revealed that the complex was sensitive to oxygen and to the polarity of nonaqueous solvents. Binding of the complex to DNA was investigated using UV spectroscopy, ethidium bromide displacement from DNA, cyclic voltammetry, and viscometry. The results revealed the DNA binding mode was intercalation together with external static-electricity. However, the complex can be also used to DNA detection as DNA fluorescence probe with a LOD of 4.21 ng mL-1 for the relative wide linear range between 0.2 and 17 μg mL-1. In conclusion, that synthetic method of the complex was easy with low expense and was relatively rapid and sensitive compared to most toxic fluorescence dyes. This finding would indicate the complex may be a potential DNA-targeted probes and optical probes for oxygen-free environments in nonaqueous form.

  20. Effects of the Nd:YAG laser on DNA synthesis and collagen production in human skin fibroblast cultures

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.J.; Abergel, R.P.; Meeker, C.; Dwyer, R.M.; Lesavoy, M.A.; Uitto, J.

    1983-09-01

    Human skin fibroblasts were subjected to treatment with a Neodymium:YAG laser at 1060 nm with varying levels of energy determined by a reproducible method of dosimetry. DNA synthesis in the cells was measured by the incorporation of (3H)thymidine, and collagen production was monitored by the synthesis of nondialyzable (3H)hydroxyproline after incubation of cells with (3H)proline. Using energy levels equal to 1.7 X 10(3) J/cm2, a significant reduction in DNA synthesis was noted, while the cells remained viable as tested by the trypan blue exclusion test. With energy levels higher or equal to 2.3 X 10(3) J/cm2, the suppression of DNA synthesis was accompanied by cell nonviability. The collagen production, when measured immediately following the treatment with 1.7 X 10(3) J/cm2, was markedly reduced, and similar effects were observed with higher energy levels. However, when the cells were tested for collagen production at 20 hours following laser treatment, there was a significant decrease in collagen production at energy levels as low as 1.1 X 10(3) J/cm2, a dose that did not affect DNA synthesis or cell viability. Thus, the results indicate that the Nd:YAG laser can selectively suppress collagen production without affecting cell proliferation. These observations suggest that laser treatment could potentially be used to reduce collagen deposition in conditions such as keloids and hypertrophic scars.

  1. Electron Microscopic Radioautographic Study on Mitochondrial DNA Synthesis in Adrenal Cortical Cells of Developing and Aging Mice

    Directory of Open Access Journals (Sweden)

    Tetsuji Nagata

    2008-01-01

    Full Text Available In order to study the aging changes of intramitochondrial DNA synthesis of mouse adrenal cortical cells, eight groups of developing mice, each consisting of three individuals (total 24, from fetal day 19 to postnatal newborn at days 1, 3, 9, 14, to adult at months 1, 2, and 6, were injected with 3H-thymidine, sacrificed 1 h later, and the adrenal tissues were fixed and processed for electron microscopic (EM radioautography. On EM radioautograms obtained from each animal, the number of mitochondria and the mitochondrial labeling index labeled with 3H-thymidine showing DNA synthesis in each adrenal cortical cell, in three zones, were counted and the results in respective developing groups were compared. From the results, it was demonstrated that the numbers of mitochondria in the three zones, the zona glomerulosa, fasciculata, and reticularis, of mice at various ages increased from fetal day 19 to postnatal month 6 due to development and aging of animals, respectively, while the number of labeled mitochondria and the labeling index of intramitochondrial DNA syntheses incorporating 3H-thymidine increased from fetal day 19 to postnatal month 2, reaching the maxima, and decreased to month 6. It was shown that the activity of intramitochondrial DNA synthesis in the adrenal cortical cells in developing and aging mice changed due to aging.

  2. UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis.

    Science.gov (United States)

    Kong, Fen-Ying; Li, Wei-Wei; Wang, Jing-Yi; Wang, Wei

    2015-07-15

    Herein, we report, for the first time, the synthesis of reduced graphene oxide-DNA-Ag (RGO-DNA-Ag) nanohybrids by ultraviolet (UV) irradiation of aqueous solutions of GO and Ag ions in the presence of DNA. The morphology and microstructure characterizations of the resultant nanohybrids reveal that the proposed method leads to the simultaneous reduction of GO and Ag ions together with efficient dispersion of Ag nanoparticles on the surface of RGO sheets. This simple and fast synthesis route is carried out at ambient conditions without using any additional chemical reducing agents, which has the potential to provide new avenues for the green fabrication of various RGO-based nanomaterials. Additionally, the RGO-DNA-Ag nanohybrids can be utilized as a novel sensing interfacial for direct determination of iodide by simple differential pulse voltammetry (DPV), without requiring any preceding preconcentration of the analyte. Based on the RGO-DNA-Ag nanohybrids modified electrode, a wide linear range of 1μM-1mM and a low detection limit of 0.2μM were obtained. This sensitive and direct method of analysis can be applied successfully to the determination of iodide in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells.

    Science.gov (United States)

    Zargan, Jamil; Sajad, Mir; Umar, Sadiq; Naime, M; Ali, Shakir; Khan, Haider A

    2011-02-01

    Scorpion and its organs have been used to cure epilepsy, rheumatism, and male impotency since medieval times. Scorpion venom which contains different compounds like enzyme and non-enzyme proteins, ions, free amino acids, and other organic inorganic substances have been reported to posses antiproliferative, cytotoxic, apoptogenic, and immunosuppressive properties. We for the first time report the apoptotic and antiproliferative effects of scorpion venom (Odontobuthus doriae) in human neuroblastoma cells. After exposure of cells to medium containing varying concentrations of venom (10, 25, 50, 100, and 200 μg/ml), cell viability decreased to 90.75, 75.53, 55.52, 37.85, and 14.30%, respectively, after 24 h. Cells expressed morphological changes like swelling, inhibition of neurite outgrowth, irregular shape, aggregation, rupture of membrane, and release of cytosolic contents after treatment with venom. Lactate dehydrogenase (LDH) level increased in 50 and 100 μg/ml as compared to control, but there was no significant increase in LDH level at a dose of 10 and 20 μg/ml. Two concentrations viz. 50 and 100 μ/ml were selected because of the profound effect of these concentrations on the cellular health and population. Treatment with these two concentrations induced reactive nitrogen intermediates and depolarization in mitochondria. While caspase-3 activity increased in a concentration-dependent manner, only 50 μg/ml was able to fragment DNA. It was interesting to note that at higher dose, i.e., 100 μg/ml, the cells were killed, supposedly by acute necrosis. DNA synthesis evidenced by bromodeoxyuridine (BrdU) incorporation was inhibited in a concentration-dependent manner. The cells without treatment incorporated BrdU with high affinity confirming their cancerous nature whereas very less incorporation was noticed in treated cells. Our results show apoptotic and antiproliferative potential of scorpion venom (O. doriae) in human neuroblastoma cells. These properties

  4. Inhibition of 2-nitropropane-induced cellular proliferation, DNA synthesis and histopathological changes by melatonin.

    Science.gov (United States)

    El-Sokkary, Gamal H

    2002-08-01

    2-Nitropropane (2-NP) is mutagenic in a number of short-term mutagenicity assays in vitro and in vivo, and is a potent hepatocarcinogen in rats. Many studies have determined that differences in the metabolism and disposition of the chemicals that produce mutagenicity were not responsible for their observed carcinogenic differences, but that carcinogenicity correlated with the ability of the respective isomer to induce cell proliferation in the target organ. Three groups of male rats (control, 2-NP-treated [4 mmol/kg] and 2-NP + melatonin [10 mg/kg]) were used in the current study. Cell proliferation was quantitated by incorporation of 3H-thymidine, detected by autoradiography, into newly synthesized DNA. Histopatholgical study was carried out to investigate the morphological changes. Twenty four hours after 2-NP administration, there was an increase in the labelling index (LI) and grain count per labelled nucleus (GC/N) in the hepatocytes of 2-NP-injected rats versus those of control animals. The increase was 69.5% in LI and 29.4% in GC/N. Melatonin treatment, 30 minutes preceding 2-NP, reduced the increase in LI (44.4%) and GC/N (20.7%) when compared with 2-NP-treated rats. Histopathology revealed multiple focal areas of necrosis in the liver following 2-NP injection. In the lung, there was a mucinous degeneration of the bronchial epithelium. Melatonin treatment restored the histopathological changes in both the liver and lung and they are more or less normal. Overall, these results seem to indicate that the stimulatory effect of 2-NP on the cellular proliferation and the rate of DNA synthesis in the liver may be one of mechanisms by which the carcinogen induces its carcinogenic action. Also, melatonin treatment strongly protects the studied organs against the toxic effect of 2-NP.

  5. Mutagenic Bypass of an Oxidized Abasic Lesion-Induced DNA Interstrand Cross-Link Analogue by Human Translesion Synthesis DNA Polymerases.

    Science.gov (United States)

    Xu, Wenyan; Ouellette, Adam; Ghosh, Souradyuti; O'Neill, Tylor C; Greenberg, Marc M; Zhao, Linlin

    2015-12-22

    5'-(2-Phosphoryl-1,4-dioxobutane) (DOB) is an oxidized abasic site that is produced by several antitumor agents and γ-radiolysis. DOB reacts reversibly with a dA opposite the 3'-adjacent nucleotide to form DNA interstrand cross-links (ICLs), genotoxic DNA lesions that can block DNA replication and transcription. Translesion synthesis (TLS) is an important step in several ICL repair pathways to bypass unhooked intermediates generated by endonucleolytic incision. The instability of DOB-ICLs has made it difficult to learn about their TLS-mediated repair capability and mutagenic potential. We recently developed a method for chemically synthesizing oligonucleotides containing a modified DOB-ICL analogue. Herein, we examined the capabilities of several highly relevant eukaryotic TLS DNA polymerases (pols), including human pol η, pol κ, pol ι, pol ν, REV1, and yeast pol ζ, to bypass this DOB-ICL analogue. The prelesion, translesion, and postlesion replication efficiency and fidelity were examined. Pol η showed moderate bypass activity when encountering the DOB-ICL, giving major products one or two nucleotides beyond the cross-linked template nucleotide. In contrast, DNA synthesis by the other pols was stalled at the position before the cross-linked nucleotide. Steady-state kinetic data and liquid chromatography-mass spectrometry sequencing of primer extension products by pol η unambiguously revealed that pol η-mediated bypass is highly error-prone. Together, our study provides the first set of in vitro evidence that the DOB-ICL is a replication-blocking and highly miscoding lesion. Compared to several other TLS pols examined, pol η is likely to contribute to the TLS-mediated repair of the DOB-ICL in vivo.

  6. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Science.gov (United States)

    Zhang, Yingwei; Luo, Yonglan; Tian, Jingqi; Asiri, Abdullah M; Al-Youbi, Abdulrahman O; Sun, Xuping

    2012-01-01

    In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs) assembled from Cu(II) and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1) RCPN binds dye-labeled single-stranded DNA (ssDNA) probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2) Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA) which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  7. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR.

    Science.gov (United States)

    Panei, Carlos Javier; Takeshima, Shin-nosuke; Omori, Takashi; Nunoya, Tetsuo; Davis, William C; Ishizaki, Hiroshi; Matoba, Kazuhiro; Aida, Yoko

    2013-05-04

    Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis (EBL), which is the most common neoplastic disease of cattle. BLV infection may remain clinically silent at the aleukemic (AL) stage, cause persistent lymphocytosis (PL), or, more rarely, B cell lymphoma. BLV has been identified in B cells, CD2+ T cells, CD3+ T cells, CD4+ T cells, CD8+ T cells, γ/δ T cells, monocytes, and granulocytes in infected cattle that do not have tumors, although the most consistently infected cell is the CD5+ B cell. The mechanism by which BLV causes uncontrolled CD5+ B cell proliferation is unknown. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR) method, BLV-CoCoMo-qPCR, which enabled us to demonstrate that the proviral load correlates not only with BLV infection, as assessed by syncytium formation, but also with BLV disease progression. The present study reports the distribution of BLV provirus in peripheral blood mononuclear cell subpopulations isolated from BLV-infected cows at the subclinical stage of EBL as examined by cell sorting and BLV-CoCoMo-qPCR. Phenotypic characterization of five BLV-infected but clinically normal cattle with a proviral load of > 100 copies per 1 × 105 cells identified a high percentage of CD5+ IgM+ cells (but not CD5- IgM+ B cells, CD4+ T cells, or CD8+T cells). These lymphocyte subpopulations were purified from three out of five cattle by cell sorting or using magnetic beads, and the BLV proviral load was estimated using BLV-CoCoMo-qPCR. The CD5+ IgM+ B cell population in all animals harbored a higher BLV proviral load than the other cell populations. The copy number of proviruses infecting CD5- IgM+ B cells, CD4+ cells, and CD8+ T cells (per 1 ml of blood) was 1/34 to 1/4, 1/22 to 1/3, and 1/31 to 1/3, respectively, compared with that in CD5+ IgM+ B cells. Moreover, the BLV provirus remained integrated into the genomic DNA of CD5+ IgM+ B cells, CD5- IgM+ B cells, CD4+ T cells, and CD8+ T cells

  8. Interleukin-8 induces DNA synthesis, migration and down-regulation of cleaved caspase-3 in cultured human gingival epithelial cells.

    Science.gov (United States)

    Fujita, T; Yoshimoto, T; Matsuda, S; Kajiya, M; Kittaka, M; Imai, H; Iwata, T; Uchida, Y; Shiba, H; Kurihara, H

    2015-08-01

    Migration of the junctional epithelium occurs in association with the formation of a periodontal pocket. Although the migration of junctional epithelium is known to be related to the proliferation and migration of gingival junctional epithelial cells, the mechanism has not been clarified. In patients with periodontitis, the levels of interleukin-8 (IL-8) in both gingival tissue and gingival crevicular fluid are dramatically increased. IL-8 has broad bioactive functions. In this study, we examined the role of IL-8 in DNA synthesis, migration and protection against apoptosis in cultured human gingival epithelial cells (HGEC). DNA synthesis was estimated by measuring the incorporation of bromodeoxyuridine. The migration of gingival epithelial cells was assessed in a wound-healing assay. The expression of integrin beta-1 was analyzed using immunofluorescence confocal microscopy and western blotting. Cleaved caspase-3 was detected using western blotting and a Caspase-Glo assay kit. IL-8 increased the synthesis of DNA in HGEC, and the maximal effect was seen at 25 or 50 ng/mL of IL-8. In addition, 50 ng/mL of IL-8 induced cell migration, and a neutralizing antibody of integrin beta-1 inhibited the migration. IL-8 also activated expression of integrin beta-1. Furthermore, IL-8 reduced the Aggregatibacter actinomycetemcomitans-induced increase in caspase-3 expression in HGEC. IL-8 may facilitate the migration of gingival junctional epithelium by enhancing DNA synthesis, migration and preventing apoptosis of gingival epithelial cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. RRR-alpha-tocopheryl succinate inhibits EL4 thymic lymphoma cell growth by inducing apoptosis and DNA synthesis arrest.

    Science.gov (United States)

    Yu, W; Sanders, B G; Kline, K

    1997-01-01

    RRR-alpha-tocopheryl succinate (vitamin E succinate, VES) treatment of murine EL4 T lymphoma cells induced the cells to undergo apoptosis. After 48 hours of VES treatment at 20 micrograms/ml, 95% of cells were apoptotic. Evidence for the induction of apoptosis by VES treatments is based on staining of DNA for detection of chromatin condensation/fragmentation, two-color flow-cytometric analyses of DNA content, and end-labeled DNA and electrophoretic analyses for detection of DNA ladder formation. VES-treated EL4 cells were blocked in the G1 cell cycle phase; however, apoptotic cells came from all cell cycle phases. Analyses of mRNA expression of genes involved in apoptosis revealed decreased c-myc and increased bcl-2, c-fos, and c-jun mRNAs within three to six hours after treatment. Western analyses showed increased c-Jun, c-Fos, and Bcl-2 protein levels. Electrophoretic mobility shift assays showed increased AP-1 binding at 6, 12, and 24 hours after treatment and decreased c-Myc binding after 12 and 24 hours of VES treatment. Treatments of EL4 cells with VES+RRR-alpha-to-copherol reduced apoptosis without effecting DNA synthesis arrest. Treatments of EL4 cells with VES+rac-6-hydroxyl-2, 5,7,8-tetramethyl-chroman-2-carboxylic acid, butylated hydroxytoluene, or butylated hydroxyanisole had no effect on apoptosis or DNA synthesis arrest caused by VES treatments. Analyses of bcl-2, c-myc, c-jun, and c-fos mRNA levels in cells receiving VES + RRR-alpha-tocopherol treatments showed no change from cells receiving VES treatments alone, implying that these changes are correlated with VES treatments but are not causal for apoptosis. However, treatments with VES + RRR-alpha-tocopherol decreased AP-1 binding to consensus DNA oligomer, suggesting AP-1 involvement in apoptosis induced by VES treatments.

  10. Days weaving the lagging strand synthesis of DNA - A personal recollection of the discovery of Okazaki fragments and studies on discontinuous replication mechanism.

    Science.gov (United States)

    Okazaki, Tsuneko

    2017-01-01

    At DNA replication forks, the overall growth of the antiparallel two daughter DNA chains appears to occur 5'-to-3' direction in the leading-strand and 3'-to-5' direction in the lagging-strand using enzyme system only able to elongate 5'-to-3' direction, and I describe in this review how we have analyzed and proved the lagging strand multistep synthesis reactions, called Discontinuous Replication Mechanism, which involve short RNA primer synthesis, primer-dependent short DNA chains (Okazaki fragments) synthesis, primer removal from the Okazaki fragments and gap filling between Okazaki fragments by RNase H and DNA polymerase I, and long lagging strand formation by joining between Okazaki fragments with DNA ligase.

  11. A new enzymatic route for production of long 5'-phosphorylated oligonucleotides using suicide cassettes and rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-08-01

    Full Text Available Abstract Background The quality of chemically synthesized oligonucleotides falls with the length of the oligonucleotide, not least due to depurinations and premature termination during production. This limits the use of long oligonucleotides in assays where long high-quality oligonucleotides are needed (e.g. padlock probes. Another problem with chemically synthesized oligonucleotides is that secondary structures contained within an oligonucleotide reduce the efficiency of HPLC and/or PAGE purification. Additionally, ligation of chemically synthesized oligonucleotides is less efficient than the ligation of enzymatically produced DNA molecules. Results Chemically synthesized oligonucleotides with hairpin structures were acquired from our standard supplier. The stem of the hairpin contained recognition sequences for the Nt. Alw I nicking enzyme and the Mly I restriction enzyme. These double stranded regions were positioned in a way to allow self-templated circularization of the oligonucleotide. Following ligation, tandem repeats of the complementary sequence of the circular oligonucleotide could be produced through rolling circle DNA synthesis. By running successive rounds of ligation, rolling circle DNA synthesis, and nicking, the original oligonucleotide could be amplified as either the (+-strand or the (--strand. Alternatively, the hairpin structure could be removed by cleavage with the Mly I restriction enzyme, thereby releasing the oligonucleotide sequence contained within the hairpin structure from the hairpin. Conclusion We present here a method for the enzymatic production through DNA amplification of oligonucleotides with freely designable 5'-ends and 3'-ends, using hairpin-containing self-templating oligonucleotides. The hairpin comprises recognition sequences for a nicking enzyme and a restriction enzyme. The oligonucleotides are amplified by successive rounds of ligation, rolling circle DNA synthesis and nicking. Furthermore, the

  12. Autonomous assembly of synthetic oligonucleotides built from an expanded DNA alphabet. Total synthesis of a gene encoding kanamycin resistance.

    Science.gov (United States)

    Merritt, Kristen K; Bradley, Kevin M; Hutter, Daniel; Matsuura, Mariko F; Rowold, Diane J; Benner, Steven A

    2014-01-01

    Many synthetic biologists seek to increase the degree of autonomy in the assembly of long DNA (L-DNA) constructs from short synthetic DNA fragments, which are today quite inexpensive because of automated solid-phase synthesis. However, the low information density of DNA built from just four nucleotide "letters", the presence of strong (G:C) and weak (A:T) nucleobase pairs, the non-canonical folded structures that compete with Watson-Crick pairing, and other features intrinsic to natural DNA, generally prevent the autonomous assembly of short single-stranded oligonucleotides greater than a dozen or so. We describe a new strategy to autonomously assemble L-DNA constructs from fragments of synthetic single-stranded DNA. This strategy uses an artificially expanded genetic information system (AEGIS) that adds nucleotides to the four (G, A, C, and T) found in standard DNA by shuffling hydrogen-bonding units on the nucleobases, all while retaining the overall Watson-Crick base-pairing geometry. The added information density allows larger numbers of synthetic fragments to self-assemble without off-target hybridization, hairpin formation, and non-canonical folding interactions. The AEGIS pairs are then converted into standard pairs to produce a fully natural L-DNA product. Here, we report the autonomous assembly of a gene encoding kanamycin resistance using this strategy. Synthetic fragments were built from a six-letter alphabet having two AEGIS components, 5-methyl-2'-deoxyisocytidine and 2'-deoxyisoguanosine (respectively S and B), at their overlapping ends. Gaps in the overlapped assembly were then filled in using DNA polymerases, and the nicks were sealed by ligase. The S:B pairs in the ligated construct were then converted to T:A pairs during PCR amplification. When cloned into a plasmid, the product was shown to make Escherichia coli resistant to kanamycin. A parallel study that attempted to assemble similarly sized genes with optimally designed standard nucleotides

  13. Evaluation of HTLV-1 activity in HAM/TSP patients using proviral load and Tax mRNA expression after In Vitro lymphocyte activation.

    Science.gov (United States)

    Yari, Atefeh; Rezaee, Seyyed Abdolrahim; Valizadeh, Narges; Rajaee, Taraneh; Jazayeri, Seyyed Mohammad; Soltani, Mojdeh; Norouzi, Mehdi

    2014-07-01

    HTLV-1 is the first human retrovirus that has been recognized and is associated with HAM/TSP and ATLL. Studies have shown that less than five percent of HTLV-1 infected carriers develop HAM/TSP or ATLL and about ninety-five percent remain asymptomatic. Therefore, the proviral load with Tax may affect cellular genes such as cytokines and oncogenes, as well as involve in pathogenicity. Thirty HAM/TSP patients, thirty HTLV-1 healthy carriers, and MT-2 cell line were evaluated for HTLV-1 activity. PBMCs were isolated and activated using PMA and ionomycine. Real-time PCR and TaqMan methods were performed using specific primers and fluorescence probes for Tax expression and proviral load assessment. B2microglobulin (β2m) and albumin were used as controls in Tax expression and in proviral load, respectively. An insignificant increase in Tax expression was observed in rest PBMCs of HAM/TSP patients compared to healthy carriers. However, after lymphocyte activation there was a significant increase in Tax expression in HAM/TSP patients (P=0.042). The Proviral load in patients was significantly higher than in carriers. Moreover, there was a significant correlation between Tax mRNA expression in activated PBMCs and proviral load (R=0.37, P=0.012). Although proviral load had been addressed as a valuable index for monitoring HTLV-1 infected subjects, the results of this study demonstrated that Tax expression in activated PBMCs along with proviral load assessment in HAM/TSP patients are a more reliable factor for determining the prognosis and monitoring healthy carriers and HAM/TSP patients.

  14. Revisiting plus-strand DNA synthesis in retroviruses and long terminal repeat retrotransposons: dynamics of enzyme: substrate interactions.

    Science.gov (United States)

    Fabris, Daniele; Marino, John P; Le Grice, Stuart F J

    2009-12-01

    Although polypurine tract (PPT)-primed initiation of plus-strand DNA synthesis in retroviruses and LTR-containing retrotransposons can be accurately duplicated, the molecular details underlying this concerted series of events remain largely unknown. Importantly, the PPT 3' terminus must be accommodated by ribonuclease H (RNase H) and DNA polymerase catalytic centers situated at either terminus of the cognate reverse transcriptase (RT), and in the case of the HIV-1 enzyme, ∼70Å apart. Communication between RT and the RNA/DNA hybrid therefore appears necessary to promote these events. The crystal structure of the HIV-1 RT/PPT complex, while informative, positions the RNase H active site several bases pairs from the PPT/U3 junction, and thus provides limited information on cleavage specificity. To fill the gap between biochemical and crystallographic approaches, we review a multidisciplinary approach combining chemical probing, mass spectrometry, NMR spectroscopy and single molecule spectroscopy. Our studies also indicate that nonnucleoside RT inhibitors affect enzyme orientation, suggesting initiation of plus-strand DNA synthesis as a potential therapeutic target.

  15. Revisiting Plus-Strand DNA Synthesis in Retroviruses and Long Terminal Repeat Retrotransposons: Dynamics of Enzyme: Substrate Interactions

    Directory of Open Access Journals (Sweden)

    Stuart F. J. Le Grice

    2009-11-01

    Full Text Available Although polypurine tract (PPT-primed initiation of plus-strand DNA synthesis in retroviruses and LTR-containing retrotransposons can be accurately duplicated, the molecular details underlying this concerted series of events remain largely unknown. Importantly, the PPT 3’ terminus must be accommodated by ribonuclease H (RNase H and DNA polymerase catalytic centers situated at either terminus of the cognate reverse transcriptase (RT, and in the case of the HIV-1 enzyme, ~70Å apart. Communication between RT and the RNA/DNA hybrid therefore appears necessary to promote these events. The crystal structure of the HIV-1 RT/PPT complex, while informative, positions the RNase H active site several bases pairs from the PPT/U3 junction, and thus provides limited information on cleavage specificity. To fill the gap between biochemical and crystallographic approaches, we review a multidisciplinary approach combining chemical probing, mass spectrometry, NMR spectroscopy and single molecule spectroscopy. Our studies also indicate that nonnucleoside RT inhibitors affect enzyme orientation, suggesting initiation of plus-strand DNA synthesis as a potential therapeutic target.

  16. Decay of ccc-DNA marks persistence of intrahepatic viral DNA synthesis under tenofovir in HIV-HBV co-infected patients.

    Science.gov (United States)

    Boyd, Anders; Lacombe, Karine; Lavocat, Fabien; Maylin, Sarah; Miailhes, Patrick; Lascoux-Combe, Caroline; Delaugerre, Constance; Girard, Pierre-Marie; Zoulim, Fabien

    2016-10-01

    In the presence of highly-potent antivirals, persistence of hepatitis B virus (HBV) is most well-characterized by covalently-closed circular DNA (cccDNA) and total intrahepatic DNA (IH-DNA). We sought to determine how antiviral therapy could affect their levels during human immunodeficiency virus (HIV)-HBV co-infection. Sixty co-infected patients from a well-defined cohort with ⩾1 liver biopsy were studied. HBV cccDNA and total IH-DNA were extracted from biopsies and quantified by real-time PCR. Factors associated with intrahepatic viral load were determined using mixed-effect linear regression and half-life viral kinetics during reconstructed follow-up using non-linear exponential decay models. At biopsy, 35 (58.3%) patients were hepatitis B "e" antigen (HBeAg)-positive and 33 (55.0%) had detectable plasma HBV-DNA (median=4.58log10IU/ml, IQR=2.95-7.43). Overall, median cccDNA was -0.95log10copies/cell (IQR=-1.70, -0.17) and total IH-DNA was 0.27log10copies/cell (IQR=-0.39, 2.00). In multivariable analysis, significantly lower levels of cccDNA and total IH-DNA were observed in patients with HBeAg-negative serology, nadir CD4(+) cell counts >250/mm(3), and longer cumulative TDF-duration, but not lamivudine- or adefovir-duration. In post-hoc analysis using reconstructed TDF-duration (median 29.6months, IQR=15.0-36.1, n=31), average half-life of cccDNA was estimated at 9.2months (HBeAg-positive=8.6, HBeAg-negative=26.2) and total IH DNA at 5.8months (HBeAg-positive=1.3, HBeAg-negative=13.6). Intrahepatic viral loads remained detectable for all patients, even with prolonged TDF-exposure. In co-infection, TDF-use is associated with lower levels of HBV replication intermediates and cccDNA. Slow decay of intrahepatic viral loads underscores that TDF is unable to completely block intracellular viral DNA synthesis, which possibly accounts for continuous replenishment of the cccDNA pool. Chronic hepatitis B virus (HBV) is a persistent infection, while the only real way of

  17. Transforming growth factorB1 stimulated DNA synthesis in the granulosa cells of preantral follicles: Negative interaction with epidermal growth factor1

    Science.gov (United States)

    Yang, Peixin; Roy, Shyamal K.

    2006-01-01

    Summary TGFB1 through SMAD-MAPK1-PRKC signaling stimulates hamster follicular DNA synthesis; however, EGF and TGFB1 together counteract each other signaling resulting in a suppression of DNA synthesis. EGF or TGFB1 alone stimulates, but together attenuate granulosa cell DNA synthesis. Intact preantral follicles from hamsters were cultured with TGFB1, EGF or both to reveal the mechanisms of such unique regulation. Follicular CCND2 (also known as cyclin D2), CDKN1B (also known as p27kip1), and the involvement of appropriate signaling intermediaries and kinases were examined. TGFB1, acting via SMAD2 and SMAD3, antagonized the degradation of CCND2 protein by blocking its phosphorylation. In contrast, TGFB1 supported CDKN1B degradation by involving MAPK1 (also known as p38 Map Kinase) and PRKC (also known as PKC), resulting in CDK4 activation and DNA synthesis. EGF via MAPK3/1 maintained functional levels of CCND2 through CCND2 synthesis as well as degradation. EGF and TGFB1 together inhibited CDK4 activation and DNA synthesis. EGF attenuated TGFB1 stimulated phosphorylation of SMAD3, TGFB1-induced activation of MAPK1 and PRKC, and TGFB1-suppression of CCND2 degradation. In contrast, TGFB1 suppressed EGF-induced increase in CCND2 mRNA levels. The final outcome was CCND2 degradation without replenishment and decreased activities of MAPK1 and PRKC leading to suppression of CDK4 activation. The results indicate that each growth factor involves a separate mechanism to maintain an effective level of CCND2 in granulosa cells for the activation of CDK4 and induction of DNA synthesis. However, their simultaneous action is inhibitory to follicular DNA synthesis because they counteract each other activity by interfering at specific sites. Because both EGF and TGFB1 are present in granulosa cells, this mechanism may explain how their effects are temporally modulated for granulosa cell proliferation and folliculogenesis. PMID:16525033

  18. Comparison of the HeLa DNA-synthesis inhibition test and the Ames test for screening of mutagenic carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Painter, R.B.; Howard, R.

    1978-01-01

    The action of most mutagens is mediated by damage to DNA, which causes at least a temporary inhibition of DNA syntesis in mammalian cells. Assays for mammalian DNA-synthesis inhibition, both in vivo (mouse testes) and in vitro (HeLa cells), have been proposed as possible screening tests for mutagenic carcinogens. The mouse system has recently been chekced with 100 chemicals; of 88 known carcinogens and/or mutagens in this group, 76 were positive. The most generally used non-animal screening procedure is the Ames test, which uses auxotrophic strains of Salmonella typhimurium to measure mutagenesis. In this communication we summarize our results with 19 chemicals tested in HeLa cells and show that they correlate very well with the results obtained in the Ames test. Most of these chemicals act by alkylation, but an intercalator (adriamycin) is included among them as well as aflatoxin B/sub 1/, whose action is not established.

  19. Purification and characterization of porcine liver DNA polymerase gamma: utilization of dUTP and dTTP during in vitro DNA synthesis.

    Science.gov (United States)

    Mosbaugh, D W

    1988-06-24

    Porcine liver DNA polymerase gamma has been demonstrated to preferentially incorporate dTMP over dUMP during in vitro DNA synthesis. When polymerase activity was measured in standard reactions containing saturating levels of either dTTP or dUTP, the polymerization rate was slightly faster in the reaction containing dTTP. However, under conditions where both dTTP and dUTP competed, at an equal molar concentration, approximately 3-times more thymine residues were incorporated than uracil residues into DNA. Similarly, preferential incorporation of dTMP was observed on several substrates including poly (dA).oligo p(dT), poly (rA).oligo p(dT) and poly (dA-dT). The discrimination against dUMP incorporation was even more apparent with reduced levels of dUTP. These observations were consistent with the finding that the Km for DNA polymerase gamma was about 3-fold lower for dTTP (0.4 microM) than for dUTP (1.1 microM). On the other hand, the Vmax for these two reactions was very similar. Discrimination against dUMP incorporation was also observed during inhibition of polymerase gamma by dideoxyribonucleoside triphosphates. Dideoxythymidine triphosphate preferentially inhibited dUMP incorporation compared to that of dTMP, whereas ddATP, ddCTP and ddGTP inhibited both reactions equally.

  20. The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA–DNA hybrids

    Science.gov (United States)

    Akiyama, Benjamin M.; Parks, Joseph W.; Stone, Michael D.

    2015-01-01

    Telomerase is an enzyme that adds repetitive DNA sequences to the ends of chromosomes and consists of two main subunits: the telomerase reverse transcriptase (TERT) protein and an associated telomerase RNA (TER). The telomerase essential N-terminal (TEN) domain is a conserved region of TERT proposed to mediate DNA substrate interactions. Here, we have employed single molecule telomerase binding assays to investigate the function of the TEN domain. Our results reveal telomeric DNA substrates bound to telomerase exhibit a dynamic equilibrium between two states: a docked conformation and an alternative conformation. The relative stabilities of the docked and alternative states correlate with the number of basepairs that can be formed between the DNA substrate and the RNA template, with more basepairing favoring the docked state. The docked state is further buttressed by the TEN domain and mutations within the TEN domain substantially alter the DNA substrate structural equilibrium. We propose a model in which the TEN domain stabilizes short RNA–DNA duplexes in the active site of the enzyme, promoting the docked state to augment telomerase processivity. PMID:25940626

  1. N-(2-chloroethyl)-N-nitrosoureas covalently bound to nonionic and monocationic lexitropsin dipeptides. Synthesis, DNA affinity binding characteristics, and reactions with 32P-end-labeled DNA.

    Science.gov (United States)

    Church, K M; Wurdeman, R L; Zhang, Y; Chen, F X; Gold, B

    1990-07-24

    The synthesis and characterization of a series of compounds that contain an N-alkyl-N-nitrosourea functionality linked to DNA minor groove binding bi- and tripeptides (lexitropsins or information-reading peptides) based on methylpyrrole-2-carboxamide subunits are described. The lexitropsins (lex) synthesized have either a 3-(dimethylamino)propyl or propyl substituent on the carboxyl terminus. The preferred DNA affinity binding sequences of these compounds were footprinted in 32P-end-labeled restriction fragments with methidiumpropyl-EDTA.Fe(II), and in common with other structural analogues, e.g., distamycin and netropsin, these nitrosoureas recognize A-T-rich runs. The affinity binding of the compound with the dimethylamino terminus, which is ionized at near-neutral pH, appeared stronger than that observed for the neutral dipeptide. The sequence specificity for DNA alkylation by (2-chloroethyl)nitrosourea-lex dipeptides (Cl-ENU-lex), with neutral and charged carboxyl termini, using 32P-end-labeled restriction fragments, was determined by the conversion of the adducted sites into single-strand breaks by sequential heating at neutral pH and exposure to base. The DNA cleavage sites were visualized by polyacrylamide gel electrophoresis and autoradiography. The alkylation of DNA by Cl-ENU-lex was compared to that by N-(2-chloroethyl)-N'-cyclohexyl-N-nitrosourea (CCNU), which has no DNA affinity binding properties. While all the Cl-ENU compounds generate DNA breaks as a consequence of the formation of N7-alkyl-guanine, the Cl-ENU-lex compounds induced, in a time- and dose-dependent fashion, intense DNA cleavage bands at adenine, cytosine, and thymine residues associated with affinity binding sites. These non-G cleavages induced by Cl-ENU-lex were inhibited by the coaddition of distamycin at concentrations that did not affect G alkylation break sites. CCNU, even at much higher concentrations, does not generate any similar detectable lesions at non-G sites. Therefore

  2. Essential role of polyamines in restoration of DNA synthesis after UV radiation and expression of UV resistance in Cockayne syndrome cells.

    Science.gov (United States)

    Kusano, I; Hibasami, H; Kawai, K; Esaki, K; Shiraishi, T; Yatani, R

    1994-12-15

    Activity of ornithine decarboxylase (ODC) in Cockayne syndrome (CS) cells which were characterized by a delay of the recovery of DNA synthesis after 254 nm ultraviolet light (UV) radiation was extremely inhibited by UV, followed by a progressive decrease of putrescine. When putrescine was added in the cultures, CS cells showed a rapid recovery in DNA synthesis and also an expression of UV-resistance as seen in normal cells. Thus, ODC induction system of CS cells is highly sensitive to UV. Considering current hot spots in DNA repair, our results probably reflect a defect of preferentially rapid repair in ODC gene of CS cells.

  3. Breast Cancer Proteins PALB2 and BRCA2 Stimulate Polymerase η in Recombination-Associated DNA Synthesis at Blocked Replication Forks

    Directory of Open Access Journals (Sweden)

    Rémi Buisson

    2014-02-01

    Full Text Available One envisioned function of homologous recombination (HR is to find a template for DNA synthesis from the resected 3′-OH molecules that occur during double-strand break (DSB repair at collapsed replication forks. However, the interplay between DNA synthesis and HR remains poorly understood in higher eukaryotic cells. Here, we reveal functions for the breast cancer proteins BRCA2 and PALB2 at blocked replication forks and show a role for these proteins in stimulating polymerase η (Polη to initiate DNA synthesis. PALB2, BRCA2, and Polη colocalize at stalled or collapsed replication forks after hydroxyurea treatment. Moreover, PALB2 and BRCA2 interact with Polη and are required to sustain the recruitment of Polη at blocked replication forks. PALB2 and BRCA2 stimulate Polη-dependent DNA synthesis on D loop substrates. We conclude that PALB2 and BRCA2, in addition to their functions in D loop formation, play crucial roles in the initiation of recombination-associated DNA synthesis by Polη-mediated DNA repair.

  4. Distinct PKC isoforms mediate cell survival and DNA synthesis in thrombin-induced myofibroblasts.

    Science.gov (United States)

    Bogatkevich, Galina S; Gustilo, Estella; Oates, Jim C; Feghali-Bostwick, Carol; Harley, Russell A; Silver, Richard M; Ludwicka-Bradley, Anna

    2005-01-01

    Thrombin activates protease-activated receptor (PAR)-1 and induces a myofibroblast phenotype in normal lung fibroblasts that resembles the phenotype of scleroderma lung fibroblasts. We now demonstrate that PAR-1 expression is dramatically increased in lung tissue from scleroderma patients, where it is associated with inflammatory and fibroproliferative foci. We also observe that thrombin induces resistance to apoptosis in normal lung fibroblasts, and this process is regulated by protein kinase C (PKC)-epsilon but not by PKC-alpha. Overexpression of a constitutively active (c-a) form of PAR-1 or PKC-epsilon significantly inhibits Fas ligand-induced apoptosis in lung fibroblasts, whereas scleroderma lung fibroblasts are resistant to apoptosis de novo. Thrombin translocates p21Cip1/WAF1, a signaling molecule downstream of PKC, from the nucleus to cytoplasm in normal lung fibroblasts mimicking the localization of p21Cip1/WAF1 in scleroderma lung fibroblasts. Overexpression of c-a PKC-alpha or PKC-epsilon results in accumulation of p21Cip1/WAF1 in the cytoplasm. Depletion of PKC-alpha or inhibition of mitogen-activated protein kinase (MAPK) blocks thrombin-induced DNA synthesis in lung fibroblasts. Inhibition of PKC by calphostin or PKC-alpha, but not PKC-epsilon, by antisense oligonucleotides prevents thrombin-induced MAPK phosphorylation and accumulation of G(1) phase regulatory protein cyclin D1, suggesting that PKC-alpha, MAPK, and cyclin D1 mediate lung fibroblast proliferation. These data demonstrate that two distinct PKC isoforms mediate thrombin-induced resistance to apoptosis and proliferation and suggest that p21Cip1/WAF1 promotes both phenomena.

  5. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons.

    Science.gov (United States)

    Palanca, Ana; Casafont, Iñigo; Berciano, María T; Lafarga, Miguel

    2014-05-01

    Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.

  6. DNA polymerases eta and kappa are responsible for error-free translesion DNA synthesis activity over a cis-syn thymine dimer in Xenopus laevis oocyte extracts.

    Science.gov (United States)

    Yagi, Yoshihiko; Ogawara, Daichi; Iwai, Shigenori; Hanaoka, Fumio; Akiyama, Masahiro; Maki, Hisaji

    2005-11-21

    In translesion synthesis (TLS), specialized DNA polymerases (pols) facilitate progression of replication forks stalled by DNA damage. Although multiple TLS pols have been identified in eukaryotes, little is known about endogenous TLS pols and their relative contributions to TLS in vivo because of their low cellular abundance. Taking advantage of Xenopus laevis oocyte cells, with their extraordinary size and abundant enzymes involved in DNA metabolism, we have identified and characterized endogenous TLS pols for DNA damage induced by ultraviolet (UV) irradiation. We designed a TLS assay which monitors primer elongation on a synthetic oligomer template over a single UV-induced lesion, either a cys-syn cyclobutane pyrimidine dimer (CPD) or a pyrimidine (6-4) pyrimidone photoproduct. Four distinct TLS activities (TLS1-TLS4) were identified in X. laevis oocyte extracts, using three template/primer (T/P) DNA substrates having various sites at which primer extension is initiated relative to the lesion. TLS1 and TLS2 activities appear to be sequence-dependent. TLS3 and TLS4 extended the primers over the CPD in an error-free manner irrespective of sequence context. Base insertion opposite the CPD of the T/P substrate in which the 3'-end of the primer is placed one base upstream of the lesion was observed only with TLS3. TLS3 and TLS4 showed primer extension with similar efficiencies on the T/P substrate whose 3'-primer terminal dinucleotide (AA) was complementary to the CPD lesion. Investigations with antibodies and recombinant pols revealed that TLS3 and TLS4 were most likely attributable to pol eta and pol kappa, respectively. These results indicate that error-free insertion in CPD bypass is due mainly to pol eta (TLS3) in the extracts, and suggest that pol kappa (TLS4) may assist pol eta (TLS3) in error-free extension during CPD bypass.

  7. The cellular protein MCM3AP is required for inhibition of cellular DNA synthesis by the IE86 protein of human cytomegalovirus.

    Directory of Open Access Journals (Sweden)

    Emma Poole

    Full Text Available Like all DNA viruses, human cytomegalovirus (HCMV infection is known to result in profound effects on host cell cycle. Infection of fibroblasts with HCMV is known to induce an advance in cell cycle through the G(0-G(1 phase and then a subsequent arrest of cell cycle in early S-phase, presumably resulting in a cellular environment optimum for high levels of viral DNA replication whilst precluding replication of cellular DNA. Although the exact mechanisms used to arrest cell cycle by HCMV are unclear, they likely involve a number of viral gene products and evidence points to the ability of the virus to prevent licensing of cellular DNA synthesis. One viral protein known to profoundly alter cell cycle is the viral immediate early 86 (IE86 protein--an established function of which is to initially drive cells into early S phase but then inhibit cellular DNA synthesis. Here we show that, although IE86 interacts with the cellular licensing factor Cdt1, it does not inhibit licensing of cellular origins. Instead, IE86-mediated inhibition of cellular DNA synthesis requires mini-chromosome-maintenance 3 (MCM3 associated protein (MCM3AP, which can cause subsequent inhibition of initiation of cellular DNA synthesis in a licensing-independent manner.

  8. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase.

    Science.gov (United States)

    Takezawa, Yusuke; Kobayashi, Teruki; Shionoya, Mitsuhiko

    2016-06-08

    A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H)-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT), a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H-Cu(II)-H). In this study, we investigated the effects of a metal cofactor, Mg(II) ion, on the TdT-catalyzed polymerization of H nucleotides. At a high Mg(II) concentration (10 mM), the reaction was halted after several H nucleotides were appended. In contrast, at lower Mg(II) concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the Mg(II) concentration. In the presence of excess Mg(II) ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with Mg(II) ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  9. Analysis of bacteriophage phi X174 gene A protein-mediated termination and reinitiation of phi X DNA synthesis. I. Characterization of the termination and reinitiation reactions.

    Science.gov (United States)

    Brown, D R; Roth, M J; Reinberg, D; Hurwitz, J

    1984-08-25

    The phi X174 (phi X) gene A protein-mediated termination and reinitiation of single-stranded circular (SS(c] phi X viral DNA synthesis in vitro were directly and independently analyzed. Following incubation together with purified DNA replication enzymes from Escherichia coli, ATP, [alpha-32P]dNTPs, and either the phi X A protein and phi X replicative form I (RF I) DNA, or the purified RF II X A complex, the phi X A protein was detected covalently linked to newly synthesized 32P-labeled DNA. Formation of the phi X A protein-[32P]DNA covalent complex required all the factors necessary for phi X (+) SS(c) DNA synthesis in vitro. Thus, it was a product of the reinitiation reaction and an intermediate of the replication cycle. Identification of this complex provided direct evidence that reinitiation of phi X (+) strand DNA synthesis involved regeneration of the RF II X A complex. Substitution of 2',3'-dideoxyguanosine triphosphate (ddGTP) for dGTP in reaction mixtures resulted in the formation of covalent phi X A protein 32P-oligonucleotide complexes; these complexes were trapped analogues of the regenerated RF II X A complex. They could not act catalytically due to the presence of ddGMP residues at the 3'-termini of the oligonucleotide moieties. Reaction mixtures containing ddGTP also yielded nonradioactive (+) SS(c) DNA products derived from circularization of the displaced (+) strand of the input parental template DNA. The formation of the phi X A protein-32P-oligonucleotide complexes and nonradioactive (+) SS(c) DNA were used to assay both reinitiation and termination reactions, respectively. Both reactions required DNA synthesis from the 3'-hydroxyl primer at nucleotide residue 4305 which was formed by cleavage of phi X RF I DNA by the phi X A protein. Elongation of this primer by 18, but not 11 nucleotides was sufficient to support each reaction. Reinitiation reactions proceeded rapidly and were essentially complete after 90 s. In contrast, when ddGTP was replaced

  10. [Synthesis of Circular DNA Templates with T4 RNA Ligase for Rolling Circle Amplification].

    Science.gov (United States)

    Sakhabutdinova, A R; Maksimova, M A; Garafutdinov, R R

    2017-01-01

    Currently, isothermal methods of nucleic acid amplification have been well established; in particular, rolling circle amplification is of great interest. In this approach, circular ssDNA molecules have been used as a target that can be obtained by the intramolecular template-dependent ligation of an oligonucleotide C-probe. Here, a new method of synthesizing small circular DNA molecules via the cyclization of ssDNA based on T4 RNA ligase has been proposed. Circular ssDNA is further used as the template for the rolling circle amplification. The maximum yield of the cyclization products was observed in the presence of 5-10% polyethylene glycol 4000, and the optimum DNA length for the cyclization constituted 50 nucleotides. This highly sensitive method was shown to detect less than 10^(2) circular DNA molecules. The method reliability was proved based on artificially destroyed dsDNA, which suggests its implementation for analyzing any significantly fragmented dsDNA.

  11. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.

    Science.gov (United States)

    Fuller, Carl W; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J; Kasianowicz, John J; Davis, Randy; Roever, Stefan; Church, George M; Ju, Jingyue

    2016-05-10

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5'-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods.

  12. Synthesis, DNA-binding and photocleavage studies of Ru(II ...

    Indian Academy of Sciences (India)

    Administrator

    molecules to DNA are very important in the deve- lopment of new therapeutic reagents and DNA molecular probes. 15–18. Polypyridyl ruthenium(II) complexes can bind to DNA in a non-covalent inter- actions fashion such as electrostatic binding, groove binding,. 19 intercalative binding and partial intercala- tive binding. 20.

  13. Effects of HIV-1 reverse transcriptase connection subdomain mutations on polypurine tract removal and initiation of (+)-strand DNA synthesis.

    Science.gov (United States)

    Betancor, Gilberto; Álvarez, Mar; Marcelli, Barbara; Andrés, Cristina; Martínez, Miguel A; Menéndez-Arias, Luis

    2015-02-27

    HIV-1 reverse transcriptase (RT) connection subdomain mutations at positions 348, 369 and 376 have been associated with resistance to non-nucleoside RT inhibitors (NNRTIs). N348I may interfere with the initiation of (+)-strand DNA synthesis by reducing polypurine tract (PPT) removal in the presence of nevirapine. The effect of NNRTIs on the RNase H-mediated cleavage of PPT-containing template-primers has been studied with wild-type HIV-1 RT and mutants N348I, T369I, T369V, T376S and N348I/T369I. In the presence of NNRTIs, all RTs were able to stimulate PPT cleavage after primer elongation. The enhancing effects of nevirapine and efavirenz were reduced in RTs carrying mutation N348I, and specially N348I/T369I. However, those mutations had no effect on rilpivirine-mediated cleavage. Prior to elongation, the PPT remains resilient to cleavage, although efavirenz and rilpivirine facilitate RNase H-mediated trimming of its 3'-end. The integrity of the 3'-end is essential for the initiation of (+)-strand DNA synthesis. In the presence of dNTPs, rilpivirine was the most effective inhibitor of (+)-strand DNA synthesis blocking nucleotide incorporation and preventing usage of available PPT primers. The N348I/T369I RT showed reduced ability to generate short RNA products revealing a cleavage window defect. Its lower RNase H activity could be attributed to enhanced rigidity compared to the wild-type enzyme. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shigeru [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Nakanishi, Hiroshi [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sugita, Katsuo [Department of Clinical Medicine, Faculty of Education, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Kita, Kazuko [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Suzuki, Nobuo [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)]. E-mail: nobuo@faculty.chiba-u.jp

    2005-10-15

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.

  15. [Effect of isorhmnetin on circadian rhythms of DNA synthesis and expression of c-myc gene in Eca-109 cells of human oesophageal cancer].

    Science.gov (United States)

    Yang, Chunlei; Peng, Tao; Qu, Yi; Tao, Dachang; Wang, Zhengrong; Zhu, Bin

    2005-12-01

    This study was focused on the circadian rhythms of DNA synthesis and the expression of c-myc gene in untreated and treated Eca-109 cells in human oesophageal cancer with isorhmnetin. The circadian rhythms of 3H-TdR incorporation and expression of c-myc gene in untreated and treated Eca-109 cells were measured by 3H-thymidine uptake assay and flow cytometry. The data collected were analyzed by ANOVA and Cosinor method. DNA synthesis and expression of c-myc gene in untreated group varied according to circadian time with statistical significance, the distribution curves of both DNA synthesis and the expression level of c-myc were fit for cosinor changes. The circadian rhythms of DNA synthesis and circadian parameters of c-myc expression in treated Eca-109 cells changed. The circadian parameters of DNA synthesis and expression level of c-myc varied after treatment by isorhmnetin. The effects of isorhmnetin on cell proliferation and c-myc expression reached the highest level from 20: 00 to 0: 00. The results provide a guidance for instituting the chemotherapy and chronotherapy of human tumors, when isorhmnetin is for use as anti-cancer agent.

  16. Run-off synthesis and application of defined single-stranded DNA hybridization probes

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzl, M.R.; Roth, W.K. (Max-Planck-Institut fuer Biochemie, Martinsried (Germany, F.R.))

    1990-02-15

    A simple and efficient method for synthesizing radioactively labeled single-stranded DNA hybridization probes with Thermus aquaticus (Taq) DNA polymerase is described. This is done in a run-off polymerization with repeated cycles of denaturation, annealing, and extension. It leads to high yields of a single-stranded DNA of defined length (up to 5000 nt), which is labeled to a high specific activity (1.3 x 10(8) cpm/micrograms DNA). These hybridization probes are equally sensitive as nick-translated DNA probes, but strand specific. This was tested by slot blot hybridization with in vitro-transcribed target RNAs and by Northern blotting. The use of single-stranded DNA hybridization probes combines the benefits of DNA stability and single-strand RNA probes.

  17. Identification of bovine leukocyte antigen class II haplotypes associated with variations in bovine leukemia virus proviral load in Japanese Black cattle.

    Science.gov (United States)

    Miyasaka, T; Takeshima, S-n; Jimba, M; Matsumoto, Y; Kobayashi, N; Matsuhashi, T; Sentsui, H; Aida, Y

    2013-02-01

    Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. Bovine leukocyte antigen (BoLA) is strongly involved in the subclinical progression of BLV infections. Recent studies show that the BoLA-DRB3 gene might play a direct role in controlling the number of BLV-infected peripheral B lymphocytes in vivo in Holstein cattle. However, the specific BoLA class II allele and DRB3-DQA1 haplotypes determining the BLV proviral load in Japanese Black cattle are yet to be identified. In this study, we focused on the association of BLV proviral load and polymorphism of BoLA class II in Japanese Black cattle. We genotyped 186 BLV-infected, clinically normal cattle for BoLA-DRB3 and BoLA-DQA1 using a polymerase chain reaction-sequence-based typing method. BoLA-DRB3*0902 and BoLA-DRB3*1101 were associated with a low proviral load (LPVL), and BoLA-DRB3*1601 was associated with a high proviral load (HPVL). Furthermore, BoLA-DQA1*0204 and BoLA-DQA1*10012 were related to LPVL and HPVL, respectively. Furthermore, we confirmed the correlation between the DRB3-DQA1 haplotype and BLV proviral load. Two haplotypes, namely 0902B or C (DRB3*0902-DQA1*0204) and 1101A (DRB3*1101-DQA1*10011), were associated with a low BLV proviral load, whereas one haplotype 1601B (DRB3*1601-DQA1*10012) was associated with a high BLV proviral load. We conclude that resistance is a dominant trait and susceptibility is a recessive trait. Additionally, resistant alleles were common between Japanese Black and Holstein cattle, and susceptible alleles differed. This is the first report to identify an association between the DRB3-DQA1 haplotype and variations in BLV proviral load. © 2012 John Wiley & Sons A/S.

  18. Computational study of putative residues involved in DNA synthesis fidelity checking in Thermus aquaticus DNA polymerase I.

    Science.gov (United States)

    Elias, Angela A; Cisneros, G Andrés

    2014-01-01

    A fidelity-checking site for DNA polymerase I has been proposed based on recent single-molecule Förster resonance energy transfer studies. The checking site is believed to ensure proper base pairing of the newly inserted nucleotide. Computational studies have been utilized to predict residues involved in this putative checking site on the Klenow and Bacillus fragments. Here, we employ energy decomposition analysis, electrostatic free energy response, and noncovalent interaction plots to identify the residues involved in the hypothesized checking site in the homologous Klenow fragment from Thermus aquaticus (Klentaq). Our results indicate multiple protein residues that show altered interactions for three mispairs compared to the correctly paired DNA dimer. Many of these residues are also conserved along A family polymerases. © 2014 Elsevier Inc. All rights reserved.

  19. Urinary tract infection drives genome instability in uropathogenic Escherichia coli and necessitates translesion synthesis DNA polymerase IV for virulence.

    Science.gov (United States)

    Gawel, Damian; Seed, Patrick C

    2011-01-01

    Uropathogenic Escherichia coli (UPEC) produces ~80% of community-acquired UTI, the second most common infection in humans. During UTI, UPEC has a complex life cycle, replicating and persisting in intracellular and extracellular niches. Host and environmental stresses may affect the integrity of the UPEC genome and threaten its viability. We determined how the host inflammatory response during UTI drives UPEC genome instability and evaluated the role of multiple factors of genome replication and repair for their roles in the maintenance of genome integrity and thus virulence during UTI. The urinary tract environment enhanced the mutation frequency of UPEC ~100-fold relative to in vitro levels. Abrogation of inflammation through a host TLR4-signaling defect significantly reduced the mutation frequency, demonstrating in the importance of the host response as a driver of UPEC genome instability. Inflammation induces the bacterial SOS response, leading to the hypothesis that the UPEC SOS-inducible translesion synthesis (TLS) DNA polymerases would be key factors in UPEC genome instability during UTI. However, while the TLS DNA polymerases enhanced in vitro, they did not increase in vivo mutagenesis. Although it is not a source of enhanced mutagenesis in vivo, the TLS DNA polymerase IV was critical for the survival of UPEC during UTI during an active inflammatory assault. Overall, this study provides the first evidence of a TLS DNA polymerase being critical for UPEC survival during urinary tract infection and points to independent mechanisms for genome instability and the maintenance of genome replication of UPEC under host inflammatory stress.

  20. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor

    Science.gov (United States)

    Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee

    2017-07-01

    The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.

  1. Homologous recombination via synthesis-dependent strand annealing in yeast requires the Irc20 and Srs2 DNA helicases.

    Science.gov (United States)

    Miura, Tohru; Yamana, Yoshimasa; Usui, Takehiko; Ogawa, Hiroaki I; Yamamoto, Masa-Toshi; Kusano, Kohji

    2012-05-01

    Synthesis-dependent strand-annealing (SDSA)-mediated homologous recombination replaces the sequence around a DNA double-strand break (DSB) with a copy of a homologous DNA template, while maintaining the original configuration of the flanking regions. In somatic cells at the 4n stage, Holliday-junction-mediated homologous recombination and nonhomologous end joining (NHEJ) cause crossovers (CO) between homologous chromosomes and deletions, respectively, resulting in loss of heterozygosity (LOH) upon cell division. However, the SDSA pathway prevents DSB-induced LOH. We developed a novel yeast DSB-repair assay with two discontinuous templates, set on different chromosomes, to determine the genetic requirements for somatic SDSA and precise end joining. At first we used our in vivo assay to verify that the Srs2 helicase promotes SDSA and prevents imprecise end joining. Genetic analyses indicated that a new DNA/RNA helicase gene, IRC20, is in the SDSA pathway involving SRS2. An irc20 knockout inhibited both SDSA and CO and suppressed the srs2 knockout-induced crossover enhancement, the mre11 knockout-induced inhibition of SDSA, CO, and NHEJ, and the mre11-induced hypersensitivities to DNA scissions. We propose that Irc20 and Mre11 functionally interact in the early steps of DSB repair and that Srs2 acts on the D-loops to lead to SDSA and to prevent crossoverv.

  2. SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis; Huang, Bo

    2008-06-09

    N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.

  3. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    Science.gov (United States)

    de Almeida, Sinara Mônica Vitalino; Lafayette, Elizabeth Almeida; Gomes da Silva, Lúcia Patrícia Bezerra; Amorim, Cézar Augusto da Cruz; de Oliveira, Tiago Bento; Gois Ruiz, Ana Lucia Tasca; de Carvalho, João Ernesto; de Moura, Ricardo Olímpio; Beltrão, Eduardo Isidoro Carneiro; de Lima, Maria do Carmo Alves; de Carvalho Júnior, Luiz Bezerra

    2015-01-01

    In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide derivatives (3a–h) were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA) by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z)-2-(acridin-9-ylmethylene)-N-(4-chlorophenyl) hydrazinecarbothioamide (3f), while the most active compound in antiproliferative assay was (Z)-2-(acridin-9-ylmethylene)-N-phenylhydrazinecarbothioamide (3a). There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties. PMID:26068233

  4. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    Directory of Open Access Journals (Sweden)

    Sinara Mônica Vitalino de Almeida

    2015-06-01

    Full Text Available In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide derivatives (3a–h were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z-2-(acridin-9-ylmethylene-N- (4-chlorophenyl hydrazinecarbothioamide (3f, while the most active compound in antiproliferative assay was (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide (3a. There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties.

  5. DNA synthesis and microtubule assembly-related events in fertilized Paracentrotus lividus eggs: reversible inhibition by 10 mM procaine.

    Science.gov (United States)

    Raymond, M N; Foucault, G; Coffe, G; Pudles, J

    1986-04-01

    This report describes the effects of 10 mM procaine on microtubule assembly and on DNA synthesis, as followed by [3H]colchicine binding assays and [3H]thymidine incorporation respectively, in fertilized Paracentrotus lividus eggs. In the absence of microtubule assembly inhibitors, about 25% of the total egg tubulin is submitted to two cycles of polymerization prior to the first cell division, this polymerization process precedes DNA synthesis. If the zygotes are treated with 10 mM procaine in the course of the cell cycle, tubulin polymerization is inhibited or microtubules are disassembled. DNA synthesis is inhibited when procaine treatment is performed 10 min, before the initiation of the S-period. However, when the drug is applied in the course of this synthetic period, the process is normally accomplished, but the next S-period becomes inhibited. Moreover, procaine treatment increases the cytoplasmic pH of the fertilized eggs by about 0.6 to 0.8 pH units. This pH increase precedes microtubule disassembly and inhibition of DNA synthesis. Washing out the drug induces a decrease of the intracellular pH which returns to about the same value as that of the fertilized egg controls. This pH change is then followed by the reinitiation of microtubule assembly, DNA synthesis and cell division. Our results show that the inhibition of both tubulin polymerization and DNA synthesis in fertilized eggs treated with 10 mM procaine, appears to be related to the drug-induced increase in cytoplasmic pH.

  6. Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis, and migration.

    OpenAIRE

    Presta, M; Moscatelli, D; Joseph-Silverstein, J; Rifkin, D B

    1986-01-01

    A 17,500-dalton protein which stimulates plasminogen activator production in cultured bovine capillary endothelial cells has been purified from a SK-Hep-1 human hepatoma cell lysate by using heparin affinity chromatography and fast protein-liquid ion exchange chromatography. The purified molecule stimulated plasminogen activator production in a dose-dependent manner between 0.01 and 1 ng/ml. It also stimulated collagenase synthesis, DNA synthesis, and motility in capillary endothelial cells i...

  7. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-ι

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Rinku; Choudhury, Jayati Roy; Buku, Angeliki; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2017-03-08

    N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the syn conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a “foothold” and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity.

  8. A simple and accurate two-step long DNA sequences synthesis strategy to improve heterologous gene expression in pichia.

    Directory of Open Access Journals (Sweden)

    Jiang-Ke Yang

    Full Text Available In vitro gene chemical synthesis is a powerful tool to improve the expression of gene in heterologous system. In this study, a two-step gene synthesis strategy that combines an assembly PCR and an overlap extension PCR (AOE was developed. In this strategy, the chemically synthesized oligonucleotides were assembled into several 200-500 bp fragments with 20-25 bp overlap at each end by assembly PCR, and then an overlap extension PCR was conducted to assemble all these fragments into a full length DNA sequence. Using this method, we de novo designed and optimized the codon of Rhizopus oryzae lipase gene ROL (810 bp and Aspergillus niger phytase gene phyA (1404 bp. Compared with the original ROL gene and phyA gene, the codon-optimized genes expressed at a significantly higher level in yeasts after methanol induction. We believe this AOE method to be of special interest as it is simple, accurate and has no limitation with respect to the size of the gene to be synthesized. Combined with de novo design, this method allows the rapid synthesis of a gene optimized for expression in the system of choice and production of sufficient biological material for molecular characterization and biotechnological application.

  9. 4-Hydroxy-2-pyridones: Discovery and evaluation of a novel class of antibacterial agents targeting DNA synthesis.

    Science.gov (United States)

    Arnold, Michael A; Gerasyuto, Aleksey I; Wang, Jiashi; Du, Wu; Gorske, Yi Jin Kim; Arasu, Tamil; Baird, John; Almstead, Neil G; Narasimhan, Jana; Peddi, Srinivasa; Ginzburg, Olya; Lue, Stanley W; Hedrick, Jean; Sheedy, Josephine; Lagaud, Guy; Branstrom, Arthur A; Weetall, Marla; Prasad, J V N Vara; Karp, Gary M

    2017-11-15

    The continued emergence of bacteria resistant to current standard of care antibiotics presents a rapidly growing threat to public health. New chemical entities (NCEs) to treat these serious infections are desperately needed. Herein we report the discovery, synthesis, SAR and in vivo efficacy of a novel series of 4-hydroxy-2-pyridones exhibiting activity against Gram-negative pathogens. Compound 1c, derived from the N-debenzylation of 1b, preferentially inhibits bacterial DNA synthesis as determined by standard macromolecular synthesis assays. The structural features of the 4-hydroxy-2-pyridone scaffold required for antibacterial activity were explored and compound 6q, identified through further optimization of the series, had an MIC90 value of 8 μg/mL against a panel of highly resistant strains of E. coli. In a murine septicemia model, compound 6q exhibited a PD50 of 8 mg/kg in mice infected with a lethal dose of E. coli. This novel series of 4-hydroxy-2-pyridones serves as an excellent starting point for the identification of NCEs treating Gram-negative infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Complementation of the xeroderma pigmentosum DNA repair synthesis defect with Escherichia coli UvrABC proteins in a cell-free system

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, T.; Wood, R.D. (Clare Hall Labs., South Mimms (England)); Grossman, L.; Hansson, J. (Johns Hopkins Univ., Baltimore, MD (USA))

    1990-01-11

    A newly developed cell-free system was used to study DNA repair synthesis carried out by extracts from human cell lines in vitro. Extracts from a normal human lymphoid cell line and from cell lines established from individuals with hereditary dysplastic nevus syndrome performed damage-dependent repair synthesis in plasmid DNA treated with cis- or trans-diamminedichloro-platinum(II) or irradiated with ultraviolet light. Cell extracts of xeroderma pigmentosum origin (complementation groups A, C, D, and G) are deficient in DNA repair synthesis. When damaged plasmid DNA was pretreated with purified Escherichia coli UvrABC proteins, xeroderma pigmentosum cell extracts were able to carry out DNA repair synthesis. The ability of E. coli UvrABC proteins to complement xeroderma pigmentosum cell extracts indicates that the extracts are deficient in incision, but can carry out later steps of repair. Thus the in vitro system provides results that are in agreement with the incision defect found from studies of xeroderma pigmentosum cells.

  11. SYNTHESIS AND DNA INTERACTION OF A Sm(III) COMPLEX OF A ...

    African Journals Online (AJOL)

    Preferred Customer

    HL]−, derived from vanillin and L-tryptophan, and herring sperm DNA at physiological pH (7.40) has been studied by UV-Vis absorption, fluorescence and viscosity methods. The binding ratios nSm(III) : nK[HL] = 1:1 and nSm(III)L : nDNA = 5:1 ...

  12. Dynamics of DNA replication loops reveal temporal control of lagging-strand synthesis

    NARCIS (Netherlands)

    Hamdan, Samir M.; Loparo, Joseph J.; Takahashi, Masateru; Richardson, Charles C.; Oijen, Antoine M. van

    2009-01-01

    In all organisms, the protein machinery responsible for the replication of DNA, the replisome, is faced with a directionality problem. The antiparallel nature of duplex DNA permits the leading-strand polymerase to advance in a continuous fashion, but forces the lagging-strand polymerase to

  13. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    The distribution and repair of 8-methoxypsoralen-DNA interstrand cross-links in the ribosomal RNA genes (rDNA) in Tetrahymena thermophila have been studied in vivo by Southern blot analysis. It is found that the cross-links at a density of ... between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally......, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive....

  14. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    Directory of Open Access Journals (Sweden)

    Yusuke Takezawa

    2016-06-01

    Full Text Available A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT, a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H. In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM, the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  15. Synthesis, DNA-binding, and photocleavage properties of a serious of porphyrin-daunomycin hybrids.

    Science.gov (United States)

    Zhao, Ping; Lu, Jia-Zheng; He, Juan; Chen, Wan-Hua; Chen, Pan-Pan; Chen, Dian-Wen; Bin, Qian-Yun

    2014-01-01

    It is widely accepted that the pharmacological activities of anthracyclines antitumor agents express when the quinone-containing chromophore intercalates into base pairs of the duplex DNA. We have successfully synthesized and investigated the DNA-interactions of hybrids composed with quinone chromophore and cationic porphyrin. Herein, a clinic anticancer drug, daunomycin, is introduced to the porphyrin hybrids through different lengths of amide alkyl linkages, and their interactions and cleavage to DNA were studied compared with the previous porphyrin-quinone hybrids. Spectral results and the determined binding affinity constants (Kb) show that the attachment of daunomycin to porphyrin could improve the DNA-binding and photocleaving abilities. The porphyrin-daunomycin hybrids may find useful employment in investigating the ligand-DNA interaction.

  16. Synthesis of nucleobase-functionalized carbon nanotubes and their hybridization with single-stranded DNA.

    Science.gov (United States)

    Hwu, Jih Ru; Kapoor, Mohit; Li, Rou-Ying; Lin, Yung-Chieh; Horng, Jia-Cherng; Tsay, Shwu-Chen

    2014-12-01

    For the first time ssDNA (25-aptamer of mixed dA, dT, dG, and dC) was wrapped around functionalized single-walled carbon nanotubes (SWCNTs), whose external surfaces were attached to multiple triazole-(ethylene glycol)-dA ligands. This method of hybridization involved the formation of hydrogen bonds between dT of ssDNA and dA of functionalized SWCNTs. It deviates from the reported π-π stacking between the nucleobases of DNA and the external sidewalls of nanotubes. The structural properties of the functionalized SWCNTs and its ssDNA complex were characterized by spectroscopic (including CD and Raman), thermogravimetric, and microscopic (TEM) methods. The results thus obtained establish a new platform of DNA delivery by use of nanotubes as a new vehicle with great potential in biomedical applications and drug development. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Flow cytometric measurement of RNA synthesis based on bromouridine labelling and combined with measurement of DNA content or cell surface antigen

    DEFF Research Database (Denmark)

    Jensen, P O; Larsen, J; Larsen, J K

    1993-01-01

    RNA synthesis can be analysed in nuclei or cells labelled with 5-bromouridine (BrUrd) and stained using cross-reacting anti-bromodeoxyuridine (BrdUrd) antibody. Flow cytometric dual parameter analysis of BrUrd incorporation and DNA content in nuclear suspensions of human blood lymphocytes showed...... that RNA synthesis increased within the first 24 hours of phytohemagglutinin (PHA) stimulation, reaching a maximum at 48 hours, when cells had entered the cell cycle. Using a new method for flow cytometric dual parameter analysis of BrUrd incorporation and a cell surface antigen, spontaneous RNA synthesis...

  18. A new human photosensitive subject with a defect in the recovery of DNA synthesis after ultraviolet-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Y.; Ichihashi, M.; Kano, Y.; Goto, K.; Shimizu, K.

    1981-09-01

    A non-sensitive, 8-yr-old male patient (termed UV81KO) with only acute recurrent sunburns and without any other physical or neuromental retardations was studied. The patient's skin exhibited lowered minimal erythema doses between 280 and 300 nm monochromatic wavelengths without delayed peaking of erythema. UV81KO skin fibroblasts in culture was 5-fold more sensitive to 254 nm UV killing than normal cells, though the response of obligatory heterozygotes was normal. UV81KO cells were also more sensitive to killings by fluorescent sunlamp (295-300 nm UV-B) radiation, 4-nitroquinoline-1-oxide, and N-hydroxy-acetyl aminofluorene, but not by monofunctional decarbamoyl mitomycin C, bifunctional mitomycin C, and alkylating agents (methyl methanesulfonate, ethyl methanesulfonate, N-methyl-N-nitrosourea). Assays for unscheduled DNA synthesis, T4 endonuclease V-susceptible sites (pyrimidine dimers), endogenous excision-break accumulation by arabinofuranosyl cytosine-plus-hydroxyurea, single-strand-break rejoining, and molecular-weight increase of pulse-chased DNA in irradiated cells indicated no apparently detectable defects in nucleotide-excision repair processes and in replicative bypass in UV81KO cells. Despite the repair proficiency as such, UV81KO cells showed the defective recovery of DNA synthesis after 254 nm UV irradiation with 1 and 5 J/m2, at which dose the recovery occurred in normal cells. The base line level of sister-chromatid exchanges (SCEs) was higher in UV81KO cells (10-12 SCEs/cell) than in normal cells (5 SCEs/cell), although the induction rate of SCEs by 254 nm UV in UV81KO cells was the same as in normal cells. Such clinical, cellular and molecular characteristics and comparison to those in the other photodermatoses (xeroderma pigmentosum, Cockayne's syndrome, the 11961 disorder, Bloom's syndrome) can make a clear distinction of UV81KO from the others.

  19. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies.

    Science.gov (United States)

    Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Ceşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet

    2012-08-01

    Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. A cyclobutane thymine-N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA synthesis.

    Science.gov (United States)

    Yamamoto, Junpei; Oyama, Tomoko; Kunishi, Tomohiro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori

    2014-02-01

    Exposure of DNA to ultraviolet light produces harmful crosslinks between adjacent pyrimidine bases, to form cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts. The CPD is frequently formed, and its repair mechanisms have been exclusively studied by using a CPD formed at a TT site. On the other hand, biochemical analyses using CPDs formed within cytosine-containing sequence contexts are practically difficult, because saturated cytosine easily undergoes hydrolytic deamination. Here, we found that N-alkylation of the exocyclic amino group of 2'-deoxycytidine prevents hydrolysis in CPD formation, and an N-methylated cytosine-containing CPD was stable enough to be derivatized into its phosphoramidite building block and incorporated into oligonucleotides. Kinetic studies of the CPD-containing oligonucleotide indicated that its lifetime under physiological conditions is relatively long (∼ 7 days). In biochemical analyses using human DNA polymerase η, incorporation of TMP opposite the N-methylcytosine moiety of the CPD was clearly detected, in addition to dGMP incorporation, and the incorrect TMP incorporation blocked DNA synthesis. The thermodynamic parameters confirmed the formation of this unusual base pair.

  1. Synthesis and characterization of azo-guanidine based alcoholic media naked eye DNA sensor.

    Science.gov (United States)

    Altaf, Ataf Ali; Hashmat, Uzma; Yousaf, Muhammad; Lal, Bhajan; Ullah, Shafiq; Holder, Alvin A; Badshah, Amin

    2016-11-01

    DNA sensing always has an open meadow of curiosity for biotechnologists and other researchers. Recently, in this field, we have introduced an emerging class of molecules containing azo and guanidine functionalities. In this study, we have synthesized three new compounds (UA1, UA6 and UA7) for potential application in DNA sensing in alcoholic medium. The synthesized materials were characterized by elemental analysis, FTIR, UV-visible, (1)H NMR and (13)C NMR spectroscopies. Their DNA sensing potential were investigated by UV-visible spectroscopy. The insight of interaction with DNA was further investigated by electrochemical (cyclic voltammetry) and hydrodynamic (viscosity) studies. The results showed that compounds have moderate DNA binding properties, with the binding constants range being 7.2 × 10(3), 2.4 × 10(3) and 0.2 × 10(3) M(-1), for UA1, UA6 and UA7, respectively. Upon binding with DNA, there was a change in colour (a blue shift in the λmax value) which was observable with a naked eye. These results indicated the potential of synthesized compounds as DNA sensors with detection limit 1.8, 5.8 and 4.0 ng µl(-1) for UA1, UA6 and UA7, respectively.

  2. A Combinatorial CRISPR-Cas9 Attack on HIV-1 DNA Extinguishes All Infectious Provirus in Infected T Cell Cultures

    NARCIS (Netherlands)

    Wang, Gang; Zhao, Na; Berkhout, Ben; Das, Atze T.

    2016-01-01

    Current drug therapies effectively suppress HIV-1 replication but do not inactivate the provirus that persists in latent reservoirs. Recent studies have found that the guide RNA (gRNA)-directed CRISPR/Cas9 system can be used for sequence-specific attack on this proviral DNA. Although potent

  3. Total flavonoid aglycones extract in Radix scutellariae inhibits lung carcinoma and lung metastasis by affecting cell cycle and DNA synthesis.

    Science.gov (United States)

    Wang, Yang; Cao, Hui-Juan; Sun, Shu-Jun; Dai, Jian-Ye; Fang, Jun-Wei; Li, Qian-Hua; Yan, Chao; Mao, Wen-Wei; Zhang, Yong-Yu

    2016-12-24

    Radix Scutellariae (Scutellaria baicalensis Georgi, RS), a traditional herbal medicine commonly used to treat inflammation, hypertension, cardiovascular disease, bacterial and viral infections, is reported to treat lung cancer by supplements of modern medicine. The total flavonoid aglycones extract (TFAE) from RS is the most important composition for the pharmacodynamic effects. The present study was designed to evaluate the anti-lung tumor effect of TFAE on A549 cells and A549 cell nude mice xenografts. The aim of the study is to investigate the effect and mechanism of TFAE treating non-small cell lung cancer both in vitro and in vivo. The anti-tumor activity of TFAE in vitro was investigated using the MTT assay. The changes of cell invasion and migration were detected by Transwell assay and tube formation experiments were used to detect the anti-angiogenic effect. The anti-tumor effects of TFAE in vivo were evaluated in A549 cell nude mice xenografts. The mechanism of TFAE was detected by flow cytometry technology, western blot assay and immuno-histochemistry assay. In vitro, TFAE inhibited the proliferation, invasion and migration of A549 cells in a dose- and time-dependent manner. In vivo, TFAE by oral administration at 100mg/kg for 30 days decreased the tumor volume and tumor weight in A549 cell xenograft by 25.5% with no statistical significance (P<0.05) compared to the cis-platinum positive control group (30.0%). The cell cycle and DNA synthesis experiment illustrated that TFAE could induce A549 cell cycle to arreste in S phase and DNA synthesis in A549 cells be inhibited, while TFAE had no influence on apoptosis of A549 cells. Western Blot assay demonstrated that the treatment of TFAE could make Cyclin D1 decrease and p53 increase both in vitro and in vivo. TFAE displayed the inhibition effects of non-small cell lung cancer both in vitro and in vivo and the underlying mechanism might be related to the increased p53 protein expression and decreased Cyclin D1

  4. Low-level viremia and proviral DNA impede immune reconstitution in HIV-1-infected patients receiving highly active antiretroviral therapy

    DEFF Research Database (Denmark)

    Ostrowski, Sisse R; Katzenstein, Terese L; Thim, Per T.

    2005-01-01

    Immunological and virological consequences of low-level viremia in human immunodeficiency virus (HIV) type 1-infected patients receiving highly active antiretroviral therapy (HAART) remain to be determined.......Immunological and virological consequences of low-level viremia in human immunodeficiency virus (HIV) type 1-infected patients receiving highly active antiretroviral therapy (HAART) remain to be determined....

  5. Investigating Signs of Recent Evolution in the Pool of Pro-viral DNA during Years of Successful HAART

    DEFF Research Database (Denmark)

    Mens, H.; Pedersen, Anders Gorm; Jørgensen, L. B.

    2007-01-01

    there were temporal trends indicating ongoing replication and evolution. In summary, it was not possible to detect definitive signs of ongoing evolution in either the bulk-sequenced or the clonal data with the methods employed here, but our results could be consistent with localized expression of archival...

  6. Synthesis and DNA interaction of a Sm(III) complex of a Schiff base ...

    African Journals Online (AJOL)

    The interaction between the Sm(III) complex of an ionic Schiff base [HL]-, derived from vanillin and L-tryptophan, and herring sperm DNA at physiological pH (7.40) has been studied by UV-Vis absorption, fluorescence and viscosity methods. The binding ratios nSm(III) : nK[HL] = 1:1 and nSm(III)L: nDNA =5:1 were confirmed ...

  7. Scutellarin-graft cationic β-cyclodextrin-polyrotaxane: Synthesis, characterization and DNA condensation.

    Science.gov (United States)

    Qin, Qi; Ma, Xue; Liao, Xiali; Yang, Bo

    2017-02-01

    As a prerequisite of gene delivery in living cells, DNA condensation has attracted more and more attention. In order to improve the efficiencies of polyamine-β-cyclodextrin-based cationic polyrotaxanes (PR-EDA and PR-DETA) as DNA condensation materials, we have designed and prepared two novel scutellarin-grafted cationic polyrotaxanes (PR-EDA-SCU and PR-DETA-SCU), in which scutellarins (SCU), the planar molecules, were conjugated on the cyclodextrin molecules of PR-EDA and PR-DETA. These materials were characterized by 1D and 2D NMR, XRD, TG and DSC. The electrophoresis assays showed that pDNA condensation efficiencies of PR-EDA and PR-DETA were better than that of PR-EDA and PR-DETA. The complexes of PR-EDA, PR-DETA, PR-EDA-SCU and PR-DETA-SCU with pDNA were further investigated by zeta potential and atomic force microscopy analysis. The results indicated that the planar structure of SCU played an important role in improvement of pDNA condensation efficiencies of PR-EDA-SCU and PR-DETA-SCU. The satisfactory pDNA condensation abilities of PR-EDA-SCU and PR-DETA-SCU could be helpful in designing non-viral gene delivery vectors to control gene expression and delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Diverse wild mouse origins of xenotropic, mink cell focus-forming, and two types of ecotropic proviral genes.

    Science.gov (United States)

    Kozak, C A; O'Neill, R R

    1987-10-01

    We analyzed wild mouse DNAs for the number and type of proviral genes related to the env sequences of various murine leukemia viruses (MuLVs). Only Mus species closely related to laboratory mice carried these retroviral sequences, and the different subclasses of viral env genes tended to be restricted to specific taxonomic groups. Only Mus musculus molossinus carried proviral genes which cross-reacted with the inbred mouse ecotropic MuLV env gene. The ecotropic viral env sequence associated with the Fv-4 resistance gene was found in the Asian mice M. musculus molossinus and Mus musculus castaneus and in California mice from Lake Casitas (LC). Both M. musculus castaneus and LC mice carried many additional Fv-4 env-related proviruses, two of which are common to both mouse populations, which suggests that these mice share a recent common ancestry. Xenotropic and mink cell focus-forming (MCF) virus env sequences were more widely dispersed in wild mice than the ecotropic viral env genes, which suggests that nonecotropic MuLVs were integrated into the Mus germ line at an earlier date. Xenotropic MuLVs represented the major component of MuLV env-reactive genes in Asian and eastern European mice classified as M. musculus molossinus, M. musculus castaneus, and Mus musculus musculus, whereas Mus musculus domesticus from western Europe, the Mediterranean, and North America contained almost exclusively MCF virus env copies. M. musculus musculus mice from central Europe trapped near the M. musculus domesticus/M. musculus musculus hybrid zone carried multiple copies of both types of env genes. LC mice also carried both xenotropic and MCF viral env genes, which is consistent with the above conclusion that they represent natural hybrids of M. musculus domesticus and M. musculus castaneus.

  9. Proviral Features of Human T Cell Leukemia Virus Type 1 in Carriers with Indeterminate Western Blot Analysis Results.

    Science.gov (United States)

    Kuramitsu, Madoka; Sekizuka, Tsuyoshi; Yamochi, Tadanori; Firouzi, Sanaz; Sato, Tomoo; Umeki, Kazumi; Sasaki, Daisuke; Hasegawa, Hiroo; Kubota, Ryuji; Sobata, Rieko; Matsumoto, Chieko; Kaneko, Noriaki; Momose, Haruka; Araki, Kumiko; Saito, Masumichi; Nosaka, Kisato; Utsunomiya, Atae; Koh, Ki-Ryang; Ogata, Masao; Uchimaru, Kaoru; Iwanaga, Masako; Sagara, Yasuko; Yamano, Yoshihisa; Okayama, Akihiko; Miura, Kiyonori; Satake, Masahiro; Saito, Shigeru; Itabashi, Kazuo; Yamaguchi, Kazunari; Kuroda, Makoto; Watanabe, Toshiki; Okuma, Kazu; Hamaguchi, Isao

    2017-09-01

    Western blotting (WB) for human T cell leukemia virus type 1 (HTLV-1) is performed to confirm anti-HTLV-1 antibodies detected at the initial screening of blood donors and in pregnant women. However, the frequent occurrence of indeterminate results is a problem with this test. We therefore assessed the cause of indeterminate WB results by analyzing HTLV-1 provirus genomic sequences. A quantitative PCR assay measuring HTLV-1 provirus in WB-indeterminate samples revealed that the median proviral load was approximately 100-fold lower than that of WB-positive samples (0.01 versus 0.71 copy/100 cells). Phylogenic analysis of the complete HTLV-1 genomes of WB-indeterminate samples did not identify any specific phylogenetic groups. When we analyzed the nucleotide changes in 19 HTLV-1 isolates from WB-indeterminate samples, we identified 135 single nucleotide substitutions, composed of four types, G to A (29%), C to T (19%), T to C (19%), and A to G (16%). In the most frequent G-to-A substitution, 64% occurred at GG dinucleotides, indicating that APOBEC3G is responsible for mutagenesis in WB-indeterminate samples. Moreover, interestingly, five WB-indeterminate isolates had nonsense mutations in Pol and/or Tax, Env, p12, and p30. These findings suggest that WB-indeterminate carriers have low production of viral antigens because of a combination of a low proviral load and mutations in the provirus, which may interfere with host recognition of HTLV-1 antigens. Copyright © 2017 American Society for Microbiology.

  10. Microinjection of Micrococcus luteus UV-endonuclease restores UV-induced unscheduled DNA synthesis in cells of 9 xeroderma pigmentosum complementation groups.

    NARCIS (Netherlands)

    A.J.R. de Jonge; W. Vermeulen (Wim); W. Keijzer; J.H.J. Hoeijmakers (Jan); D. Bootsma (Dirk)

    1985-01-01

    textabstractThe UV-induced unscheduled DNA synthesis (UDS) in cultured cells of excision-deficient xeroderma pigmentosum (XP) complementation groups A through I was assayed after injection of Micrococcus luteus UV-endonuclease using glass microneedles. In all complementation groups a restoration of

  11. DNA Synthesis during Endomitosis Is Stimulated by Insulin via the PI3K/Akt and TOR Signaling Pathways in the Silk Gland Cells of Bombyx mori

    Directory of Open Access Journals (Sweden)

    Yaofeng Li

    2015-03-01

    Full Text Available Silk gland cells undergo multiple endomitotic cell cycles during silkworm larval ontogeny. Our previous study demonstrated that feeding is required for continued endomitosis in the silk gland cells of silkworm larvae. Furthermore, the insulin signaling pathway is closely related to nutritional signals. To investigate whether the insulin signaling pathway is involved in endomitosis in silk gland cells, in this study, we initially analyzed the effects of bovine insulin on DNA synthesis in endomitotic silk gland cells using 5-bromo-2'-deoxyuridine (BrdU labeling technology, and found that bovine insulin can stimulate DNA synthesis. Insulin signal transduction is mainly mediated via phosphoinositide 3-kinase (PI3K/Akt, the target of rapamycin (TOR and the extracellular signal-regulated kinase (ERK pathways in vertebrates. We ascertained that these three pathways are involved in DNA synthesis in endomitotic silk gland cells using specific inhibitors against each pathway. Moreover, we investigated whether these three pathways are involved in insulin-stimulated DNA synthesis in endomitotic silk gland cells, and found that the PI3K/Akt and TOR pathways, but not the ERK pathway, are involved in this process. These results provide an important theoretical foundation for the further investigations of the mechanism underlying efficient endomitosis in silk gland cells.

  12. Synergistic action of heparin and serum on basic fibroblast growth factor-modulated DNA synthesis and mitochondrial activity of cultured bovine corneal endothelial cells

    NARCIS (Netherlands)

    Hoppenreijs, V. P.; Pels, E.; Felten, P. C.; Ruijter, J. M.; Vrensen, G. F.; Treffers, W. F.

    1996-01-01

    Basic fibroblast growth factor (bFGF) is a major mitogen and chemoattractant for many cell types. The synergistic role of fetal bovine serum (FBS) and heparin on the modulation of tissue-cultured bovine corneal endothelial cells by bFGF was studied. Cell modulation was assessed by DNA synthesis

  13. Role of polyamines in DNA synthesis of Catharanthus roseus cells grown in suspension culture

    Science.gov (United States)

    Rakesh Minocha; Subhash C. Minocha; Atsushi Komamine; Walter C. Shortle

    1990-01-01

    The requirement for polyamines in the proliferation of cells was first demonstrated in bacteria (3). While significant progress has been made in this field using animal cell cultures, only preliminary studies have been reported with plant tissues. Serafini-Fracassini et al. (9) showed a marked increase in polyamine synthesis early during the G 1 phase, concomitant with...

  14. Direct chemical measurement of DNA synthesis and net rates of differentiation of rat lens epithelial cells in vivo: applied to the selenium cataract.

    Science.gov (United States)

    Cenedella, R J

    1987-05-01

    This report describes a direct chemical method for rapidly estimating DNA synthesis and net rates of epithelial cell differentiation in the ocular lens in vivo. DNA synthesis in the lens of control and selenium-treated rats (12- or 13 days of age) was estimated by chemically isolating and measuring trichloroacetic acid (TCA)-insoluble 3H from the lens following injection of [3H]thymidine. Labeled substrate for DNA synthesis peaked in the lens at 1 hr after injection, decreased markedly by the third hour and was essentially gone by hour 12. Synthesis of labeled DNA in the lens was largely complete by about 3 hr. The [3H]DNA content of the whole lens, measured as TCA-insoluble 3H, remained constant for at least 4 months. The distribution of labeled epithelial cells between the epithelial-cell layer and fiber-cell mass was followed for up to 1 month after injection by measuring the ratio of [3H]DNA in the capsule (epithelial-cell layer) to lens body. Between days 2-3 and day 14 after injection, the ratio of [3H]DNA in the epithelial-cell layer to lens fiber cells decreased linearly in a semilogarithmic plot of the ratio vs. time; i.e. the rate of change of the ratio followed first-order kinetics. Thus, the rate constant (k) for the rate of change in the ratio of [3H]DNA in the capsule layer to lens body can provide an estimate of the percentage of the labeled epithelial cells which leave the capsule per day through differentiation into fiber cells. An apparent rate constant of 0.27 day-1 was estimated from the mean of five experiments; i.e. 27% of labeled epithelial cells were differentiating into cortical fiber cells per day. Therefore, about 70% of the germinative epithelial cells would be replaced every 4 days in these rats. This value is in good agreement with results of studies using autoradiographic technics. The selenium cataract is reported to involve rapid damage to lens epithelial cells. Incorporation of [3H]thymidine into DNA was decreased by at least 60

  15. UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kelley N. Newton

    2012-01-01

    Full Text Available UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair.

  16. Organometallic B12-DNA conjugate: synthesis, structure analysis, and studies of binding to human B12-transporter proteins.

    Science.gov (United States)

    Hunger, Miriam; Mutti, Elena; Rieder, Alexander; Enders, Barbara; Nexo, Ebba; Kräutler, Bernhard

    2014-10-06

    Design, synthesis, and structural characterization of a B12-octadecanucleotide are presented herein, a new organometallic B12-DNA conjugate. In such covalent conjugates, the natural B12 moiety may be a versatile vector for controlled in vivo delivery of oligonucleotides to cellular targets in humans and animals, through the endogenous B12 transport systems. Binding of the organometallic B12 octadecanucleotide to the three important human proteins of B12 transport was studied, to examine its structural suitability for the task of eventual in vivo oligonucleotide delivery. Binding was efficient with transcobalamin (TC), but not so efficient with the homologous glycoproteins intrinsic factor and haptocorrin. Binding of the B12 octadecanucleotide to TC suggests the capacity of the B12 moiety to serve as a natural vector for specific transport of single stranded, organometallic oligonucleotide loads from the blood stream into cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis and evaluation of gold(III) complexes as efficient DNA binders and cytotoxic agents

    Science.gov (United States)

    Patel, Mohan N.; Bhatt, Bhupesh S.; Dosi, Promise A.

    2013-06-01

    In recent years, great interest has been focused on gold(III) complexes as cytotoxic and antitumor drugs. Recent studies demonstrated that simple bidentate or polydentate ligands containing nitrogen donor atoms may offer sufficient redox stabilization to produce viable Au(III) anticancer drug targets under physiologic conditions. So, we have synthesized square planer Au(III) complexes of type [Au(An)Clx]·Cly and characterized them using UV-Vis absorption, C, H, N elemental analysis, FT-IR, LC-MS, 1H and 13C NMR spectroscopy. These compounds manifested significant cytotoxic properties in vitro for brine shrimp lethality bioassay. The metal complexes were screened for series of DNA binding activity using UV-Vis absorption titration, hydrodynamic measurement and thermal DNA denaturation study. The nucleolytic activity was performed on plasmid pUC19 DNA. The Michaelis-Menten kinetic studies were performed to evaluate rate of enhancement in metal complexes mediated DNA cleavage over the non-catalyzed DNA cleavage.

  18. Synthesis and Characterization of Chitosan-Saponin Nanoparticle for Application in Plasmid DNA Delivery

    Directory of Open Access Journals (Sweden)

    Faruku Bande

    2015-01-01

    Full Text Available Nonviral delivery system receives attention over the last decade. Chitosan (CS is a cationic polymer whereas saponin (SP is classified as glycoside. In this study, a spherically-shaped CS-SP nanoparticle was synthesized and characterized. The ability of the nanoparticle to protect DNA from enzymatic degradation, its thermostability and cytotoxicity were evaluated. The particle size was found below 100 nm as determined by Zetasizer, transmission electron microscopy (TEM, and field scanning electron microscopy (FSEM results. The surface charge ranges from 43.7 mV to 38.5 mV before and after encapsulation with DNA plasmid, respectively. In terms of thermostability, Thermal Gravimetric Analysis (TGA and Differential Scanning Calorimetry (DSC revealed that CS-SP nanoparticle had a melting temperature of 110°C, with rapid decomposition occurring at 120°C. Encapsulation of DNA with the synthesized nanoparticle was evidenced by changes in the FTIR spectra including characteristic peaks at 3267.39 and 1635.58 cm−1, wavenumbers. Additional peak was also observed at 1169.7 cm−1 following encapsulation. Electrophoretic mobility showed that CS-SP nanoparticle protected plasmid DNA from enzymatic degradation, while cell viability assays confirmed that the synthesized nanoparticle exhibited low cytotoxicity at different concentrations in avian cells. Taken together these, CS-SP nanoparticle showed potentials for applications as a DNA delivery system.

  19. Synthesis, Characterization, Molecular Modeling, and DNA Interaction Studies of Copper Complex Containing Food Additive Carmoisine Dye.

    Science.gov (United States)

    Shahabadi, Nahid; Akbari, Alireza; Jamshidbeigi, Mina; Khodarahmi, Reza

    2016-06-02

    A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 10(4) M(-1)) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer.

  20. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells

    Science.gov (United States)

    Quinet, Annabel; Martins, Davi Jardim; Vessoni, Alexandre Teixeira; Biard, Denis; Sarasin, Alain; Stary, Anne; Menck, Carlos Frederico Martins

    2016-01-01

    Ultraviolet-induced 6-4 photoproducts (6-4PP) and cyclobutane pyrimidine dimers (CPD) can be tolerated by translesion DNA polymerases (TLS Pols) at stalled replication forks or by gap-filling. Here, we investigated the involvement of Polη, Rev1 and Rev3L (Polζ catalytic subunit) in the specific bypass of 6-4PP and CPD in repair-deficient XP-C human cells. We combined DNA fiber assay and novel methodologies for detection and quantification of single-stranded DNA (ssDNA) gaps on ongoing replication forks and postreplication repair (PRR) tracts in the human genome. We demonstrated that Rev3L, but not Rev1, is required for postreplicative gap-filling, while Polη and Rev1 are responsible for TLS at stalled replication forks. Moreover, specific photolyases were employed to show that in XP-C cells, CPD arrest replication forks, while 6-4PP are responsible for the generation of ssDNA gaps and PRR tracts. On the other hand, in the absence of Polη or Rev1, both types of lesion block replication forks progression. Altogether, the data directly show that, in the human genome, Polη and Rev1 bypass CPD and 6-4PP at replication forks, while only 6-4PP are also tolerated by a Polζ-dependent gap-filling mechanism, independent of S phase. PMID:27095204

  1. DNA synthesis and scanning electron microscopic lesions in renal pelvic epithelium of rats treated with bladder cancer promoters.

    Science.gov (United States)

    Shibata, M A; Asakawa, E; Hagiwara, A; Kurata, Y; Fukushima, S

    1991-03-01

    The proliferation response of rat renal pelvic epithelium, lined by transitional epithelium, to administration of various bladder cancer promoters was investigated. In addition, prostaglandin E2 (PGE2), lipid peroxide (LPO), malondialdehyde (MDA) and cyclic adenosine 3':5'-monophosphate (cyclic AMP) levels were assessed in urine of rats given the non-promoter L-ascorbic acid (AsA) and the promoters sodium L-ascorbate (AsA-Na) or sodium bicarbonate (NaHCO3) for 4 or 8 weeks. DNA synthesis in the renal pelvic epithelium, as assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation, was increased in the groups given AsA-Na, an extremely high dose of sodium chloride (NaCl), tert-butylhydroquinone (TBHQ) or ethoxyquin (EQ). Moreover, with the exception of AsA-Na, all treatments that induced an elevation of DNA synthesis also caused morphological epithelial alterations as observed by scanning electron microscopy (SEM). Treatment with butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) did not result in any proliferative response of the rat renal pelvis. No treatment-related changes in urinary PGE2 and cyclic AMP were noted, although AsA-Na and AsA but not NaHCO3 reduced levels of LPO and MDA in the urine. The results indicate that while the response of renal pelvic epithelium to certain bladder cancer promoters is similar to that of the bladder itself, none of the urinary cellular growth or free radical biochemical parameters is directly related to urothelial cell proliferation.

  2. Protected 5-(hydroxymethyl)uracil nucleotides bearing visible-light photocleavable groups as building blocks for polymerase synthesis of photocaged DNA.

    Science.gov (United States)

    Boháčová, Soňa; Ludvíková, Lucie; Poštová Slavětínská, Lenka; Vaníková, Zuzana; Klán, Petr; Hocek, Michal

    2018-02-12

    Nucleosides, nucleotides and 2'-deoxyribonucleoside triphosphates (dNTPs) containing 5-(hydroxymethyl)uracil protected with photocleavable groups (2-nitrobenzyl-, 6-nitropiperonyl or 9-anthrylmethyl) were prepared and tested as building blocks for the polymerase synthesis of photocaged oligonucleotides and DNA. Photodeprotection (photorelease) reactions were studied in detail on model nucleoside monophosphates and their photoreaction quantum yields were determined. Photocaged dNTPs were then tested and used as substrates for DNA polymerases in primer extension or PCR. DNA probes containing photocaged or free 5-hydroxymethylU in the recognition sequence of restriction endonucleases were prepared and used for the study of photorelease of caged DNA by UV or visible light at different wavelengths. The nitropiperonyl-protected nucleotide was found to be a superior building block because the corresponding dNTP is a good substrate for DNA polymerases, and the protecting group is efficiently cleavable by irradiation by UV or visible light (up to 425 nm).

  3. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells.

    Science.gov (United States)

    Ochi, T; Nakajima, F; Fukumori, N

    1998-09-01

    Changes in cytoskeletal organization of cultured V79 cells exposed to arsenite and dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and related changes, such as mitotic arrest and induction of multinucleated cells, were investigated in comparison with their effects on DNA synthesis. DMAA caused mitotic arrest and induction of multinucleated cells with a delay of 12 h relative to the mitotic arrest. By contrast, arsenite at equitoxic concentrations to DMAA was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Post-mitotic incubation of cells arrested in metaphase by 6 h incubation with 10 mM DMAA showed that the incidence of multinucleated cells increased conversely with a rapid decrease in metaphase cells. This suggests that metaphase-arrested cells can escape from metaphase, resulting in the appearance of multinucleated cells. The mitotic arrest caused by DMAA was accompanied by disruption of the microtubule network. By contrast, both arsenite and DMAA did not cause disorganization of actin stress fibers even when incubated at concentrations that caused a marked retardation of cell growth. Cells exposed to arsenite for 6 h showed marked inhibition of DNA synthesis, whereas inhibition by DMAA was not observed. When incubation was prolonged by 18 h, the arsenite-induced inhibition of DNA synthesis was mitigated. By contrast, inhibition of DNA synthesis by DMAA occurred in parallel with an increase in the population of mitotic cells. These results suggest that DMAA caused growth retardation and morphological changes via disruption of the microtubule network, and that arsenite-induced retardation of cell growth and inhibition of DNA synthesis were not attributable to the cytoskeletal changes.

  4. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Nakajima, Fumie [Department of Environmental Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa (Japan); Fukumori, Nobutaka [Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Hyakuninchou, Shinjyuku (Japan)

    1998-09-01

    Changes in cytoskeletal organization of cultured V79 cells exposed to arsenite and dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and related changes, such as mitotic arrest and induction of multinucleated cells, were investigated in comparison with their effects on DNA synthesis. DMAA caused mitotic arrest and induction of multinucleated cells with a delay of 12 h relative to the mitotic arrest. By contrast, arsenite at equitoxic concentrations to DMAA was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Post-mitotic incubation of cells arrested in metaphase by 6 h incubation with 10 mM DMAA showed that the incidence of multinucleated cells increased conversely with a rapid decrease in metaphase cells. This suggests that metaphase-arrested cells can escape from metaphase, resulting in the appearance of multinucleated cells. The mitotic arrest caused by DMAA was accompanied by disruption of the microtubule network. By contrast, both arsenite and DMAA did not cause disorganization of actin stress fibers even when incubated at concentrations that caused a marked retardation of cell growth. Cells exposed to arsenite for 6 h showed marked inhibition of DNA synthesis, whereas inhibition by DMAA was not observed. When incubation was prolonged by 18 h, the arsenite-induced inhibition of DNA synthesis was mitigated. By contrast, inhibition of DNA synthesis by DMAA occurred in parallel with an increase in the population of mitotic cells. These results suggest that DMAA caused growth retardation and morphological changes via disruption of the microtubule network, and that arsenite-induced retardation of cell growth and inhibition of DNA synthesis were not attributable to the cytoskeletal changes. (orig.) (orig.) With 7 figs., 31 refs.

  5. Palladium polypyridyl complexes: synthesis, characterization, DNA interaction and biological activity on Leishmania (L.) mexicana

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Maribel [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Quimica; Betancourt, Adelmo [Universidad de Carabobo, Valencia (Venezuela). Facultad Experimental de Ciencia y Tecnologia. Dept. de Quimica; Hernandez, Clara [Universidad de Carabobo Sede Aragua, Maracay (Venezuela). Facultad de Ciencias de la Salud. Dept. de Ciencias Basicas; Marchan, Edgar [Universidad de Oriente, Cumana (Venezuela). Inst. de Investigaciones en Biomedicina y Ciencias Aplicadas. Nucleo de Sucre

    2008-07-01

    This paper describes the search for new potential chemotherapeutic agents based on transition metal complexes with planar ligands. In this study, palladium polypyridyl complexes were synthesized and characterized by elemental analysis, NMR, UV-VIS and IR spectroscopies. The interaction of the complexes with DNA was also investigated by spectroscopic methods. All metal-to-ligand charge transfer (MLCT) bands of the palladium polypyridyl complexes exhibited hypochromism and red shift in the presence of DNA. The binding constant and viscosity data suggested that the complexes [PdCl{sub 2}(phen)] and [PdCl{sub 2}(phendiamine)] interact with DNA by electrostatic forces. Additionally, these complexes induced an important leishmanistatic effect on L. (L.) mexicana promastigotes at the final concentration of 10 {mu}mol L{sup -1} in 48 h. (author)

  6. The chemical synthesis of DNA/RNA: our gift to science.

    Science.gov (United States)

    Caruthers, Marvin H

    2013-01-11

    It is a great privilege to contribute to the Reflections essays. In my particular case, this essay has allowed me to weave some of my major scientific contributions into a tapestry held together by what I have learned from three colleagues (Robert Letsinger, Gobind Khorana, and George Rathmann) who molded my career at every important junction. To these individuals, I remain eternally grateful, as they always led by example and showed many of us how to break new ground in both science and biotechnology. Relative to my scientific career, I have focused primarily on two related areas. The first is methodologies we developed for chemically synthesizing DNA and RNA. Synthetic DNA and RNA continue to be an essential research tool for biologists, biochemists, and molecular biologists. The second is developing new approaches for solving important biological problems using synthetic DNA, RNA, and their analogs.

  7. DNA-templated synthesis of ZnO thin layers and nanowires.

    Science.gov (United States)

    Atanasova, Petia; Weitz, R Thomas; Gerstel, Peter; Srot, Vesna; Kopold, Peter; van Aken, Peter A; Burghard, Marko; Bill, Joachim

    2009-09-09

    In this paper, we report a novel synthetic approach towards electrically conductive ZnO nanowires close to ambient conditions using lambda-DNA as a template. Initially, the suitability of DNA to assemble ZnO nanocrystals into thin coatings was investigated. The ZnO nanowires formed on stretched and aligned lambda-DNA molecules were prepared via chemical bath deposition (CBD) of zinc acetate in methanol solution in the presence of polyvinylpyrrolidone (PVP). After 10 deposition cycles, the nanowires exceed 10 microm in length and the height can be varied from 12 to around 40 nm. The nanocrystalline structure of the ZnO wires was confirmed by high-resolution transmission electron microscopy (HRTEM). The electrical conductivity was found to be of the order of several Omega cm at room temperature in two terminal measurements.

  8. Genetic polymorphisms of the enzymes involved in DNA methylation and synthesis in elite athletes.

    Science.gov (United States)

    Terruzzi, Ileana; Senesi, Pamela; Montesano, Anna; La Torre, Antonio; Alberti, Giampietro; Benedini, Stefano; Caumo, Andrea; Fermo, Isabella; Luzi, Livio

    2011-08-24

    Physical exercise induces adaptive changes leading to a muscle phenotype with enhanced performance. We first investigated whether genetic polymorphisms altering enzymes involved in DNA methylation, probably responsible of DNA methylation deficiency, are present in athletes' DNA. We determined the polymorphic variants C667T/A1298C of 5,10-methylenetetrahydrofolate reductase (MTHFR), A2756G of methionine synthase (MTR), A66G of methionine synthase reductase (MTRR), G742A of betaine:homocysteine methyltransferase (BHMT), and 68-bp ins of cystathionine β-synthase (CBS) genes in 77 athletes and 54 control subjects. The frequency of MTHFR (AC), MTR (AG), and MTRR (AG) heterozygous genotypes was found statistically different in the athletes compared with the control group (P=0.0001, P=0.018, and P=0.0001), suggesting a reduced DNA methylating capacity. We therefore assessed whether DNA hypomethylation might increase the expression of myogenic proteins expressed during early (Myf-5 and MyoD), intermediate (Myf-6), and late-phase (MHC) of myogenesis in a cellular model of hypomethylated or unhypomethylated C2C12 myoblasts. Myogenic proteins are largely induced in hypomethylated cells [fold change (FC)=Myf-5: 1.21, 1.35; MyoD: 0.9, 1.47; Myf-6: 1.39, 1.66; MHC: 1.35, 3.10 in GMA, DMA, respectively] compared with the control groups (FC=Myf-5: 1.0, 1.38; MyoD: 1.0, 1.14; Myf-6: 1.0, 1.44; MHC: 1.0, 2.20 in GM, DM, respectively). Diameters and length of hypomethylated myotubes were greater then their respective controls. Our findings suggest that DNA hypomethylation due to lesser efficiency of polymorphic MTHFR, MS, and MSR enzymes induces the activation of factors determining proliferation and differentiation of myoblasts promoting muscle growth and increase of muscle mass.

  9. Design, synthesis and DNA-cleavage of Gly-Gly-His-naphthalene diimide conjugates.

    Science.gov (United States)

    Steullet, V; Dixon, D W

    1999-10-18

    Naphthalene diimides with one and two metal-chelating Gly-Gly-His (GGH) motifs have been synthesized. Both conjugates induce single-stranded cleavage of plasmid pBR322 DNA in the presence of nickel and Oxone and are approximately 100-fold more efficient than Ni(II) x GH-CONH2 itself.

  10. Carbohydrate-conjugate heterobimetallic complexes: synthesis, DNA binding studies, artificial nuclease activity and in vitro cytotoxicity.

    Science.gov (United States)

    Tabassum, Sartaj; Khan, Rais Ahmad; Arjmand, Farukh; Aziz, Mubashira; Juvekar, Aarti S; Zingde, Surekha M

    2011-12-27

    New carbohydrate-conjugated heterobimetallic complexes [C(32)H(62)N(10)O(8)NiSn(2)Cl(4)]Cl(2)(1) and [C(32)H(62)N(10)O(8)CuSn(2)Cl(4)]Cl(2) (2) were synthesized and characterized by spectroscopic (IR, (1)H, (13)C, and (119)Sn NMR, EPR, UV-vis, ESI-MS) and analytical methods. The interaction studies of 2 with CT DNA were studied by using various biophysical techniques, which showed high binding affinity of 2 toward CT DNA. The extent of interaction was further confirmed by the interaction of 2 with the nucleotides viz.; 5'-AMP, 5'-CMP, 5'-GMP, and 5'-TMP, by absorption titration. (1)H, (31)P, (119)Sn NMR spectroscopy further validated the interaction mode of 2 with 5'-GMP. The electrophoresis pattern observed for 2 with supercoiled pBR322 DNA, exhibited significantly good nuclease activity following oxidative pathway. The preferential selectivity of 2 toward the major groove was observed on interaction of 2 with pBR322 DNA, in the presence of standard groove binders viz.; DAPI and methyl green. Additionally, in vitro antitumor activity of 2 was evaluated on a panel of human cancer cell lines, exhibiting remarkable cytotoxicity activity against Colo205 (colon) and MCF7 (breast) cell lines with GI(50) values <10 μg/mL. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Synthesis, DNA Binding and Topoisomerase I Inhibition Activity of Thiazacridine and Imidazacridine Derivatives

    Directory of Open Access Journals (Sweden)

    Elizabeth Almeida Lafayette

    2013-12-01

    Full Text Available Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.

  12. Synthesis, X-ray crystal structure, DNA binding and Nuclease activity ...

    Indian Academy of Sciences (India)

    ... lanthanum complex and 10-coordinated in the cerium complex. The coordination polyhedra around the lanthanum and cerium were found to have distorted icosahedron and distorted bicapped square antiprism respectively. DNA binding and nuclease activity of these complexes were also investigated in the present work.

  13. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    Science.gov (United States)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  14. Synthesis of a drug delivery vehicle for cancer treatment utilizing DNA-functionalized gold nanoparticles

    Science.gov (United States)

    Brann, Tyler

    The treatment of cancer with chemotherapeutic agents has made great strides in the last few decades but still introduces major systemic side effects. The potent drugs needed to kill cancer cells often cause irreparable damage to otherwise healthy organs leading to further morbidity and mortality. A therapy with intrinsic selective properties and/or an inducible activation has the potential to change the way cancer can be treated. Gold nanoparticles (GNPs) are biocompatible and chemically versatile tools that can be readily functionalized to serve as molecular vehicles. The ability of these particles to strongly absorb light with wavelengths in the therapeutic window combined with the heating effect of surface plasmon resonance makes them uniquely suited for noninvasive heating in biologic applications. Specially designed DNA aptamers have shown their ability to serve as drug carriers through intercalation as well as directly acting as therapeutic agents. By combining these separate molecules a multifaceted drug delivery vehicle can be created with great potential as a selective and controllable treatment for cancer. Oligonucleotide-coated GNPs have been created using spherical GNPs but little work has been reported using gold nanoplates in this way. Using the Diasynth method gold nanoplates were produced to absorb strongly in the therapeutic near infrared (nIR) window. These particles were functionalized with two DNA oligonucleotides: one serving as an intercalation site for doxorubicin, and another, AS1411, serving directly as an anticancer targeting/therapeutic agent. These functional particles were fully synthesized and processed along with confirmation of DNA functionalization and doxorubicin intercalation. Doxorubicin is released via denaturation of the DNA structure into which doxorubicin is intercalated upon the heating of the gold nanoplate well above the DNA melting temperature. This temperature increase, due to light stimulation of surface plasmon

  15. The efficiency of the translesion synthesis across abasic sites by mitochondrial DNA polymerase is low in mitochondria of 3T3 cells.

    Science.gov (United States)

    Kozhukhar, Natalya; Spadafora, Domenico; Fayzulin, Rafik; Shokolenko, Inna N; Alexeyev, Mikhail

    2016-11-01

    Translesion synthesis by specialized DNA polymerases is an important strategy for mitigating DNA damage that cannot be otherwise repaired either due to the chemical nature of the lesion. Apurinic/Apyrimidinic (abasic, AP) sites represent a block to both transcription and replication, and are normally repaired by the base excision repair (BER) pathway. However, when the number of abasic sites exceeds BER capacity, mitochondrial DNA is targeted for degradation. Here, we used two uracil-N-glycosylase (UNG1) mutants, Y147A or N204D, to generate AP sites directly in the mtDNA of NIH3T3 cells in vivo at sites normally occupied by T or C residues, respectively, and to study repair of these lesions in their native context. We conclude that mitochondrial DNA polymerase γ (Pol γ) is capable of translesion synthesis across AP sites in mitochondria of the NIH3T3 cells, and obeys the A-rule. However, in our system, base excision repair (BER) and mtDNA degradation occur more frequently than translesion bypass of AP sites.

  16. Synthesis of isatin thiosemicarbazones derivatives: In vitro anti-cancer, DNA binding and cleavage activities

    Science.gov (United States)

    Ali, Amna Qasem; Teoh, Siang Guan; Salhin, Abdussalam; Eltayeb, Naser Eltaher; Khadeer Ahamed, Mohamed B.; Majid, A. M. S. Abdul

    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (kb = 5.03-33.00 × 105 M-1) for L1-L3 and L5 and (6.14-9.47 × 104 M-1) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.

  17. Synthesis, crystal structure, DNA binding and molecular docking studies of zinc(II) carboxylates

    Science.gov (United States)

    Muhammad, Niaz; Ikram, Muhammad; Wadood, Abdul; Rehman, Sadia; Shujah, Shaukat; Erum; Ghufran, Mehreen; Rahim, Shahnaz; Shah, Muzamil; Schulzke, Carola

    2018-02-01

    New zinc(II) carboxylate complexes [Zn(3-F-C6H4CH2COO)2]n (1), [Zn3(3-F-C6H4CH2COO)6(Phen)2] (2) and [Zn3(3-F-C6H4CH2COO)6(bipy)2] (3) were synthesized and characterized by atomic absorption, single crystal structural analysis and IR studies. Complex 1 crystallizes as a coordination polymer constituting a web of μ - η1,η1 carboxylate bridged tetrahedral zinc centers. Complexes 2 and 3 comprise trinuclear zinc centers with two terminal fivefold coordinated slightly distorted square-pyramidal and central sixfold coordinated octahedral zinc centers. The complexes were also assessed for their DNA binding ability by UV/- Vis spectroscopy and their behavior rationalized theoretically by molecular docking studies. A DNA binding study has shown groove binding interactions with the complexes.

  18. Instability of (CTG)n•(CAG)n trinucleotide repeats and DNA synthesis.

    Science.gov (United States)

    Liu, Guoqi; Leffak, Michael

    2012-02-27

    Expansion of (CTG)n•(CAG)n trinucleotide repeat (TNR) microsatellite sequences is the cause of more than a dozen human neurodegenerative diseases. (CTG)n and (CAG)n repeats form imperfectly base paired hairpins that tend to expand in vivo in a length-dependent manner. Yeast, mouse and human models confirm that (CTG)n•(CAG)n instability increases with repeat number, and implicate both DNA replication and DNA damage response mechanisms in (CTG)n•(CAG)n TNR expansion and contraction. Mutation and knockdown models that abrogate the expression of individual genes might also mask more subtle, cumulative effects of multiple additional pathways on (CTG)n•(CAG)n instability in whole animals. The identification of second site genetic modifiers may help to explain the variability of (CTG)n•(CAG)n TNR instability patterns between tissues and individuals, and offer opportunities for prognosis and treatment.

  19. Synthesis, characterization, DNA binding and cleavage studies of mixed-ligand copper (II complexes

    Directory of Open Access Journals (Sweden)

    M. Sunita

    2017-05-01

    Full Text Available New two copper complexes of type [Cu(Bzimpy(LH2O]SO4 (where L = 2,2′ bipyridine (bpy, and ethylene diamine (en, Bzimpy = 2,6-bis(benzimidazole-2ylpyridine have been synthesized and characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. Based on elemental and spectral studies six coordinated geometries were assigned to the two complexes. DNA-binding properties of these metal complexes were investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation methods. Experimental studies suggest that the complexes bind to DNA through intercalation. These complexes also promote the cleavage of plasmid pBR322, in the presence of H2O2.

  20. Synthesis, characterization and DNA cleavage activity of nickel(II adducts with aromatic heterocyclic bases

    Directory of Open Access Journals (Sweden)

    G. H. PHILIP

    2010-01-01

    Full Text Available Mixed ligand complexes of nickel(II with 2,4-dihydroxyaceto-phenone oxime (DAPO and 2,4-dihydroxybenzophenone oxime (DBPO as primary ligands, and pyridine (Py and imidazole (Im as secondary ligands were synthesized and characterized by molar conductivity, magnetic moments measurements, as well as by electronic, IR, and 1H-NMR spectroscopy. Electrochemical studies were performed by cyclic voltammetry. The active signals are assignable to the NiIII/II and NiII/I redox couples. The binding interactions between the metal complexes and calf thymus DNA were investigated by absorption and thermal denaturation. The cleavage activity of the complexes was determined using double-stranded pBR322 circular plasmid DNA by gel electrophoresis. All complexes showed increased nuclease activity in the presence of the oxidant H2O2. The nuclease activities of mixed ligand complexes were compared with those of the parent copper(II complexes.

  1. Single-molecule direct RNA sequencing without cDNA synthesis

    OpenAIRE

    Ozsolak, Fatih; Milos, Patrice M.

    2011-01-01

    Methods for in-depth genome-wide characterization of transcriptomes and quantification of transcript levels using various microarray and next-generation sequencing technologies have emerged as valuable tools for understanding cellular physiology and human disease biology and have begun to be utilized in various clinical diagnostic applications. Current methods, however, typically require RNA to be converted to complementary DNA prior to measurements. This step has been shown to introduce many...

  2. Synthesis and Characterization of Chitosan-Saponin Nanoparticle for Application in Plasmid DNA Delivery

    OpenAIRE

    Bande, Faruku; Arshad, Siti Suri; Hair Bejo, Mohd; Abdullahi Kamba, Shafiu; Omar, Abdul Rahman

    2015-01-01

    Nonviral delivery system receives attention over the last decade. Chitosan (CS) is a cationic polymer whereas saponin (SP) is classified as glycoside. In this study, a spherically-shaped CS-SP nanoparticle was synthesized and characterized. The ability of the nanoparticle to protect DNA from enzymatic degradation, its thermostability and cytotoxicity were evaluated. The particle size was found below 100 nm as determined by Zetasizer, transmission electron microscopy (TEM), and field scanning ...

  3. The Eukaryotic Mismatch Recognition Complexes Track with the Replisome during DNA Synthesis.

    Directory of Open Access Journals (Sweden)

    Joanna E Haye

    2015-12-01

    Full Text Available During replication, mismatch repair proteins recognize and repair mispaired bases that escape the proofreading activity of DNA polymerase. In this work, we tested the model that the eukaryotic mismatch recognition complex tracks with the advancing replisome. Using yeast, we examined the dynamics during replication of the leading strand polymerase Polε using Pol2 and the eukaryotic mismatch recognition complex using Msh2, the invariant protein involved in mismatch recognition. Specifically, we synchronized cells and processed samples using chromatin immunoprecipitation combined with custom DNA tiling arrays (ChIP-chip. The Polε signal was not detectable in G1, but was observed at active origins and replicating DNA throughout S-phase. The Polε signal provided the resolution to track origin firing timing and efficiencies as well as replisome progression rates. By detecting Polε and Msh2 dynamics within the same strain, we established that the mismatch recognition complex binds origins and spreads to adjacent regions with the replisome. In mismatch repair defective PCNA mutants, we observed that Msh2 binds to regions of replicating DNA, but the distribution and dynamics are altered, suggesting that PCNA is not the sole determinant for the mismatch recognition complex association with replicating regions, but may influence the dynamics of movement. Using biochemical and genomic methods, we provide evidence that both MutS complexes are in the vicinity of the replisome to efficiently repair the entire spectrum of mutations during replication. Our data supports the model that the proximity of MutSα/β to the replisome for the efficient repair of the newly synthesized strand before chromatin reassembles.

  4. Human T cell lymphotropic virus type 1 (HTLV-1) proviral load of HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients according to new diagnostic criteria of HAM/TSP.

    Science.gov (United States)

    Grassi, Maria Fernanda Rios; Olavarria, Viviana Nilla; Kruschewsky, Ramon de Almeida; Mascarenhas, Rita Elizabeth; Dourado, Inês; Correia, Luis C L; de Castro-Costa, Carlos Maurício; Galvão-Castro, Bernardo

    2011-07-01

    A high human T-cell lymphotropic virus type 1 (HTLV-1) proviral load is described in HTLV-1-associated diseases, especially HAM/TSP. However, the cut-off value to define high levels of HTLV-1 proviral load is not well established. 281 HTLV-1-infected patients from the HTLV reference center in Salvador, Brazil, were followed from 2005 to 2008. Patients were classified as asymptomatic, possible-, probable-, and definite-HAM/TSP, in accordance with diagnostic criteria proposed by De Castro-Costa et al. (2006): AIDS Res Hum Retroviruses 22:931-935. HTLV-1 proviral load was determined using real-time PCR. A receiver operator characteristic (ROC) curve was constructed using only asymptomatic individuals and definite-HAM/TSP patients. The ROC curve was used to predict the proviral load level that differentiates these two groups. Out of 281 patients, 189 were asymptomatic and 92 were diagnosed with HAM/TSP (22 possible, 23 probable, 47 definite). The mean HTLV-1 proviral load was higher in possible- (89,104 ± 93,006 copies/106 PBMC), -probable (175,854 ± 128,083 copies/106 PBMC), and definite-HAM/TSP patients (150,667 ± 122,320 copies/106 PBMC),when compared to asymptomatic individuals (27,178 ± 41,155 copies/106 PBMC) (P TSP groups showed the highest proviral loads in probable-HAM/TSP patients, yet the differences in mean values were not statistically significant. The ROC curve suggested a value of 49,865 copies/106 PBMC, with 87% sensitivity (95% CI ¼ 74-95) and 81% specificity (95% CI ¼ 75-86), as the best proviral load cut-off point to differentiate definite HAM/TSP patients from asymptomatic individuals. HTLV-1 proviral loads are higher in groups of infected patients with eurological symptoms and may represent a relevant biological marker of disease progression.

  5. Homodinuclear lanthanide complexes of phenylthiopropionic acid: synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity.

    Science.gov (United States)

    Shiju, C; Arish, D; Kumaresan, S

    2013-03-15

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H(2)O(2). The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Synthesis, G-quadruplexes DNA binding, and photocytotoxicity of novel cationic expanded porphyrins.

    Science.gov (United States)

    Jin, Shu-fang; Zhao, Ping; Xu, Lian-cai; Zheng, Min; Lu, Jia-zheng; Zhao, Peng-liang; Su, Qiu-lan; Chen, Hui-xian; Tang, Ding-tong; Chen, Jiong; Lin, Jia-qi

    2015-06-01

    Intensive reports allowed the conclusion that molecules with extended aromatic surfaces always do good jobs in the DNA interactions. Inspired by the previous successful researches, herein, we designed a series of cationic porphyrins with expanded planar substituents, and evaluated their binding behaviors to G-quadruplex DNA using the combination of surface-enhanced raman, circular dichroism, absorption spectroscopy and fluorescence resonance energy transfer melting assays. Asymmetrical tetracationic porphyrin with one phenyl-4-N-methyl-4-pyridyl group and three N-methyl-4-pyridyl groups exhibit the best G4-DNA binding affinities among all the designed compounds, suggesting that the bulk of the substituents should be matched to the width of the grooves they putatively lie in. Theoretical calculations applying the density functional theory have been carried out and explain the binding properties of these porphyrins reasonably. Meanwhile, these porphyrins were proved to be potential photochemotherapeutic agents since they have photocytotoxic activities against both myeloma cell (Ag8.653) and gliomas cell (U251) lines. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. RNA involvement in T4 DNA synthesis in toluene-treated cells.

    Science.gov (United States)

    Dicou, E

    1980-01-01

    In T4-infected cells made permeable with toluene, pulses with [(alpha-32P deoxyribonucleoside triphosphates demonstrated covalent linkage of RNA to DNA of the Okazaki fragments. Analysis of the transfer of the 32P label to the 2'(3') ribonucleoside monophosphates indicated that the 3'-end of the RNA primer is heterogeneous. The most frequently encountered ribonucleotide was rCMP, but also transfer to rUMP, rAMP and rGMP occurred at different frequencies. In contrast, no heterogeneity was observed for the deoxyribonucleoside at the RNA-DNA junction. Of all the [to-32P] deoxyribonucleoside triphosphates tested, transfer of the 32P label to 2'(3') rNMPs was predominant when [alpha32P] dGTP was the substrate, indicating that the deoxyribonucleoside most frequently encountered at the RNA-DNA linkage is dG. These observations suggest that the starts for the Okazaki fragments may occur at unique sites of the T4 genome.

  8. Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes

    Directory of Open Access Journals (Sweden)

    Poomalai Jayaseelan

    2016-09-01

    Full Text Available A novel Schiff base ligand has been prepared by the condensation between butanedione monoxime with 3,3′-diaminobenzidine. The ligand and metal complexes have been characterized by elemental analysis, UV, IR, 1H NMR, conductivity measurements, EPR and magnetic studies. The molar conductance studies of Cu(II, Ni(II, Co(II and Mn(II complexes showed non-electrolyte in nature. The ligand acts as dibasic with two N4-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The spectroscopic data of metal complexes indicated that the metal ions are complexed with azomethine nitrogen and oxyimino nitrogen atoms. The binuclear metal complexes exhibit octahedral arrangements. DNA binding properties of copper(II metal complex have been investigated by electronic absorption spectroscopy. Results suggest that the copper(II complex bind to DNA via an intercalation binding mode. The nucleolytic cleavage activities of the ligand and their complexes were assayed on CT-DNA using gel electrophoresis in the presence and absence of H2O2. The ligand showed increased nuclease activity when administered as copper complex and copper(II complex behave as efficient chemical nucleases with hydrogen peroxide activation. The anti-microbial activities and thermal studies have also been studied. In anti-microbial activity all complexes showed good anti-microbial activity higher than ligand against gram positive, gram negative bacteria and fungi.

  9. Homodinuclear lanthanide complexes of phenylthiopropionic acid: Synthesis, characterization, cytotoxicity, DNA cleavage, and antimicrobial activity

    Science.gov (United States)

    Shiju, C.; Arish, D.; Kumaresan, S.

    2013-03-01

    Lanthanide complexes of La(III), Pr(III), Nd(III), Sm(III), and Ho(III) with phenylthiopropionic acid were synthesized and characterized by elemental analysis, mass, IR, electronic spectra, molar conductance, TGA, and powder XRD. The results show that the lanthanide complexes are homodinuclear in nature. The two lanthanide ions are bridged by eight oxygen atoms from four carboxylate groups. Thermal decomposition profiles are consistent with the proposed formulations. Powder XRD studies show that all the complexes are amorphous in nature. Antimicrobial studies indicate that these complexes exhibit more activity than the ligand itself. The DNA cleavage activity of the ligand and its complexes were assayed on Escherichia coli DNA using gel electrophoresis in the presence of H2O2. The result shows that the Pr(III) and Nd(III) complexes have completely cleaved the DNA. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa) and colon cancer cells (HCT116) and it was found that the La(III) and Nd(III) complexes are more active than the corresponding Pr(III), Sm(III), Ho(III) complexes, and the free ligand on both the cancer cells.

  10. Modeling rotavirus-like particles production in a baculovirus expression vector system: Infection kinetics, baculovirus DNA replication, mRNA synthesis and protein production.

    Science.gov (United States)

    Roldão, António; Vieira, Helena L A; Charpilienne, Annie; Poncet, Didier; Roy, Polly; Carrondo, Manuel J T; Alves, Paula M; Oliveira, R

    2007-03-10

    Rotavirus is the most common cause of severe diarrhoea in children worldwide, responsible for more than half a million deaths in children per year. Rotavirus-like particles (Rota VLPs) are excellent vaccine candidates against rotavirus infection, since they are non-infectious, highly immunogenic, amenable to large-scale production and safer to produce than those based on attenuated viruses. This work focuses on the analysis and modeling of the major events taking place inside Spodoptera frugiperda (Sf-9) cells infected by recombinant baculovirus that may be critical for the expression of rotavirus viral proteins (VPs). For model validation, experiments were performed adopting either a co-infection strategy, using three monocistronic recombinant baculovirus each one coding for viral proteins VP(2), VP(6) and VP(7), or single-infection strategies using a multigene baculovirus coding for the three proteins of interest. A characteristic viral DNA (vDNA) replication rate of 0.19+/-0.01 h(-1) was obtained irrespective of the monocistronic or multigene vector employed, and synthesis of progeny virus was found to be negligible in comparison to intracellular vDNA concentrations. The timeframe for vDNA, mRNA and VP synthesis tends to decrease with increasing multiplicity of infection (MOI) due to the metabolic burden effect. The protein synthesis rates could be ranked according to the gene size in the multigene experiments but not in the co-infection experiments. The model exhibits acceptable prediction power of the dynamics of intracellular vDNA replication, mRNA synthesis and VP production for the three proteins involved. This model is intended to be the basis for future Rota VLPs process optimisation and also a means to evaluating different baculovirus constructs for Rota VLPs production.

  11. Butyrate inhibits deoxycholate-induced increase in colonic mucosal DNA and protein synthesis in vivo.

    Science.gov (United States)

    Velázquez, O C; Seto, R W; Choi, J; Zhou, D; Breen, F; Fisher, J D; Rombeau, J L

    1997-11-01

    Crypt surface hyperproliferation is an intermediate biomarker of colon cancer risk. In vitro studies indicate that the short-chain fatty acid and antineoplastic agent butyrate may reverse the crypt surface hyperproliferation induced by the secondary bile acid and tumor promoter, deoxycholate. We hypothesized that butyrate may reverse deoxycholate-induced crypt surface proliferation in vivo. Thirty-one Sprague-Dawley rats (250-300 g) underwent surgical isolation of the colon and 24-hour luminal instillation of either sodium chloride, butyrate, deoxycholate, or butyrate plus deoxycholate (all solutions, 2 ml; pH 7; total sodium = 20 mM). Study variables included colon weight, mucosal DNA, mucosal protein, and proliferating cell nuclear antigen immunohistochemistry, labeling of which was determined in five crypt compartments from base to surface (12 crypts per rat). Labeling indexes were calculated as proliferating cell nuclear antigen immunohistochemistry-labeled cells divided by total counted cells in the whole colonic crypt and each of five crypt compartments. The phi(h) value (an index of premalignant risk) was calculated as the ratio of labeled cells in the two surface compartments divided by the total labeled cells. Deoxycholate significantly increased colon wet weight, mucosal protein, total crypt labeling indexes, crypt surface labeling indexes, and the phi(h) value and raised the mucosal DNA content. Butyrate alone slightly reduced total mucosal DNA and protein content. The combination of butyrate plus deoxycholate significantly decreased mucosal DNA and tended to reduce mucosal protein compared with deoxycholate alone. In contrast to prior in vitro findings, butyrate plus deoxycholate did not reverse the deoxycholate-induced surface hyperproliferative changes as measured by proliferating cell nuclear antigen labeling. Because co-treatment with butyrate plus deoxycholate inhibits deoxycholate-induced increases in total mucosal DNA and protein content, we

  12. High HTLV-1 proviral load, a marker for HTLV-1-associated myelopathy/tropical spastic paraparesis, is also detected in patients with infective dermatitis associated with HTLV-1

    Science.gov (United States)

    Primo, J.; Siqueira, I.; Nascimento, M.C.F.; Oliveira, M.F.; Farre, L.; Carvalho, E.M.; Bittencourt, A.L.

    2010-01-01

    Salvador (BA, Brazil) is an endemic area for human T-cell lymphotrophic virus type 1 (HTLV-1). The overall prevalence of HTLV-1 infection in the general population has been estimated to be 1.76%. HTLV-1 carriers may develop a variety of diseases such as adult T-cell leukemia/lymphoma, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and infective dermatitis associated with HTLV-1 (IDH). IDH is a chronic and severe form of childhood exudative and infective dermatitis involving mainly the scalp, neck and ears. It has recently been observed that 30% of patients with IDH develop juvenile HAM/TSP. The replication of HTLV-1 has been reported to be greater in adult HAM/TSP patients than in asymptomatic HTLV-1 carriers. In the current study, the proviral load of 28 children and adolescents with IDH not associated with HAM/TSP was determined and the results were compared to those obtained in 28 HTLV-1 adult carriers and 28 adult patients with HAM/TSP. The proviral load in IDH patients was similar to that of patients with HAM/TSP and much higher than that found in HTLV-1 carriers. The high levels of proviral load in IDH patients were not associated with age, duration of illness, duration of breast-feeding, or activity status of the skin disease. Since proviral load is associated with neurological disability, these data support the view that IDH patients are at high risk of developing HAM/TSP. PMID:19578703

  13. Architecture of the Pol III–clamp–exonuclease complex reveals key roles of the exonuclease subunit in processive DNA synthesis and repair

    Science.gov (United States)

    Toste Rêgo, Ana; Holding, Andrew N; Kent, Helen; Lamers, Meindert H

    2013-01-01

    DNA polymerase III (Pol III) is the catalytic α subunit of the bacterial DNA Polymerase III holoenzyme. To reach maximum activity, Pol III binds to the DNA sliding clamp β and the exonuclease ɛ that provide processivity and proofreading, respectively. Here, we characterize the architecture of the Pol III–clamp–exonuclease complex by chemical crosslinking combined with mass spectrometry and biochemical methods, providing the first structural view of the trimeric complex. Our analysis reveals that the exonuclease is sandwiched between the polymerase and clamp and enhances the binding between the two proteins by providing a second, indirect, interaction between the polymerase and clamp. In addition, we show that the exonuclease binds the clamp via the canonical binding pocket and thus prevents binding of the translesion DNA polymerase IV to the clamp, providing a novel insight into the mechanism by which the replication machinery can switch between replication, proofreading, and translesion synthesis. PMID:23549287

  14. Peripheral SLC6A4 DNA Methylation Is Associated with In Vivo Measures of Human Brain Serotonin Synthesis and Childhood Physical Aggression

    Science.gov (United States)

    Wang, Dongsha; Szyf, Moshe; Benkelfat, Chawki; Provençal, Nadine; Turecki, Gustavo; Caramaschi, Doretta; Côté, Sylvana M.; Vitaro, Frank; Tremblay, Richard E.; Booij, Linda

    2012-01-01

    The main challenge in addressing the role of DNA methylation in human behaviour is the fact that the brain is inaccessible to epigenetic analysis in living humans. Using positron emission tomography (PET) measures of brain serotonin (5-HT) synthesis, we found in a longitudinal sample that adult males with high childhood-limited aggression (C-LHPA) had lower in vivo 5-HT synthesis in the orbitofrontal cortex (OBFC). Here we hypothesized that 5-HT alterations associated with childhood aggression were linked to differential DNA methylation of critical genes in the 5-HT pathway and these changes were also detectable in peripheral white blood cells. Using pyrosequencing, we determined the state of DNA methylation of SLC6A4 promoter in T cells and monocytes isolated from blood of cohort members (N = 25) who underwent a PET scan, and we examined whether methylation status in the blood is associated with in vivo brain 5-HT synthesis. Higher levels of methylation were observed in both T cells and monocytes at specific CpG sites in the C-LHPA group. DNA methylation of SLC6A4 in monocytes appears to be associated more reliably with group membership than T cells. In both cell types the methylation state of these CpGs was associated with lower in vivo measures of brain 5-HT synthesis in the left and right lateral OBFC (N = 20) where lower 5-HT synthesis in C-LHPA group was observed. Furthermore, in vitro methylation of the SLC6A4 promoter in a luciferase reporter construct suppresses its transcriptional activity supporting a functional role of DNA methylation in SLC6A4 promoter regulation. These findings indicate that state of SLC6A4 promoter methylation is altered in peripheral white blood cells of individuals with physical aggression during childhood. This supports the relevance of peripheral DNA methylation for brain function and suggests that peripheral SLC6A4 DNA methylation could be a marker of central 5-HT function. PMID:22745770

  15. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression.

    Directory of Open Access Journals (Sweden)

    Dongsha Wang

    Full Text Available The main challenge in addressing the role of DNA methylation in human behaviour is the fact that the brain is inaccessible to epigenetic analysis in living humans. Using positron emission tomography (PET measures of brain serotonin (5-HT synthesis, we found in a longitudinal sample that adult males with high childhood-limited aggression (C-LHPA had lower in vivo 5-HT synthesis in the orbitofrontal cortex (OBFC. Here we hypothesized that 5-HT alterations associated with childhood aggression were linked to differential DNA methylation of critical genes in the 5-HT pathway and these changes were also detectable in peripheral white blood cells. Using pyrosequencing, we determined the state of DNA methylation of SLC6A4 promoter in T cells and monocytes isolated from blood of cohort members (N = 25 who underwent a PET scan, and we examined whether methylation status in the blood is associated with in vivo brain 5-HT synthesis. Higher levels of methylation were observed in both T cells and monocytes at specific CpG sites in the C-LHPA group. DNA methylation of SLC6A4 in monocytes appears to be associated more reliably with group membership than T cells. In both cell types the methylation state of these CpGs was associated with lower in vivo measures of brain 5-HT synthesis in the left and right lateral OBFC (N = 20 where lower 5-HT synthesis in C-LHPA group was observed. Furthermore, in vitro methylation of the SLC6A4 promoter in a luciferase reporter construct suppresses its transcriptional activity supporting a functional role of DNA methylation in SLC6A4 promoter regulation. These findings indicate that state of SLC6A4 promoter methylation is altered in peripheral white blood cells of individuals with physical aggression during childhood. This supports the relevance of peripheral DNA methylation for brain function and suggests that peripheral SLC6A4 DNA methylation could be a marker of central 5-HT function.

  16. Systematic evaluation and optimization of modification reactions of oligonucleotides with amines and carboxylic acids for the synthesis of DNA-encoded chemical libraries.

    Science.gov (United States)

    Franzini, Raphael M; Samain, Florent; Abd Elrahman, Maaly; Mikutis, Gediminas; Nauer, Angela; Zimmermann, Mauro; Scheuermann, Jörg; Hall, Jonathan; Neri, Dario

    2014-08-20

    DNA-encoded chemical libraries are collections of small molecules, attached to DNA fragments serving as identification barcodes, which can be screened against multiple protein targets, thus facilitating the drug discovery process. The preparation of large DNA-encoded chemical libraries crucially depends on the availability of robust synthetic methods, which enable the efficient conjugation to oligonucleotides of structurally diverse building blocks, sharing a common reactive group. Reactions of DNA derivatives with amines and/or carboxylic acids are particularly attractive for the synthesis of encoded libraries, in view of the very large number of building blocks that are commercially available. However, systematic studies on these reactions in the presence of DNA have not been reported so far. We first investigated conditions for the coupling of primary amines to oligonucleotides, using either a nucleophilic attack on chloroacetamide derivatives or a reductive amination on aldehyde-modified DNA. While both methods could be used for the production of secondary amines, the reductive amination approach was generally associated with higher yields and better purity. In a second endeavor, we optimized conditions for the coupling of a diverse set of 501 carboxylic acids to DNA derivatives, carrying primary and secondary amine functions. The coupling efficiency was generally higher for primary amines, compared to secondary amine substituents, but varied considerably depending on the structure of the acids and on the synthetic methods used. Optimal reaction conditions could be found for certain sets of compounds (with conversions >80%), but multiple reaction schemes are needed when assembling large libraries with highly diverse building blocks. The reactions and experimental conditions presented in this article should facilitate the synthesis of future DNA-encoded chemical libraries, while outlining the synthetic challenges that remain to be overcome.

  17. [DNA-intercalating compounds. Synthesis of several monomers and 1 dimer of phenanthridinium bearing aminoalkoylated chains].

    Science.gov (United States)

    Roques, B P; Barnet, J; Oberlin, R; Le Pecq, J B

    1976-11-08

    Several monomeric phenanthridinium salts quaternarized in the 5 position by different aminoalkyl chains are prepared from ammoniac or diamines and 3,8-biscarbethoxyamnio (3-bromo)-5 propyl 6-phenyl phenanthridinium bromide I. The reaction between one of the monomeric salts and I leads, after deprotection of the amino-groups to the dimer: (4,7-diaza decamethylene) bis 5,5' (3,8-diamino-6 phenyl phenanthridinium) tetrachloride. All these compounds show the fluorescence properties of the phenanthridinium ring and exhibit DNA affinity constant higher than ethidium bromide.

  18. DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Claudia Addamiano

    2016-08-01

    Full Text Available Construction and physico-chemical behavior of DNA three way junction (3WJ functionalized by protein-like residues (imidazole, alcohol and carboxylic acid at unpaired positions at the core is described. One 5′-C(S-propargyl-thymidine nucleotide was specifically incorporated on each strand to react through a post synthetic CuACC reaction with either protected imidazolyl-, hydroxyl- or carboxyl-azide. Structural impacts of 5′-C(S-functionalization were investigated to evaluate how 3WJ flexibility/stability is affected.

  19. Ribonucleotide incorporation by human DNA polymerase eta impacts translesion synthesis and RNase H2 activity

    OpenAIRE

    Mentegari, Elisa; Crespan, Emmanuele; Bavagnoli, Laura; Kissova, Miroslava; Bertoletti, Federica; Sabbioneda, Simone; Imhof, Ralph; Sturla, Shana J.; Nilforoushan, Arman; Hübscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2017-01-01

    Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing p...

  20. Ribonucleotide incorporation by human DNA polymerase ? impacts translesion synthesis and RNase H2 activity

    OpenAIRE

    Mentegari, Elisa; Crespan, Emmanuele; Bavagnoli, Laura; Kissova, Miroslava; Bertoletti, Federica; Sabbioneda, Simone; Imhof, Ralph; Sturla, Shana J.; Nilforoushan, Arman; H?bscher, Ulrich; van Loon, Barbara; Maga, Giovanni

    2016-01-01

    Abstract Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol ? can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2?-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol ? is also capable of synth...

  1. Interfacing click chemistry with automated oligonucleotide synthesis for the preparation of fluorescent DNA probes containing internal xanthene and cyanine dyes.

    Science.gov (United States)

    Astakhova, I Kira; Wengel, Jesper

    2013-01-14

    Double-labeled oligonucleotide probes containing fluorophores interacting by energy-transfer mechanisms are essential for modern bioanalysis, molecular diagnostics, and in vivo imaging techniques. Although bright xanthene and cyanine dyes are gaining increased prominence within these fields, little attention has thus far been paid to probes containing these dyes internally attached, a fact which is mainly due to the quite challenging synthesis of such oligonucleotide probes. Herein, by using 2'-O-propargyl uridine phosphoramidite and a series of xanthenes and cyanine azide derivatives, we have for the first time performed solid-phase copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click labeling during the automated phosphoramidite oligonucleotide synthesis followed by postsynthetic click reactions in solution. We demonstrate that our novel strategy is rapid and efficient for the preparation of novel oligonucleotide probes containing internally positioned xanthene and cyanine dye pairs and thus represents a significant step forward for the preparation of advanced fluorescent oligonucleotide probes. Furthermore, we demonstrate that the novel xanthene and cyanine labeled probes display unusual and very promising photophysical properties resulting from energy-transfer interactions between the fluorophores controlled by nucleic acid assembly. Potential benefits of using these novel fluorescent probes within, for example, molecular diagnostics and fluorescence microscopy include: Considerable Stokes shifts (40-110 nm), quenched fluorescence of single-stranded probes accompanied by up to 7.7-fold light-up effect of emission upon target DNA/RNA binding, remarkable sensitivity to single-nucleotide mismatches, generally high fluorescence brightness values (FB up to 26), and hence low limit of target detection values (LOD down to <5 nM). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enzymatic Synthesis, Amplification, and Application of DNA with a Functionalized Backbone.

    Science.gov (United States)

    Chen, Tingjian; Romesberg, Floyd E

    2017-11-06

    The ability to amplify DNA along with its unprecedented sequence control has led to its use for different applications, but all are limited by the properties available to natural nucleotides. We previously reported the evolution of polymerase SFM4-3, which better tolerates 2'-modified substrates. To explore the utility of SFM4-3, we now report the characterization of its recognition of substrates with 2'-azido, 2'-chloro, 2'-amino, or arabinose sugars. We find that SFM4-3 can efficiently synthesize polymers composed of these nucleotides, and most interestingly, that SFM4-3 can also PCR amplify these modified oligonucleotides. When combined with post-amplification modification, the latter allows for the exponential amplification of polymers that may be functionalized with desired moieties arrayed in a controlled fashion, the utility of which we demonstrate with extensive small molecule functionalization and the production and initial characterization of a novel DNA hydrogel. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Novel Pt(II) complexes containing pyrrole oxime; synthesis, characterization and DNA binding studies

    Science.gov (United States)

    Erdogan, Deniz Altunoz; Özalp-Yaman, Şeniz

    2014-05-01

    Since the discovery of anticancer activity and subsequent clinical success of cisplatin (cis-[PtCl2(NH3)2]), platinum-based compounds have since been widely synthesized and studied as potential chemotherapeutic agents. In this sense, three novel nuclease active Pt(II) complexes with general formula; [Pt(NH3)Cl(L)] (1), [Pt(L)2] (2), and K[PtCl2(L)] (3) in which L is 1-H-pyrrole-2-carbaldehyde oxime were synthesized. Characterization of complexes was performed by elemental analysis, FT-IR, 1H NMR and mass spectroscopy measurements. Interaction of complexes (1-3) with calf thymus deoxyribonucleic acid (ct-DNA) was investigated by using electrochemical, spectroelectrochemical methods and cleavage studies. The hyperchromic change in the electronic absorption spectrum of the Pt(II) complexes indicates an electrostatic interaction between the complexes and ct-DNA. Binding constant values between 4.42 × 103 and 5.09 × 103 M-1 and binding side size values between 2 and 3 base pairs were determined from cyclic voltammetry (CV) and differential pulse voltammetry (DPV) studies.

  4. Synthesis, structural characterization, cytotoxic properties and DNA binding of a dinuclear copper(II) complex.

    Science.gov (United States)

    Ferreira, B J M Leite; Brandão, P; Meireles, M; Martel, Fátima; Correia-Branco, Ana; Fernandes, Diana M; Santos, T M; Félix, V

    2016-08-01

    In this study a novel dinuclear copper(II) complex with adenine and phenanthroline has been synthesized and its structure determined by single crystal X-ray diffraction. In the dinuclear complex [Cu₂(μ-adenine)₂(phen)₂(H2O)2](NO3)4·0.5H2O (phen=1,10-phenanthroline) (1) the two Cu(II) centres exhibit a distorted square pyramidal coordination geometry linked by two nitrogen donors from adenine bridges leading to a Cu-Cu distance of 3.242(3)Å. Intramolecular and intermolecular π⋯π interactions as well as an H-bonding network were observed. The antitumor capacity of the complex has been tested in vitro against human cancer cell lines, cervical carcinoma (HeLa) and colorectal adenocarcinoma (Caco-2), by metabolic tests, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide as reagent. The complex 1 has remarkable low IC50 values of 0.87±0.06μM (HeLa) and 0.44±0.06μM (Caco-2), when compared with values for cisplatin against the same cell lines. The interaction of complex 1 with calf thymus DNA (CT DNA) was further investigated by absorption and fluorescence spectroscopic methods. A binding constant of 5.09×10(5)M(-1) was obtained from UV-vis absorption studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Polyethyleneimine anchored copper(II) complexes: synthesis, characterization, in vitro DNA binding studies and cytotoxicity studies.

    Science.gov (United States)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Akbarsha, Mohammad Abdulkader

    2015-01-01

    The water soluble polyethyleneimine-copper(II) complexes, [Cu(phen)(L-tyr)BPEI]ClO4 (where phen=1,10-phenanthroline, L-tyr=L-tyrosine and BPEI=branched polyethyleneimine) with various degree of copper(II) complex units in the polymer chain were synthesized and characterized by elemental analysis and electronic, FT-IR, EPR spectroscopic techniques. The binding of these complexes with CT-DNA was studied using UV-visible absorption titration, thermal denaturation, emission, circular dichroism spectroscopy and cyclic voltammetric methods. The changes observed in the physicochemcial properties indicated that the binding between the polymer-copper complexes and DNA was mostly through electrostatic mode of binding. Among these complexes, the polymer-copper(II) complex with the highest degrees of copper(II) complex units (higher degrees of coordination) showed higher binding constant than those with lower copper(II) complex units (lower degrees of coordination) complexes. The complex with the highest number of metal centre bound strongly due to the cooperative binding effect. Therefore, anticancer study was carried out using this complex. The cytotoxic activity for this complex on MCF-7 breast cancer cell line was determined adopting MTT assay, acridine orange/ethidium bromide (AO/EB) staining and comet assay techniques, which revealed that the cells were committed to specific mode of cell death either apoptosis or necrosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome.

    Science.gov (United States)

    De Nicola, Beatrice; Lech, Christopher J; Heddi, Brahim; Regmi, Sagar; Frasson, Ilaria; Perrone, Rosalba; Richter, Sara N; Phan, Anh Tuân

    2016-07-27

    The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones.

    Science.gov (United States)

    Dambrot, Cheryl; Buermans, Henk P J; Varga, Eszter; Kosmidis, Georgios; Langenberg, Karin; Casini, Simona; Elliott, David A; Dinnyes, Andras; Atsma, Douwe E; Mummery, Christine L; Braam, Stefan R; Davis, Richard P

    2014-10-01

    Recent methodological advances have improved the ease and efficiency of generating human induced pluripotent stem cells (hiPSCs), but this now typically results in a greater number of hiPSC clones being derived than can be wholly characterized. It is therefore imperative that methods are developed which facilitate rapid selection of hiPSC clones most suited for the downstream research aims. Here we describe a combination of procedures enabling the simultaneous screening of multiple clones to determine their genomic integrity as well as their cardiac differentiation potential within two weeks of the putative reprogrammed colonies initially appearing. By coupling splinkerette-PCR with Ion Torrent sequencing, we could ascertain the number and map the proviral integration sites in lentiviral-reprogrammed hiPSCs. In parallel, we developed an effective cardiac differentiation protocol that generated functional cardiomyocytes within 10 days without requiring line-specific optimization for any of the six independent human pluripotent stem cell lines tested. Finally, to demonstrate the scalable potential of these procedures, we picked 20 nascent iPSC clones and performed these independent assays concurrently. Before the clones required passaging, we were able to identify clones with a single integrated copy of the reprogramming vector and robust cardiac differentiation potential for further analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  9. Corrigendum to "Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate" [J. Mol. Struct. 1093 (2015) 135-143

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2017-04-01

    The authors regret to inform that Scheme 1 in the article titled 'Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate' in vol. 1093 of the Journal of Molecular Structure is incorrect. The corrected scheme is as shown in this correction. This is purely a copy error. The error does not affect the conclusion in paper. The authors would like to apologize for any inconvenience caused.

  10. Proviral load and the balance of serum cytokines in HTLV-1-asymptomatic infection and in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).

    Science.gov (United States)

    Starling, Ana Lúcia Borges; Martins-Filho, Olindo Assis; Lambertucci, José Roberto; Labanca, Ludimila; de Souza Pereira, Silvio Roberto; Teixeira-Carvalho, Andréa; Martins, Marina Lobato; Ribas, João Gabriel; Carneiro-Proietti, Anna Bárbara F; Gonçalves, Denise Utsch

    2013-01-01

    This study compared the proviral load and the plasma cytokine profiles (interleukin-IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ) in 87 HTLV-1-infected individuals, including 28 with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), 32 with possible pHAM/TSP and 27 asymptomatic carriers (AC). The control group was composed by 21 HTLV-1-seronegative individuals. Our finding demonstrated that HAM/TSP group presented higher proviral load as compared to all other HTLV-1 groups (pTSP group showed higher serum concentration of IL-6 (p=0.0009) as compared to all other groups. Moreover, higher serum concentration of IFN-γ (p=0.0118) and IL-4 (p=0.0166) were observed in HAM/TSP group as compared to the healthy controls. Additionally, the HAM/TSP group also showed higher serum concentration of TNF-α (p=0.0239) and IFN-γ (p=0.0118) as compared to AC. No differences in the serum concentration of IL-2 and IL-10 were observed among the groups. The analysis of cytokine balance demonstrated that HAM/TSP presented higher pro-inflammatory profile with enhanced IFN-γ/IL-10 and IFN-γ/IL-4 ratio as compared to AC and pHAM/TSP. Further analysis pointed out to a positive correlation between the IFN-γ response and the proviral load in AC. Conversely, a negative association between TNF-α and IL-2 with the proviral load was the hallmark of HAM/TSP group. These findings suggested that the proviral load and the pro-inflammatory cytokine profile may be independent events in the peripheral blood of HAM/TSP individuals. The knowledge about the existence of individual virological/immunological behavior upon HTLV-1 infection, may guide to the establishment of more effective therapeutic interventions. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Organometallic DNA-B12Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    Science.gov (United States)

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ruthenium(II) complexes containing quinone based ligands: Synthesis, characterization, catalytic applications and DNA interaction

    Science.gov (United States)

    Anitha, P.; Manikandan, R.; Endo, A.; Hashimoto, T.; Viswanathamurthi, P.

    2012-12-01

    1,2-Naphthaquinone reacts with amines such as semicarbazide, isonicotinylhydrazide and thiosemicarbazide in high yield procedure with the formation of tridentate ligands HLn (n = 1-3). By reaction of ruthenium(II) starting complexes and quinone based ligands HLn (n = 1-3), a series of ruthenium complexes were synthesized and characterized by elemental and spectroscopic methods (FT-IR, electronic, 1H, 13C, 31P NMR and ESI-MS). The ligands were coordinated to ruthenium through quinone oxygen, imine nitrogen and enolate oxygen/thiolato sulfur. On the basis of spectral studies an octahedral geometry may be assigned for all the complexes. Further, the catalytic oxidation of primary, secondary alcohol and transfer hydrogenation of ketone was carried out. The DNA cleavage efficiency of new complexes has also been tested.

  13. Synthesis, characterization, DNA interaction and potential applications of gold nanoparticles functionalized with Acridine Orange fluorophores.

    Science.gov (United States)

    Biver, Tarita; Eltugral, Nurettin; Pucci, Andrea; Ruggeri, Giacomo; Schena, Alberto; Secco, Fernando; Venturini, Marcella

    2011-04-28

    Two new water-soluble gold nanoparticles (AO-TEG-Au and AO-PEG-Au NPs) are prepared and characterized. They are stabilized by thioalkylated oligoethylene glycols and functionalized with fluorescent Acridine Orange (AO) derivatives. Despite the different core sizes (11.8 and 3.9 nm respectively) and shell composition, they are both well dispersed and are stable in water, even if some self-aggregation is observed in the case of AO-TEG-Au NPs. However, AO-PEG-Au NPs show much lower emission efficiency with respect to AO-TEG-Au NPs. Spectrophotometric and spectrofluorometric experiments indicate that both types of nanoparticle are able to bind to calf thymus DNA, either by external binding or partial intercalation. Preliminary FACS flow cytometry tests seem to indicate that the AO-TEG-Au nanoparticle is able to cross the cell membrane where it is absorbed by Chinese hamster ovary (CHO) cells at the picomolar concentration level.

  14. Synthesis, antimicrobial, DNA cleavage and antioxidant activities of tricyclic sultams derived from saccharin.

    Science.gov (United States)

    Elghamry, Ibrahim; Youssef, Magdy M; Al-Omair, Mohammed A; Elsawy, Hany

    2017-10-20

    Two series of fused tricyclic sultams (carboxylates, 3a, b and 5a, f, g and anilides 5b-e) were synthesized from saccharin and their chemical structures were confirmed by spectroscopic tools. Then, their antibacterial activities and MIC were evaluated against two strains of gram positive and gram-negative bacteria. The MIC values of the tested compounds are in the of range 8-33 μg/ml. In addition, their DNA cleavage ability, binding affinity and their anticancer activities against hepatic cancer cell were tested. And their antioxidant activities were also measured. Four carboxylate derivatives (3a, 5a, 5f and 5g) and one anilide (5d) of the tested compounds proved to be the highest activity all over the study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Synthesis, Singlet Oxygen Photogeneration and DNA Photocleavage of Porphyrins with Nitrogen Heterocycle Tails

    Directory of Open Access Journals (Sweden)

    Xiu-Lan Zhang

    2011-04-01

    Full Text Available Eight novel compounds were prepared by reaction of 5-(bromo- propoxyphenyl-10,15,20-triphenylporphyrin with oxazole thiols, 1,3,4-oxadiazole thiols and 1,3,4-thiadiazole thiols, and their structures confirmed by UV-vis, IR, 1H-NMR, MS and elemental analysis. The assessment of indirectly measured 1O2 production rates against 5,10,15,20-tetraphenyl porphyrin (H2TPP were described and the relative singlet oxygen production yields were:porphyrin 5 > porphyrins 1, 3, 4, 6-8, H2TPP > porphyrin 2. Porphyrin 4 and porphyrin 7 showed substantial photocleavage activities toward DNA, with over 75% cleavage observed at 40 µM. It suggested that these those porphyrins with nitrogen heterocycle tails are potential photosensitive agents.

  16. Synthesis, crystal structure and electrochemical and DNA binding studies of oxygen bridged-copper(II) carboxylate

    Science.gov (United States)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Muhammad, Niaz; Shah, Naseer Ali; Sohail, Manzar; Pandarinathan, Vedapriya

    2015-08-01

    A new binuclear O-bridged Cu(II) complex with 4-chlorophenyl acetate and 2,2‧-bipyridine has been synthesized and characterized using FT-IR, powder and single crystal XRD and electrochemical solution studies. The results revealed that the two penta-coordinated Cu(II) centers are linked by two carboxylate ligands in end-on bonding fashion. The coordination geometry is slightly distorted square pyramidal (SP) with bridging oxygen atoms occupying the apical position and other ligands lying in the equatorial plane. The striking difference in Cu-O bond distance of the bridging oxygen atom in the complex may be responsible for the SP geometry of Cu(II) ion. The complex gave rise to metal centered irreversible electro-activity where one electron Cu(II)/Cu(III) oxidation process and a single step two electron Cu(II)/Cu(0) reduction process was observed. The redox processes were found predominantly adsorption controlled. The values of diffusion coefficient and heterogeneous rate constant for oxidation process were 6.98 × 10-7 cm2 s-1 and 4.60 × 10-5 cm s-1 while the corresponding values for reduction were 5.30 × 10-8 cm2 s-1 and 5.41 × 10-6 cm s-1, respectively. The formal potential and charge transfer coefficient were also calculated. The DNA-binding ability was explored through cyclic voltammetry and UV-Visible spectroscopy. Diminution in the value of Do for oxidation indicated the binding of the complex with DNA corresponding to Kb = 8.58 × 104 M-1. UV-Visible spectroscopy yielded ε = 49 L mol-1 cm-1 and Kb = 2.96 × 104 M-1. The data of both techniques support each other. The self-induced redox activation of the complex, as indicated by cyclic voltammetry heralds its potential applications in redox catalysis and anticancer activity.

  17. S-petasin and butterbur lactones dilate vessels through blockage of voltage gated calcium channels and block DNA synthesis.

    Science.gov (United States)

    Sheykhzade, Majid; Smajilovic, Sanela; Issa, Ali; Haunso, Stig; Christensen, Søren Brøgger; Tfelt-Hansen, Jacob

    2008-09-28

    Eremophilanlactones isolated from roots of Petasites hybridus (L.) G.M. et Sch. (Asteraceae) and S-petasin have vasodilatory effects with pD(2) -log (EC(50)) values of 6.01+/-0.08, 5.24+/-0.10, 4.74+/-0.13, and 5.43+/-0.06 for S-petasin, the (Z)-3-methylthioacrylic ester of 2beta-hydroxy-8betaH-7(11)-eremophilene-12,8-olide, the angelic ester of 2beta-hydroxy-8alphaH-7(11)-eremophilene-12,8-olide, and the angelic ester of 2beta-hydroxy-8betaH-7(11)-eremophilene-12,8-olide, respectively, in the mesenteric arteries. The pD(2) values were somewhat lower for all compounds in aortic segments. The vasodilation was caused by a blockage of the voltage gated calcium channels. S-petasin, (Z)-3-methylthioacrylic ester of 2beta-hydroxy-8betaH-7(11)-eremophilene-12,8-olide, and the angelic ester of 2beta-hydroxy-8alphaH-7(11)-eremophilene-12,8-olide displayed similar potencies in inhibiting DNA synthesis in cardiomyocytes and vascular smooth muscle cells.

  18. Prenatal diagnosis of ataxia-telangiectasia and Nijmegen Breakage Syndrome by the assay of radioresistant DNA synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kleijer, W.J.; Kraan, M. van der; Los, F.J. [Erasmus Univ., Rotterdam (Netherlands). Dept. of Clinical Genetics; Jaspers, N.G.J. [Erasmus Univ., Rotterdam (Netherlands). Lab. of Cell Biology and Genetics

    1994-12-01

    Prenatal diagnosis was performed in 16 pregnancies at risk of ataxia-telangiectasia (A-T) or Nijmegen Breakage Syndrome (NBS). Radioresistant DNA synthesis (RDS) was investigated in cultured chorionic villus (CV) cells and/or amniotic fluid (AF) cells. In four pregnancies, an affected foetus was diagnosed with increased RDS in cultured CV cells. In three of the four cases confirmation of the diagnosis was obtained by analysis of AF cells and/or skin fibroblasts from the foetus cultured after termination of the pregnancy; in the fourth case a fibroblast culture from the aborted foetus failed. In one case, only AF cells could be analysed in a late stage of pregnancy; pregnancy was terminated due to intermediate/equivocal results but the foetus fibroblasts showed normal RDS. Normal RDS was demonstrated in the other 11 pregnancies at 25% risk either by analysis of CB cells (nine cases) or of AF cells (two cases). In some cases the (normal) results on the CV cells were corroborated by subsequent analysis of Af cells. The results suggest that RDS analysis of CV cells allows reliable prenatal diagnosis of A-T/NBS. However, amniocentesis may be necessary to confirm normal results on CV cells if the foetus is female (because of the risk of maternal cell contamination) or in the rare case of equivocal results. (author).

  19. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines.

    Science.gov (United States)

    Kapoor, Puja; Fahmi, Nighat; Singh, R V

    2011-12-01

    The present work stems from our interest in the synthesis, characterization and biological evaluation of lanthanide(III) complexes of a class of coumarin based imines which have been prepared by the interaction of hydrated lanthanide(III) chloride with the sodium salts of 3-acetylcoumarin thiosemicarbazone (ACTSZH) and 3-acetylcoumarin semicarbazone (ACSZH) in 1:3 molar ratio using thermal as well as microwave method. Characterization of the ligands as well as the metal complexes have been carried out by elemental analysis, melting point determinations, molecular weight determinations, magnetic moment, molar conductance, IR, (1)H NMR, (13)C NMR, electronic, EPR, X-ray powder diffraction and mass spectral studies. Spectral studies confirm ligands to be monofunctional bidentate and octahedral environment around metal ions. The redox behavior of one of the synthesized metal complex was investigated by cyclic voltammetry. Further, free ligands and their metal complexes have been screened for their antimicrobial as well as DNA cleavage activity. The results of these findings have been presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Protein synthesis of eucaryotic cells could be decreased by antisense-DNA of the multi KH domain protein vigilin.

    Science.gov (United States)

    Schuh, Antje; Assmuth, Karen; Hilgendorf, Inken; Mueller, Peter K; Kruse, Charli

    2003-07-01

    Vigilin, a member of the KH protein family, is exceptional among these proteins as it contains 14 KH domains in consecutive order. Vigilin is present in the nucleus and the cytoplasm of all eucaryotic cells studied so far and has apparently high affinity to tRNA and mRNA. There is circumstantial evidence that vigilin expression parallels high translational activity as demonstrated for pancreatic cells in vitro and in vivo as well as for carcinoma cell lines. On a molecular level we have recently demonstrated that vigilin promotes in vitro the export of tRNA from the nucleus to the translational machinery in the cytoplasm and may hence function as an intercompartimental conveyor. In the present study we show that exposure to a vigilin antisense oligo DNA (VAOD) expectedly resulted in a decrease of vigilin-expression, and was concomitant to lower amylase- and trypsin synthesis in freshly isolated pancreatic cells. In addition, carcinoma cells reacted with an increased mortality under exposure to VAOD giving further support for the notion that vigilin participates in cellular life-sustaining processes such as protein translation.

  1. Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops.

    Science.gov (United States)

    Liu, Jie; Ede, Christopher; Wright, William D; Gore, Steven K; Jenkins, Shirin S; Freudenthal, Bret D; Todd Washington, M; Veaute, Xavier; Heyer, Wolf-Dietrich

    2017-05-23

    Synthesis-dependent strand annealing (SDSA) is the preferred mode of homologous recombination in somatic cells leading to an obligatory non-crossover outcome, thus avoiding the potential for chromosomal rearrangements and loss of heterozygosity. Genetic analysis identified the Srs2 helicase as a prime candidate to promote SDSA. Here, we demonstrate that Srs2 disrupts D-loops in an ATP-dependent fashion and with a distinct polarity. Specifically, we partly reconstitute the SDSA pathway using Rad51, Rad54, RPA, RFC, DNA Polymerase δ with different forms of PCNA. Consistent with genetic data showing the requirement for SUMO and PCNA binding for the SDSA role of Srs2, Srs2 displays a slight but significant preference to disrupt extending D-loops over unextended D-loops when SUMOylated PCNA is present, compared to unmodified PCNA or monoubiquitinated PCNA. Our data establish a biochemical mechanism for the role of Srs2 in crossover suppression by promoting SDSA through disruption of extended D-loops.

  2. Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis.

    Science.gov (United States)

    Rausch, Jason W; Le Grice, Stuart F J

    2007-01-01

    Despite extensive study, the mechanism by which retroviral reverse transciptases (RTs) specifically utilize polypurine tract (PPT) RNA for initiation of plus-strand DNA synthesis remains unclear. Three sequence motifs within or adjacent to the purine-rich elements are highly conserved, namely, a rU:dA tract region immediately 5' to the PPT, an rA:dT-rich sequence constituting the upstream portion of the PPT and a downstream rG:dC tract. Using an in vitro HIV-1 model system, we determined that the former two elements define the 5' terminus of the (+)-strand primer, whereas the rG:dC tract serves as the primary determinant of initiation specificity. Subsequent analysis demonstrated that G-->A or A-->G substitution at PPT positions -2, -4 and +1 (relative to the scissile phosphate) substantially reduces (+)-strand priming. We explored this observation further using PPT substrates substituted with a variety of nucleoside analogs [inosine (I), purine riboside (PR), 2-aminopurine (2-AP), 2,6-diaminopurine (2,6-DAP), isoguanine (iG)], or one of the naturally occurring bases at these positions. Our results demonstrate that for PPT positions -2 or +1, substituting position 2 of the purine was an important determinant of cleavage specificity. In addition, cleavage specificity was greatly affected by substituting -4G with an analog containing a 6-NH2 moiety.

  3. Inhibition of HIV-1 infection by TNPO3 depletion is determined by capsid and detectable after viral cDNA enters the nucleus

    Directory of Open Access Journals (Sweden)

    De Iaco Alberto

    2011-12-01

    Full Text Available Abstract Background HIV-1 infects non-dividing cells. This implies that the virus traverses the nuclear pore before it integrates into chromosomal DNA. Recent studies demonstrated that TNPO3 is required for full infectivity of HIV-1. The fact that TNPO3 is a karyopherin suggests that it acts by directly promoting nuclear entry of HIV-1. Some studies support this hypothesis, while others have failed to do so. Additionally, some studies suggest that TNPO3 acts via HIV-1 Integrase (IN, and others indicate that it acts via capsid (CA. Results To shed light on the mechanism by which TNPO3 contributes to HIV-1 infection we engineered a panel of twenty-seven single-cycle HIV-1 vectors each bearing a different CA mutation and characterized them for the ability to transduce cells in which TNPO3 had been knocked down (KD. Fourteen CA mutants were relatively TNPO3-independent, as compared to wild-type (WT HIV-1. Two mutants were more TNPO3-dependent than the WT, and eleven mutants were actually inhibited by TNPO3. The efficiency of the synthesis of viral cDNA, 2-LTR circles, and proviral DNA was then assessed for WT HIV-1 and three select CA mutants. Controls included rescue of TNPO3 KD with non-targetable coding sequence, RT- and IN- mutant viruses, and pharmacologic inhibitors of RT and IN. TNPO3 KD blocked transduction and establishment of proviral DNA by wild-type HIV-1 with no significant effect on the level of 2-LTR circles. PCR results were confirmed by achieving TNPO3 KD using two different methodologies (lentiviral vector and siRNA oligonucleotide transfection; by challenging three different cell types; by using two different challenge viruses, each necessitating different sets of PCR primers; and by pseudotyping virus with VSV G or using HIV-1 Env. Conclusion TNPO3 promotes HIV-1 infectivity at a step in the virus life cycle that is detectable after the preintegration complex arrives in the nucleus and CA is the viral determinant for TNPO3

  4. Pseudodiploid genome organization AIDS full-length human immunodeficiency virus type 1 DNA synthesis.

    Science.gov (United States)

    King, Steven R; Duggal, Nisha K; Ndongmo, Clement B; Pacut, Crystal; Telesnitsky, Alice

    2008-03-01

    Template switching between copackaged human immunodeficiency virus type 1 (HIV-1) genomic RNAs is genetically silent when identical RNAs are copackaged but yields recombinants when virions contain two distinct RNAs. Sequencing has revealed that errors at retroviral recombination junctions are infrequent, suggesting that template switching is not intrinsically mutagenic. Here, we tested the hypothesis that template switching may instead contribute to replication fidelity. This hypothesis predicts that reverse transcription of a single-copy gene will be more error prone than replication in the presence of a second copy. To test this, HIV-1-based vectors containing both lacZ and the puromycin resistance marker were expressed either alone or with an excess of an "empty" vector lacking lacZ and puro. This resulted in virions with either RNA homodimers or haploid genomes with only a single lacZ-puro RNA. In untreated cells, lacZ inactivation rates suggested that haploid vector reverse transcription was slightly more error prone than that of homodimerized pseudodiploid vectors. Haploid reverse transcription was at least threefold more error prone than pseudodiploid-templated synthesis when slowed by hydroxyurea treatment or stopped prematurely with zidovudine. Individual products of one- and two-copy genes revealed both nucleotide substitutions and deletions, with deletions more frequent than point mutations among haploid genome products. Similar spectra of defective products were observed at early reverse transcription time points and among products of haploid virions. These results indicate that faithful, full-length reverse transcription products were underrepresented in the absence of a reserve of genetic information and suggest that template switching contributes to HIV-1 genomic integrity.

  5. Synthesis and structural characterization of stable branched DNA g-quadruplexes using the trebler phosphoramidite.

    Science.gov (United States)

    Ferreira, Rubén; Alvira, Margarita; Aviñó, Anna; Gómez-Pinto, Irene; González, Carlos; Gabelica, Valérie; Eritja, Ramon

    2012-04-01

    Guanine (G)-rich sequences can form a noncanonical four-stranded structure known as the G-quadruplex. G-quadruplex structures are interesting because of their potential biological properties and use in nanosciences. Here, we describe a method to prepare highly stable G-quadruplexes by linking four G-rich DNA strands to form a monomolecular G-quadruplex. In this method, one strand is synthesized first, and then a trebler molecule is added to simultaneously assemble the remaining three strands. This approach allows the introduction of specific modifications in only one of the strands. As a proof of concept, we prepared a quadruplex where one of the chains includes a change in polarity. A hybrid quadruplex is observed in ammonium acetate solutions, whereas in the presence of sodium or potassium, a parallel G-quadruplex structure is formed. In addition to the expected monomolecular quadruplexes, we observed the presence of dimeric G-quadruplex structures. We also applied the method to prepare G-quadruplexes containing a single 8-aminoguanine substitution and found that this single base stabilizes the G-quadruplex structure when located at an internal position.

  6. Inhibition of HIV-1 reverse transcriptase-catalyzed synthesis by intercalated DNA Benzo[a]Pyrene 7,8-Dihydrodiol-9,10-Epoxide adducts.

    Directory of Open Access Journals (Sweden)

    Parvathi Chary

    Full Text Available To aid in the characterization of the relationship of structure and function for human immunodeficiency virus type-1 reverse transcriptase (HIV-1 RT, this investigation utilized DNAs containing benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE-modified primers and templates as a probe of the architecture of this complex. BPDE lesions that differed in their stereochemistry around the C10 position were covalently linked to N (6-adenine and positioned in either the primer or template strand of a duplex template-primer. HIV-1 RT exhibited a stereoisomer-specific and strand-specific difference in replication when the BPDE-lesion was placed in the template versus the primer strand. When the C10 R-BPDE adduct was positioned in the primer strand in duplex DNA, 5 nucleotides from the 3΄ end of the primer terminus, HIV-1 RT could not fully replicate the template, producing truncated products; this block to further synthesis did not affect rates of dissociation or DNA binding affinity. Additionally, when the adducts were in the same relative position, but located in the template strand, similar truncated products were observed with both the C10 R and C10 S BPDE adducts. These data suggest that the presence of covalently-linked intercalative DNA adducts distant from the active site can lead to termination of DNA synthesis catalyzed by HIV-1 RT.

  7. Eco-sustainable synthesis and biological evaluation of 2-phenyl 1,3-benzodioxole derivatives as anticancer, DNA binding and antibacterial agents

    Directory of Open Access Journals (Sweden)

    Sayan Dutta Gupta

    2016-11-01

    Full Text Available The current research and development scenario in medicinal chemistry demands small molecules synthesized in a simple, fast and effective way with enhanced activity and fewer side effects than the existing ones. Therefore, one-pot, microwave assisted green and efficient synthesis of a series of derivatives belonging to 2-phenyl 1,3-benzodioxole (1a–14a and 2-phenyl 1,3-benzodioxole-4-ol (1b–14b class were carried out and subsequently investigated for their anticancer, antibacterial and DNA binding potential. Compound 3c proved to be the most active one among the screened derivatives possessing anticancer and antibacterial potency greater than the standard reference compound (cisplatin and cinoxacin for anticancer and antibacterial activity, respectively. The most active compound in terms of DNA binding capacity was found to be 5b. A rewarding feature of the work is a facile, convenient, eco friendly one step synthesis of compounds demonstrating attenuated activity against cancer and bacterial cell with an inherent potential of binding to DNA. Subsequently, a hit molecule for further anticancer, antibacterial (compound 3c and DNA binding studies (compound 5b was also identified.

  8. Detecting DNA synthesis of neointimal formation after catheter balloon injury in GK and in Wistar rats: using 5-ethynyl-2'-deoxyuridine

    Directory of Open Access Journals (Sweden)

    Guo Jingsheng

    2012-12-01

    Full Text Available Abstract Background Neointimal formation plays an important role in the pathogenesis of coronary restenosis after percutaneous coronary intervention (PCI, especially in patients with diabetes mellitus. Recently, some studies have shown that 5-ethynyl-2'-deoxyuridine (EdU incorporation can serve as a novel alternative to the 5-bromo-2'-deoxyuridine (BrdU antibody detection method for detection of DNA synthesis in regenerating avian cochlea, chick embryo and the adult nervous system. However, few studies have been performed to assess the suitability of EdU for detecting DNA synthesis in vascular neointima. Methods The carotid artery balloon injury model was established in Goto-Kakizaki (GK and Wistar rats. A Cell-LightTM EdU Kit was used to detect EdU-labeled cell nuclei of common carotid arteries at day 7 after catheter balloon injury. Different methods of injecting EdU were tested. The protein levels of proliferating cell nuclear antigen (PCNA and p-Akt (Ser473, as well as the mRNA levels of PCNA were evaluated by Western blotting and quantitative real-time PCR (qRT-PCR, respectively. Immunohistochemical staining was also employed to visualize PCNA-positive cells. Results At day 7 after catheter balloon injury, far more EdU-positive and PCNA-positive cells were observed in GK rats. When comparing groups that received different EdU doses, it was found that the percentage of EdU-positive cells at a dose of 100 mg/kg body weight was than at doses of 25 mg/kg and 50 mg/kg. The number of positive cells was significantly higher in the repeated injection group compared to the single injection group. Further, after balloon injury DNA synthesis in GK rats was more notable than in Wistar rats. Neointimal formation in GK rats was more obvious than in Wistar rats. The protein levels of PCNA and p-Akt (Ser473 and the mRNA levels of PCNA were increased in injured rats as compared to uninjured rats, and were significantly higher in GK rats than in Wistar rats

  9. Synthesis, in vitro antitumor evaluation and DNA-binding study of novel tetrahydroquinolines and some derived tricyclic and tetracyclic ring systems.

    Science.gov (United States)

    Faidallah, Hassan M; Rostom, Sherif A F

    2013-05-01

    The synthesis of some new tetrahydroquinolines, tetrahydropyrimido[4,5-b]quinolines, and tetrahydropentaazacyclopenta[a]anthracenes structurally related to some DNA intercalators is described. Fifteen compounds were evaluated for their antitumor activity by the National Cancer Institute (NCI), in vitro disease oriented antitumor screening. The most active tricyclic pyrimido[4,5-b]quinolines 3b, 6b, 7b and 8b were further subjected to DNA-binding investigation in an attempt to rationalize their activity. Compound 8b proved to be the most active member in this study as evidenced from its remarkable growth inhibitory potential against some individual cell lines, and its broad spectrum of antitumor activity (GI50, TGI and LC50 values 46.9, 85.3 and 97.4, respectively), together with a good DNA-binding affinity. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  10. Synthesis of N-Methyl-2-trichloroacetylpyrrole-A Key Building Block in Peptides That Bind DNA: Micro-, Semimicro-, and Macro-Scale Organic Lab Experiments

    Science.gov (United States)

    Mosher, Michael D.; Verner, Erik J.; Oliver, Bradford J.; Hamlin, Daniel; Vietri, Nicholas; Palmer, Robert B.; Arnold, Tyrone V.; Natale, Nicholas R.

    1996-11-01

    The search for more efficient anticancer and antiviral agents has included the preparation and testing of a wide variety of molecules that bind DNA. Of these, particular attention has been devoted to the synthesis of analogues of DNA minor-groove binders such as netropsin and distamycin. These compounds have been shown to exhibit biological activity through their strong interactions with the DNA minor groove, and a relationship between their structure and biological activity has emerged (1). The repeating pyrrole unit contained in these compounds can be prepared from N-methylpyrrole via a noncatalyzed Friedel-Crafts acylation. The reaction has been adapted for use in the undergraduate organic chemistry laboratory on three different scales: microscale, semimicroscale, and macroscale.

  11. Restriction patterns of model DNA treated with 5,6-dihydroxyindole, a potent cytotoxic intermediate of melanin synthesis: effect of u. v. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.; Bonfigli, A.; Zarivi, O.; Manilla, A.; Cimini, A.M.; Arcadi, A.

    1987-01-01

    The interaction of 5,6-dihydroxyindole, a putative cytotoxic intermediate of melanin synthesis, with model lambda phage DNA has been investigated by using type II restriction endonucleases and CsCl buoyant density centrifugation. As evidenced by agarose gel electrophoresis and density gradient profiles, the 5,6-dihydroxyindole or u.v. treated DNAs, restricted or not, are modified. U.v. irradiation enhances 5,6-dihydroxyindole binding to DNA, but no sequence specific binding was observed. The action of L-3,4-dihydroxyphenylalanine on the restriction patterns of lambda phage DNA was also investigated and the effect appeared smaller, by qualitative evaluation, than that produced by 5,6-dihydroxyindole.

  12. The role of HERC2 and RNF8 ubiquitin E3 ligases in the promotion of translesion DNA synthesis in the chicken DT40 cell line

    DEFF Research Database (Denmark)

    Mohiuddin, Mohammed; Kobayashi, Shunsuke; Keka, Islam Shamima

    2016-01-01

    , the HERC2(-/-) and RNF8(-/-) cells and HERC2(-/-)/RNF8(-/-) double mutant cells exhibit a significant reduction in the rate of immunoglobulin (Ig) hypermutation, compared to wild-type cells. Further, the HERC2(-/-) and RNF8(-/-) mutants exhibit defective maintenance of replication fork progression...... immediately after exposure to UV while retaining proficient post-replicative gap filling. These mutants are both proficient in mono-ubiquitination of PCNA. Taken together, these results suggest that HERC2 and RNF8 promote TLS past abasic sites and UV-lesions at or very close to stalled replication forks.......The replicative DNA polymerases are generally blocked by template DNA damage. The resulting replication arrest can be released by one of two post-replication repair (PRR) pathways, translesion DNA synthesis (TLS) and template switching by homologous recombination (HR). The HERC2 ubiquitin ligase...

  13. Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    Science.gov (United States)

    Hanning, Jennifer E; Groves, Ian J; Pett, Mark R; Coleman, Nicholas

    2013-05-21

    Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.

  14. Genetic modelling of PIM proteins in cancer: proviral tagging, cooperation with oncogenes, tumor suppressor genes and carcinogens.

    Directory of Open Access Journals (Sweden)

    Enara eAguirre

    2014-05-01

    Full Text Available The PIM proteins, which were initially discovered as proviral insertion sites in Moloney murine leukemia virus infection, are a family of highly homologous serine/threonine kinases that have been reported to be overexpressed in hematological malignancies and solid tumors. The PIM proteins have also been associated with metastasis and overall treatment responses and implicated in the regulation of apoptosis, metabolism, the cell cycle, and homing and migration, which makes these proteins interesting targets for anticancer drug discovery. The use of retroviral insertional mutagenesis and refined approaches such as complementation tagging has allowed the identification of myc, pim and a third group of genes (including bmi1 and gfi1 as complementing genes in lymphomagenesis. Moreover, mouse modeling of human cancer has provided an understanding of the molecular pathways that are involved in tumor initiation and progression at the physiological level. In particular, genetically modified mice have allowed researchers to further elucidate the role of each of the Pim isoforms in various tumor types. PIM kinases have been identified as weak oncogenes because experimental overexpression in lymphoid tissue, prostate and liver induces tumors at a relatively low incidence and with a long latency. However, very strong synergistic tumorigenicity between Pim1/2 and c-Myc and other oncogenes has been observed in lymphoid tissues. Mouse models have also been used to study whether the inhibition of specific PIM isoforms is required to prevent carcinogen-induced sarcomas, indicating that the absence of Pim2 and Pim3 greatly reduces sarcoma growth and bone invasion; the extent of this effect is similar to that observed in the absence of all 3 isoforms. This review will summarize some of the animal models that have been used to understand the isoform-specific contribution of PIM kinases to tumorigenesis.

  15. Evaluation of the role of TAX, HBZ, and HTLV-1 proviral load on the survival of ATLL patients.

    Science.gov (United States)

    Akbarin, Mohammad Mehdi; Shirdel, Abbas; Bari, Alireza; Mohaddes, Seyedeh Tahereh; Rafatpanah, Houshang; Karimani, Ehsan Ghayour; Etminani, Kobra; Golabpour, Amin; Torshizi, Reza

    2017-06-01

    Adult T-cell leukemia/lymphoma (ATLL) is an aggressive malignancy with very poor prognosis and short survival, caused by the human T-lymphotropic virus type-1 (HTLV-1). The HTLV-1 biomarkers trans-activator x (TAX) and HTLV-1 basic leucine zipper factor (HBZ) are main oncogenes and life-threatening elements. This study aimed to assess the role of the TAX and HBZ genes and HTLV-1 proviral load (PVL) in the survival of patients with ATLL. Forty-three HTLV-1-infected individuals, including 18 asymptomatic carriers (AC) and 25 ATLL patients (ATLL), were evaluated between 2011 and 2015. The mRNA expression of TAX and HBZ and the HTLV-1 PVL were measured by quantitative PCR. Significant differences in the mean expression levels of TAX and HBZ were observed between the two study groups (ATLL and AC, P=0.014 and P=0.000, respectively). In addition, the ATLL group showed a significantly higher PVL than AC (P=0.000). There was a significant negative relationship between PVL and survival among all study groups (P=0.047). The HTLV-1 PVL and expression of TAX and HBZ were higher in the ATLL group than in the AC group. Moreover, a higher PVL was associated with shorter survival time among all ATLL subjects. Therefore, measurement of PVL, TAX, and HBZ may be beneficial for monitoring and predicting HTLV-1-infection outcomes, and PVL may be useful for prognosis assessment of ATLL patients. This research demonstrates the possible correlation between these virological markers and survival in ATLL patients.

  16. The FAS-670 AA genotype is associated with high proviral load in peruvian HAM/TSP patients.

    Science.gov (United States)

    Rosado, Jason; Morales, Sandra; López, Giovanni; Clark, Daniel; Verdonck, Kristien; Gotuzzo, Eduardo; Van Camp, Guy; Talledo, Michael

    2017-04-01

    Human T-lymphotropic virus 1 (HTLV-1) is the etiologic agent of the HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Apoptosis is a mechanism of defense elicited by many triggers, including cross-linking of the FAS receptor expressed in viruses-infected cells, and the ligand FASL presented by T-cytotoxic cells. As HAM/TSP has been associated with high levels of proviral load (PVL), we hypothesized that certain genotypes of single-nucleotide polymorphisms (SNPs) associated with a decreased protein expression of FAS and FASL could be risk factors for this disease. Three SNPs: FAS-670A/G (rs1800682), FAS-1377G/A (rs2234767), and FASL-844C/T (rs763110) were analyzed in 73 HAM/TSP patients and 143 HTLV-1 asymptomatic carriers. Ancestry informative markers were used to adjust for ethnicity through a principal component analysis. Gender, age, PVL, and the first three principal components were used as covariates. The FAS/FASL genotype distribution was not associated with HAM/TSP presence (P-> 0.05). The FAS-670 AA genotype was associated with high PVL in comparison to FAS-670 GG in HAM/TSP patients (P = 0.015), while in asymptomatic carriers low levels of PVL were observed (P > 0.05). Our findings suggest that rs1800682, rs2234767, and rs763110 genotypes are not associated with the presence of HAM/TSP, but that the FAS-670 AA genotype can promote higher PVL values in HAM/TSP patients. J. Med. Virol. 89:726-731, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Subnuclear localization, rates and effectiveness of UVC-induced unscheduled DNA synthesis visualized by fluorescence widefield, confocal and super-resolution microscopy.

    Science.gov (United States)

    Pierzyńska-Mach, Agnieszka; Szczurek, Aleksander; Cella Zanacchi, Francesca; Pennacchietti, Francesca; Drukała, Justyna; Diaspro, Alberto; Cremer, Christoph; Darzynkiewicz, Zbigniew; Dobrucki, Jurek W

    2016-01-01

    Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2'-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor. EdU incorporation occurs evenly throughout chromatin, as opposed to just a few small and large repair foci detected by BrdU. We attribute this difference to the fact that BrdU antibody is of much larger size than EdU, and its accessibility to the incorporated precursor requires the presence of denatured sections of DNA. It appears that under the standard conditions of immunocytochemical detection of BrdU only fragments of DNA of various length are being denatured. We argue that, compared with BrdU, the UDS pattern visualized by EdU constitutes a more faithful representation of sub-nuclear distribution of the final stage of nucleotide excision repair induced by UVC. Using the optimized integrated EdU detection procedure we also measured the relative amount of the DNA precursor incorporated by cells during UDS following exposure to various doses of UVC. Also described is the high degree of heterogeneity in terms of the UVC-induced EdU incorporation per cell, presumably reflecting various DNA repair efficiencies or differences in the level of endogenous dT competing with EdU within a population of normal human fibroblasts.

  18. Intramolecular telomeric G-quadruplexes dramatically inhibit DNA synthesis by replicative and translesion polymerases, revealing their potential to lead to genetic change.

    Directory of Open Access Journals (Sweden)

    Deanna N Edwards

    Full Text Available Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication. Coincidentally, these bulky structures when present in the DNA template might also hinder the action of DNA polymerases. In this study, single-stranded telomeric templates with the potential to form G-quadruplexes were examined for their effects on a variety of replicative and translesion DNA polymerases from humans and lower organisms. Our results demonstrate that single-stranded templates containing four telomeric GGG runs fold into intramolecular G-quadruplex structures. These intramolecular G quadruplexes are somewhat dynamic in nature and stabilized by increasing KCl concentrations and decreasing temperatures. Furthermore, the presence of these intramolecular G-quadruplexes in the template dramatically inhibits DNA synthesis by various DNA polymerases, including the human polymerase δ employed during lagging strand replication of G-rich telomeric strands and several human translesion DNA polymerases potentially recruited to sites of replication blockage. Notably, misincorporation of nucleotides is observed when certain translesion polymerases are employed on substrates containing intramolecular G-quadruplexes, as is extension of the resulting mismatched base pairs upon dynamic unfolding of this secondary structure. These findings reveal the potential for blockage of DNA replication and genetic changes related to sequences capable of forming intramolecular G-quadruplexes.

  19. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  20. Induction of a cytoplasmic activator of DNA synthesis in lymphocytes is mediated through a membrane-associated protein kinase.

    Science.gov (United States)

    Autieri, M V; Fresa, K L; Coffman, F D; Katz, M E; Cohen, S

    1990-12-01

    We have shown previously that cytoplasmic extracts from actively dividing lymphoid cells are capable of inducing DNA synthesis in isolated nuclei. One of the factors involved in this activity, ADR, appears to be a greater than 90 kDa heat-labile protease. Cytoplasmic extracts prepared from nonproliferating lymphocytes express little to no ADR activity. However, ADR activity can be generated in these extracts by brief exposure to a membrane-enriched fraction of spontaneously proliferating, leukemic human T lymphoblastoid (MOLT-4) cells. This suggests that ADR activity is present in the resting cytoplasm in an inactive or precursor form. This in vitro generation of ADR activity can be inhibited in a dose-dependent manner by the isoquinolinesulfonamide derivative, H-7 (1-(5-isoquinoline-sulfonyl)-2-methylpiperazine dihydrochloride), an inhibitor of both cyclic adenosine monophosphate (cAMP)-dependent protein kinases and protein kinase C (PKC). However, more specific inhibitors of cAMP-dependent protein kinases, including N-[( 2-methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H8) and N-(2-gua-nidinoethyl)-5-isoquinolinesulfonamide (HA-1004), had little to no effect on the in vitro generation of ADR activity. Furthermore, membranes from MOLT-4 cells depleted of PKC by long-term exposure (24 h) to phorbol esters and calcium ionophores were unable to induce ADR activity in resting peripheral blood lymphocytes extracts. The results of these studies suggest 1) ADR activity is present in resting cell cytoplasm in an inactive or precursor form; and 2) ADR activity can be induced in this resting cytoplasm through a mechanism involving a membrane-associated protein kinase, possibly PKC. The ability of alkaline phosphatase to deplete the activity of preformed ADR suggests the possibility that ADR itself is phosphoprotein.

  1. Sequence and structural determinants required for priming of plus-strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract.

    Science.gov (United States)

    Powell, M D; Levin, J G

    1996-08-01

    At the 3' end of all retroviral genomes there is a short, highly conserved sequence known as the polypurine tract (PPT), which serves as the primer for plus-strand DNA synthesis. We have identified the determinants for in vitro priming by the human immunodeficiency virus type 1 (HIV-1) PPT. We show that when the PPT is removed and placed into different nucleotide contexts, new priming sites are produced at the precise 3' end of the PPT. In addition, we find that a hybrid consisting of a 15- or 20-nucleotide RNA primer annealed to a 35-nucleotide DNA template is competent for initiation of plus-strand synthesis with HIV-1 reverse transcriptase. Thus, no cis-acting elements appear to be required for priming activity. Changes at the 5' end of the PPT have no effect on primer function, whereas the identity of bases at the 3' end is crucial. A primer containing only the 6 G residues from the 3' end of the wild-type PPT sequence and 9 bases of random sequence at the 5' end functions like a wild-type PPT. A short hybrid having a similar helical structure but a primary sequence different from that of the PPT is cleaved imprecisely, resulting in initiation of synthesis at multiple sites; however, total primer extension is close to the wild-type level. We conclude that helical structure as well as the presence of particular bases at the 3' end of the PPT is essential for PPT function.

  2. Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus.

    Science.gov (United States)

    Lampson, B C; Inouye, M; Inouye, S

    1989-02-24

    msDNA is a peculiar molecule consisting of a branched RNA linked to single-stranded DNA via a 2',5' phosphodiester bond. A cell-free system, utilizing cells permeabilized with phenethyl alcohol, was established to study the synthesis of msDNA in M. xanthus. Permeablized cells labeled with [alpha-32P]dCTP in the presence of ddGTP, ddATP, or ddTTP produce a band that migrates at the same position as the full-sized msDNA in an polyacrylamide gel. However, when this band is treated with ribonuclease A prior to gel electrophoresis, it results in many different-sized bands. This indicates that during the labeling, intermediates are produced in which single-stranded DNAs of various lengths are associated with a compensatory length of RNA such that the total length for each intermediate is identical. These results provide evidence for the previously proposed model in which msDNA is synthesized by reverse transcriptase using a folded RNA precursor as a primer as well as a template. Furthermore, we found that there is a precise coupling mechanism of reverse transcriptase and ribonuclease H.

  3. A 28-fold increase in secretory protein synthesis is associated with DNA puff activity in the salivary gland of Bradysia hygida (Diptera, Sciaridae

    Directory of Open Access Journals (Sweden)

    de-Almeida J.C.

    1997-01-01

    Full Text Available When the first group of DNA puffs is active in the salivary gland regions S1 and S3 of Bradysia hygida larvae, there is a large increase in the production and secretion of new salivary proteins demonstrable by [3H]-Leu incorporation. The present study shows that protein separation by SDS-PAGE and detection by fluorography demonstrated that these polypeptides range in molecular mass from about 23 to 100 kDa. Furthermore, these proteins were synthesized mainly in the S1 and S3 salivary gland regions where the DNA puffs C7, C5, C4 and B10 are conspicuous, while in the S2 region protein synthesis was very low. Others have shown that the extent of amplification for DNA sequences that code for mRNA in the DNA puffs C4 and B10 was about 22 and 10 times, respectively. The present data for this group of DNA puffs are consistent with the proposition that gene amplification is necessary to provide some cells with additional gene copies for the production of massive amounts of proteins within a short period of time (Spradling AC and Mahowald AP (1980 Proceedings of the National Academy of Sciences, USA, 77: 1096-1100.

  4. Dynamic interaction between STLV-1 proviral load and T-cell response during chronic infection and after immunosuppression in non-human primates.

    Directory of Open Access Journals (Sweden)

    Sandrine Souquière

    Full Text Available We used mandrills (Mandrillus sphinx naturally infected with simian T-cell leukemia virus type 1 (STLV-1 as a model for evaluating the influence of natural STLV-1 infection on the dynamics and evolution of the immune system during chronic infection. Furthermore, in order to evaluate the role of the immune system in controlling the infection during latency, we induced immunosuppression in the infected monkeys. We first showed that the STLV-1 proviral load was higher in males than in females and increased significantly with the duration of infection: mandrills infected for 10-6 years had a significantly higher proviral load than those infected for 2-4 years. Curiously, this observation was associated with a clear reduction in CD4+ T-cell number with age. We also found that the percentage of CD4(+ T cells co-expressing the activation marker HLA-DR and the mean percentage of CD25(+ in CD4(+ and CD8(+ T cells were significantly higher in infected than in uninfected animals. Furthermore, the STLV-1 proviral load correlated positively with T-cell activation but not with the frequency of T cells secreting interferon gamma in response to Tax peptides. Lastly, we showed that, during immunosuppression in infected monkeys, the percentages of CD8(+ T cells expressing HLA-DR(+ and of CD4(+ T cells expressing the proliferation marker Ki67 decreased significantly, although the percentage of CD8(+ T cells expressing HLA-DR(+ and Ki67 increased significantly by the end of treatment. Interestingly, the proviral load increased significantly after immunosuppression in the monkey with the highest load. Our study demonstrates that mandrills naturally infected with STLV-1 could be a suitable model for studying the relations between host and virus. Further studies are needed to determine whether the different compartments of the immune response during infection induce the long latency by controlling viral replication over time. Such studies would provide important

  5. p15(PAF is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Chih-Ning Chang

    Full Text Available The p15(PAF/KIAA0101 protein is a proliferating cell nuclear antigen (PCNA-associated protein overexpressed in multiple types of cancer. Attenuation of p15(PAF expression leads to modifications in the DNA repair process, rendering cells more sensitive to ultraviolet-induced cell death. In this study, we identified that p15(PAF expression peaks during the S phase of the cell cycle. We observed that p15(PAF knockdown markedly inhibited cell proliferation, S-phase progression, and DNA synthesis. Depletion of p15(PAF resulted in p21 upregulation, especially chromatin-bound p21. We further identified that the p15(PAF promoter contains 3 E2F-binding motifs. Loss of Rb-mediated transcriptional repression resulted in upregulated p15(PAF expression. Binding of E2F4 and E2F6 to the p15(PAF promoter caused transcriptional repression. Overall, these results indicate that p15(PAF is tightly regulated by the Rb/E2F complex. Loss of Rb/E2F-mediated repression during the G1/S transition phase leads to p15(PAF upregulation, which facilitates DNA synthesis and S-phase progression.

  6. p15(PAF) is an Rb/E2F-regulated S-phase protein essential for DNA synthesis and cell cycle progression.

    Science.gov (United States)

    Chang, Chih-Ning; Feng, Mow-Jung; Chen, Yu-Ling; Yuan, Ray-Hwang; Jeng, Yung-Ming

    2013-01-01

    The p15(PAF)/KIAA0101 protein is a proliferating cell nuclear antigen (PCNA)-associated protein overexpressed in multiple types of cancer. Attenuation of p15(PAF) expression leads to modifications in the DNA repair process, rendering cells more sensitive to ultraviolet-induced cell death. In this study, we identified that p15(PAF) expression peaks during the S phase of the cell cycle. We observed that p15(PAF) knockdown markedly inhibited cell proliferation, S-phase progression, and DNA synthesis. Depletion of p15(PAF) resulted in p21 upregulation, especially chromatin-bound p21. We further identified that the p15(PAF) promoter contains 3 E2F-binding motifs. Loss of Rb-mediated transcriptional repression resulted in upregulated p15(PAF) expression. Binding of E2F4 and E2F6 to the p15(PAF) promoter caused transcriptional repression. Overall, these results indicate that p15(PAF) is tightly regulated by the Rb/E2F complex. Loss of Rb/E2F-mediated repression during the G1/S transition phase leads to p15(PAF) upregulation, which facilitates DNA synthesis and S-phase progression.

  7. [Mechanisms of targeted frameshift mutations--insertion formation under error-prone or SOS synthesis of DNA containing CIS-SYN cyncyclobutane thymine dimers].

    Science.gov (United States)

    Grebneva, E A

    2014-01-01

    Up to now the mechanism of formation of frameshift mutations caused by cyclobutane pyrimidine dimers has not been yet explained satisfactorily. Mechanisms of different mutations are usually considered in polymerase model. Here, the alternative polymerase-tautomer model of ultraviolet mutagenesis is developed. The mechanism of targeted insertion formation caused by cis-syn cyclobutane thymine dimers is proposed. Insertions are mutations when one or several DNA bases are inserted.Targeted insertions are mutations of a frameshift type--when one or severalnucleotides are inserted opposite damageswhich may stop synthesis of DNA. Targeted insertions are induced bycyclobutane pyrimidine dimmers. Ultraviolet irradiation may result in a change of tautomer state of DNA bases. A thymine base may form 5 rare tautomer forms that are stable if the base is a part of cyclobutane dimer. As it was shown by structural analysis, one rare tautomeric form of thymine forms hydrogen bonds with no one canonical DNA base. Therefore, under SOS or error-prone synthesis of DNA containing cis-syn cyclobutane thymine dimers with such rare tautomeric_form a specialize or modified DNA polymerase leaves a single nucleotide gap opposite the cis-syn cyclobutane thymine dimer. According to Streisinger model, if the DNA composition within this region is homogeneous, the end of the growing DNA strand can slip and form complementary pairs with a template nucleotide neighboring to the dimer of such type a loop is formed. Further elongation of the daughter strand leads to the appearance of targeted insertion in the daughter strand. Here, it is first shown that cis-syn cyclobutane thymine dimers with one or both bases in the specific tautomer conformation--opposite which it is impossible to insert a canonical base with a hydrogen bond formation--results in targeted insertions. Moreover, the model of forming targeted single--and several-base insertions is developed. The polymerase-tautomer model of

  8. Maleimide-Functionalized PEI600 Grafted Polyurethane: Synthesis, Nano-Complex Formation with DNA and Thiol-Conjugation of the Complexes for Dual DNA Transfection

    Directory of Open Access Journals (Sweden)

    Wei-Chih Hung

    2015-10-01

    Full Text Available A polyurethane (PU grafted with small molecular weight polyethylenimine (PEI600 was synthesized. This PU-PEI600 can assemble DNA via electrostatic interactions into nano-sized polymer/DNA complexes. The complexes exhibited great transfection efficiency in delivering DNA along with a reduced cell toxicity comparing to commercial PEI25k (Mw ~25,000. In order to establish a system for concurrently delivering two different DNA or RNA molecules for cell reprogramming (e.g., induced pluripotent stem cells or the necessity of multi-expression (e.g., double knock down, the PU-PEI600 was further functionalized with maleimide molecules. The novel PU-PEI600-maleimide would still effectively interact with assigned DNA and different functions of PU-PEI600-maleimide/DNA complexes were self-conjugated in presence of a dithiol molecule (1,6-hexanedithiol. In this study, two reporter genes (pEGFP-C2 and pLanRFP-N were used and evidence of green/red fluorescence co-expression in cells was observed. This article brings a new concept and a practical method for a plurality of different DNA molecules that are more efficient to be concurrently delivered and co-expressed. This method is very helpful in studying cellular multi-regulation or in the treatment of disease with multiple gene defects in vivo.

  9. AzaHx, a novel fluorescent, DNA minor groove and G·C recognition element: Synthesis and DNA binding properties of a p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (azaHx-PI) polyamide.

    Science.gov (United States)

    Satam, Vijay; Babu, Balaji; Patil, Pravin; Brien, Kimberly A; Olson, Kevin; Savagian, Mia; Lee, Megan; Mepham, Andrew; Jobe, Laura Beth; Bingham, John P; Pett, Luke; Wang, Shuo; Ferrara, Maddi; Bruce, Chrystal D; Wilson, W David; Lee, Moses; Hartley, John A; Kiakos, Konstantinos

    2015-09-01

    The design, synthesis, and DNA binding properties of azaHx-PI or p-anisyl-4-aza-benzimidazole-pyrrole-imidazole (5) are described. AzaHx, 2-(p-anisyl)-4-aza-benzimidazole-5-carboxamide, is a novel, fluorescent DNA recognition element, derived from Hoechst 33258 to recognize G·C base pairs. Supported by theoretical data, the results from DNase I footprinting, CD, ΔT(M), and SPR studies provided evidence that an azaHx/IP pairing, formed from antiparallel stacking of two azaHx-PI molecules in a side-by-side manner in the minor groove, selectively recognized a C-G doublet. AzaHx-PI was found to target 5'-ACGCGT-3', the Mlu1 Cell Cycle Box (MCB) promoter sequence with specificity and significant affinity (K(eq) 4.0±0.2×10(7) M(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Facile enzymatic synthesis of base J-containing oligodeoxyribonucleotides and an analysis of the impact of base J on DNA replication in cells.

    Directory of Open Access Journals (Sweden)

    Debin Ji

    Full Text Available We reported here the use of T4 bacteriophage β-glucosyltransferase (T4 β-GT for the facile synthesis of base J-containing oligodeoxyribonucleotides (ODNs. We found that the enzyme could catalyze the glucosylation of 5-hydroxymethyl-2-deoxyuridine (5hmU in both single- and double-stranded ODNs, though the latter reaction occurred only when 5hmU was mispaired with a guanine. In addition, base J blocked moderately DNA replication, but it did not induce mutations during replication in human cells.

  11. Three-dimensional arrangement of short DNA oligonucleotides at surfaces via the synthesis of DNA-branched polyacrylamide brushes by SI-ATRP.

    Science.gov (United States)

    Henry, Olivier Y F; Mehdi, Ahmed D; Kirwan, Sinead; Sanchez, Josep Luis Acero; O'Sullivan, Ciara K

    2011-09-15

    Short DNA oligonucleotide branches are incorporated into acrylamide brushes via surface initiated atom transfer radical polymerization in an attempt to increase DNA surface density by building three-dimensional molecular architectures. ATR-FTIR as well as hybridization studies followed by SPR confirm the incorporation of the DNA sequences into the polymer backbone. MALDI-TOF analysis further suggests that six acrylamide monomer units are typically separating DNA branches present on a single brushes approximately 26 units long. This new approach offers a promising alternative to SAM-based nucleic acid and aptamer sensors and could enable the realization of more complex soft materials of controlled architecture capable of both recognition and signaling by including additional optically or electrochemically active moieties. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Description of a PCR-based technique for DNA splicing and mutagenesis by producing 5' overhangs with run through stop DNA synthesis utilizing Ara-C

    Directory of Open Access Journals (Sweden)

    Silverman Mel

    2005-09-01

    Full Text Available Abstract Background Splicing of DNA molecules is an important task in molecular biology that facilitates cloning, mutagenesis and creation of chimeric genes. Mutagenesis and DNA splicing techniques exist, some requiring restriction enzymes, and others utilize staggered reannealing approaches. Results A method for DNA splicing and mutagenesis without restriction enzymes is described. The method is based on mild template-dependent polymerization arrest with two molecules of cytosine arabinose (Ara-C incorporated into PCR primers. Two rounds of PCR are employed: the first PCR produces 5' overhangs that are utilized for DNA splicing. The second PCR is based on polymerization running through the Ara-C molecules to produce the desired final product. To illustrate application of the run through stop mutagenesis and DNA splicing technique, we have carried out splicing of two segments of the human cofilin 1 gene and introduced a mutational deletion into the product. Conclusion We have demonstrated the utility of a new PCR-based method for carrying out DNA splicing and mutagenesis by incorporating Ara-C into the PCR primers.

  13. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus).

    Science.gov (United States)

    Tanaka, K; Sekiguchi, M; Okada, Y

    1975-01-01

    Ultraviolet (UV)-induced unscheduled DNA synthesis of xeroderma pigmentosum cells, belonging to complementation groups A, B, C, D, and E, was restored to the normal level by concomitant treatment of the cells with T4 endonuclease V and UV-inactivated HVJ (Sendai virus). The present results suggest that (1) T4 endonuclease molecules were inserted effectively into the cells by the interaction of HVJ with the cell membranes, (2) the enzyme was functional on human chromosomal DNA which had been damaged by UV irradiation in the viable cells, (3) all the studied groups of xeroderma pigmentosum ("variant" was not tested) were defective in the first step (incision) of excision repair. Images PMID:172893

  14. Transformation of isolated barley (Hordeum vulgare L.) microspores: I. the influence of pretreatments and osmotic treatment on the time of DNA synthesis.

    Science.gov (United States)

    Shim, Youn-Seb; Pauls, K Peter; Kasha, Ken J

    2009-02-01

    The objective of this study was to determine when DNA synthesis occurred during pretreatments of cultured barley (Hordeum vulgare L.) microspores and during their preparation for particle bombardment. Based on this information, an investigation of the influence of cell cycle stage on the ability to obtain homozygous transgenic plants by particle bombardment will be presented in paper II of this series. It was hypothesized that the introduction of foreign genes at the G1 cell cycle stage in cultured uninucleate microspores would produce homozygous transgenic plants. Experiments were conducted with two different commonly used pretreatments to induce microspore embryogenesis: cold (4 degrees C) for 21days and cold plus 0.3 mol/L mannitol for 4 days. After pretreatment, the microspores were placed in a higher osmotic medium for 4 h prior to and for 18 h following bombardment. It was confirmed that during the cold plus mannitol pretreatment, there was no apparent change in the cell cycle stage, with the majority of the microspores remaining at the G1 stage. While in the cold for 21 days, the microspores progressed slowly through to G2, with a few progressing further into the mitosis and binucleate stages. Hourly DNA density measurements that were taken during the 4 h osmotic adjustment period following the cold plus mannitol pretreatment indicated that DNA synthesis began during this period at 25 degrees C, while at 4 degrees C, there was no apparent change in cell cycle stage or in DNA density. Thus, one might expect to find a higher frequency of homozygous doubled haploids by maintaining the temperature low during the 4 h osmotic adjustment period following the cold plus mannitol pretreatment than following the 21 day cold pretreatment. However, it is also not known what effect the temperatures during the whole high-osmotic treatments will have on the rate and time of incorporation of the transgene.

  15. Design and synthesis of heterocyclic cations for specific DNA recognition: from AT-rich to mixed-base-pair DNA sequences.

    Science.gov (United States)

    Chai, Yun; Paul, Ananya; Rettig, Michael; Wilson, W David; Boykin, David W

    2014-02-07

    The compounds synthesized in this research were designed with the goal of establishing a new paradigm for mixed-base-pair DNA sequence-specific recognition. The design scheme starts with a cell-permeable heterocyclic cation that binds to AT base pair sites in the DNA minor groove. Modifications were introduced in the original compound to include an H-bond accepting group to specifically recognize the G-NH that projects into the minor groove. Therefore, a series of heterocyclic cations substituted with an azabenzimidazole ring has been designed and synthesized for mixed-base-pair DNA recognition. The most successful compound, 12a, had an azabenzimidazole to recognize G and additional modifications for general minor groove interactions. It binds to the DNA site -AAAGTTT- more strongly than the -AAATTT- site without GC and indicates the design success. Structural modifications of 12a generally weakened binding. The interactions of the new compound with a variety of DNA sequences with and without GC base pairs were evaluated by thermal melting analysis, circular dichroism, fluorescence emission spectroscopy, surface plasmon resonance, and molecular modeling.

  16. Synthesis and quantitative structure-activity relationship of imidazotetrazine prodrugs with activity independent of O6-methylguanine-DNA-methyltransferase, DNA mismatch repair, and p53.

    Science.gov (United States)

    Pletsas, Dimitrios; Garelnabi, Elrashied A E; Li, Li; Phillips, Roger M; Wheelhouse, Richard T

    2013-09-12

    The antitumor prodrug temozolomide is compromised by its dependence for activity on DNA mismatch repair (MMR) and the repair of the chemosensitive DNA lesion, O6-methylguanine (O6-MeG), by O6-methylguanine-DNA-methyltransferase (E.C. 2.1.1.63, MGMT). Tumor response is also dependent on wild-type p53. Novel 3-(2-anilinoethyl)-substituted imidazotetrazines are reported that have activity independent of MGMT, MMR, and p53. This is achieved through a switch of mechanism so that bioactivity derives from imidazotetrazine-generated arylaziridinium ions that principally modify guanine-N7 sites on DNA. Mono- and bifunctional analogues are reported, and a quantitative structure-activity relationship (QSAR) study identified the p-tolyl-substituted bifunctional congener as optimized for potency, MGMT-independence, and MMR-independence. NCI60 data show the tumor cell response is distinct from other imidazotetrazines and DNA-guanine-N7 active agents such as nitrogen mustards and cisplatin. The new imidazotetrazine compounds are promising agents for further development, and their improved in vitro activity validates the principles on which they were designed.

  17. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.

    Science.gov (United States)

    Guo, Jinzhen; Gu, Liya; Leffak, Michael; Li, Guo-Min

    2016-07-01

    Expansion of (CAG)•(CTG) repeats causes a number of familial neurodegenerative disorders. Although the underlying mechanism remains largely unknown, components involved in DNA mismatch repair, particularly mismatch recognition protein MutSβ (a MSH2-MSH3 heterodimer), are implicated in (CAG)•(CTG) repeat expansion. In addition to recognizing small insertion-deletion loop-outs, MutSβ also specifically binds DNA hairpin imperfect heteroduplexes formed within (CAG)n•(CTG)n sequences. However, whether or not and how MutSβ binding triggers expansion of (CAG)•(CTG) repeats remain unknown. We show here that purified recombinant MutSβ physically interacts with DNA polymerase β (Polβ) and stimulates Polβ-catalyzed (CAG)n or (CTG)n hairpin retention. Consistent with these in vitro observations, MutSβ and Polβ interact with each other in vivo, and colocalize at (CAG)•(CTG) repeats during DNA replication. Our data support a model for error-prone processing of (CAG)n or (CTG)n hairpins by MutSβ and Polβ during DNA replication and/or repair: MutSβ recognizes (CAG)n or (CTG)n hairpins formed in the nascent DNA strand, and recruits Polβ to the complex, which then utilizes the hairpin as a primer for extension, leading to (CAG)•(CTG) repeat expansion. This study provides a novel mechanism for trinucleotide repeat expansion in both dividing and non-dividing cells.

  18. Synthesis, Spectral Characterization, DNA/ Protein Binding, DNA Cleavage, Cytotoxicity, Antioxidative and Molecular Docking Studies of Cu(II)Complexes Containing Schiff Base-bpy/Phen Ligands.

    Science.gov (United States)

    Anupama, Berelli; Aruna, Airva; Manga, Vijjulatha; Sivan, Sreekanth; Sagar, Madamsetty Vijay; Chandrashekar, Ravula

    2017-05-01

    Ternary Cu(II) complexes [Cu(II)(L)(bpy)Cl] 1, [Cu(II)(L)(Phen)Cl] 2 [L = 2,3-dimethyl-1-phenyl-4(2 hydroxy-5-methyl benzylideneamino)-pyrazol-5-one, bpy = 2,2' bipyridine, phen =1,10 phenanthroline) were synthesized and characterized by elemental analyses, UV-Visible, FT-IR, ESR, Mass, thermogravimetric and SEM EDAX techniques. The complexes exhibit octahedral geometry. The interaction of the Cu(II) with cailf thymus DNA (CT-DNA) was explored by using absorption and fluorescence spectroscopic methods. The results revealed that the complexes have an affinity constant for DNA in the order of 104 M-1 and mode of interaction is intercalative mode. The DNA cleavage study showed that the complexes cleaved DNA without any external agent. The interaction of Cu(II) complexes with bovine serum albumin (BSA) was also studied using absorption and fluorescence techniques. The cytotoxic activity of the Cu(II) complexes was probed in HeLa (human breast adenocarcinoma cell line), B16F10 (Murine melanoma cell line) and HEPA1-6 celllines, complex 1 has good cytotoxic activity which is comparable with the doxarubicin drug, with IC50 values ranging from 3 to 12.6 μM. A further molecular docking technique was employed to understand the binding of the complexes towards the molecular target DNA. Investigation of the antioxidative properties showed that the metal complexes have significant radical scavenging activity potency against DPPH radical.

  19. A novel mechanism of FSH regulation of DNA synthesis in the granulosa cells of hamster preantral follicles. Involvement of a protein kinase C mediated MAP kinase 3/1 self- activation loop

    Science.gov (United States)

    Yang, Peixin; Roy, Shyamal K.

    2006-01-01

    Summary FSH- or EGF-induced granulosa cell proliferation in intact preantral follicles depends on a novel PKC-mediated MAPK3/1 self-activation loop. The objective was to reveal whether a PKC-mediated self-sustaining MAPK3/1 activation loop was necessary for FSH- or EGF-induced DNA synthesis in the granulosa cells of intact preantral follicles. For this purpose, hamster preantral follicles were cultured with FSH or EGF in the presence of selective kinase inhibitors. FSH or EGF phosphorylated RAF1, MAP2K1 and MAPK3/1. However, relatively higher dose of EGF was necessary to sustain the MAPK3/1 activity, which was essential for CDK4 activation and DNA synthesis. In intact preantral follicles, FSH or EGF stimulated DNA synthesis only in the granulosa cells. Sustained activation of MAPK3/1 beyond 3h was independent of EGFR kinase activity, but dependent on PKC activity, which appeared to form a self-sustaining MAPK3/1 activation loop by activating RAF1, MAP2K1 and PLA2G4. Inhibition of PKC activity as late as 4h after the administration of FSH or EGF arrested DNA synthesis, which corresponded with attenuated phosphorylation of RAF1 and MAPK3/1, thus suggesting an essential role of PKC in MAPK3/1 activation. Collectively, these data present a novel self-sustaining mechanism comprised of MAPK3/1, PLA2G4, PKC and RAF1 for CDK4 activation leading to DNA synthesis in granulosa cells. Either FSH or EGF can activate the loop to activate CDK4 and initiate DNA synthesis; however, consistent with our previous findings, FSH effect seems to be mediated by EGF, which initiates the event by stimulating EGFR kinase. PMID:16525034

  20. Surfactant-free synthesis of Fe3O4@PANI and Fe3O4@PPy microspheres as adsorbents for isolation of PCR-ready DNA.

    Science.gov (United States)

    Gai, Ligang; Han, Xiaoyun; Hou, Yunhua; Chen, Jing; Jiang, Haihui; Chen, Xincheng

    2013-02-07

    Magnetic separation with composite microspheres presents an alternative strategy for applications in biomedical and bioengineering fields. However, the synthesis of core-shell structured magnetic composites universally assumes the surfactant-directing and/or silica-assisting polymerization approach to modify and stabilize the magnetic cores. In this paper, we report on the surfactant-free synthesis of well-defined core-shell structured Fe(3)O(4)@PANI and Fe(3)O(4)@PPy microspheres with high magnetization. The temperature dependence of magnetization of the samples was examined as a function of temperature between 3 and 300 K in an applied field of 500 Oe. It was found that the blocking temperature (T(B)) values of the composite spheres are well above the room temperature. The small variation in magnetization as the temperature changes renders the composite spheres a suitable candidate when used at elevated temperatures. Also, the genomic DNA can be effectively isolated from Aspergillus niger (A. niger) cells with the composite microspheres, using a PEG-NaCl binding buffer and a phosphate eluting buffer. The magnetic isolation of genomic DNA with the composite microspheres was shown to be superior to the conventional phenol-chloroform extraction, which was confirmed by agarose gel eletrophoresis and polymerase chain reaction (PCR) diagnosis. The Fe(3)O(4)@PANI and Fe(3)O(4)@PPy microspheres presented here have great potential in enzyme immobilization, drug delivery, catalysis, and sensors.

  1. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Sahni, Abha [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555 (United States); Wang, Nadan [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States); Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Alexis, Jeffrey, E-mail: jeffrey_alexis@urmc.rochester.edu [Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 (United States)

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.

  2. Synthesis, crystal structure, DFT calculation and DNA binding studies of new water-soluble derivatives of dppz

    Science.gov (United States)

    Aminzadeh, Mohammad; Eslami, Abbas; Kia, Reza; Aleeshah, Roghayeh

    2017-10-01

    Diquaternarization of dipyrido-[2,3-a:2‧,3‧-c]-phenazine,(dppz) and its analogous dipyrido-[2,3-a:2‧,3‧-c]-dimethylphenazine,(dppx) using 1,3-dibromopropane afford new water-soluble derivatives of phenazine, propylene-bipyridyldiylium-phenazine (1) and propylene-bipyridyldiylium-dimethylphenazine (2). The compounds have been characterized by means of FT-IR, NMR, elemental analysis and conductometric measurements and their structure were determined by X-ray crystallography. The experimental studies on the compounds have been accompanied computationally by Density Functional Theory (DFT) calculations. The DNA binding properties of both compounds to calf thymus DNA (ctDNA) were investigated by UV-Vis absorption and emission methods. The expanded UV-Vis spectral data matrix was analyzed by multivariate curve resolution-alternating least squares (MCR-ALS) technique to obtain the concentration profile and pure spectra of all reaction species which existed in the interaction procedure. Multivariate curve resolution may help us to give a better understanding of the 1(Cl)2-ctDNA and 2(Cl)2-ctDNA interaction mechanism. The results suggest that both compounds bind tightly to DNA through intercalation mechanism and the DNA binding affinity of 2 is slightly lower than that of 1 due to steric hindrance of the methyl group. Also, thermal denaturation studies reveal that these compounds show strong affinity for binding with calf thymus DNA. The thermodynamic parameters of the DNA binding process were obtained from the temperature dependence of the binding constants and the results showed that binding of both compounds to DNA is an enthalpically driven process that is in agreement with proposed DNA intercalation capability of these compounds.

  3. Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides

    DEFF Research Database (Denmark)

    Højland, Torben; Veedu, Rakesh N; Vester, Birte

    2012-01-01

    We describe the first enzymatic incorporation of an α-L-LNA nucleotide into an oligonucleotide. It was found that the 5'-triphosphate of α-L-LNA is a substrate for the DNA polymerases KOD, 9°N(m), Phusion and HIV RT. Three dispersed α-L-LNA thymine nucleotides can be incorporated into DNA strands...

  4. Carborane-linked 2'-deoxyuridine 5'-O-triphosphate as building block for polymerase synthesis of carborane-modified DNA.

    Science.gov (United States)

    Balintová, Jana; Simonova, Anna; Białek-Pietras, Magdalena; Olejniczak, Agnieszka; Lesnikowski, Zbigniew J; Hocek, Michal

    2017-11-01

    5-[(p-Carborane-2-yl)ethynyl]-2'-deoxyuridine 5'-O-triphosphate was synthesized and used as a good substrate in enzymatic construction of carborane-modified DNA or oligonucleotides containing up to 21 carborane moieties in primer extension reactions by DNA polymerases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis of Zn(II)-cloxacillin sodium complex and study of its interaction with calf thymus DNA.

    Science.gov (United States)

    Chao, Jian-Bin; Xu, Meng-Dan; Yin, Cai-Xia; Huang, Shuping

    2007-02-01

    In this paper, a solid complex of cloxacillin sodium (CS) with Zn(II) was prepared by coprecipitation and characterized by UV, fluorescence, IR, and thermal spectra. Furthermore, the nature of the complex has been studied by 1H-NMR and 13C-NMR spectroscopy. The influence of Zn(II) on the combination of CS and calf thymus DNA (CT DNA) was studied using fluorescence spectrophotometry, and the formation of binary CS-Zn(II) and CS-CT DNA complexes and ternary CS-Zn(II)-CT DNA complex was studied. The results show that the fluorescence intensity of CS can be quenched in the presence of Zn(II) or DNA. In the presence of Zn(II), the fluorescence quenching action of DNA on CS was strongly enhanced. Based on the fluorescence intensity, the formation constants of CS-Zn(II) and CS-CT DNA complexes were calculated, and the mechanism of interaction between CS, Zn(II), and DNA is discussed.

  6. Structure/affinity studies in the bicyclo-DNA series: Synthesis and properties of oligonucleotides containing bcen-T and iso-tricyclo-T nucleosides

    Directory of Open Access Journals (Sweden)

    Branislav Dugovic

    2014-08-01

    Full Text Available We present the synthesis of the two novel nucleosides iso-tc-T and bcen-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6’–C7’ within the carbocyclic ring is planarized by either the presence of a C6’–C7’ double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2’-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bcen-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type and affinity in the sense that a preference for a 3’-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that Tm data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.

  7. Synthesis of Bacteriophage M13-Specific Proteins in a DNA-Dependent Cell-Free System II. In Vitro Synthesis of Biologically Active Gene 5 Protein

    Science.gov (United States)

    Konings, Ruud N. H.; Jansen, Josephine; Cuypers, Theo; Schoenmakers, John G. G.

    1973-01-01

    It is shown that gene 5 protein of bacteriophage M13 is one of the major proteins synthesized in vitro under the direction of M13 replicative-form DNA. By means of DNA-cellulose chromatography, this protein has been purified to homogeneity and its biological characteristics have been compared with those of its native counterpart. Like native gene 5 protein, the purified, in vitro-synthesized protein binds tightly and selectively to single-stranded, but not to double-stranded, DNAs. These results suggest that truly functional gene 5 protein is made in the cell-free system. Images PMID:4586780

  8. Analysis of bacteriophage phi X174 gene A protein-mediated termination and reinitiation of phi X DNA synthesis. II. Structural characterization of the covalent phi X A protein-DNA complex.

    Science.gov (United States)

    Roth, M J; Brown, D R; Hurwitz, J

    1984-08-25

    In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of

  9. The effects of cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) on milk lipid synthesis in mammary glands of dairy cows.

    Science.gov (United States)

    Yang, Yang; Lin, Ye; Duan, Xiaoyu; Lv, He; Xing, Weinan; Li, Qingzhang; Gao, Xuejun; Hou, Xiaoming

    2017-05-01

    Adequate lipid synthesis by the mammary gland during lactation is essential for the survival of mammalian offspring. Cell death-inducing DNA fragmentation factor-α-like effector C (CIDEC) is a lipid droplet-associated protein and functions to promote lipid accumulation and inhibit lipolysis in mice and human adipocytes. However, the function of CIDEC in regulation of milk lipid synthesis in dairy cow mammary gland remains largely unknown. In this study, 6 multiparous Holstein cows (parity = 3) in early lactation were allocated to high-fat milk (milk yield 33.9 ± 2.1 kg/d, milk fat >3.5%, n = 3) and low-fat milk (milk yield 33.7 ± 0.5 kg/d, milk fat milk fat content. Lactating cows were slaughtered at 90 d in milk and mammary tissues were collected to detect CIDEC localization. Immunofluorescence staining of sections of lactating mammary glands with high- and low-fat milk showed that CIDEC was expressed in the cytoplasm of epithelial cells and localized to lipid droplets. Lipid droplets and CIDEC protein were also detected in isolated lactating mammary epithelial cells of dairy cows. Immunostaining of CIDEC in isolated mammary epithelial cells also confirmed its presence in the nucleus. The knockdown of CIDEC in cultured bovine mammary epithelial cells decreased milk lipid content and reduced expression of genes associated with mammary de novo fatty acid synthesis, short- and long-chain intracellular fatty acid activation, triacylglycerol synthesis, and transcription regulation. These genes included those for acetyl-CoA carboxylase (ACC, -60%), fatty acid synthase (FASN, -65%), acyl-CoA synthetase short-chain family member 2 (ACSS2, -50%), acyl-CoA synthetase long-chain family member 1 (ACSL1, -30%), diacylglycerol acyltransferase 1 (DGAT1, -60%), sterol regulatory element-binding protein 1 (SREBP1, -45%), and SREBP cleavage activating protein (SCAP, -66%). Conversely, in cells overexpressing CIDEC, triacylglycerol content was increased, and transcription of

  10. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    Science.gov (United States)

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines. © 2015 Wiley Periodicals, Inc.

  11. Synthesis and characterization, antimicrobial activity, DNA binding and DNA cleavage studies of new 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol metal complexes

    Science.gov (United States)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-02-01

    New Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Cd(II) complexes derived from bidentate Schiff base ligand, 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol (HL) have been synthesized. The molar ratio for all synthesized complexes is M: L = 1:2 which was established from the results of chemical analysis. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, (1H and 13C) NMR, mass, ESR, XRD, CV, fluorescence, and magnetic as well as thermal analysis measurements. The IR spectra of the prepared complexes were suggested that the Schiff base ligand behaves as a bi-dentate ligand through the azomethine nitrogen atom and phenolic oxygen atom. The crystal field splitting, Racah repulsion and nepheloauxetic parameters and determined from the electronic spectra of the complexes. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. From the modeling studies, the bond length, bond angle, core-core interaction, heat of formation, electronic energy, binding energy, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern, Horowitz-Metzger and Piloyan-Novikova methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and three Gram -ve) and three antifungal to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed.

  12. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    Science.gov (United States)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  13. Novel water soluble morpholine substituted Zn(II) phthalocyanine: Synthesis, characterization, DNA/BSA binding, DNA photocleavage and topoisomerase I inhibition.

    Science.gov (United States)

    Barut, Burak; Demirbaş, Ümit; Özel, Arzu; Kantekin, Halit

    2017-07-15

    In this study, novel peripherally tetra 3-morpholinophenol substituted zinc(II) phthalocyanine (4) and its water soluble form quaternized zinc(II) phthalocyanine (ZnQ) were synthesized for the first time. These novel compounds were characterized by a combination of different spectroscopic techniques such as FT-IR, (1)H NMR, (13)C NMR, UV-vis and mass. The DNA binding of ZnQ was investigated using UV-vis absorption titration, competitive ethidium bromide, thermal denaturation and viscosity experiments that the ZnQ bound to CT-DNA via intercalation mode. ZnQ indicated photocleavage activity on supercoiled pBR322 plasmid DNA via formation of singlet oxygen under irradiation at 700nm. Besides, the topoisomerase I inhibitory effect experiments showed that ZnQ inhibited topoisomerase I enzyme in a concentration-dependent manner. The bovine serum albumin (BSA) binding experiments indicated that ZnQ bound to proteins through a static quenching mechanism. All of these results claim that ZnQ has potential agent for photodynamic therapy owing to its nucleic acid interactions and photobiological or photochemical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cloning of murine SeGpx cDNA and synthesis of mutated GPx proteins in Escherichia coli.

    Science.gov (United States)

    Rocher, C; Faucheu, C; Hervé, F; Bénicourt, C; Lalanne, J L

    1991-02-15

    Glutathione peroxidase (GPx) of mammalian cells and Escherichia coli formate dehydrogenase both contain a selenocysteine (SeCys) in their amino acid (aa) sequence. In these two enzymes, this aa is encoded by a UGA codon, which is usually a stop codon for protein synthesis. We constructed plasmids to test the synthesis of GPx in E. coli. These constructions permitted high-level production of GPx mutants, where the SeCys codon was replaced by cysteine (UGC, UGU) or serine (UCA) codons, but synthesis of selenoprotein could not be detected: our data suggest that signals used for the recognition of the UGA codon as a SeCys codon are not conserved between E. coli and mammalian cells.

  15. Synthesis of oligonucleotide phosphorodithioates

    DEFF Research Database (Denmark)

    Beaton, G.; Brill, W. K D; Grandas, A.

    1991-01-01

    The synthesis of DNA containing sulfur at the two nonbonding internucleotide valencies is reported. Several different routes using either tervalent or pentavalent mononucleotide synthons are described.......The synthesis of DNA containing sulfur at the two nonbonding internucleotide valencies is reported. Several different routes using either tervalent or pentavalent mononucleotide synthons are described....

  16. Interferon Beta-1a Improves Urinary Symptoms, Reduces Proviral Load, and Modifies the Immune Response in a Patient with HAM/TSP.

    Science.gov (United States)

    Costa, Davi Tanajura; Sundberg, Michael; Passos, Lúcia; Muniz, André Luiz; Santos, Silvane

    2012-01-01

    The human T-cell lymphotropic virus type 1 (HTLV-1) is the known causative agent of a chronic neurologic condition known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although several therapies have been evaluated for HAM/TSP, none have been approved for use in humans. In this paper, we describe a 55-year-old female patient with HAM/TSP who was treated with interferon beta-1a. This patient, in comparison to 20 female patients with HAM/TSP who were not treated, showed improvement in urinary symptoms over four years of therapy, as well as a reduction in HTLV-1 proviral load and serum cytokine levels typically observed in HAM/TSP. This improved outcome merits further controlled studies on the use and efficacy of interferon beta-1a as a therapy for HAM/TSP.

  17. Repair of 8-methoxypsoralen induced DNA interstrand cross-links in Tetrahymena thermophila. The effect of inhibitors of macromolecular synthesis

    DEFF Research Database (Denmark)

    Nielsen, P E; Køber, L

    1985-01-01

    : a protein-DNA complexing phase, a DNA-incision phase and finally a DNA-ligation phase. The incision was found to be completely inhibited by novobiocin (50 micrograms/ml), nalidixic acid (150 micrograms/ml), n-butyrate (15 mM) and cycloheximide (1 microgram/ml), while no effect was observed for cytosine-1......-beta-D-arabinofuranoside (10 mM), puromycin (1 mM), hydroxyurea (5 mM) or 3-aminobenzamide (2.5 mM). None of the compounds showed any effect on the protein-DNA complexing step, and the ligation was partly inhibited only by nalidixic acid (150 micrograms/ml). The involvement of topoisomerases...

  18. Synthesis and DNA-interactions of new Co(III), Fe(II), Ni(II), Ru(II ...

    Indian Academy of Sciences (India)

    Administrator

    phen) or a modified phen, are particularly attractive species for developing new diagnostic and therapeutic agents that can recognise and cleave DNA. The ligands or the metal in these complexes can be varied in an easily controlled manner ...

  19. Synthesis of Naphthyridine Carbamate Dimer (NCD) Derivatives Modified with Alkanethiol and Binding Properties of G-G Mismatch DNA.

    Science.gov (United States)

    Yamada, Takeshi; Miki, Shouta; Ul'Husna, Anisa; Michikawa, Akiko; Nakatani, Kazuhiko

    2017-08-18

    A series of new DNA binding molecules NCD-Cn-SH (n = 3, 4, 5, and 6) is reported, which possesses the NCD (naphthyridine carbamate dimer) domain selectively binding to the G-G mismatch in the 5'-CGG-3'/5'-CGG-3' sequence and a thiol moiety, which undergoes spontaneous dimerization to (NCD-Cn-S)2 upon oxidation under aerobic conditions. The S-S dimer (NCD-Cn-S)2 produced the 1:1 binding complex with improved thermal stability. The dimer binding to the CGG/CGG DNA showed higher positive cooperativity than the binding of monomer and previously synthesized NCTn derivative. The dimerization of NCD-Cn-SH was selectively accelerated on the CGG repeat DNA but not on the CAG repeat DNA.

  20. New silver(I) complex with diazafluorene based ligand: Synthesis, characterization, investigation of in vitro DNA binding and antimicrobial studies

    Science.gov (United States)

    Movahedi, Elaheh; Rezvani, Ali Reza

    2017-07-01

    A novel diazafluorene based complex with silver, [Ag(dian)2 ] NO3 , where dian is N-(4,5-diazafluoren-9-ylidene)aniline, has been prepared and characterized by elemental analysis, IR spectroscopy, 1HNMR, UV-Vis spectroscopy and cyclic voltammetry. In order to explore the relationship between the structure and biological properties, DNA binding propensity and in vitro antibacterial property have also been studied. The mode of DNA-complex interaction has been investigated by electronic absorption titration, luminescence titration, competitive binding experiment, effect of ionic strength, thermodynamic studies, viscometric evaluation, circular dichroism spectroscopy and cyclic voltammetry. The results reveal that the complex binds to CT-DNA in a moderate intercalation capability with the partial insertion of a planar dian ligand between the base stacks of double-stranded DNA with binding constant (Kb) of 2.4 × 105 M-1. The viscosities and CD spectra of the DNA provide strong evidence for the intercalation. An in vitro antibacterial efficacy of the Ag(I) complex on a series of Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) indicates that the complex exhibits a marked antibacterial activity. The minimum inhibitory concentrations of the complex indicate that it exhibits much higher antibacterial effect on standard bacterial strains of Escherichia coli and Staphylococcus aureus than those of silver nitrate, silver sulfadiazine. The bacterial inhibitions of the silver(I) complex are closely agreed to its DNA binding affinities.

  1. Biological Impact of Pd (II Complexes: Synthesis, Spectral Characterization, In Vitro Anticancer, CT-DNA Binding, and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Sharma

    2016-01-01

    Full Text Available A new series of Pd (II complexes of methyl substituted benzylamine ligands (BLs has been synthesized and characterized via spectroscopic techniques such as UV/Vis. FTIR, LCMS, 1H, and 13C NMR. The UV/Vis study in DMSO, DMSO + water, and DMSO + PBS buffer (pH = 7.2 confirmed their molecular sustainability in liquids. Their in vitro anticancer activity against breast cancer cell lines such as MCF-7 and MDA-MB-231 makes them interesting for in vivo analysis. Their stronger DNA binding activity (DBA compared with free ligand suggested them as a good DNA binder. DBA was further confirmed by physicochemical studies such as surface tension and viscosity of complex + DNA which inferred the disruption of DNA and intercalation of complexes, respectively. Their % binding activity, % disruption of DNA base pairs (DNABP, and % intercalating strength are reported in this paper for the first time for better understanding of DNA binding mechanism. Along with this, their scavenging activity (SA determined through DPPH free radical and the results indicate good antioxidant behaviour of complexes.

  2. Copper(II) complexes with 4-hydroxyacetophenone-derived acylhydrazones: Synthesis, characterization, DNA binding and cleavage properties

    Science.gov (United States)

    Gup, Ramazan; Gökçe, Cansu; Aktürk, Selçuk

    2015-01-01

    Two new Cu(II) complexes of Schiff base-hydrazone ligands, hydroxy-N‧-[(1Z)-1-(4-hydroxyphenyl)ethylidene]benzohydrazide [H3L1] and ethyl 2-(4-(1-(2-(4-(2-ethoxy-2-oxoethoxy)benzoyl)hydrazono)ethyl)phenoxy)acetate (HL2) have been synthesized and then characterized by microcopy and spectral studies. X-ray powder diffraction illustrates that [Cu(L2)2] complex is crystalline in nature whereas [Cu(H2L1)2]·2H2O has an amorphous structure. Binding of the copper complexes with Calf thymus DNA (CT-DNA) has been investigated by UV-visible spectra, exhibiting non-covalent binding to CT-DNA. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). The effect of complex concentration on the DNA cleavage reaction has been also studied. Both copper complexes show nuclease activity, which significantly depends on concentrations of the complexes, in the presence of H2O2 through oxidative mechanism whereas they slightly cleavage DNA in the absence an oxidative agent.

  3. Synthesis, characterization and DNA interaction of new copper(II) complexes of Schiff base-aroylhydrazones bearing naphthalene ring.

    Science.gov (United States)

    Gökçe, Cansu; Gup, Ramazan

    2013-05-05

    Two new copper(II) complexes with the condensation products of methyl 2-naphthyl ketone with 4-hydroxybenzohydrazide, 4-hydroxy-N'-[(1Z)-1-(naphthalen-2-yl)ethylidene]benzohydrazide [HL(1)] and (Z)-ethyl 2-(4-(2-(1-(naphthalen-2-yl)ethylidene)hydrazinecarbonyl)phenoxy)acetate (HL(2)) were synthesized and characterized by elemental analysis, infrared spectra, UV-Vis electronic absorption spectra, magnetic susceptibility measurements, TGA, powder XRD and SEM-EDS. The binding properties of the copper(II) complexes with calf thymus DNA were studied by using the absorption titration method. DNA cleavage activities of the synthesized copper complexes were examined by using agarose gel electrophoresis. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The experimental results suggest that the copper complexes bind significantly to calf thymus DNA by both groove binding and intercalation modes and cleavage effectively pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide-derived species and singlet oxygen ((1)O2) are the active oxidative species for DNA cleavage. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Synthesis and preliminary biological evaluation of O6-[4-(2-[18F]fluoroethoxymethyl)benzyl]guanine as a novel potential PET probe for the DNA repair protein O6-alkylguanine-DNA alkyltransferase in cancer chemotherapy.

    Science.gov (United States)

    Wang, Ji-Quan; Kreklau, Emiko L; Bailey, Barbara J; Erickson, Leonard C; Zheng, Qi-Huang

    2005-10-15

    A novel fluorine-18-labeled O6-benzylguanine (O6-BG) derivative, O6-[4-(2-[18F]fluoroethoxymethyl)benzyl]guanine (O6-[18F]FEMBG, [18F]1), has been synthesized for evaluation as a potential positron emission tomography (PET) probe for the DNA repair protein O6-alkylguanine-DNA alkyltransferase (AGT) in cancer chemotherapy. The appropriate radiolabeling precursor N(2,9)-bis(p-anisyldiphenylmethyl)-O6-[4-(hydroxymethyl)benzyl]guanine (6) and reference standard O6-[4-(2-fluoroethoxymethyl)benzyl]guanine (O6-FEMBG, 1) were synthesized from 1,4-benzenedimethanol and 2-amino-6-chloropurine in four or six steps, respectively, with moderate to excellent chemical yields. The target tracer O6-[18F]FEMBG was prepared in 20-35% radiochemical yields by reaction of MTr-protected precursor 6 with [18F]fluoroethyl bromide followed by quick deprotection reaction and purification with a simplified Silica Sep-Pak method. Total synthesis time was 60-70 min from the end of bombardment. Radiochemical purity of the formulated product was >95%, with a specific radioactivity of >1.0 Ci/micromol at the end of synthesis. The activity of unlabeled O6-FEMBG was evaluated via an in vitro AGT oligonucleotide assay. Preliminary findings from biological assay indicate that the synthesized analogue has similarly strong inhibiting effect on AGT in comparison with O6-BG and O6-4-fluorobenzylguanine (O6-FBG). The results warrant further in vivo evaluation of O6-[18F]FEMBG as a new potential PET probe for AGT.

  5. Synthesis of Biotinylated Inositol Hexakisphosphate To Study DNA Double-Strand Break Repair and Affinity Capture of IP6-Binding Proteins.

    Science.gov (United States)

    Jiao, Chensong; Summerlin, Matthew; Bruzik, Karol S; Hanakahi, Leslyn

    2015-10-20

    Inositol hexakisphosphate (IP6) is a soluble inositol polyphosphate, which is abundant in mammalian cells. Despite the participation of IP6 in critical cellular functions, few IP6-binding proteins have been characterized. We report on the synthesis, characterization, and application of biotin-labeled IP6 (IP6-biotin), which has biotin attached at position 2 of the myo-inositol ring via an aminohexyl linker. Like natural IP6, IP6-biotin stimulated DNA ligation by nonhomologous end joining (NHEJ) in vitro. The Ku protein is a required NHEJ factor that has been shown to bind IP6. We found that IP6-biotin could affinity capture Ku and other required NHEJ factors from human cell extracts, including the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4, and XLF. Direct binding studies with recombinant proteins show that Ku is the only NHEJ factor with affinity for IP6-biotin. DNA-PKcs, XLF, and the XRCC4:ligase IV complex interact with Ku in cell extracts and likely interact indirectly with IP6-biotin. IP6-biotin was used to tether streptavidin to Ku, which inhibited NHEJ in vitro. These proof-of-concept experiments suggest that molecules like IP6-biotin might be used to molecularly target biologically important proteins that bind IP6. IP6-biotin affinity capture experiments show that numerous proteins specifically bind IP6-biotin, including casein kinase 2, which is known to bind IP6, and nucleolin. Protein binding to IP6-biotin is selective, as IP3, IP4, and IP5 did not compete for binding of proteins to IP6-biotin. Our results document IP6-biotin as a useful tool for investigating the role of IP6 in biological systems.

  6. Error-Prone Translesion DNA Synthesis by Escherichia coli DNA Polymerase IV (DinB on Templates Containing 1,2-dihydro-2-oxoadenine

    Directory of Open Access Journals (Sweden)

    Masaki Hori

    2010-01-01

    Full Text Available Escherichia coli DNA polymerase IV (Pol IV is involved in bypass replication of damaged bases in DNA. Reactive oxygen species (ROS are generated continuously during normal metabolism and as a result of exogenous stress such as ionizing radiation. ROS induce various kinds of base damage in DNA. It is important to examine whether Pol IV is able to bypass oxidatively damaged bases. In this study, recombinant Pol IV was incubated with oligonucleotides containing thymine glycol (dTg, 5-formyluracil (5-fodU, 5-hydroxymethyluracil (5-hmdU, 7,8-dihydro-8-oxoguanine (8-oxodG and 1,2-dihydro-2-oxoadenine (2-oxodA. Primer extension assays revealed that Pol IV preferred to insert dATP opposite 5-fodU and 5-hmdU, while it inefficiently inserted nucleotides opposite dTg. Pol IV inserted dCTP and dATP opposite 8-oxodG, while the ability was low. It inserted dCTP more effectively than dTTP opposite 2-oxodA. Pol IV's ability to bypass these lesions decreased in the order: 2-oxodA > 5-fodU~5-hmdU > 8-oxodG > dTg. The fact that Pol IV preferred to insert dCTP opposite 2-oxodA suggests the mutagenic potential of 2-oxodA leading to A:T→G:C transitions. Hydrogen peroxide caused an ~2-fold increase in A:T→G:C mutations in E. coli, while the increase was significantly greater in E. coli overexpressing Pol IV. These results indicate that Pol IV may be involved in ROS-enhanced A:T→G:C mutations.

  7. Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(II) complexes.

    Science.gov (United States)

    Paul, Anup; Anbu, Sellamuthu; Sharma, Gunjan; Kuznetsov, Maxim L; Koch, Biplob; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2015-12-14

    A series of new benzimidazole containing compounds 2-((1-R-1-H-benzimidazol-2-yl)phenyl-imino)naphthol HL(1-3) (R = methyl, ethyl or propyl, respectively) have been synthesized by Schiff base condensation of 2-(1-R-1-H-benzo[d]imidazol-2-yl)aniline and 2-hydroxy-1-naphthaldehyde. The reactions of HL(1-3) with Cu(NO3)2·2.5H2O led to the corresponding copper(II) complexes [Cu(L)(NO3)] 1-3. All the compounds were characterized by conventional analytical techniques and, for 1 and 3, also by single-crystal X-ray analysis. The interactions of complexes 1-3 with calf thymus DNA were studied by absorption and fluorescence spectroscopic techniques and the calculated binding constants (K(b)) are in the range of 3.5 × 10(5) M(-1)-3.2 × 10(5) M(-1). Complexes 1-3 effectively bind DNA through an intercalative mode, as proved by molecular docking studies. The binding affinity of the complexes decreases with the size increase of the N-alkyl substituent, in the order of 1 > 2 > 3, which is also in accord with the calculated LUMO(complex) energies. They show substantial in vitro cytotoxic effect against human lung (A-549), breast (MDA-MB-231) and cervical (HeLa) cancer cell lines. Complex 1 exhibits a significant inhibitory effect on the proliferation of the A-549 cancer cells. The antiproliferative efficacy of 1 has also been analysed by a DNA fragmentation assay, fluorescence activated cell sorting (FACS) and nuclear morphology using a fluorescence microscope. The possible mode for the apoptosis pathway of 1 has also been evaluated by a reactive oxygen species (ROS) generation study.

  8. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard

    2009-01-01

    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures......Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic...

  9. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    DEFF Research Database (Denmark)

    Gräs, S; Ovesen, P; Andersen, A N

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicular...... fluid and cells were obtained from patients undergoing in-vitro fertilization for tubal infertility. The concentrations of VIP and PHM in pre-ovulatory human follicular fluid were measured radioimmunochemically. Granulosa/lutein cells isolated from follicular fluid were cultured under serum....... We conclude that VIP and PHM are present in human preovulatory follicular fluid and that VIP stimulates DNA synthesis and oestradiol secretion in cultured human granulosa/lutein cells. This indicates that VIP and perhaps PHM participate in the local nervous regulation of human ovarian function....

  10. D-glucose derived novel gemini surfactants: synthesis and study of their surface properties, interaction with DNA, and cytotoxicity.

    Science.gov (United States)

    Kumar, Vikash; Chatterjee, Amrita; Kumar, Nupur; Ganguly, Anasuya; Chakraborty, Indranil; Banerjee, Mainak

    2014-10-09

    Four new D-glucose derived m-s-m type gemini surfactants with variable spacer and tail length have been synthesized by a simple and efficient synthetic methodology utilizing the free C-3 hydroxy group of diisopropylidene glucose. The synthetic route to these gemini surfactants with a quaternary ammonium group as polar head group involves a sequence of simple reactions including alkylation, imine formation, quaternization of amine etc. The surface properties of the new geminis were evaluated by surface tension and conductivity measurements. These gemini surfactants showed low cytotoxicity by MTT assay on HeLa cell line. The DNA binding capabilities of these surfactants were determined by agarose gel electrophoresis, fluorescence titration, and DLS experiments. The preliminary studies by agarose gel electrophoresis indicated chain length dependent DNA binding abilities, further supported by ethidium bromide exclusion experiments. Two of the D-glucose derived gemini surfactants showed effective binding with pET-28a plasmid DNA (pDNA) at relatively low N/P ratio (i.e., cationic nitrogen/DNA phosphate molar ratio). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Microtubule assembly is required for the formation of the pronuclei, nuclear lamin acquisition, and DNA synthesis during mouse, but not sea urchin, fertilization.

    Science.gov (United States)

    Schatten, H; Simerly, C; Maul, G; Schatten, G

    1989-07-01

    Microtubule assembly is required for the formation of the male and female pronuclei during mouse, but not sea urchin, fertilization. In mouse oocytes, 50 microM colcemid prevents the decondensation of the maternal meiotic chromosomes and of the incorporated sperm nucleus during in vitro fertilization. Nuclear lamins do not associate with either of the parental chromatin sets although peripherin, the Pl nuclear peripheral antigen, appears on both. DNA synthesis does not occur in these fertilized, colcemid-arrested oocytes. This effect is limited to the first hours after ovulation, since colcemid added 4-6 hours later no longer prevents pronuclear development, lamin acquisition, or DNA synthesis. Neither microtubule stabilization with 10 microM taxol nor microfilament inhibition with 10 microM cytochalasin D or 2.2 micrograms/ml latrunculin A prevent these pronuclear events; these drugs will inhibit the apposition of the pronuclei at the egg center. In sea urchin eggs, colcemid or griseofulvin treatment does not result in the same effect and the male pronucleus forms with the attendant accumulation of the nuclear lamins. The differences in the requirement for microtubule assembly during pronucleus formation may be related to the cell cycle: In mice the sperm enters a meiotic cytoplasm, whereas in sea urchin eggs it enters an interphase cytoplasm. Refertilization of mitotic sea urchin eggs was performed to test the possibility that this phenomenon is related to whether the sperm enters a meiotic/mitotic cytoplasm or one at interphase; during refertilization at first mitosis, the incorporated sperm nucleus is unable to decondense and acquire lamins. These results indicate a requirement for microtubule assembly for the progression from meiosis to first interphase during mouse fertilization and suggest that the cytoskeleton is required for changes in nuclear architecture necessary during fertilization and the cell cycle.

  12. Teratogenic and behavioral anomalies induced by acute exposure of mice to ethanol and their possible relation to fetal brain DNA synthesis.

    Science.gov (United States)

    Ciociola, A A; Gautieri, R F

    1988-07-01

    Physical and behavioral anomalies of fetal alcohol syndrome were studied after the i.p. administration of a single 3- or 6-g/kg dose of ethanol (25%, v/v) to gravid mice on either day 15 or day 18 of gestation. The physical effects of ethanol administered on either day 8, day 10, or day 12 of gestation (N = 6/group) were also examined and compared to the saline-administered controls. The identification of these anomalies and the effect of ethanol on the rate of fetal brain DNA synthesis were investigated. The physical anomalies were identified by standard procedures. Behavioral anomalies were measured as the inhibition of the development of various neonatal reflexes (N = 6-13/group) as compared to the saline-administered controls. The possible mechanism for these ethanol-induced abnormalities was identified by using [3H]thymidine to measure the rate of DNA synthesis (N = 6/group) in fetal mouse brains. Blood alcohol concentrations (N = 6/group) ranged from 410.2 mg/dl at 30 min to 25.8 mg/dl at 4.5 hr following the dosage of 3 g/kg of ethanol. Concentrations following the dosage of 6 g/kg of ethanol ranged from 753.7 mg/dl at 15 min to 127.1 mg/dl at 10.5 hr postinjection. Fetal and maternal weight gains were significantly inhibited compared to those of the controls. Various cranial facial, urogenital, skeletal, and cardiovascular anomalies were observed (P less than or equal to 0.05). Delays in the onset of the air and surface righting, visual placing, and negative geotaxis reflexes were observed for the ethanol-treated neonates, as compared to control values.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Efficient hydrolytic cleavage of plasmid DNA by chloro-cobalt(II) complexes based on sterically hindered pyridyl tripod tetraamine ligands: synthesis, crystal structure and DNA cleavage.

    Science.gov (United States)

    Massoud, Salah S; Perkins, Richard S; Louka, Febee R; Xu, Wu; Le Roux, Anne; Dutercq, Quentin; Fischer, Roland C; Mautner, Franz A; Handa, Makoto; Hiraoka, Yuya; Kreft, Gabriel L; Bortolotto, Tiago; Terenzi, Hernán

    2014-07-14

    Four new cobalt(ii) complexes [Co(6-MeTPA)Cl]ClO4/PF6 (2/2a), [Co(6-Me2TPA)Cl]ClO4/PF6 (3/3a), [Co(BPQA)Cl]ClO4/PF6 (4/4a) and [Co(BQPA)Cl]ClO4/PF6 (5/5a) as well as [Co(TPA)Cl]ClO4 (1) where TPA = tris(2-pyridylmethyl)amine, 6-MeTPA = ((6-methyl-2-pyridyl)methyl)bis(2-pyridylmethyl)amine, 6-Me2TPA = bis(6-methyl-2-pyridyl)methyl)-(2-pyridylmethyl)amine, BPQA = bis(2-pyridylmethyl)-(2-quinolylmethyl)-amine and BQPA = bis(2-quinolylmethyl)-(2-pyridylmethyl)amine were synthesized and structurally characterized. Single crystal X-ray crystallography confirmed the distorted trigonal bipyramidal geometries of complexes 2a-5a. Spectrophotometric titrations and conductivity measurements of the complexes in the CH3CN-H2O mixture showed that the chloro complexes exist in equilibrium with the corresponding hydrolyzed aqua species, [Co(L)(H2O)](2+). The pKa values of the coordinated H2O in aqua complexes vary from 8.4 to 8.7 (37 °C). The interactions of the complexes (1-5) with DNA have been investigated at pH = 7.0 and 9.0 (10 mM Tris-HCl buffer) and 37 °C where very high catalytic cleavage was observed. Under pseudo Michaelis-Menten kinetic conditions, the catalytic rate constants, kcat, decrease in the order 4>2>5>1>3. At pH 7.0 (10 mM Tris-HCl buffer) and 37 °C, the kcat value for complex 4 (6.02 h(-1)), where [Co(BPQA)(H2O)](2+) is the major species, corresponds to 170 million rate enhancement over the non-catalyzed DNA. Electrophoretic experiments conducted in the presence and absence of radical scavengers (DMSO, KI, NaN3) ruled out the oxidative mechanistic pathway of the reaction and suggested that the hydrolytic mechanism is the preferred one. This finding was in agreement with the observed increase in the kcat values at pH 9.0 compared to the corresponding values at pH 7.0 as a result of the increased concentration of the reactive hydroxo species, [Co(L)(OH)](+). The reactivity of the synthesized complexes in catalyzing the DNA cleavage is discussed in relation to

  14. Role of the first aspartate residue of the "YxDTDS" motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis.

    Science.gov (United States)

    Saturno, J; Lázaro, J M; Blanco, L; Salas, M

    1998-10-30

    Almost all known nucleic acid polymerases require three acidic residues to bind the metal ion during catalysis of nucleotide incorporation. Nevertheless, recent crystallographic data on bacteriophage RB69 DNA polymerase indicate that the first aspartate residue belonging to the conserved motif "YxDTDS" could have a merely structural role. To address this question, a mutant protein at the homologous aspartate residue (Asp456) in phi29 DNA polymerase was made 3'-5' exonuclease deficient. This allowed us to analyse the functional importance of this residue in different metal-dependent reactions that can be performed using either terminal protein (TP) or DNA primers. When Mg2+ was used as the metal activator, the synthetic activities of the mutant phi29 DNA polymerase, TP-primed initiation and DNA-primed polymerisation, were about 50-fold less efficient than those of the wild-type enzyme. Interestingly, the use of Mn2+ as the metal activator partially restored the wild-type phenotype. When polymerisation required an efficient translocation along the template, mutation of Asp456 strongly affected the catalytic efficiency of phi29 DNA polymerase. The results presented here indicate that Asp456 has a catalytic role as a metal-activator ligand, but also contributes to enzyme translocation along the DNA, required during consecutive nucleotide incorporation cycles. Moreover, Asp456 appears to be critical to remodel the active site during transition from TP priming to DNA priming. The results are discussed in the light of structural information corresponding to distantly related polymerases. Copyright 1998 Academic Press.

  15. Prolactin-like activity of anti-prolactin receptor antibodies on casein and DNA synthesis in the mammary gland.

    OpenAIRE

    Djiane, J; Houdebine, L M; Kelly, P A

    1981-01-01

    Prolactin receptors were partially purified from rabbit mammary gland membranes by using an affinity chromatography technique. Antibodies against this prolactin receptor preparation were obtained in guinea pig and sheep. Both antisera were able to inhibit the binding of 125I-labeled ovine prolactin to rabbit mammary gland membranes. When added to culture media of rabbit mammary explants, the anti-prolactin receptor antiserum inhibited the capacity of prolactin to initiate casein synthesis and...

  16. On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA.

    Science.gov (United States)

    Su, Shao; Wu, Yan; Zhu, Dan; Chao, Jie; Liu, Xingfen; Wan, Ying; Su, Yan; Zuo, Xiaolei; Fan, Chunhai; Wang, Lianhui

    2016-07-01

    The performance for biomolecular detection is closely associated with the interfacial structure of a biosensor, which profoundly affects both thermodynamics and kinetics of the assembly, binding and signal transduction of biomolecules. Herein, it is reported on a one-step and template-free on-electrode synthesis method for making shape-controlled gold nanostructures on indium tin oxide substrates, which provide an electrochemical sensing platform for ultrasensitive detection of nucleic acids. Thus-prepared hierarchical flower-like gold nanostructures (HFGNs) possess large surface area that can readily accommodate the assembly of DNA probes for subsequent hybridization detection. It is found that the sensitivity for electrochemical DNA sensing is critically dependent on the morphology of HFGNs. By using this new strategy, a highly sensitive electrochemical biosensor is developed for label-free detection of microRNA-21 (miRNA-21), a biomarker for lung cancers. Importantly, it is demonstrated that this biosensor can be employed to measure the miRNA-21 expression level from human lung cancer cell (A549) lysates and worked well in 100% serum, suggesting its potential for applications in clinical diagnosis and a wide range of bioanalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Aqueous Heck cross-coupling preparation of acrylate-modified nucleotides and nucleoside triphosphates for polymerase synthesis of acrylate-labeled DNA.

    Science.gov (United States)

    Dadová, Jitka; Vidláková, Pavlína; Pohl, Radek; Havran, Luděk; Fojta, Miroslav; Hocek, Michal

    2013-10-04

    Aqueous-phase Heck coupling methodology was developed for direct attachment of butyl acrylate to 5-iodoracil, 5-iodocytosine, 7-iodo-7-deazaadenine, and 7-iodo-7-deazaguanine 2'-deoxyribonucleoside 5'-O-monophosphates (dNMPs) and 5'-O-triphosphates (dNTPs) and compared with the classical approach of phosphorylation of the corresponding modified nucleosides. The 7-substituted 7-deazapurine nucleotides (dA(BA)MP, dA(BA)TP, dG(BA)MP, and dG(BA)TP) were prepared by the direct Heck coupling of nucleotides in good yields (35-55%), whereas the pyrimidine nucleotides reacted poorly and the corresponding BA-modified dNTPs were prepared by triphosphorylation of the modified nucleosides. The acrylate-modified dN(BA)TPs (N = A, C, and U) were good substrates for DNA polymerases and were used for enzymatic synthesis of acrylate-modified DNA by primer extension, whereas dG(BA)TP was an inhibitor of polymerases. The butyl acrylate group was found to be a useful redox label giving a strong reduction peak at -1.3 to -1.4 V in cyclic voltammetry.

  18. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron.

    Science.gov (United States)

    Zhang, Jianzhen; Zhu, Kun Yan

    2006-09-01

    Chitin synthase (EC 2.4.1.16) is a crucial enzyme responsible for chitin biosynthesis in all chitin-containing organisms. This paper reports a complete cDNA encoding chitin synthase 1 (AqCHS1), change of AqCHS1 mRNA level in response to diflubenzuron exposure, and concentration-dependent effect of diflubenzuron on chitin synthesis in the common malaria mosquito (Anopheles quadrimaculatus). The cDNA consists of 5723 nucleotides, including an open reading frame (ORF) of 4734 nucleotides that encode 1578 amino acid residues and a non-translated region of 989 nucleotides. The deduced amino acid sequence contains all the chitin synthase signature motifs (EDR, QRRRW and SWGTR) and shows 97% identity to that of An. gambiae (AgCHS1, XM_321337). Northern blot and real-time quantitative PCR analyses revealed a significant increase of AqCHS1 mRNA level in the larvae exposed to diflubenzuron at 100 and 500 microg/L. As confirmed by real-time quantitative PCR, AqCHS1 mRNA level was enhanced by 2-fold in the larvae exposed to diflubenzuron at 500 microg/L for 24 h. In contrast, exposures of the larvae to diflubenzuron at 4.0, 20, 100 and 500 microg/L for 48 h resulted in decreases of chitin content by 9.0%, 43%, 58% and 76%, respectively. Significantly increased AqCHS1 mRNA level associated with decreased chitin synthesis may imply possible inhibition of chitin synthase, or abnormal chitin synthase translocation or chitin microfibril assembly conferred by diflubenzuron. Increased AqCHS1 expression due to increased transcription and/or increased mRNA stability may serve as a feedback mechanism to compensate such an effect in the mosquitoes. Further studies are necessary to elucidate the relationship between reduced chitin synthesis and increased expression of AqCHS1 in order to shed new light on trafficking and regulation of chitin biosynthesis in the mosquito affected by diflubenzuron.

  19. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  20. Synthesis, DNA interactions and antibacterial PDT of Cu(II) complexes of phenanthroline based photosensitizers via singlet oxygen generation

    Science.gov (United States)

    Sudhamani, C. N.; Bhojya Naik, H. S.; Sangeetha Gowda, K. R.; Giridhar, M.; Girija, D.; Prashanth Kumar, P. N.

    2015-03-01

    Cu(II) complexes [Cu(mqt)(B)H2O]ClO4(1-3) of 2-thiol 4-methylquinoline and phenanthroline bases (B), viz 1,10-phenanthroline (phen in 1), Dipyrido[3,2-d:2‧,3‧-f]quinoxaline (dpq in 2) and Dipyrido[3,2-a:2‧,3‧-c]phenazine (dppz in 3) have been prepared and characterized by elemental analysis, IR, UV-Vis, magnetic moment values, EPR spectra and conductivity measurements. The spectral data reveal that all the complexes exhibit square-pyramidal geometry. The DNA-binding behaviors of the three complexes were investigated by absorption spectra, viscosity measurements and thermal denaturation studies. The DNA binding constants for complexes (1), (2) and (3) were determined to 2.2 × 103, 1.3 × 104 and 8.6 × 104 M-1 respectively. The experimental results suggest that these complexes interact with DNA through groove-binding mode. The photo induced cleavage studies shows that the complexes possess photonuclease property against pUC19 DNA under UV-Visible irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. Antimicrobial photodynamic therapy was studied using photodynamic antimicrobial chemotherapy (PACT) assay against Escherichiacoli and all complexes exhibited significant reduction in bacterial growth on photoirradiation.

  1. Synthesis and Assessment of DNA/Silver Nanoclusters Probes for Optimal and Selective Detection of Tristeza Virus Mild Strains.

    Science.gov (United States)

    Shokri, Ehsan; Hosseini, Morteza; Faridbod, Farnoush; Rahaie, Mahdi

    2016-09-01

    Citrus Tristeza virus (CTV) is one of the most destructive pathogens worldwide that exist as a mixture of malicious (Sever) and tolerable (Mild) strains. Mild strains of CTV can be used to immunize healthy plants from more Severe strains damage. Recently, innovative methods based on the fluorescent properties of DNA/silver nanoclusters have been developed for molecular detection purposes. In this study, a simple procedure was followed to create more active DNA/AgNCs probe for accurate and selective detection of Tristeza Mild-RNA. To this end, four distinct DNA emitter scaffolds (C12, Red, Green, Yellow) were tethered to the Mild capture sequence and investigated in various buffers in order to find highly emissive combinations. Then, to achieve specific and reliable results, several chemical additives, including organic solvents, PEG and organo-soluble salts were used to enhance control fluorescence signals and optimize the hybridization solution. The data showed that, under adjusted conditions, the target sensitivity is enhanced by a factor of five and the high discrimination between Mild and Severe RNAs were obtained. The emission ratio of the DNA/AgNCs was dropped in the presence of target RNAs and I0/I intensity linearly ranged from 1.5 × 10(-8) M to 1.8 × 10(-6) M with the detection limit of 4.3 × 10(-9) M.

  2. Mononuclear Pd(II) complex as a new therapeutic agent: Synthesis, characterization, biological activity, spectral and DNA binding approaches

    Science.gov (United States)

    Saeidifar, Maryam; Mirzaei, Hamidreza; AhmadiNasab, Navid; Mansouri-Torshizi, Hassan

    2017-11-01

    The binding ability between a new water-soluble palladium(II) complex [Pd(bpy)(bez-dtc)]Cl (where bpy is 2,2‧-bipyridine and bez-dtc is benzyl dithiocarbamate), as an antitumor agent, and calf thymus DNA was evaluated using various physicochemical methods, such as UV-Vis absorption, Competitive fluorescence studies, viscosity measurement, zeta potential and circular dichroism (CD) spectroscopy. The Pd(II) complex was synthesized and characterized using elemental analysis, molar conductivity measurements, FT-IR, 1H NMR, 13C NMR and electronic spectra studies. The anticancer activity against HeLa cell lines demonstrated lower cytotoxicity than cisplatin. The binding constants and the thermodynamic parameters were determined at different temperatures (300 K, 310 K and 320 K) and shown that the complex can bind to DNA via electrostatic forces. Furthermore, this result was confirmed by the viscosity and zeta potential measurements. The CD spectral results demonstrated that the binding of Pd(II) complex to DNA induced conformational changes in DNA. We hope that these results will provide a basis for further studies and practical clinical use of anticancer drugs.

  3. Synthesis, micellization behavior, antimicrobial and intercalative DNA binding of some novel surfactant copper(II) complexes containing modified phenanthroline ligands.

    Science.gov (United States)

    Nagaraj, Karuppiah; Ambika, Subramanian; Rajasri, Shanmugasundaram; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-10-01

    The novel surfactant copper(II) complexes, [Cu(ip)2DA](ClO4)21, [Cu(dpqc)2DA](ClO4)22, [Cu(dppn)2DA](ClO4)23, where ip=imidazo[4,5-f][1,10]phenanthroline, dpqc=dipyrido[3,2-a:2',4'-c](6,7,8,9-tetrahydro)phenazine, dppn=benzo[1]dipyrido[3,2-a':2',3'-c]phenazine and DA-dodecylamine, were synthesized and characterized by physico-chemical and spectroscopic methods. In these complexes 1-3, the geometry of copper metal ions was described as square pyramidal. The critical micelle concentration (CMC) value of these surfactant copper(II) complexes in aqueous solution was found out from conductance measurements. Specific conductivity data at different temperatures served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔGm°, ΔHm° and ΔSm°). The binding interaction of these complexes with DNA (calf thymus DNA) in Tris buffer was studied by physico-chemical techniques. In the presence of the DNA UV-vis spectrum of complexes showed red shift of the absorption band along with significant hypochromicity indicating intercalation of our complexes with nucleic acids. Competitive binding study with ethidium bromide (EB) shows that the complexes exhibit the ability to displace the nucleic acid-bound EB indicating that the complexes bind to nucleic acids in strong competition with EB for the intercalative binding site. Observed changes in the circular dichoric spectra of DNA in the presence of surfactant complexes support the strong binding of complexes with DNA. CV results also confirm this mode of binding. Some significant thermodynamic parameters of the binding of the titled complexes to DNA have also been determined. The results reveal that the extent of DNA binding of 3 was greater than that of 1 and 2. The antibacterial and antifungal screening tests of these complexes have shown good results compared to its precursor chloride complexes. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Calcium phosphate nanoparticles: a study of their synthesis, characterization and mode of interaction with salmon testis DNA.

    Science.gov (United States)

    Banik, Milon; Basu, Tarakdas

    2014-02-28

    Calcium phosphate nanoparticles (CPNPs) are presently emerging as a second generation vector for efficient delivery and stabilization of nucleic acids inside cells, although the detailed mode of interaction between CPNPs and DNA is still obscure. This study discloses some features of the interaction. For this study, we synthesized CPNPs by a modified co-precipitation method and characterized the particles by different techniques such as dynamic light scattering, X-ray diffraction, electron dispersive spectroscopy, Fourier transform infra-red spectroscopy, differential thermal and thermo-gravimetric analysis, and atomic force, scanning and transmission electron microscopy. The characterization studies showed that the nanoparticles were spherical in shape, about 45 nm in size and were composed of the hydroxyapatite form of calcium phosphate; almost 90% of the starting materials were converted to nanoparticles (NPs). The different aspects of the interaction between CPNPs and salmon testis DNA were investigated using techniques such as UV-Vis spectrophotometry, circular dichroism, Fourier transform infra-red spectrometry, thermal denaturation, microviscometry, agarose gel electrophoresis, cyclic voltammetry and atomic force microscopy. The results revealed that CPNPs interacted with DNA with ~1 : 3.3 stoichiometry with a binding constant of the order of 10(4) M(-1) through groove-interacting mode and a single nanoparticle covered about 6.2 base pairs of the DNA chain. Moreover, the binding interaction was spontaneous, cooperative, exothermic and enthalpy-driven and some electrostatic nature of the binding was also evident; however, the non-polyelectrolyte contribution was dominant. The binding interaction finally caused an increase in the melting temperature of DNA from 70.8 °C to 75 °C and alteration of its secondary structure from the naturally occurring B-form to C-form.

  5. Synthesis, spectroscopic characterisation, thermal analysis, DNA interaction and antibacterial activity of copper(I) complexes with N, N‧- disubstituted thiourea

    Science.gov (United States)

    Chetana, P. R.; Srinatha, B. S.; Somashekar, M. N.; Policegoudra, R. S.

    2016-02-01

    copper(I) complexes [Cu(4MTU)2Cl] (2), [Cu(4MTU) (B)Cl] (3), [Cu(6MTU)2Cl] (5) and [Cu(6MTU) (B)Cl] (6) where 4MTU = 1-Benzyl-3-(4-methyl-pyridin-2-yl)-thiourea (1) and 6MTU = 1-Benzyl-3-(6-methyl-pyridin-2-yl)-thiourea (4), B is a N,N-donor heterocyclic base, viz. 1,10-phenanthroline (phen 3, 6), were synthesized, characterized by various physico-chemical and spectroscopic techniques. The elemental analysis suggests that the stoichiometry to be 1:2 (metal:ligand) for 2, 5 1:1:1 (metal:ligand:B) for 3, 6. X-ray powder diffraction illustrates that the complexes have crystalline nature. IR data coupled with electronic spectra and molar conductance values suggest that the complex 2, 5 show the presence of a trigonal planar geometry and the complex 3, 6 show the presence of a tetrahedral geometry about the Cu(I) centre. The binding affinity towards calf thymus (CT) DNA was determined using UV-Vis, fluorescence spectroscopic titrations and viscosity studies. These studies showed that the tested phen complexes 3, 6 bind moderately (in the order of 105 M-1) to CT DNA. The complex 2, 5 does not show any apparent binding to the DNA and hence poor cleavage efficiency. Complex 3, 6 shows efficient oxidative cleavage of plasmid DNA in the presence of H2O2 involving hydroxyl radical species as evidenced from the control data showing inhibition of DNA cleavage in the presence of DMSO and KI. The in vitro antibacterial assay indicates that these complexes are good antimicrobial agents against various pathogens. Anti-bacterial activity is higher when thiourea coordinates to metal ion than the thiourea alone.

  6. Refolding and unfolding of CT-DNA by newly designed Pd(II) complexes. Their synthesis, characterization and antitumor effects.

    Science.gov (United States)

    Dustkami, Mahin; Mansouri-Torshizi, Hassan

    2017-06-01

    New antitumor Pd(II) compounds derived from oxygen donor ligands salicylate (SA) (1) and sulfosalicylate (SSA) (2) dianions and nitrogen donor heterocyclic ligand 2,2'-bipyridine (bpy) were synthesized and characterized by elemental analysis, UV-Vis, FT-IR, (1)H NMR and conductivity measurements. The complexes evaluated for their cytotoxicity effects towards cancer cell line of K562 using MTT assay. They are more cytotoxic than cisplatin. The dependence of their interaction modes with CT-DNA on concentration of the compounds has been discovered in this work. CT-DNA binding studies of these complexes have been investigated by UV-Vis absorption, ethidium bromide (EB) displacement, fluorescence, circular dichroism and gel electrophoresis techniques. The apparent binding constants (Kapp) has been obtained 3.9 and 10.9×10(4)M(-1) at lower concentration range and 1.03 and 1.59×10(4)M(-1) at higher concentration range for complexes (1) and (2), respectively. These complexes effectively interact with CT-DNA in the order of (2)>(1). Fluorescence studies exhibited that the complexes quench CT-DNA-EB by simultaneous static and dynamic quenching processes. The calculated binding (Kapp, kq, KSV, n) and thermodynamic (ΔG°, ΔH°, ΔS°) parameters revealed that hydrophobic, van der Waals forces and hydrogen binding holds the Pd(II) complexes in the CT-DNA grooves. Gel electrophoresis supports the spectroscopic experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Replicon properties of chromosomal DNA fibers and the duration of DNA synthesis of sunflower root-tip meristem cells at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Van' t Hof, J.; Bjerknes, C.A.; Clinton, J.H.

    1978-01-01

    Chromosomal DNA fiber autoradiography was used to examine the replicon properties of root-tip meristem cells of Helianthus annuus intact seedlings grown at temperatures from 10 to 38/sup 0/C and those of root-tip cells grown in vitro at 23/sup 0/. The average replicon size was approximately 22 ..mu..m and it did not change with temperature nor when the roots were grown in culture. The average fork rate was 6 ..mu..m/h at 10/sup 0/ and it rose gradually to 12 ..mu..m/h at 38/sup 0/. The responses of replication fork movement and of the duration of S to temperature were of three types: those in which change in fork rate was primarily (more than 90%) responsible for change in the duration of S, those in which the fork rate remained constant while S increased nearly twofold, and those in which the duration of S increased even though the replication forks were moving faster. The first type of response listed was observed at temperatures from 20 to 35/sup 0/, the second type listed was observed at 10 to 15/sup 0/, and the third, was produced at 38/sup 0/.

  8. 2,3-Bifunctionalized Quinoxalines: Synthesis, DNA Interactions and Evaluation of Anticancer, Anti-tuberculosis and Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Tom Ellis

    2002-08-01

    Full Text Available A variety of 2,3-bifunctionalized quinoxalines (6-14 have been prepared by the condensation of 1,6-disubstituted-hexan-1,3,4,6-tetraones (1-4 with o-phenylenediamine, (R,R-1,2-diaminocyclohexane and p-nitro-o-phenylenediamine. It is concluded that strong intramolecular N-H----O bonds in the favoured keto-enamine form may be responsible for the minimal biological activities observed in DNA footprinting, antitubercular, anti-fungal and anticancer tests with these hyper π-conjugated quinoxaline derivatives. However, subtle alteration by addition of a nitro group affecting the charge distribution confers significant improvements in biological effects and binding to DNA.

  9. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes

    Science.gov (United States)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  10. The first total synthesis of N1999-A2: absolute stereochemistry and stereochemical implications into DNA cleavage

    OpenAIRE

    Kobayashi, Shoji; Ashizawa, Shukuko; Takahashi, Yusuke; Sugiura, Yukio; NAGAOKA, Makoto; Lear, Martin J.; Hirama, Masahiro

    2001-01-01

    Enediyne antitumor antibiotics have attracted immense attention among chemists and biologists alike because of their unique chemical structures, potent antitumor activities, and fascinating biological modes of action. As a novel addition to this family, the nonprotein and extremely strained nine-membered enediyne antibiotic N1999-A2 strongly inhibits the growth of various tumor cell lines and bacteria, and cleaves DNA in a base-specific manner. The attractive features of this molecule lie not...

  11. Synthesis and characterisation of arsenic nanoparticles and its interaction with DNA and cytotoxic potential on breast cancer cells.

    Science.gov (United States)

    Subastri, Ariraman; Arun, Viswanathan; Sharma, Preeti; Preedia Babu, Ezhuthupurakkal; Suyavaran, Arumugam; Nithyananthan, Subramaniyam; Alshammari, Ghedeir M; Aristatile, Balakrishnan; Dharuman, Venkataraman; Thirunavukkarasu, Chinnasamy

    2017-12-22

    Therapeutic applications of arsenic trioxide (ATO) are limited due to their severe adverse effects. However, nanoparticles of ATO might possess inimitable biologic effects based on their structure and size which differ from their parent molecules. Based on this conception, AsNPs were synthesized from ATO and comparatively analysed for their interaction mechanism with DNA using spectroscopic & electrochemical techniques. Finally, anti-proliferative activity was assessed against different breast cancer cells (MDA-MB-231 & MCF-7) and normal non-cancerous cells (HEK-293). The DNA interaction study revealed that AsNPs and ATO exhibit binding constant values in the order of 106 which indicates strong binding interaction. Binding of AsNPs did not disturb the structural integrity of DNA, on the other hand an opposing effect was observed with ATO through biophysical techniques. Further, in vitro study, confirms cytotoxicity of ATO and AsNPs against different cells, however at particular concentration ATO exhibits more cytotoxicity than that of AsNPs. Furthermore, cytotoxicity was confirmed through acridine orange and comet assay. In conclusion, AsNPs are safer than ATO with comparable efficacy and might be a suitable candidate for the development of novel therapeutic agent against breast cancer and other solid tumours. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with norcantharidin and benzimidazole derivatives

    Science.gov (United States)

    Song, Wen-Ji; Lin, Qiu-Yue; Jiang, Wen-Jiao; Du, Fang-Yuan; Qi, Qing-Yuan; Wei, Qiong

    2015-02-01

    Two novel complexes [Cu(L)2(Ac)2]·3H2O (1) (L = N-2-methyl benzimidazole demethylcantharate imide, C16H15N3O3, Ac = acetate, C2H3O2) and [Cu(bimz)2(DCA)] (2) (bimz = benzimidazole, C7H6N2; DCA = demethylcantharate, C8H8O5) were synthesized and characterized by elemental analysis, infrared spectra and X-ray diffraction techniques. Cu(II) ion was four-coordinated in complex 1, Cu(II) ion was five-coordinated in complex 2. A large amount of intermolecular hydrogen-bonding and π-π stacking interactions were observed in these complex structures. The DNA-binding properties of these complexes were investigated using electronic absorption spectra, fluorescence spectra, viscosity measurements and agarose gel electrophoresis. The interactions between the complexes and bovine serum albumin (BSA) were investigated by fluorescence spectra. The antiproliferative activities of the complexes against human hepatoma cells (SMMC7721) were tested in vitro. And the results showed that these complexes could bind to DNA in moderate intensity via partial intercalation, and complexes 1 and 2 could cleave plasmid DNA through hydroxyl radical mechanism. Title complexes could effectively quench the fluorescence of BSA through static quenching. Meanwhile, title complexes had stronger antiproliferative effect compared to L and Na2(DCA) within the tested concentration range. And complex 1 possessed more antiproliferative active than complex 2.

  13. Synthesis, characterization, DNA-Binding, enzyme inhibition and antioxidant studies of new N-methylated derivatives of pyridinium amine

    Science.gov (United States)

    Zafar, Muhammad Naveed; Perveen, Fouzia; Nazar, Muhammad Faizan; Mughal, Ehsan Ullah; Rafique, Humera; Tahir, Muhammad Nawaz; Akbar, Muhammad Sharif; Zahra, Sabeen

    2017-06-01

    A series of novel N-methylated derivatives of pyridinium amine, [L1][Tf]-[L5][Tf], were synthesized and characterized by FTIR, NMR, MS and XRD analyses. Preliminary biological screening of these compounds including antioxidant, enzyme inhibition and DNA (salmon sperm) interaction studies were also carried out. The targeted compounds were synthesized by a melt reaction between 4-chloro-N-methyl pyridinium triflate and corresponding amines (1-naphthyl amine, o-ansidine, 2-nitroaniline, p-ansidine and cyclohexyl amine) at temperature of 230 °C. The DPPH radical antioxidant scavenging activities of these compounds at maximum concentration of 50 μg/mL were observed in the range of 60-70%. Acetylcholine esterase (AChE) and Butylcholine esterase (BChE) inhibitory activities of synthesized compounds at 2 mM concentration were also measured to be at maximum of 79 and 71% respectively. The spectral behavior of ligand-DNA obtained from photo-luminescent measurements showed that all ligands bind with DNA via non-covalent interactions. The binding constant values were determined by UV-visible and fluorescence spectroscopy and were quite close to that obtained from molecular docking studies.

  14. Synthesis, DNA/HSA Interaction Spectroscopic Studies and In Vitro Cytotoxicity of a New Mixed Ligand Cu(II) Complex.

    Science.gov (United States)

    Gan, Qian; Fu, Xiabing; Chen, Weijiang; Xiong, Yahong; Fu, Yinlian; Chen, Shi; Le, Xueyi

    2016-05-01

    A new mixed ligand copper(II)-dipeptide complex with 2-(2'-pyridyl)benzothiazole (pbt), [Cu(Gly-L-leu)(pbt)(H2O)]·ClO4 (Gly-L-leu = Glycyl-L-leucine anion) was synthesized and characterized by various physico-chemical means. The DNA binding and cleavage properties of the complex investigated by viscosity, agarose gel electrophoresis and multi-spectroscopic techniques (UV, circular dichroism (CD) and fluorescence) showed that the complex was bound to CT-DNA through intercalation mode with moderate binding constant (K b = 3.132 × 10(4) M(-1)), and cleaved pBR322 DNA efficiently (~ 5 μM) in the presence of Vc, probably via an oxidative mechanism induced by •OH. Additionally, the interaction of the complex with human serum albumin (HSA) was explored by UV-visible, CD, fluorescence, synchronous fluorescence and 3D fluorescence spectroscopy. The complex exhibits desired affinity to HSA through hydrophobic interaction. Moreover, the cytotoxicity of the complex against three human carcinoma cell lines (HeLa, HepG2 and A549) was evaluated by MTT assay, which showed that the complex had effective cytotoxicity and higher inhibition toward A549 cell lines with IC50 of 38.0 ± 3.2 μM.

  15. Copper(II), cobalt(II) and nickel(II) complexes of juglone: synthesis, structure, DNA interaction and enhanced cytotoxicity.

    Science.gov (United States)

    Tabrizi, Leila; Fooladivanda, Mahrokh; Chiniforoshan, Hossein

    2016-12-01

    Three novel copper(II), cobalt(II), and nickel(II) complexes of juglone (Jug) containing 1,10-phenanthroline (phen) ligand, [M(Jug) 2 (phen)] (M = Cu(II), 1, Co(II), 2, and Ni(II), 3), have been synthesized and characterized using, elemental analysis and spectroscopic studies. Their interactions with calf thymus DNA were investigated using viscosity measurements, UV-visible and fluorescence spectrophotometric methods. The catalytic activities on DNA cleavage of the complexes 1-3 were studied, which copper complex 1 showed better catalyst activity in the DNA cleavage process than complexes 2 and 3. The in vitro cytotoxic potential of the complexes 1-3 against human cervical carcinoma (HeLa), human liver hepatocellular carcinoma (HepG-2), and human colorectal adenocarcinoma (HT-29) cells indicated their promising antitumor activity with quite low IC 50 values in the range of 0.09-1.89 μM, which are 75 times lower than those of cisplatin.

  16. Synthesis, structure characterization, DNA binding, and cleavage properties of mononuclear and tetranuclear cluster of copper(II) complexes.

    Science.gov (United States)

    Vafazadeh, Rasoul; Hasanzade, Naime; Heidari, Mohammad Mehdi; Willis, Anthony C

    2015-01-01

    Two copper(II) complexes, cluster 1, and mononuclear 2, have been synthesized by reacting acetylacetone and benzohydrazide (1:1 ratio for 1 and 1:2 ratio for 2) with CuCl(2) in a methanol solution. In 2, which is a new complex, the ligand acts as a tetradentate which binds the metal ion via two amide-O atoms and two imine-N atoms providing an N(2)O(2) square-planar around the copper(II) ion. The absorption spectra data evidence strongly suggested that the two copper(II) compounds could interact with CT-DNA (intrinsic binding constant, K(b) = 0.45×10(4) M-1 for 1 and K(b) = 2.39×10(4) M-1 for 2). The super coiled plasmid pBR322 DNA cleavage ability was studied with 1 and 2 in the presence and absence of H(2)O(2) as an oxidant. In both the absence and the presence of an oxidizing agent, complex 2 exhibited no nuclease activity. However, even in the absence of an oxidant, complex 1 exhibited significant DNA cleavage activity.

  17. Synthesis of novel naphthoquinone-spermidine conjugates and their effects on DNA-topoisomerases I and II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Andrea S.; Lima, Edson L.S.; Pinto, Angelo C.; Esteves-Souza, Andressa; Torrese, Jose C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Quimica; Camara, Celso A. [Paraiba Univ., Joao Pessoa, PB (Brazil). Lab. de Tecnologia Farmaceutica; Vargas, Maria D. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica]. E-mail: mdvargas@vm.uff.br

    2006-05-15

    Novel derivatives of lapachol 2, nor-lapachol 3 and lawsone 4 have been synthesized by nucleophilic displacement of the methoxynaphthoquinones 2a, 3a and 4a with the polyamine (PA) N{sup 1}-Boc-N{sup 5}-Bn-spermidine 1a. The respective products 2b-4b were obtained in good yields and characterized by spectroscopic and analytical methods. The inhibitory action of these naphthoquinone-PA conjugates on DNA-topoisomerases (topo) I and II-{alpha} was evaluated by relaxation assay of supercoiled DNA plasmid. All compounds (1a 2b, 3b and 4b) presented significant inhibition of topo II-{alpha} catalytic activity at the 2 {mu}M dose. Considering that only PA 1a did not inhibit the enzyme catalytic activity at the 0.2 {mu}M dose, the appended naphthoquinone moiety acts as a 'value added' fragment. Compounds 1a 2b, 3b and 4b did not inhibit the enzyme DNA-topo I at the 200 {mu}M dose. (author)

  18. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole

    Science.gov (United States)

    Song, Wen-Ji; Cheng, Jian-Ping; Jiang, Dong-Hua; Guo, Li; Cai, Meng-Fei; Yang, Hu-Bin; Lin, Qiu-Yue

    2014-03-01

    Two novel copper(II) complexes with Schiff base of benzimidazole [Cu(L)Cl]2·CH3OH have been synthesized. HL1 (N-(benzimidazol-2-ymethyl)-5-chlorosalicylideneimine, C15H11ClN3O) and HL2 (N-(benzimidazol-2-ymethyl)-salicylideneimine, C15H12N3O) are ligands of complex (1) and complex (2), respectively. The complexes were characterized by elemental analysis, IR, UV-Vis, TGA and X-ray diffraction. Within the complexes, Cu(II) ions were four coordinated by two nitrogen atom of azomethine and imine, one phenolic oxygen atom from HL and one chloride atom. A distorted quadrilateral structure was formed. Complex (1) crystallized in the triclinic crystal system. Results showed that π-π stacking effect occurred due to the existence of aromatic ring from Schiff base and hydrogen bonding between methanol and adjacent atoms. The DNA binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra and viscosity measurements. Results indicated that complexes bound to DNA via partial intercalation mode. The DNA binding constants Kb/(L mol-1) were 1.81 × 104 (1), 1.37 × 104 (2), 6.27 × 103 (HL1) and 3.14 × 103 (HL2) at 298 K. The title complexes could quench the emission intensities of EB-DNA system significantly. The results of agarose gel electrophoresis indicated complex (1) could cleave supercoiled DNA through the oxidative mechanism. The inhibition ratios revealed that complex (1) and HL1 had strong antiproliferative activities against human breast cancer cells (MCF-7) lines and human colorectal cancer cells (COLO205) lines in vitro. The antiproliferative activities of complex (1) against MCF-7 lines (IC50 = 16.9 ± 1.5 μmol L-1) and against COLO205 lines (IC50 = 16.5 ± 3.4 μmol L-1) is much stronger than that of HL1, which had the potential to develop anti-cancer drug.

  19. Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with Schiff base of benzimidazole.

    Science.gov (United States)

    Song, Wen-Ji; Cheng, Jian-Ping; Jiang, Dong-Hua; Guo, Li; Cai, Meng-Fei; Yang, Hu-Bin; Lin, Qiu-Yue

    2014-01-01

    Two novel copper(II) complexes with Schiff base of benzimidazole [Cu(L)Cl]2·CH3OH have been synthesized. HL(1) (N-(benzimidazol-2-ymethyl)-5-chlorosalicylideneimine, C15H11ClN3O) and HL(2) (N-(benzimidazol-2-ymethyl)-salicylideneimine, C15H12N3O) are ligands of complex (1) and complex (2), respectively. The complexes were characterized by elemental analysis, IR, UV-Vis, TGA and X-ray diffraction. Within the complexes, Cu(II) ions were four coordinated by two nitrogen atom of azomethine and imine, one phenolic oxygen atom from HL and one chloride atom. A distorted quadrilateral structure was formed. Complex (1) crystallized in the triclinic crystal system. Results showed that π-π stacking effect occurred due to the existence of aromatic ring from Schiff base and hydrogen bonding between methanol and adjacent atoms. The DNA binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra and viscosity measurements. Results indicated that complexes bound to DNA via partial intercalation mode. The DNA binding constants Kb/(L mol(-1)) were 1.81×10(4) (1), 1.37×10(4) (2), 6.27×10(3) (HL(1)) and 3.14×10(3) (HL(2)) at 298 K. The title complexes could quench the emission intensities of EB-DNA system significantly. The results of agarose gel electrophoresis indicated complex (1) could cleave supercoiled DNA through the oxidative mechanism. The inhibition ratios revealed that complex (1) and HL(1) had strong antiproliferative activities against human breast cancer cells (MCF-7) lines and human colorectal cancer cells (COLO205) lines in vitro. The antiproliferative activities of complex (1) against MCF-7 lines (IC50=16.9±1.5 μmol L(-1)) and against COLO205 lines (IC50=16.5±3.4 μmol L(-1)) is much stronger than that of HL(1), which had the potential to develop anti-cancer drug. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Epigenetic control and reintegration of extrachromosomal proviral DNA in HL60 cells chronically infected with human T cell leukaemia virus type 1.

    Science.gov (United States)

    Hiramatsu, K; Yonemoto, R; Yoshikura, H

    1988-03-01

    Extrachromosomal human T cell leukaemia virus type 1 (HTLV-I) proviruses are persistently maintained in HTLV-I-infected human promyelocytic leukaemia (HL60) cells even 24 months after viral infection. By successive recloning of these HTLV-I-infected clones, and by Southern blot analysis of their HTLV-I proviruses, we concluded the following. The copy number of extrachromosomal proviruses fluctuated, and this fluctuation was probably dependent on the epigenetic conditions in the host cell, HL60. The transient appearance of a high copy number of extrachromosomal proviruses was followed by an increase in the copy number of integrated proviruses. Persistence of extrachromosomal proviruses appeared to be caused by an intracellular rather than an intercellular mechanism.

  1. Non-instrumented incubation of a recombinase polymerase amplification assay for the rapid and sensitive detection of proviral HIV-1 DNA.

    Directory of Open Access Journals (Sweden)

    Lorraine Lillis

    Full Text Available Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs. However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS, diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25-43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100% HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100% reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in LRS.

  2. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  3. DNA primase acts as a molecular brake in DNA replication

    NARCIS (Netherlands)

    Lee, Jong-Bong; Hite, Richard K.; Hamdan, Samir M.; Xie, X. Sunney; Richardson, Charles C.; Oijen, Antoine M. van

    2006-01-01

    A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of

  4. Synthesis and characterization of DNA fenced, self-assembled SnO2 nano-assemblies for supercapacitor applications.

    Science.gov (United States)

    Nithiyanantham, U; Ramadoss, Ananthakumar; Kundu, Subrata

    2016-02-28

    Self-assembled, aggregated, chain-like SnO2 nano-assemblies were synthesized at room temperature by a simple wet chemical route within an hour in the presence of DNA as a scaffold. The average size of the SnO2 particles and the chain diameter were controlled by tuning the DNA to Sn(ii) molar ratio and altering the other reaction parameters. A formation and growth mechanism of the SnO2 NPs on DNA is discussed. The SnO2 chain-like assemblies were utilized as potential anode materials in an electrochemical supercapacitor. From the supercapacitor study, it was found that the SnO2 nanomaterials showed different specific capacitance (Cs) values depending on varying chain-like morphologies and the order of Cs values was: chain-like (small size) > chain-like (large size). The highest Cs of 209 F g(-1) at a scan rate of 5 mV s(-1) was observed for SnO2 nano-assemblies having chain-like structure with a smaller size. The long term cycling stability study of a chain-like SnO2 electrode was found to be stable and retained ca. 71% of the initial specific capacitance, even after 5000 cycles. A supercapacitor study revealed that both morphologies can be used as a potential anode material and the best efficiency was observed for small sized chain-like morphology which is due to their higher BET surface area and specific structural orientation. The proposed route, by virtue of its simplicity and being environmentally benign, might become a future promising candidate for further processing, assembly, and practical application of other oxide based nanostructure materials.

  5. Non-ionic, thermo-responsive DEA/DMA nanogels: synthesis, characterization, and use for DNA separations by microchip electrophoresis.

    Science.gov (United States)

    Lu, Xihua; Sun, Mingyun; Barron, Annelise E

    2011-05-15

    Thermo-responsive polymer "nanogels" (crosslinked hydrogel particles with sub-100 nm diameters) are intriguing for many potential applications in biotechnology and medicine. There have been relatively few reports of electrostatically neutral, thermosensitive nanogels comprising a high fraction of hydrophilic co-monomer. Here we demonstrate the syntheses and characterization of novel, non-ionic nanogels based on random N,N-diethylacrylamide (DEA)/N,N-dimethylacrylamide (DMA) copolymers, made by free-radical, surfactant-free dispersion polymerization. The volume-phase transition temperatures of these DEA/DMA nanogels are strongly affected by co-monomer composition, providing a way to "tune" the phase transition temperature of these non-ionic nanogels. While DEA nanogels (comprising no DMA) can be obtained at 70 °C by standard emulsion precipitation, DEA/DMA random co-polymer nanogels can be obtained only in a particular range of temperatures, above the initial phase transition temperature and below the critical precipitation temperature of the DEA/DMA copolymer, controlled by co-monomer composition. Increasing percentages of DMA in the nanogels raises the phase transition temperature, and attenuates and broadens it as well. We find that concentrated DEA/DMA nanogel dispersions are optically clear at room temperature. This good optical clarity was exploited for their use in a novel DNA sieving matrix for microfluidic chip electrophoresis. An ultrafast, high-efficiency dsDNA separation was achieved in less than 120 s for dsDNA ranging from 75 bp to 15,000 bp. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Mixed-ligand copper(II) phenolate complexes: Synthesis, spectral characterization, phosphate-hydrolysis, antioxidant, DNA interaction and cytotoxic studies

    Science.gov (United States)

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Prabhu, Durai; Arulvasu, Chinnasamy; Rahiman, Aziz Kalilur

    2015-01-01

    A series of phenol-based mixed-ligand copper(II) complexes of the type [CuL1-4(diimine)] (1-8), where L1-4 = N1,N2-bis(5-substituted-2-hydroxybenzylidene)-1,2-ethylene/phenylenediimine and diimine = 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen), have been isolated and fully characterized by analytical and spectral techniques. Electronic spectra of complexes suggest Cu(II) cation has a d9 electronic configuration, adopting distorted octahedral geometry with axial elongation, due to Jahn-Teller effect. Electrochemical studies of complexes evidenced one-electron irreversible reduction wave in the cathodic region. The observed rate constant (k) values for the hydrolysis of 4-nitrophenylphosphate (4-NPP) are in the range of 0.25-3.82 × 10-2 min-1. The obtained room temperature magnetic moment values (1.79-1.90 BM) lies within the range observed for octahedral copper(II) complexes. Antioxidant studies revealed that these complexes possess considerable radical scavenging potency against DPPH. The binding studies of complexes with calf thymus DNA (CT-DNA) revealed intercalation with minor-groove binding, and the complex 4 exhibits highest binding activity than the other complexes. The cleavage activity on supercoiled pBR322 DNA revealed the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species, and complexes encourage binding to minor-groove. Further, the cytotoxicity of complex 4 on human hepatocellular liver carcinoma HepG2 cell line implies the cell death through apoptosis.

  7. Surfactant-copper(II) Schiff base complexes: synthesis, structural investigation, DNA interaction, docking studies, and cytotoxic activity.

    Science.gov (United States)

    Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Solomon, Rajadurai Vijay; Venuvanalingam, Ponnambalam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Akbarsha, Mohammad Abdulkader

    2015-01-01

    A series of surfactant-copper(II) Schiff base complexes (1-6) of the general formula, [Cu(sal-R2)2] and [Cu(5-OMe-sal-R2)2], {where, sal=salicylaldehyde, 5-OMe-sal=5-methoxy- salicylaldehyde, and R2=dodecylamine (DA), tetradecylamine (TA), or cetylamine (CA)} have been synthesized and characterized by spectroscopic, ESI-MS, and elemental analysis methods. For a special reason, the structure of one of the complexes (2) was resolved by single crystal X-ray diffraction analysis and it indicates the presence of a distorted square-planar geometry in the complex. Analysis of the binding of these complexes with DNA has been carried out adapting UV-visible-, fluorescence-, as well as circular dichroism spectroscopic methods and viscosity experiments. The results indicate that the complexes bind via minor groove mode involving the hydrophobic surfactant chain. Increase in the length of the aliphatic chain of the ligands facilitates the binding. Further, molecular docking calculations have been performed to understand the nature as well as order of binding of these complexes with DNA. This docking analysis also suggested that the complexes interact with DNA through the alkyl chain present in the Schiff base ligands via the minor groove. In addition, the cytotoxic property of the surfactant-copper(II) Schiff base complexes have been studied against a breast cancer cell line. All six complexes reduced the visibility of the cells but complexes 2, 3, 5, and 6 brought about this effect at fairly low concentrations. Analyzed further, but a small percentage of cells succumbed to necrosis. Of these complexes (6) proved to be the most efficient aptotoxic agent.

  8. A Major Portion of DNA Gyrase Inhibitor Microcin B17 Undergoes an N,O-Peptidyl Shift during Synthesis*

    OpenAIRE

    Ghilarov, Dmitry; Serebryakova, Marina; Shkundina, Irina; Severinov, Konstantin

    2011-01-01

    Microcin B17 (McB) is a 43-amino acid antibacterial peptide targeting the DNA gyrase. The McB precursor is ribosomally produced and then post-translationally modified by the McbBCD synthase. Active mature McB contains eight oxazole and thiazole heterocycles. Here, we show that a major portion of mature McB contains an additional unusual modification, a backbone ester bond connecting McB residues 51 and 52. The modification results from an N → O shift of the Ser52 residue located immediately d...

  9. DNA Methyltransferase Protein Synthesis Is Reduced in CXXC Finger Protein 1–Deficient Embryonic Stem Cells

    OpenAIRE

    Butler, Jill S; Palam, Lakshmi R.; Tate, Courtney M.; Sanford, Jeremy R; Wek, Ronald C.; Skalnik, David G.

    2009-01-01

    CXXC finger protein 1 (CFP1) binds to unmethylated CpG dinucleotides and is required for embryogenesis. CFP1 is also a component of the Setd1A and Setd1B histone H3K4 methyltransferase complexes. Murine embryonic stem (ES) cells lacking CFP1 fail to differentiate, and exhibit a 70% reduction in global genomic cytosine methylation and a 50% reduction in DNA methyltransferase (DNMT1) protein and activity. This study investigated the underlying mechanism for reduced DNMT1 expression in CFP1-defi...

  10. Synthesis, Spectroscopic Characterisation, and Biopotential and DNA Cleavage Applications of Mixed Ligand 4-N,N-Dimethylaminopyridine Metal Complexes

    Directory of Open Access Journals (Sweden)

    C. Surendra Dilip

    2013-01-01

    Full Text Available The mixed ligand transition metal complexes of 4-N,N-dimethylaminopyridine (DP and chloride as primary and secondary ligands with the general formula [M(DP3Cl3]; M = Cr(III and Fe(III; [M′(DP4Cl2]M′ = Co(II, Ni(II, Cu(II, and Cd(II were synthesized in a microwave oven. The complexes were characterized by FT-IR and UV, 1HNMR, 13CNMR spectra, TG/DTG, and various physicoanalytical techniques. From the magnetic moment measurements and the electronic spectral data, a distorted octahedral geometry was proposed for the complexes. The complexes express similar trend of thermal behaviour such that they lose water of hydration initially with the subsequent emission of organic and inorganic fragments and leave left the metal oxides as residue. The activation thermodynamic parameters, such as , , , and of the metal complexes, illustrate the spontaneous formation of the complexes. The antimicrobial studies against various pathogenic bacterial and fungal serums insist on that the enhanced potential of the complexes over their ligand and their biopotential properties increases with concentration. The DNA interaction of the synthesized complexes on CT-DNA was investigated by UV-Vis spectroscopy, viscosity, thermal denaturation, and electroanalytical experiments and their binding constants ( were also calculated.

  11. Proviral Loads and Clonal Expansion of HTLV-1-Infected Cells following Vertical Transmission: A 10-Year Follow-Up of Children in Jamaica

    Science.gov (United States)

    Umeki, Kazumi; Hisada, Michie; Maloney, Elizabeth M.; Hanchard, Barrie; Okayama, Akihiko

    2009-01-01

    Objective Few studies have specifically examined proviral load (PVL) and clonal evolution of human T-lymphotropic virus type 1 (HTLV-1)-infected cells in vertically infected children. Methods Sequential samples (from ages 1 to 16 years) from 3 HTLV-1-infected children (cases A, B and C) in the Jamaica Mother Infant Cohort Study were analyzed for their PVL and clonal expansion of HTLV-1-infected cells in peripheral blood mononuclear cells (PBMCs) by inverse-long PCR. Results The baseline PVL (per 100,000 PBMCs) of case A was 260 (at 1 year of age) and of case B it was 1,867 (at 3 years of age), and they remained constant for more than 10 years. Stochastic patterns of clonal expansion of HTLV-1-infected cells were predominately detected. In contrast, case C, who had lymphadenopathy, seborrheic dermatitis and hyperreflexia, showed an increase in PVL from 2,819 at 1.9 years to 13,358 at 13 years of age, and expansion of 2 dominant clones. Conclusion The clonal expansion of HTLV-1-infected cells is induced in early childhood after infection acquired from their mothers. Youths with high PVL and any signs and symptoms associated with HTLV-1 infection should be closely monitored. PMID:19468234

  12. The novel immunosuppressive protein kinase C inhibitor sotrastaurin has no pro-viral effects on the replication cycle of hepatitis B or C virus.

    Directory of Open Access Journals (Sweden)

    Thomas von Hahn

    Full Text Available The pan-protein kinase C (PKC inhibitor sotrastaurin (AEB071 is a novel immunosuppressant currently in phase II trials for immunosuppression after solid organ transplantation. Besides T-cell activation, PKC affects numerous cellular processes that are potentially important for the replication of hepatitis B virus (HBV and hepatitis C virus (HCV, major blood-borne pathogens prevalent in solid organ transplant recipients. This study uses state of the art virological assays to assess the direct, non-immune mediated effects of sotrastaurin on HBV and HCV. Most importantly, sotrastaurin had no pro-viral effect on either HBV or HCV. In the presence of high concentrations of sotrastaurin, well above those used clinically and close to levels where cytotoxic effects become detectable, there was a reduction of HCV and HBV replication. This reduction is very likely due to cytotoxic and/or anti-proliferative effects rather than direct anti-viral activity of the drug. Replication cycle stages other than genome replication such as viral cell entry and spread of HCV infection directly between adjacent cells was clearly unaffected by sotrastaurin. These data support the evaluation of sotrastaurin in HBV and/or HCV infected transplant recipients.

  13. Characterization of HIV-1 Near Full-Length Proviral Genome Quasispecies from Patients with Undetectable Viral Load Undergoing First-Line HAART Therapy

    Directory of Open Access Journals (Sweden)

    Brunna M. Alves

    2017-12-01

    Full Text Available Increased access to highly active antiretroviral therapy (HAART by human immunodeficiency virus postive (HIV+ individuals has become a reality worldwide. In Brazil, HAART currently reaches over half of HIV-infected subjects. In the context of a remarkable HIV-1 genetic variability, highly related variants, called quasispecies, are generated. HIV quasispecies generated during infection can influence virus persistence and pathogenicity, representing a challenge to treatment. However, the clinical relevance of minority quasispecies is still uncertain. In this study, we have determined the archived proviral sequences, viral subtype and drug resistance mutations from a cohort of HIV+ patients with undetectable viral load undergoing HAART as first-line therapy using next-generation sequencing for near full-length virus genome (NFLG assembly. HIV-1 consensus sequences representing NFLG were obtained for eleven patients, while for another twelve varying genome coverage rates were obtained. Phylogenetic analysis showed the predominance of subtype B (83%; 19/23. Considering the minority variants, 18 patients carried archived virus harboring at least one mutation conferring antiretroviral resistance; for six patients, the mutations correlated with the current ARVs used. These data highlight the importance of monitoring HIV minority drug resistant variants and their clinical impact, to guide future regimen switches and improve HIV treatment success.

  14. DNA Polymerase Gamma in Mitochondrial DNA Replication and Repair

    Directory of Open Access Journals (Sweden)

    William C. Copeland

    2003-01-01

    Full Text Available Mutations in mitochondrial DNA (mtDNA are associated with aging, and they can cause tissue degeneration and neuromuscular pathologies known as mitochondrial diseases. Because DNA polymerase γ (pol γ is the enzyme responsible for replication and repair of mitochondrial DNA, the burden of faithful duplication of mitochondrial DNA, both in preventing spontaneous errors and in DNA repair synthesis, falls on pol γ. Investigating the biological functions of pol γ and its inhibitors aids our understanding of the sources of mtDNA mutations. In animal cells, pol γ is composed of two subunits, a larger catalytic subunit of 125–140 kDa and second subunit of 35–55 kDa. The catalytic subunit contains DNA polymerase activity, 3’-5’ exonuclease activity, and a 5’-dRP lyase activity. The accessory subunit is required for highly processive DNA synthesis and increases the affinity of pol gamma to the DNA.

  15. A major portion of DNA gyrase inhibitor microcin B17 undergoes an N,O-peptidyl shift during synthesis.

    Science.gov (United States)

    Ghilarov, Dmitry; Serebryakova, Marina; Shkundina, Irina; Severinov, Konstantin

    2011-07-29

    Microcin B17 (McB) is a 43-amino acid antibacterial peptide targeting the DNA gyrase. The McB precursor is ribosomally produced and then post-translationally modified by the McbBCD synthase. Active mature McB contains eight oxazole and thiazole heterocycles. Here, we show that a major portion of mature McB contains an additional unusual modification, a backbone ester bond connecting McB residues 51 and 52. The modification results from an N → O shift of the Ser(52) residue located immediately downstream of one of McB thiazole heterocycles. We speculate that the N,O-peptidyl shift undergone by Ser(52) is an intermediate of post-translational modification reactions catalyzed by the McbBCD synthase that normally lead to formation of McB heterocycles.

  16. A Major Portion of DNA Gyrase Inhibitor Microcin B17 Undergoes an N,O-Peptidyl Shift during Synthesis*

    Science.gov (United States)

    Ghilarov, Dmitry; Serebryakova, Marina; Shkundina, Irina; Severinov, Konstantin

    2011-01-01

    Microcin B17 (McB) is a 43-amino acid antibacterial peptide targeting the DNA gyrase. The McB precursor is ribosomally produced and then post-translationally modified by the McbBCD synthase. Active mature McB contains eight oxazole and thiazole heterocycles. Here, we show that a major portion of mature McB contains an additional unusual modification, a backbone ester bond connecting McB residues 51 and 52. The modification results from an N → O shift of the Ser52 residue located immediately downstream of one of McB thiazole heterocycles. We speculate that the N,O-peptidyl shift undergone by Ser52 is an intermediate of post-translational modification reactions catalyzed by the McbBCD synthase that normally lead to formation of McB heterocycles. PMID:21628468

  17. Synthesis and thermal studies of tetraaza macrocylic ligand and its transition metal complexes. DNA binding affinity of copper complex.

    Science.gov (United States)

    Saif, M; Mashaly, Mahmoud M; Eid, Mohamed F; Fouad, R

    2011-09-01

    A Tetraaza Macrocylic Ligand (H2L) and its complexes, [Cd(H2L)(OH2)2](NO3)(2)·1/2OH2 (I), [Co(H2L)(OH2)](NO3)(2)·1/2OH2 (II), [Cu(H2L)(NO3)2]·3/2OH2 (III) and [Ni(H2L)(NO3)(OH2)]NO3·OH2 (IV), have been synthesized and characterized on the basis of elemental analysis, molar conductivity, 1H NMR, UV-vis, FT-IR and mass spectroscopy. All results confirm that the prepared compounds have 1:1 metal-to-ligand stoichiometry, octahedral configuration and the ligand behaves as a neutral tetradendate towards the metal ions. [CdL(OH2)2] (V), [CoL(OH2)2] (VI), [CuL(OH2)2] (VII) and [Ni(H2L)(NO3)2] (VIII) were synthesized pyrolytically in solid state from corresponding compounds (I-IV). Analytical results of complexes (V-VIII) show that the ligand behaves either as a neutral tetradendate or dianionic tetradentate ligand towards the metal ions. The binding of H2L and its copper complex (III) to DNA has been investigated by ultraviolet absorption spectroscopy. The experiments indicate that H2L and its copper complex (III) can bind to DNA through an intercalative mode. The H2L and its copper complex (III) exhibited anti-tumor activity against Ehrlich Acites Carcinoma (E.A.C) at the concentration of 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Actinomycin and DNA transcription.

    OpenAIRE

    Sobell, H M

    1985-01-01

    Recent advances in understanding how actinomycin binds to DNA have suggested its mechanism of action. Actinomycin binds to a premelted DNA conformation present within the transcriptional complex. This immobilizes the complex, interfering with the elongation of growing RNA chains. The model has a number of implications for understanding RNA synthesis.

  19. Actinomycin and DNA transcription.

    Science.gov (United States)

    Sobell, H M

    1985-01-01

    Recent advances in understanding how actinomycin binds to DNA have suggested its mechanism of action. Actinomycin binds to a premelted DNA conformation present within the transcriptional complex. This immobilizes the complex, interfering with the elongation of growing RNA chains. The model has a number of implications for understanding RNA synthesis. Images PMID:2410919

  20. Actinomycin and DNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Sobell, H.M.

    1985-08-01

    Recent advances in understanding how actinomycin binds to DNA have suggested its mechanism of action. Actinomycin binds to a premelted DNA conformation present within the transcriptional complex. This immobilizes the complex, interfering with the elongation of growing RNA chains. The model has a number of implications for understanding RNA synthesis.

  1. Crosstalk between Translesion Synthesis, Fanconi Anemia Network, and Homologous Recombination Repair Pathways in Interstrand DNA Crosslink Repair and Development of Chemoresistance

    OpenAIRE

    Haynes, Brittany; Saadat, Nadia; Myung, Brian; Shekhar, Malathy PV

    2014-01-01

    Bifunctional alkylating and platinum based drugs are chemotherapeutic agents used to treat cancer. These agents induce DNA adducts via formation of intrastrand or interstrand (ICL) DNA crosslinks, and DNA lesions of the ICL type are particularly toxic as they block DNA replication and/or DNA transcription. However, the therapeutic efficacies of these drugs are frequently limited due to the cancer cell’s enhanced ability to repair and tolerate these toxic DNA lesions. This ability to tolerate ...

  2. [Modulation of mutagenic drug-induced unscheduled DNA synthesis (UDS) in primary rat hepatocytes by diallyl trisulfide].

    Science.gov (United States)

    Deng, D J

    1993-11-01

    Most anticancer drugs are mutagenic/carcinogenic. A possible exception is diallyl trisulfide (DAT), a component of garlic, which inhibits growth of transplantable tumors in vitro and in vivo and mutagenicity and carcinogenicity of genotoxic agents. It is an antimutagenic anticancer chemical. Its modulating effect on induction of UDS by mutagenic mitomycin C (MMC), cyclophosphamide (CP), and cis-diamine dichloroplatin (DDP) was investigated with the assay in primary cultures of Wistar rat hepatocytes by autoradiographic technique. Results showed that MMC (1-10 mumol/L), CP (0.316-3.16mmol/L), and DDP(3.16-31.6mumol/L) resulted in a significant induction of dose-dependent UDS and that DAT (0.5-4.0 mumol/L) significantly enhanced induction of UDS by MMC, CP and DDP while DAT itself did not. A dose-response relation was also observed between the dosage of DAT and the enhancement of induction of UDS. Hepatocellular enzymes for metabolic activation of indirect mutagens may not be involved in the enhancement of UDS-induction since DAT also increased UDS level induced by direct mutagen DDP. DAT promotes UDS induction probably by increasing repair of damaged 4-DNA. DAT, an anti-infection antibiotic, may be used in cancer chemotherapy to alleviate the adverse side effects of chemotherapeutic agents with mutagenic/carcinogenic activities.

  3. Comparative proteomics of oxidative stress response of Lactobacillus acidophilus NCFM reveals effects on DNA repair and cysteine de novo synthesis.

    Science.gov (United States)

    Calderini, Elia; Celebioglu, Hasan Ufuk; Villarroel, Julia; Jacobsen, Susanne; Svensson, Birte; Pessione, Enrica

    2017-03-01

    Probiotic cultures encounter oxidative conditions during manufacturing, yet protein abundance changes induced by such stress have not been characterized for some of the most common probiotics and starters. This comparative proteomics investigation focuses on the response by Lactobacillus acidophilus NCFM to H2 O2, simulating an oxidative environment. Bacterial growth was monitored by BioScreen and batch cultures were harvested at exponential phase for protein profiling of stress responses by 2D gel based comparative proteomics. Proteins identified in 19 of 21 spots changing in abundance due to H2 O2 were typically related to carbohydrate and energy metabolism, cysteine biosynthesis, and stress. In particular, increased cysteine synthase activity may accumulate a cysteine pool relevant for protein stability, enzyme catalysis, and the disulfide-reducing pathway. The stress response further included elevated abundance of biomolecules reducing damage such as enzymes from DNA repair pathways and metabolic enzymes with active site cysteine residues. By contrast, a protein-refolding chaperone showed reduced abundance, possibly reflecting severe oxidative protein destruction that was not overcome by refolding. The proteome analysis provides novel insight into resistance mechanisms in lactic acid bacteria against reactive oxygen species and constitutes a valuable starting point for improving industrial processes, food design, or strain engineering preserving microorganism viability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, spectral characterisation, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base

    Directory of Open Access Journals (Sweden)

    P. Kavitha

    2016-07-01

    Full Text Available Cu(II, Co(II, Ni(II and Zn(II complexes have been synthesized using 3-((pyridine-2-yliminomethyl-4H-chromen-4-one as a ligand derived from 3-formyl chromone and 2-amino pyridine. All the complexes were characterised by analytical, conductivity, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data revealed that the metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the complexes are neutral in nature. On the basis of magnetic and electronic spectral data, octahedral geometry is proposed for all the complexes. Thermal behaviour of the synthesized complexes indicates the coordinated and lattice water molecules are present in the complexes. The X-ray diffraction data suggest a triclinic system for all compounds. Different surface morphologies were identified from SEM micrographs. All metal complexes exhibit fluorescence. The antimicrobial and nematicidal activity data show that metal complexes are more potent than the parent ligand. The DNA cleavage activity of the ligand and its metal complexes were observed in the presence of H2O2.

  5. Designing, synthesis and spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies

    Directory of Open Access Journals (Sweden)

    N. RAMAN

    2008-10-01

    Full Text Available A new series of transition metal complexes of Cu(II, Ni(II, Co(II and Zn(II have been designed and synthesized using a Schiff base (L derived from 4-aminoantipyrine, benzaldehyde and o-phenylenediamine. The structural features were derived from their elemental analyses, magnetic susceptibility and molar conductivity, as well as from mass, IR, UV–Vis, 1H-NMR and ESR spectral studies. The FAB mass spectral data and elemental analyses showed that the complexes had a composition of the ML type. The UV–Vis and ESR spectral data of the complexes suggested a square-planar geometry around the central metal ion. The magnetic susceptibility values of the complexes indicated that they were monomeric in nature. Antimicrobial screening tests were also performed against four bacteria, viz. Salmonella typhi, Staphylococcus aureus, Escherichia coli, and Bacillus subtilis and three fungi, viz. Aspergillus niger, Aspergillus flavus and Rhizoctonia bataicola. These data gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that only the copper complex cleaves CT DNA in the presence of an oxidant.

  6. New bimetallic dicyanidoargentate(I)-based coordination compounds: Synthesis, characterization, biological activities and DNA-BSA binding affinities

    Science.gov (United States)

    Korkmaz, Nesrin; Aydın, Ali; Karadağ, Ahmet; Yanar, Yusuf; Maaşoğlu, Yelis; Şahin, Ertan; Tekin, Şaban

    2017-02-01

    Four compounds -two (2 and 3) completely new- of composition [Ni(edbea)Ag3(CN)5] (1), [Cu(edbea)Ag2(CN)4]·H2O (2), [Cd(edbea)Ag3(CN)5]·H2O (3) and [Cd(edbea)2] [Ag(CN)2]2·H2O (4) {edbea; 2,2‧-(ethylenedioxy)bis (ethylamine)}, were synthesized and characterized using elemental, FT-IR, X-Ray (4), thermal, variable temperature magnetic measurement (1 and 2) and biological techniques. The DNA/BSA binding affinities of 2 and 3 were evaluated by UV-Vis spectrophotometric titrations, ethidium bromide exchange experiments and electrophoretic mobility measurements. Compounds 1 and 4 have previously been characterized and shown to reduce the proliferation and migration of tumor cells. For the sake of clarity, 1 precise mechanism of action on microbial organisms and temperature magnetic measurement were determined. The crystallographic analyses showed that 4 was built up of [Cd(edbea)2]II cations and [Ag2(CN)4]II anions. Complexes demonstrated a remarkable antibacterial (1-4), antifungal (1-4) and antiproliferative activities (2 and 3) to ten human bacterial pathogens, four plant pathogenic fungi or three tumor cells (HeLa, HT29, and C6), respectively. Therefore, our results strongly confirm that cell proliferation, cell morphology, Bcl-2, P53 changes and apoptosis can be related to the pharmacological effects of the complexes as suitable candidate for clinical trials.

  7. Synthesis and characterization of a [3-15N]-labeled cis-syn thymine dimer-containing DNA duplex.

    Science.gov (United States)

    Bdour, Hussam M; Kao, Jeff Lung-Fa; Taylor, John-Stephen

    2006-02-17

    Cis-syn thymine dimers are the major photoproducts of DNA and are the principal cause of mutations induced by sunlight. To better understand the nature of base pairing with cis-syn thymine dimers, we have synthesized a decamer oligodeoxynucleotide (ODN) containing a cis-syn thymine dimer labeled at the N3 of both T's with 15N by two efficient routes from [3-15N]-thymidine phosphoramidite. In the postsynthetic irradiation route, an ODN containing an adjacent pair of [3-15N]-labeled T's was irradiated and the cis-syn dimer-containing ODN isolated by HPLC. In the mixed building block route, a mixture of cis-syn and trans-syn dimer-containing ODNs was synthesized from a mixture of [3-15N]-labeled thymine dimer phosphoramidites after which the cis-syn dimer-containing ODN was isolated by HPLC. The N3-nitrogen and imino proton signals of an (15)N-labeled thymine dimer-containing decamer duplex were assigned by 2D 1H-15N heterocorrelated HSQC NMR spectroscopy, and the 15N-1H coupling constant was found to be 1.8 Hz greater for the 5'-T than for the 3'-T. The larger coupling constant is indicative of weaker H-bonding that is consistent with the more distorted nature of the 5'-base pair found in solution state NMR and crystallographic structures.

  8. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2013-03-01

    A new series of Cr(III), Mn(II), Ni(II), Zn(II) and Hg(II) complexes of Schiff-bases derived from the condensation of 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analysis, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mononegative tridentate manner except in Cr(III) complex in which the ligand exhibits mononegative bidentate manner. The parameters total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.20, 3.27 and 3.26 eV for Cr, Mn and Ni complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against the bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results show that the metal complexes be more potent in activity antibacterial than the parent Shciff base ligand towards one or more bacterial species. Finally, the biochemical studies showed that, Mn complex have powerful and complete degradation effect on DNA.

  9. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure

    Science.gov (United States)

    Montazerozohori, M.; Musavi, S. A.; Masoudiasl, A.; Naghiha, A.; Dusek, M.; Kucerakova, M.

    2015-02-01

    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N‧-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, 1H and 13C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2) Å while the Cd-Nisothiocyanate bond distances are 2.287(2) Å and 2.310(2) Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  10. Effective Optimization of Antibody Affinity by Phage Display Integrated with High-Throughput DNA Synthesis and Sequencing Technologies.

    Directory of Open Access Journals (Sweden)

    Dongmei Hu

    Full Text Available Phage display technology has been widely used for antibody affinity maturation for decades. The limited library sequence diversity together with excessive redundancy and labour-consuming procedure for candidate identification are two major obstacles to widespread adoption of this technology. We hereby describe a novel library generation and screening approach to address the problems. The approach started with the targeted diversification of multiple complementarity determining regions (CDRs of a humanized anti-ErbB2 antibody, HuA21, with a small perturbation mutagenesis strategy. A combination of three degenerate codons, NWG, NWC, and NSG, were chosen for amino acid saturation mutagenesis without introducing cysteine and stop residues. In total, 7,749 degenerate oligonucleotides were synthesized on two microchips and released to construct five single-chain antibody fragment (scFv gene libraries with 4 x 10(6 DNA sequences. Deep sequencing of the unselected and selected phage libraries using the Illumina platform allowed for an in-depth evaluation of the enrichment landscapes in CDR sequences and amino acid substitutions. Potent candidates were identified according to their high frequencies using NGS analysis, by-passing the need for the primary screening of target-binding clones. Furthermore, a subsequent library by recombination of the 10 most abundant variants from four CDRs was constructed and screened, and a mutant with 158-fold increased affinity (Kd = 25.5 pM was obtained. These results suggest the potential application of the developed methodology for optimizing the binding properties of other antibodies and biomolecules.

  11. New copper(II) thiohydantoin complexes: Synthesis, characterization, and assessment of their interaction with bovine serum albumin and DNA.

    Science.gov (United States)

    Tishchenko, Ksenia; Beloglazkina, Elena; Proskurnin, Mikhail; Malinnikov, Vladislav; Guk, Dmitriy; Muratova, Marina; Krasnovskaya, Olga; Udina, Anna; Skvortsov, Dmitry; Shafikov, Radik R; Ivanenkov, Yan; Aladinskiy, Vladimir; Sorokin, Ivan; Gromov, Oleg; Majouga, Alexander; Zyk, Nikolay

    2017-10-01

    New copper(II) complexes of 2-alkylthio-5-arylmethylene-4H-imidazolin-4-ones: (5Z)-2-(methylsulfanyl)-3-(prop-2-en-1-yl)-5-(pyridin-2-ylmethylidene)-3,5-dihydro-4H-imidazol-4-one) (1a), (5Z,5'Z)-2,2'-(ethan-1,2-diyldisulfanyldiyl)bis(5-(2-pyridilmethylen)-3-allyl-3,5-dihydo-4Н-imidazole-4-one) (2a) and (5Z,5'Z)-3,3'-hexan-1,6-diylbis[5-(2-pyridilmethylen)-2-methylthiotetrahydro-4Н-imidazole-4-one)] (3a) were synthesized as possible anticancer drugs. Their structures were characterized by 1 H NMR spectroscopy, elemental analysis, and X-ray crystallography. The composition of the complexes were found for 1a (Cu:L=1:1), 2a (Cu:L=2:1), and 3a (Cu:L=2:1). The chelation constants were found by competitive complexation with ethylenediamine tetraacetate: 1a (6.7±0.6)×10 15 M -1 , 2a=(4.9±0.4)×10 19 M -2 , and 3a (5.7±0.5)×10 19 M -2 . Supramolecular binding with calf thymus DNA by competitive ethidium bromide quenching was made for complex 2a as the most promising anticancer model, the Stern-Volmer constants were found to be K SV =(8.0±0.4)×10 6 M -1 , K q =(6.5±0.4)×10 5 M -1 . The binding of the complex 2a to BSA was made by the Scatchard method, the value of the constant is K b =(1.9±0.2)×10 6 M -1 . Copyright © 2017 Elsevier Inc. All rights reserved.

  12. HTLV-1 Tax-Specific CTL Epitope-Pulsed Dendritic Cell Therapy Reduces Proviral Load in Infected Rats with Immune Tolerance against Tax.

    Science.gov (United States)

    Ando, Satomi; Hasegawa, Atsuhiko; Murakami, Yuji; Zeng, Na; Takatsuka, Natsuko; Maeda, Yasuhiro; Masuda, Takao; Suehiro, Youko; Kannagi, Mari

    2017-02-01

    Adult T cell leukemia/lymphoma (ATL), a CD4(+) T cell malignancy with a poor prognosis, is caused by human T cell leukemia virus type 1 (HTLV-1) infection. High proviral load (PVL) is a risk factor for the progression to ATL. We previously reported that some asymptomatic carriers had severely reduced functions of CTLs against HTLV-1 Tax, the major target Ag. Furthermore, the CTL responses tended to be inversely correlated with PVL, suggesting that weak HTLV-1-specific CTL responses may be involved in the elevation of PVL. Our previous animal studies indicated that oral HTLV-1 infection, the major route of infection, caused persistent infection with higher PVL in rats compared with other routes. In this study, we found that Tax-specific CD8(+) T cells were present, but not functional, in orally infected rats as observed in some human asymptomatic carriers. Even in the infected rats with immune unresponsiveness against Tax, Tax-specific CTL epitope-pulsed dendritic cell (DC) therapy reduced the PVL and induced Tax-specific CD8(+) T cells capable of proliferating and producing IFN-γ. Furthermore, we found that monocyte-derived DCs from most infected individuals still had the capacity to stimulate CMV-specific autologous CTLs in vitro, indicating that DC therapy may be applicable to most infected individuals. These data suggest that peptide-pulsed DC immunotherapy will be useful to induce functional HTLV-1-specific CTLs and decrease PVL in infected individuals with high PVL and impaired HTLV-1-specific CTL responses, thereby reducing the risk of the development of ATL. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Low Proviral Load is Associated with Indeterminate Western Blot Patterns in Human T-Cell Lymphotropic Virus Type 1 Infected Individuals: Could Punctual Mutations be Related?

    Science.gov (United States)

    Cánepa, Camila; Salido, Jimena; Ruggieri, Matías; Fraile, Sindy; Pataccini, Gabriela; Berini, Carolina; Biglione, Mirna

    2015-10-28

    indeterminate Western blot (WB) patterns are a major concern for diagnosis of human T-cell lymphotropic virus type 1 (HTLV-1) infection, even in non-endemic areas. (a) to define the prevalence of indeterminate WB among different populations from Argentina; (b) to evaluate if low proviral load (PVL) is associated with indeterminate WB profiles; and (c) to describe mutations in LTR and tax sequence of these cases. Among 2031 samples, 294 were reactive by screening. Of them, 48 (16.3%) were WB indeterminate and of those 15 (31.3%) were PCR+. Quantitative real-time PCR (qPCR) was performed to 52 HTLV-1+ samples, classified as Group 1 (G1): 25 WB+ samples from individuals with pathologies; Group 2 (G2): 18 WB+ samples from asymptomatic carriers (AC); and Group 3 (G3): 9 seroindeterminate samples from AC. Median PVL was 4.78, 2.38, and 0.15 HTLV-1 copies/100 PBMCs, respectively; a significant difference (p=0.003) was observed. Age and sex were associated with PVL in G1 and G2, respectively. Mutations in the distal and central regions of Tax Responsive Elements (TRE) 1 and 2 of G3 were observed, though not associated with PVL.The 8403A>G mutation of the distal region, previously related to high PVL, was absent in G3 but present in 50% of WB+ samples (p = 0.03). indeterminate WB results confirmed later as HTLV-1 positive may be associated with low PVL levels. Mutations in LTR and tax are described; their functional relevance remains to be determined.

  14. Acid- and Au(i)-mediated synthesis of hexathymidine-DNA-heterocycle chimeras, an efficient entry to DNA-encoded libraries inspired by drug structures† †Electronic supplementary information (ESI) available: Experimental procedures, compound characterization data, analysis of ligation reactions, and analysis of the tiDEL. See DOI: 10.1039/c7sc00455a Click here for additional data file.

    Science.gov (United States)

    Škopić, Mateja Klika; Salamon, Hazem; Bugain, Olivia; Jung, Kathrin; Gohla, Anne; Doetsch, Lara J.; dos Santos, Denise; Bhat, Avinash; Wagner, Bernd

    2017-01-01

    Libraries of DNA-tagged compounds are a validated screening technology for drug discovery. They are synthesized through combinatorial iterations of alternated coding and preparative synthesis steps. Thus, large chemical space can be accessed for target-based screening. However, the need to preserve the functionality of the DNA tag severely restricts the choice of chemical methods for library synthesis. Acidic organocatalysts, transition metals, and oxidants furnish diverse drug-like structures from simple starting materials, but cause loss of genetic information by depurination. A hexathymidine oligonucleotide, called “hexT” allows the chemist utilizing these classes of catalysts to access a potentially broad variety of structures in the initial step of library synthesis. We exploited its catalyst tolerance to efficiently synthesize diverse substituted β-carbolines, pyrazolines, and pyrazoles from readily available starting materials as hexT conjugates by acid- and Au(i)-catalysis, respectively. The hexT conjugates were ligated to coding DNA sequences yielding encoded screening libraries inspired by drug structures. PMID:28507705

  15. CCAAT/Enhancer Binding Protein alpha uses distinct domains to prolong pituitary cells in the Growth 1 and DNA Synthesis phases of the cell cycle

    Directory of Open Access Journals (Sweden)

    Day Richard N

    2002-03-01

    Full Text Available Abstract Background A number of transcription factors coordinate differentiation by simultaneously regulating gene expression and cell proliferation. CCAAT/enhancer binding protein alpha (C/EBPα is a basic/leucine zipper transcription factor that integrates transcription with proliferation to regulate the differentiation of tissues involved in energy balance. In the pituitary, C/EBPα regulates the transcription of a key metabolic regulator, growth hormone. Results We examined the consequences of C/EBPα expression on proliferation of the transformed, mouse GHFT1-5 pituitary progenitor cell line. In contrast to mature pituitary cells, GHFT1-5 cells do not contain C/EBPα. Ectopic expression of C/EBPα in the progenitor cells resulted in prolongation of both growth 1 (G1 and the DNA synthesis (S phases of the cell cycle. Transcription activation domain 1 and 2 of C/EBPα were required for prolongation of G1, but not of S. Some transcriptionally inactive derivatives of C/EBPα remained competent for G1 and S phase prolongation. C/EBPα deleted of its leucine zipper dimerization functions was as effective as full-length C/EBPα in prolonging G1 and S. Conclusion We found that C/EBPα utilizes mechanistically distinct activities to prolong the cell cycle in G1 and S in pituitary progenitor cells. G1 and S phase prolongation did not require that C/EBPα remained transcriptionally active or retained the ability to dimerize via the leucine zipper. G1, but not S, arrest required a domain overlapping with C/EBPα transcription activation functions 1 and 2. Separation of mechanisms governing proliferation and transcription permits C/EBPα to regulate gene expression independently of its effects on proliferation.

  16. Copper(II) Complexes of Phenanthroline and Histidine Containing Ligands: Synthesis, Characterization and Evaluation of their DNA Cleavage and Cytotoxic Activity.

    Science.gov (United States)

    Leite, Sílvia M G; Lima, Luís M P; Gama, Sofia; Mendes, Filipa; Orio, Maylis; Bento, Isabel; Paulo, António; Delgado, Rita; Iranzo, Olga

    2016-11-21

    Copper(II) complexes have been intensely investigated in a variety of diseases and pathological conditions due to their therapeutic potential. The development of these complexes requires a good knowledge of metal coordination chemistry and ligand design to control species distribution in solution and tailor the copper(II) centers in the right environment for the desired biological activity. Herein we present the synthesis and characterization of two ligands HL1 and H 2 L2 containing a phenanthroline unit (phen) attached to the amino group of histidine (His). Their copper(II) coordination properties were studied using potentiometry, spectroscopy techniques (UV-vis and EPR), mass spectrometry (ESI-MS) and DFT calculations. The data showed the formation of single copper complexes, [CuL1] + and [CuL2], with high stability within a large pH range (from 3.0 to 9.0 for [CuL1] + and from 4.5 to 10.0 for [CuL2]). In both complexes the Cu 2+ ion is bound to the phen unit, the imidazole ring and the deprotonated amide group, and displays a distorted square pyramidal geometry as confirmed by single crystal X-ray crystallography. Interestingly, despite having similar structures, these copper complexes show different redox potentials, DNA cleavage properties and cytotoxic activity against different cancer cell lines (human ovarian (A2780), its cisplatin-resistant variant (A2780cisR) and human breast (MCF7) cancer cell lines). The [CuL2] complex has lower reduction potential (E pc = -0.722 V vs -0.452 V for [CuL1] + ) but higher biological activity. These results highlight the effect of different pendant functional groups (carboxylate vs amide), placed out of the coordination sphere, in the properties of these copper complexes.

  17. DNA methyltransferase deficiency modifies cancer susceptibility in mice lacking DNA mismatch repair.

    Science.gov (United States)

    Trinh, Binh N; Long, Tiffany I; Nickel, Andrea E; Shibata, Darryl; Laird, Peter W

    2002-05-01

    We have introduced DNA methyltransferase 1 (Dnmt1) mutations into a mouse strain deficient for the Mlh1 protein to study the interaction between DNA mismatch repair deficiency and DNA methylation. Mice harboring hypomorphic Dnmt1 mutations showed diminished RNA expression and DNA hypomethylation but developed normally and were tumor free. When crossed to Mlh1(-/-) homozygosity, they were less likely to develop the intestinal cancers that normally arise in this tumor-predisposed, mismatch repair-deficient background. However, these same mice developed invasive T- and B-cell lymphomas earlier and at a much higher frequency than their Dnmt1 wild-type littermates. Thus, the reduction of Dnmt1 activity has significant but opposing outcomes in the development of two different tumor types. DNA hypomethylation and mismatch repair deficiency interact to exacerbate lymphomagenesis, while hypomethylation protects against intestinal tumors. The increased lymphomagenesis in Dnmt1 hypomorphic, Mlh1(-/-) mice may be due to a combination of several mechanisms, including elevated mutation rates, increased expression of proviral sequences or proto-oncogenes, and/or enhanced genomic instability. We show that CpG island hypermethylation occurs in the normal intestinal mucosa, is increased in intestinal tumors in Mlh1(-/-) mice, and is reduced in the normal mucosa and tumors of Dnmt1 mutant mice, consistent with a role for Dnmt1-mediated CpG island hypermethylation in intestinal tumorigenesis.

  18. T-cell tropism of simian T-cell leukaemia virus type 1 and cytokine profiles in relation to proviral load and immunological changes during chronic infection of naturally infected mandrills (Mandrillus sphinx).

    Science.gov (United States)

    Souquière, Sandrine; Mouinga-Ondeme, Augustin; Makuwa, Maria; Beggio, Paola; Radaelli, Antonia; De Giuli Morghen, Carlo; Mortreux, Franck; Kazanji, Mirdad

    2009-08-01

    Although a wide variety of non-human primates are susceptible to simian T-cell leukaemia virus type 1 (STLV-1), little is known about the virological or molecular determinants of natural STLV-1 infection. We determined STLV-1 virus tropism in vivo and its relation to the immune response by evaluating cytokine production and T-cell subsets in naturally infected and uninfected mandrills. With real-time PCR methods, we found that STLV-1 in mandrills infects both CD4(+) and CD8(+) T cells; however, proviral loads were significantly higher (P = 0.01) in CD4(+) than in CD8(+) cells (mean STLV-1 copies number per 100 cells (+/- SD) was 7.8 +/- 8 in CD4(+) T cells and 3.9 +/- 4.5 in CD8(+) T cells). After culture, STLV-1 provirus was detected in enriched CD4(+) but not in enriched CD8(+) T cells. After 6 months of culture, STLV-1-transformed cell lines expressing CD3(+), CD4(+) and HLADR(+) were established, and STLV-1 proteins and tax/rex mRNA were detected. In STLV-1 infected monkeys, there was a correlation between high proviral load and elevated levels of interleukin (IL)-2, IL-6, IL-10, interferon-gamma and tumour necrosis factor-alpha. The two monkeys with the highest STLV-1 proviral load had activated CD4(+)HLADR(+) and CD8(+)HLADR(+) T-cell subsets and a high percentage of CD25(+) in CD4(+) and CD8(+) T cells. Our study provides the first cellular, immunological and virological characterization of natural STLV-1 infection in mandrills and shows that they are an appropriate animal model for further physiopathological studies of the natural history of human T-cell leukaemia viruses.

  19. The effect of HTLV-1 virulence factors (HBZ, Tax, proviral load), HLA class I and plasma neopterin on manifestation of HTLV-1 associated myelopathy tropical spastic paraparesis.

    Science.gov (United States)

    Tarokhian, Hanieh; Taghadosi, Mahdi; Rafatpanah, Hushang; Rajaei, Taraneh; Azarpazhooh, Mahmoud Reza; Valizadeh, Narges; Rezaee, S A Rahim

    2017-01-15

    Previous studies have suggested debatable roles of Tax and HBZ gene expression in the pathogenesis of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). In this study, HTLV-1 and host interactions in the manifestation of HAM/TSP were evaluated. A cross-sectional study was conducted on 33 HAM/TSP patients and 38 HTLV-1 asymptomatic carriers (ACs). HTLV-1-Tax, HBZ gene expression, and proviral load (PVL) were assessed using the quantitative real-time PCR (TaqMan), host plasma neopterin level, and HLA-I, and the clinical manifestation were evaluated. The HTLV-1 PVLs in HAM/TSP and ACs were 306±360.741 copies/10(4) PBMCs and 250.98±629.94 copies/10(4) PBMCs, respectively; the PVL was higher in HAM/TSP than that in ACs (p=0.004). HTLV-1 Tax and HBZ expression in HAM/TSP was higher than that in ACs, wherein only the Tax expression was statistically significant (p=0.039). In contrast to Japanese HTLV-1-infected subjects, HLA-A*02, HLA-A*24, HLA-Cw*08, and HLA-B*5401 did not exhibit preventive effects for HAM/TSP manifestation. The plasma neopterin level was significantly higher in HAM/TSPs than that in ACs; furthermore, there was a strong significant correlation between plasma neopterin and PVL (R=0.76, p=0.001). Moreover, there were significant correlation between urinary disturbances and haematological indices, including the RBC count (R=-0.61, p=0.01) and Hematocrit (Ht) index (R=-0.75, p=0.002), and between mobility disturbances with Tax expression (R=-0.58, p=0.02) and WBC counts (R=-0.54, p=0.04), and finally, a significant association was found between the sensory disturbances and PVL (p=0.05). Overall, HTLV-1 PVL and Tax may be the valid predictors of disease development, and the neopterin level may be a valid predictor of disease progression. In addition, Tax and neopterin are more helpful than PVL for the monitoring of HTLV-1-infected patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  1. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  2. Molecular docking, discovery, synthesis, and pharmacological properties of new 6-substituted-2-(3-phenoxyphenyl)-4-phenyl quinoline derivatives; an approach to developing potent DNA gyrase inhibitors/antibacterial agents.

    Science.gov (United States)

    Alagumuthu, Manikandan; Arumugam, Sivakumar

    2017-02-15

    Synthesis and molecular validation of 6-substituted-2-(3-phenoxyphenyl)-4-phenylquinoline derivatives (4a-h) as antibacterial/DNA gyrase inhibitors reported. Primarily, 6-substituted-2-(3-phenoxyphenyl)-4-phenylquinoline derivatives were docked into the active sites of DNA gyrase A&B, to ensure the binding mode of the compounds, and the results were superior on DNA gyrase A over DNA gyrase B. Based on this, S. aureus DNA gyrase A assay was proposed and executed. Most prominent DNA gyrase inhibition showed by 6-fluoro-2-(3-phenoxyphenyl)-4-phenylquinoline (4c), IC50 0.389μg/mL; 2-(3-phenoxyphenyl)-4-phenylquinolin-6-ol (4e), IC50 0.328μg/mL; and 5,7-dichloro-2-(3-phenoxyphenyl)-4-phenylquinolin-6-ol (4h), IC50 0.214μg/mL which were substituted with fluorine (4F), nitrile (4CN), hydroxyl group (4OH) and dichloro-hydroxyl (3,5Cl, 4OH) groups in the quinoline scaffold. Antimicrobial activity on Gram-ve bacteria Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 424), and Gram+ve bacteria Staphylococcus aureus (MTCC 96) and Streptococcus pyogenes (MTCC 442) was evaluated. Excellent antibacterial activity showed by S. aureus and S. pyogenes which indicates the activity dominance of 6-substituted-2-(3-phenoxyphenyl)-4-phenylquinoline derivatives on Gram+ve bacteria rather than Gram-ve. Subsequently, the cytotoxicity of 6-substituted-2-(3-phenoxyphenyl)-4-phenylquinoline derivatives was evaluated. Cytotoxicity results of MCF-7 (human breast cancer) and G361 (skin melanoma cancer) cell lines reveals that the 6-substituted-2-(3-phenoxyphenyl)-4-phenylquinoline derivatives are highly toxic to cancer cells. Predicted SAR, Lipinski's filter, Pharmacokinetic, and ADMET properties were also ensured the druggability probabilities of most favorable compounds among 6-substituted-2-(3-phenoxyphenyl)-4-phenylquinoline derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. DNA synthesis in ataxia telangiectasia

    NARCIS (Netherlands)

    N.G.J. Jaspers (Nicolaas)

    1985-01-01

    textabstractAfter the discovery that cultured cells from AT patients are hypersensitive to ionizing radiation the suggestion was made that AT-could be the 1 X-ray-analogue 1 of xeroderma pigmentosum. The latter syndrome (XP) is characterized by hypersensitivity to short-wave UV-radiation, caused by

  4. Heterogeneity in the properties of burst-forming units of erythroid lineage in sickle cell anemia: DNA synthesis and burst-promoting activity production is related to peripheral hemoglobin F levels

    Energy Technology Data Exchange (ETDEWEB)

    Croizat, H.; Billett, H.H.; Nagel, R.L. (Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY (USA))

    1990-02-15

    Circulating 14-day erythroid progenitors (BFU-E) from 28 sickle cell anemia (SS) patients with hemoglobin F (HbF) levels ranging from 2% to 16% were studied to determine their sensitivity to ({sup 3}H) thymidine kill and burst-promoting activity (BPA)-like factor production. We find that the proportion of BFU-E sensitive to 3H-dT kill, and hence active in DNA synthesis, was inversely correlated with the percent of peripheral HbF when light density (LD) mononuclear cells were used for plating. Regression analysis showed that the correlation between HbF level and BFU-E kill was highly significant (r = .88; P less than .00003). We confirmed the BPA-like factor(s) production by LD mononuclear cells of SS patients, and found, in addition, that this phenomenon is restricted to the population of SS patients with HbF levels lower than 9%. Circulating BFU-E of patients with high HbF levels are not sensitive to 3H-dT, and their mononuclear cells do not release BPA-like factor. In summary, SS patients exhibit differences in the capacity of their mononuclear cells to produce BPA activity according to their peripheral HbF level, as well as to the DNA synthesis-state of their circulating BFU-E. We conclude that erythroid progenitors differ among SS patients in relation to their peripheral HbF level.

  5. Early antiretroviral therapy reduces HIV DNA following perinatal HIV infection.

    Science.gov (United States)

    Foster, Caroline; Pace, Matthew; Kaye, Steve; Hopkins, Emily; Jones, Mathew; Robinson, Nicola; Mant, Christine; Cason, John; Fidler, Sarah; Frater, John

    2017-08-24

    : The impact of antiretroviral therapy (ART) on the size of the HIV reservoir has implications for virological remission in adults, but is not well characterized in perinatally acquired infection. In a prospective observational study of 20 children with perinatally acquired infection and sustained viral suppression on ART for more than 5 years, proviral DNA was significantly higher in deferred (>4 years) versus early (first year of life) ART recipients (P = 0.0062), and correlated with age of initiation (P = 0.13; r = 0.57). No difference was seen in cell-associated viral RNA (P = 0.36). Identifying paediatric populations with smaller reservoirs may inform strategies with potential to induce ART-free remission.

  6. Translesion synthesis : cellular and organismal functions

    NARCIS (Netherlands)

    Temviriyanukul, Piya

    2014-01-01

    To cope with DNA damages induced by endogenous and exogenous agents, cells employ both DNA repair and DNA damage tolerance (DDT) mechanisms. Translesion synthesis (TLS) is an important DDT mechanism in mammalian cells. Mammalian TLS is performed by at least five key proteins. These TLS DNA

  7. One-step synthesis of DNA functionalized cadmium-free quantum dots and its application in FRET-based protein sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cuiling, E-mail: clzhang@chem.ecnu.edu.cn [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Ding, Caiping [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Zhou, Guohua [School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, 524048 (China); Xue, Qin [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China); Xian, Yuezhong, E-mail: yzxian@chem.ecnu.edu.cn [Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241 (China)

    2017-03-08

    DNA functionalized quantum dots (QDs) are promising nanoprobes for the fluorescence resonance energy transfer (FRET)-based biosensing. Herein, cadmium-free DNA functionalized Mn-doped ZnS (DNA-ZnS:Mn{sup 2+}) QDs were successfully synthesized by one-step route. As-synthesized QDs show excellent photo-stability with the help of PAA and DNA. Then, we constructed a novel FRET model based on the QDs and WS{sub 2} nanosheets as the energy donor-acceptor pairs, which was successfully applied for the protein detection through the terminal protection of small molecule-linked DNA assay. This work not only explores the potential bioapplication of the DNA-ZnS:Mn{sup 2+} QDs, but also provides a platform for the investigation of small molecule-protein interaction. - Highlights: • The stable and cadmium-free DNA functionalized ZnS:Mn{sup 2+} QDs were successfully synthesized through a facile one-step route. • We constructed a novel FRET system based on one-step synthesized DNA-ZnS:Mn{sup 2+} QDs (donor) and WS{sub 2} nanosheets (acceptor). • The FRET-based strategy was applied for the detection of streptavidin and folate receptor by combining TPSMLD and Exo III.

  8. Synthesis of novel anthraquinones: Molecular structure, molecular chemical reactivity descriptors and interactions with DNA as antibiotic and anti-cancer drugs

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; EL Gogary, Tarek M.

    2017-02-01

    Anthraquinones are well-known anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ5 and AQ5H) were synthesized and studied with 1,5-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions four conformers of AQ5 were detected within the range of about 42 kcal/mol. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the anthraquinones (AQ5 and AQ5H) were studied with different DNA namely, calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). UV-VIS electronic absorption spectral data were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis. NMR study confirms qualitatively the drug/DNA interaction in terms of peak shift and broadening.

  9. One-pot synthesis of a new 2-substituted 1,2,3-triazole 1-oxide derivative from dipyridyl ketone and isonitrosoacetophenone hydrazone: Nickel(II) complex, DNA binding and cleavage properties.

    Science.gov (United States)

    Gup, Ramazan; Erer, Oktay; Dilek, Nefise

    2017-04-01

    An efficient and simple one-pot synthesis of a new 1,2,3-triazole-1-oxide via reaction between isonitrosoacetophenone hydrazone and dipyridyl ketone in the EtOH/AcOH at room temperature has been developed smoothly in high yield. The reaction proceeds via metal salt free, in-situ formation of asymmetric azine followed by cyclization to provide 1,2,3-triazole 1-oxide compound. It has been structurally characterized. The 1:1 ratio reaction of the 1,2,3-triazole 1-oxide ligand with nickel(II) chloride gives the mononuclear complex [Ni(L)(DMF)Cl 2 ], hexa-coordinated within an octahedral geometry. Characterization of the 1,2,3-triazole compound and its Ni(II) complex with FTIR, 1 H and 13 C NMR, UV-vis and elemental analysis also confirms the proposed structures of the compounds. The interactions of the compounds with Calf thymus DNA (CT-DNA) have been investigated by UV-visible spectra and viscosity measurements. The results suggested that both ligand and Ni(II) complex bind to DNA in electrostatic interaction and/or groove binding, also with a slight partial intercalation in the case of ligand. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H 2 O 2 ). Both 1,2,3-triazole 1-oxide ligand and its nickel(II) complex show nuclease activity in the presence of hydrogen peroxide. DNA binding and cleavage affinities of the 1,2,3-triazole 1-oxide ligand is stronger than that of the Ni(II) complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 K-bZIP modulates latency-associated nuclear protein-mediated suppression of lytic origin-dependent DNA synthesis.

    Science.gov (United States)

    Rossetto, Cyprian; Yamboliev, Irena; Pari, Gregory S

    2009-09-01

    The original cotransfection replication assay identified eight human herpesvirus 8 (HHV8)-encoded proteins required for origin-dependent lytic DNA replication. Previously, we demonstrated that under conditions where K-Rta is overexpressed, a K-bZIP knockout bacmid displayed an aberrant subcellular localization pattern for the latency-associated nuclear protein (LANA). Additionally, these same studies demonstrated that K-bZIP interacts with LANA in the absence of K-Rta and that K-bZIP does not directly participate in, but may facilitate, the initiation of lytic DNA synthesis. We developed a modification of the transient cotransfection replication assay wherein both lytic (oriLyt) and latent (terminal repeat) DNA replication are evaluated simultaneously. We now show that LANA represses origin-dependent lytic DNA replication in a dose dependent manner when added to the cotransfection replication assay. This repression was overcome by increasing amounts of a K-bZIP expression plasmid in the cotransfection mixture or by dominant-negative inhibition of the interaction of LANA with K-bZIP by the overexpression of the K-bZIP-LANA binding domain. Chromatin immunoprecipitation assays show that LANA interacts with oriLyt in the absence of K-bZIP expression, suggesting that suppression of lytic replication by LANA is mediated by direct binding. The interaction of K-bZIP with oriLyt was dependent upon the expression of LANA; however, LANA interacted with oriLyt independently of K-bZIP expression. These data suggest that the interaction of LANA with K-bZIP modulates lytic and latent replication and that K-bZIP facilitates lytic DNA replication and modulates the switch from the latent phase of the virus.

  11. Synthesis, spectroscopic characterization and in vitro antimicrobial, anticancer and antileishmanial activities as well interaction with Salmon sperm DNA of newly synthesized carboxylic acid derivative, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid

    Science.gov (United States)

    Sirajuddin, Muhammad; Ali, Saqib; McKee, Vickie; Ullah, Hameed

    2015-03-01

    This paper stresses on the synthesis, characterization of novel carboxylic acid derivative and its application in pharmaceutics. Carboxylic acid derivatives have a growing importance in medicine, particularly in oncology. A novel carboxylic acid, 4-(4-methoxy-2-nitrophenylamino)-4-oxobutanoic acid, was synthesized and characterized by elemental analysis, FT-IR, NMR (1H, and 13C), mass spectrometry and single crystal X-ray structural analysis. The structure of the title compound, C11H12N2O6, shows the molecules dimerised by short intramolecular Osbnd H⋯O hydrogen bonds. The compound was screened for in vitro antimicrobial, anticancer, and antileishmanial activities as well as interaction with SS-DNA. The compound was also checked for in vitro anticancer activity against BHK-21, H-157 and HCEC cell lines, and showed significant anticancer activity. The compound was almost non-toxic towards human corneal epithelial cells (HCEC) and did not show more than 7.4% antiproliferative activity when used at the 2.0 μg/mL end concentration. It was also tested for antileishmanial activity against the promastigote form of leishmania major and obtained attractive result. DNA interaction study exposes that the binding mode of the compound with SS-DNA is an intercalative as it results in hypochromism along with minor red shift. A new and efficient strategy to identify pharmacophores sites in carboxylic acid derivative for antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  12. Synthesis of a new intercalating nucleic acid analogue with pyrenol insertions and the thermal stability of the resulting oligonucleotides towards DNA over RNA

    DEFF Research Database (Denmark)

    Osman, Amany M. A.; Pedersen, Erik Bjerregaard

    2010-01-01

    A new intercalating nucleic acid monomer Y was obtained via alkylation of pyren-1-ol with (S)-(?)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethanol under Mitsunobu conditions followed by hydrolysis with 80% aqueous acetic acid to give a diol which was tritylated with 4,40-dimethoxytrityl chloride followed...... identical hybridization properties with those of intercalating nucleic acid (INA) where neighboring oxygen and carbon atoms are interchanged in the linker. The synthesis of monomer Y avoids the use of allergic intermediates which are a problem in the synthesis of INA....

  13. Synthesis and structure elucidation of a copper(II) Schiff-base complex: in vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies.

    Science.gov (United States)

    Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K

    2014-11-01

    New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Synthesis, spectral and quantum chemical studies and use of (E)-3-[(3,5-bis(trifluoromethyl)phenylimino)methyl]benzene-1,2-diol and its Ni(II) and Cu(II) complexes as an anion sensor, DNA binding, DNA cleavage, anti-microbial, anti-mutagenic and anti-cancer agent

    Science.gov (United States)

    Ünver, Hüseyin; Boyacıoğlu, Bahadır; Zeyrek, Celal Tuğrul; Yıldız, Mustafa; Demir, Neslihan; Yıldırım, Nuray; Karaosmanoğlu, Oğuzhan; Sivas, Hülya; Elmalı, Ayhan

    2016-12-01

    We report the synthesis of a novel Schiff base (E)-3-[(3,5-bis(trifluoromethyl) phenylimino)methyl] benzene-1,2-diol from the reaction of 2,3-dihydroxybenzaldehyde with 3,5-bis(trifluoromethyl)aniline, and its Ni(II) and Cu(II) complexes. The molecular structure of the Schiff base was experimentally determined using X-ray single-crystal data and was compared to the structure predicted by theoretical calculations using density functional theory (DFT), Hartree-Fock (HF) and Möller-Plesset second-order perturbation (MP2). In addition, nonlinear optical (NLO) effects of the compound was predicted using DFT. The antimicrobial activities of the compounds were investigated for their minimum inhibitory concentration. UV-Vis spectroscopy studies of the interactions between the compounds and calf thymus DNA (CT-DNA) showed that the compounds interacts with CT-DNA via intercalative binding. A DNA cleavage study showed that the Cu(II) complex cleaved DNA without any external agents. The compounds inhibited the base pair mutation in the absence of S9 with high inhibition rate. In addition, in vitro cytotoxicity of the Ni(II) complex towards HepG2 cell line was assayed by the MTT method. Also, the colorimetric response of the Schiff base in DMSO to the addition of equivalent amount of anions (F-, Br-, I-, CN-, SCN-, ClO4-, HSO4-, AcO-, H2PO4-, N3- and OH-) was investigated. In this regard, while the addition of F-, CN-, AcO- and OH- anions into the solution containing Schiff base resulted in a significant color change, the addition of Br-, I-, SCN-, ClO4-, HSO4-, H2PO4- and N3- anions resulted in no color change. The most discernable color change in the Schiff base was caused by CN-, which demonstrated that the ligand can be used to selectively detect CN-.

  15. The meloxicam complexes of Co(II) and Zn(II): Synthesis, crystal structures, photocleavage and in vitro DNA-binding

    Science.gov (United States)

    Sanatkar, Tahereh Hosseinzadeh; Hadadzadeh, Hassan; Simpson, Jim; Jannesari, Zahra

    2013-10-01

    Two neutral mononuclear complexes of Co(II) and Zn(II) with the non-steroidal anti-inflammatory drug meloxicam (H2mel, 4-hydroxy-2-methyl-N-(5-methyl-2-thiazolyl)-2H-1,2-benzothiazine-3-carboxammide-1,1-dioxide), [Co(Hmel)2(EtOH)2] (1), and [Zn(Hmel)2(EtOH)2] (2), were synthesized and characterized by elemental analysis, IR and UV-Vis spectroscopy and their solid-state structures were studied by single-crystal diffraction. The complexes have a distorted octahedral geometry around the metal atom. The experimental data indicate that the meloxicam acts as a deprotonated bidentate ligand (through the amide oxygen and the nitrogen atom of the thiazolyl ring) in the complexes, and a strong intramolecular hydrogen bond between the amide N-H function and the enolate O atom stabilizes the ZZZ conformation of meloxicam ligands. Absorption, fluorescence spectroscopy and cyclic voltammetry have been used to investigate the binding of the complexes with fish sperm DNA (FS-DNA). Additionally, the photocleavage studies have been also used to investigate the binding of the complexes with plasmid DNA. The interaction of the complexes with DNA was monitored by a blue shift and hyperchromism in the UV-Vis spectra attributed to an electrostatic binding mode. A competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The experimental results show that the complexes can cleave pUC57 plasmid DNA.

  16. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity.

    Science.gov (United States)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-25

    The mononuclear copper(II) complexes (1&2) of ligands L(1) [N,N'-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L(2) [N,N'-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L(1) and L(2) crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    Science.gov (United States)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  18. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of 6-amino benzothiazole derivatives

    Science.gov (United States)

    Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj

    2017-09-01

    Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.

  19. Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum.

    Science.gov (United States)

    Huang, Qitong; Lin, Xiaofeng; Zhu, Jie-Ji; Tong, Qing-Xiao

    2017-08-15

    In this study, a green and fast method was developed to synthesize high-yield carbon dots (CDs) via one-pot microwave treatment of banana peels without using any other surface passivation agents. Then the as-prepared CDs was used as the reducing agent and stabilizer to synthesize a Pd-Au@CDs nanocomposite by a simple sequential reduction strategy. Finally, Pd-Au@CDs nanocomposite modified glassy carbon electrode (Pd-Au@CDs/GCE) was obtained as a biosensor for target DNA after being immobilized a single-stranded probe DNA by a carboxyl ammonia condensation reaction. Under the optimal conditions, the sensor could detect target DNA concentrations in the range from 5.0×10-16 to 1.0×10-1°molL-1. The detection limit (LD) was estimated to be 1.82×10-17molL-1, which showed higher sensitivity than other electrochemical biosensors reported. In addition, the DNA sensor was also successfully applied to detect colitoxin DNA in human serum. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Platinum(II Complexes with Tetradentate Schiff Bases as Ligands: Synthesis, Characterization and Detection of DNA Interaction by Differential Pulse Voltammetry

    Directory of Open Access Journals (Sweden)

    Lijun Li

    2012-01-01

    Full Text Available Five sterically hindered platinum(II complexes with tetradentate schiff bases as ligands, [Pt(L] (L= N,N′-bisalicylidene-1,2-ethylenediamine (L1, N,N′-bisalicylidene-1,2-cyclohexanediamine (L2, N,N′-bis(5-hydroxyl-salicylidene-1,2-cyclohexanediamine (L3, N,N′-bisalicylidene-1,2-diphenyl-ethylenediamine (L4 and N,N′-bis(3-tert-butyl-5-methyl-salicylidene-1,2-diphenylethylenediamine (L5 have been synthesized and characterized by IR spectroscopy and elemental analysis. The sterical hindrance of antitumor drug candidates potentially makes them less susceptible to deactivation by sulphur containing proteins and helping to overcome resistance mechanisms. The interaction of these metal complexes with fish sperm single-stranded DNA (ssDNA was studied electrochemically based on the oxidation signals of guanine and adenine. Differential pulse voltammetry was employed to monitor the DNA interaction in solution by using renewable pencil graphite electrode. The results indicate that ligands with different groups can strongly affect the interaction between [Pt(L] complexes and ssDNA due to sterical hindrances and complex [Pt(L1] has the best interaction with DNA among the five complexes.

  1. Synthesis, Spectral Characterization, SEM, Antimicrobial, Antioxidative Activity Evaluation, DNA Binding and DNA Cleavage Investigation of Transition Metal(II) Complexes Derived from a tetradentate Schiff base bearing thiophene moiety.

    Science.gov (United States)

    Abdel Aziz, Ayman A; Seda, Sabry H

    2017-05-01

    A novel series of Co(II), Ni(II), Cu(II) and Zn(II) mononuclear complexes have been synthesized involving a potentially tetradentate Schiff base ligand, which was obtained by condensation of 2-aminophenol with 2,5-thiophene-dicarboxaldehyde. The complexes were synthesized via reflux reaction of methanolic solution of the appropriate Schiff base ligand with one equivalent of corresponding metal acetate salt. Based on different techniques including micro analysis, FT-IR, NMR, UV-Vis, ESR, ESI-mass and conductivity measurements, four-coordinated geometry was assigned for all complexes. Spectroscopic data have shown that, the reported Schiff base coordinated to metal ions as a dibasic tetradentate ligand through the phenolic oxygen and the azomethine nitrogen. The antimicrobial activities of the parent ligand and its complexes were investigated by using the agar disk diffusion method. Antioxidation properties of the novel complexes were investigated and it was found that all the complexes have good radical scavenging properties. The binding of complexes to calf thymus DNA (CT-DNA) was investigated by absorption, emission and viscosity measurements. Binding studies have shown that all the complexes interacted with CT-DNA via intercalation mode and the binding affinity varies with relative order as Cu(II) complex > Co(II) complex > Zn(II) complex > Ni(II) complex. Furthermore, DNA cleavage properties of the metal complexes were also investigated. The results suggested the possible utilization of novel complexes for pharmaceutical applications.

  2. Copper(I) halide complexes of 2,2,5,5-tetramethyl-imidazolidine-4-thione: Synthesis, structures, luminescence, thermal stability and interaction with DNA.

    Science.gov (United States)

    Anastasiadou, D; Psomas, G; Lalia-Kantouri, M; Hatzidimitriou, A G; Aslanidis, P

    2016-11-01

    Five neutral mononuclear copper(I) halide complexes containing 2,2,5,5-tetramethylimidazolidine-4-thione (tmimdtH) and triphenylphosphane (PPh3) or tri-o-tolylphosphane (totp) have been prepared and structurally characterized by X-ray single-crystal analysis. The complexes containing PPh3 adopt the usual distorted tetrahedral geometry, while the presence of the bulkier totp forces the formation of three-coordinated trigonal planar species. The interaction of the compounds with calf-thymus DNA was monitored directly via UV-vis spectroscopy, DNA-viscosity measurements and indirectly via its competition with ethidium bromide for DNA studied by fluorescence emission spectroscopy. Intercalation was revealed as the most possible mode of binding. Furthermore, luminescent properties and thermal stabilities of the complexes were investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Synthesis, DNA binding and cleavage activities of copper (II) thiocyanate complex with 4-(N,N-dimethylamino)pyridine and N,N-dimethylformamide.

    Science.gov (United States)

    Chen, Feng-juan; Xu, Min; Xi, Pin-xian; Liu, Hong-yang; Zeng, Zheng-zhi

    2011-10-15

    Two novel copper(II) thiocyanate complexes with 4-(N,N-dimethylamino) pyridine and N,N-dimethylformamide (1) and with 4-(N,N-dimethylamino) pyridine (2) have been synthesized and characterized. The crystal and molecular structures of complexes 1 and 2 were determined by single-crystal X-ray diffraction. Antioxidative activity tests in vitro showed that complex 1 has significant antioxidative activity against hydroxyl free radicals from the Fenton reaction and also oxygen free radicals, which is better than standard antioxidants like vitamin C and mannitol. The interaction of complex 1 with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that complex 1 can bind to DNA via partial intercalation mode. Moreover, complex 1 has been found to cleavage of plasmid DNA pBR322. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    Science.gov (United States)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  5. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C by Ca2+/calmodulin-dependent protein kinase II inhibits DNA synthesis

    DEFF Research Database (Denmark)

    Maga, G; Mossi, R; Fischer, R

    1997-01-01

    delta and epsilon. The DNA and PCNA binding domains of the large 140 kDa subunit of human RF-C have been recently cloned [Fotedar, R., Mossi, R., Fitzgerald, P., Rousselle, T., Maga, G., Brickner, H., Messier, H., Khastilba. S., Hübscher, U., & Fotedar, A. (1996) EMBO J. 15, 4423-4433]. Here we show...... that the PCNA binding domain is phosphorylated by the Ca2+/calmodulin-dependent protein kinase II (CaMKII), an enzyme required for cell cycle progression in eukaryotic cells. The DNA binding domain, on the other hand, is not phosphorylated. Phosphorylation by CaMKII reduces the binding of PCNA to RF...

  6. Conformationally locked aryl C-nucleosides: synthesis of phosphoramidite monomers and incorporation into single-stranded DNA and LNA (locked nucleic acid)

    DEFF Research Database (Denmark)

    Babu, B. Ravindra; Prasad, Ashok K.; Trikha, Smriti

    2002-01-01

    . The phosphoramidite approach was used for automated incorporation of the LNA-type beta-configured C-aryl monomers 17a-17e into short DNA and 2'-OMe-RNA/LNA strands. It is shown that universal hybridization can be obtained with a conformationally restricted monomer as demonstrated most convincingly for the pyrene LNA...... monomer 17d, both in a DNA context and in an RNA-like context. Increased binding affinity of oligonucleotide probes for universal hybridization can be induced by combining the pyrene LNA monomer 17d with affinity-enhancing 2'-OMe-RNA/LNA monomers....

  7. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer

    Directory of Open Access Journals (Sweden)

    Anthony J. Berdis

    2017-11-01

    Full Text Available Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase activity. The second category includes DNA damaging agents including cisplatin and chlorambucil that modify the composition and structure of the nucleic acid substrate to indirectly inhibit DNA synthesis. Special emphasis is placed on describing the molecular mechanisms of these inhibitory effects against chromosomal and mitochondrial DNA polymerases. Discussions are also provided on the mechanisms associated with resistance to these therapeutic agents. A primary focus is toward understanding the roles of specialized DNA polymerases that by-pass DNA lesions produced by DNA damaging agents. Finally, a section is provided that describes emerging areas in developing new therapeutic strategies targeting specialized DNA polymerases.

  8. Roles of Multiple Promoters in Transcription of Ribosomal DNA: Effects of Growth Conditions on Precursor rRNA Synthesis in Mycobacteria

    OpenAIRE

    Gonzalez-y-Merchand, J. A.; Colston, M J; Cox, R A

    1998-01-01

    The roles of multiple promoters in the synthesis of rRNA under different conditions of growth were investigated, using two mycobacterial species as model organisms. When Mycobacterium smegmatis was grown under optimal conditions, its two rRNA operons contributed equally, with two promoters, one from each operon, being responsible for most transcripts. In stationary-phase growth or balanced growth under carbon starvation conditions, one operon (rrnAf) dominated and its three promoters contribu...

  9. A sandwich-type DNA biosensor based on electrochemical co-reduction synthesis of graphene-three dimensional nanostructure gold nanocomposite films.

    Science.gov (United States)

    Liu, Ai-Lin; Zhong, Guang-Xian; Chen, Jin-Yuan; Weng, Shao-Huang; Huang, Hong-Nan; Chen, Wei; Lin, Li-Qing; Lei, Yun; Fu, Fei-Huan; Sun, Zhou-liang; Lin, Xin-Hua; Lin, Jian-Hua; Yang, Shu-Yu

    2013-03-12

    A novel electrochemical DNA biosensor based on graphene-three dimensional nanostruc